blob: 196238de4257c29237e1473b7c1b807b450617f5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53 cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000057static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060#else
Dan Gohman134c5b62007-08-28 20:32:58 +000061static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77 cl::opt<RegisterScheduler::FunctionPassCtor, false,
78 RegisterPassParser<RegisterScheduler> >
79 ISHeuristic("pre-RA-sched",
80 cl::init(&createDefaultScheduler),
81 cl::desc("Instruction schedulers available (before register allocation):"));
82
83 static RegisterScheduler
84 defaultListDAGScheduler("default", " Best scheduler for the target",
85 createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91 /// RegsForValue - This struct represents the physical registers that a
92 /// particular value is assigned and the type information about the value.
93 /// This is needed because values can be promoted into larger registers and
94 /// expanded into multiple smaller registers than the value.
95 struct VISIBILITY_HIDDEN RegsForValue {
96 /// Regs - This list holds the register (for legal and promoted values)
97 /// or register set (for expanded values) that the value should be assigned
98 /// to.
99 std::vector<unsigned> Regs;
100
101 /// RegVT - The value type of each register.
102 ///
103 MVT::ValueType RegVT;
104
105 /// ValueVT - The value type of the LLVM value, which may be promoted from
106 /// RegVT or made from merging the two expanded parts.
107 MVT::ValueType ValueVT;
108
109 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112 : RegVT(regvt), ValueVT(valuevt) {
113 Regs.push_back(Reg);
114 }
115 RegsForValue(const std::vector<unsigned> &regs,
116 MVT::ValueType regvt, MVT::ValueType valuevt)
117 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118 }
119
120 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121 /// this value and returns the result as a ValueVT value. This uses
122 /// Chain/Flag as the input and updates them for the output Chain/Flag.
123 /// If the Flag pointer is NULL, no flag is used.
124 SDOperand getCopyFromRegs(SelectionDAG &DAG,
125 SDOperand &Chain, SDOperand *Flag) const;
126
127 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128 /// specified value into the registers specified by this object. This uses
129 /// Chain/Flag as the input and updates them for the output Chain/Flag.
130 /// If the Flag pointer is NULL, no flag is used.
131 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132 SDOperand &Chain, SDOperand *Flag) const;
133
134 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135 /// operand list. This adds the code marker and includes the number of
136 /// values added into it.
137 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138 std::vector<SDOperand> &Ops) const;
139 };
140}
141
142namespace llvm {
143 //===--------------------------------------------------------------------===//
144 /// createDefaultScheduler - This creates an instruction scheduler appropriate
145 /// for the target.
146 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147 SelectionDAG *DAG,
148 MachineBasicBlock *BB) {
149 TargetLowering &TLI = IS->getTargetLowering();
150
151 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152 return createTDListDAGScheduler(IS, DAG, BB);
153 } else {
154 assert(TLI.getSchedulingPreference() ==
155 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156 return createBURRListDAGScheduler(IS, DAG, BB);
157 }
158 }
159
160
161 //===--------------------------------------------------------------------===//
162 /// FunctionLoweringInfo - This contains information that is global to a
163 /// function that is used when lowering a region of the function.
164 class FunctionLoweringInfo {
165 public:
166 TargetLowering &TLI;
167 Function &Fn;
168 MachineFunction &MF;
169 SSARegMap *RegMap;
170
171 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176 /// ValueMap - Since we emit code for the function a basic block at a time,
177 /// we must remember which virtual registers hold the values for
178 /// cross-basic-block values.
179 DenseMap<const Value*, unsigned> ValueMap;
180
181 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182 /// the entry block. This allows the allocas to be efficiently referenced
183 /// anywhere in the function.
184 std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187 SmallSet<Instruction*, 8> CatchInfoLost;
188 SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191 unsigned MakeReg(MVT::ValueType VT) {
192 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193 }
194
195 /// isExportedInst - Return true if the specified value is an instruction
196 /// exported from its block.
197 bool isExportedInst(const Value *V) {
198 return ValueMap.count(V);
199 }
200
201 unsigned CreateRegForValue(const Value *V);
202
203 unsigned InitializeRegForValue(const Value *V) {
204 unsigned &R = ValueMap[V];
205 assert(R == 0 && "Already initialized this value register!");
206 return R = CreateRegForValue(V);
207 }
208 };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000215 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224 if (isa<PHINode>(I)) return true;
225 BasicBlock *BB = I->getParent();
226 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228 // FIXME: Remove switchinst special case.
229 isa<SwitchInst>(*UI))
230 return true;
231 return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true. This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238 BasicBlock *Entry = A->getParent()->begin();
239 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241 return false; // Use not in entry block.
242 return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246 Function &fn, MachineFunction &mf)
247 : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249 // Create a vreg for each argument register that is not dead and is used
250 // outside of the entry block for the function.
251 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252 AI != E; ++AI)
253 if (!isOnlyUsedInEntryBlock(AI))
254 InitializeRegForValue(AI);
255
256 // Initialize the mapping of values to registers. This is only set up for
257 // instruction values that are used outside of the block that defines
258 // them.
259 Function::iterator BB = Fn.begin(), EB = Fn.end();
260 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263 const Type *Ty = AI->getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000264 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265 unsigned Align =
266 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267 AI->getAlignment());
268
269 TySize *= CUI->getZExtValue(); // Get total allocated size.
270 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271 StaticAllocaMap[AI] =
272 MF.getFrameInfo()->CreateStackObject(TySize, Align);
273 }
274
275 for (; BB != EB; ++BB)
276 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278 if (!isa<AllocaInst>(I) ||
279 !StaticAllocaMap.count(cast<AllocaInst>(I)))
280 InitializeRegForValue(I);
281
282 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
283 // also creates the initial PHI MachineInstrs, though none of the input
284 // operands are populated.
285 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287 MBBMap[BB] = MBB;
288 MF.getBasicBlockList().push_back(MBB);
289
290 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291 // appropriate.
292 PHINode *PN;
293 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294 if (PN->use_empty()) continue;
295
296 MVT::ValueType VT = TLI.getValueType(PN->getType());
297 unsigned NumRegisters = TLI.getNumRegisters(VT);
298 unsigned PHIReg = ValueMap[PN];
299 assert(PHIReg && "PHI node does not have an assigned virtual register!");
300 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301 for (unsigned i = 0; i != NumRegisters; ++i)
302 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303 }
304 }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types. Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311 MVT::ValueType VT = TLI.getValueType(V->getType());
312
313 unsigned NumRegisters = TLI.getNumRegisters(VT);
314 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316 unsigned R = MakeReg(RegisterVT);
317 for (unsigned i = 1; i != NumRegisters; ++i)
318 MakeReg(RegisterVT);
319
320 return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330 MachineBasicBlock *CurMBB;
331
332 DenseMap<const Value*, SDOperand> NodeMap;
333
334 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
335 /// them up and then emit token factor nodes when possible. This allows us to
336 /// get simple disambiguation between loads without worrying about alias
337 /// analysis.
338 std::vector<SDOperand> PendingLoads;
339
340 /// Case - A struct to record the Value for a switch case, and the
341 /// case's target basic block.
342 struct Case {
343 Constant* Low;
344 Constant* High;
345 MachineBasicBlock* BB;
346
347 Case() : Low(0), High(0), BB(0) { }
348 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349 Low(low), High(high), BB(bb) { }
350 uint64_t size() const {
351 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
353 return (rHigh - rLow + 1ULL);
354 }
355 };
356
357 struct CaseBits {
358 uint64_t Mask;
359 MachineBasicBlock* BB;
360 unsigned Bits;
361
362 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363 Mask(mask), BB(bb), Bits(bits) { }
364 };
365
366 typedef std::vector<Case> CaseVector;
367 typedef std::vector<CaseBits> CaseBitsVector;
368 typedef CaseVector::iterator CaseItr;
369 typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372 /// of conditional branches.
373 struct CaseRec {
374 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377 /// CaseBB - The MBB in which to emit the compare and branch
378 MachineBasicBlock *CaseBB;
379 /// LT, GE - If nonzero, we know the current case value must be less-than or
380 /// greater-than-or-equal-to these Constants.
381 Constant *LT;
382 Constant *GE;
383 /// Range - A pair of iterators representing the range of case values to be
384 /// processed at this point in the binary search tree.
385 CaseRange Range;
386 };
387
388 typedef std::vector<CaseRec> CaseRecVector;
389
390 /// The comparison function for sorting the switch case values in the vector.
391 /// WARNING: Case ranges should be disjoint!
392 struct CaseCmp {
393 bool operator () (const Case& C1, const Case& C2) {
394 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397 return CI1->getValue().slt(CI2->getValue());
398 }
399 };
400
401 struct CaseBitsCmp {
402 bool operator () (const CaseBits& C1, const CaseBits& C2) {
403 return C1.Bits > C2.Bits;
404 }
405 };
406
407 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410 // TLI - This is information that describes the available target features we
411 // need for lowering. This indicates when operations are unavailable,
412 // implemented with a libcall, etc.
413 TargetLowering &TLI;
414 SelectionDAG &DAG;
415 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000416 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 /// SwitchCases - Vector of CaseBlock structures used to communicate
419 /// SwitchInst code generation information.
420 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421 /// JTCases - Vector of JumpTable structures used to communicate
422 /// SwitchInst code generation information.
423 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426 /// FuncInfo - Information about the function as a whole.
427 ///
428 FunctionLoweringInfo &FuncInfo;
429
430 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000431 AliasAnalysis &aa,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 FunctionLoweringInfo &funcinfo)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000433 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 FuncInfo(funcinfo) {
435 }
436
437 /// getRoot - Return the current virtual root of the Selection DAG.
438 ///
439 SDOperand getRoot() {
440 if (PendingLoads.empty())
441 return DAG.getRoot();
442
443 if (PendingLoads.size() == 1) {
444 SDOperand Root = PendingLoads[0];
445 DAG.setRoot(Root);
446 PendingLoads.clear();
447 return Root;
448 }
449
450 // Otherwise, we have to make a token factor node.
451 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452 &PendingLoads[0], PendingLoads.size());
453 PendingLoads.clear();
454 DAG.setRoot(Root);
455 return Root;
456 }
457
458 SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460 void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462 void visit(unsigned Opcode, User &I) {
463 // Note: this doesn't use InstVisitor, because it has to work with
464 // ConstantExpr's in addition to instructions.
465 switch (Opcode) {
466 default: assert(0 && "Unknown instruction type encountered!");
467 abort();
468 // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472 }
473 }
474
475 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478 const Value *SV, SDOperand Root,
479 bool isVolatile, unsigned Alignment);
480
481 SDOperand getIntPtrConstant(uint64_t Val) {
482 return DAG.getConstant(Val, TLI.getPointerTy());
483 }
484
485 SDOperand getValue(const Value *V);
486
487 void setValue(const Value *V, SDOperand NewN) {
488 SDOperand &N = NodeMap[V];
489 assert(N.Val == 0 && "Already set a value for this node!");
490 N = NewN;
491 }
492
493 void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494 std::set<unsigned> &OutputRegs,
495 std::set<unsigned> &InputRegs);
496
497 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499 unsigned Opc);
500 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501 void ExportFromCurrentBlock(Value *V);
Duncan Sandse9bc9132007-12-19 09:48:52 +0000502 void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000503 MachineBasicBlock *LandingPad = NULL);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000504
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000505 // Terminator instructions.
506 void visitRet(ReturnInst &I);
507 void visitBr(BranchInst &I);
508 void visitSwitch(SwitchInst &I);
509 void visitUnreachable(UnreachableInst &I) { /* noop */ }
510
511 // Helpers for visitSwitch
512 bool handleSmallSwitchRange(CaseRec& CR,
513 CaseRecVector& WorkList,
514 Value* SV,
515 MachineBasicBlock* Default);
516 bool handleJTSwitchCase(CaseRec& CR,
517 CaseRecVector& WorkList,
518 Value* SV,
519 MachineBasicBlock* Default);
520 bool handleBTSplitSwitchCase(CaseRec& CR,
521 CaseRecVector& WorkList,
522 Value* SV,
523 MachineBasicBlock* Default);
524 bool handleBitTestsSwitchCase(CaseRec& CR,
525 CaseRecVector& WorkList,
526 Value* SV,
527 MachineBasicBlock* Default);
528 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
529 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
530 void visitBitTestCase(MachineBasicBlock* NextMBB,
531 unsigned Reg,
532 SelectionDAGISel::BitTestCase &B);
533 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
534 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
535 SelectionDAGISel::JumpTableHeader &JTH);
536
537 // These all get lowered before this pass.
538 void visitInvoke(InvokeInst &I);
539 void visitUnwind(UnwindInst &I);
540
541 void visitBinary(User &I, unsigned OpCode);
542 void visitShift(User &I, unsigned Opcode);
543 void visitAdd(User &I) {
544 if (I.getType()->isFPOrFPVector())
545 visitBinary(I, ISD::FADD);
546 else
547 visitBinary(I, ISD::ADD);
548 }
549 void visitSub(User &I);
550 void visitMul(User &I) {
551 if (I.getType()->isFPOrFPVector())
552 visitBinary(I, ISD::FMUL);
553 else
554 visitBinary(I, ISD::MUL);
555 }
556 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
557 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
558 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
559 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
560 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
561 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
562 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
563 void visitOr (User &I) { visitBinary(I, ISD::OR); }
564 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
565 void visitShl (User &I) { visitShift(I, ISD::SHL); }
566 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
567 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
568 void visitICmp(User &I);
569 void visitFCmp(User &I);
570 // Visit the conversion instructions
571 void visitTrunc(User &I);
572 void visitZExt(User &I);
573 void visitSExt(User &I);
574 void visitFPTrunc(User &I);
575 void visitFPExt(User &I);
576 void visitFPToUI(User &I);
577 void visitFPToSI(User &I);
578 void visitUIToFP(User &I);
579 void visitSIToFP(User &I);
580 void visitPtrToInt(User &I);
581 void visitIntToPtr(User &I);
582 void visitBitCast(User &I);
583
584 void visitExtractElement(User &I);
585 void visitInsertElement(User &I);
586 void visitShuffleVector(User &I);
587
588 void visitGetElementPtr(User &I);
589 void visitSelect(User &I);
590
591 void visitMalloc(MallocInst &I);
592 void visitFree(FreeInst &I);
593 void visitAlloca(AllocaInst &I);
594 void visitLoad(LoadInst &I);
595 void visitStore(StoreInst &I);
596 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
597 void visitCall(CallInst &I);
Duncan Sands1c5526c2007-12-17 18:08:19 +0000598 void visitInlineAsm(CallSite CS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000599 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
600 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
601
602 void visitVAStart(CallInst &I);
603 void visitVAArg(VAArgInst &I);
604 void visitVAEnd(CallInst &I);
605 void visitVACopy(CallInst &I);
606
607 void visitMemIntrinsic(CallInst &I, unsigned Op);
608
609 void visitUserOp1(Instruction &I) {
610 assert(0 && "UserOp1 should not exist at instruction selection time!");
611 abort();
612 }
613 void visitUserOp2(Instruction &I) {
614 assert(0 && "UserOp2 should not exist at instruction selection time!");
615 abort();
616 }
617};
618} // end namespace llvm
619
620
621/// getCopyFromParts - Create a value that contains the
622/// specified legal parts combined into the value they represent.
623static SDOperand getCopyFromParts(SelectionDAG &DAG,
624 const SDOperand *Parts,
625 unsigned NumParts,
626 MVT::ValueType PartVT,
627 MVT::ValueType ValueVT,
628 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
629 if (!MVT::isVector(ValueVT) || NumParts == 1) {
630 SDOperand Val = Parts[0];
631
632 // If the value was expanded, copy from the top part.
633 if (NumParts > 1) {
634 assert(NumParts == 2 &&
635 "Cannot expand to more than 2 elts yet!");
636 SDOperand Hi = Parts[1];
637 if (!DAG.getTargetLoweringInfo().isLittleEndian())
638 std::swap(Val, Hi);
639 return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
640 }
641
642 // Otherwise, if the value was promoted or extended, truncate it to the
643 // appropriate type.
644 if (PartVT == ValueVT)
645 return Val;
646
647 if (MVT::isVector(PartVT)) {
648 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000649 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
650 }
651
652 if (MVT::isVector(ValueVT)) {
653 assert(NumParts == 1 &&
654 MVT::getVectorElementType(ValueVT) == PartVT &&
655 MVT::getVectorNumElements(ValueVT) == 1 &&
656 "Only trivial scalar-to-vector conversions should get here!");
657 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000658 }
659
660 if (MVT::isInteger(PartVT) &&
661 MVT::isInteger(ValueVT)) {
662 if (ValueVT < PartVT) {
663 // For a truncate, see if we have any information to
664 // indicate whether the truncated bits will always be
665 // zero or sign-extension.
666 if (AssertOp != ISD::DELETED_NODE)
667 Val = DAG.getNode(AssertOp, PartVT, Val,
668 DAG.getValueType(ValueVT));
669 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
670 } else {
671 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
672 }
673 }
674
675 if (MVT::isFloatingPoint(PartVT) &&
676 MVT::isFloatingPoint(ValueVT))
677 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
678
679 if (MVT::getSizeInBits(PartVT) ==
680 MVT::getSizeInBits(ValueVT))
681 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
682
683 assert(0 && "Unknown mismatch!");
684 }
685
686 // Handle a multi-element vector.
687 MVT::ValueType IntermediateVT, RegisterVT;
688 unsigned NumIntermediates;
689 unsigned NumRegs =
690 DAG.getTargetLoweringInfo()
691 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
692 RegisterVT);
693
694 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
695 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
696 assert(RegisterVT == Parts[0].getValueType() &&
697 "Part type doesn't match part!");
698
699 // Assemble the parts into intermediate operands.
700 SmallVector<SDOperand, 8> Ops(NumIntermediates);
701 if (NumIntermediates == NumParts) {
702 // If the register was not expanded, truncate or copy the value,
703 // as appropriate.
704 for (unsigned i = 0; i != NumParts; ++i)
705 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
706 PartVT, IntermediateVT);
707 } else if (NumParts > 0) {
708 // If the intermediate type was expanded, build the intermediate operands
709 // from the parts.
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000710 assert(NumParts % NumIntermediates == 0 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 "Must expand into a divisible number of parts!");
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000712 unsigned Factor = NumParts / NumIntermediates;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 for (unsigned i = 0; i != NumIntermediates; ++i)
714 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
715 PartVT, IntermediateVT);
716 }
717
718 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
719 // operands.
720 return DAG.getNode(MVT::isVector(IntermediateVT) ?
721 ISD::CONCAT_VECTORS :
722 ISD::BUILD_VECTOR,
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000723 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724}
725
726/// getCopyToParts - Create a series of nodes that contain the
727/// specified value split into legal parts.
728static void getCopyToParts(SelectionDAG &DAG,
729 SDOperand Val,
730 SDOperand *Parts,
731 unsigned NumParts,
732 MVT::ValueType PartVT) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000733 TargetLowering &TLI = DAG.getTargetLoweringInfo();
734 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 MVT::ValueType ValueVT = Val.getValueType();
736
737 if (!MVT::isVector(ValueVT) || NumParts == 1) {
738 // If the value was expanded, copy from the parts.
739 if (NumParts > 1) {
740 for (unsigned i = 0; i != NumParts; ++i)
741 Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000742 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 if (!DAG.getTargetLoweringInfo().isLittleEndian())
744 std::reverse(Parts, Parts + NumParts);
745 return;
746 }
747
748 // If there is a single part and the types differ, this must be
749 // a promotion.
750 if (PartVT != ValueVT) {
751 if (MVT::isVector(PartVT)) {
752 assert(MVT::isVector(ValueVT) &&
753 "Not a vector-vector cast?");
754 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000755 } else if (MVT::isVector(ValueVT)) {
756 assert(NumParts == 1 &&
757 MVT::getVectorElementType(ValueVT) == PartVT &&
758 MVT::getVectorNumElements(ValueVT) == 1 &&
759 "Only trivial vector-to-scalar conversions should get here!");
760 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
761 DAG.getConstant(0, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
763 if (PartVT < ValueVT)
764 Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
765 else
766 Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
767 } else if (MVT::isFloatingPoint(PartVT) &&
768 MVT::isFloatingPoint(ValueVT)) {
769 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
770 } else if (MVT::getSizeInBits(PartVT) ==
771 MVT::getSizeInBits(ValueVT)) {
772 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
773 } else {
774 assert(0 && "Unknown mismatch!");
775 }
776 }
777 Parts[0] = Val;
778 return;
779 }
780
781 // Handle a multi-element vector.
782 MVT::ValueType IntermediateVT, RegisterVT;
783 unsigned NumIntermediates;
784 unsigned NumRegs =
785 DAG.getTargetLoweringInfo()
786 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
787 RegisterVT);
788 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
789
790 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
791 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
792
793 // Split the vector into intermediate operands.
794 SmallVector<SDOperand, 8> Ops(NumIntermediates);
795 for (unsigned i = 0; i != NumIntermediates; ++i)
796 if (MVT::isVector(IntermediateVT))
797 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
798 IntermediateVT, Val,
799 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000800 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000801 else
802 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
803 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000804 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805
806 // Split the intermediate operands into legal parts.
807 if (NumParts == NumIntermediates) {
808 // If the register was not expanded, promote or copy the value,
809 // as appropriate.
810 for (unsigned i = 0; i != NumParts; ++i)
811 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
812 } else if (NumParts > 0) {
813 // If the intermediate type was expanded, split each the value into
814 // legal parts.
815 assert(NumParts % NumIntermediates == 0 &&
816 "Must expand into a divisible number of parts!");
817 unsigned Factor = NumParts / NumIntermediates;
818 for (unsigned i = 0; i != NumIntermediates; ++i)
819 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
820 }
821}
822
823
824SDOperand SelectionDAGLowering::getValue(const Value *V) {
825 SDOperand &N = NodeMap[V];
826 if (N.Val) return N;
827
828 const Type *VTy = V->getType();
829 MVT::ValueType VT = TLI.getValueType(VTy);
830 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
831 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
832 visit(CE->getOpcode(), *CE);
833 SDOperand N1 = NodeMap[V];
834 assert(N1.Val && "visit didn't populate the ValueMap!");
835 return N1;
836 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
837 return N = DAG.getGlobalAddress(GV, VT);
838 } else if (isa<ConstantPointerNull>(C)) {
839 return N = DAG.getConstant(0, TLI.getPointerTy());
840 } else if (isa<UndefValue>(C)) {
841 if (!isa<VectorType>(VTy))
842 return N = DAG.getNode(ISD::UNDEF, VT);
843
844 // Create a BUILD_VECTOR of undef nodes.
845 const VectorType *PTy = cast<VectorType>(VTy);
846 unsigned NumElements = PTy->getNumElements();
847 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849 SmallVector<SDOperand, 8> Ops;
850 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
851
852 // Create a VConstant node with generic Vector type.
853 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
854 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
855 &Ops[0], Ops.size());
856 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000857 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
859 unsigned NumElements = PTy->getNumElements();
860 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
861
862 // Now that we know the number and type of the elements, push a
863 // Constant or ConstantFP node onto the ops list for each element of
864 // the vector constant.
865 SmallVector<SDOperand, 8> Ops;
866 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
867 for (unsigned i = 0; i != NumElements; ++i)
868 Ops.push_back(getValue(CP->getOperand(i)));
869 } else {
870 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
871 SDOperand Op;
872 if (MVT::isFloatingPoint(PVT))
873 Op = DAG.getConstantFP(0, PVT);
874 else
875 Op = DAG.getConstant(0, PVT);
876 Ops.assign(NumElements, Op);
877 }
878
879 // Create a BUILD_VECTOR node.
880 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
881 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
882 Ops.size());
883 } else {
884 // Canonicalize all constant ints to be unsigned.
885 return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
886 }
887 }
888
889 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
890 std::map<const AllocaInst*, int>::iterator SI =
891 FuncInfo.StaticAllocaMap.find(AI);
892 if (SI != FuncInfo.StaticAllocaMap.end())
893 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
894 }
895
896 unsigned InReg = FuncInfo.ValueMap[V];
897 assert(InReg && "Value not in map!");
898
899 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
900 unsigned NumRegs = TLI.getNumRegisters(VT);
901
902 std::vector<unsigned> Regs(NumRegs);
903 for (unsigned i = 0; i != NumRegs; ++i)
904 Regs[i] = InReg + i;
905
906 RegsForValue RFV(Regs, RegisterVT, VT);
907 SDOperand Chain = DAG.getEntryNode();
908
909 return RFV.getCopyFromRegs(DAG, Chain, NULL);
910}
911
912
913void SelectionDAGLowering::visitRet(ReturnInst &I) {
914 if (I.getNumOperands() == 0) {
915 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
916 return;
917 }
918 SmallVector<SDOperand, 8> NewValues;
919 NewValues.push_back(getRoot());
920 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
921 SDOperand RetOp = getValue(I.getOperand(i));
922
923 // If this is an integer return value, we need to promote it ourselves to
924 // the full width of a register, since getCopyToParts and Legalize will use
925 // ANY_EXTEND rather than sign/zero.
926 // FIXME: C calling convention requires the return type to be promoted to
927 // at least 32-bit. But this is not necessary for non-C calling conventions.
928 if (MVT::isInteger(RetOp.getValueType()) &&
929 RetOp.getValueType() < MVT::i64) {
930 MVT::ValueType TmpVT;
931 if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
932 TmpVT = TLI.getTypeToTransformTo(MVT::i32);
933 else
934 TmpVT = MVT::i32;
Duncan Sands637ec552007-11-28 17:07:01 +0000935 const Function *F = I.getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000937 if (F->paramHasAttr(0, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938 ExtendKind = ISD::SIGN_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000939 if (F->paramHasAttr(0, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 ExtendKind = ISD::ZERO_EXTEND;
941 RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
942 NewValues.push_back(RetOp);
943 NewValues.push_back(DAG.getConstant(false, MVT::i32));
944 } else {
945 MVT::ValueType VT = RetOp.getValueType();
946 unsigned NumParts = TLI.getNumRegisters(VT);
947 MVT::ValueType PartVT = TLI.getRegisterType(VT);
948 SmallVector<SDOperand, 4> Parts(NumParts);
949 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
950 for (unsigned i = 0; i < NumParts; ++i) {
951 NewValues.push_back(Parts[i]);
952 NewValues.push_back(DAG.getConstant(false, MVT::i32));
953 }
954 }
955 }
956 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
957 &NewValues[0], NewValues.size()));
958}
959
960/// ExportFromCurrentBlock - If this condition isn't known to be exported from
961/// the current basic block, add it to ValueMap now so that we'll get a
962/// CopyTo/FromReg.
963void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
964 // No need to export constants.
965 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
966
967 // Already exported?
968 if (FuncInfo.isExportedInst(V)) return;
969
970 unsigned Reg = FuncInfo.InitializeRegForValue(V);
971 PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
972}
973
974bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
975 const BasicBlock *FromBB) {
976 // The operands of the setcc have to be in this block. We don't know
977 // how to export them from some other block.
978 if (Instruction *VI = dyn_cast<Instruction>(V)) {
979 // Can export from current BB.
980 if (VI->getParent() == FromBB)
981 return true;
982
983 // Is already exported, noop.
984 return FuncInfo.isExportedInst(V);
985 }
986
987 // If this is an argument, we can export it if the BB is the entry block or
988 // if it is already exported.
989 if (isa<Argument>(V)) {
990 if (FromBB == &FromBB->getParent()->getEntryBlock())
991 return true;
992
993 // Otherwise, can only export this if it is already exported.
994 return FuncInfo.isExportedInst(V);
995 }
996
997 // Otherwise, constants can always be exported.
998 return true;
999}
1000
1001static bool InBlock(const Value *V, const BasicBlock *BB) {
1002 if (const Instruction *I = dyn_cast<Instruction>(V))
1003 return I->getParent() == BB;
1004 return true;
1005}
1006
1007/// FindMergedConditions - If Cond is an expression like
1008void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1009 MachineBasicBlock *TBB,
1010 MachineBasicBlock *FBB,
1011 MachineBasicBlock *CurBB,
1012 unsigned Opc) {
1013 // If this node is not part of the or/and tree, emit it as a branch.
1014 Instruction *BOp = dyn_cast<Instruction>(Cond);
1015
1016 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1017 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1018 BOp->getParent() != CurBB->getBasicBlock() ||
1019 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1020 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1021 const BasicBlock *BB = CurBB->getBasicBlock();
1022
1023 // If the leaf of the tree is a comparison, merge the condition into
1024 // the caseblock.
1025 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1026 // The operands of the cmp have to be in this block. We don't know
1027 // how to export them from some other block. If this is the first block
1028 // of the sequence, no exporting is needed.
1029 (CurBB == CurMBB ||
1030 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1031 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1032 BOp = cast<Instruction>(Cond);
1033 ISD::CondCode Condition;
1034 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1035 switch (IC->getPredicate()) {
1036 default: assert(0 && "Unknown icmp predicate opcode!");
1037 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1038 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1039 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1040 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1041 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1042 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1043 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1044 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1045 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1046 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1047 }
1048 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1049 ISD::CondCode FPC, FOC;
1050 switch (FC->getPredicate()) {
1051 default: assert(0 && "Unknown fcmp predicate opcode!");
1052 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1053 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1054 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1055 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1056 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1057 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1058 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1059 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1060 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1061 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1062 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1063 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1064 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1065 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1066 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1067 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1068 }
1069 if (FiniteOnlyFPMath())
1070 Condition = FOC;
1071 else
1072 Condition = FPC;
1073 } else {
1074 Condition = ISD::SETEQ; // silence warning.
1075 assert(0 && "Unknown compare instruction");
1076 }
1077
1078 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1079 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1080 SwitchCases.push_back(CB);
1081 return;
1082 }
1083
1084 // Create a CaseBlock record representing this branch.
1085 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1086 NULL, TBB, FBB, CurBB);
1087 SwitchCases.push_back(CB);
1088 return;
1089 }
1090
1091
1092 // Create TmpBB after CurBB.
1093 MachineFunction::iterator BBI = CurBB;
1094 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1095 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1096
1097 if (Opc == Instruction::Or) {
1098 // Codegen X | Y as:
1099 // jmp_if_X TBB
1100 // jmp TmpBB
1101 // TmpBB:
1102 // jmp_if_Y TBB
1103 // jmp FBB
1104 //
1105
1106 // Emit the LHS condition.
1107 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1108
1109 // Emit the RHS condition into TmpBB.
1110 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1111 } else {
1112 assert(Opc == Instruction::And && "Unknown merge op!");
1113 // Codegen X & Y as:
1114 // jmp_if_X TmpBB
1115 // jmp FBB
1116 // TmpBB:
1117 // jmp_if_Y TBB
1118 // jmp FBB
1119 //
1120 // This requires creation of TmpBB after CurBB.
1121
1122 // Emit the LHS condition.
1123 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1124
1125 // Emit the RHS condition into TmpBB.
1126 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1127 }
1128}
1129
1130/// If the set of cases should be emitted as a series of branches, return true.
1131/// If we should emit this as a bunch of and/or'd together conditions, return
1132/// false.
1133static bool
1134ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1135 if (Cases.size() != 2) return true;
1136
1137 // If this is two comparisons of the same values or'd or and'd together, they
1138 // will get folded into a single comparison, so don't emit two blocks.
1139 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1140 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1141 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1142 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1143 return false;
1144 }
1145
1146 return true;
1147}
1148
1149void SelectionDAGLowering::visitBr(BranchInst &I) {
1150 // Update machine-CFG edges.
1151 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1152
1153 // Figure out which block is immediately after the current one.
1154 MachineBasicBlock *NextBlock = 0;
1155 MachineFunction::iterator BBI = CurMBB;
1156 if (++BBI != CurMBB->getParent()->end())
1157 NextBlock = BBI;
1158
1159 if (I.isUnconditional()) {
1160 // If this is not a fall-through branch, emit the branch.
1161 if (Succ0MBB != NextBlock)
1162 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1163 DAG.getBasicBlock(Succ0MBB)));
1164
1165 // Update machine-CFG edges.
1166 CurMBB->addSuccessor(Succ0MBB);
1167
1168 return;
1169 }
1170
1171 // If this condition is one of the special cases we handle, do special stuff
1172 // now.
1173 Value *CondVal = I.getCondition();
1174 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1175
1176 // If this is a series of conditions that are or'd or and'd together, emit
1177 // this as a sequence of branches instead of setcc's with and/or operations.
1178 // For example, instead of something like:
1179 // cmp A, B
1180 // C = seteq
1181 // cmp D, E
1182 // F = setle
1183 // or C, F
1184 // jnz foo
1185 // Emit:
1186 // cmp A, B
1187 // je foo
1188 // cmp D, E
1189 // jle foo
1190 //
1191 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1192 if (BOp->hasOneUse() &&
1193 (BOp->getOpcode() == Instruction::And ||
1194 BOp->getOpcode() == Instruction::Or)) {
1195 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1196 // If the compares in later blocks need to use values not currently
1197 // exported from this block, export them now. This block should always
1198 // be the first entry.
1199 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1200
1201 // Allow some cases to be rejected.
1202 if (ShouldEmitAsBranches(SwitchCases)) {
1203 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1204 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1205 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1206 }
1207
1208 // Emit the branch for this block.
1209 visitSwitchCase(SwitchCases[0]);
1210 SwitchCases.erase(SwitchCases.begin());
1211 return;
1212 }
1213
1214 // Okay, we decided not to do this, remove any inserted MBB's and clear
1215 // SwitchCases.
1216 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1217 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1218
1219 SwitchCases.clear();
1220 }
1221 }
1222
1223 // Create a CaseBlock record representing this branch.
1224 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1225 NULL, Succ0MBB, Succ1MBB, CurMBB);
1226 // Use visitSwitchCase to actually insert the fast branch sequence for this
1227 // cond branch.
1228 visitSwitchCase(CB);
1229}
1230
1231/// visitSwitchCase - Emits the necessary code to represent a single node in
1232/// the binary search tree resulting from lowering a switch instruction.
1233void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1234 SDOperand Cond;
1235 SDOperand CondLHS = getValue(CB.CmpLHS);
1236
1237 // Build the setcc now.
1238 if (CB.CmpMHS == NULL) {
1239 // Fold "(X == true)" to X and "(X == false)" to !X to
1240 // handle common cases produced by branch lowering.
1241 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1242 Cond = CondLHS;
1243 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1244 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1245 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1246 } else
1247 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1248 } else {
1249 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1250
1251 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1252 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1253
1254 SDOperand CmpOp = getValue(CB.CmpMHS);
1255 MVT::ValueType VT = CmpOp.getValueType();
1256
1257 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1258 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1259 } else {
1260 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1261 Cond = DAG.getSetCC(MVT::i1, SUB,
1262 DAG.getConstant(High-Low, VT), ISD::SETULE);
1263 }
1264
1265 }
1266
1267 // Set NextBlock to be the MBB immediately after the current one, if any.
1268 // This is used to avoid emitting unnecessary branches to the next block.
1269 MachineBasicBlock *NextBlock = 0;
1270 MachineFunction::iterator BBI = CurMBB;
1271 if (++BBI != CurMBB->getParent()->end())
1272 NextBlock = BBI;
1273
1274 // If the lhs block is the next block, invert the condition so that we can
1275 // fall through to the lhs instead of the rhs block.
1276 if (CB.TrueBB == NextBlock) {
1277 std::swap(CB.TrueBB, CB.FalseBB);
1278 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1279 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1280 }
1281 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1282 DAG.getBasicBlock(CB.TrueBB));
1283 if (CB.FalseBB == NextBlock)
1284 DAG.setRoot(BrCond);
1285 else
1286 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1287 DAG.getBasicBlock(CB.FalseBB)));
1288 // Update successor info
1289 CurMBB->addSuccessor(CB.TrueBB);
1290 CurMBB->addSuccessor(CB.FalseBB);
1291}
1292
1293/// visitJumpTable - Emit JumpTable node in the current MBB
1294void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1295 // Emit the code for the jump table
1296 assert(JT.Reg != -1U && "Should lower JT Header first!");
1297 MVT::ValueType PTy = TLI.getPointerTy();
1298 SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1299 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1300 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1301 Table, Index));
1302 return;
1303}
1304
1305/// visitJumpTableHeader - This function emits necessary code to produce index
1306/// in the JumpTable from switch case.
1307void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1308 SelectionDAGISel::JumpTableHeader &JTH) {
1309 // Subtract the lowest switch case value from the value being switched on
1310 // and conditional branch to default mbb if the result is greater than the
1311 // difference between smallest and largest cases.
1312 SDOperand SwitchOp = getValue(JTH.SValue);
1313 MVT::ValueType VT = SwitchOp.getValueType();
1314 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1315 DAG.getConstant(JTH.First, VT));
1316
1317 // The SDNode we just created, which holds the value being switched on
1318 // minus the the smallest case value, needs to be copied to a virtual
1319 // register so it can be used as an index into the jump table in a
1320 // subsequent basic block. This value may be smaller or larger than the
1321 // target's pointer type, and therefore require extension or truncating.
1322 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1323 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1324 else
1325 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1326
1327 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1328 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1329 JT.Reg = JumpTableReg;
1330
1331 // Emit the range check for the jump table, and branch to the default
1332 // block for the switch statement if the value being switched on exceeds
1333 // the largest case in the switch.
1334 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1335 DAG.getConstant(JTH.Last-JTH.First,VT),
1336 ISD::SETUGT);
1337
1338 // Set NextBlock to be the MBB immediately after the current one, if any.
1339 // This is used to avoid emitting unnecessary branches to the next block.
1340 MachineBasicBlock *NextBlock = 0;
1341 MachineFunction::iterator BBI = CurMBB;
1342 if (++BBI != CurMBB->getParent()->end())
1343 NextBlock = BBI;
1344
1345 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1346 DAG.getBasicBlock(JT.Default));
1347
1348 if (JT.MBB == NextBlock)
1349 DAG.setRoot(BrCond);
1350 else
1351 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1352 DAG.getBasicBlock(JT.MBB)));
1353
1354 return;
1355}
1356
1357/// visitBitTestHeader - This function emits necessary code to produce value
1358/// suitable for "bit tests"
1359void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1360 // Subtract the minimum value
1361 SDOperand SwitchOp = getValue(B.SValue);
1362 MVT::ValueType VT = SwitchOp.getValueType();
1363 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1364 DAG.getConstant(B.First, VT));
1365
1366 // Check range
1367 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1368 DAG.getConstant(B.Range, VT),
1369 ISD::SETUGT);
1370
1371 SDOperand ShiftOp;
1372 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1373 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1374 else
1375 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1376
1377 // Make desired shift
1378 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1379 DAG.getConstant(1, TLI.getPointerTy()),
1380 ShiftOp);
1381
1382 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1383 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1384 B.Reg = SwitchReg;
1385
1386 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1387 DAG.getBasicBlock(B.Default));
1388
1389 // Set NextBlock to be the MBB immediately after the current one, if any.
1390 // This is used to avoid emitting unnecessary branches to the next block.
1391 MachineBasicBlock *NextBlock = 0;
1392 MachineFunction::iterator BBI = CurMBB;
1393 if (++BBI != CurMBB->getParent()->end())
1394 NextBlock = BBI;
1395
1396 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1397 if (MBB == NextBlock)
1398 DAG.setRoot(BrRange);
1399 else
1400 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1401 DAG.getBasicBlock(MBB)));
1402
1403 CurMBB->addSuccessor(B.Default);
1404 CurMBB->addSuccessor(MBB);
1405
1406 return;
1407}
1408
1409/// visitBitTestCase - this function produces one "bit test"
1410void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1411 unsigned Reg,
1412 SelectionDAGISel::BitTestCase &B) {
1413 // Emit bit tests and jumps
1414 SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1415
1416 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1417 SwitchVal,
1418 DAG.getConstant(B.Mask,
1419 TLI.getPointerTy()));
1420 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1421 DAG.getConstant(0, TLI.getPointerTy()),
1422 ISD::SETNE);
1423 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1424 AndCmp, DAG.getBasicBlock(B.TargetBB));
1425
1426 // Set NextBlock to be the MBB immediately after the current one, if any.
1427 // This is used to avoid emitting unnecessary branches to the next block.
1428 MachineBasicBlock *NextBlock = 0;
1429 MachineFunction::iterator BBI = CurMBB;
1430 if (++BBI != CurMBB->getParent()->end())
1431 NextBlock = BBI;
1432
1433 if (NextMBB == NextBlock)
1434 DAG.setRoot(BrAnd);
1435 else
1436 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1437 DAG.getBasicBlock(NextMBB)));
1438
1439 CurMBB->addSuccessor(B.TargetBB);
1440 CurMBB->addSuccessor(NextMBB);
1441
1442 return;
1443}
1444
1445void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1446 // Retrieve successors.
1447 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1448 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1449
Duncan Sands1c5526c2007-12-17 18:08:19 +00001450 if (isa<InlineAsm>(I.getCalledValue()))
1451 visitInlineAsm(&I);
1452 else
Duncan Sandse9bc9132007-12-19 09:48:52 +00001453 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454
1455 // If the value of the invoke is used outside of its defining block, make it
1456 // available as a virtual register.
1457 if (!I.use_empty()) {
1458 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1459 if (VMI != FuncInfo.ValueMap.end())
1460 DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1461 }
1462
1463 // Drop into normal successor.
1464 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1465 DAG.getBasicBlock(Return)));
1466
1467 // Update successor info
1468 CurMBB->addSuccessor(Return);
1469 CurMBB->addSuccessor(LandingPad);
1470}
1471
1472void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1473}
1474
1475/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1476/// small case ranges).
1477bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1478 CaseRecVector& WorkList,
1479 Value* SV,
1480 MachineBasicBlock* Default) {
1481 Case& BackCase = *(CR.Range.second-1);
1482
1483 // Size is the number of Cases represented by this range.
1484 unsigned Size = CR.Range.second - CR.Range.first;
1485 if (Size > 3)
1486 return false;
1487
1488 // Get the MachineFunction which holds the current MBB. This is used when
1489 // inserting any additional MBBs necessary to represent the switch.
1490 MachineFunction *CurMF = CurMBB->getParent();
1491
1492 // Figure out which block is immediately after the current one.
1493 MachineBasicBlock *NextBlock = 0;
1494 MachineFunction::iterator BBI = CR.CaseBB;
1495
1496 if (++BBI != CurMBB->getParent()->end())
1497 NextBlock = BBI;
1498
1499 // TODO: If any two of the cases has the same destination, and if one value
1500 // is the same as the other, but has one bit unset that the other has set,
1501 // use bit manipulation to do two compares at once. For example:
1502 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1503
1504 // Rearrange the case blocks so that the last one falls through if possible.
1505 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1506 // The last case block won't fall through into 'NextBlock' if we emit the
1507 // branches in this order. See if rearranging a case value would help.
1508 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1509 if (I->BB == NextBlock) {
1510 std::swap(*I, BackCase);
1511 break;
1512 }
1513 }
1514 }
1515
1516 // Create a CaseBlock record representing a conditional branch to
1517 // the Case's target mbb if the value being switched on SV is equal
1518 // to C.
1519 MachineBasicBlock *CurBlock = CR.CaseBB;
1520 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1521 MachineBasicBlock *FallThrough;
1522 if (I != E-1) {
1523 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1524 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1525 } else {
1526 // If the last case doesn't match, go to the default block.
1527 FallThrough = Default;
1528 }
1529
1530 Value *RHS, *LHS, *MHS;
1531 ISD::CondCode CC;
1532 if (I->High == I->Low) {
1533 // This is just small small case range :) containing exactly 1 case
1534 CC = ISD::SETEQ;
1535 LHS = SV; RHS = I->High; MHS = NULL;
1536 } else {
1537 CC = ISD::SETLE;
1538 LHS = I->Low; MHS = SV; RHS = I->High;
1539 }
1540 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1541 I->BB, FallThrough, CurBlock);
1542
1543 // If emitting the first comparison, just call visitSwitchCase to emit the
1544 // code into the current block. Otherwise, push the CaseBlock onto the
1545 // vector to be later processed by SDISel, and insert the node's MBB
1546 // before the next MBB.
1547 if (CurBlock == CurMBB)
1548 visitSwitchCase(CB);
1549 else
1550 SwitchCases.push_back(CB);
1551
1552 CurBlock = FallThrough;
1553 }
1554
1555 return true;
1556}
1557
1558static inline bool areJTsAllowed(const TargetLowering &TLI) {
1559 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1560 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1561}
1562
1563/// handleJTSwitchCase - Emit jumptable for current switch case range
1564bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1565 CaseRecVector& WorkList,
1566 Value* SV,
1567 MachineBasicBlock* Default) {
1568 Case& FrontCase = *CR.Range.first;
1569 Case& BackCase = *(CR.Range.second-1);
1570
1571 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1572 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1573
1574 uint64_t TSize = 0;
1575 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1576 I!=E; ++I)
1577 TSize += I->size();
1578
1579 if (!areJTsAllowed(TLI) || TSize <= 3)
1580 return false;
1581
1582 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1583 if (Density < 0.4)
1584 return false;
1585
1586 DOUT << "Lowering jump table\n"
1587 << "First entry: " << First << ". Last entry: " << Last << "\n"
1588 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1589
1590 // Get the MachineFunction which holds the current MBB. This is used when
1591 // inserting any additional MBBs necessary to represent the switch.
1592 MachineFunction *CurMF = CurMBB->getParent();
1593
1594 // Figure out which block is immediately after the current one.
1595 MachineBasicBlock *NextBlock = 0;
1596 MachineFunction::iterator BBI = CR.CaseBB;
1597
1598 if (++BBI != CurMBB->getParent()->end())
1599 NextBlock = BBI;
1600
1601 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1602
1603 // Create a new basic block to hold the code for loading the address
1604 // of the jump table, and jumping to it. Update successor information;
1605 // we will either branch to the default case for the switch, or the jump
1606 // table.
1607 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1608 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1609 CR.CaseBB->addSuccessor(Default);
1610 CR.CaseBB->addSuccessor(JumpTableBB);
1611
1612 // Build a vector of destination BBs, corresponding to each target
1613 // of the jump table. If the value of the jump table slot corresponds to
1614 // a case statement, push the case's BB onto the vector, otherwise, push
1615 // the default BB.
1616 std::vector<MachineBasicBlock*> DestBBs;
1617 int64_t TEI = First;
1618 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1619 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1620 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1621
1622 if ((Low <= TEI) && (TEI <= High)) {
1623 DestBBs.push_back(I->BB);
1624 if (TEI==High)
1625 ++I;
1626 } else {
1627 DestBBs.push_back(Default);
1628 }
1629 }
1630
1631 // Update successor info. Add one edge to each unique successor.
1632 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1633 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1634 E = DestBBs.end(); I != E; ++I) {
1635 if (!SuccsHandled[(*I)->getNumber()]) {
1636 SuccsHandled[(*I)->getNumber()] = true;
1637 JumpTableBB->addSuccessor(*I);
1638 }
1639 }
1640
1641 // Create a jump table index for this jump table, or return an existing
1642 // one.
1643 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1644
1645 // Set the jump table information so that we can codegen it as a second
1646 // MachineBasicBlock
1647 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1648 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1649 (CR.CaseBB == CurMBB));
1650 if (CR.CaseBB == CurMBB)
1651 visitJumpTableHeader(JT, JTH);
1652
1653 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1654
1655 return true;
1656}
1657
1658/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1659/// 2 subtrees.
1660bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1661 CaseRecVector& WorkList,
1662 Value* SV,
1663 MachineBasicBlock* Default) {
1664 // Get the MachineFunction which holds the current MBB. This is used when
1665 // inserting any additional MBBs necessary to represent the switch.
1666 MachineFunction *CurMF = CurMBB->getParent();
1667
1668 // Figure out which block is immediately after the current one.
1669 MachineBasicBlock *NextBlock = 0;
1670 MachineFunction::iterator BBI = CR.CaseBB;
1671
1672 if (++BBI != CurMBB->getParent()->end())
1673 NextBlock = BBI;
1674
1675 Case& FrontCase = *CR.Range.first;
1676 Case& BackCase = *(CR.Range.second-1);
1677 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1678
1679 // Size is the number of Cases represented by this range.
1680 unsigned Size = CR.Range.second - CR.Range.first;
1681
1682 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1683 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1684 double FMetric = 0;
1685 CaseItr Pivot = CR.Range.first + Size/2;
1686
1687 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1688 // (heuristically) allow us to emit JumpTable's later.
1689 uint64_t TSize = 0;
1690 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1691 I!=E; ++I)
1692 TSize += I->size();
1693
1694 uint64_t LSize = FrontCase.size();
1695 uint64_t RSize = TSize-LSize;
1696 DOUT << "Selecting best pivot: \n"
1697 << "First: " << First << ", Last: " << Last <<"\n"
1698 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1699 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1700 J!=E; ++I, ++J) {
1701 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1702 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1703 assert((RBegin-LEnd>=1) && "Invalid case distance");
1704 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1705 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1706 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1707 // Should always split in some non-trivial place
1708 DOUT <<"=>Step\n"
1709 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1710 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1711 << "Metric: " << Metric << "\n";
1712 if (FMetric < Metric) {
1713 Pivot = J;
1714 FMetric = Metric;
1715 DOUT << "Current metric set to: " << FMetric << "\n";
1716 }
1717
1718 LSize += J->size();
1719 RSize -= J->size();
1720 }
1721 if (areJTsAllowed(TLI)) {
1722 // If our case is dense we *really* should handle it earlier!
1723 assert((FMetric > 0) && "Should handle dense range earlier!");
1724 } else {
1725 Pivot = CR.Range.first + Size/2;
1726 }
1727
1728 CaseRange LHSR(CR.Range.first, Pivot);
1729 CaseRange RHSR(Pivot, CR.Range.second);
1730 Constant *C = Pivot->Low;
1731 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1732
1733 // We know that we branch to the LHS if the Value being switched on is
1734 // less than the Pivot value, C. We use this to optimize our binary
1735 // tree a bit, by recognizing that if SV is greater than or equal to the
1736 // LHS's Case Value, and that Case Value is exactly one less than the
1737 // Pivot's Value, then we can branch directly to the LHS's Target,
1738 // rather than creating a leaf node for it.
1739 if ((LHSR.second - LHSR.first) == 1 &&
1740 LHSR.first->High == CR.GE &&
1741 cast<ConstantInt>(C)->getSExtValue() ==
1742 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1743 TrueBB = LHSR.first->BB;
1744 } else {
1745 TrueBB = new MachineBasicBlock(LLVMBB);
1746 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1747 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1748 }
1749
1750 // Similar to the optimization above, if the Value being switched on is
1751 // known to be less than the Constant CR.LT, and the current Case Value
1752 // is CR.LT - 1, then we can branch directly to the target block for
1753 // the current Case Value, rather than emitting a RHS leaf node for it.
1754 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1755 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1756 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1757 FalseBB = RHSR.first->BB;
1758 } else {
1759 FalseBB = new MachineBasicBlock(LLVMBB);
1760 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1761 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1762 }
1763
1764 // Create a CaseBlock record representing a conditional branch to
1765 // the LHS node if the value being switched on SV is less than C.
1766 // Otherwise, branch to LHS.
1767 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1768 TrueBB, FalseBB, CR.CaseBB);
1769
1770 if (CR.CaseBB == CurMBB)
1771 visitSwitchCase(CB);
1772 else
1773 SwitchCases.push_back(CB);
1774
1775 return true;
1776}
1777
1778/// handleBitTestsSwitchCase - if current case range has few destination and
1779/// range span less, than machine word bitwidth, encode case range into series
1780/// of masks and emit bit tests with these masks.
1781bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1782 CaseRecVector& WorkList,
1783 Value* SV,
1784 MachineBasicBlock* Default){
1785 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1786
1787 Case& FrontCase = *CR.Range.first;
1788 Case& BackCase = *(CR.Range.second-1);
1789
1790 // Get the MachineFunction which holds the current MBB. This is used when
1791 // inserting any additional MBBs necessary to represent the switch.
1792 MachineFunction *CurMF = CurMBB->getParent();
1793
1794 unsigned numCmps = 0;
1795 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1796 I!=E; ++I) {
1797 // Single case counts one, case range - two.
1798 if (I->Low == I->High)
1799 numCmps +=1;
1800 else
1801 numCmps +=2;
1802 }
1803
1804 // Count unique destinations
1805 SmallSet<MachineBasicBlock*, 4> Dests;
1806 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1807 Dests.insert(I->BB);
1808 if (Dests.size() > 3)
1809 // Don't bother the code below, if there are too much unique destinations
1810 return false;
1811 }
1812 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1813 << "Total number of comparisons: " << numCmps << "\n";
1814
1815 // Compute span of values.
1816 Constant* minValue = FrontCase.Low;
1817 Constant* maxValue = BackCase.High;
1818 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1819 cast<ConstantInt>(minValue)->getSExtValue();
1820 DOUT << "Compare range: " << range << "\n"
1821 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1822 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1823
1824 if (range>=IntPtrBits ||
1825 (!(Dests.size() == 1 && numCmps >= 3) &&
1826 !(Dests.size() == 2 && numCmps >= 5) &&
1827 !(Dests.size() >= 3 && numCmps >= 6)))
1828 return false;
1829
1830 DOUT << "Emitting bit tests\n";
1831 int64_t lowBound = 0;
1832
1833 // Optimize the case where all the case values fit in a
1834 // word without having to subtract minValue. In this case,
1835 // we can optimize away the subtraction.
1836 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1837 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1838 range = cast<ConstantInt>(maxValue)->getSExtValue();
1839 } else {
1840 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1841 }
1842
1843 CaseBitsVector CasesBits;
1844 unsigned i, count = 0;
1845
1846 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1847 MachineBasicBlock* Dest = I->BB;
1848 for (i = 0; i < count; ++i)
1849 if (Dest == CasesBits[i].BB)
1850 break;
1851
1852 if (i == count) {
1853 assert((count < 3) && "Too much destinations to test!");
1854 CasesBits.push_back(CaseBits(0, Dest, 0));
1855 count++;
1856 }
1857
1858 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1859 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1860
1861 for (uint64_t j = lo; j <= hi; j++) {
1862 CasesBits[i].Mask |= 1ULL << j;
1863 CasesBits[i].Bits++;
1864 }
1865
1866 }
1867 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1868
1869 SelectionDAGISel::BitTestInfo BTC;
1870
1871 // Figure out which block is immediately after the current one.
1872 MachineFunction::iterator BBI = CR.CaseBB;
1873 ++BBI;
1874
1875 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1876
1877 DOUT << "Cases:\n";
1878 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1879 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1880 << ", BB: " << CasesBits[i].BB << "\n";
1881
1882 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1883 CurMF->getBasicBlockList().insert(BBI, CaseBB);
1884 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1885 CaseBB,
1886 CasesBits[i].BB));
1887 }
1888
1889 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1890 -1U, (CR.CaseBB == CurMBB),
1891 CR.CaseBB, Default, BTC);
1892
1893 if (CR.CaseBB == CurMBB)
1894 visitBitTestHeader(BTB);
1895
1896 BitTestCases.push_back(BTB);
1897
1898 return true;
1899}
1900
1901
1902// Clusterify - Transform simple list of Cases into list of CaseRange's
1903unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1904 const SwitchInst& SI) {
1905 unsigned numCmps = 0;
1906
1907 // Start with "simple" cases
1908 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1909 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1910 Cases.push_back(Case(SI.getSuccessorValue(i),
1911 SI.getSuccessorValue(i),
1912 SMBB));
1913 }
Chris Lattner5624ae42007-11-27 06:14:32 +00001914 std::sort(Cases.begin(), Cases.end(), CaseCmp());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001915
1916 // Merge case into clusters
1917 if (Cases.size()>=2)
1918 // Must recompute end() each iteration because it may be
1919 // invalidated by erase if we hold on to it
Chris Lattnerdfb947d2007-11-24 07:07:01 +00001920 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1922 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1923 MachineBasicBlock* nextBB = J->BB;
1924 MachineBasicBlock* currentBB = I->BB;
1925
1926 // If the two neighboring cases go to the same destination, merge them
1927 // into a single case.
1928 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1929 I->High = J->High;
1930 J = Cases.erase(J);
1931 } else {
1932 I = J++;
1933 }
1934 }
1935
1936 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1937 if (I->Low != I->High)
1938 // A range counts double, since it requires two compares.
1939 ++numCmps;
1940 }
1941
1942 return numCmps;
1943}
1944
1945void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1946 // Figure out which block is immediately after the current one.
1947 MachineBasicBlock *NextBlock = 0;
1948 MachineFunction::iterator BBI = CurMBB;
1949
1950 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1951
1952 // If there is only the default destination, branch to it if it is not the
1953 // next basic block. Otherwise, just fall through.
1954 if (SI.getNumOperands() == 2) {
1955 // Update machine-CFG edges.
1956
1957 // If this is not a fall-through branch, emit the branch.
1958 if (Default != NextBlock)
1959 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1960 DAG.getBasicBlock(Default)));
1961
1962 CurMBB->addSuccessor(Default);
1963 return;
1964 }
1965
1966 // If there are any non-default case statements, create a vector of Cases
1967 // representing each one, and sort the vector so that we can efficiently
1968 // create a binary search tree from them.
1969 CaseVector Cases;
1970 unsigned numCmps = Clusterify(Cases, SI);
1971 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1972 << ". Total compares: " << numCmps << "\n";
1973
1974 // Get the Value to be switched on and default basic blocks, which will be
1975 // inserted into CaseBlock records, representing basic blocks in the binary
1976 // search tree.
1977 Value *SV = SI.getOperand(0);
1978
1979 // Push the initial CaseRec onto the worklist
1980 CaseRecVector WorkList;
1981 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1982
1983 while (!WorkList.empty()) {
1984 // Grab a record representing a case range to process off the worklist
1985 CaseRec CR = WorkList.back();
1986 WorkList.pop_back();
1987
1988 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1989 continue;
1990
1991 // If the range has few cases (two or less) emit a series of specific
1992 // tests.
1993 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1994 continue;
1995
1996 // If the switch has more than 5 blocks, and at least 40% dense, and the
1997 // target supports indirect branches, then emit a jump table rather than
1998 // lowering the switch to a binary tree of conditional branches.
1999 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2000 continue;
2001
2002 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2003 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2004 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2005 }
2006}
2007
2008
2009void SelectionDAGLowering::visitSub(User &I) {
2010 // -0.0 - X --> fneg
2011 const Type *Ty = I.getType();
2012 if (isa<VectorType>(Ty)) {
2013 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2014 const VectorType *DestTy = cast<VectorType>(I.getType());
2015 const Type *ElTy = DestTy->getElementType();
2016 if (ElTy->isFloatingPoint()) {
2017 unsigned VL = DestTy->getNumElements();
Dale Johannesen2fc20782007-09-14 22:26:36 +00002018 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002019 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2020 if (CV == CNZ) {
2021 SDOperand Op2 = getValue(I.getOperand(1));
2022 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2023 return;
2024 }
2025 }
2026 }
2027 }
2028 if (Ty->isFloatingPoint()) {
2029 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
Dale Johannesen2fc20782007-09-14 22:26:36 +00002030 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031 SDOperand Op2 = getValue(I.getOperand(1));
2032 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2033 return;
2034 }
2035 }
2036
2037 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2038}
2039
2040void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2041 SDOperand Op1 = getValue(I.getOperand(0));
2042 SDOperand Op2 = getValue(I.getOperand(1));
2043
2044 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2045}
2046
2047void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2048 SDOperand Op1 = getValue(I.getOperand(0));
2049 SDOperand Op2 = getValue(I.getOperand(1));
2050
2051 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2052 MVT::getSizeInBits(Op2.getValueType()))
2053 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2054 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2055 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2056
2057 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2058}
2059
2060void SelectionDAGLowering::visitICmp(User &I) {
2061 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2062 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2063 predicate = IC->getPredicate();
2064 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2065 predicate = ICmpInst::Predicate(IC->getPredicate());
2066 SDOperand Op1 = getValue(I.getOperand(0));
2067 SDOperand Op2 = getValue(I.getOperand(1));
2068 ISD::CondCode Opcode;
2069 switch (predicate) {
2070 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2071 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2072 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2073 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2074 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2075 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2076 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2077 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2078 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2079 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2080 default:
2081 assert(!"Invalid ICmp predicate value");
2082 Opcode = ISD::SETEQ;
2083 break;
2084 }
2085 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2086}
2087
2088void SelectionDAGLowering::visitFCmp(User &I) {
2089 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2090 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2091 predicate = FC->getPredicate();
2092 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2093 predicate = FCmpInst::Predicate(FC->getPredicate());
2094 SDOperand Op1 = getValue(I.getOperand(0));
2095 SDOperand Op2 = getValue(I.getOperand(1));
2096 ISD::CondCode Condition, FOC, FPC;
2097 switch (predicate) {
2098 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2099 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2100 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2101 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2102 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2103 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2104 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2105 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2106 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2107 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2108 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2109 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2110 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2111 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2112 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2113 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2114 default:
2115 assert(!"Invalid FCmp predicate value");
2116 FOC = FPC = ISD::SETFALSE;
2117 break;
2118 }
2119 if (FiniteOnlyFPMath())
2120 Condition = FOC;
2121 else
2122 Condition = FPC;
2123 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2124}
2125
2126void SelectionDAGLowering::visitSelect(User &I) {
2127 SDOperand Cond = getValue(I.getOperand(0));
2128 SDOperand TrueVal = getValue(I.getOperand(1));
2129 SDOperand FalseVal = getValue(I.getOperand(2));
2130 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2131 TrueVal, FalseVal));
2132}
2133
2134
2135void SelectionDAGLowering::visitTrunc(User &I) {
2136 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2137 SDOperand N = getValue(I.getOperand(0));
2138 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2139 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2140}
2141
2142void SelectionDAGLowering::visitZExt(User &I) {
2143 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2144 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2145 SDOperand N = getValue(I.getOperand(0));
2146 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2147 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2148}
2149
2150void SelectionDAGLowering::visitSExt(User &I) {
2151 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2152 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2153 SDOperand N = getValue(I.getOperand(0));
2154 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2155 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2156}
2157
2158void SelectionDAGLowering::visitFPTrunc(User &I) {
2159 // FPTrunc is never a no-op cast, no need to check
2160 SDOperand N = getValue(I.getOperand(0));
2161 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2162 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2163}
2164
2165void SelectionDAGLowering::visitFPExt(User &I){
2166 // FPTrunc is never a no-op cast, no need to check
2167 SDOperand N = getValue(I.getOperand(0));
2168 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2169 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2170}
2171
2172void SelectionDAGLowering::visitFPToUI(User &I) {
2173 // FPToUI is never a no-op cast, no need to check
2174 SDOperand N = getValue(I.getOperand(0));
2175 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2176 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2177}
2178
2179void SelectionDAGLowering::visitFPToSI(User &I) {
2180 // FPToSI is never a no-op cast, no need to check
2181 SDOperand N = getValue(I.getOperand(0));
2182 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2183 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2184}
2185
2186void SelectionDAGLowering::visitUIToFP(User &I) {
2187 // UIToFP is never a no-op cast, no need to check
2188 SDOperand N = getValue(I.getOperand(0));
2189 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2190 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2191}
2192
2193void SelectionDAGLowering::visitSIToFP(User &I){
2194 // UIToFP is never a no-op cast, no need to check
2195 SDOperand N = getValue(I.getOperand(0));
2196 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2197 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2198}
2199
2200void SelectionDAGLowering::visitPtrToInt(User &I) {
2201 // What to do depends on the size of the integer and the size of the pointer.
2202 // We can either truncate, zero extend, or no-op, accordingly.
2203 SDOperand N = getValue(I.getOperand(0));
2204 MVT::ValueType SrcVT = N.getValueType();
2205 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2206 SDOperand Result;
2207 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2208 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2209 else
2210 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2211 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2212 setValue(&I, Result);
2213}
2214
2215void SelectionDAGLowering::visitIntToPtr(User &I) {
2216 // What to do depends on the size of the integer and the size of the pointer.
2217 // We can either truncate, zero extend, or no-op, accordingly.
2218 SDOperand N = getValue(I.getOperand(0));
2219 MVT::ValueType SrcVT = N.getValueType();
2220 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2221 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2222 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2223 else
2224 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2225 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2226}
2227
2228void SelectionDAGLowering::visitBitCast(User &I) {
2229 SDOperand N = getValue(I.getOperand(0));
2230 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2231
2232 // BitCast assures us that source and destination are the same size so this
2233 // is either a BIT_CONVERT or a no-op.
2234 if (DestVT != N.getValueType())
2235 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2236 else
2237 setValue(&I, N); // noop cast.
2238}
2239
2240void SelectionDAGLowering::visitInsertElement(User &I) {
2241 SDOperand InVec = getValue(I.getOperand(0));
2242 SDOperand InVal = getValue(I.getOperand(1));
2243 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2244 getValue(I.getOperand(2)));
2245
2246 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2247 TLI.getValueType(I.getType()),
2248 InVec, InVal, InIdx));
2249}
2250
2251void SelectionDAGLowering::visitExtractElement(User &I) {
2252 SDOperand InVec = getValue(I.getOperand(0));
2253 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2254 getValue(I.getOperand(1)));
2255 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2256 TLI.getValueType(I.getType()), InVec, InIdx));
2257}
2258
2259void SelectionDAGLowering::visitShuffleVector(User &I) {
2260 SDOperand V1 = getValue(I.getOperand(0));
2261 SDOperand V2 = getValue(I.getOperand(1));
2262 SDOperand Mask = getValue(I.getOperand(2));
2263
2264 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2265 TLI.getValueType(I.getType()),
2266 V1, V2, Mask));
2267}
2268
2269
2270void SelectionDAGLowering::visitGetElementPtr(User &I) {
2271 SDOperand N = getValue(I.getOperand(0));
2272 const Type *Ty = I.getOperand(0)->getType();
2273
2274 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2275 OI != E; ++OI) {
2276 Value *Idx = *OI;
2277 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2278 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2279 if (Field) {
2280 // N = N + Offset
2281 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2282 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2283 getIntPtrConstant(Offset));
2284 }
2285 Ty = StTy->getElementType(Field);
2286 } else {
2287 Ty = cast<SequentialType>(Ty)->getElementType();
2288
2289 // If this is a constant subscript, handle it quickly.
2290 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2291 if (CI->getZExtValue() == 0) continue;
2292 uint64_t Offs =
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002293 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002294 N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2295 continue;
2296 }
2297
2298 // N = N + Idx * ElementSize;
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002299 uint64_t ElementSize = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002300 SDOperand IdxN = getValue(Idx);
2301
2302 // If the index is smaller or larger than intptr_t, truncate or extend
2303 // it.
2304 if (IdxN.getValueType() < N.getValueType()) {
2305 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2306 } else if (IdxN.getValueType() > N.getValueType())
2307 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2308
2309 // If this is a multiply by a power of two, turn it into a shl
2310 // immediately. This is a very common case.
2311 if (isPowerOf2_64(ElementSize)) {
2312 unsigned Amt = Log2_64(ElementSize);
2313 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2314 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2315 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2316 continue;
2317 }
2318
2319 SDOperand Scale = getIntPtrConstant(ElementSize);
2320 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2321 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2322 }
2323 }
2324 setValue(&I, N);
2325}
2326
2327void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2328 // If this is a fixed sized alloca in the entry block of the function,
2329 // allocate it statically on the stack.
2330 if (FuncInfo.StaticAllocaMap.count(&I))
2331 return; // getValue will auto-populate this.
2332
2333 const Type *Ty = I.getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00002334 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335 unsigned Align =
2336 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2337 I.getAlignment());
2338
2339 SDOperand AllocSize = getValue(I.getArraySize());
2340 MVT::ValueType IntPtr = TLI.getPointerTy();
2341 if (IntPtr < AllocSize.getValueType())
2342 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2343 else if (IntPtr > AllocSize.getValueType())
2344 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2345
2346 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2347 getIntPtrConstant(TySize));
2348
Evan Chenga31dc752007-08-16 23:46:29 +00002349 // Handle alignment. If the requested alignment is less than or equal to
2350 // the stack alignment, ignore it. If the size is greater than or equal to
2351 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002352 unsigned StackAlign =
2353 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002354 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002356
2357 // Round the size of the allocation up to the stack alignment size
2358 // by add SA-1 to the size.
2359 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2360 getIntPtrConstant(StackAlign-1));
2361 // Mask out the low bits for alignment purposes.
2362 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2363 getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002364
2365 SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2366 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2367 MVT::Other);
2368 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2369 setValue(&I, DSA);
2370 DAG.setRoot(DSA.getValue(1));
2371
2372 // Inform the Frame Information that we have just allocated a variable-sized
2373 // object.
2374 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2375}
2376
2377void SelectionDAGLowering::visitLoad(LoadInst &I) {
2378 SDOperand Ptr = getValue(I.getOperand(0));
2379
2380 SDOperand Root;
2381 if (I.isVolatile())
2382 Root = getRoot();
2383 else {
2384 // Do not serialize non-volatile loads against each other.
2385 Root = DAG.getRoot();
2386 }
2387
2388 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2389 Root, I.isVolatile(), I.getAlignment()));
2390}
2391
2392SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2393 const Value *SV, SDOperand Root,
2394 bool isVolatile,
2395 unsigned Alignment) {
2396 SDOperand L =
2397 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2398 isVolatile, Alignment);
2399
2400 if (isVolatile)
2401 DAG.setRoot(L.getValue(1));
2402 else
2403 PendingLoads.push_back(L.getValue(1));
2404
2405 return L;
2406}
2407
2408
2409void SelectionDAGLowering::visitStore(StoreInst &I) {
2410 Value *SrcV = I.getOperand(0);
2411 SDOperand Src = getValue(SrcV);
2412 SDOperand Ptr = getValue(I.getOperand(1));
2413 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2414 I.isVolatile(), I.getAlignment()));
2415}
2416
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2418/// node.
2419void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2420 unsigned Intrinsic) {
Duncan Sands79d28872007-12-03 20:06:50 +00002421 bool HasChain = !I.doesNotAccessMemory();
2422 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2423
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424 // Build the operand list.
2425 SmallVector<SDOperand, 8> Ops;
2426 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2427 if (OnlyLoad) {
2428 // We don't need to serialize loads against other loads.
2429 Ops.push_back(DAG.getRoot());
2430 } else {
2431 Ops.push_back(getRoot());
2432 }
2433 }
2434
2435 // Add the intrinsic ID as an integer operand.
2436 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2437
2438 // Add all operands of the call to the operand list.
2439 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2440 SDOperand Op = getValue(I.getOperand(i));
2441 assert(TLI.isTypeLegal(Op.getValueType()) &&
2442 "Intrinsic uses a non-legal type?");
2443 Ops.push_back(Op);
2444 }
2445
2446 std::vector<MVT::ValueType> VTs;
2447 if (I.getType() != Type::VoidTy) {
2448 MVT::ValueType VT = TLI.getValueType(I.getType());
2449 if (MVT::isVector(VT)) {
2450 const VectorType *DestTy = cast<VectorType>(I.getType());
2451 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2452
2453 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2454 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2455 }
2456
2457 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2458 VTs.push_back(VT);
2459 }
2460 if (HasChain)
2461 VTs.push_back(MVT::Other);
2462
2463 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2464
2465 // Create the node.
2466 SDOperand Result;
2467 if (!HasChain)
2468 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2469 &Ops[0], Ops.size());
2470 else if (I.getType() != Type::VoidTy)
2471 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2472 &Ops[0], Ops.size());
2473 else
2474 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2475 &Ops[0], Ops.size());
2476
2477 if (HasChain) {
2478 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2479 if (OnlyLoad)
2480 PendingLoads.push_back(Chain);
2481 else
2482 DAG.setRoot(Chain);
2483 }
2484 if (I.getType() != Type::VoidTy) {
2485 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2486 MVT::ValueType VT = TLI.getValueType(PTy);
2487 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2488 }
2489 setValue(&I, Result);
2490 }
2491}
2492
2493/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2494static GlobalVariable *ExtractTypeInfo (Value *V) {
2495 V = IntrinsicInst::StripPointerCasts(V);
2496 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2497 assert (GV || isa<ConstantPointerNull>(V) &&
2498 "TypeInfo must be a global variable or NULL");
2499 return GV;
2500}
2501
2502/// addCatchInfo - Extract the personality and type infos from an eh.selector
2503/// call, and add them to the specified machine basic block.
2504static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2505 MachineBasicBlock *MBB) {
2506 // Inform the MachineModuleInfo of the personality for this landing pad.
2507 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2508 assert(CE->getOpcode() == Instruction::BitCast &&
2509 isa<Function>(CE->getOperand(0)) &&
2510 "Personality should be a function");
2511 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2512
2513 // Gather all the type infos for this landing pad and pass them along to
2514 // MachineModuleInfo.
2515 std::vector<GlobalVariable *> TyInfo;
2516 unsigned N = I.getNumOperands();
2517
2518 for (unsigned i = N - 1; i > 2; --i) {
2519 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2520 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002521 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002522 assert (FirstCatch <= N && "Invalid filter length");
2523
2524 if (FirstCatch < N) {
2525 TyInfo.reserve(N - FirstCatch);
2526 for (unsigned j = FirstCatch; j < N; ++j)
2527 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2528 MMI->addCatchTypeInfo(MBB, TyInfo);
2529 TyInfo.clear();
2530 }
2531
Duncan Sands923fdb12007-08-27 15:47:50 +00002532 if (!FilterLength) {
2533 // Cleanup.
2534 MMI->addCleanup(MBB);
2535 } else {
2536 // Filter.
2537 TyInfo.reserve(FilterLength - 1);
2538 for (unsigned j = i + 1; j < FirstCatch; ++j)
2539 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2540 MMI->addFilterTypeInfo(MBB, TyInfo);
2541 TyInfo.clear();
2542 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002543
2544 N = i;
2545 }
2546 }
2547
2548 if (N > 3) {
2549 TyInfo.reserve(N - 3);
2550 for (unsigned j = 3; j < N; ++j)
2551 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2552 MMI->addCatchTypeInfo(MBB, TyInfo);
2553 }
2554}
2555
2556/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2557/// we want to emit this as a call to a named external function, return the name
2558/// otherwise lower it and return null.
2559const char *
2560SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2561 switch (Intrinsic) {
2562 default:
2563 // By default, turn this into a target intrinsic node.
2564 visitTargetIntrinsic(I, Intrinsic);
2565 return 0;
2566 case Intrinsic::vastart: visitVAStart(I); return 0;
2567 case Intrinsic::vaend: visitVAEnd(I); return 0;
2568 case Intrinsic::vacopy: visitVACopy(I); return 0;
2569 case Intrinsic::returnaddress:
2570 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2571 getValue(I.getOperand(1))));
2572 return 0;
2573 case Intrinsic::frameaddress:
2574 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2575 getValue(I.getOperand(1))));
2576 return 0;
2577 case Intrinsic::setjmp:
2578 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2579 break;
2580 case Intrinsic::longjmp:
2581 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2582 break;
2583 case Intrinsic::memcpy_i32:
2584 case Intrinsic::memcpy_i64:
2585 visitMemIntrinsic(I, ISD::MEMCPY);
2586 return 0;
2587 case Intrinsic::memset_i32:
2588 case Intrinsic::memset_i64:
2589 visitMemIntrinsic(I, ISD::MEMSET);
2590 return 0;
2591 case Intrinsic::memmove_i32:
2592 case Intrinsic::memmove_i64:
2593 visitMemIntrinsic(I, ISD::MEMMOVE);
2594 return 0;
2595
2596 case Intrinsic::dbg_stoppoint: {
2597 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2598 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2599 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2600 SDOperand Ops[5];
2601
2602 Ops[0] = getRoot();
2603 Ops[1] = getValue(SPI.getLineValue());
2604 Ops[2] = getValue(SPI.getColumnValue());
2605
2606 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2607 assert(DD && "Not a debug information descriptor");
2608 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2609
2610 Ops[3] = DAG.getString(CompileUnit->getFileName());
2611 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2612
2613 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2614 }
2615
2616 return 0;
2617 }
2618 case Intrinsic::dbg_region_start: {
2619 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2620 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2621 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2622 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2623 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2624 DAG.getConstant(LabelID, MVT::i32)));
2625 }
2626
2627 return 0;
2628 }
2629 case Intrinsic::dbg_region_end: {
2630 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2631 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2632 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2633 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2634 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2635 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2636 }
2637
2638 return 0;
2639 }
2640 case Intrinsic::dbg_func_start: {
2641 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2642 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2643 if (MMI && FSI.getSubprogram() &&
2644 MMI->Verify(FSI.getSubprogram())) {
2645 unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2646 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2647 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2648 }
2649
2650 return 0;
2651 }
2652 case Intrinsic::dbg_declare: {
2653 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2654 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2655 if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2656 SDOperand AddressOp = getValue(DI.getAddress());
2657 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2658 MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2659 }
2660
2661 return 0;
2662 }
2663
2664 case Intrinsic::eh_exception: {
2665 if (ExceptionHandling) {
2666 if (!CurMBB->isLandingPad()) {
2667 // FIXME: Mark exception register as live in. Hack for PR1508.
2668 unsigned Reg = TLI.getExceptionAddressRegister();
2669 if (Reg) CurMBB->addLiveIn(Reg);
2670 }
2671 // Insert the EXCEPTIONADDR instruction.
2672 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2673 SDOperand Ops[1];
2674 Ops[0] = DAG.getRoot();
2675 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2676 setValue(&I, Op);
2677 DAG.setRoot(Op.getValue(1));
2678 } else {
2679 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2680 }
2681 return 0;
2682 }
2683
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002684 case Intrinsic::eh_selector_i32:
2685 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002686 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002687 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2688 MVT::i32 : MVT::i64);
2689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002690 if (ExceptionHandling && MMI) {
2691 if (CurMBB->isLandingPad())
2692 addCatchInfo(I, MMI, CurMBB);
2693 else {
2694#ifndef NDEBUG
2695 FuncInfo.CatchInfoLost.insert(&I);
2696#endif
2697 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2698 unsigned Reg = TLI.getExceptionSelectorRegister();
2699 if (Reg) CurMBB->addLiveIn(Reg);
2700 }
2701
2702 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002703 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002704 SDOperand Ops[2];
2705 Ops[0] = getValue(I.getOperand(1));
2706 Ops[1] = getRoot();
2707 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2708 setValue(&I, Op);
2709 DAG.setRoot(Op.getValue(1));
2710 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002711 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002712 }
2713
2714 return 0;
2715 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002716
2717 case Intrinsic::eh_typeid_for_i32:
2718 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002720 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2721 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002722
2723 if (MMI) {
2724 // Find the type id for the given typeinfo.
2725 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2726
2727 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002728 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002729 } else {
2730 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002731 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002732 }
2733
2734 return 0;
2735 }
2736
2737 case Intrinsic::eh_return: {
2738 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2739
2740 if (MMI && ExceptionHandling) {
2741 MMI->setCallsEHReturn(true);
2742 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2743 MVT::Other,
2744 getRoot(),
2745 getValue(I.getOperand(1)),
2746 getValue(I.getOperand(2))));
2747 } else {
2748 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2749 }
2750
2751 return 0;
2752 }
2753
2754 case Intrinsic::eh_unwind_init: {
2755 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2756 MMI->setCallsUnwindInit(true);
2757 }
2758
2759 return 0;
2760 }
2761
2762 case Intrinsic::eh_dwarf_cfa: {
2763 if (ExceptionHandling) {
2764 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002765 SDOperand CfaArg;
2766 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2767 CfaArg = DAG.getNode(ISD::TRUNCATE,
2768 TLI.getPointerTy(), getValue(I.getOperand(1)));
2769 else
2770 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2771 TLI.getPointerTy(), getValue(I.getOperand(1)));
2772
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002773 SDOperand Offset = DAG.getNode(ISD::ADD,
2774 TLI.getPointerTy(),
2775 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002776 TLI.getPointerTy()),
2777 CfaArg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002778 setValue(&I, DAG.getNode(ISD::ADD,
2779 TLI.getPointerTy(),
2780 DAG.getNode(ISD::FRAMEADDR,
2781 TLI.getPointerTy(),
2782 DAG.getConstant(0,
2783 TLI.getPointerTy())),
2784 Offset));
2785 } else {
2786 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2787 }
2788
2789 return 0;
2790 }
2791
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002792 case Intrinsic::sqrt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002793 setValue(&I, DAG.getNode(ISD::FSQRT,
2794 getValue(I.getOperand(1)).getValueType(),
2795 getValue(I.getOperand(1))));
2796 return 0;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002797 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002798 setValue(&I, DAG.getNode(ISD::FPOWI,
2799 getValue(I.getOperand(1)).getValueType(),
2800 getValue(I.getOperand(1)),
2801 getValue(I.getOperand(2))));
2802 return 0;
Dan Gohmane1bb8c12007-10-12 00:01:22 +00002803 case Intrinsic::sin:
2804 setValue(&I, DAG.getNode(ISD::FSIN,
2805 getValue(I.getOperand(1)).getValueType(),
2806 getValue(I.getOperand(1))));
2807 return 0;
2808 case Intrinsic::cos:
2809 setValue(&I, DAG.getNode(ISD::FCOS,
2810 getValue(I.getOperand(1)).getValueType(),
2811 getValue(I.getOperand(1))));
2812 return 0;
2813 case Intrinsic::pow:
2814 setValue(&I, DAG.getNode(ISD::FPOW,
2815 getValue(I.getOperand(1)).getValueType(),
2816 getValue(I.getOperand(1)),
2817 getValue(I.getOperand(2))));
2818 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819 case Intrinsic::pcmarker: {
2820 SDOperand Tmp = getValue(I.getOperand(1));
2821 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2822 return 0;
2823 }
2824 case Intrinsic::readcyclecounter: {
2825 SDOperand Op = getRoot();
2826 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2827 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2828 &Op, 1);
2829 setValue(&I, Tmp);
2830 DAG.setRoot(Tmp.getValue(1));
2831 return 0;
2832 }
2833 case Intrinsic::part_select: {
2834 // Currently not implemented: just abort
2835 assert(0 && "part_select intrinsic not implemented");
2836 abort();
2837 }
2838 case Intrinsic::part_set: {
2839 // Currently not implemented: just abort
2840 assert(0 && "part_set intrinsic not implemented");
2841 abort();
2842 }
2843 case Intrinsic::bswap:
2844 setValue(&I, DAG.getNode(ISD::BSWAP,
2845 getValue(I.getOperand(1)).getValueType(),
2846 getValue(I.getOperand(1))));
2847 return 0;
2848 case Intrinsic::cttz: {
2849 SDOperand Arg = getValue(I.getOperand(1));
2850 MVT::ValueType Ty = Arg.getValueType();
2851 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002852 setValue(&I, result);
2853 return 0;
2854 }
2855 case Intrinsic::ctlz: {
2856 SDOperand Arg = getValue(I.getOperand(1));
2857 MVT::ValueType Ty = Arg.getValueType();
2858 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 setValue(&I, result);
2860 return 0;
2861 }
2862 case Intrinsic::ctpop: {
2863 SDOperand Arg = getValue(I.getOperand(1));
2864 MVT::ValueType Ty = Arg.getValueType();
2865 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 setValue(&I, result);
2867 return 0;
2868 }
2869 case Intrinsic::stacksave: {
2870 SDOperand Op = getRoot();
2871 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2872 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2873 setValue(&I, Tmp);
2874 DAG.setRoot(Tmp.getValue(1));
2875 return 0;
2876 }
2877 case Intrinsic::stackrestore: {
2878 SDOperand Tmp = getValue(I.getOperand(1));
2879 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2880 return 0;
2881 }
2882 case Intrinsic::prefetch:
2883 // FIXME: Currently discarding prefetches.
2884 return 0;
2885
2886 case Intrinsic::var_annotation:
2887 // Discard annotate attributes
2888 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00002889
Duncan Sands38947cd2007-07-27 12:58:54 +00002890 case Intrinsic::init_trampoline: {
2891 const Function *F =
2892 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2893
2894 SDOperand Ops[6];
2895 Ops[0] = getRoot();
2896 Ops[1] = getValue(I.getOperand(1));
2897 Ops[2] = getValue(I.getOperand(2));
2898 Ops[3] = getValue(I.getOperand(3));
2899 Ops[4] = DAG.getSrcValue(I.getOperand(1));
2900 Ops[5] = DAG.getSrcValue(F);
2901
Duncan Sands7407a9f2007-09-11 14:10:23 +00002902 SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2903 DAG.getNodeValueTypes(TLI.getPointerTy(),
2904 MVT::Other), 2,
2905 Ops, 6);
2906
2907 setValue(&I, Tmp);
2908 DAG.setRoot(Tmp.getValue(1));
Duncan Sands38947cd2007-07-27 12:58:54 +00002909 return 0;
2910 }
Anton Korobeynikovc915e272007-11-15 23:25:33 +00002911 case Intrinsic::flt_rounds: {
2912 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2913 return 0;
2914 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002915 }
2916}
2917
2918
Duncan Sandse9bc9132007-12-19 09:48:52 +00002919void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002920 bool IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 MachineBasicBlock *LandingPad) {
Duncan Sandse9bc9132007-12-19 09:48:52 +00002922 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002923 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002924 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2925 unsigned BeginLabel = 0, EndLabel = 0;
Duncan Sandse9bc9132007-12-19 09:48:52 +00002926
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002927 TargetLowering::ArgListTy Args;
2928 TargetLowering::ArgListEntry Entry;
Duncan Sandse9bc9132007-12-19 09:48:52 +00002929 Args.reserve(CS.arg_size());
2930 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2931 i != e; ++i) {
2932 SDOperand ArgNode = getValue(*i);
2933 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934
Duncan Sandse9bc9132007-12-19 09:48:52 +00002935 unsigned attrInd = i - CS.arg_begin() + 1;
2936 Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt);
2937 Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
2938 Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
2939 Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
2940 Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest);
2941 Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002942 Args.push_back(Entry);
2943 }
2944
Duncan Sands4ff179f2007-12-19 07:36:31 +00002945 bool MarkTryRange = LandingPad ||
2946 // C++ requires special handling of 'nounwind' calls.
Duncan Sandse9bc9132007-12-19 09:48:52 +00002947 (CS.doesNotThrow());
Duncan Sands4ff179f2007-12-19 07:36:31 +00002948
2949 if (MarkTryRange && ExceptionHandling && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002950 // Insert a label before the invoke call to mark the try range. This can be
2951 // used to detect deletion of the invoke via the MachineModuleInfo.
2952 BeginLabel = MMI->NextLabelID();
2953 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2954 DAG.getConstant(BeginLabel, MVT::i32)));
2955 }
Duncan Sandse9bc9132007-12-19 09:48:52 +00002956
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957 std::pair<SDOperand,SDOperand> Result =
Duncan Sandse9bc9132007-12-19 09:48:52 +00002958 TLI.LowerCallTo(getRoot(), CS.getType(),
2959 CS.paramHasAttr(0, ParamAttr::SExt),
2960 FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002961 Callee, Args, DAG);
Duncan Sandse9bc9132007-12-19 09:48:52 +00002962 if (CS.getType() != Type::VoidTy)
2963 setValue(CS.getInstruction(), Result.first);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002964 DAG.setRoot(Result.second);
2965
Duncan Sands4ff179f2007-12-19 07:36:31 +00002966 if (MarkTryRange && ExceptionHandling && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002967 // Insert a label at the end of the invoke call to mark the try range. This
2968 // can be used to detect deletion of the invoke via the MachineModuleInfo.
2969 EndLabel = MMI->NextLabelID();
2970 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2971 DAG.getConstant(EndLabel, MVT::i32)));
2972
Duncan Sandse9bc9132007-12-19 09:48:52 +00002973 // Inform MachineModuleInfo of range.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2975 }
2976}
2977
2978
2979void SelectionDAGLowering::visitCall(CallInst &I) {
2980 const char *RenameFn = 0;
2981 if (Function *F = I.getCalledFunction()) {
Chris Lattner3687e342007-09-10 21:15:22 +00002982 if (F->isDeclaration()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002983 if (unsigned IID = F->getIntrinsicID()) {
2984 RenameFn = visitIntrinsicCall(I, IID);
2985 if (!RenameFn)
2986 return;
Chris Lattner3687e342007-09-10 21:15:22 +00002987 }
2988 }
2989
2990 // Check for well-known libc/libm calls. If the function is internal, it
2991 // can't be a library call.
2992 unsigned NameLen = F->getNameLen();
2993 if (!F->hasInternalLinkage() && NameLen) {
2994 const char *NameStr = F->getNameStart();
2995 if (NameStr[0] == 'c' &&
2996 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
2997 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
2998 if (I.getNumOperands() == 3 && // Basic sanity checks.
2999 I.getOperand(1)->getType()->isFloatingPoint() &&
3000 I.getType() == I.getOperand(1)->getType() &&
3001 I.getType() == I.getOperand(2)->getType()) {
3002 SDOperand LHS = getValue(I.getOperand(1));
3003 SDOperand RHS = getValue(I.getOperand(2));
3004 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3005 LHS, RHS));
3006 return;
3007 }
3008 } else if (NameStr[0] == 'f' &&
3009 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003010 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3011 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003012 if (I.getNumOperands() == 2 && // Basic sanity checks.
3013 I.getOperand(1)->getType()->isFloatingPoint() &&
3014 I.getType() == I.getOperand(1)->getType()) {
3015 SDOperand Tmp = getValue(I.getOperand(1));
3016 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3017 return;
3018 }
3019 } else if (NameStr[0] == 's' &&
3020 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003021 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3022 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003023 if (I.getNumOperands() == 2 && // Basic sanity checks.
3024 I.getOperand(1)->getType()->isFloatingPoint() &&
3025 I.getType() == I.getOperand(1)->getType()) {
3026 SDOperand Tmp = getValue(I.getOperand(1));
3027 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3028 return;
3029 }
3030 } else if (NameStr[0] == 'c' &&
3031 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003032 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3033 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003034 if (I.getNumOperands() == 2 && // Basic sanity checks.
3035 I.getOperand(1)->getType()->isFloatingPoint() &&
3036 I.getType() == I.getOperand(1)->getType()) {
3037 SDOperand Tmp = getValue(I.getOperand(1));
3038 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3039 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040 }
3041 }
Chris Lattner3687e342007-09-10 21:15:22 +00003042 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043 } else if (isa<InlineAsm>(I.getOperand(0))) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003044 visitInlineAsm(&I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003045 return;
3046 }
3047
3048 SDOperand Callee;
3049 if (!RenameFn)
3050 Callee = getValue(I.getOperand(0));
3051 else
3052 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3053
Duncan Sandse9bc9132007-12-19 09:48:52 +00003054 LowerCallTo(&I, Callee, I.isTailCall());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055}
3056
3057
3058/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3059/// this value and returns the result as a ValueVT value. This uses
3060/// Chain/Flag as the input and updates them for the output Chain/Flag.
3061/// If the Flag pointer is NULL, no flag is used.
3062SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3063 SDOperand &Chain, SDOperand *Flag)const{
3064 // Copy the legal parts from the registers.
3065 unsigned NumParts = Regs.size();
3066 SmallVector<SDOperand, 8> Parts(NumParts);
3067 for (unsigned i = 0; i != NumParts; ++i) {
3068 SDOperand Part = Flag ?
3069 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3070 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3071 Chain = Part.getValue(1);
3072 if (Flag)
3073 *Flag = Part.getValue(2);
3074 Parts[i] = Part;
3075 }
3076
3077 // Assemble the legal parts into the final value.
3078 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3079}
3080
3081/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3082/// specified value into the registers specified by this object. This uses
3083/// Chain/Flag as the input and updates them for the output Chain/Flag.
3084/// If the Flag pointer is NULL, no flag is used.
3085void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3086 SDOperand &Chain, SDOperand *Flag) const {
3087 // Get the list of the values's legal parts.
3088 unsigned NumParts = Regs.size();
3089 SmallVector<SDOperand, 8> Parts(NumParts);
3090 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3091
3092 // Copy the parts into the registers.
3093 for (unsigned i = 0; i != NumParts; ++i) {
3094 SDOperand Part = Flag ?
3095 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3096 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3097 Chain = Part.getValue(0);
3098 if (Flag)
3099 *Flag = Part.getValue(1);
3100 }
3101}
3102
3103/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3104/// operand list. This adds the code marker and includes the number of
3105/// values added into it.
3106void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3107 std::vector<SDOperand> &Ops) const {
3108 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3109 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3110 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3111 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3112}
3113
3114/// isAllocatableRegister - If the specified register is safe to allocate,
3115/// i.e. it isn't a stack pointer or some other special register, return the
3116/// register class for the register. Otherwise, return null.
3117static const TargetRegisterClass *
3118isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3119 const TargetLowering &TLI, const MRegisterInfo *MRI) {
3120 MVT::ValueType FoundVT = MVT::Other;
3121 const TargetRegisterClass *FoundRC = 0;
3122 for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3123 E = MRI->regclass_end(); RCI != E; ++RCI) {
3124 MVT::ValueType ThisVT = MVT::Other;
3125
3126 const TargetRegisterClass *RC = *RCI;
3127 // If none of the the value types for this register class are valid, we
3128 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3129 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3130 I != E; ++I) {
3131 if (TLI.isTypeLegal(*I)) {
3132 // If we have already found this register in a different register class,
3133 // choose the one with the largest VT specified. For example, on
3134 // PowerPC, we favor f64 register classes over f32.
3135 if (FoundVT == MVT::Other ||
3136 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3137 ThisVT = *I;
3138 break;
3139 }
3140 }
3141 }
3142
3143 if (ThisVT == MVT::Other) continue;
3144
3145 // NOTE: This isn't ideal. In particular, this might allocate the
3146 // frame pointer in functions that need it (due to them not being taken
3147 // out of allocation, because a variable sized allocation hasn't been seen
3148 // yet). This is a slight code pessimization, but should still work.
3149 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3150 E = RC->allocation_order_end(MF); I != E; ++I)
3151 if (*I == Reg) {
3152 // We found a matching register class. Keep looking at others in case
3153 // we find one with larger registers that this physreg is also in.
3154 FoundRC = RC;
3155 FoundVT = ThisVT;
3156 break;
3157 }
3158 }
3159 return FoundRC;
3160}
3161
3162
3163namespace {
3164/// AsmOperandInfo - This contains information for each constraint that we are
3165/// lowering.
3166struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3167 /// ConstraintCode - This contains the actual string for the code, like "m".
3168 std::string ConstraintCode;
3169
3170 /// ConstraintType - Information about the constraint code, e.g. Register,
3171 /// RegisterClass, Memory, Other, Unknown.
3172 TargetLowering::ConstraintType ConstraintType;
3173
3174 /// CallOperand/CallOperandval - If this is the result output operand or a
3175 /// clobber, this is null, otherwise it is the incoming operand to the
3176 /// CallInst. This gets modified as the asm is processed.
3177 SDOperand CallOperand;
3178 Value *CallOperandVal;
3179
3180 /// ConstraintVT - The ValueType for the operand value.
3181 MVT::ValueType ConstraintVT;
3182
3183 /// AssignedRegs - If this is a register or register class operand, this
3184 /// contains the set of register corresponding to the operand.
3185 RegsForValue AssignedRegs;
3186
3187 AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3188 : InlineAsm::ConstraintInfo(info),
3189 ConstraintType(TargetLowering::C_Unknown),
3190 CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3191 }
3192
3193 void ComputeConstraintToUse(const TargetLowering &TLI);
3194
3195 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3196 /// busy in OutputRegs/InputRegs.
3197 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3198 std::set<unsigned> &OutputRegs,
3199 std::set<unsigned> &InputRegs) const {
3200 if (isOutReg)
3201 OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3202 if (isInReg)
3203 InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3204 }
3205};
3206} // end anon namespace.
3207
3208/// getConstraintGenerality - Return an integer indicating how general CT is.
3209static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3210 switch (CT) {
3211 default: assert(0 && "Unknown constraint type!");
3212 case TargetLowering::C_Other:
3213 case TargetLowering::C_Unknown:
3214 return 0;
3215 case TargetLowering::C_Register:
3216 return 1;
3217 case TargetLowering::C_RegisterClass:
3218 return 2;
3219 case TargetLowering::C_Memory:
3220 return 3;
3221 }
3222}
3223
3224void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3225 assert(!Codes.empty() && "Must have at least one constraint");
3226
3227 std::string *Current = &Codes[0];
3228 TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3229 if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
3230 ConstraintCode = *Current;
3231 ConstraintType = CurType;
3232 return;
3233 }
3234
3235 unsigned CurGenerality = getConstraintGenerality(CurType);
3236
3237 // If we have multiple constraints, try to pick the most general one ahead
3238 // of time. This isn't a wonderful solution, but handles common cases.
3239 for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3240 TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3241 unsigned ThisGenerality = getConstraintGenerality(ThisType);
3242 if (ThisGenerality > CurGenerality) {
3243 // This constraint letter is more general than the previous one,
3244 // use it.
3245 CurType = ThisType;
3246 Current = &Codes[j];
3247 CurGenerality = ThisGenerality;
3248 }
3249 }
3250
3251 ConstraintCode = *Current;
3252 ConstraintType = CurType;
3253}
3254
3255
3256void SelectionDAGLowering::
3257GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3258 std::set<unsigned> &OutputRegs,
3259 std::set<unsigned> &InputRegs) {
3260 // Compute whether this value requires an input register, an output register,
3261 // or both.
3262 bool isOutReg = false;
3263 bool isInReg = false;
3264 switch (OpInfo.Type) {
3265 case InlineAsm::isOutput:
3266 isOutReg = true;
3267
3268 // If this is an early-clobber output, or if there is an input
3269 // constraint that matches this, we need to reserve the input register
3270 // so no other inputs allocate to it.
3271 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3272 break;
3273 case InlineAsm::isInput:
3274 isInReg = true;
3275 isOutReg = false;
3276 break;
3277 case InlineAsm::isClobber:
3278 isOutReg = true;
3279 isInReg = true;
3280 break;
3281 }
3282
3283
3284 MachineFunction &MF = DAG.getMachineFunction();
3285 std::vector<unsigned> Regs;
3286
3287 // If this is a constraint for a single physreg, or a constraint for a
3288 // register class, find it.
3289 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3290 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3291 OpInfo.ConstraintVT);
3292
3293 unsigned NumRegs = 1;
3294 if (OpInfo.ConstraintVT != MVT::Other)
3295 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3296 MVT::ValueType RegVT;
3297 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3298
3299
3300 // If this is a constraint for a specific physical register, like {r17},
3301 // assign it now.
3302 if (PhysReg.first) {
3303 if (OpInfo.ConstraintVT == MVT::Other)
3304 ValueVT = *PhysReg.second->vt_begin();
3305
3306 // Get the actual register value type. This is important, because the user
3307 // may have asked for (e.g.) the AX register in i32 type. We need to
3308 // remember that AX is actually i16 to get the right extension.
3309 RegVT = *PhysReg.second->vt_begin();
3310
3311 // This is a explicit reference to a physical register.
3312 Regs.push_back(PhysReg.first);
3313
3314 // If this is an expanded reference, add the rest of the regs to Regs.
3315 if (NumRegs != 1) {
3316 TargetRegisterClass::iterator I = PhysReg.second->begin();
3317 TargetRegisterClass::iterator E = PhysReg.second->end();
3318 for (; *I != PhysReg.first; ++I)
3319 assert(I != E && "Didn't find reg!");
3320
3321 // Already added the first reg.
3322 --NumRegs; ++I;
3323 for (; NumRegs; --NumRegs, ++I) {
3324 assert(I != E && "Ran out of registers to allocate!");
3325 Regs.push_back(*I);
3326 }
3327 }
3328 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3329 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3330 return;
3331 }
3332
3333 // Otherwise, if this was a reference to an LLVM register class, create vregs
3334 // for this reference.
3335 std::vector<unsigned> RegClassRegs;
3336 const TargetRegisterClass *RC = PhysReg.second;
3337 if (RC) {
3338 // If this is an early clobber or tied register, our regalloc doesn't know
3339 // how to maintain the constraint. If it isn't, go ahead and create vreg
3340 // and let the regalloc do the right thing.
3341 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3342 // If there is some other early clobber and this is an input register,
3343 // then we are forced to pre-allocate the input reg so it doesn't
3344 // conflict with the earlyclobber.
3345 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3346 RegVT = *PhysReg.second->vt_begin();
3347
3348 if (OpInfo.ConstraintVT == MVT::Other)
3349 ValueVT = RegVT;
3350
3351 // Create the appropriate number of virtual registers.
3352 SSARegMap *RegMap = MF.getSSARegMap();
3353 for (; NumRegs; --NumRegs)
3354 Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3355
3356 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3357 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3358 return;
3359 }
3360
3361 // Otherwise, we can't allocate it. Let the code below figure out how to
3362 // maintain these constraints.
3363 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3364
3365 } else {
3366 // This is a reference to a register class that doesn't directly correspond
3367 // to an LLVM register class. Allocate NumRegs consecutive, available,
3368 // registers from the class.
3369 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3370 OpInfo.ConstraintVT);
3371 }
3372
3373 const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3374 unsigned NumAllocated = 0;
3375 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3376 unsigned Reg = RegClassRegs[i];
3377 // See if this register is available.
3378 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3379 (isInReg && InputRegs.count(Reg))) { // Already used.
3380 // Make sure we find consecutive registers.
3381 NumAllocated = 0;
3382 continue;
3383 }
3384
3385 // Check to see if this register is allocatable (i.e. don't give out the
3386 // stack pointer).
3387 if (RC == 0) {
3388 RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3389 if (!RC) { // Couldn't allocate this register.
3390 // Reset NumAllocated to make sure we return consecutive registers.
3391 NumAllocated = 0;
3392 continue;
3393 }
3394 }
3395
3396 // Okay, this register is good, we can use it.
3397 ++NumAllocated;
3398
3399 // If we allocated enough consecutive registers, succeed.
3400 if (NumAllocated == NumRegs) {
3401 unsigned RegStart = (i-NumAllocated)+1;
3402 unsigned RegEnd = i+1;
3403 // Mark all of the allocated registers used.
3404 for (unsigned i = RegStart; i != RegEnd; ++i)
3405 Regs.push_back(RegClassRegs[i]);
3406
3407 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3408 OpInfo.ConstraintVT);
3409 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3410 return;
3411 }
3412 }
3413
3414 // Otherwise, we couldn't allocate enough registers for this.
3415 return;
3416}
3417
3418
3419/// visitInlineAsm - Handle a call to an InlineAsm object.
3420///
Duncan Sands1c5526c2007-12-17 18:08:19 +00003421void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3422 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003423
3424 /// ConstraintOperands - Information about all of the constraints.
3425 std::vector<AsmOperandInfo> ConstraintOperands;
3426
3427 SDOperand Chain = getRoot();
3428 SDOperand Flag;
3429
3430 std::set<unsigned> OutputRegs, InputRegs;
3431
3432 // Do a prepass over the constraints, canonicalizing them, and building up the
3433 // ConstraintOperands list.
3434 std::vector<InlineAsm::ConstraintInfo>
3435 ConstraintInfos = IA->ParseConstraints();
3436
3437 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3438 // constraint. If so, we can't let the register allocator allocate any input
3439 // registers, because it will not know to avoid the earlyclobbered output reg.
3440 bool SawEarlyClobber = false;
3441
Duncan Sands1c5526c2007-12-17 18:08:19 +00003442 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003443 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3444 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3445 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3446
3447 MVT::ValueType OpVT = MVT::Other;
3448
3449 // Compute the value type for each operand.
3450 switch (OpInfo.Type) {
3451 case InlineAsm::isOutput:
3452 if (!OpInfo.isIndirect) {
3453 // The return value of the call is this value. As such, there is no
3454 // corresponding argument.
Duncan Sands1c5526c2007-12-17 18:08:19 +00003455 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3456 OpVT = TLI.getValueType(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003457 } else {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003458 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003459 }
3460 break;
3461 case InlineAsm::isInput:
Duncan Sands1c5526c2007-12-17 18:08:19 +00003462 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003463 break;
3464 case InlineAsm::isClobber:
3465 // Nothing to do.
3466 break;
3467 }
3468
3469 // If this is an input or an indirect output, process the call argument.
Dale Johannesencfb19e62007-11-05 21:20:28 +00003470 // BasicBlocks are labels, currently appearing only in asm's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003471 if (OpInfo.CallOperandVal) {
Dale Johannesencfb19e62007-11-05 21:20:28 +00003472 if (isa<BasicBlock>(OpInfo.CallOperandVal))
3473 OpInfo.CallOperand =
3474 DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3475 else {
3476 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3477 const Type *OpTy = OpInfo.CallOperandVal->getType();
3478 // If this is an indirect operand, the operand is a pointer to the
3479 // accessed type.
3480 if (OpInfo.isIndirect)
3481 OpTy = cast<PointerType>(OpTy)->getElementType();
3482
3483 // If OpTy is not a first-class value, it may be a struct/union that we
3484 // can tile with integers.
3485 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3486 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3487 switch (BitSize) {
3488 default: break;
3489 case 1:
3490 case 8:
3491 case 16:
3492 case 32:
3493 case 64:
3494 OpTy = IntegerType::get(BitSize);
3495 break;
3496 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003497 }
Dale Johannesencfb19e62007-11-05 21:20:28 +00003498
3499 OpVT = TLI.getValueType(OpTy, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003500 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003501 }
3502
3503 OpInfo.ConstraintVT = OpVT;
3504
3505 // Compute the constraint code and ConstraintType to use.
3506 OpInfo.ComputeConstraintToUse(TLI);
3507
3508 // Keep track of whether we see an earlyclobber.
3509 SawEarlyClobber |= OpInfo.isEarlyClobber;
3510
3511 // If this is a memory input, and if the operand is not indirect, do what we
3512 // need to to provide an address for the memory input.
3513 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3514 !OpInfo.isIndirect) {
3515 assert(OpInfo.Type == InlineAsm::isInput &&
3516 "Can only indirectify direct input operands!");
3517
3518 // Memory operands really want the address of the value. If we don't have
3519 // an indirect input, put it in the constpool if we can, otherwise spill
3520 // it to a stack slot.
3521
3522 // If the operand is a float, integer, or vector constant, spill to a
3523 // constant pool entry to get its address.
3524 Value *OpVal = OpInfo.CallOperandVal;
3525 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3526 isa<ConstantVector>(OpVal)) {
3527 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3528 TLI.getPointerTy());
3529 } else {
3530 // Otherwise, create a stack slot and emit a store to it before the
3531 // asm.
3532 const Type *Ty = OpVal->getType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003533 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003534 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3535 MachineFunction &MF = DAG.getMachineFunction();
3536 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3537 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3538 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3539 OpInfo.CallOperand = StackSlot;
3540 }
3541
3542 // There is no longer a Value* corresponding to this operand.
3543 OpInfo.CallOperandVal = 0;
3544 // It is now an indirect operand.
3545 OpInfo.isIndirect = true;
3546 }
3547
3548 // If this constraint is for a specific register, allocate it before
3549 // anything else.
3550 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3551 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3552 }
3553 ConstraintInfos.clear();
3554
3555
3556 // Second pass - Loop over all of the operands, assigning virtual or physregs
3557 // to registerclass operands.
3558 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3559 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3560
3561 // C_Register operands have already been allocated, Other/Memory don't need
3562 // to be.
3563 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3564 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3565 }
3566
3567 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3568 std::vector<SDOperand> AsmNodeOperands;
3569 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3570 AsmNodeOperands.push_back(
3571 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3572
3573
3574 // Loop over all of the inputs, copying the operand values into the
3575 // appropriate registers and processing the output regs.
3576 RegsForValue RetValRegs;
3577
3578 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3579 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3580
3581 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3582 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3583
3584 switch (OpInfo.Type) {
3585 case InlineAsm::isOutput: {
3586 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3587 OpInfo.ConstraintType != TargetLowering::C_Register) {
3588 // Memory output, or 'other' output (e.g. 'X' constraint).
3589 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3590
3591 // Add information to the INLINEASM node to know about this output.
3592 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3593 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3594 TLI.getPointerTy()));
3595 AsmNodeOperands.push_back(OpInfo.CallOperand);
3596 break;
3597 }
3598
3599 // Otherwise, this is a register or register class output.
3600
3601 // Copy the output from the appropriate register. Find a register that
3602 // we can use.
3603 if (OpInfo.AssignedRegs.Regs.empty()) {
3604 cerr << "Couldn't allocate output reg for contraint '"
3605 << OpInfo.ConstraintCode << "'!\n";
3606 exit(1);
3607 }
3608
3609 if (!OpInfo.isIndirect) {
3610 // This is the result value of the call.
3611 assert(RetValRegs.Regs.empty() &&
3612 "Cannot have multiple output constraints yet!");
Duncan Sands1c5526c2007-12-17 18:08:19 +00003613 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003614 RetValRegs = OpInfo.AssignedRegs;
3615 } else {
3616 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3617 OpInfo.CallOperandVal));
3618 }
3619
3620 // Add information to the INLINEASM node to know that this register is
3621 // set.
3622 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3623 AsmNodeOperands);
3624 break;
3625 }
3626 case InlineAsm::isInput: {
3627 SDOperand InOperandVal = OpInfo.CallOperand;
3628
3629 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3630 // If this is required to match an output register we have already set,
3631 // just use its register.
3632 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3633
3634 // Scan until we find the definition we already emitted of this operand.
3635 // When we find it, create a RegsForValue operand.
3636 unsigned CurOp = 2; // The first operand.
3637 for (; OperandNo; --OperandNo) {
3638 // Advance to the next operand.
3639 unsigned NumOps =
3640 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3641 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3642 (NumOps & 7) == 4 /*MEM*/) &&
3643 "Skipped past definitions?");
3644 CurOp += (NumOps>>3)+1;
3645 }
3646
3647 unsigned NumOps =
3648 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3649 if ((NumOps & 7) == 2 /*REGDEF*/) {
3650 // Add NumOps>>3 registers to MatchedRegs.
3651 RegsForValue MatchedRegs;
3652 MatchedRegs.ValueVT = InOperandVal.getValueType();
3653 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3654 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3655 unsigned Reg =
3656 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3657 MatchedRegs.Regs.push_back(Reg);
3658 }
3659
3660 // Use the produced MatchedRegs object to
3661 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3662 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3663 break;
3664 } else {
3665 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3666 assert(0 && "matching constraints for memory operands unimp");
3667 }
3668 }
3669
3670 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3671 assert(!OpInfo.isIndirect &&
3672 "Don't know how to handle indirect other inputs yet!");
3673
Chris Lattnera531abc2007-08-25 00:47:38 +00003674 std::vector<SDOperand> Ops;
3675 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3676 Ops, DAG);
3677 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003678 cerr << "Invalid operand for inline asm constraint '"
3679 << OpInfo.ConstraintCode << "'!\n";
3680 exit(1);
3681 }
3682
3683 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003684 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003685 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3686 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003687 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003688 break;
3689 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3690 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3691 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3692 "Memory operands expect pointer values");
3693
3694 // Add information to the INLINEASM node to know about this input.
3695 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3696 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3697 TLI.getPointerTy()));
3698 AsmNodeOperands.push_back(InOperandVal);
3699 break;
3700 }
3701
3702 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3703 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3704 "Unknown constraint type!");
3705 assert(!OpInfo.isIndirect &&
3706 "Don't know how to handle indirect register inputs yet!");
3707
3708 // Copy the input into the appropriate registers.
3709 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3710 "Couldn't allocate input reg!");
3711
3712 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3713
3714 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3715 AsmNodeOperands);
3716 break;
3717 }
3718 case InlineAsm::isClobber: {
3719 // Add the clobbered value to the operand list, so that the register
3720 // allocator is aware that the physreg got clobbered.
3721 if (!OpInfo.AssignedRegs.Regs.empty())
3722 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3723 AsmNodeOperands);
3724 break;
3725 }
3726 }
3727 }
3728
3729 // Finish up input operands.
3730 AsmNodeOperands[0] = Chain;
3731 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3732
3733 Chain = DAG.getNode(ISD::INLINEASM,
3734 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3735 &AsmNodeOperands[0], AsmNodeOperands.size());
3736 Flag = Chain.getValue(1);
3737
3738 // If this asm returns a register value, copy the result from that register
3739 // and set it as the value of the call.
3740 if (!RetValRegs.Regs.empty()) {
3741 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3742
3743 // If the result of the inline asm is a vector, it may have the wrong
3744 // width/num elts. Make sure to convert it to the right type with
3745 // bit_convert.
3746 if (MVT::isVector(Val.getValueType())) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003747 const VectorType *VTy = cast<VectorType>(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3749
3750 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3751 }
3752
Duncan Sands1c5526c2007-12-17 18:08:19 +00003753 setValue(CS.getInstruction(), Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003754 }
3755
3756 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3757
3758 // Process indirect outputs, first output all of the flagged copies out of
3759 // physregs.
3760 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3761 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3762 Value *Ptr = IndirectStoresToEmit[i].second;
3763 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3764 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3765 }
3766
3767 // Emit the non-flagged stores from the physregs.
3768 SmallVector<SDOperand, 8> OutChains;
3769 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3770 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3771 getValue(StoresToEmit[i].second),
3772 StoresToEmit[i].second, 0));
3773 if (!OutChains.empty())
3774 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3775 &OutChains[0], OutChains.size());
3776 DAG.setRoot(Chain);
3777}
3778
3779
3780void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3781 SDOperand Src = getValue(I.getOperand(0));
3782
3783 MVT::ValueType IntPtr = TLI.getPointerTy();
3784
3785 if (IntPtr < Src.getValueType())
3786 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3787 else if (IntPtr > Src.getValueType())
3788 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3789
3790 // Scale the source by the type size.
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003791 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003792 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3793 Src, getIntPtrConstant(ElementSize));
3794
3795 TargetLowering::ArgListTy Args;
3796 TargetLowering::ArgListEntry Entry;
3797 Entry.Node = Src;
3798 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3799 Args.push_back(Entry);
3800
3801 std::pair<SDOperand,SDOperand> Result =
3802 TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3803 DAG.getExternalSymbol("malloc", IntPtr),
3804 Args, DAG);
3805 setValue(&I, Result.first); // Pointers always fit in registers
3806 DAG.setRoot(Result.second);
3807}
3808
3809void SelectionDAGLowering::visitFree(FreeInst &I) {
3810 TargetLowering::ArgListTy Args;
3811 TargetLowering::ArgListEntry Entry;
3812 Entry.Node = getValue(I.getOperand(0));
3813 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3814 Args.push_back(Entry);
3815 MVT::ValueType IntPtr = TLI.getPointerTy();
3816 std::pair<SDOperand,SDOperand> Result =
3817 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3818 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3819 DAG.setRoot(Result.second);
3820}
3821
3822// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3823// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
3824// instructions are special in various ways, which require special support to
3825// insert. The specified MachineInstr is created but not inserted into any
3826// basic blocks, and the scheduler passes ownership of it to this method.
3827MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3828 MachineBasicBlock *MBB) {
3829 cerr << "If a target marks an instruction with "
3830 << "'usesCustomDAGSchedInserter', it must implement "
3831 << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3832 abort();
3833 return 0;
3834}
3835
3836void SelectionDAGLowering::visitVAStart(CallInst &I) {
3837 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3838 getValue(I.getOperand(1)),
3839 DAG.getSrcValue(I.getOperand(1))));
3840}
3841
3842void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3843 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3844 getValue(I.getOperand(0)),
3845 DAG.getSrcValue(I.getOperand(0)));
3846 setValue(&I, V);
3847 DAG.setRoot(V.getValue(1));
3848}
3849
3850void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3851 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3852 getValue(I.getOperand(1)),
3853 DAG.getSrcValue(I.getOperand(1))));
3854}
3855
3856void SelectionDAGLowering::visitVACopy(CallInst &I) {
3857 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3858 getValue(I.getOperand(1)),
3859 getValue(I.getOperand(2)),
3860 DAG.getSrcValue(I.getOperand(1)),
3861 DAG.getSrcValue(I.getOperand(2))));
3862}
3863
3864/// TargetLowering::LowerArguments - This is the default LowerArguments
3865/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
3866/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3867/// integrated into SDISel.
3868std::vector<SDOperand>
3869TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3871 std::vector<SDOperand> Ops;
3872 Ops.push_back(DAG.getRoot());
3873 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3874 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3875
3876 // Add one result value for each formal argument.
3877 std::vector<MVT::ValueType> RetVals;
3878 unsigned j = 1;
3879 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3880 I != E; ++I, ++j) {
3881 MVT::ValueType VT = getValueType(I->getType());
3882 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3883 unsigned OriginalAlignment =
3884 getTargetData()->getABITypeAlignment(I->getType());
3885
3886 // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3887 // that is zero extended!
Duncan Sands637ec552007-11-28 17:07:01 +00003888 if (F.paramHasAttr(j, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 Flags &= ~(ISD::ParamFlags::SExt);
Duncan Sands637ec552007-11-28 17:07:01 +00003890 if (F.paramHasAttr(j, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 Flags |= ISD::ParamFlags::SExt;
Duncan Sands637ec552007-11-28 17:07:01 +00003892 if (F.paramHasAttr(j, ParamAttr::InReg))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893 Flags |= ISD::ParamFlags::InReg;
Duncan Sands637ec552007-11-28 17:07:01 +00003894 if (F.paramHasAttr(j, ParamAttr::StructRet))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 Flags |= ISD::ParamFlags::StructReturn;
Duncan Sands637ec552007-11-28 17:07:01 +00003896 if (F.paramHasAttr(j, ParamAttr::ByVal)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003897 Flags |= ISD::ParamFlags::ByVal;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003898 const PointerType *Ty = cast<PointerType>(I->getType());
3899 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00003900 unsigned StructAlign =
3901 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003902 unsigned StructSize = getTargetData()->getABITypeSize(STy);
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003903 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3904 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
3905 }
Duncan Sands637ec552007-11-28 17:07:01 +00003906 if (F.paramHasAttr(j, ParamAttr::Nest))
Duncan Sands38947cd2007-07-27 12:58:54 +00003907 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003908 Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3909
3910 switch (getTypeAction(VT)) {
3911 default: assert(0 && "Unknown type action!");
3912 case Legal:
3913 RetVals.push_back(VT);
3914 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3915 break;
3916 case Promote:
3917 RetVals.push_back(getTypeToTransformTo(VT));
3918 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3919 break;
3920 case Expand: {
3921 // If this is an illegal type, it needs to be broken up to fit into
3922 // registers.
3923 MVT::ValueType RegisterVT = getRegisterType(VT);
3924 unsigned NumRegs = getNumRegisters(VT);
3925 for (unsigned i = 0; i != NumRegs; ++i) {
3926 RetVals.push_back(RegisterVT);
3927 // if it isn't first piece, alignment must be 1
3928 if (i > 0)
3929 Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3930 (1 << ISD::ParamFlags::OrigAlignmentOffs);
3931 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3932 }
3933 break;
3934 }
3935 }
3936 }
3937
3938 RetVals.push_back(MVT::Other);
3939
3940 // Create the node.
3941 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3942 DAG.getNodeValueTypes(RetVals), RetVals.size(),
3943 &Ops[0], Ops.size()).Val;
3944 unsigned NumArgRegs = Result->getNumValues() - 1;
3945 DAG.setRoot(SDOperand(Result, NumArgRegs));
3946
3947 // Set up the return result vector.
3948 Ops.clear();
3949 unsigned i = 0;
3950 unsigned Idx = 1;
3951 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3952 ++I, ++Idx) {
3953 MVT::ValueType VT = getValueType(I->getType());
3954
3955 switch (getTypeAction(VT)) {
3956 default: assert(0 && "Unknown type action!");
3957 case Legal:
3958 Ops.push_back(SDOperand(Result, i++));
3959 break;
3960 case Promote: {
3961 SDOperand Op(Result, i++);
3962 if (MVT::isInteger(VT)) {
Duncan Sands637ec552007-11-28 17:07:01 +00003963 if (F.paramHasAttr(Idx, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964 Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3965 DAG.getValueType(VT));
Duncan Sands637ec552007-11-28 17:07:01 +00003966 else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967 Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3968 DAG.getValueType(VT));
3969 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3970 } else {
3971 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3972 Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3973 }
3974 Ops.push_back(Op);
3975 break;
3976 }
3977 case Expand: {
3978 MVT::ValueType PartVT = getRegisterType(VT);
3979 unsigned NumParts = getNumRegisters(VT);
3980 SmallVector<SDOperand, 4> Parts(NumParts);
3981 for (unsigned j = 0; j != NumParts; ++j)
3982 Parts[j] = SDOperand(Result, i++);
3983 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3984 break;
3985 }
3986 }
3987 }
3988 assert(i == NumArgRegs && "Argument register count mismatch!");
3989 return Ops;
3990}
3991
3992
3993/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3994/// implementation, which just inserts an ISD::CALL node, which is later custom
3995/// lowered by the target to something concrete. FIXME: When all targets are
3996/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3997std::pair<SDOperand, SDOperand>
3998TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3999 bool RetTyIsSigned, bool isVarArg,
4000 unsigned CallingConv, bool isTailCall,
4001 SDOperand Callee,
4002 ArgListTy &Args, SelectionDAG &DAG) {
4003 SmallVector<SDOperand, 32> Ops;
4004 Ops.push_back(Chain); // Op#0 - Chain
4005 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4006 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
4007 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
4008 Ops.push_back(Callee);
4009
4010 // Handle all of the outgoing arguments.
4011 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4012 MVT::ValueType VT = getValueType(Args[i].Ty);
4013 SDOperand Op = Args[i].Node;
4014 unsigned Flags = ISD::ParamFlags::NoFlagSet;
4015 unsigned OriginalAlignment =
4016 getTargetData()->getABITypeAlignment(Args[i].Ty);
4017
4018 if (Args[i].isSExt)
4019 Flags |= ISD::ParamFlags::SExt;
4020 if (Args[i].isZExt)
4021 Flags |= ISD::ParamFlags::ZExt;
4022 if (Args[i].isInReg)
4023 Flags |= ISD::ParamFlags::InReg;
4024 if (Args[i].isSRet)
4025 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004026 if (Args[i].isByVal) {
4027 Flags |= ISD::ParamFlags::ByVal;
4028 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4029 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00004030 unsigned StructAlign =
4031 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004032 unsigned StructSize = getTargetData()->getABITypeSize(STy);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004033 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4034 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
4035 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004036 if (Args[i].isNest)
4037 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004038 Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4039
4040 switch (getTypeAction(VT)) {
4041 default: assert(0 && "Unknown type action!");
4042 case Legal:
4043 Ops.push_back(Op);
4044 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4045 break;
4046 case Promote:
4047 if (MVT::isInteger(VT)) {
4048 unsigned ExtOp;
4049 if (Args[i].isSExt)
4050 ExtOp = ISD::SIGN_EXTEND;
4051 else if (Args[i].isZExt)
4052 ExtOp = ISD::ZERO_EXTEND;
4053 else
4054 ExtOp = ISD::ANY_EXTEND;
4055 Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4056 } else {
4057 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4058 Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4059 }
4060 Ops.push_back(Op);
4061 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4062 break;
4063 case Expand: {
4064 MVT::ValueType PartVT = getRegisterType(VT);
4065 unsigned NumParts = getNumRegisters(VT);
4066 SmallVector<SDOperand, 4> Parts(NumParts);
4067 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4068 for (unsigned i = 0; i != NumParts; ++i) {
4069 // if it isn't first piece, alignment must be 1
4070 unsigned MyFlags = Flags;
4071 if (i != 0)
4072 MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4073 (1 << ISD::ParamFlags::OrigAlignmentOffs);
4074
4075 Ops.push_back(Parts[i]);
4076 Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4077 }
4078 break;
4079 }
4080 }
4081 }
4082
4083 // Figure out the result value types.
4084 MVT::ValueType VT = getValueType(RetTy);
4085 MVT::ValueType RegisterVT = getRegisterType(VT);
4086 unsigned NumRegs = getNumRegisters(VT);
4087 SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4088 for (unsigned i = 0; i != NumRegs; ++i)
4089 RetTys[i] = RegisterVT;
4090
4091 RetTys.push_back(MVT::Other); // Always has a chain.
4092
4093 // Create the CALL node.
4094 SDOperand Res = DAG.getNode(ISD::CALL,
4095 DAG.getVTList(&RetTys[0], NumRegs + 1),
4096 &Ops[0], Ops.size());
Chris Lattnerbc1200c2007-08-02 18:08:16 +00004097 Chain = Res.getValue(NumRegs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004098
4099 // Gather up the call result into a single value.
4100 if (RetTy != Type::VoidTy) {
4101 ISD::NodeType AssertOp = ISD::AssertSext;
4102 if (!RetTyIsSigned)
4103 AssertOp = ISD::AssertZext;
4104 SmallVector<SDOperand, 4> Results(NumRegs);
4105 for (unsigned i = 0; i != NumRegs; ++i)
4106 Results[i] = Res.getValue(i);
4107 Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4108 }
4109
4110 return std::make_pair(Res, Chain);
4111}
4112
4113SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4114 assert(0 && "LowerOperation not implemented for this target!");
4115 abort();
4116 return SDOperand();
4117}
4118
4119SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4120 SelectionDAG &DAG) {
4121 assert(0 && "CustomPromoteOperation not implemented for this target!");
4122 abort();
4123 return SDOperand();
4124}
4125
4126/// getMemsetValue - Vectorized representation of the memset value
4127/// operand.
4128static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4129 SelectionDAG &DAG) {
4130 MVT::ValueType CurVT = VT;
4131 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4132 uint64_t Val = C->getValue() & 255;
4133 unsigned Shift = 8;
4134 while (CurVT != MVT::i8) {
4135 Val = (Val << Shift) | Val;
4136 Shift <<= 1;
4137 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4138 }
4139 return DAG.getConstant(Val, VT);
4140 } else {
4141 Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4142 unsigned Shift = 8;
4143 while (CurVT != MVT::i8) {
4144 Value =
4145 DAG.getNode(ISD::OR, VT,
4146 DAG.getNode(ISD::SHL, VT, Value,
4147 DAG.getConstant(Shift, MVT::i8)), Value);
4148 Shift <<= 1;
4149 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4150 }
4151
4152 return Value;
4153 }
4154}
4155
4156/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4157/// used when a memcpy is turned into a memset when the source is a constant
4158/// string ptr.
4159static SDOperand getMemsetStringVal(MVT::ValueType VT,
4160 SelectionDAG &DAG, TargetLowering &TLI,
4161 std::string &Str, unsigned Offset) {
4162 uint64_t Val = 0;
4163 unsigned MSB = MVT::getSizeInBits(VT) / 8;
4164 if (TLI.isLittleEndian())
4165 Offset = Offset + MSB - 1;
4166 for (unsigned i = 0; i != MSB; ++i) {
4167 Val = (Val << 8) | (unsigned char)Str[Offset];
4168 Offset += TLI.isLittleEndian() ? -1 : 1;
4169 }
4170 return DAG.getConstant(Val, VT);
4171}
4172
4173/// getMemBasePlusOffset - Returns base and offset node for the
4174static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4175 SelectionDAG &DAG, TargetLowering &TLI) {
4176 MVT::ValueType VT = Base.getValueType();
4177 return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4178}
4179
4180/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4181/// to replace the memset / memcpy is below the threshold. It also returns the
4182/// types of the sequence of memory ops to perform memset / memcpy.
4183static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4184 unsigned Limit, uint64_t Size,
4185 unsigned Align, TargetLowering &TLI) {
4186 MVT::ValueType VT;
4187
4188 if (TLI.allowsUnalignedMemoryAccesses()) {
4189 VT = MVT::i64;
4190 } else {
4191 switch (Align & 7) {
4192 case 0:
4193 VT = MVT::i64;
4194 break;
4195 case 4:
4196 VT = MVT::i32;
4197 break;
4198 case 2:
4199 VT = MVT::i16;
4200 break;
4201 default:
4202 VT = MVT::i8;
4203 break;
4204 }
4205 }
4206
4207 MVT::ValueType LVT = MVT::i64;
4208 while (!TLI.isTypeLegal(LVT))
4209 LVT = (MVT::ValueType)((unsigned)LVT - 1);
4210 assert(MVT::isInteger(LVT));
4211
4212 if (VT > LVT)
4213 VT = LVT;
4214
4215 unsigned NumMemOps = 0;
4216 while (Size != 0) {
4217 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4218 while (VTSize > Size) {
4219 VT = (MVT::ValueType)((unsigned)VT - 1);
4220 VTSize >>= 1;
4221 }
4222 assert(MVT::isInteger(VT));
4223
4224 if (++NumMemOps > Limit)
4225 return false;
4226 MemOps.push_back(VT);
4227 Size -= VTSize;
4228 }
4229
4230 return true;
4231}
4232
4233void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4234 SDOperand Op1 = getValue(I.getOperand(1));
4235 SDOperand Op2 = getValue(I.getOperand(2));
4236 SDOperand Op3 = getValue(I.getOperand(3));
4237 SDOperand Op4 = getValue(I.getOperand(4));
4238 unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4239 if (Align == 0) Align = 1;
4240
Dan Gohmancc863aa2007-08-27 16:26:13 +00004241 // If the source and destination are known to not be aliases, we can
4242 // lower memmove as memcpy.
4243 if (Op == ISD::MEMMOVE) {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00004244 uint64_t Size = -1ULL;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004245 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4246 Size = C->getValue();
4247 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4248 AliasAnalysis::NoAlias)
4249 Op = ISD::MEMCPY;
4250 }
4251
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004252 if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4253 std::vector<MVT::ValueType> MemOps;
4254
4255 // Expand memset / memcpy to a series of load / store ops
4256 // if the size operand falls below a certain threshold.
4257 SmallVector<SDOperand, 8> OutChains;
4258 switch (Op) {
4259 default: break; // Do nothing for now.
4260 case ISD::MEMSET: {
4261 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4262 Size->getValue(), Align, TLI)) {
4263 unsigned NumMemOps = MemOps.size();
4264 unsigned Offset = 0;
4265 for (unsigned i = 0; i < NumMemOps; i++) {
4266 MVT::ValueType VT = MemOps[i];
4267 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4268 SDOperand Value = getMemsetValue(Op2, VT, DAG);
4269 SDOperand Store = DAG.getStore(getRoot(), Value,
4270 getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4271 I.getOperand(1), Offset);
4272 OutChains.push_back(Store);
4273 Offset += VTSize;
4274 }
4275 }
4276 break;
4277 }
4278 case ISD::MEMCPY: {
4279 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4280 Size->getValue(), Align, TLI)) {
4281 unsigned NumMemOps = MemOps.size();
4282 unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4283 GlobalAddressSDNode *G = NULL;
4284 std::string Str;
4285 bool CopyFromStr = false;
4286
4287 if (Op2.getOpcode() == ISD::GlobalAddress)
4288 G = cast<GlobalAddressSDNode>(Op2);
4289 else if (Op2.getOpcode() == ISD::ADD &&
4290 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4291 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4292 G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4293 SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4294 }
4295 if (G) {
4296 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4297 if (GV && GV->isConstant()) {
4298 Str = GV->getStringValue(false);
4299 if (!Str.empty()) {
4300 CopyFromStr = true;
4301 SrcOff += SrcDelta;
4302 }
4303 }
4304 }
4305
4306 for (unsigned i = 0; i < NumMemOps; i++) {
4307 MVT::ValueType VT = MemOps[i];
4308 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4309 SDOperand Value, Chain, Store;
4310
4311 if (CopyFromStr) {
4312 Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4313 Chain = getRoot();
4314 Store =
4315 DAG.getStore(Chain, Value,
4316 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4317 I.getOperand(1), DstOff);
4318 } else {
4319 Value = DAG.getLoad(VT, getRoot(),
Bill Wendling84ebece2007-10-26 20:24:42 +00004320 getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4321 I.getOperand(2), SrcOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004322 Chain = Value.getValue(1);
4323 Store =
4324 DAG.getStore(Chain, Value,
4325 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
Bill Wendling84ebece2007-10-26 20:24:42 +00004326 I.getOperand(1), DstOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004327 }
4328 OutChains.push_back(Store);
4329 SrcOff += VTSize;
4330 DstOff += VTSize;
4331 }
4332 }
4333 break;
4334 }
4335 }
4336
4337 if (!OutChains.empty()) {
4338 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4339 &OutChains[0], OutChains.size()));
4340 return;
4341 }
4342 }
4343
Rafael Espindola80825902007-10-19 10:41:11 +00004344 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4345 SDOperand Node;
4346 switch(Op) {
4347 default:
4348 assert(0 && "Unknown Op");
4349 case ISD::MEMCPY:
4350 Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4351 break;
4352 case ISD::MEMMOVE:
4353 Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4354 break;
4355 case ISD::MEMSET:
4356 Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4357 break;
4358 }
4359 DAG.setRoot(Node);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004360}
4361
4362//===----------------------------------------------------------------------===//
4363// SelectionDAGISel code
4364//===----------------------------------------------------------------------===//
4365
4366unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4367 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4368}
4369
4370void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4371 AU.addRequired<AliasAnalysis>();
4372 AU.setPreservesAll();
4373}
4374
4375
4376
4377bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004378 // Get alias analysis for load/store combining.
4379 AA = &getAnalysis<AliasAnalysis>();
4380
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004381 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4382 RegMap = MF.getSSARegMap();
4383 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4384
4385 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4386
4387 if (ExceptionHandling)
4388 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4389 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4390 // Mark landing pad.
4391 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4392
4393 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4394 SelectBasicBlock(I, MF, FuncInfo);
4395
4396 // Add function live-ins to entry block live-in set.
4397 BasicBlock *EntryBB = &Fn.getEntryBlock();
4398 BB = FuncInfo.MBBMap[EntryBB];
4399 if (!MF.livein_empty())
4400 for (MachineFunction::livein_iterator I = MF.livein_begin(),
4401 E = MF.livein_end(); I != E; ++I)
4402 BB->addLiveIn(I->first);
4403
4404#ifndef NDEBUG
4405 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4406 "Not all catch info was assigned to a landing pad!");
4407#endif
4408
4409 return true;
4410}
4411
4412SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4413 unsigned Reg) {
4414 SDOperand Op = getValue(V);
4415 assert((Op.getOpcode() != ISD::CopyFromReg ||
4416 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4417 "Copy from a reg to the same reg!");
4418
4419 MVT::ValueType SrcVT = Op.getValueType();
4420 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4421 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4422 SmallVector<SDOperand, 8> Regs(NumRegs);
4423 SmallVector<SDOperand, 8> Chains(NumRegs);
4424
4425 // Copy the value by legal parts into sequential virtual registers.
4426 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4427 for (unsigned i = 0; i != NumRegs; ++i)
4428 Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4429 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4430}
4431
4432void SelectionDAGISel::
4433LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4434 std::vector<SDOperand> &UnorderedChains) {
4435 // If this is the entry block, emit arguments.
4436 Function &F = *LLVMBB->getParent();
4437 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4438 SDOperand OldRoot = SDL.DAG.getRoot();
4439 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4440
4441 unsigned a = 0;
4442 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4443 AI != E; ++AI, ++a)
4444 if (!AI->use_empty()) {
4445 SDL.setValue(AI, Args[a]);
4446
4447 // If this argument is live outside of the entry block, insert a copy from
4448 // whereever we got it to the vreg that other BB's will reference it as.
4449 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4450 if (VMI != FuncInfo.ValueMap.end()) {
4451 SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4452 UnorderedChains.push_back(Copy);
4453 }
4454 }
4455
4456 // Finally, if the target has anything special to do, allow it to do so.
4457 // FIXME: this should insert code into the DAG!
4458 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4459}
4460
4461static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4462 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004463 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4464 if (isSelector(I)) {
4465 // Apply the catch info to DestBB.
4466 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4467#ifndef NDEBUG
Duncan Sands9b7e1482007-11-15 09:54:37 +00004468 if (!FLI.MBBMap[SrcBB]->isLandingPad())
4469 FLI.CatchInfoFound.insert(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004470#endif
4471 }
4472}
4473
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004474/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004475/// DAG and fixes their tailcall attribute operand.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004476static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4477 TargetLowering& TLI) {
4478 SDNode * Ret = NULL;
4479 SDOperand Terminator = DAG.getRoot();
4480
4481 // Find RET node.
4482 if (Terminator.getOpcode() == ISD::RET) {
4483 Ret = Terminator.Val;
4484 }
4485
4486 // Fix tail call attribute of CALL nodes.
4487 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4488 BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4489 if (BI->getOpcode() == ISD::CALL) {
4490 SDOperand OpRet(Ret, 0);
4491 SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4492 bool isMarkedTailCall =
4493 cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4494 // If CALL node has tail call attribute set to true and the call is not
4495 // eligible (no RET or the target rejects) the attribute is fixed to
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004496 // false. The TargetLowering::IsEligibleForTailCallOptimization function
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004497 // must correctly identify tail call optimizable calls.
4498 if (isMarkedTailCall &&
4499 (Ret==NULL ||
4500 !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4501 SmallVector<SDOperand, 32> Ops;
4502 unsigned idx=0;
4503 for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4504 E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4505 if (idx!=3)
4506 Ops.push_back(*I);
4507 else
4508 Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4509 }
4510 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4511 }
4512 }
4513 }
4514}
4515
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004516void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4517 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4518 FunctionLoweringInfo &FuncInfo) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004519 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004520
4521 std::vector<SDOperand> UnorderedChains;
4522
4523 // Lower any arguments needed in this block if this is the entry block.
4524 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4525 LowerArguments(LLVMBB, SDL, UnorderedChains);
4526
4527 BB = FuncInfo.MBBMap[LLVMBB];
4528 SDL.setCurrentBasicBlock(BB);
4529
4530 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4531
4532 if (ExceptionHandling && MMI && BB->isLandingPad()) {
4533 // Add a label to mark the beginning of the landing pad. Deletion of the
4534 // landing pad can thus be detected via the MachineModuleInfo.
4535 unsigned LabelID = MMI->addLandingPad(BB);
4536 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4537 DAG.getConstant(LabelID, MVT::i32)));
4538
4539 // Mark exception register as live in.
4540 unsigned Reg = TLI.getExceptionAddressRegister();
4541 if (Reg) BB->addLiveIn(Reg);
4542
4543 // Mark exception selector register as live in.
4544 Reg = TLI.getExceptionSelectorRegister();
4545 if (Reg) BB->addLiveIn(Reg);
4546
4547 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4548 // function and list of typeids logically belong to the invoke (or, if you
4549 // like, the basic block containing the invoke), and need to be associated
4550 // with it in the dwarf exception handling tables. Currently however the
4551 // information is provided by an intrinsic (eh.selector) that can be moved
4552 // to unexpected places by the optimizers: if the unwind edge is critical,
4553 // then breaking it can result in the intrinsics being in the successor of
4554 // the landing pad, not the landing pad itself. This results in exceptions
4555 // not being caught because no typeids are associated with the invoke.
4556 // This may not be the only way things can go wrong, but it is the only way
4557 // we try to work around for the moment.
4558 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4559
4560 if (Br && Br->isUnconditional()) { // Critical edge?
4561 BasicBlock::iterator I, E;
4562 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4563 if (isSelector(I))
4564 break;
4565
4566 if (I == E)
4567 // No catch info found - try to extract some from the successor.
4568 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4569 }
4570 }
4571
4572 // Lower all of the non-terminator instructions.
4573 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4574 I != E; ++I)
4575 SDL.visit(*I);
4576
4577 // Ensure that all instructions which are used outside of their defining
4578 // blocks are available as virtual registers. Invoke is handled elsewhere.
4579 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4580 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4581 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4582 if (VMI != FuncInfo.ValueMap.end())
4583 UnorderedChains.push_back(
4584 SDL.CopyValueToVirtualRegister(I, VMI->second));
4585 }
4586
4587 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4588 // ensure constants are generated when needed. Remember the virtual registers
4589 // that need to be added to the Machine PHI nodes as input. We cannot just
4590 // directly add them, because expansion might result in multiple MBB's for one
4591 // BB. As such, the start of the BB might correspond to a different MBB than
4592 // the end.
4593 //
4594 TerminatorInst *TI = LLVMBB->getTerminator();
4595
4596 // Emit constants only once even if used by multiple PHI nodes.
4597 std::map<Constant*, unsigned> ConstantsOut;
4598
4599 // Vector bool would be better, but vector<bool> is really slow.
4600 std::vector<unsigned char> SuccsHandled;
4601 if (TI->getNumSuccessors())
4602 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4603
4604 // Check successor nodes' PHI nodes that expect a constant to be available
4605 // from this block.
4606 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4607 BasicBlock *SuccBB = TI->getSuccessor(succ);
4608 if (!isa<PHINode>(SuccBB->begin())) continue;
4609 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4610
4611 // If this terminator has multiple identical successors (common for
4612 // switches), only handle each succ once.
4613 unsigned SuccMBBNo = SuccMBB->getNumber();
4614 if (SuccsHandled[SuccMBBNo]) continue;
4615 SuccsHandled[SuccMBBNo] = true;
4616
4617 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4618 PHINode *PN;
4619
4620 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4621 // nodes and Machine PHI nodes, but the incoming operands have not been
4622 // emitted yet.
4623 for (BasicBlock::iterator I = SuccBB->begin();
4624 (PN = dyn_cast<PHINode>(I)); ++I) {
4625 // Ignore dead phi's.
4626 if (PN->use_empty()) continue;
4627
4628 unsigned Reg;
4629 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4630
4631 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4632 unsigned &RegOut = ConstantsOut[C];
4633 if (RegOut == 0) {
4634 RegOut = FuncInfo.CreateRegForValue(C);
4635 UnorderedChains.push_back(
4636 SDL.CopyValueToVirtualRegister(C, RegOut));
4637 }
4638 Reg = RegOut;
4639 } else {
4640 Reg = FuncInfo.ValueMap[PHIOp];
4641 if (Reg == 0) {
4642 assert(isa<AllocaInst>(PHIOp) &&
4643 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4644 "Didn't codegen value into a register!??");
4645 Reg = FuncInfo.CreateRegForValue(PHIOp);
4646 UnorderedChains.push_back(
4647 SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4648 }
4649 }
4650
4651 // Remember that this register needs to added to the machine PHI node as
4652 // the input for this MBB.
4653 MVT::ValueType VT = TLI.getValueType(PN->getType());
4654 unsigned NumRegisters = TLI.getNumRegisters(VT);
4655 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4656 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4657 }
4658 }
4659 ConstantsOut.clear();
4660
4661 // Turn all of the unordered chains into one factored node.
4662 if (!UnorderedChains.empty()) {
4663 SDOperand Root = SDL.getRoot();
4664 if (Root.getOpcode() != ISD::EntryToken) {
4665 unsigned i = 0, e = UnorderedChains.size();
4666 for (; i != e; ++i) {
4667 assert(UnorderedChains[i].Val->getNumOperands() > 1);
4668 if (UnorderedChains[i].Val->getOperand(0) == Root)
4669 break; // Don't add the root if we already indirectly depend on it.
4670 }
4671
4672 if (i == e)
4673 UnorderedChains.push_back(Root);
4674 }
4675 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4676 &UnorderedChains[0], UnorderedChains.size()));
4677 }
4678
4679 // Lower the terminator after the copies are emitted.
4680 SDL.visit(*LLVMBB->getTerminator());
4681
4682 // Copy over any CaseBlock records that may now exist due to SwitchInst
4683 // lowering, as well as any jump table information.
4684 SwitchCases.clear();
4685 SwitchCases = SDL.SwitchCases;
4686 JTCases.clear();
4687 JTCases = SDL.JTCases;
4688 BitTestCases.clear();
4689 BitTestCases = SDL.BitTestCases;
4690
4691 // Make sure the root of the DAG is up-to-date.
4692 DAG.setRoot(SDL.getRoot());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004693
4694 // Check whether calls in this block are real tail calls. Fix up CALL nodes
4695 // with correct tailcall attribute so that the target can rely on the tailcall
4696 // attribute indicating whether the call is really eligible for tail call
4697 // optimization.
4698 CheckDAGForTailCallsAndFixThem(DAG, TLI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004699}
4700
4701void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004702 DOUT << "Lowered selection DAG:\n";
4703 DEBUG(DAG.dump());
4704
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004705 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004706 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004707
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004708 DOUT << "Optimized lowered selection DAG:\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004709 DEBUG(DAG.dump());
4710
4711 // Second step, hack on the DAG until it only uses operations and types that
4712 // the target supports.
Chris Lattner8a258202007-10-15 06:10:22 +00004713#if 0 // Enable this some day.
4714 DAG.LegalizeTypes();
4715 // Someday even later, enable a dag combine pass here.
4716#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004717 DAG.Legalize();
4718
4719 DOUT << "Legalized selection DAG:\n";
4720 DEBUG(DAG.dump());
4721
4722 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004723 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004724
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004725 DOUT << "Optimized legalized selection DAG:\n";
4726 DEBUG(DAG.dump());
4727
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004728 if (ViewISelDAGs) DAG.viewGraph();
4729
4730 // Third, instruction select all of the operations to machine code, adding the
4731 // code to the MachineBasicBlock.
4732 InstructionSelectBasicBlock(DAG);
4733
4734 DOUT << "Selected machine code:\n";
4735 DEBUG(BB->dump());
4736}
4737
4738void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4739 FunctionLoweringInfo &FuncInfo) {
4740 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4741 {
4742 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4743 CurDAG = &DAG;
4744
4745 // First step, lower LLVM code to some DAG. This DAG may use operations and
4746 // types that are not supported by the target.
4747 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4748
4749 // Second step, emit the lowered DAG as machine code.
4750 CodeGenAndEmitDAG(DAG);
4751 }
4752
4753 DOUT << "Total amount of phi nodes to update: "
4754 << PHINodesToUpdate.size() << "\n";
4755 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4756 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4757 << ", " << PHINodesToUpdate[i].second << ")\n";);
4758
4759 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4760 // PHI nodes in successors.
4761 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4762 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4763 MachineInstr *PHI = PHINodesToUpdate[i].first;
4764 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4765 "This is not a machine PHI node that we are updating!");
4766 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4767 PHI->addMachineBasicBlockOperand(BB);
4768 }
4769 return;
4770 }
4771
4772 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4773 // Lower header first, if it wasn't already lowered
4774 if (!BitTestCases[i].Emitted) {
4775 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4776 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004777 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004778 // Set the current basic block to the mbb we wish to insert the code into
4779 BB = BitTestCases[i].Parent;
4780 HSDL.setCurrentBasicBlock(BB);
4781 // Emit the code
4782 HSDL.visitBitTestHeader(BitTestCases[i]);
4783 HSDAG.setRoot(HSDL.getRoot());
4784 CodeGenAndEmitDAG(HSDAG);
4785 }
4786
4787 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4788 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4789 CurDAG = &BSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004790 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004791 // Set the current basic block to the mbb we wish to insert the code into
4792 BB = BitTestCases[i].Cases[j].ThisBB;
4793 BSDL.setCurrentBasicBlock(BB);
4794 // Emit the code
4795 if (j+1 != ej)
4796 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4797 BitTestCases[i].Reg,
4798 BitTestCases[i].Cases[j]);
4799 else
4800 BSDL.visitBitTestCase(BitTestCases[i].Default,
4801 BitTestCases[i].Reg,
4802 BitTestCases[i].Cases[j]);
4803
4804
4805 BSDAG.setRoot(BSDL.getRoot());
4806 CodeGenAndEmitDAG(BSDAG);
4807 }
4808
4809 // Update PHI Nodes
4810 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4811 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4812 MachineBasicBlock *PHIBB = PHI->getParent();
4813 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4814 "This is not a machine PHI node that we are updating!");
4815 // This is "default" BB. We have two jumps to it. From "header" BB and
4816 // from last "case" BB.
4817 if (PHIBB == BitTestCases[i].Default) {
4818 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4819 PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4820 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4821 PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4822 }
4823 // One of "cases" BB.
4824 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4825 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4826 if (cBB->succ_end() !=
4827 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4828 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4829 PHI->addMachineBasicBlockOperand(cBB);
4830 }
4831 }
4832 }
4833 }
4834
4835 // If the JumpTable record is filled in, then we need to emit a jump table.
4836 // Updating the PHI nodes is tricky in this case, since we need to determine
4837 // whether the PHI is a successor of the range check MBB or the jump table MBB
4838 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4839 // Lower header first, if it wasn't already lowered
4840 if (!JTCases[i].first.Emitted) {
4841 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4842 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004843 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004844 // Set the current basic block to the mbb we wish to insert the code into
4845 BB = JTCases[i].first.HeaderBB;
4846 HSDL.setCurrentBasicBlock(BB);
4847 // Emit the code
4848 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4849 HSDAG.setRoot(HSDL.getRoot());
4850 CodeGenAndEmitDAG(HSDAG);
4851 }
4852
4853 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4854 CurDAG = &JSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004855 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004856 // Set the current basic block to the mbb we wish to insert the code into
4857 BB = JTCases[i].second.MBB;
4858 JSDL.setCurrentBasicBlock(BB);
4859 // Emit the code
4860 JSDL.visitJumpTable(JTCases[i].second);
4861 JSDAG.setRoot(JSDL.getRoot());
4862 CodeGenAndEmitDAG(JSDAG);
4863
4864 // Update PHI Nodes
4865 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4866 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4867 MachineBasicBlock *PHIBB = PHI->getParent();
4868 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4869 "This is not a machine PHI node that we are updating!");
4870 // "default" BB. We can go there only from header BB.
4871 if (PHIBB == JTCases[i].second.Default) {
4872 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4873 PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4874 }
4875 // JT BB. Just iterate over successors here
4876 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4877 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4878 PHI->addMachineBasicBlockOperand(BB);
4879 }
4880 }
4881 }
4882
4883 // If the switch block involved a branch to one of the actual successors, we
4884 // need to update PHI nodes in that block.
4885 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4886 MachineInstr *PHI = PHINodesToUpdate[i].first;
4887 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4888 "This is not a machine PHI node that we are updating!");
4889 if (BB->isSuccessor(PHI->getParent())) {
4890 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4891 PHI->addMachineBasicBlockOperand(BB);
4892 }
4893 }
4894
4895 // If we generated any switch lowering information, build and codegen any
4896 // additional DAGs necessary.
4897 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4898 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4899 CurDAG = &SDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004900 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004901
4902 // Set the current basic block to the mbb we wish to insert the code into
4903 BB = SwitchCases[i].ThisBB;
4904 SDL.setCurrentBasicBlock(BB);
4905
4906 // Emit the code
4907 SDL.visitSwitchCase(SwitchCases[i]);
4908 SDAG.setRoot(SDL.getRoot());
4909 CodeGenAndEmitDAG(SDAG);
4910
4911 // Handle any PHI nodes in successors of this chunk, as if we were coming
4912 // from the original BB before switch expansion. Note that PHI nodes can
4913 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4914 // handle them the right number of times.
4915 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4916 for (MachineBasicBlock::iterator Phi = BB->begin();
4917 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4918 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4919 for (unsigned pn = 0; ; ++pn) {
4920 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4921 if (PHINodesToUpdate[pn].first == Phi) {
4922 Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4923 Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4924 break;
4925 }
4926 }
4927 }
4928
4929 // Don't process RHS if same block as LHS.
4930 if (BB == SwitchCases[i].FalseBB)
4931 SwitchCases[i].FalseBB = 0;
4932
4933 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4934 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4935 SwitchCases[i].FalseBB = 0;
4936 }
4937 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4938 }
4939}
4940
4941
4942//===----------------------------------------------------------------------===//
4943/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4944/// target node in the graph.
4945void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4946 if (ViewSchedDAGs) DAG.viewGraph();
4947
4948 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4949
4950 if (!Ctor) {
4951 Ctor = ISHeuristic;
4952 RegisterScheduler::setDefault(Ctor);
4953 }
4954
4955 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4956 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004957
4958 if (ViewSUnitDAGs) SL->viewGraph();
4959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004960 delete SL;
4961}
4962
4963
4964HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4965 return new HazardRecognizer();
4966}
4967
4968//===----------------------------------------------------------------------===//
4969// Helper functions used by the generated instruction selector.
4970//===----------------------------------------------------------------------===//
4971// Calls to these methods are generated by tblgen.
4972
4973/// CheckAndMask - The isel is trying to match something like (and X, 255). If
4974/// the dag combiner simplified the 255, we still want to match. RHS is the
4975/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4976/// specified in the .td file (e.g. 255).
4977bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004978 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004979 uint64_t ActualMask = RHS->getValue();
4980 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4981
4982 // If the actual mask exactly matches, success!
4983 if (ActualMask == DesiredMask)
4984 return true;
4985
4986 // If the actual AND mask is allowing unallowed bits, this doesn't match.
4987 if (ActualMask & ~DesiredMask)
4988 return false;
4989
4990 // Otherwise, the DAG Combiner may have proven that the value coming in is
4991 // either already zero or is not demanded. Check for known zero input bits.
4992 uint64_t NeededMask = DesiredMask & ~ActualMask;
4993 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4994 return true;
4995
4996 // TODO: check to see if missing bits are just not demanded.
4997
4998 // Otherwise, this pattern doesn't match.
4999 return false;
5000}
5001
5002/// CheckOrMask - The isel is trying to match something like (or X, 255). If
5003/// the dag combiner simplified the 255, we still want to match. RHS is the
5004/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5005/// specified in the .td file (e.g. 255).
5006bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00005007 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005008 uint64_t ActualMask = RHS->getValue();
5009 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5010
5011 // If the actual mask exactly matches, success!
5012 if (ActualMask == DesiredMask)
5013 return true;
5014
5015 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5016 if (ActualMask & ~DesiredMask)
5017 return false;
5018
5019 // Otherwise, the DAG Combiner may have proven that the value coming in is
5020 // either already zero or is not demanded. Check for known zero input bits.
5021 uint64_t NeededMask = DesiredMask & ~ActualMask;
5022
5023 uint64_t KnownZero, KnownOne;
5024 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5025
5026 // If all the missing bits in the or are already known to be set, match!
5027 if ((NeededMask & KnownOne) == NeededMask)
5028 return true;
5029
5030 // TODO: check to see if missing bits are just not demanded.
5031
5032 // Otherwise, this pattern doesn't match.
5033 return false;
5034}
5035
5036
5037/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5038/// by tblgen. Others should not call it.
5039void SelectionDAGISel::
5040SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5041 std::vector<SDOperand> InOps;
5042 std::swap(InOps, Ops);
5043
5044 Ops.push_back(InOps[0]); // input chain.
5045 Ops.push_back(InOps[1]); // input asm string.
5046
5047 unsigned i = 2, e = InOps.size();
5048 if (InOps[e-1].getValueType() == MVT::Flag)
5049 --e; // Don't process a flag operand if it is here.
5050
5051 while (i != e) {
5052 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5053 if ((Flags & 7) != 4 /*MEM*/) {
5054 // Just skip over this operand, copying the operands verbatim.
5055 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5056 i += (Flags >> 3) + 1;
5057 } else {
5058 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5059 // Otherwise, this is a memory operand. Ask the target to select it.
5060 std::vector<SDOperand> SelOps;
5061 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5062 cerr << "Could not match memory address. Inline asm failure!\n";
5063 exit(1);
5064 }
5065
5066 // Add this to the output node.
5067 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5068 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5069 IntPtrTy));
5070 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5071 i += 2;
5072 }
5073 }
5074
5075 // Add the flag input back if present.
5076 if (e != InOps.size())
5077 Ops.push_back(InOps.back());
5078}
5079
5080char SelectionDAGISel::ID = 0;