blob: e0d9eb55e781068b70293fbe09181ce74fb82a75 [file] [log] [blame]
Owen Andersond8c87882011-02-18 21:51:29 +00001//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
Peter Collingbourne7c788882011-10-01 16:41:13 +000019#include "llvm/TableGen/Record.h"
James Molloy3015dfb2012-02-09 10:56:31 +000020#include "llvm/ADT/APInt.h"
Owen Andersond8c87882011-02-18 21:51:29 +000021#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24
25#include <vector>
26#include <map>
27#include <string>
28
29using namespace llvm;
30
31// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
32// for a bit value.
33//
34// BIT_UNFILTERED is used as the init value for a filter position. It is used
35// only for filter processings.
36typedef enum {
37 BIT_TRUE, // '1'
38 BIT_FALSE, // '0'
39 BIT_UNSET, // '?'
40 BIT_UNFILTERED // unfiltered
41} bit_value_t;
42
43static bool ValueSet(bit_value_t V) {
44 return (V == BIT_TRUE || V == BIT_FALSE);
45}
46static bool ValueNotSet(bit_value_t V) {
47 return (V == BIT_UNSET);
48}
49static int Value(bit_value_t V) {
50 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
51}
David Greene05bce0b2011-07-29 22:43:06 +000052static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
53 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
Owen Andersond8c87882011-02-18 21:51:29 +000054 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
55
56 // The bit is uninitialized.
57 return BIT_UNSET;
58}
59// Prints the bit value for each position.
David Greene05bce0b2011-07-29 22:43:06 +000060static void dumpBits(raw_ostream &o, BitsInit &bits) {
Owen Andersond8c87882011-02-18 21:51:29 +000061 unsigned index;
62
63 for (index = bits.getNumBits(); index > 0; index--) {
64 switch (bitFromBits(bits, index - 1)) {
65 case BIT_TRUE:
66 o << "1";
67 break;
68 case BIT_FALSE:
69 o << "0";
70 break;
71 case BIT_UNSET:
72 o << "_";
73 break;
74 default:
Craig Topper655b8de2012-02-05 07:21:30 +000075 llvm_unreachable("unexpected return value from bitFromBits");
Owen Andersond8c87882011-02-18 21:51:29 +000076 }
77 }
78}
79
David Greene05bce0b2011-07-29 22:43:06 +000080static BitsInit &getBitsField(const Record &def, const char *str) {
81 BitsInit *bits = def.getValueAsBitsInit(str);
Owen Andersond8c87882011-02-18 21:51:29 +000082 return *bits;
83}
84
85// Forward declaration.
86class FilterChooser;
87
Owen Andersond8c87882011-02-18 21:51:29 +000088// Representation of the instruction to work on.
Owen Andersonf1a00902011-07-19 21:06:00 +000089typedef std::vector<bit_value_t> insn_t;
Owen Andersond8c87882011-02-18 21:51:29 +000090
91/// Filter - Filter works with FilterChooser to produce the decoding tree for
92/// the ISA.
93///
94/// It is useful to think of a Filter as governing the switch stmts of the
95/// decoding tree in a certain level. Each case stmt delegates to an inferior
96/// FilterChooser to decide what further decoding logic to employ, or in another
97/// words, what other remaining bits to look at. The FilterChooser eventually
98/// chooses a best Filter to do its job.
99///
100/// This recursive scheme ends when the number of Opcodes assigned to the
101/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
102/// the Filter/FilterChooser combo does not know how to distinguish among the
103/// Opcodes assigned.
104///
105/// An example of a conflict is
106///
107/// Conflict:
108/// 111101000.00........00010000....
109/// 111101000.00........0001........
110/// 1111010...00........0001........
111/// 1111010...00....................
112/// 1111010.........................
113/// 1111............................
114/// ................................
115/// VST4q8a 111101000_00________00010000____
116/// VST4q8b 111101000_00________00010000____
117///
118/// The Debug output shows the path that the decoding tree follows to reach the
119/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
120/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
121///
122/// The encoding info in the .td files does not specify this meta information,
123/// which could have been used by the decoder to resolve the conflict. The
124/// decoder could try to decode the even/odd register numbering and assign to
125/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
126/// version and return the Opcode since the two have the same Asm format string.
127class Filter {
128protected:
129 FilterChooser *Owner; // points to the FilterChooser who owns this filter
130 unsigned StartBit; // the starting bit position
131 unsigned NumBits; // number of bits to filter
132 bool Mixed; // a mixed region contains both set and unset bits
133
134 // Map of well-known segment value to the set of uid's with that value.
135 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
136
137 // Set of uid's with non-constant segment values.
138 std::vector<unsigned> VariableInstructions;
139
140 // Map of well-known segment value to its delegate.
141 std::map<unsigned, FilterChooser*> FilterChooserMap;
142
143 // Number of instructions which fall under FilteredInstructions category.
144 unsigned NumFiltered;
145
146 // Keeps track of the last opcode in the filtered bucket.
147 unsigned LastOpcFiltered;
148
149 // Number of instructions which fall under VariableInstructions category.
150 unsigned NumVariable;
151
152public:
153 unsigned getNumFiltered() { return NumFiltered; }
154 unsigned getNumVariable() { return NumVariable; }
155 unsigned getSingletonOpc() {
156 assert(NumFiltered == 1);
157 return LastOpcFiltered;
158 }
159 // Return the filter chooser for the group of instructions without constant
160 // segment values.
161 FilterChooser &getVariableFC() {
162 assert(NumFiltered == 1);
163 assert(FilterChooserMap.size() == 1);
164 return *(FilterChooserMap.find((unsigned)-1)->second);
165 }
166
167 Filter(const Filter &f);
168 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
169
170 ~Filter();
171
172 // Divides the decoding task into sub tasks and delegates them to the
173 // inferior FilterChooser's.
174 //
175 // A special case arises when there's only one entry in the filtered
176 // instructions. In order to unambiguously decode the singleton, we need to
177 // match the remaining undecoded encoding bits against the singleton.
178 void recurse();
179
180 // Emit code to decode instructions given a segment or segments of bits.
181 void emit(raw_ostream &o, unsigned &Indentation);
182
183 // Returns the number of fanout produced by the filter. More fanout implies
184 // the filter distinguishes more categories of instructions.
185 unsigned usefulness() const;
186}; // End of class Filter
187
188// These are states of our finite state machines used in FilterChooser's
189// filterProcessor() which produces the filter candidates to use.
190typedef enum {
191 ATTR_NONE,
192 ATTR_FILTERED,
193 ATTR_ALL_SET,
194 ATTR_ALL_UNSET,
195 ATTR_MIXED
196} bitAttr_t;
197
198/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
199/// in order to perform the decoding of instructions at the current level.
200///
201/// Decoding proceeds from the top down. Based on the well-known encoding bits
202/// of instructions available, FilterChooser builds up the possible Filters that
203/// can further the task of decoding by distinguishing among the remaining
204/// candidate instructions.
205///
206/// Once a filter has been chosen, it is called upon to divide the decoding task
207/// into sub-tasks and delegates them to its inferior FilterChoosers for further
208/// processings.
209///
210/// It is useful to think of a Filter as governing the switch stmts of the
211/// decoding tree. And each case is delegated to an inferior FilterChooser to
212/// decide what further remaining bits to look at.
213class FilterChooser {
214protected:
215 friend class Filter;
216
217 // Vector of codegen instructions to choose our filter.
218 const std::vector<const CodeGenInstruction*> &AllInstructions;
219
220 // Vector of uid's for this filter chooser to work on.
221 const std::vector<unsigned> Opcodes;
222
223 // Lookup table for the operand decoding of instructions.
224 std::map<unsigned, std::vector<OperandInfo> > &Operands;
225
226 // Vector of candidate filters.
227 std::vector<Filter> Filters;
228
229 // Array of bit values passed down from our parent.
230 // Set to all BIT_UNFILTERED's for Parent == NULL.
Owen Andersonf1a00902011-07-19 21:06:00 +0000231 std::vector<bit_value_t> FilterBitValues;
Owen Andersond8c87882011-02-18 21:51:29 +0000232
233 // Links to the FilterChooser above us in the decoding tree.
234 FilterChooser *Parent;
235
236 // Index of the best filter from Filters.
237 int BestIndex;
238
Owen Andersonf1a00902011-07-19 21:06:00 +0000239 // Width of instructions
240 unsigned BitWidth;
241
Owen Anderson83e3f672011-08-17 17:44:15 +0000242 // Parent emitter
243 const FixedLenDecoderEmitter *Emitter;
244
Owen Andersond8c87882011-02-18 21:51:29 +0000245public:
246 FilterChooser(const FilterChooser &FC) :
247 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Owen Andersonf1a00902011-07-19 21:06:00 +0000248 Operands(FC.Operands), Filters(FC.Filters),
249 FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
Owen Anderson83e3f672011-08-17 17:44:15 +0000250 BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
251 Emitter(FC.Emitter) { }
Owen Andersond8c87882011-02-18 21:51:29 +0000252
253 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
254 const std::vector<unsigned> &IDs,
Owen Andersonf1a00902011-07-19 21:06:00 +0000255 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Anderson83e3f672011-08-17 17:44:15 +0000256 unsigned BW,
257 const FixedLenDecoderEmitter *E) :
Owen Andersond8c87882011-02-18 21:51:29 +0000258 AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
Owen Anderson83e3f672011-08-17 17:44:15 +0000259 Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000260 for (unsigned i = 0; i < BitWidth; ++i)
261 FilterBitValues.push_back(BIT_UNFILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +0000262
263 doFilter();
264 }
265
266 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
267 const std::vector<unsigned> &IDs,
268 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Andersonf1a00902011-07-19 21:06:00 +0000269 std::vector<bit_value_t> &ParentFilterBitValues,
Owen Andersond8c87882011-02-18 21:51:29 +0000270 FilterChooser &parent) :
271 AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
Owen Andersonf1a00902011-07-19 21:06:00 +0000272 Filters(), FilterBitValues(ParentFilterBitValues),
Owen Anderson83e3f672011-08-17 17:44:15 +0000273 Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
274 Emitter(parent.Emitter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000275 doFilter();
276 }
277
278 // The top level filter chooser has NULL as its parent.
279 bool isTopLevel() { return Parent == NULL; }
280
281 // Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000282 void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
Owen Andersond8c87882011-02-18 21:51:29 +0000283
284protected:
285 // Populates the insn given the uid.
286 void insnWithID(insn_t &Insn, unsigned Opcode) const {
David Greene05bce0b2011-07-29 22:43:06 +0000287 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
Owen Andersond8c87882011-02-18 21:51:29 +0000288
James Molloy3015dfb2012-02-09 10:56:31 +0000289 // We may have a SoftFail bitmask, which specifies a mask where an encoding
290 // may differ from the value in "Inst" and yet still be valid, but the
291 // disassembler should return SoftFail instead of Success.
292 //
293 // This is used for marking UNPREDICTABLE instructions in the ARM world.
294 BitsInit *SFBits = AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
295
296 for (unsigned i = 0; i < BitWidth; ++i) {
297 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
298 Insn.push_back(BIT_UNSET);
299 else
300 Insn.push_back(bitFromBits(Bits, i));
301 }
Owen Andersond8c87882011-02-18 21:51:29 +0000302 }
303
304 // Returns the record name.
305 const std::string &nameWithID(unsigned Opcode) const {
306 return AllInstructions[Opcode]->TheDef->getName();
307 }
308
309 // Populates the field of the insn given the start position and the number of
310 // consecutive bits to scan for.
311 //
312 // Returns false if there exists any uninitialized bit value in the range.
313 // Returns true, otherwise.
314 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
315 unsigned NumBits) const;
316
317 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
318 /// filter array as a series of chars.
Owen Andersonf1a00902011-07-19 21:06:00 +0000319 void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
Owen Andersond8c87882011-02-18 21:51:29 +0000320
321 /// dumpStack - dumpStack traverses the filter chooser chain and calls
322 /// dumpFilterArray on each filter chooser up to the top level one.
323 void dumpStack(raw_ostream &o, const char *prefix);
324
325 Filter &bestFilter() {
326 assert(BestIndex != -1 && "BestIndex not set");
327 return Filters[BestIndex];
328 }
329
330 // Called from Filter::recurse() when singleton exists. For debug purpose.
331 void SingletonExists(unsigned Opc);
332
333 bool PositionFiltered(unsigned i) {
334 return ValueSet(FilterBitValues[i]);
335 }
336
337 // Calculates the island(s) needed to decode the instruction.
338 // This returns a lit of undecoded bits of an instructions, for example,
339 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
340 // decoded bits in order to verify that the instruction matches the Opcode.
341 unsigned getIslands(std::vector<unsigned> &StartBits,
342 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
343 insn_t &Insn);
344
James Molloya5d58562011-09-07 19:42:28 +0000345 // Emits code to check the Predicates member of an instruction are true.
346 // Returns true if predicate matches were emitted, false otherwise.
347 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc);
348
James Molloy3015dfb2012-02-09 10:56:31 +0000349 void emitSoftFailCheck(raw_ostream &o, unsigned Indentation, unsigned Opc);
350
Owen Andersond8c87882011-02-18 21:51:29 +0000351 // Emits code to decode the singleton. Return true if we have matched all the
352 // well-known bits.
353 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
354
355 // Emits code to decode the singleton, and then to decode the rest.
356 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
357
Owen Andersond1e38df2011-07-28 21:54:31 +0000358 void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
359 OperandInfo &OpInfo);
360
Owen Andersond8c87882011-02-18 21:51:29 +0000361 // Assign a single filter and run with it.
362 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
363 bool mixed);
364
365 // reportRegion is a helper function for filterProcessor to mark a region as
366 // eligible for use as a filter region.
367 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
368 bool AllowMixed);
369
370 // FilterProcessor scans the well-known encoding bits of the instructions and
371 // builds up a list of candidate filters. It chooses the best filter and
372 // recursively descends down the decoding tree.
373 bool filterProcessor(bool AllowMixed, bool Greedy = true);
374
375 // Decides on the best configuration of filter(s) to use in order to decode
376 // the instructions. A conflict of instructions may occur, in which case we
377 // dump the conflict set to the standard error.
378 void doFilter();
379
380 // Emits code to decode our share of instructions. Returns true if the
381 // emitted code causes a return, which occurs if we know how to decode
382 // the instruction at this level or the instruction is not decodeable.
383 bool emit(raw_ostream &o, unsigned &Indentation);
384};
385
386///////////////////////////
387// //
388// Filter Implmenetation //
389// //
390///////////////////////////
391
392Filter::Filter(const Filter &f) :
393 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
394 FilteredInstructions(f.FilteredInstructions),
395 VariableInstructions(f.VariableInstructions),
396 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
397 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
398}
399
400Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
401 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
402 Mixed(mixed) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000403 assert(StartBit + NumBits - 1 < Owner->BitWidth);
Owen Andersond8c87882011-02-18 21:51:29 +0000404
405 NumFiltered = 0;
406 LastOpcFiltered = 0;
407 NumVariable = 0;
408
409 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
410 insn_t Insn;
411
412 // Populates the insn given the uid.
413 Owner->insnWithID(Insn, Owner->Opcodes[i]);
414
415 uint64_t Field;
416 // Scans the segment for possibly well-specified encoding bits.
417 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
418
419 if (ok) {
420 // The encoding bits are well-known. Lets add the uid of the
421 // instruction into the bucket keyed off the constant field value.
422 LastOpcFiltered = Owner->Opcodes[i];
423 FilteredInstructions[Field].push_back(LastOpcFiltered);
424 ++NumFiltered;
425 } else {
426 // Some of the encoding bit(s) are unspecfied. This contributes to
427 // one additional member of "Variable" instructions.
428 VariableInstructions.push_back(Owner->Opcodes[i]);
429 ++NumVariable;
430 }
431 }
432
433 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
434 && "Filter returns no instruction categories");
435}
436
437Filter::~Filter() {
438 std::map<unsigned, FilterChooser*>::iterator filterIterator;
439 for (filterIterator = FilterChooserMap.begin();
440 filterIterator != FilterChooserMap.end();
441 filterIterator++) {
442 delete filterIterator->second;
443 }
444}
445
446// Divides the decoding task into sub tasks and delegates them to the
447// inferior FilterChooser's.
448//
449// A special case arises when there's only one entry in the filtered
450// instructions. In order to unambiguously decode the singleton, we need to
451// match the remaining undecoded encoding bits against the singleton.
452void Filter::recurse() {
453 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
454
Owen Andersond8c87882011-02-18 21:51:29 +0000455 // Starts by inheriting our parent filter chooser's filter bit values.
Owen Andersonf1a00902011-07-19 21:06:00 +0000456 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
Owen Andersond8c87882011-02-18 21:51:29 +0000457
458 unsigned bitIndex;
459
460 if (VariableInstructions.size()) {
461 // Conservatively marks each segment position as BIT_UNSET.
462 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
463 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
464
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000465 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000466 // group of instructions whose segment values are variable.
467 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
468 (unsigned)-1,
469 new FilterChooser(Owner->AllInstructions,
470 VariableInstructions,
471 Owner->Operands,
472 BitValueArray,
473 *Owner)
474 ));
475 }
476
477 // No need to recurse for a singleton filtered instruction.
478 // See also Filter::emit().
479 if (getNumFiltered() == 1) {
480 //Owner->SingletonExists(LastOpcFiltered);
481 assert(FilterChooserMap.size() == 1);
482 return;
483 }
484
485 // Otherwise, create sub choosers.
486 for (mapIterator = FilteredInstructions.begin();
487 mapIterator != FilteredInstructions.end();
488 mapIterator++) {
489
490 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
491 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
492 if (mapIterator->first & (1ULL << bitIndex))
493 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
494 else
495 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
496 }
497
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000498 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000499 // category of instructions.
500 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
501 mapIterator->first,
502 new FilterChooser(Owner->AllInstructions,
503 mapIterator->second,
504 Owner->Operands,
505 BitValueArray,
506 *Owner)
507 ));
508 }
509}
510
511// Emit code to decode instructions given a segment or segments of bits.
512void Filter::emit(raw_ostream &o, unsigned &Indentation) {
513 o.indent(Indentation) << "// Check Inst{";
514
515 if (NumBits > 1)
516 o << (StartBit + NumBits - 1) << '-';
517
518 o << StartBit << "} ...\n";
519
Owen Andersonf1a00902011-07-19 21:06:00 +0000520 o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
521 << "(insn, " << StartBit << ", "
522 << NumBits << ")) {\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000523
524 std::map<unsigned, FilterChooser*>::iterator filterIterator;
525
526 bool DefaultCase = false;
527 for (filterIterator = FilterChooserMap.begin();
528 filterIterator != FilterChooserMap.end();
529 filterIterator++) {
530
531 // Field value -1 implies a non-empty set of variable instructions.
532 // See also recurse().
533 if (filterIterator->first == (unsigned)-1) {
534 DefaultCase = true;
535
536 o.indent(Indentation) << "default:\n";
537 o.indent(Indentation) << " break; // fallthrough\n";
538
539 // Closing curly brace for the switch statement.
540 // This is unconventional because we want the default processing to be
541 // performed for the fallthrough cases as well, i.e., when the "cases"
542 // did not prove a decoded instruction.
543 o.indent(Indentation) << "}\n";
544
545 } else
546 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
547
548 // We arrive at a category of instructions with the same segment value.
549 // Now delegate to the sub filter chooser for further decodings.
550 // The case may fallthrough, which happens if the remaining well-known
551 // encoding bits do not match exactly.
552 if (!DefaultCase) { ++Indentation; ++Indentation; }
553
554 bool finished = filterIterator->second->emit(o, Indentation);
555 // For top level default case, there's no need for a break statement.
556 if (Owner->isTopLevel() && DefaultCase)
557 break;
558 if (!finished)
559 o.indent(Indentation) << "break;\n";
560
561 if (!DefaultCase) { --Indentation; --Indentation; }
562 }
563
564 // If there is no default case, we still need to supply a closing brace.
565 if (!DefaultCase) {
566 // Closing curly brace for the switch statement.
567 o.indent(Indentation) << "}\n";
568 }
569}
570
571// Returns the number of fanout produced by the filter. More fanout implies
572// the filter distinguishes more categories of instructions.
573unsigned Filter::usefulness() const {
574 if (VariableInstructions.size())
575 return FilteredInstructions.size();
576 else
577 return FilteredInstructions.size() + 1;
578}
579
580//////////////////////////////////
581// //
582// Filterchooser Implementation //
583// //
584//////////////////////////////////
585
586// Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000587void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
588 std::string Namespace) {
Owen Andersond8c87882011-02-18 21:51:29 +0000589 o.indent(Indentation) <<
Owen Anderson83e3f672011-08-17 17:44:15 +0000590 "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth
Owen Andersonf1a00902011-07-19 21:06:00 +0000591 << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, "
James Molloya5d58562011-09-07 19:42:28 +0000592 << "const void *Decoder, const MCSubtargetInfo &STI) {\n";
Owen Anderson684dfcf2011-10-17 16:56:47 +0000593 o.indent(Indentation) << " unsigned tmp = 0;\n";
594 o.indent(Indentation) << " (void)tmp;\n";
595 o.indent(Indentation) << Emitter->Locals << "\n";
Bob Wilson1cea66c2011-10-01 02:47:54 +0000596 o.indent(Indentation) << " uint64_t Bits = STI.getFeatureBits();\n";
Owen Anderson684dfcf2011-10-17 16:56:47 +0000597 o.indent(Indentation) << " (void)Bits;\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000598
599 ++Indentation; ++Indentation;
600 // Emits code to decode the instructions.
601 emit(o, Indentation);
602
603 o << '\n';
Owen Anderson83e3f672011-08-17 17:44:15 +0000604 o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000605 --Indentation; --Indentation;
606
607 o.indent(Indentation) << "}\n";
608
609 o << '\n';
610}
611
612// Populates the field of the insn given the start position and the number of
613// consecutive bits to scan for.
614//
615// Returns false if and on the first uninitialized bit value encountered.
616// Returns true, otherwise.
617bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
618 unsigned StartBit, unsigned NumBits) const {
619 Field = 0;
620
621 for (unsigned i = 0; i < NumBits; ++i) {
622 if (Insn[StartBit + i] == BIT_UNSET)
623 return false;
624
625 if (Insn[StartBit + i] == BIT_TRUE)
626 Field = Field | (1ULL << i);
627 }
628
629 return true;
630}
631
632/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
633/// filter array as a series of chars.
634void FilterChooser::dumpFilterArray(raw_ostream &o,
Owen Andersonf1a00902011-07-19 21:06:00 +0000635 std::vector<bit_value_t> &filter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000636 unsigned bitIndex;
637
Owen Andersonf1a00902011-07-19 21:06:00 +0000638 for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
Owen Andersond8c87882011-02-18 21:51:29 +0000639 switch (filter[bitIndex - 1]) {
640 case BIT_UNFILTERED:
641 o << ".";
642 break;
643 case BIT_UNSET:
644 o << "_";
645 break;
646 case BIT_TRUE:
647 o << "1";
648 break;
649 case BIT_FALSE:
650 o << "0";
651 break;
652 }
653 }
654}
655
656/// dumpStack - dumpStack traverses the filter chooser chain and calls
657/// dumpFilterArray on each filter chooser up to the top level one.
658void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
659 FilterChooser *current = this;
660
661 while (current) {
662 o << prefix;
663 dumpFilterArray(o, current->FilterBitValues);
664 o << '\n';
665 current = current->Parent;
666 }
667}
668
669// Called from Filter::recurse() when singleton exists. For debug purpose.
670void FilterChooser::SingletonExists(unsigned Opc) {
671 insn_t Insn0;
672 insnWithID(Insn0, Opc);
673
674 errs() << "Singleton exists: " << nameWithID(Opc)
675 << " with its decoding dominating ";
676 for (unsigned i = 0; i < Opcodes.size(); ++i) {
677 if (Opcodes[i] == Opc) continue;
678 errs() << nameWithID(Opcodes[i]) << ' ';
679 }
680 errs() << '\n';
681
682 dumpStack(errs(), "\t\t");
683 for (unsigned i = 0; i < Opcodes.size(); i++) {
684 const std::string &Name = nameWithID(Opcodes[i]);
685
686 errs() << '\t' << Name << " ";
687 dumpBits(errs(),
688 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
689 errs() << '\n';
690 }
691}
692
693// Calculates the island(s) needed to decode the instruction.
694// This returns a list of undecoded bits of an instructions, for example,
695// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
696// decoded bits in order to verify that the instruction matches the Opcode.
697unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
698 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
699 insn_t &Insn) {
700 unsigned Num, BitNo;
701 Num = BitNo = 0;
702
703 uint64_t FieldVal = 0;
704
705 // 0: Init
706 // 1: Water (the bit value does not affect decoding)
707 // 2: Island (well-known bit value needed for decoding)
708 int State = 0;
709 int Val = -1;
710
Owen Andersonf1a00902011-07-19 21:06:00 +0000711 for (unsigned i = 0; i < BitWidth; ++i) {
Owen Andersond8c87882011-02-18 21:51:29 +0000712 Val = Value(Insn[i]);
713 bool Filtered = PositionFiltered(i);
714 switch (State) {
Craig Topper655b8de2012-02-05 07:21:30 +0000715 default: llvm_unreachable("Unreachable code!");
Owen Andersond8c87882011-02-18 21:51:29 +0000716 case 0:
717 case 1:
718 if (Filtered || Val == -1)
719 State = 1; // Still in Water
720 else {
721 State = 2; // Into the Island
722 BitNo = 0;
723 StartBits.push_back(i);
724 FieldVal = Val;
725 }
726 break;
727 case 2:
728 if (Filtered || Val == -1) {
729 State = 1; // Into the Water
730 EndBits.push_back(i - 1);
731 FieldVals.push_back(FieldVal);
732 ++Num;
733 } else {
734 State = 2; // Still in Island
735 ++BitNo;
736 FieldVal = FieldVal | Val << BitNo;
737 }
738 break;
739 }
740 }
741 // If we are still in Island after the loop, do some housekeeping.
742 if (State == 2) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000743 EndBits.push_back(BitWidth - 1);
Owen Andersond8c87882011-02-18 21:51:29 +0000744 FieldVals.push_back(FieldVal);
745 ++Num;
746 }
747
748 assert(StartBits.size() == Num && EndBits.size() == Num &&
749 FieldVals.size() == Num);
750 return Num;
751}
752
Owen Andersond1e38df2011-07-28 21:54:31 +0000753void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
754 OperandInfo &OpInfo) {
755 std::string &Decoder = OpInfo.Decoder;
756
757 if (OpInfo.numFields() == 1) {
758 OperandInfo::iterator OI = OpInfo.begin();
759 o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth
760 << "(insn, " << OI->Base << ", " << OI->Width
761 << ");\n";
762 } else {
763 o.indent(Indentation) << " tmp = 0;\n";
764 for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
765 OI != OE; ++OI) {
766 o.indent(Indentation) << " tmp |= (fieldFromInstruction" << BitWidth
Andrew Tricked968a92011-09-08 05:23:14 +0000767 << "(insn, " << OI->Base << ", " << OI->Width
Owen Andersond1e38df2011-07-28 21:54:31 +0000768 << ") << " << OI->Offset << ");\n";
769 }
770 }
771
772 if (Decoder != "")
Owen Anderson83e3f672011-08-17 17:44:15 +0000773 o.indent(Indentation) << " " << Emitter->GuardPrefix << Decoder
774 << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n";
Owen Andersond1e38df2011-07-28 21:54:31 +0000775 else
776 o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
777
778}
779
James Molloya5d58562011-09-07 19:42:28 +0000780static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
781 std::string PredicateNamespace) {
Andrew Trick22b4c812011-09-08 05:25:49 +0000782 if (str[0] == '!')
783 o << "!(Bits & " << PredicateNamespace << "::"
784 << str.slice(1,str.size()) << ")";
James Molloya5d58562011-09-07 19:42:28 +0000785 else
Andrew Trick22b4c812011-09-08 05:25:49 +0000786 o << "(Bits & " << PredicateNamespace << "::" << str << ")";
James Molloya5d58562011-09-07 19:42:28 +0000787}
788
789bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
790 unsigned Opc) {
791 ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
792 for (unsigned i = 0; i < Predicates->getSize(); ++i) {
793 Record *Pred = Predicates->getElementAsRecord(i);
794 if (!Pred->getValue("AssemblerMatcherPredicate"))
795 continue;
796
797 std::string P = Pred->getValueAsString("AssemblerCondString");
798
799 if (!P.length())
800 continue;
801
802 if (i != 0)
803 o << " && ";
804
805 StringRef SR(P);
806 std::pair<StringRef, StringRef> pairs = SR.split(',');
807 while (pairs.second.size()) {
808 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
809 o << " && ";
810 pairs = pairs.second.split(',');
811 }
812 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
813 }
814 return Predicates->getSize() > 0;
Andrew Tricked968a92011-09-08 05:23:14 +0000815}
James Molloya5d58562011-09-07 19:42:28 +0000816
James Molloy3015dfb2012-02-09 10:56:31 +0000817void FilterChooser::emitSoftFailCheck(raw_ostream &o, unsigned Indentation, unsigned Opc) {
818 BitsInit *SFBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
819 if (!SFBits) return;
820 BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
821
822 APInt PositiveMask(BitWidth, 0ULL);
823 APInt NegativeMask(BitWidth, 0ULL);
824 for (unsigned i = 0; i < BitWidth; ++i) {
825 bit_value_t B = bitFromBits(*SFBits, i);
826 bit_value_t IB = bitFromBits(*InstBits, i);
827
828 if (B != BIT_TRUE) continue;
829
830 switch (IB) {
831 case BIT_FALSE:
832 // The bit is meant to be false, so emit a check to see if it is true.
833 PositiveMask.setBit(i);
834 break;
835 case BIT_TRUE:
836 // The bit is meant to be true, so emit a check to see if it is false.
837 NegativeMask.setBit(i);
838 break;
839 default:
840 // The bit is not set; this must be an error!
841 StringRef Name = AllInstructions[Opc]->TheDef->getName();
842 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
843 << Name
844 << " is set but Inst{" << i <<"} is unset!\n"
845 << " - You can only mark a bit as SoftFail if it is fully defined"
846 << " (1/0 - not '?') in Inst\n";
847 o << "#error SoftFail Conflict, " << Name << "::SoftFail{" << i
848 << "} set but Inst{" << i << "} undefined!\n";
849 }
850 }
851
852 bool NeedPositiveMask = PositiveMask.getBoolValue();
853 bool NeedNegativeMask = NegativeMask.getBoolValue();
854
855 if (!NeedPositiveMask && !NeedNegativeMask)
856 return;
857
858 std::string PositiveMaskStr = PositiveMask.toString(16, /*signed=*/false);
859 std::string NegativeMaskStr = NegativeMask.toString(16, /*signed=*/false);
860 StringRef BitExt = "";
861 if (BitWidth > 32)
862 BitExt = "ULL";
863
864 o.indent(Indentation) << "if (";
865 if (NeedPositiveMask)
866 o << "insn & 0x" << PositiveMaskStr << BitExt;
867 if (NeedPositiveMask && NeedNegativeMask)
868 o << " || ";
869 if (NeedNegativeMask)
870 o << "~insn & 0x" << NegativeMaskStr << BitExt;
871 o << ")\n";
872 o.indent(Indentation+2) << "S = MCDisassembler::SoftFail;\n";
873}
874
Owen Andersond8c87882011-02-18 21:51:29 +0000875// Emits code to decode the singleton. Return true if we have matched all the
876// well-known bits.
877bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
878 unsigned Opc) {
879 std::vector<unsigned> StartBits;
880 std::vector<unsigned> EndBits;
881 std::vector<uint64_t> FieldVals;
882 insn_t Insn;
883 insnWithID(Insn, Opc);
884
885 // Look for islands of undecoded bits of the singleton.
886 getIslands(StartBits, EndBits, FieldVals, Insn);
887
888 unsigned Size = StartBits.size();
889 unsigned I, NumBits;
890
891 // If we have matched all the well-known bits, just issue a return.
892 if (Size == 0) {
James Molloya5d58562011-09-07 19:42:28 +0000893 o.indent(Indentation) << "if (";
Eli Friedman64a17b32011-09-08 21:00:31 +0000894 if (!emitPredicateMatch(o, Indentation, Opc))
895 o << "1";
James Molloya5d58562011-09-07 19:42:28 +0000896 o << ") {\n";
James Molloy3015dfb2012-02-09 10:56:31 +0000897 emitSoftFailCheck(o, Indentation+2, Opc);
Owen Andersond8c87882011-02-18 21:51:29 +0000898 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
899 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
900 for (std::vector<OperandInfo>::iterator
901 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
902 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000903 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson83e3f672011-08-17 17:44:15 +0000904 o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
905 << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000906 break;
907 }
908
Owen Andersond1e38df2011-07-28 21:54:31 +0000909 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000910 }
911
Owen Anderson83e3f672011-08-17 17:44:15 +0000912 o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
Owen Andersond8c87882011-02-18 21:51:29 +0000913 << '\n';
James Molloya5d58562011-09-07 19:42:28 +0000914 o.indent(Indentation) << "}\n"; // Closing predicate block.
Owen Andersond8c87882011-02-18 21:51:29 +0000915 return true;
916 }
917
918 // Otherwise, there are more decodings to be done!
919
920 // Emit code to match the island(s) for the singleton.
921 o.indent(Indentation) << "// Check ";
922
923 for (I = Size; I != 0; --I) {
924 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
925 if (I > 1)
James Molloya5d58562011-09-07 19:42:28 +0000926 o << " && ";
Owen Andersond8c87882011-02-18 21:51:29 +0000927 else
928 o << "for singleton decoding...\n";
929 }
930
931 o.indent(Indentation) << "if (";
James Molloy0d76b192011-09-08 08:12:01 +0000932 if (emitPredicateMatch(o, Indentation, Opc)) {
James Molloya5d58562011-09-07 19:42:28 +0000933 o << " &&\n";
934 o.indent(Indentation+4);
935 }
Owen Andersond8c87882011-02-18 21:51:29 +0000936
937 for (I = Size; I != 0; --I) {
938 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
Owen Andersonf1a00902011-07-19 21:06:00 +0000939 o << "fieldFromInstruction" << BitWidth << "(insn, "
940 << StartBits[I-1] << ", " << NumBits
Owen Andersond8c87882011-02-18 21:51:29 +0000941 << ") == " << FieldVals[I-1];
942 if (I > 1)
943 o << " && ";
944 else
945 o << ") {\n";
946 }
James Molloy3015dfb2012-02-09 10:56:31 +0000947 emitSoftFailCheck(o, Indentation+2, Opc);
Owen Andersond8c87882011-02-18 21:51:29 +0000948 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
949 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
950 for (std::vector<OperandInfo>::iterator
951 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
952 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000953 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson83e3f672011-08-17 17:44:15 +0000954 o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
955 << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000956 break;
957 }
958
Owen Andersond1e38df2011-07-28 21:54:31 +0000959 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000960 }
Owen Anderson83e3f672011-08-17 17:44:15 +0000961 o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
Owen Andersond8c87882011-02-18 21:51:29 +0000962 << '\n';
963 o.indent(Indentation) << "}\n";
964
965 return false;
966}
967
968// Emits code to decode the singleton, and then to decode the rest.
969void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
970 Filter &Best) {
971
972 unsigned Opc = Best.getSingletonOpc();
973
974 emitSingletonDecoder(o, Indentation, Opc);
975
976 // Emit code for the rest.
977 o.indent(Indentation) << "else\n";
978
979 Indentation += 2;
980 Best.getVariableFC().emit(o, Indentation);
981 Indentation -= 2;
982}
983
984// Assign a single filter and run with it. Top level API client can initialize
985// with a single filter to start the filtering process.
986void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
987 unsigned numBit, bool mixed) {
988 Filters.clear();
989 Filter F(*this, startBit, numBit, true);
990 Filters.push_back(F);
991 BestIndex = 0; // Sole Filter instance to choose from.
992 bestFilter().recurse();
993}
994
995// reportRegion is a helper function for filterProcessor to mark a region as
996// eligible for use as a filter region.
997void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
998 unsigned BitIndex, bool AllowMixed) {
999 if (RA == ATTR_MIXED && AllowMixed)
1000 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1001 else if (RA == ATTR_ALL_SET && !AllowMixed)
1002 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1003}
1004
1005// FilterProcessor scans the well-known encoding bits of the instructions and
1006// builds up a list of candidate filters. It chooses the best filter and
1007// recursively descends down the decoding tree.
1008bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1009 Filters.clear();
1010 BestIndex = -1;
1011 unsigned numInstructions = Opcodes.size();
1012
1013 assert(numInstructions && "Filter created with no instructions");
1014
1015 // No further filtering is necessary.
1016 if (numInstructions == 1)
1017 return true;
1018
1019 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1020 // instructions is 3.
1021 if (AllowMixed && !Greedy) {
1022 assert(numInstructions == 3);
1023
1024 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1025 std::vector<unsigned> StartBits;
1026 std::vector<unsigned> EndBits;
1027 std::vector<uint64_t> FieldVals;
1028 insn_t Insn;
1029
1030 insnWithID(Insn, Opcodes[i]);
1031
1032 // Look for islands of undecoded bits of any instruction.
1033 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1034 // Found an instruction with island(s). Now just assign a filter.
1035 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1036 true);
1037 return true;
1038 }
1039 }
1040 }
1041
1042 unsigned BitIndex, InsnIndex;
1043
1044 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1045 // The automaton consumes the corresponding bit from each
1046 // instruction.
1047 //
1048 // Input symbols: 0, 1, and _ (unset).
1049 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1050 // Initial state: NONE.
1051 //
1052 // (NONE) ------- [01] -> (ALL_SET)
1053 // (NONE) ------- _ ----> (ALL_UNSET)
1054 // (ALL_SET) ---- [01] -> (ALL_SET)
1055 // (ALL_SET) ---- _ ----> (MIXED)
1056 // (ALL_UNSET) -- [01] -> (MIXED)
1057 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1058 // (MIXED) ------ . ----> (MIXED)
1059 // (FILTERED)---- . ----> (FILTERED)
1060
Owen Andersonf1a00902011-07-19 21:06:00 +00001061 std::vector<bitAttr_t> bitAttrs;
Owen Andersond8c87882011-02-18 21:51:29 +00001062
1063 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1064 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
Owen Andersonf1a00902011-07-19 21:06:00 +00001065 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
Owen Andersond8c87882011-02-18 21:51:29 +00001066 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1067 FilterBitValues[BitIndex] == BIT_FALSE)
Owen Andersonf1a00902011-07-19 21:06:00 +00001068 bitAttrs.push_back(ATTR_FILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +00001069 else
Owen Andersonf1a00902011-07-19 21:06:00 +00001070 bitAttrs.push_back(ATTR_NONE);
Owen Andersond8c87882011-02-18 21:51:29 +00001071
1072 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1073 insn_t insn;
1074
1075 insnWithID(insn, Opcodes[InsnIndex]);
1076
Owen Andersonf1a00902011-07-19 21:06:00 +00001077 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
Owen Andersond8c87882011-02-18 21:51:29 +00001078 switch (bitAttrs[BitIndex]) {
1079 case ATTR_NONE:
1080 if (insn[BitIndex] == BIT_UNSET)
1081 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1082 else
1083 bitAttrs[BitIndex] = ATTR_ALL_SET;
1084 break;
1085 case ATTR_ALL_SET:
1086 if (insn[BitIndex] == BIT_UNSET)
1087 bitAttrs[BitIndex] = ATTR_MIXED;
1088 break;
1089 case ATTR_ALL_UNSET:
1090 if (insn[BitIndex] != BIT_UNSET)
1091 bitAttrs[BitIndex] = ATTR_MIXED;
1092 break;
1093 case ATTR_MIXED:
1094 case ATTR_FILTERED:
1095 break;
1096 }
1097 }
1098 }
1099
1100 // The regionAttr automaton consumes the bitAttrs automatons' state,
1101 // lowest-to-highest.
1102 //
1103 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1104 // States: NONE, ALL_SET, MIXED
1105 // Initial state: NONE
1106 //
1107 // (NONE) ----- F --> (NONE)
1108 // (NONE) ----- S --> (ALL_SET) ; and set region start
1109 // (NONE) ----- U --> (NONE)
1110 // (NONE) ----- M --> (MIXED) ; and set region start
1111 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1112 // (ALL_SET) -- S --> (ALL_SET)
1113 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1114 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1115 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1116 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1117 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1118 // (MIXED) ---- M --> (MIXED)
1119
1120 bitAttr_t RA = ATTR_NONE;
1121 unsigned StartBit = 0;
1122
Owen Andersonf1a00902011-07-19 21:06:00 +00001123 for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
Owen Andersond8c87882011-02-18 21:51:29 +00001124 bitAttr_t bitAttr = bitAttrs[BitIndex];
1125
1126 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1127
1128 switch (RA) {
1129 case ATTR_NONE:
1130 switch (bitAttr) {
1131 case ATTR_FILTERED:
1132 break;
1133 case ATTR_ALL_SET:
1134 StartBit = BitIndex;
1135 RA = ATTR_ALL_SET;
1136 break;
1137 case ATTR_ALL_UNSET:
1138 break;
1139 case ATTR_MIXED:
1140 StartBit = BitIndex;
1141 RA = ATTR_MIXED;
1142 break;
1143 default:
Craig Topper655b8de2012-02-05 07:21:30 +00001144 llvm_unreachable("Unexpected bitAttr!");
Owen Andersond8c87882011-02-18 21:51:29 +00001145 }
1146 break;
1147 case ATTR_ALL_SET:
1148 switch (bitAttr) {
1149 case ATTR_FILTERED:
1150 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1151 RA = ATTR_NONE;
1152 break;
1153 case ATTR_ALL_SET:
1154 break;
1155 case ATTR_ALL_UNSET:
1156 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1157 RA = ATTR_NONE;
1158 break;
1159 case ATTR_MIXED:
1160 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1161 StartBit = BitIndex;
1162 RA = ATTR_MIXED;
1163 break;
1164 default:
Craig Topper655b8de2012-02-05 07:21:30 +00001165 llvm_unreachable("Unexpected bitAttr!");
Owen Andersond8c87882011-02-18 21:51:29 +00001166 }
1167 break;
1168 case ATTR_MIXED:
1169 switch (bitAttr) {
1170 case ATTR_FILTERED:
1171 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1172 StartBit = BitIndex;
1173 RA = ATTR_NONE;
1174 break;
1175 case ATTR_ALL_SET:
1176 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1177 StartBit = BitIndex;
1178 RA = ATTR_ALL_SET;
1179 break;
1180 case ATTR_ALL_UNSET:
1181 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1182 RA = ATTR_NONE;
1183 break;
1184 case ATTR_MIXED:
1185 break;
1186 default:
Craig Topper655b8de2012-02-05 07:21:30 +00001187 llvm_unreachable("Unexpected bitAttr!");
Owen Andersond8c87882011-02-18 21:51:29 +00001188 }
1189 break;
1190 case ATTR_ALL_UNSET:
Craig Topper655b8de2012-02-05 07:21:30 +00001191 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
Owen Andersond8c87882011-02-18 21:51:29 +00001192 case ATTR_FILTERED:
Craig Topper655b8de2012-02-05 07:21:30 +00001193 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
Owen Andersond8c87882011-02-18 21:51:29 +00001194 }
1195 }
1196
1197 // At the end, if we're still in ALL_SET or MIXED states, report a region
1198 switch (RA) {
1199 case ATTR_NONE:
1200 break;
1201 case ATTR_FILTERED:
1202 break;
1203 case ATTR_ALL_SET:
1204 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1205 break;
1206 case ATTR_ALL_UNSET:
1207 break;
1208 case ATTR_MIXED:
1209 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1210 break;
1211 }
1212
1213 // We have finished with the filter processings. Now it's time to choose
1214 // the best performing filter.
1215 BestIndex = 0;
1216 bool AllUseless = true;
1217 unsigned BestScore = 0;
1218
1219 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1220 unsigned Usefulness = Filters[i].usefulness();
1221
1222 if (Usefulness)
1223 AllUseless = false;
1224
1225 if (Usefulness > BestScore) {
1226 BestIndex = i;
1227 BestScore = Usefulness;
1228 }
1229 }
1230
1231 if (!AllUseless)
1232 bestFilter().recurse();
1233
1234 return !AllUseless;
1235} // end of FilterChooser::filterProcessor(bool)
1236
1237// Decides on the best configuration of filter(s) to use in order to decode
1238// the instructions. A conflict of instructions may occur, in which case we
1239// dump the conflict set to the standard error.
1240void FilterChooser::doFilter() {
1241 unsigned Num = Opcodes.size();
1242 assert(Num && "FilterChooser created with no instructions");
1243
1244 // Try regions of consecutive known bit values first.
1245 if (filterProcessor(false))
1246 return;
1247
1248 // Then regions of mixed bits (both known and unitialized bit values allowed).
1249 if (filterProcessor(true))
1250 return;
1251
1252 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1253 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1254 // well-known encoding pattern. In such case, we backtrack and scan for the
1255 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1256 if (Num == 3 && filterProcessor(true, false))
1257 return;
1258
1259 // If we come to here, the instruction decoding has failed.
1260 // Set the BestIndex to -1 to indicate so.
1261 BestIndex = -1;
1262}
1263
1264// Emits code to decode our share of instructions. Returns true if the
1265// emitted code causes a return, which occurs if we know how to decode
1266// the instruction at this level or the instruction is not decodeable.
1267bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1268 if (Opcodes.size() == 1)
1269 // There is only one instruction in the set, which is great!
1270 // Call emitSingletonDecoder() to see whether there are any remaining
1271 // encodings bits.
1272 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1273
1274 // Choose the best filter to do the decodings!
1275 if (BestIndex != -1) {
1276 Filter &Best = bestFilter();
1277 if (Best.getNumFiltered() == 1)
1278 emitSingletonDecoder(o, Indentation, Best);
1279 else
1280 bestFilter().emit(o, Indentation);
1281 return false;
1282 }
1283
1284 // We don't know how to decode these instructions! Return 0 and dump the
1285 // conflict set!
1286 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1287 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1288 o << nameWithID(Opcodes[i]);
1289 if (i < (N - 1))
1290 o << ", ";
1291 else
1292 o << '\n';
1293 }
1294
1295 // Print out useful conflict information for postmortem analysis.
1296 errs() << "Decoding Conflict:\n";
1297
1298 dumpStack(errs(), "\t\t");
1299
1300 for (unsigned i = 0; i < Opcodes.size(); i++) {
1301 const std::string &Name = nameWithID(Opcodes[i]);
1302
1303 errs() << '\t' << Name << " ";
1304 dumpBits(errs(),
1305 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1306 errs() << '\n';
1307 }
1308
1309 return true;
1310}
1311
Owen Andersonf1a00902011-07-19 21:06:00 +00001312static bool populateInstruction(const CodeGenInstruction &CGI,
1313 unsigned Opc,
1314 std::map<unsigned, std::vector<OperandInfo> >& Operands){
Owen Andersond8c87882011-02-18 21:51:29 +00001315 const Record &Def = *CGI.TheDef;
1316 // If all the bit positions are not specified; do not decode this instruction.
1317 // We are bound to fail! For proper disassembly, the well-known encoding bits
1318 // of the instruction must be fully specified.
1319 //
1320 // This also removes pseudo instructions from considerations of disassembly,
1321 // which is a better design and less fragile than the name matchings.
Owen Andersond8c87882011-02-18 21:51:29 +00001322 // Ignore "asm parser only" instructions.
Owen Anderson4dd27eb2011-03-14 20:58:49 +00001323 if (Def.getValueAsBit("isAsmParserOnly") ||
1324 Def.getValueAsBit("isCodeGenOnly"))
Owen Andersond8c87882011-02-18 21:51:29 +00001325 return false;
1326
David Greene05bce0b2011-07-29 22:43:06 +00001327 BitsInit &Bits = getBitsField(Def, "Inst");
Jim Grosbach806fcc02011-07-06 21:33:38 +00001328 if (Bits.allInComplete()) return false;
1329
Owen Andersond8c87882011-02-18 21:51:29 +00001330 std::vector<OperandInfo> InsnOperands;
1331
1332 // If the instruction has specified a custom decoding hook, use that instead
1333 // of trying to auto-generate the decoder.
1334 std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1335 if (InstDecoder != "") {
Owen Andersond1e38df2011-07-28 21:54:31 +00001336 InsnOperands.push_back(OperandInfo(InstDecoder));
Owen Andersond8c87882011-02-18 21:51:29 +00001337 Operands[Opc] = InsnOperands;
1338 return true;
1339 }
1340
1341 // Generate a description of the operand of the instruction that we know
1342 // how to decode automatically.
1343 // FIXME: We'll need to have a way to manually override this as needed.
1344
1345 // Gather the outputs/inputs of the instruction, so we can find their
1346 // positions in the encoding. This assumes for now that they appear in the
1347 // MCInst in the order that they're listed.
David Greene05bce0b2011-07-29 22:43:06 +00001348 std::vector<std::pair<Init*, std::string> > InOutOperands;
1349 DagInit *Out = Def.getValueAsDag("OutOperandList");
1350 DagInit *In = Def.getValueAsDag("InOperandList");
Owen Andersond8c87882011-02-18 21:51:29 +00001351 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1352 InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1353 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1354 InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1355
Owen Anderson00ef6e32011-07-28 23:56:20 +00001356 // Search for tied operands, so that we can correctly instantiate
1357 // operands that are not explicitly represented in the encoding.
Owen Andersonea242982011-07-29 18:28:52 +00001358 std::map<std::string, std::string> TiedNames;
Owen Anderson00ef6e32011-07-28 23:56:20 +00001359 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1360 int tiedTo = CGI.Operands[i].getTiedRegister();
Owen Andersonea242982011-07-29 18:28:52 +00001361 if (tiedTo != -1) {
1362 TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
1363 TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
1364 }
Owen Anderson00ef6e32011-07-28 23:56:20 +00001365 }
1366
Owen Andersond8c87882011-02-18 21:51:29 +00001367 // For each operand, see if we can figure out where it is encoded.
David Greene05bce0b2011-07-29 22:43:06 +00001368 for (std::vector<std::pair<Init*, std::string> >::iterator
Owen Andersond8c87882011-02-18 21:51:29 +00001369 NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
Owen Andersond8c87882011-02-18 21:51:29 +00001370 std::string Decoder = "";
1371
Owen Andersond1e38df2011-07-28 21:54:31 +00001372 // At this point, we can locate the field, but we need to know how to
1373 // interpret it. As a first step, require the target to provide callbacks
1374 // for decoding register classes.
1375 // FIXME: This need to be extended to handle instructions with custom
1376 // decoder methods, and operands with (simple) MIOperandInfo's.
David Greene05bce0b2011-07-29 22:43:06 +00001377 TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
Owen Andersond1e38df2011-07-28 21:54:31 +00001378 RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1379 Record *TypeRecord = Type->getRecord();
1380 bool isReg = false;
1381 if (TypeRecord->isSubClassOf("RegisterOperand"))
1382 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1383 if (TypeRecord->isSubClassOf("RegisterClass")) {
1384 Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1385 isReg = true;
1386 }
1387
1388 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
David Greene05bce0b2011-07-29 22:43:06 +00001389 StringInit *String = DecoderString ?
1390 dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
Owen Andersond1e38df2011-07-28 21:54:31 +00001391 if (!isReg && String && String->getValue() != "")
1392 Decoder = String->getValue();
1393
1394 OperandInfo OpInfo(Decoder);
1395 unsigned Base = ~0U;
1396 unsigned Width = 0;
1397 unsigned Offset = 0;
1398
Owen Andersond8c87882011-02-18 21:51:29 +00001399 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
Owen Andersoncf603952011-08-01 22:45:43 +00001400 VarInit *Var = 0;
David Greene05bce0b2011-07-29 22:43:06 +00001401 VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
Owen Andersoncf603952011-08-01 22:45:43 +00001402 if (BI)
1403 Var = dynamic_cast<VarInit*>(BI->getVariable());
1404 else
1405 Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
1406
1407 if (!Var) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001408 if (Base != ~0U) {
1409 OpInfo.addField(Base, Width, Offset);
1410 Base = ~0U;
1411 Width = 0;
1412 Offset = 0;
1413 }
1414 continue;
1415 }
Owen Andersond8c87882011-02-18 21:51:29 +00001416
Owen Anderson00ef6e32011-07-28 23:56:20 +00001417 if (Var->getName() != NI->second &&
Owen Andersonea242982011-07-29 18:28:52 +00001418 Var->getName() != TiedNames[NI->second]) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001419 if (Base != ~0U) {
1420 OpInfo.addField(Base, Width, Offset);
1421 Base = ~0U;
1422 Width = 0;
1423 Offset = 0;
1424 }
1425 continue;
Owen Andersond8c87882011-02-18 21:51:29 +00001426 }
1427
Owen Andersond1e38df2011-07-28 21:54:31 +00001428 if (Base == ~0U) {
1429 Base = bi;
1430 Width = 1;
Owen Andersoncf603952011-08-01 22:45:43 +00001431 Offset = BI ? BI->getBitNum() : 0;
1432 } else if (BI && BI->getBitNum() != Offset + Width) {
Owen Andersoneb809f52011-07-29 23:01:18 +00001433 OpInfo.addField(Base, Width, Offset);
1434 Base = bi;
1435 Width = 1;
1436 Offset = BI->getBitNum();
Owen Andersond1e38df2011-07-28 21:54:31 +00001437 } else {
1438 ++Width;
Owen Andersond8c87882011-02-18 21:51:29 +00001439 }
Owen Andersond8c87882011-02-18 21:51:29 +00001440 }
1441
Owen Andersond1e38df2011-07-28 21:54:31 +00001442 if (Base != ~0U)
1443 OpInfo.addField(Base, Width, Offset);
1444
1445 if (OpInfo.numFields() > 0)
1446 InsnOperands.push_back(OpInfo);
Owen Andersond8c87882011-02-18 21:51:29 +00001447 }
1448
1449 Operands[Opc] = InsnOperands;
1450
1451
1452#if 0
1453 DEBUG({
1454 // Dumps the instruction encoding bits.
1455 dumpBits(errs(), Bits);
1456
1457 errs() << '\n';
1458
1459 // Dumps the list of operand info.
1460 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1461 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1462 const std::string &OperandName = Info.Name;
1463 const Record &OperandDef = *Info.Rec;
1464
1465 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1466 }
1467 });
1468#endif
1469
1470 return true;
1471}
1472
Owen Andersonf1a00902011-07-19 21:06:00 +00001473static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
1474 unsigned Indentation = 0;
1475 std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
Owen Andersond8c87882011-02-18 21:51:29 +00001476
Owen Andersonf1a00902011-07-19 21:06:00 +00001477 o << '\n';
1478
1479 o.indent(Indentation) << "static " << WidthStr <<
1480 " fieldFromInstruction" << BitWidth <<
1481 "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
1482
1483 o.indent(Indentation) << "{\n";
1484
1485 ++Indentation; ++Indentation;
1486 o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
1487 << " && \"Instruction field out of bounds!\");\n";
1488 o << '\n';
1489 o.indent(Indentation) << WidthStr << " fieldMask;\n";
1490 o << '\n';
1491 o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
1492
1493 ++Indentation; ++Indentation;
1494 o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
1495 --Indentation; --Indentation;
1496
1497 o.indent(Indentation) << "else\n";
1498
1499 ++Indentation; ++Indentation;
1500 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
1501 --Indentation; --Indentation;
1502
1503 o << '\n';
1504 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
1505 --Indentation; --Indentation;
1506
1507 o.indent(Indentation) << "}\n";
1508
1509 o << '\n';
Owen Andersond8c87882011-02-18 21:51:29 +00001510}
1511
1512// Emits disassembler code for instruction decoding.
1513void FixedLenDecoderEmitter::run(raw_ostream &o)
1514{
1515 o << "#include \"llvm/MC/MCInst.h\"\n";
1516 o << "#include \"llvm/Support/DataTypes.h\"\n";
1517 o << "#include <assert.h>\n";
1518 o << '\n';
1519 o << "namespace llvm {\n\n";
1520
Owen Andersonf1a00902011-07-19 21:06:00 +00001521 // Parameterize the decoders based on namespace and instruction width.
Owen Andersond8c87882011-02-18 21:51:29 +00001522 NumberedInstructions = Target.getInstructionsByEnumValue();
Owen Andersonf1a00902011-07-19 21:06:00 +00001523 std::map<std::pair<std::string, unsigned>,
1524 std::vector<unsigned> > OpcMap;
1525 std::map<unsigned, std::vector<OperandInfo> > Operands;
1526
1527 for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
1528 const CodeGenInstruction *Inst = NumberedInstructions[i];
1529 Record *Def = Inst->TheDef;
1530 unsigned Size = Def->getValueAsInt("Size");
1531 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
1532 Def->getValueAsBit("isPseudo") ||
1533 Def->getValueAsBit("isAsmParserOnly") ||
1534 Def->getValueAsBit("isCodeGenOnly"))
1535 continue;
1536
1537 std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
1538
1539 if (Size) {
1540 if (populateInstruction(*Inst, i, Operands)) {
1541 OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
1542 }
1543 }
1544 }
1545
1546 std::set<unsigned> Sizes;
1547 for (std::map<std::pair<std::string, unsigned>,
1548 std::vector<unsigned> >::iterator
1549 I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
1550 // If we haven't visited this instruction width before, emit the
1551 // helper method to extract fields.
1552 if (!Sizes.count(I->first.second)) {
1553 emitHelper(o, 8*I->first.second);
1554 Sizes.insert(I->first.second);
1555 }
1556
1557 // Emit the decoder for this namespace+width combination.
1558 FilterChooser FC(NumberedInstructions, I->second, Operands,
Owen Anderson83e3f672011-08-17 17:44:15 +00001559 8*I->first.second, this);
Owen Andersonf1a00902011-07-19 21:06:00 +00001560 FC.emitTop(o, 0, I->first.first);
1561 }
Owen Andersond8c87882011-02-18 21:51:29 +00001562
1563 o << "\n} // End llvm namespace \n";
1564}