blob: c1fa6fcca63ff9baf212cba7021e46b53bbffda6 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000022#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000024#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000025#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000026#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000027#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000028#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000029using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000030using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000031
Duncan Sands124708d2011-01-01 20:08:02 +000032#define RecursionLimit 3
Duncan Sandsa74a58c2010-11-10 18:23:01 +000033
Duncan Sandsa3c44a52010-12-22 09:40:51 +000034STATISTIC(NumExpand, "Number of expansions");
35STATISTIC(NumFactor , "Number of factorizations");
36STATISTIC(NumReassoc, "Number of reassociations");
37
Duncan Sands82fdab32010-12-21 14:00:22 +000038static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
39 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000040static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000041 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000042static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000043 const DominatorTree *, unsigned);
Duncan Sands82fdab32010-12-21 14:00:22 +000044static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
45 const DominatorTree *, unsigned);
46static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
47 const DominatorTree *, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000048
49/// ValueDominatesPHI - Does the given value dominate the specified phi node?
50static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
51 Instruction *I = dyn_cast<Instruction>(V);
52 if (!I)
53 // Arguments and constants dominate all instructions.
54 return true;
55
56 // If we have a DominatorTree then do a precise test.
57 if (DT)
58 return DT->dominates(I, P);
59
60 // Otherwise, if the instruction is in the entry block, and is not an invoke,
61 // then it obviously dominates all phi nodes.
62 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
63 !isa<InvokeInst>(I))
64 return true;
65
66 return false;
67}
Duncan Sandsa74a58c2010-11-10 18:23:01 +000068
Duncan Sands3421d902010-12-21 13:32:22 +000069/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
70/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
71/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
72/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
73/// Returns the simplified value, or null if no simplification was performed.
74static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +000075 unsigned OpcToExpand, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +000076 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +000077 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000078 // Recursion is always used, so bail out at once if we already hit the limit.
79 if (!MaxRecurse--)
80 return 0;
81
82 // Check whether the expression has the form "(A op' B) op C".
83 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
84 if (Op0->getOpcode() == OpcodeToExpand) {
85 // It does! Try turning it into "(A op C) op' (B op C)".
86 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
87 // Do "A op C" and "B op C" both simplify?
88 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
89 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
90 // They do! Return "L op' R" if it simplifies or is already available.
91 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +000092 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
93 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +000094 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000095 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +000096 }
Duncan Sands3421d902010-12-21 13:32:22 +000097 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +000098 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
99 MaxRecurse)) {
100 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000101 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000102 }
Duncan Sands3421d902010-12-21 13:32:22 +0000103 }
104 }
105
106 // Check whether the expression has the form "A op (B op' C)".
107 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
108 if (Op1->getOpcode() == OpcodeToExpand) {
109 // It does! Try turning it into "(A op B) op' (A op C)".
110 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
111 // Do "A op B" and "A op C" both simplify?
112 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
113 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
114 // They do! Return "L op' R" if it simplifies or is already available.
115 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000116 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
117 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000118 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000119 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000120 }
Duncan Sands3421d902010-12-21 13:32:22 +0000121 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000122 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
123 MaxRecurse)) {
124 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000125 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000126 }
Duncan Sands3421d902010-12-21 13:32:22 +0000127 }
128 }
129
130 return 0;
131}
132
133/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
134/// using the operation OpCodeToExtract. For example, when Opcode is Add and
135/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
136/// Returns the simplified value, or null if no simplification was performed.
137static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +0000138 unsigned OpcToExtract, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +0000139 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000140 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000141 // Recursion is always used, so bail out at once if we already hit the limit.
142 if (!MaxRecurse--)
143 return 0;
144
145 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
146 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
147
148 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
149 !Op1 || Op1->getOpcode() != OpcodeToExtract)
150 return 0;
151
152 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
154 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000155
156 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
157 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
158 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000159 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
160 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000161 // Form "A op' (B op DD)" if it simplifies completely.
162 // Does "B op DD" simplify?
163 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
164 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000165 // If V equals B then "A op' V" is just the LHS. If V equals DD then
166 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000167 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000168 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000169 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000170 }
Duncan Sands3421d902010-12-21 13:32:22 +0000171 // Otherwise return "A op' V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000172 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
173 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000174 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000175 }
Duncan Sands3421d902010-12-21 13:32:22 +0000176 }
177 }
178
179 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
180 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
181 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000182 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
183 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000184 // Form "(A op CC) op' B" if it simplifies completely..
185 // Does "A op CC" simplify?
186 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
187 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000188 // If V equals A then "V op' B" is just the LHS. If V equals CC then
189 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000190 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000191 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000192 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000193 }
Duncan Sands3421d902010-12-21 13:32:22 +0000194 // Otherwise return "V op' B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000195 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
196 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000197 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000198 }
Duncan Sands3421d902010-12-21 13:32:22 +0000199 }
200 }
201
202 return 0;
203}
204
205/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
206/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000207static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands566edb02010-12-21 08:49:00 +0000208 const TargetData *TD,
209 const DominatorTree *DT,
210 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000211 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000212 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
213
214 // Recursion is always used, so bail out at once if we already hit the limit.
215 if (!MaxRecurse--)
216 return 0;
217
218 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
219 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
220
221 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
222 if (Op0 && Op0->getOpcode() == Opcode) {
223 Value *A = Op0->getOperand(0);
224 Value *B = Op0->getOperand(1);
225 Value *C = RHS;
226
227 // Does "B op C" simplify?
228 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
229 // It does! Return "A op V" if it simplifies or is already available.
230 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000231 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000232 // Otherwise return "A op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000233 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
234 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000235 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000236 }
Duncan Sands566edb02010-12-21 08:49:00 +0000237 }
238 }
239
240 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
241 if (Op1 && Op1->getOpcode() == Opcode) {
242 Value *A = LHS;
243 Value *B = Op1->getOperand(0);
244 Value *C = Op1->getOperand(1);
245
246 // Does "A op B" simplify?
247 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
248 // It does! Return "V op C" if it simplifies or is already available.
249 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000250 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000251 // Otherwise return "V op C" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000252 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
253 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000254 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000255 }
Duncan Sands566edb02010-12-21 08:49:00 +0000256 }
257 }
258
259 // The remaining transforms require commutativity as well as associativity.
260 if (!Instruction::isCommutative(Opcode))
261 return 0;
262
263 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
264 if (Op0 && Op0->getOpcode() == Opcode) {
265 Value *A = Op0->getOperand(0);
266 Value *B = Op0->getOperand(1);
267 Value *C = RHS;
268
269 // Does "C op A" simplify?
270 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
271 // It does! Return "V op B" if it simplifies or is already available.
272 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000273 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000274 // Otherwise return "V op B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000275 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
276 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000277 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000278 }
Duncan Sands566edb02010-12-21 08:49:00 +0000279 }
280 }
281
282 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
283 if (Op1 && Op1->getOpcode() == Opcode) {
284 Value *A = LHS;
285 Value *B = Op1->getOperand(0);
286 Value *C = Op1->getOperand(1);
287
288 // Does "C op A" simplify?
289 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
290 // It does! Return "B op V" if it simplifies or is already available.
291 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000292 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000293 // Otherwise return "B op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000294 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
295 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000296 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000297 }
Duncan Sands566edb02010-12-21 08:49:00 +0000298 }
299 }
300
301 return 0;
302}
303
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000304/// ThreadBinOpOverSelect - In the case of a binary operation with a select
305/// instruction as an operand, try to simplify the binop by seeing whether
306/// evaluating it on both branches of the select results in the same value.
307/// Returns the common value if so, otherwise returns null.
308static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000309 const TargetData *TD,
310 const DominatorTree *DT,
311 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000312 // Recursion is always used, so bail out at once if we already hit the limit.
313 if (!MaxRecurse--)
314 return 0;
315
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000316 SelectInst *SI;
317 if (isa<SelectInst>(LHS)) {
318 SI = cast<SelectInst>(LHS);
319 } else {
320 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
321 SI = cast<SelectInst>(RHS);
322 }
323
324 // Evaluate the BinOp on the true and false branches of the select.
325 Value *TV;
326 Value *FV;
327 if (SI == LHS) {
Duncan Sands18450092010-11-16 12:16:38 +0000328 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
329 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000330 } else {
Duncan Sands18450092010-11-16 12:16:38 +0000331 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
332 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000333 }
334
Duncan Sands7cf85e72011-01-01 16:12:09 +0000335 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000336 // If they both failed to simplify then return null.
337 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000338 return TV;
339
340 // If one branch simplified to undef, return the other one.
341 if (TV && isa<UndefValue>(TV))
342 return FV;
343 if (FV && isa<UndefValue>(FV))
344 return TV;
345
346 // If applying the operation did not change the true and false select values,
347 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000348 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000349 return SI;
350
351 // If one branch simplified and the other did not, and the simplified
352 // value is equal to the unsimplified one, return the simplified value.
353 // For example, select (cond, X, X & Z) & Z -> X & Z.
354 if ((FV && !TV) || (TV && !FV)) {
355 // Check that the simplified value has the form "X op Y" where "op" is the
356 // same as the original operation.
357 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
358 if (Simplified && Simplified->getOpcode() == Opcode) {
359 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
360 // We already know that "op" is the same as for the simplified value. See
361 // if the operands match too. If so, return the simplified value.
362 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
363 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
364 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000365 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
366 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000367 return Simplified;
368 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000369 Simplified->getOperand(1) == UnsimplifiedLHS &&
370 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000371 return Simplified;
372 }
373 }
374
375 return 0;
376}
377
378/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
379/// try to simplify the comparison by seeing whether both branches of the select
380/// result in the same value. Returns the common value if so, otherwise returns
381/// null.
382static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000383 Value *RHS, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000384 const DominatorTree *DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000385 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000386 // Recursion is always used, so bail out at once if we already hit the limit.
387 if (!MaxRecurse--)
388 return 0;
389
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000390 // Make sure the select is on the LHS.
391 if (!isa<SelectInst>(LHS)) {
392 std::swap(LHS, RHS);
393 Pred = CmpInst::getSwappedPredicate(Pred);
394 }
395 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
396 SelectInst *SI = cast<SelectInst>(LHS);
397
398 // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
399 // Does "cmp TV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000400 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000401 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000402 // It does! Does "cmp FV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000403 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000404 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000405 // It does! If they simplified to the same value, then use it as the
406 // result of the original comparison.
Duncan Sands124708d2011-01-01 20:08:02 +0000407 if (TCmp == FCmp)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000408 return TCmp;
409 return 0;
410}
411
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000412/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
413/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
414/// it on the incoming phi values yields the same result for every value. If so
415/// returns the common value, otherwise returns null.
416static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000417 const TargetData *TD, const DominatorTree *DT,
418 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000419 // Recursion is always used, so bail out at once if we already hit the limit.
420 if (!MaxRecurse--)
421 return 0;
422
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000423 PHINode *PI;
424 if (isa<PHINode>(LHS)) {
425 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000426 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
427 if (!ValueDominatesPHI(RHS, PI, DT))
428 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000429 } else {
430 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
431 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000432 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
433 if (!ValueDominatesPHI(LHS, PI, DT))
434 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000435 }
436
437 // Evaluate the BinOp on the incoming phi values.
438 Value *CommonValue = 0;
439 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000440 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000441 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000442 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000443 Value *V = PI == LHS ?
Duncan Sands18450092010-11-16 12:16:38 +0000444 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
445 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000446 // If the operation failed to simplify, or simplified to a different value
447 // to previously, then give up.
448 if (!V || (CommonValue && V != CommonValue))
449 return 0;
450 CommonValue = V;
451 }
452
453 return CommonValue;
454}
455
456/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
457/// try to simplify the comparison by seeing whether comparing with all of the
458/// incoming phi values yields the same result every time. If so returns the
459/// common result, otherwise returns null.
460static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000461 const TargetData *TD, const DominatorTree *DT,
462 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000463 // Recursion is always used, so bail out at once if we already hit the limit.
464 if (!MaxRecurse--)
465 return 0;
466
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000467 // Make sure the phi is on the LHS.
468 if (!isa<PHINode>(LHS)) {
469 std::swap(LHS, RHS);
470 Pred = CmpInst::getSwappedPredicate(Pred);
471 }
472 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
473 PHINode *PI = cast<PHINode>(LHS);
474
Duncan Sands18450092010-11-16 12:16:38 +0000475 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
476 if (!ValueDominatesPHI(RHS, PI, DT))
477 return 0;
478
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000479 // Evaluate the BinOp on the incoming phi values.
480 Value *CommonValue = 0;
481 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000482 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000483 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000484 if (Incoming == PI) continue;
Duncan Sands18450092010-11-16 12:16:38 +0000485 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000486 // If the operation failed to simplify, or simplified to a different value
487 // to previously, then give up.
488 if (!V || (CommonValue && V != CommonValue))
489 return 0;
490 CommonValue = V;
491 }
492
493 return CommonValue;
494}
495
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000496/// SimplifyAddInst - Given operands for an Add, see if we can
497/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000498static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
499 const TargetData *TD, const DominatorTree *DT,
500 unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000501 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
502 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
503 Constant *Ops[] = { CLHS, CRHS };
504 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
505 Ops, 2, TD);
506 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000507
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000508 // Canonicalize the constant to the RHS.
509 std::swap(Op0, Op1);
510 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000511
Duncan Sandsfea3b212010-12-15 14:07:39 +0000512 // X + undef -> undef
513 if (isa<UndefValue>(Op1))
514 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000515
Duncan Sandsfea3b212010-12-15 14:07:39 +0000516 // X + 0 -> X
517 if (match(Op1, m_Zero()))
518 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000519
Duncan Sandsfea3b212010-12-15 14:07:39 +0000520 // X + (Y - X) -> Y
521 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000522 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000523 Value *Y = 0;
524 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
525 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000526 return Y;
527
528 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000529 if (match(Op0, m_Not(m_Specific(Op1))) ||
530 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000531 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000532
Duncan Sands82fdab32010-12-21 14:00:22 +0000533 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000534 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000535 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
536 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000537
Duncan Sands566edb02010-12-21 08:49:00 +0000538 // Try some generic simplifications for associative operations.
539 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
540 MaxRecurse))
541 return V;
542
Duncan Sands3421d902010-12-21 13:32:22 +0000543 // Mul distributes over Add. Try some generic simplifications based on this.
544 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
545 TD, DT, MaxRecurse))
546 return V;
547
Duncan Sands87689cf2010-11-19 09:20:39 +0000548 // Threading Add over selects and phi nodes is pointless, so don't bother.
549 // Threading over the select in "A + select(cond, B, C)" means evaluating
550 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
551 // only if B and C are equal. If B and C are equal then (since we assume
552 // that operands have already been simplified) "select(cond, B, C)" should
553 // have been simplified to the common value of B and C already. Analysing
554 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
555 // for threading over phi nodes.
556
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000557 return 0;
558}
559
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000560Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
561 const TargetData *TD, const DominatorTree *DT) {
562 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
563}
564
Duncan Sandsfea3b212010-12-15 14:07:39 +0000565/// SimplifySubInst - Given operands for a Sub, see if we can
566/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000567static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands3421d902010-12-21 13:32:22 +0000568 const TargetData *TD, const DominatorTree *DT,
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000569 unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000570 if (Constant *CLHS = dyn_cast<Constant>(Op0))
571 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
572 Constant *Ops[] = { CLHS, CRHS };
573 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
574 Ops, 2, TD);
575 }
576
577 // X - undef -> undef
578 // undef - X -> undef
579 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
580 return UndefValue::get(Op0->getType());
581
582 // X - 0 -> X
583 if (match(Op1, m_Zero()))
584 return Op0;
585
586 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000587 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000588 return Constant::getNullValue(Op0->getType());
589
Duncan Sandsfe02c692011-01-18 09:24:58 +0000590 // (X*2) - X -> X
591 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000592 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000593 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
594 match(Op0, m_Shl(m_Specific(Op1), m_One())))
595 return Op1;
596
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000597 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
598 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
599 Value *Y = 0, *Z = Op1;
600 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
601 // See if "V === Y - Z" simplifies.
602 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
603 // It does! Now see if "X + V" simplifies.
604 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
605 MaxRecurse-1)) {
606 // It does, we successfully reassociated!
607 ++NumReassoc;
608 return W;
609 }
610 // See if "V === X - Z" simplifies.
611 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
612 // It does! Now see if "Y + V" simplifies.
613 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
614 MaxRecurse-1)) {
615 // It does, we successfully reassociated!
616 ++NumReassoc;
617 return W;
618 }
619 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000620
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000621 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
622 // For example, X - (X + 1) -> -1
623 X = Op0;
624 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
625 // See if "V === X - Y" simplifies.
626 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
627 // It does! Now see if "V - Z" simplifies.
628 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
629 MaxRecurse-1)) {
630 // It does, we successfully reassociated!
631 ++NumReassoc;
632 return W;
633 }
634 // See if "V === X - Z" simplifies.
635 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
636 // It does! Now see if "V - Y" simplifies.
637 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
638 MaxRecurse-1)) {
639 // It does, we successfully reassociated!
640 ++NumReassoc;
641 return W;
642 }
643 }
644
645 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
646 // For example, X - (X - Y) -> Y.
647 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000648 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
649 // See if "V === Z - X" simplifies.
650 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000651 // It does! Now see if "V + Y" simplifies.
Duncan Sandsc087e202011-01-14 15:26:10 +0000652 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
653 MaxRecurse-1)) {
654 // It does, we successfully reassociated!
655 ++NumReassoc;
656 return W;
657 }
658
Duncan Sands3421d902010-12-21 13:32:22 +0000659 // Mul distributes over Sub. Try some generic simplifications based on this.
660 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
661 TD, DT, MaxRecurse))
662 return V;
663
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000664 // i1 sub -> xor.
665 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
666 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
667 return V;
668
Duncan Sandsfea3b212010-12-15 14:07:39 +0000669 // Threading Sub over selects and phi nodes is pointless, so don't bother.
670 // Threading over the select in "A - select(cond, B, C)" means evaluating
671 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
672 // only if B and C are equal. If B and C are equal then (since we assume
673 // that operands have already been simplified) "select(cond, B, C)" should
674 // have been simplified to the common value of B and C already. Analysing
675 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
676 // for threading over phi nodes.
677
678 return 0;
679}
680
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000681Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
682 const TargetData *TD, const DominatorTree *DT) {
683 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
684}
685
Duncan Sands82fdab32010-12-21 14:00:22 +0000686/// SimplifyMulInst - Given operands for a Mul, see if we can
687/// fold the result. If not, this returns null.
688static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
689 const DominatorTree *DT, unsigned MaxRecurse) {
690 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
691 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
692 Constant *Ops[] = { CLHS, CRHS };
693 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
694 Ops, 2, TD);
695 }
696
697 // Canonicalize the constant to the RHS.
698 std::swap(Op0, Op1);
699 }
700
701 // X * undef -> 0
702 if (isa<UndefValue>(Op1))
703 return Constant::getNullValue(Op0->getType());
704
705 // X * 0 -> 0
706 if (match(Op1, m_Zero()))
707 return Op1;
708
709 // X * 1 -> X
710 if (match(Op1, m_One()))
711 return Op0;
712
713 /// i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000714 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000715 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
716 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000717
718 // Try some generic simplifications for associative operations.
719 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
720 MaxRecurse))
721 return V;
722
723 // Mul distributes over Add. Try some generic simplifications based on this.
724 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
725 TD, DT, MaxRecurse))
726 return V;
727
728 // If the operation is with the result of a select instruction, check whether
729 // operating on either branch of the select always yields the same value.
730 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
731 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
732 MaxRecurse))
733 return V;
734
735 // If the operation is with the result of a phi instruction, check whether
736 // operating on all incoming values of the phi always yields the same value.
737 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
738 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
739 MaxRecurse))
740 return V;
741
742 return 0;
743}
744
745Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
746 const DominatorTree *DT) {
747 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
748}
749
Duncan Sands593faa52011-01-28 16:51:11 +0000750/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
751/// fold the result. If not, this returns null.
752static Value *SimplifyDiv(unsigned Opcode, Value *Op0, Value *Op1,
753 const TargetData *TD, const DominatorTree *DT,
754 unsigned MaxRecurse) {
755 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
756 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
757 Constant *Ops[] = { C0, C1 };
758 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
759 }
760 }
761
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000762 bool isSigned = Opcode == Instruction::SDiv;
763
Duncan Sands593faa52011-01-28 16:51:11 +0000764 // X / undef -> undef
765 if (isa<UndefValue>(Op1))
766 return Op1;
767
768 // undef / X -> 0
769 if (isa<UndefValue>(Op0))
770 return Constant::getNullValue(Op0->getType());
771
772 // 0 / X -> 0, we don't need to preserve faults!
773 if (match(Op0, m_Zero()))
774 return Op0;
775
776 // X / 1 -> X
777 if (match(Op1, m_One()))
778 return Op0;
779 // Vector case. TODO: Have m_One match vectors.
780 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
781 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
782 if (X->isOne())
783 return Op0;
784 }
785
786 if (Op0->getType()->isIntegerTy(1))
787 // It can't be division by zero, hence it must be division by one.
788 return Op0;
789
790 // X / X -> 1
791 if (Op0 == Op1)
792 return ConstantInt::get(Op0->getType(), 1);
793
794 // (X * Y) / Y -> X if the multiplication does not overflow.
795 Value *X = 0, *Y = 0;
796 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
797 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands79f4eea2011-01-28 18:53:08 +0000798 BinaryOperator *Mul = cast<BinaryOperator>(Op0);
Duncan Sands593faa52011-01-28 16:51:11 +0000799 // If the Mul knows it does not overflow, then we are good to go.
Duncan Sands593faa52011-01-28 16:51:11 +0000800 if ((isSigned && Mul->hasNoSignedWrap()) ||
801 (!isSigned && Mul->hasNoUnsignedWrap()))
802 return X;
803 // If X has the form X = A / Y then X * Y cannot overflow.
804 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
805 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
806 return X;
807 }
808
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000809 // (X rem Y) / Y -> 0
810 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
811 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
812 return Constant::getNullValue(Op0->getType());
813
814 // If the operation is with the result of a select instruction, check whether
815 // operating on either branch of the select always yields the same value.
816 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
817 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
818 return V;
819
820 // If the operation is with the result of a phi instruction, check whether
821 // operating on all incoming values of the phi always yields the same value.
822 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
823 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
824 return V;
825
Duncan Sands593faa52011-01-28 16:51:11 +0000826 return 0;
827}
828
829/// SimplifySDivInst - Given operands for an SDiv, see if we can
830/// fold the result. If not, this returns null.
831static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
832 const DominatorTree *DT, unsigned MaxRecurse) {
833 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
834 return V;
835
Duncan Sands593faa52011-01-28 16:51:11 +0000836 return 0;
837}
838
839Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000840 const DominatorTree *DT) {
Duncan Sands593faa52011-01-28 16:51:11 +0000841 return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
842}
843
844/// SimplifyUDivInst - Given operands for a UDiv, see if we can
845/// fold the result. If not, this returns null.
846static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
847 const DominatorTree *DT, unsigned MaxRecurse) {
848 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
849 return V;
850
Duncan Sands593faa52011-01-28 16:51:11 +0000851 return 0;
852}
853
854Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000855 const DominatorTree *DT) {
Duncan Sands593faa52011-01-28 16:51:11 +0000856 return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
857}
858
Frits van Bommel1fca2c32011-01-29 15:26:31 +0000859static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
860 const DominatorTree *DT, unsigned MaxRecurse) {
861 // undef / X -> undef (the undef could be a snan).
862 if (isa<UndefValue>(Op0))
863 return Op0;
864
865 // X / undef -> undef
866 if (isa<UndefValue>(Op1))
867 return Op1;
868
869 return 0;
870}
871
872Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
873 const DominatorTree *DT) {
874 return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
875}
876
Duncan Sandscf80bc12011-01-14 14:44:12 +0000877/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +0000878/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +0000879static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
880 const TargetData *TD, const DominatorTree *DT,
881 unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +0000882 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
883 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
884 Constant *Ops[] = { C0, C1 };
Duncan Sandscf80bc12011-01-14 14:44:12 +0000885 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
Duncan Sandsc43cee32011-01-14 00:37:45 +0000886 }
887 }
888
Duncan Sandscf80bc12011-01-14 14:44:12 +0000889 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +0000890 if (match(Op0, m_Zero()))
891 return Op0;
892
Duncan Sandscf80bc12011-01-14 14:44:12 +0000893 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +0000894 if (match(Op1, m_Zero()))
895 return Op0;
896
Duncan Sandscf80bc12011-01-14 14:44:12 +0000897 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsc43cee32011-01-14 00:37:45 +0000898 if (isa<UndefValue>(Op1))
899 return Op1;
900
901 // Shifting by the bitwidth or more is undefined.
902 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
903 if (CI->getValue().getLimitedValue() >=
904 Op0->getType()->getScalarSizeInBits())
905 return UndefValue::get(Op0->getType());
906
Duncan Sandscf80bc12011-01-14 14:44:12 +0000907 // If the operation is with the result of a select instruction, check whether
908 // operating on either branch of the select always yields the same value.
909 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
910 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
911 return V;
912
913 // If the operation is with the result of a phi instruction, check whether
914 // operating on all incoming values of the phi always yields the same value.
915 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
916 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
917 return V;
918
919 return 0;
920}
921
922/// SimplifyShlInst - Given operands for an Shl, see if we can
923/// fold the result. If not, this returns null.
924static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
925 const DominatorTree *DT, unsigned MaxRecurse) {
926 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
927 return V;
928
929 // undef << X -> 0
930 if (isa<UndefValue>(Op0))
931 return Constant::getNullValue(Op0->getType());
932
Duncan Sandsc43cee32011-01-14 00:37:45 +0000933 return 0;
934}
935
936Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
937 const DominatorTree *DT) {
938 return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit);
939}
940
941/// SimplifyLShrInst - Given operands for an LShr, see if we can
942/// fold the result. If not, this returns null.
943static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
944 const DominatorTree *DT, unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000945 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
946 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000947
948 // undef >>l X -> 0
949 if (isa<UndefValue>(Op0))
950 return Constant::getNullValue(Op0->getType());
951
Duncan Sandsc43cee32011-01-14 00:37:45 +0000952 return 0;
953}
954
955Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
956 const DominatorTree *DT) {
957 return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit);
958}
959
960/// SimplifyAShrInst - Given operands for an AShr, see if we can
961/// fold the result. If not, this returns null.
962static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
963 const DominatorTree *DT, unsigned MaxRecurse) {
Duncan Sandscf80bc12011-01-14 14:44:12 +0000964 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
965 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +0000966
967 // all ones >>a X -> all ones
968 if (match(Op0, m_AllOnes()))
969 return Op0;
970
971 // undef >>a X -> all ones
972 if (isa<UndefValue>(Op0))
973 return Constant::getAllOnesValue(Op0->getType());
974
Duncan Sandsc43cee32011-01-14 00:37:45 +0000975 return 0;
976}
977
978Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
979 const DominatorTree *DT) {
980 return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit);
981}
982
Chris Lattnerd06094f2009-11-10 00:55:12 +0000983/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000984/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000985static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000986 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000987 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
988 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
989 Constant *Ops[] = { CLHS, CRHS };
990 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
991 Ops, 2, TD);
992 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000993
Chris Lattnerd06094f2009-11-10 00:55:12 +0000994 // Canonicalize the constant to the RHS.
995 std::swap(Op0, Op1);
996 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000997
Chris Lattnerd06094f2009-11-10 00:55:12 +0000998 // X & undef -> 0
999 if (isa<UndefValue>(Op1))
1000 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001001
Chris Lattnerd06094f2009-11-10 00:55:12 +00001002 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001003 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001004 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001005
Duncan Sands2b749872010-11-17 18:52:15 +00001006 // X & 0 = 0
1007 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001008 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001009
Duncan Sands2b749872010-11-17 18:52:15 +00001010 // X & -1 = X
1011 if (match(Op1, m_AllOnes()))
1012 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001013
Chris Lattnerd06094f2009-11-10 00:55:12 +00001014 // A & ~A = ~A & A = 0
Chandler Carruthe89ada92010-11-29 01:41:13 +00001015 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001016 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1017 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001018 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001019
Chris Lattnerd06094f2009-11-10 00:55:12 +00001020 // (A | ?) & A = A
1021 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001022 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001023 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001024
Chris Lattnerd06094f2009-11-10 00:55:12 +00001025 // A & (A | ?) = A
1026 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001027 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001028 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001029
Duncan Sands566edb02010-12-21 08:49:00 +00001030 // Try some generic simplifications for associative operations.
1031 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1032 MaxRecurse))
1033 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001034
Duncan Sands3421d902010-12-21 13:32:22 +00001035 // And distributes over Or. Try some generic simplifications based on this.
1036 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1037 TD, DT, MaxRecurse))
1038 return V;
1039
1040 // And distributes over Xor. Try some generic simplifications based on this.
1041 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1042 TD, DT, MaxRecurse))
1043 return V;
1044
1045 // Or distributes over And. Try some generic simplifications based on this.
1046 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1047 TD, DT, MaxRecurse))
1048 return V;
1049
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001050 // If the operation is with the result of a select instruction, check whether
1051 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001052 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001053 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001054 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001055 return V;
1056
1057 // If the operation is with the result of a phi instruction, check whether
1058 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001059 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001060 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001061 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001062 return V;
1063
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001064 return 0;
1065}
1066
Duncan Sands18450092010-11-16 12:16:38 +00001067Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1068 const DominatorTree *DT) {
1069 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001070}
1071
Chris Lattnerd06094f2009-11-10 00:55:12 +00001072/// SimplifyOrInst - Given operands for an Or, see if we can
1073/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001074static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +00001075 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001076 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1077 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1078 Constant *Ops[] = { CLHS, CRHS };
1079 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1080 Ops, 2, TD);
1081 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001082
Chris Lattnerd06094f2009-11-10 00:55:12 +00001083 // Canonicalize the constant to the RHS.
1084 std::swap(Op0, Op1);
1085 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001086
Chris Lattnerd06094f2009-11-10 00:55:12 +00001087 // X | undef -> -1
1088 if (isa<UndefValue>(Op1))
1089 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001090
Chris Lattnerd06094f2009-11-10 00:55:12 +00001091 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001092 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001093 return Op0;
1094
Duncan Sands2b749872010-11-17 18:52:15 +00001095 // X | 0 = X
1096 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001097 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001098
Duncan Sands2b749872010-11-17 18:52:15 +00001099 // X | -1 = -1
1100 if (match(Op1, m_AllOnes()))
1101 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001102
Chris Lattnerd06094f2009-11-10 00:55:12 +00001103 // A | ~A = ~A | A = -1
Chandler Carruthe89ada92010-11-29 01:41:13 +00001104 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001105 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1106 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001107 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001108
Chris Lattnerd06094f2009-11-10 00:55:12 +00001109 // (A & ?) | A = A
1110 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001111 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001112 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001113
Chris Lattnerd06094f2009-11-10 00:55:12 +00001114 // A | (A & ?) = A
1115 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001116 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001117 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001118
Duncan Sands566edb02010-12-21 08:49:00 +00001119 // Try some generic simplifications for associative operations.
1120 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1121 MaxRecurse))
1122 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001123
Duncan Sands3421d902010-12-21 13:32:22 +00001124 // Or distributes over And. Try some generic simplifications based on this.
1125 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1126 TD, DT, MaxRecurse))
1127 return V;
1128
1129 // And distributes over Or. Try some generic simplifications based on this.
1130 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1131 TD, DT, MaxRecurse))
1132 return V;
1133
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001134 // If the operation is with the result of a select instruction, check whether
1135 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001136 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001137 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001138 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001139 return V;
1140
1141 // If the operation is with the result of a phi instruction, check whether
1142 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001143 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +00001144 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001145 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001146 return V;
1147
Chris Lattnerd06094f2009-11-10 00:55:12 +00001148 return 0;
1149}
1150
Duncan Sands18450092010-11-16 12:16:38 +00001151Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1152 const DominatorTree *DT) {
1153 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001154}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001155
Duncan Sands2b749872010-11-17 18:52:15 +00001156/// SimplifyXorInst - Given operands for a Xor, see if we can
1157/// fold the result. If not, this returns null.
1158static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1159 const DominatorTree *DT, unsigned MaxRecurse) {
1160 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1161 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1162 Constant *Ops[] = { CLHS, CRHS };
1163 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1164 Ops, 2, TD);
1165 }
1166
1167 // Canonicalize the constant to the RHS.
1168 std::swap(Op0, Op1);
1169 }
1170
1171 // A ^ undef -> undef
1172 if (isa<UndefValue>(Op1))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001173 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001174
1175 // A ^ 0 = A
1176 if (match(Op1, m_Zero()))
1177 return Op0;
1178
1179 // A ^ A = 0
Duncan Sands124708d2011-01-01 20:08:02 +00001180 if (Op0 == Op1)
Duncan Sands2b749872010-11-17 18:52:15 +00001181 return Constant::getNullValue(Op0->getType());
1182
1183 // A ^ ~A = ~A ^ A = -1
Duncan Sands566edb02010-12-21 08:49:00 +00001184 Value *A = 0;
Duncan Sands124708d2011-01-01 20:08:02 +00001185 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1186 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Duncan Sands2b749872010-11-17 18:52:15 +00001187 return Constant::getAllOnesValue(Op0->getType());
1188
Duncan Sands566edb02010-12-21 08:49:00 +00001189 // Try some generic simplifications for associative operations.
1190 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1191 MaxRecurse))
1192 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001193
Duncan Sands3421d902010-12-21 13:32:22 +00001194 // And distributes over Xor. Try some generic simplifications based on this.
1195 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1196 TD, DT, MaxRecurse))
1197 return V;
1198
Duncan Sands87689cf2010-11-19 09:20:39 +00001199 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1200 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1201 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1202 // only if B and C are equal. If B and C are equal then (since we assume
1203 // that operands have already been simplified) "select(cond, B, C)" should
1204 // have been simplified to the common value of B and C already. Analysing
1205 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1206 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001207
1208 return 0;
1209}
1210
1211Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1212 const DominatorTree *DT) {
1213 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1214}
1215
Chris Lattner210c5d42009-11-09 23:55:12 +00001216static const Type *GetCompareTy(Value *Op) {
1217 return CmpInst::makeCmpResultType(Op->getType());
1218}
1219
Chris Lattner9dbb4292009-11-09 23:28:39 +00001220/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1221/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001222static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001223 const TargetData *TD, const DominatorTree *DT,
1224 unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001225 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001226 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001227
Chris Lattnerd06094f2009-11-10 00:55:12 +00001228 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001229 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1230 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001231
1232 // If we have a constant, make sure it is on the RHS.
1233 std::swap(LHS, RHS);
1234 Pred = CmpInst::getSwappedPredicate(Pred);
1235 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001236
Duncan Sands6dc91252011-01-13 08:56:29 +00001237 const Type *ITy = GetCompareTy(LHS); // The return type.
1238 const Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001239
Chris Lattner210c5d42009-11-09 23:55:12 +00001240 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001241 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1242 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001243 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001244 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001245
Duncan Sands6dc91252011-01-13 08:56:29 +00001246 // Special case logic when the operands have i1 type.
1247 if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1248 cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1249 switch (Pred) {
1250 default: break;
1251 case ICmpInst::ICMP_EQ:
1252 // X == 1 -> X
1253 if (match(RHS, m_One()))
1254 return LHS;
1255 break;
1256 case ICmpInst::ICMP_NE:
1257 // X != 0 -> X
1258 if (match(RHS, m_Zero()))
1259 return LHS;
1260 break;
1261 case ICmpInst::ICMP_UGT:
1262 // X >u 0 -> X
1263 if (match(RHS, m_Zero()))
1264 return LHS;
1265 break;
1266 case ICmpInst::ICMP_UGE:
1267 // X >=u 1 -> X
1268 if (match(RHS, m_One()))
1269 return LHS;
1270 break;
1271 case ICmpInst::ICMP_SLT:
1272 // X <s 0 -> X
1273 if (match(RHS, m_Zero()))
1274 return LHS;
1275 break;
1276 case ICmpInst::ICMP_SLE:
1277 // X <=s -1 -> X
1278 if (match(RHS, m_One()))
1279 return LHS;
1280 break;
1281 }
1282 }
1283
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001284 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1285 // different addresses, and what's more the address of a stack variable is
1286 // never null or equal to the address of a global. Note that generalizing
1287 // to the case where LHS is a global variable address or null is pointless,
1288 // since if both LHS and RHS are constants then we already constant folded
1289 // the compare, and if only one of them is then we moved it to RHS already.
1290 if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1291 isa<ConstantPointerNull>(RHS)))
1292 // We already know that LHS != LHS.
1293 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1294
1295 // If we are comparing with zero then try hard since this is a common case.
1296 if (match(RHS, m_Zero())) {
1297 bool LHSKnownNonNegative, LHSKnownNegative;
1298 switch (Pred) {
1299 default:
1300 assert(false && "Unknown ICmp predicate!");
1301 case ICmpInst::ICMP_ULT:
1302 return ConstantInt::getFalse(LHS->getContext());
1303 case ICmpInst::ICMP_UGE:
1304 return ConstantInt::getTrue(LHS->getContext());
1305 case ICmpInst::ICMP_EQ:
1306 case ICmpInst::ICMP_ULE:
1307 if (isKnownNonZero(LHS, TD))
1308 return ConstantInt::getFalse(LHS->getContext());
1309 break;
1310 case ICmpInst::ICMP_NE:
1311 case ICmpInst::ICMP_UGT:
1312 if (isKnownNonZero(LHS, TD))
1313 return ConstantInt::getTrue(LHS->getContext());
1314 break;
1315 case ICmpInst::ICMP_SLT:
1316 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1317 if (LHSKnownNegative)
1318 return ConstantInt::getTrue(LHS->getContext());
1319 if (LHSKnownNonNegative)
1320 return ConstantInt::getFalse(LHS->getContext());
1321 break;
1322 case ICmpInst::ICMP_SLE:
1323 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1324 if (LHSKnownNegative)
1325 return ConstantInt::getTrue(LHS->getContext());
1326 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1327 return ConstantInt::getFalse(LHS->getContext());
1328 break;
1329 case ICmpInst::ICMP_SGE:
1330 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1331 if (LHSKnownNegative)
1332 return ConstantInt::getFalse(LHS->getContext());
1333 if (LHSKnownNonNegative)
1334 return ConstantInt::getTrue(LHS->getContext());
1335 break;
1336 case ICmpInst::ICMP_SGT:
1337 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1338 if (LHSKnownNegative)
1339 return ConstantInt::getFalse(LHS->getContext());
1340 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1341 return ConstantInt::getTrue(LHS->getContext());
1342 break;
1343 }
1344 }
1345
1346 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001347 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1348 switch (Pred) {
1349 default: break;
1350 case ICmpInst::ICMP_UGT:
1351 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
1352 return ConstantInt::getFalse(CI->getContext());
1353 break;
1354 case ICmpInst::ICMP_UGE:
1355 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
1356 return ConstantInt::getTrue(CI->getContext());
1357 break;
1358 case ICmpInst::ICMP_ULT:
1359 if (CI->isMinValue(false)) // A <u MIN -> FALSE
1360 return ConstantInt::getFalse(CI->getContext());
1361 break;
1362 case ICmpInst::ICMP_ULE:
1363 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
1364 return ConstantInt::getTrue(CI->getContext());
1365 break;
1366 case ICmpInst::ICMP_SGT:
1367 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
1368 return ConstantInt::getFalse(CI->getContext());
1369 break;
1370 case ICmpInst::ICMP_SGE:
1371 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
1372 return ConstantInt::getTrue(CI->getContext());
1373 break;
1374 case ICmpInst::ICMP_SLT:
1375 if (CI->isMinValue(true)) // A <s MIN -> FALSE
1376 return ConstantInt::getFalse(CI->getContext());
1377 break;
1378 case ICmpInst::ICMP_SLE:
1379 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
1380 return ConstantInt::getTrue(CI->getContext());
1381 break;
1382 }
1383 }
1384
Duncan Sands9d32f602011-01-20 13:21:55 +00001385 // Compare of cast, for example (zext X) != 0 -> X != 0
1386 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1387 Instruction *LI = cast<CastInst>(LHS);
1388 Value *SrcOp = LI->getOperand(0);
1389 const Type *SrcTy = SrcOp->getType();
1390 const Type *DstTy = LI->getType();
1391
1392 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1393 // if the integer type is the same size as the pointer type.
1394 if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1395 TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1396 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1397 // Transfer the cast to the constant.
1398 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1399 ConstantExpr::getIntToPtr(RHSC, SrcTy),
1400 TD, DT, MaxRecurse-1))
1401 return V;
1402 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1403 if (RI->getOperand(0)->getType() == SrcTy)
1404 // Compare without the cast.
1405 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1406 TD, DT, MaxRecurse-1))
1407 return V;
1408 }
1409 }
1410
1411 if (isa<ZExtInst>(LHS)) {
1412 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1413 // same type.
1414 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1415 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1416 // Compare X and Y. Note that signed predicates become unsigned.
1417 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1418 SrcOp, RI->getOperand(0), TD, DT,
1419 MaxRecurse-1))
1420 return V;
1421 }
1422 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1423 // too. If not, then try to deduce the result of the comparison.
1424 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1425 // Compute the constant that would happen if we truncated to SrcTy then
1426 // reextended to DstTy.
1427 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1428 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1429
1430 // If the re-extended constant didn't change then this is effectively
1431 // also a case of comparing two zero-extended values.
1432 if (RExt == CI && MaxRecurse)
1433 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1434 SrcOp, Trunc, TD, DT, MaxRecurse-1))
1435 return V;
1436
1437 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1438 // there. Use this to work out the result of the comparison.
1439 if (RExt != CI) {
1440 switch (Pred) {
1441 default:
1442 assert(false && "Unknown ICmp predicate!");
1443 // LHS <u RHS.
1444 case ICmpInst::ICMP_EQ:
1445 case ICmpInst::ICMP_UGT:
1446 case ICmpInst::ICMP_UGE:
1447 return ConstantInt::getFalse(CI->getContext());
1448
1449 case ICmpInst::ICMP_NE:
1450 case ICmpInst::ICMP_ULT:
1451 case ICmpInst::ICMP_ULE:
1452 return ConstantInt::getTrue(CI->getContext());
1453
1454 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1455 // is non-negative then LHS <s RHS.
1456 case ICmpInst::ICMP_SGT:
1457 case ICmpInst::ICMP_SGE:
1458 return CI->getValue().isNegative() ?
1459 ConstantInt::getTrue(CI->getContext()) :
1460 ConstantInt::getFalse(CI->getContext());
1461
1462 case ICmpInst::ICMP_SLT:
1463 case ICmpInst::ICMP_SLE:
1464 return CI->getValue().isNegative() ?
1465 ConstantInt::getFalse(CI->getContext()) :
1466 ConstantInt::getTrue(CI->getContext());
1467 }
1468 }
1469 }
1470 }
1471
1472 if (isa<SExtInst>(LHS)) {
1473 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1474 // same type.
1475 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1476 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1477 // Compare X and Y. Note that the predicate does not change.
1478 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1479 TD, DT, MaxRecurse-1))
1480 return V;
1481 }
1482 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1483 // too. If not, then try to deduce the result of the comparison.
1484 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1485 // Compute the constant that would happen if we truncated to SrcTy then
1486 // reextended to DstTy.
1487 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1488 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1489
1490 // If the re-extended constant didn't change then this is effectively
1491 // also a case of comparing two sign-extended values.
1492 if (RExt == CI && MaxRecurse)
1493 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1494 MaxRecurse-1))
1495 return V;
1496
1497 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1498 // bits there. Use this to work out the result of the comparison.
1499 if (RExt != CI) {
1500 switch (Pred) {
1501 default:
1502 assert(false && "Unknown ICmp predicate!");
1503 case ICmpInst::ICMP_EQ:
1504 return ConstantInt::getFalse(CI->getContext());
1505 case ICmpInst::ICMP_NE:
1506 return ConstantInt::getTrue(CI->getContext());
1507
1508 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1509 // LHS >s RHS.
1510 case ICmpInst::ICMP_SGT:
1511 case ICmpInst::ICMP_SGE:
1512 return CI->getValue().isNegative() ?
1513 ConstantInt::getTrue(CI->getContext()) :
1514 ConstantInt::getFalse(CI->getContext());
1515 case ICmpInst::ICMP_SLT:
1516 case ICmpInst::ICMP_SLE:
1517 return CI->getValue().isNegative() ?
1518 ConstantInt::getFalse(CI->getContext()) :
1519 ConstantInt::getTrue(CI->getContext());
1520
1521 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
1522 // LHS >u RHS.
1523 case ICmpInst::ICMP_UGT:
1524 case ICmpInst::ICMP_UGE:
1525 // Comparison is true iff the LHS <s 0.
1526 if (MaxRecurse)
1527 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1528 Constant::getNullValue(SrcTy),
1529 TD, DT, MaxRecurse-1))
1530 return V;
1531 break;
1532 case ICmpInst::ICMP_ULT:
1533 case ICmpInst::ICMP_ULE:
1534 // Comparison is true iff the LHS >=s 0.
1535 if (MaxRecurse)
1536 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1537 Constant::getNullValue(SrcTy),
1538 TD, DT, MaxRecurse-1))
1539 return V;
1540 break;
1541 }
1542 }
1543 }
1544 }
1545 }
1546
Duncan Sands1ac7c992010-11-07 16:12:23 +00001547 // If the comparison is with the result of a select instruction, check whether
1548 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001549 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1550 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001551 return V;
1552
1553 // If the comparison is with the result of a phi instruction, check whether
1554 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001555 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1556 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001557 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00001558
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001559 return 0;
1560}
1561
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001562Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001563 const TargetData *TD, const DominatorTree *DT) {
1564 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001565}
1566
Chris Lattner9dbb4292009-11-09 23:28:39 +00001567/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1568/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001569static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001570 const TargetData *TD, const DominatorTree *DT,
1571 unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001572 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1573 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1574
Chris Lattnerd06094f2009-11-10 00:55:12 +00001575 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001576 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1577 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Duncan Sands12a86f52010-11-14 11:23:23 +00001578
Chris Lattnerd06094f2009-11-10 00:55:12 +00001579 // If we have a constant, make sure it is on the RHS.
1580 std::swap(LHS, RHS);
1581 Pred = CmpInst::getSwappedPredicate(Pred);
1582 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001583
Chris Lattner210c5d42009-11-09 23:55:12 +00001584 // Fold trivial predicates.
1585 if (Pred == FCmpInst::FCMP_FALSE)
1586 return ConstantInt::get(GetCompareTy(LHS), 0);
1587 if (Pred == FCmpInst::FCMP_TRUE)
1588 return ConstantInt::get(GetCompareTy(LHS), 1);
1589
Chris Lattner210c5d42009-11-09 23:55:12 +00001590 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
1591 return UndefValue::get(GetCompareTy(LHS));
1592
1593 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00001594 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001595 if (CmpInst::isTrueWhenEqual(Pred))
1596 return ConstantInt::get(GetCompareTy(LHS), 1);
1597 if (CmpInst::isFalseWhenEqual(Pred))
1598 return ConstantInt::get(GetCompareTy(LHS), 0);
1599 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001600
Chris Lattner210c5d42009-11-09 23:55:12 +00001601 // Handle fcmp with constant RHS
1602 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1603 // If the constant is a nan, see if we can fold the comparison based on it.
1604 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1605 if (CFP->getValueAPF().isNaN()) {
1606 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
1607 return ConstantInt::getFalse(CFP->getContext());
1608 assert(FCmpInst::isUnordered(Pred) &&
1609 "Comparison must be either ordered or unordered!");
1610 // True if unordered.
1611 return ConstantInt::getTrue(CFP->getContext());
1612 }
Dan Gohman6b617a72010-02-22 04:06:03 +00001613 // Check whether the constant is an infinity.
1614 if (CFP->getValueAPF().isInfinity()) {
1615 if (CFP->getValueAPF().isNegative()) {
1616 switch (Pred) {
1617 case FCmpInst::FCMP_OLT:
1618 // No value is ordered and less than negative infinity.
1619 return ConstantInt::getFalse(CFP->getContext());
1620 case FCmpInst::FCMP_UGE:
1621 // All values are unordered with or at least negative infinity.
1622 return ConstantInt::getTrue(CFP->getContext());
1623 default:
1624 break;
1625 }
1626 } else {
1627 switch (Pred) {
1628 case FCmpInst::FCMP_OGT:
1629 // No value is ordered and greater than infinity.
1630 return ConstantInt::getFalse(CFP->getContext());
1631 case FCmpInst::FCMP_ULE:
1632 // All values are unordered with and at most infinity.
1633 return ConstantInt::getTrue(CFP->getContext());
1634 default:
1635 break;
1636 }
1637 }
1638 }
Chris Lattner210c5d42009-11-09 23:55:12 +00001639 }
1640 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001641
Duncan Sands92826de2010-11-07 16:46:25 +00001642 // If the comparison is with the result of a select instruction, check whether
1643 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001644 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1645 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001646 return V;
1647
1648 // If the comparison is with the result of a phi instruction, check whether
1649 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001650 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1651 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001652 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00001653
Chris Lattner9dbb4292009-11-09 23:28:39 +00001654 return 0;
1655}
1656
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001657Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001658 const TargetData *TD, const DominatorTree *DT) {
1659 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001660}
1661
Chris Lattner04754262010-04-20 05:32:14 +00001662/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1663/// the result. If not, this returns null.
Duncan Sands124708d2011-01-01 20:08:02 +00001664Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1665 const TargetData *TD, const DominatorTree *) {
Chris Lattner04754262010-04-20 05:32:14 +00001666 // select true, X, Y -> X
1667 // select false, X, Y -> Y
1668 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1669 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001670
Chris Lattner04754262010-04-20 05:32:14 +00001671 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00001672 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00001673 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001674
Chris Lattner04754262010-04-20 05:32:14 +00001675 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
1676 return FalseVal;
1677 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
1678 return TrueVal;
1679 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
1680 if (isa<Constant>(TrueVal))
1681 return TrueVal;
1682 return FalseVal;
1683 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001684
Chris Lattner04754262010-04-20 05:32:14 +00001685 return 0;
1686}
1687
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001688/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1689/// fold the result. If not, this returns null.
1690Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
Duncan Sands18450092010-11-16 12:16:38 +00001691 const TargetData *TD, const DominatorTree *) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001692 // The type of the GEP pointer operand.
1693 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1694
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001695 // getelementptr P -> P.
1696 if (NumOps == 1)
1697 return Ops[0];
1698
Duncan Sands85bbff62010-11-22 13:42:49 +00001699 if (isa<UndefValue>(Ops[0])) {
1700 // Compute the (pointer) type returned by the GEP instruction.
1701 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1702 NumOps-1);
1703 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1704 return UndefValue::get(GEPTy);
1705 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001706
Duncan Sandse60d79f2010-11-21 13:53:09 +00001707 if (NumOps == 2) {
1708 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001709 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1710 if (C->isZero())
1711 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00001712 // getelementptr P, N -> P if P points to a type of zero size.
1713 if (TD) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001714 const Type *Ty = PtrTy->getElementType();
Duncan Sandsa63395a2010-11-22 16:32:50 +00001715 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00001716 return Ops[0];
1717 }
1718 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001719
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001720 // Check to see if this is constant foldable.
1721 for (unsigned i = 0; i != NumOps; ++i)
1722 if (!isa<Constant>(Ops[i]))
1723 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001724
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001725 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1726 (Constant *const*)Ops+1, NumOps-1);
1727}
1728
Duncan Sandsff103412010-11-17 04:30:22 +00001729/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
1730static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1731 // If all of the PHI's incoming values are the same then replace the PHI node
1732 // with the common value.
1733 Value *CommonValue = 0;
1734 bool HasUndefInput = false;
1735 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1736 Value *Incoming = PN->getIncomingValue(i);
1737 // If the incoming value is the phi node itself, it can safely be skipped.
1738 if (Incoming == PN) continue;
1739 if (isa<UndefValue>(Incoming)) {
1740 // Remember that we saw an undef value, but otherwise ignore them.
1741 HasUndefInput = true;
1742 continue;
1743 }
1744 if (CommonValue && Incoming != CommonValue)
1745 return 0; // Not the same, bail out.
1746 CommonValue = Incoming;
1747 }
1748
1749 // If CommonValue is null then all of the incoming values were either undef or
1750 // equal to the phi node itself.
1751 if (!CommonValue)
1752 return UndefValue::get(PN->getType());
1753
1754 // If we have a PHI node like phi(X, undef, X), where X is defined by some
1755 // instruction, we cannot return X as the result of the PHI node unless it
1756 // dominates the PHI block.
1757 if (HasUndefInput)
1758 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1759
1760 return CommonValue;
1761}
1762
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001763
Chris Lattnerd06094f2009-11-10 00:55:12 +00001764//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00001765
Chris Lattnerd06094f2009-11-10 00:55:12 +00001766/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1767/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001768static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001769 const TargetData *TD, const DominatorTree *DT,
1770 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001771 switch (Opcode) {
Duncan Sandsee9a2e32010-12-20 14:47:04 +00001772 case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1773 /* isNUW */ false, TD, DT,
1774 MaxRecurse);
1775 case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1776 /* isNUW */ false, TD, DT,
1777 MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001778 case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands593faa52011-01-28 16:51:11 +00001779 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
1780 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001781 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001782 case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
1783 case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
1784 case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001785 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1786 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1787 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001788 default:
1789 if (Constant *CLHS = dyn_cast<Constant>(LHS))
1790 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1791 Constant *COps[] = {CLHS, CRHS};
1792 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1793 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001794
Duncan Sands566edb02010-12-21 08:49:00 +00001795 // If the operation is associative, try some generic simplifications.
1796 if (Instruction::isAssociative(Opcode))
1797 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1798 MaxRecurse))
1799 return V;
1800
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001801 // If the operation is with the result of a select instruction, check whether
1802 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001803 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands18450092010-11-16 12:16:38 +00001804 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001805 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001806 return V;
1807
1808 // If the operation is with the result of a phi instruction, check whether
1809 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001810 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1811 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001812 return V;
1813
Chris Lattnerd06094f2009-11-10 00:55:12 +00001814 return 0;
1815 }
1816}
Chris Lattner9dbb4292009-11-09 23:28:39 +00001817
Duncan Sands12a86f52010-11-14 11:23:23 +00001818Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001819 const TargetData *TD, const DominatorTree *DT) {
1820 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00001821}
1822
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001823/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1824/// fold the result.
1825static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001826 const TargetData *TD, const DominatorTree *DT,
1827 unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001828 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands18450092010-11-16 12:16:38 +00001829 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1830 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001831}
1832
1833Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001834 const TargetData *TD, const DominatorTree *DT) {
1835 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001836}
Chris Lattnere3453782009-11-10 01:08:51 +00001837
1838/// SimplifyInstruction - See if we can compute a simplified version of this
1839/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00001840Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1841 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00001842 Value *Result;
1843
Chris Lattnere3453782009-11-10 01:08:51 +00001844 switch (I->getOpcode()) {
1845 default:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001846 Result = ConstantFoldInstruction(I, TD);
1847 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00001848 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001849 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1850 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1851 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1852 TD, DT);
1853 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00001854 case Instruction::Sub:
1855 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1856 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1857 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1858 TD, DT);
1859 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00001860 case Instruction::Mul:
1861 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1862 break;
Duncan Sands593faa52011-01-28 16:51:11 +00001863 case Instruction::SDiv:
1864 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1865 break;
1866 case Instruction::UDiv:
1867 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1868 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001869 case Instruction::FDiv:
1870 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1871 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001872 case Instruction::Shl:
1873 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
1874 break;
1875 case Instruction::LShr:
1876 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1877 break;
1878 case Instruction::AShr:
1879 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1880 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001881 case Instruction::And:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001882 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1883 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001884 case Instruction::Or:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001885 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1886 break;
Duncan Sands2b749872010-11-17 18:52:15 +00001887 case Instruction::Xor:
1888 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1889 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001890 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001891 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1892 I->getOperand(0), I->getOperand(1), TD, DT);
1893 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001894 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001895 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1896 I->getOperand(0), I->getOperand(1), TD, DT);
1897 break;
Chris Lattner04754262010-04-20 05:32:14 +00001898 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001899 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1900 I->getOperand(2), TD, DT);
1901 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001902 case Instruction::GetElementPtr: {
1903 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sandsd261dc62010-11-17 08:35:29 +00001904 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1905 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001906 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00001907 case Instruction::PHI:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001908 Result = SimplifyPHINode(cast<PHINode>(I), DT);
1909 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001910 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00001911
1912 /// If called on unreachable code, the above logic may report that the
1913 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001914 /// detecting that case here, returning a safe value instead.
1915 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00001916}
1917
Chris Lattner40d8c282009-11-10 22:26:15 +00001918/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1919/// delete the From instruction. In addition to a basic RAUW, this does a
1920/// recursive simplification of the newly formed instructions. This catches
1921/// things where one simplification exposes other opportunities. This only
1922/// simplifies and deletes scalar operations, it does not change the CFG.
1923///
1924void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00001925 const TargetData *TD,
1926 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00001927 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001928
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001929 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1930 // we can know if it gets deleted out from under us or replaced in a
1931 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00001932 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001933 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001934
Chris Lattner40d8c282009-11-10 22:26:15 +00001935 while (!From->use_empty()) {
1936 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001937 Use &TheUse = From->use_begin().getUse();
1938 Instruction *User = cast<Instruction>(TheUse.getUser());
1939 TheUse = To;
1940
1941 // Check to see if the instruction can be folded due to the operand
1942 // replacement. For example changing (or X, Y) into (or X, -1) can replace
1943 // the 'or' with -1.
1944 Value *SimplifiedVal;
1945 {
1946 // Sanity check to make sure 'User' doesn't dangle across
1947 // SimplifyInstruction.
1948 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00001949
Duncan Sandseff05812010-11-14 18:36:10 +00001950 SimplifiedVal = SimplifyInstruction(User, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001951 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00001952 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001953
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001954 // Recursively simplify this user to the new value.
Duncan Sandseff05812010-11-14 18:36:10 +00001955 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001956 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1957 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00001958
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001959 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00001960
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001961 // If the recursive simplification ended up revisiting and deleting
1962 // 'From' then we're done.
1963 if (From == 0)
1964 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00001965 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001966
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001967 // If 'From' has value handles referring to it, do a real RAUW to update them.
1968 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001969
Chris Lattner40d8c282009-11-10 22:26:15 +00001970 From->eraseFromParent();
1971}