blob: 9a234c068b4f642a8be841a4d06cd269fccc7602 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Dan Gohman24371272010-12-15 20:10:26 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner173234a2008-06-02 01:18:21 +000017#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000019#include "llvm/GlobalVariable.h"
Dan Gohman307a7c42009-09-15 16:14:44 +000020#include "llvm/GlobalAlias.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000022#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000023#include "llvm/Operator.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000024#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000025#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000027#include "llvm/Support/PatternMatch.h"
Eric Christopher25ec4832010-03-05 06:58:57 +000028#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000029#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000030using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000031using namespace llvm::PatternMatch;
32
33const unsigned MaxDepth = 6;
34
35/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36/// unknown returns 0). For vector types, returns the element type's bitwidth.
Chris Lattnerdb125cf2011-07-18 04:54:35 +000037static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +000038 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
42}
Chris Lattner173234a2008-06-02 01:18:21 +000043
Chris Lattner173234a2008-06-02 01:18:21 +000044/// ComputeMaskedBits - Determine which of the bits specified in Mask are
45/// known to be either zero or one and return them in the KnownZero/KnownOne
46/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47/// processing.
48/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49/// we cannot optimize based on the assumption that it is zero without changing
50/// it to be an explicit zero. If we don't change it to zero, other code could
51/// optimized based on the contradictory assumption that it is non-zero.
52/// Because instcombine aggressively folds operations with undef args anyway,
53/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +000054///
55/// This function is defined on values with integer type, values with pointer
56/// type (but only if TD is non-null), and vectors of integers. In the case
57/// where V is a vector, the mask, known zero, and known one values are the
58/// same width as the vector element, and the bit is set only if it is true
59/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +000060void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
Dan Gohman846a2f22009-08-27 17:51:25 +000062 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +000063 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000064 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000065 unsigned BitWidth = Mask.getBitWidth();
Duncan Sands1df98592010-02-16 11:11:14 +000066 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000067 && "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000068 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000070 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +000071 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000072 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
75
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
81 }
Dan Gohman6de29f82009-06-15 22:12:54 +000082 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000085 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +000086 KnownZero = Mask;
87 return;
88 }
Dan Gohman6de29f82009-06-15 22:12:54 +000089 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000092 KnownZero.setAllBits(); KnownOne.setAllBits();
Dan Gohman6de29f82009-06-15 22:12:54 +000093 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
99 }
100 return;
101 }
Chris Lattner173234a2008-06-02 01:18:21 +0000102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
Dan Gohman00407252009-08-11 15:50:03 +0000105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000106 Type *ObjectType = GV->getType()->getElementType();
Dan Gohman00407252009-08-11 15:50:03 +0000107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
114 }
Chris Lattner173234a2008-06-02 01:18:21 +0000115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000121 return;
122 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
131 }
132 return;
133 }
Chris Lattnerb3f06732011-05-23 00:03:39 +0000134
135 if (Argument *A = dyn_cast<Argument>(V)) {
136 // Get alignment information off byval arguments if specified in the IR.
137 if (A->hasByValAttr())
138 if (unsigned Align = A->getParamAlignment())
139 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
140 CountTrailingZeros_32(Align));
141 return;
142 }
Chris Lattner173234a2008-06-02 01:18:21 +0000143
Chris Lattnerb3f06732011-05-23 00:03:39 +0000144 // Start out not knowing anything.
145 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000146
Dan Gohman9004c8a2009-05-21 02:28:33 +0000147 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +0000148 return; // Limit search depth.
149
Dan Gohmanca178902009-07-17 20:47:02 +0000150 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000151 if (!I) return;
152
153 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000154 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000155 default: break;
156 case Instruction::And: {
157 // If either the LHS or the RHS are Zero, the result is zero.
158 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
159 APInt Mask2(Mask & ~KnownZero);
160 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
161 Depth+1);
162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
163 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
164
165 // Output known-1 bits are only known if set in both the LHS & RHS.
166 KnownOne &= KnownOne2;
167 // Output known-0 are known to be clear if zero in either the LHS | RHS.
168 KnownZero |= KnownZero2;
169 return;
170 }
171 case Instruction::Or: {
172 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
173 APInt Mask2(Mask & ~KnownOne);
174 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
175 Depth+1);
176 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
177 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
178
179 // Output known-0 bits are only known if clear in both the LHS & RHS.
180 KnownZero &= KnownZero2;
181 // Output known-1 are known to be set if set in either the LHS | RHS.
182 KnownOne |= KnownOne2;
183 return;
184 }
185 case Instruction::Xor: {
186 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
187 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
188 Depth+1);
189 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
190 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
191
192 // Output known-0 bits are known if clear or set in both the LHS & RHS.
193 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
194 // Output known-1 are known to be set if set in only one of the LHS, RHS.
195 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
196 KnownZero = KnownZeroOut;
197 return;
198 }
199 case Instruction::Mul: {
200 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
201 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
202 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
203 Depth+1);
Bob Wilson09069732011-10-27 15:47:25 +0000204 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
205 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
206
Chris Lattner173234a2008-06-02 01:18:21 +0000207 // If low bits are zero in either operand, output low known-0 bits.
208 // Also compute a conserative estimate for high known-0 bits.
209 // More trickiness is possible, but this is sufficient for the
210 // interesting case of alignment computation.
Jay Foad7a874dd2010-12-01 08:53:58 +0000211 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000212 unsigned TrailZ = KnownZero.countTrailingOnes() +
213 KnownZero2.countTrailingOnes();
214 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
215 KnownZero2.countLeadingOnes(),
216 BitWidth) - BitWidth;
217
218 TrailZ = std::min(TrailZ, BitWidth);
219 LeadZ = std::min(LeadZ, BitWidth);
220 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
221 APInt::getHighBitsSet(BitWidth, LeadZ);
222 KnownZero &= Mask;
223 return;
224 }
225 case Instruction::UDiv: {
226 // For the purposes of computing leading zeros we can conservatively
227 // treat a udiv as a logical right shift by the power of 2 known to
228 // be less than the denominator.
229 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
230 ComputeMaskedBits(I->getOperand(0),
231 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
232 unsigned LeadZ = KnownZero2.countLeadingOnes();
233
Jay Foad7a874dd2010-12-01 08:53:58 +0000234 KnownOne2.clearAllBits();
235 KnownZero2.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000236 ComputeMaskedBits(I->getOperand(1),
237 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
238 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
239 if (RHSUnknownLeadingOnes != BitWidth)
240 LeadZ = std::min(BitWidth,
241 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
242
243 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
244 return;
245 }
246 case Instruction::Select:
247 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
248 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
249 Depth+1);
250 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
251 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
252
253 // Only known if known in both the LHS and RHS.
254 KnownOne &= KnownOne2;
255 KnownZero &= KnownZero2;
256 return;
257 case Instruction::FPTrunc:
258 case Instruction::FPExt:
259 case Instruction::FPToUI:
260 case Instruction::FPToSI:
261 case Instruction::SIToFP:
262 case Instruction::UIToFP:
263 return; // Can't work with floating point.
264 case Instruction::PtrToInt:
265 case Instruction::IntToPtr:
266 // We can't handle these if we don't know the pointer size.
267 if (!TD) return;
268 // FALL THROUGH and handle them the same as zext/trunc.
269 case Instruction::ZExt:
270 case Instruction::Trunc: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000271 Type *SrcTy = I->getOperand(0)->getType();
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000272
273 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000274 // Note that we handle pointer operands here because of inttoptr/ptrtoint
275 // which fall through here.
Duncan Sands1df98592010-02-16 11:11:14 +0000276 if (SrcTy->isPointerTy())
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000277 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
278 else
279 SrcBitWidth = SrcTy->getScalarSizeInBits();
280
Jay Foad40f8f622010-12-07 08:25:19 +0000281 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
282 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
283 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000284 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
285 Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000286 KnownZero = KnownZero.zextOrTrunc(BitWidth);
287 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000288 // Any top bits are known to be zero.
289 if (BitWidth > SrcBitWidth)
290 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
291 return;
292 }
293 case Instruction::BitCast: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000294 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000295 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000296 // TODO: For now, not handling conversions like:
297 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000298 !I->getType()->isVectorTy()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000299 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
300 Depth+1);
301 return;
302 }
303 break;
304 }
305 case Instruction::SExt: {
306 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000307 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000308
Jay Foad40f8f622010-12-07 08:25:19 +0000309 APInt MaskIn = Mask.trunc(SrcBitWidth);
310 KnownZero = KnownZero.trunc(SrcBitWidth);
311 KnownOne = KnownOne.trunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000312 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
313 Depth+1);
314 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000315 KnownZero = KnownZero.zext(BitWidth);
316 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000317
318 // If the sign bit of the input is known set or clear, then we know the
319 // top bits of the result.
320 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
321 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
322 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
323 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
324 return;
325 }
326 case Instruction::Shl:
327 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
328 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
329 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
330 APInt Mask2(Mask.lshr(ShiftAmt));
331 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
332 Depth+1);
333 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
334 KnownZero <<= ShiftAmt;
335 KnownOne <<= ShiftAmt;
336 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
337 return;
338 }
339 break;
340 case Instruction::LShr:
341 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
342 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
343 // Compute the new bits that are at the top now.
344 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
345
346 // Unsigned shift right.
347 APInt Mask2(Mask.shl(ShiftAmt));
348 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
349 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000350 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000351 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
352 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
353 // high bits known zero.
354 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
355 return;
356 }
357 break;
358 case Instruction::AShr:
359 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
360 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
361 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000362 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner173234a2008-06-02 01:18:21 +0000363
364 // Signed shift right.
365 APInt Mask2(Mask.shl(ShiftAmt));
366 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
367 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000368 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000369 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
370 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
371
372 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
373 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
374 KnownZero |= HighBits;
375 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
376 KnownOne |= HighBits;
377 return;
378 }
379 break;
380 case Instruction::Sub: {
381 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
382 // We know that the top bits of C-X are clear if X contains less bits
383 // than C (i.e. no wrap-around can happen). For example, 20-X is
384 // positive if we can prove that X is >= 0 and < 16.
385 if (!CLHS->getValue().isNegative()) {
386 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
387 // NLZ can't be BitWidth with no sign bit
388 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
389 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
390 TD, Depth+1);
391
392 // If all of the MaskV bits are known to be zero, then we know the
393 // output top bits are zero, because we now know that the output is
394 // from [0-C].
395 if ((KnownZero2 & MaskV) == MaskV) {
396 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
397 // Top bits known zero.
398 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
399 }
400 }
401 }
402 }
403 // fall through
404 case Instruction::Add: {
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000405 // If one of the operands has trailing zeros, then the bits that the
Dan Gohman39250432009-05-24 18:02:35 +0000406 // other operand has in those bit positions will be preserved in the
407 // result. For an add, this works with either operand. For a subtract,
408 // this only works if the known zeros are in the right operand.
409 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
410 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
411 BitWidth - Mask.countLeadingZeros());
412 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000413 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000414 assert((LHSKnownZero & LHSKnownOne) == 0 &&
415 "Bits known to be one AND zero?");
416 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000417
418 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
419 Depth+1);
420 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000421 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000422
Dan Gohman39250432009-05-24 18:02:35 +0000423 // Determine which operand has more trailing zeros, and use that
424 // many bits from the other operand.
425 if (LHSKnownZeroOut > RHSKnownZeroOut) {
Dan Gohmanca178902009-07-17 20:47:02 +0000426 if (I->getOpcode() == Instruction::Add) {
Dan Gohman39250432009-05-24 18:02:35 +0000427 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
428 KnownZero |= KnownZero2 & Mask;
429 KnownOne |= KnownOne2 & Mask;
430 } else {
431 // If the known zeros are in the left operand for a subtract,
432 // fall back to the minimum known zeros in both operands.
433 KnownZero |= APInt::getLowBitsSet(BitWidth,
434 std::min(LHSKnownZeroOut,
435 RHSKnownZeroOut));
436 }
437 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
438 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
439 KnownZero |= LHSKnownZero & Mask;
440 KnownOne |= LHSKnownOne & Mask;
441 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000442
443 // Are we still trying to solve for the sign bit?
Benjamin Kramer14b2a592011-03-12 17:18:11 +0000444 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000445 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
446 if (OBO->hasNoSignedWrap()) {
Benjamin Kramer14b2a592011-03-12 17:18:11 +0000447 if (I->getOpcode() == Instruction::Add) {
448 // Adding two positive numbers can't wrap into negative
449 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
450 KnownZero |= APInt::getSignBit(BitWidth);
451 // and adding two negative numbers can't wrap into positive.
452 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
453 KnownOne |= APInt::getSignBit(BitWidth);
454 } else {
455 // Subtracting a negative number from a positive one can't wrap
456 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
457 KnownZero |= APInt::getSignBit(BitWidth);
458 // neither can subtracting a positive number from a negative one.
459 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
460 KnownOne |= APInt::getSignBit(BitWidth);
461 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000462 }
463 }
464
Chris Lattner173234a2008-06-02 01:18:21 +0000465 return;
466 }
467 case Instruction::SRem:
468 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000469 APInt RA = Rem->getValue().abs();
470 if (RA.isPowerOf2()) {
471 APInt LowBits = RA - 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000472 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
473 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
474 Depth+1);
475
Duncan Sandscfd54182010-01-29 06:18:37 +0000476 // The low bits of the first operand are unchanged by the srem.
477 KnownZero = KnownZero2 & LowBits;
478 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000479
Duncan Sandscfd54182010-01-29 06:18:37 +0000480 // If the first operand is non-negative or has all low bits zero, then
481 // the upper bits are all zero.
482 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
483 KnownZero |= ~LowBits;
484
485 // If the first operand is negative and not all low bits are zero, then
486 // the upper bits are all one.
487 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
488 KnownOne |= ~LowBits;
489
490 KnownZero &= Mask;
491 KnownOne &= Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000492
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000493 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000494 }
495 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000496
497 // The sign bit is the LHS's sign bit, except when the result of the
498 // remainder is zero.
499 if (Mask.isNegative() && KnownZero.isNonNegative()) {
500 APInt Mask2 = APInt::getSignBit(BitWidth);
501 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
502 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
503 Depth+1);
504 // If it's known zero, our sign bit is also zero.
505 if (LHSKnownZero.isNegative())
506 KnownZero |= LHSKnownZero;
507 }
508
Chris Lattner173234a2008-06-02 01:18:21 +0000509 break;
510 case Instruction::URem: {
511 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
512 APInt RA = Rem->getValue();
513 if (RA.isPowerOf2()) {
514 APInt LowBits = (RA - 1);
515 APInt Mask2 = LowBits & Mask;
516 KnownZero |= ~LowBits & Mask;
517 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
518 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000520 break;
521 }
522 }
523
524 // Since the result is less than or equal to either operand, any leading
525 // zero bits in either operand must also exist in the result.
526 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
527 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
528 TD, Depth+1);
529 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
530 TD, Depth+1);
531
Chris Lattner79abedb2009-01-20 18:22:57 +0000532 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000533 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000534 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000535 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
536 break;
537 }
538
Victor Hernandeza276c602009-10-17 01:18:07 +0000539 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000540 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000541 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000542 if (Align == 0 && TD)
543 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000544
545 if (Align > 0)
546 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
547 CountTrailingZeros_32(Align));
548 break;
549 }
550 case Instruction::GetElementPtr: {
551 // Analyze all of the subscripts of this getelementptr instruction
552 // to determine if we can prove known low zero bits.
553 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
554 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
555 ComputeMaskedBits(I->getOperand(0), LocalMask,
556 LocalKnownZero, LocalKnownOne, TD, Depth+1);
557 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
558
559 gep_type_iterator GTI = gep_type_begin(I);
560 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
561 Value *Index = I->getOperand(i);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000562 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000563 // Handle struct member offset arithmetic.
564 if (!TD) return;
565 const StructLayout *SL = TD->getStructLayout(STy);
566 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
567 uint64_t Offset = SL->getElementOffset(Idx);
568 TrailZ = std::min(TrailZ,
569 CountTrailingZeros_64(Offset));
570 } else {
571 // Handle array index arithmetic.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000572 Type *IndexedTy = GTI.getIndexedType();
Chris Lattner173234a2008-06-02 01:18:21 +0000573 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000574 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000575 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000576 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
577 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
578 ComputeMaskedBits(Index, LocalMask,
579 LocalKnownZero, LocalKnownOne, TD, Depth+1);
580 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000581 unsigned(CountTrailingZeros_64(TypeSize) +
582 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000583 }
584 }
585
586 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
587 break;
588 }
589 case Instruction::PHI: {
590 PHINode *P = cast<PHINode>(I);
591 // Handle the case of a simple two-predecessor recurrence PHI.
592 // There's a lot more that could theoretically be done here, but
593 // this is sufficient to catch some interesting cases.
594 if (P->getNumIncomingValues() == 2) {
595 for (unsigned i = 0; i != 2; ++i) {
596 Value *L = P->getIncomingValue(i);
597 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000598 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000599 if (!LU)
600 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000601 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000602 // Check for operations that have the property that if
603 // both their operands have low zero bits, the result
604 // will have low zero bits.
605 if (Opcode == Instruction::Add ||
606 Opcode == Instruction::Sub ||
607 Opcode == Instruction::And ||
608 Opcode == Instruction::Or ||
609 Opcode == Instruction::Mul) {
610 Value *LL = LU->getOperand(0);
611 Value *LR = LU->getOperand(1);
612 // Find a recurrence.
613 if (LL == I)
614 L = LR;
615 else if (LR == I)
616 L = LL;
617 else
618 break;
619 // Ok, we have a PHI of the form L op= R. Check for low
620 // zero bits.
621 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
622 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
623 Mask2 = APInt::getLowBitsSet(BitWidth,
624 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000625
626 // We need to take the minimum number of known bits
627 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
628 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
629
Chris Lattner173234a2008-06-02 01:18:21 +0000630 KnownZero = Mask &
631 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000632 std::min(KnownZero2.countTrailingOnes(),
633 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000634 break;
635 }
636 }
637 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000638
Nick Lewycky3b739d22011-02-10 23:54:10 +0000639 // Unreachable blocks may have zero-operand PHI nodes.
640 if (P->getNumIncomingValues() == 0)
641 return;
642
Dan Gohman9004c8a2009-05-21 02:28:33 +0000643 // Otherwise take the unions of the known bit sets of the operands,
644 // taking conservative care to avoid excessive recursion.
645 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000646 // Skip if every incoming value references to ourself.
647 if (P->hasConstantValue() == P)
648 break;
649
Dan Gohman9004c8a2009-05-21 02:28:33 +0000650 KnownZero = APInt::getAllOnesValue(BitWidth);
651 KnownOne = APInt::getAllOnesValue(BitWidth);
652 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
653 // Skip direct self references.
654 if (P->getIncomingValue(i) == P) continue;
655
656 KnownZero2 = APInt(BitWidth, 0);
657 KnownOne2 = APInt(BitWidth, 0);
658 // Recurse, but cap the recursion to one level, because we don't
659 // want to waste time spinning around in loops.
660 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
661 KnownZero2, KnownOne2, TD, MaxDepth-1);
662 KnownZero &= KnownZero2;
663 KnownOne &= KnownOne2;
664 // If all bits have been ruled out, there's no need to check
665 // more operands.
666 if (!KnownZero && !KnownOne)
667 break;
668 }
669 }
Chris Lattner173234a2008-06-02 01:18:21 +0000670 break;
671 }
672 case Instruction::Call:
673 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
674 switch (II->getIntrinsicID()) {
675 default: break;
676 case Intrinsic::ctpop:
677 case Intrinsic::ctlz:
678 case Intrinsic::cttz: {
679 unsigned LowBits = Log2_32(BitWidth)+1;
680 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
681 break;
682 }
Chad Rosier62660312011-05-26 23:13:19 +0000683 case Intrinsic::x86_sse42_crc32_64_8:
684 case Intrinsic::x86_sse42_crc32_64_64:
Evan Chengcb559c12011-05-22 18:25:30 +0000685 KnownZero = APInt::getHighBitsSet(64, 32);
686 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000687 }
688 }
689 break;
690 }
691}
692
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000693/// ComputeSignBit - Determine whether the sign bit is known to be zero or
694/// one. Convenience wrapper around ComputeMaskedBits.
695void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
696 const TargetData *TD, unsigned Depth) {
697 unsigned BitWidth = getBitWidth(V->getType(), TD);
698 if (!BitWidth) {
699 KnownZero = false;
700 KnownOne = false;
701 return;
702 }
703 APInt ZeroBits(BitWidth, 0);
704 APInt OneBits(BitWidth, 0);
705 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
706 Depth);
707 KnownOne = OneBits[BitWidth - 1];
708 KnownZero = ZeroBits[BitWidth - 1];
709}
710
711/// isPowerOfTwo - Return true if the given value is known to have exactly one
712/// bit set when defined. For vectors return true if every element is known to
713/// be a power of two when defined. Supports values with integer or pointer
714/// types and vectors of integers.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000715bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
716 unsigned Depth) {
717 if (Constant *C = dyn_cast<Constant>(V)) {
718 if (C->isNullValue())
719 return OrZero;
720 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
721 return CI->getValue().isPowerOf2();
722 // TODO: Handle vector constants.
723 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000724
725 // 1 << X is clearly a power of two if the one is not shifted off the end. If
726 // it is shifted off the end then the result is undefined.
727 if (match(V, m_Shl(m_One(), m_Value())))
728 return true;
729
730 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
731 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000732 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000733 return true;
734
735 // The remaining tests are all recursive, so bail out if we hit the limit.
736 if (Depth++ == MaxDepth)
737 return false;
738
739 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000740 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000741
742 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000743 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
744 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
745
746 Value *X = 0, *Y = 0;
747 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
748 // A power of two and'd with anything is a power of two or zero.
749 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
750 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
751 return true;
752 // X & (-X) is always a power of two or zero.
753 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
754 return true;
755 return false;
756 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000757
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000758 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewycky1f7bc702011-03-21 21:40:32 +0000759 // is a power of two only if the first operand is a power of two and not
760 // copying a sign bit (sdiv int_min, 2).
761 if (match(V, m_LShr(m_Value(), m_Value())) ||
762 match(V, m_UDiv(m_Value(), m_Value()))) {
Eli Friedman6bdd2612011-04-02 22:11:56 +0000763 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
764 if (PEO->isExact())
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000765 return isPowerOfTwo(PEO->getOperand(0), TD, OrZero, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000766 }
767
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000768 return false;
769}
770
771/// isKnownNonZero - Return true if the given value is known to be non-zero
772/// when defined. For vectors return true if every element is known to be
773/// non-zero when defined. Supports values with integer or pointer type and
774/// vectors of integers.
775bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
776 if (Constant *C = dyn_cast<Constant>(V)) {
777 if (C->isNullValue())
778 return false;
779 if (isa<ConstantInt>(C))
780 // Must be non-zero due to null test above.
781 return true;
782 // TODO: Handle vectors
783 return false;
784 }
785
786 // The remaining tests are all recursive, so bail out if we hit the limit.
Bob Wilson09069732011-10-27 15:47:25 +0000787 if (Depth++ == MaxDepth)
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000788 return false;
789
790 unsigned BitWidth = getBitWidth(V->getType(), TD);
791
792 // X | Y != 0 if X != 0 or Y != 0.
793 Value *X = 0, *Y = 0;
794 if (match(V, m_Or(m_Value(X), m_Value(Y))))
795 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
796
797 // ext X != 0 if X != 0.
798 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
799 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
800
Duncan Sands91367822011-01-29 13:27:00 +0000801 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000802 // if the lowest bit is shifted off the end.
803 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000804 // shl nuw can't remove any non-zero bits.
805 BinaryOperator *BO = cast<BinaryOperator>(V);
806 if (BO->hasNoUnsignedWrap())
807 return isKnownNonZero(X, TD, Depth);
808
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000809 APInt KnownZero(BitWidth, 0);
810 APInt KnownOne(BitWidth, 0);
Duncan Sands91367822011-01-29 13:27:00 +0000811 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000812 if (KnownOne[0])
813 return true;
814 }
Duncan Sands91367822011-01-29 13:27:00 +0000815 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000816 // defined if the sign bit is shifted off the end.
817 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000818 // shr exact can only shift out zero bits.
819 BinaryOperator *BO = cast<BinaryOperator>(V);
820 if (BO->isExact())
821 return isKnownNonZero(X, TD, Depth);
822
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000823 bool XKnownNonNegative, XKnownNegative;
824 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
825 if (XKnownNegative)
826 return true;
827 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000828 // div exact can only produce a zero if the dividend is zero.
829 else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
830 BinaryOperator *BO = cast<BinaryOperator>(V);
831 if (BO->isExact())
832 return isKnownNonZero(X, TD, Depth);
833 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000834 // X + Y.
835 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
836 bool XKnownNonNegative, XKnownNegative;
837 bool YKnownNonNegative, YKnownNegative;
838 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
839 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
840
841 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +0000842 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000843 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +0000844 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
845 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000846
847 // If X and Y are both negative (as signed values) then their sum is not
848 // zero unless both X and Y equal INT_MIN.
849 if (BitWidth && XKnownNegative && YKnownNegative) {
850 APInt KnownZero(BitWidth, 0);
851 APInt KnownOne(BitWidth, 0);
852 APInt Mask = APInt::getSignedMaxValue(BitWidth);
853 // The sign bit of X is set. If some other bit is set then X is not equal
854 // to INT_MIN.
855 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
856 if ((KnownOne & Mask) != 0)
857 return true;
858 // The sign bit of Y is set. If some other bit is set then Y is not equal
859 // to INT_MIN.
860 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
861 if ((KnownOne & Mask) != 0)
862 return true;
863 }
864
865 // The sum of a non-negative number and a power of two is not zero.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000866 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000867 return true;
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000868 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000869 return true;
870 }
871 // (C ? X : Y) != 0 if X != 0 and Y != 0.
872 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
873 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
874 isKnownNonZero(SI->getFalseValue(), TD, Depth))
875 return true;
876 }
877
878 if (!BitWidth) return false;
879 APInt KnownZero(BitWidth, 0);
880 APInt KnownOne(BitWidth, 0);
881 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
882 TD, Depth);
883 return KnownOne != 0;
884}
885
Chris Lattner173234a2008-06-02 01:18:21 +0000886/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
887/// this predicate to simplify operations downstream. Mask is known to be zero
888/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000889///
890/// This function is defined on values with integer type, values with pointer
891/// type (but only if TD is non-null), and vectors of integers. In the case
892/// where V is a vector, the mask, known zero, and known one values are the
893/// same width as the vector element, and the bit is set only if it is true
894/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +0000895bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Dan Gohman846a2f22009-08-27 17:51:25 +0000896 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000897 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
898 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
899 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
900 return (KnownZero & Mask) == Mask;
901}
902
903
904
905/// ComputeNumSignBits - Return the number of times the sign bit of the
906/// register is replicated into the other bits. We know that at least 1 bit
907/// is always equal to the sign bit (itself), but other cases can give us
908/// information. For example, immediately after an "ashr X, 2", we know that
909/// the top 3 bits are all equal to each other, so we return 3.
910///
911/// 'Op' must have a scalar integer type.
912///
Dan Gohman846a2f22009-08-27 17:51:25 +0000913unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
914 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000915 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000916 "ComputeNumSignBits requires a TargetData object to operate "
917 "on non-integer values!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000918 Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000919 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
920 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000921 unsigned Tmp, Tmp2;
922 unsigned FirstAnswer = 1;
923
Chris Lattnerd82e5112008-06-02 18:39:07 +0000924 // Note that ConstantInt is handled by the general ComputeMaskedBits case
925 // below.
926
Chris Lattner173234a2008-06-02 01:18:21 +0000927 if (Depth == 6)
928 return 1; // Limit search depth.
929
Dan Gohmanca178902009-07-17 20:47:02 +0000930 Operator *U = dyn_cast<Operator>(V);
931 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000932 default: break;
933 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +0000934 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000935 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
936
937 case Instruction::AShr:
938 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
939 // ashr X, C -> adds C sign bits.
940 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
941 Tmp += C->getZExtValue();
942 if (Tmp > TyBits) Tmp = TyBits;
943 }
Nate Begeman9a3dc552010-12-17 23:12:19 +0000944 // vector ashr X, <C, C, C, C> -> adds C sign bits
945 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
946 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
947 Tmp += CI->getZExtValue();
948 if (Tmp > TyBits) Tmp = TyBits;
949 }
950 }
Chris Lattner173234a2008-06-02 01:18:21 +0000951 return Tmp;
952 case Instruction::Shl:
953 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
954 // shl destroys sign bits.
955 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
956 if (C->getZExtValue() >= TyBits || // Bad shift.
957 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
958 return Tmp - C->getZExtValue();
959 }
960 break;
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor: // NOT is handled here.
964 // Logical binary ops preserve the number of sign bits at the worst.
965 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
966 if (Tmp != 1) {
967 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
968 FirstAnswer = std::min(Tmp, Tmp2);
969 // We computed what we know about the sign bits as our first
970 // answer. Now proceed to the generic code that uses
971 // ComputeMaskedBits, and pick whichever answer is better.
972 }
973 break;
974
975 case Instruction::Select:
976 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
977 if (Tmp == 1) return 1; // Early out.
978 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
979 return std::min(Tmp, Tmp2);
980
981 case Instruction::Add:
982 // Add can have at most one carry bit. Thus we know that the output
983 // is, at worst, one more bit than the inputs.
984 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
985 if (Tmp == 1) return 1; // Early out.
986
987 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000988 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000989 if (CRHS->isAllOnesValue()) {
990 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
991 APInt Mask = APInt::getAllOnesValue(TyBits);
992 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
993 Depth+1);
994
995 // If the input is known to be 0 or 1, the output is 0/-1, which is all
996 // sign bits set.
997 if ((KnownZero | APInt(TyBits, 1)) == Mask)
998 return TyBits;
999
1000 // If we are subtracting one from a positive number, there is no carry
1001 // out of the result.
1002 if (KnownZero.isNegative())
1003 return Tmp;
1004 }
1005
1006 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1007 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001008 return std::min(Tmp, Tmp2)-1;
Chris Lattner173234a2008-06-02 01:18:21 +00001009
1010 case Instruction::Sub:
1011 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1012 if (Tmp2 == 1) return 1;
1013
1014 // Handle NEG.
1015 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1016 if (CLHS->isNullValue()) {
1017 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1018 APInt Mask = APInt::getAllOnesValue(TyBits);
1019 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
1020 TD, Depth+1);
1021 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1022 // sign bits set.
1023 if ((KnownZero | APInt(TyBits, 1)) == Mask)
1024 return TyBits;
1025
1026 // If the input is known to be positive (the sign bit is known clear),
1027 // the output of the NEG has the same number of sign bits as the input.
1028 if (KnownZero.isNegative())
1029 return Tmp2;
1030
1031 // Otherwise, we treat this like a SUB.
1032 }
1033
1034 // Sub can have at most one carry bit. Thus we know that the output
1035 // is, at worst, one more bit than the inputs.
1036 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1037 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001038 return std::min(Tmp, Tmp2)-1;
1039
1040 case Instruction::PHI: {
1041 PHINode *PN = cast<PHINode>(U);
1042 // Don't analyze large in-degree PHIs.
1043 if (PN->getNumIncomingValues() > 4) break;
1044
1045 // Take the minimum of all incoming values. This can't infinitely loop
1046 // because of our depth threshold.
1047 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1048 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1049 if (Tmp == 1) return Tmp;
1050 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001051 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001052 }
1053 return Tmp;
1054 }
1055
Chris Lattner173234a2008-06-02 01:18:21 +00001056 case Instruction::Trunc:
1057 // FIXME: it's tricky to do anything useful for this, but it is an important
1058 // case for targets like X86.
1059 break;
1060 }
1061
1062 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1063 // use this information.
1064 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1065 APInt Mask = APInt::getAllOnesValue(TyBits);
1066 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1067
1068 if (KnownZero.isNegative()) { // sign bit is 0
1069 Mask = KnownZero;
1070 } else if (KnownOne.isNegative()) { // sign bit is 1;
1071 Mask = KnownOne;
1072 } else {
1073 // Nothing known.
1074 return FirstAnswer;
1075 }
1076
1077 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1078 // the number of identical bits in the top of the input value.
1079 Mask = ~Mask;
1080 Mask <<= Mask.getBitWidth()-TyBits;
1081 // Return # leading zeros. We use 'min' here in case Val was zero before
1082 // shifting. We don't want to return '64' as for an i32 "0".
1083 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1084}
Chris Lattner833f25d2008-06-02 01:29:46 +00001085
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001086/// ComputeMultiple - This function computes the integer multiple of Base that
1087/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001088/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001089/// through SExt instructions only if LookThroughSExt is true.
1090bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001091 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001092 const unsigned MaxDepth = 6;
1093
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001094 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001095 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001096 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001097
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001098 Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001099
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001100 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001101
1102 if (Base == 0)
1103 return false;
1104
1105 if (Base == 1) {
1106 Multiple = V;
1107 return true;
1108 }
1109
1110 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1111 Constant *BaseVal = ConstantInt::get(T, Base);
1112 if (CO && CO == BaseVal) {
1113 // Multiple is 1.
1114 Multiple = ConstantInt::get(T, 1);
1115 return true;
1116 }
1117
1118 if (CI && CI->getZExtValue() % Base == 0) {
1119 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1120 return true;
1121 }
1122
1123 if (Depth == MaxDepth) return false; // Limit search depth.
1124
1125 Operator *I = dyn_cast<Operator>(V);
1126 if (!I) return false;
1127
1128 switch (I->getOpcode()) {
1129 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001130 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001131 if (!LookThroughSExt) return false;
1132 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001133 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001134 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1135 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001136 case Instruction::Shl:
1137 case Instruction::Mul: {
1138 Value *Op0 = I->getOperand(0);
1139 Value *Op1 = I->getOperand(1);
1140
1141 if (I->getOpcode() == Instruction::Shl) {
1142 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1143 if (!Op1CI) return false;
1144 // Turn Op0 << Op1 into Op0 * 2^Op1
1145 APInt Op1Int = Op1CI->getValue();
1146 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001147 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001148 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001149 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001150 }
1151
1152 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001153 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1154 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1155 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1156 if (Op1C->getType()->getPrimitiveSizeInBits() <
1157 MulC->getType()->getPrimitiveSizeInBits())
1158 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1159 if (Op1C->getType()->getPrimitiveSizeInBits() >
1160 MulC->getType()->getPrimitiveSizeInBits())
1161 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1162
1163 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1164 Multiple = ConstantExpr::getMul(MulC, Op1C);
1165 return true;
1166 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001167
1168 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1169 if (Mul0CI->getValue() == 1) {
1170 // V == Base * Op1, so return Op1
1171 Multiple = Op1;
1172 return true;
1173 }
1174 }
1175
Chris Lattnere9711312010-09-05 17:20:46 +00001176 Value *Mul1 = NULL;
1177 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1178 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1179 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1180 if (Op0C->getType()->getPrimitiveSizeInBits() <
1181 MulC->getType()->getPrimitiveSizeInBits())
1182 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1183 if (Op0C->getType()->getPrimitiveSizeInBits() >
1184 MulC->getType()->getPrimitiveSizeInBits())
1185 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1186
1187 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1188 Multiple = ConstantExpr::getMul(MulC, Op0C);
1189 return true;
1190 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001191
1192 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1193 if (Mul1CI->getValue() == 1) {
1194 // V == Base * Op0, so return Op0
1195 Multiple = Op0;
1196 return true;
1197 }
1198 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001199 }
1200 }
1201
1202 // We could not determine if V is a multiple of Base.
1203 return false;
1204}
1205
Chris Lattner833f25d2008-06-02 01:29:46 +00001206/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1207/// value is never equal to -0.0.
1208///
1209/// NOTE: this function will need to be revisited when we support non-default
1210/// rounding modes!
1211///
1212bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1213 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1214 return !CFP->getValueAPF().isNegZero();
1215
1216 if (Depth == 6)
1217 return 1; // Limit search depth.
1218
Dan Gohmanca178902009-07-17 20:47:02 +00001219 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001220 if (I == 0) return false;
1221
1222 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +00001223 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +00001224 isa<ConstantFP>(I->getOperand(1)) &&
1225 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1226 return true;
1227
1228 // sitofp and uitofp turn into +0.0 for zero.
1229 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1230 return true;
1231
1232 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1233 // sqrt(-0.0) = -0.0, no other negative results are possible.
1234 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001235 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001236
1237 if (const CallInst *CI = dyn_cast<CallInst>(I))
1238 if (const Function *F = CI->getCalledFunction()) {
1239 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001240 // abs(x) != -0.0
1241 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001242 // fabs[lf](x) != -0.0
1243 if (F->getName() == "fabs") return true;
1244 if (F->getName() == "fabsf") return true;
1245 if (F->getName() == "fabsl") return true;
1246 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1247 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001248 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001249 }
1250 }
1251
1252 return false;
1253}
1254
Chris Lattnerbb897102010-12-26 20:15:01 +00001255/// isBytewiseValue - If the specified value can be set by repeating the same
1256/// byte in memory, return the i8 value that it is represented with. This is
1257/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1258/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1259/// byte store (e.g. i16 0x1234), return null.
1260Value *llvm::isBytewiseValue(Value *V) {
1261 // All byte-wide stores are splatable, even of arbitrary variables.
1262 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001263
1264 // Handle 'null' ConstantArrayZero etc.
1265 if (Constant *C = dyn_cast<Constant>(V))
1266 if (C->isNullValue())
1267 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Chris Lattnerbb897102010-12-26 20:15:01 +00001268
1269 // Constant float and double values can be handled as integer values if the
1270 // corresponding integer value is "byteable". An important case is 0.0.
1271 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1272 if (CFP->getType()->isFloatTy())
1273 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1274 if (CFP->getType()->isDoubleTy())
1275 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1276 // Don't handle long double formats, which have strange constraints.
1277 }
1278
1279 // We can handle constant integers that are power of two in size and a
1280 // multiple of 8 bits.
1281 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1282 unsigned Width = CI->getBitWidth();
1283 if (isPowerOf2_32(Width) && Width > 8) {
1284 // We can handle this value if the recursive binary decomposition is the
1285 // same at all levels.
1286 APInt Val = CI->getValue();
1287 APInt Val2;
1288 while (Val.getBitWidth() != 8) {
1289 unsigned NextWidth = Val.getBitWidth()/2;
1290 Val2 = Val.lshr(NextWidth);
1291 Val2 = Val2.trunc(Val.getBitWidth()/2);
1292 Val = Val.trunc(Val.getBitWidth()/2);
1293
1294 // If the top/bottom halves aren't the same, reject it.
1295 if (Val != Val2)
1296 return 0;
1297 }
1298 return ConstantInt::get(V->getContext(), Val);
1299 }
1300 }
1301
1302 // A ConstantArray is splatable if all its members are equal and also
1303 // splatable.
1304 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1305 if (CA->getNumOperands() == 0)
1306 return 0;
1307
1308 Value *Val = isBytewiseValue(CA->getOperand(0));
1309 if (!Val)
1310 return 0;
1311
1312 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1313 if (CA->getOperand(I-1) != CA->getOperand(I))
1314 return 0;
1315
1316 return Val;
1317 }
1318
1319 // Conceptually, we could handle things like:
1320 // %a = zext i8 %X to i16
1321 // %b = shl i16 %a, 8
1322 // %c = or i16 %a, %b
1323 // but until there is an example that actually needs this, it doesn't seem
1324 // worth worrying about.
1325 return 0;
1326}
1327
1328
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001329// This is the recursive version of BuildSubAggregate. It takes a few different
1330// arguments. Idxs is the index within the nested struct From that we are
1331// looking at now (which is of type IndexedType). IdxSkip is the number of
1332// indices from Idxs that should be left out when inserting into the resulting
1333// struct. To is the result struct built so far, new insertvalue instructions
1334// build on that.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001335static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Dan Gohman7db949d2009-08-07 01:32:21 +00001336 SmallVector<unsigned, 10> &Idxs,
1337 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001338 Instruction *InsertBefore) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001339 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001340 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001341 // Save the original To argument so we can modify it
1342 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001343 // General case, the type indexed by Idxs is a struct
1344 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1345 // Process each struct element recursively
1346 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001347 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001348 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001349 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001350 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001351 if (!To) {
1352 // Couldn't find any inserted value for this index? Cleanup
1353 while (PrevTo != OrigTo) {
1354 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1355 PrevTo = Del->getAggregateOperand();
1356 Del->eraseFromParent();
1357 }
1358 // Stop processing elements
1359 break;
1360 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001361 }
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001362 // If we successfully found a value for each of our subaggregates
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001363 if (To)
1364 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001365 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001366 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1367 // the struct's elements had a value that was inserted directly. In the latter
1368 // case, perhaps we can't determine each of the subelements individually, but
1369 // we might be able to find the complete struct somewhere.
1370
1371 // Find the value that is at that particular spot
Jay Foadfc6d3a42011-07-13 10:26:04 +00001372 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001373
1374 if (!V)
1375 return NULL;
1376
1377 // Insert the value in the new (sub) aggregrate
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001378 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001379 "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001380}
1381
1382// This helper takes a nested struct and extracts a part of it (which is again a
1383// struct) into a new value. For example, given the struct:
1384// { a, { b, { c, d }, e } }
1385// and the indices "1, 1" this returns
1386// { c, d }.
1387//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001388// It does this by inserting an insertvalue for each element in the resulting
1389// struct, as opposed to just inserting a single struct. This will only work if
1390// each of the elements of the substruct are known (ie, inserted into From by an
1391// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001392//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001393// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foadfc6d3a42011-07-13 10:26:04 +00001394static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohman7db949d2009-08-07 01:32:21 +00001395 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001396 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001397 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001398 idx_range);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001399 Value *To = UndefValue::get(IndexedType);
Jay Foadfc6d3a42011-07-13 10:26:04 +00001400 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001401 unsigned IdxSkip = Idxs.size();
1402
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001403 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001404}
1405
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001406/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1407/// the scalar value indexed is already around as a register, for example if it
1408/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001409///
1410/// If InsertBefore is not null, this function will duplicate (modified)
1411/// insertvalues when a part of a nested struct is extracted.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001412Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1413 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001414 // Nothing to index? Just return V then (this is useful at the end of our
1415 // recursion)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001416 if (idx_range.empty())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001417 return V;
1418 // We have indices, so V should have an indexable type
Duncan Sands1df98592010-02-16 11:11:14 +00001419 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001420 && "Not looking at a struct or array?");
Jay Foadfc6d3a42011-07-13 10:26:04 +00001421 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range)
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001422 && "Invalid indices for type?");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001423 CompositeType *PTy = cast<CompositeType>(V->getType());
Owen Anderson76f600b2009-07-06 22:37:39 +00001424
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001425 if (isa<UndefValue>(V))
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001426 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
Jay Foadfc6d3a42011-07-13 10:26:04 +00001427 idx_range));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001428 else if (isa<ConstantAggregateZero>(V))
Owen Andersona7235ea2009-07-31 20:28:14 +00001429 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
Jay Foadfc6d3a42011-07-13 10:26:04 +00001430 idx_range));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001431 else if (Constant *C = dyn_cast<Constant>(V)) {
1432 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1433 // Recursively process this constant
Jay Foadfc6d3a42011-07-13 10:26:04 +00001434 return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1),
1435 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001436 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1437 // Loop the indices for the insertvalue instruction in parallel with the
1438 // requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001439 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001440 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1441 i != e; ++i, ++req_idx) {
Jay Foadfc6d3a42011-07-13 10:26:04 +00001442 if (req_idx == idx_range.end()) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001443 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001444 // The requested index identifies a part of a nested aggregate. Handle
1445 // this specially. For example,
1446 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1447 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1448 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1449 // This can be changed into
1450 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1451 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1452 // which allows the unused 0,0 element from the nested struct to be
1453 // removed.
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001454 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001455 InsertBefore);
Matthijs Kooijman97728912008-06-16 13:28:31 +00001456 else
1457 // We can't handle this without inserting insertvalues
1458 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +00001459 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001460
1461 // This insert value inserts something else than what we are looking for.
1462 // See if the (aggregrate) value inserted into has the value we are
1463 // looking for, then.
1464 if (*req_idx != *i)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001465 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001466 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001467 }
1468 // If we end up here, the indices of the insertvalue match with those
1469 // requested (though possibly only partially). Now we recursively look at
1470 // the inserted value, passing any remaining indices.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001471 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001472 makeArrayRef(req_idx, idx_range.end()),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001473 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001474 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1475 // If we're extracting a value from an aggregrate that was extracted from
1476 // something else, we can extract from that something else directly instead.
1477 // However, we will need to chain I's indices with the requested indices.
1478
1479 // Calculate the number of indices required
Jay Foadfc6d3a42011-07-13 10:26:04 +00001480 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001481 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001482 SmallVector<unsigned, 5> Idxs;
1483 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001484 // Add indices from the extract value instruction
Jay Foadfc6d3a42011-07-13 10:26:04 +00001485 Idxs.append(I->idx_begin(), I->idx_end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001486
1487 // Add requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001488 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001489
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001490 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001491 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001492
Jay Foadfc6d3a42011-07-13 10:26:04 +00001493 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001494 }
1495 // Otherwise, we don't know (such as, extracting from a function return value
1496 // or load instruction)
1497 return 0;
1498}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001499
Chris Lattnered58a6f2010-11-30 22:25:26 +00001500/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1501/// it can be expressed as a base pointer plus a constant offset. Return the
1502/// base and offset to the caller.
1503Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1504 const TargetData &TD) {
1505 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1506 if (PtrOp == 0) return Ptr;
1507
1508 // Just look through bitcasts.
1509 if (PtrOp->getOpcode() == Instruction::BitCast)
1510 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1511
1512 // If this is a GEP with constant indices, we can look through it.
1513 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1514 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1515
1516 gep_type_iterator GTI = gep_type_begin(GEP);
1517 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1518 ++I, ++GTI) {
1519 ConstantInt *OpC = cast<ConstantInt>(*I);
1520 if (OpC->isZero()) continue;
1521
1522 // Handle a struct and array indices which add their offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001523 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattnered58a6f2010-11-30 22:25:26 +00001524 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1525 } else {
1526 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1527 Offset += OpC->getSExtValue()*Size;
1528 }
1529 }
1530
1531 // Re-sign extend from the pointer size if needed to get overflow edge cases
1532 // right.
1533 unsigned PtrSize = TD.getPointerSizeInBits();
1534 if (PtrSize < 64)
1535 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1536
1537 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1538}
1539
1540
Evan Cheng0ff39b32008-06-30 07:31:25 +00001541/// GetConstantStringInfo - This function computes the length of a
1542/// null-terminated C string pointed to by V. If successful, it returns true
1543/// and returns the string in Str. If unsuccessful, it returns false.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001544bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001545 uint64_t Offset, bool StopAtNul) {
Bill Wendling0582ae92009-03-13 04:39:26 +00001546 // If V is NULL then return false;
1547 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001548
1549 // Look through bitcast instructions.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001550 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001551 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1552
Evan Cheng0ff39b32008-06-30 07:31:25 +00001553 // If the value is not a GEP instruction nor a constant expression with a
1554 // GEP instruction, then return false because ConstantArray can't occur
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001555 // any other way.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001556 const User *GEP = 0;
1557 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001558 GEP = GEPI;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001559 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001560 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001561 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1562 if (CE->getOpcode() != Instruction::GetElementPtr)
1563 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001564 GEP = CE;
1565 }
1566
1567 if (GEP) {
1568 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001569 if (GEP->getNumOperands() != 3)
1570 return false;
1571
Evan Cheng0ff39b32008-06-30 07:31:25 +00001572 // Make sure the index-ee is a pointer to array of i8.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001573 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1574 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001575 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001576 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001577
1578 // Check to make sure that the first operand of the GEP is an integer and
1579 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001580 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001581 if (FirstIdx == 0 || !FirstIdx->isZero())
1582 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001583
1584 // If the second index isn't a ConstantInt, then this is a variable index
1585 // into the array. If this occurs, we can't say anything meaningful about
1586 // the string.
1587 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001588 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001589 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001590 else
1591 return false;
1592 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001593 StopAtNul);
1594 }
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001595
Evan Cheng0ff39b32008-06-30 07:31:25 +00001596 // The GEP instruction, constant or instruction, must reference a global
1597 // variable that is a constant and is initialized. The referenced constant
1598 // initializer is the array that we'll use for optimization.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001599 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001600 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001601 return false;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001602 const Constant *GlobalInit = GV->getInitializer();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001603
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001604 // Handle the all-zeros case
1605 if (GlobalInit->isNullValue()) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001606 // This is a degenerate case. The initializer is constant zero so the
1607 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001608 Str.clear();
1609 return true;
1610 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001611
1612 // Must be a Constant Array
Dan Gohman0a60fa32010-04-14 22:20:45 +00001613 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001614 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001615 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001616
1617 // Get the number of elements in the array
1618 uint64_t NumElts = Array->getType()->getNumElements();
1619
Bill Wendling0582ae92009-03-13 04:39:26 +00001620 if (Offset > NumElts)
1621 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001622
1623 // Traverse the constant array from 'Offset' which is the place the GEP refers
1624 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001625 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001626 for (unsigned i = Offset; i != NumElts; ++i) {
Dan Gohman0a60fa32010-04-14 22:20:45 +00001627 const Constant *Elt = Array->getOperand(i);
1628 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001629 if (!CI) // This array isn't suitable, non-int initializer.
1630 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001631 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001632 return true; // we found end of string, success!
1633 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001634 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001635
Evan Cheng0ff39b32008-06-30 07:31:25 +00001636 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001637 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001638}
Eric Christopher25ec4832010-03-05 06:58:57 +00001639
1640// These next two are very similar to the above, but also look through PHI
1641// nodes.
1642// TODO: See if we can integrate these two together.
1643
1644/// GetStringLengthH - If we can compute the length of the string pointed to by
1645/// the specified pointer, return 'len+1'. If we can't, return 0.
1646static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1647 // Look through noop bitcast instructions.
1648 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1649 return GetStringLengthH(BCI->getOperand(0), PHIs);
1650
1651 // If this is a PHI node, there are two cases: either we have already seen it
1652 // or we haven't.
1653 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1654 if (!PHIs.insert(PN))
1655 return ~0ULL; // already in the set.
1656
1657 // If it was new, see if all the input strings are the same length.
1658 uint64_t LenSoFar = ~0ULL;
1659 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1660 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1661 if (Len == 0) return 0; // Unknown length -> unknown.
1662
1663 if (Len == ~0ULL) continue;
1664
1665 if (Len != LenSoFar && LenSoFar != ~0ULL)
1666 return 0; // Disagree -> unknown.
1667 LenSoFar = Len;
1668 }
1669
1670 // Success, all agree.
1671 return LenSoFar;
1672 }
1673
1674 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1675 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1676 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1677 if (Len1 == 0) return 0;
1678 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1679 if (Len2 == 0) return 0;
1680 if (Len1 == ~0ULL) return Len2;
1681 if (Len2 == ~0ULL) return Len1;
1682 if (Len1 != Len2) return 0;
1683 return Len1;
1684 }
1685
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001686 // As a special-case, "@string = constant i8 0" is also a string with zero
1687 // length, not wrapped in a bitcast or GEP.
1688 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
1689 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1690 if (GV->getInitializer()->isNullValue()) return 1;
1691 return 0;
1692 }
1693
Eric Christopher25ec4832010-03-05 06:58:57 +00001694 // If the value is not a GEP instruction nor a constant expression with a
1695 // GEP instruction, then return unknown.
1696 User *GEP = 0;
1697 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1698 GEP = GEPI;
1699 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1700 if (CE->getOpcode() != Instruction::GetElementPtr)
1701 return 0;
1702 GEP = CE;
1703 } else {
1704 return 0;
1705 }
1706
1707 // Make sure the GEP has exactly three arguments.
1708 if (GEP->getNumOperands() != 3)
1709 return 0;
1710
1711 // Check to make sure that the first operand of the GEP is an integer and
1712 // has value 0 so that we are sure we're indexing into the initializer.
1713 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1714 if (!Idx->isZero())
1715 return 0;
1716 } else
1717 return 0;
1718
1719 // If the second index isn't a ConstantInt, then this is a variable index
1720 // into the array. If this occurs, we can't say anything meaningful about
1721 // the string.
1722 uint64_t StartIdx = 0;
1723 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1724 StartIdx = CI->getZExtValue();
1725 else
1726 return 0;
1727
1728 // The GEP instruction, constant or instruction, must reference a global
1729 // variable that is a constant and is initialized. The referenced constant
1730 // initializer is the array that we'll use for optimization.
1731 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1732 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1733 GV->mayBeOverridden())
1734 return 0;
1735 Constant *GlobalInit = GV->getInitializer();
1736
1737 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1738 // initializer is constant zero so the length of the string must be zero.
1739 if (isa<ConstantAggregateZero>(GlobalInit))
1740 return 1; // Len = 0 offset by 1.
1741
1742 // Must be a Constant Array
1743 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1744 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1745 return false;
1746
1747 // Get the number of elements in the array
1748 uint64_t NumElts = Array->getType()->getNumElements();
1749
1750 // Traverse the constant array from StartIdx (derived above) which is
1751 // the place the GEP refers to in the array.
1752 for (unsigned i = StartIdx; i != NumElts; ++i) {
1753 Constant *Elt = Array->getOperand(i);
1754 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1755 if (!CI) // This array isn't suitable, non-int initializer.
1756 return 0;
1757 if (CI->isZero())
1758 return i-StartIdx+1; // We found end of string, success!
1759 }
1760
1761 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1762}
1763
1764/// GetStringLength - If we can compute the length of the string pointed to by
1765/// the specified pointer, return 'len+1'. If we can't, return 0.
1766uint64_t llvm::GetStringLength(Value *V) {
1767 if (!V->getType()->isPointerTy()) return 0;
1768
1769 SmallPtrSet<PHINode*, 32> PHIs;
1770 uint64_t Len = GetStringLengthH(V, PHIs);
1771 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1772 // an empty string as a length.
1773 return Len == ~0ULL ? 1 : Len;
1774}
Dan Gohman5034dd32010-12-15 20:02:24 +00001775
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001776Value *
1777llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001778 if (!V->getType()->isPointerTy())
1779 return V;
1780 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1781 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1782 V = GEP->getPointerOperand();
1783 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1784 V = cast<Operator>(V)->getOperand(0);
1785 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1786 if (GA->mayBeOverridden())
1787 return V;
1788 V = GA->getAliasee();
1789 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001790 // See if InstructionSimplify knows any relevant tricks.
1791 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001792 // TODO: Acquire a DominatorTree and use it.
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001793 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001794 V = Simplified;
1795 continue;
1796 }
1797
Dan Gohman5034dd32010-12-15 20:02:24 +00001798 return V;
1799 }
1800 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1801 }
1802 return V;
1803}
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001804
1805/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1806/// are lifetime markers.
1807///
1808bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1809 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1810 UI != UE; ++UI) {
1811 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1812 if (!II) return false;
1813
1814 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1815 II->getIntrinsicID() != Intrinsic::lifetime_end)
1816 return false;
1817 }
1818 return true;
1819}