blob: 1b3f4f4afe94b7cdc61cfa3a7df0e37f9866d585 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruthc0470a82007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000206 </ol>
207 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000208 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000210 <li><a href="#int_var_annotation">
211 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
212 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 </li>
214 </ol>
215 </li>
216</ol>
217
218<div class="doc_author">
219 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
220 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
221</div>
222
223<!-- *********************************************************************** -->
224<div class="doc_section"> <a name="abstract">Abstract </a></div>
225<!-- *********************************************************************** -->
226
227<div class="doc_text">
228<p>This document is a reference manual for the LLVM assembly language.
229LLVM is an SSA based representation that provides type safety,
230low-level operations, flexibility, and the capability of representing
231'all' high-level languages cleanly. It is the common code
232representation used throughout all phases of the LLVM compilation
233strategy.</p>
234</div>
235
236<!-- *********************************************************************** -->
237<div class="doc_section"> <a name="introduction">Introduction</a> </div>
238<!-- *********************************************************************** -->
239
240<div class="doc_text">
241
242<p>The LLVM code representation is designed to be used in three
243different forms: as an in-memory compiler IR, as an on-disk bitcode
244representation (suitable for fast loading by a Just-In-Time compiler),
245and as a human readable assembly language representation. This allows
246LLVM to provide a powerful intermediate representation for efficient
247compiler transformations and analysis, while providing a natural means
248to debug and visualize the transformations. The three different forms
249of LLVM are all equivalent. This document describes the human readable
250representation and notation.</p>
251
252<p>The LLVM representation aims to be light-weight and low-level
253while being expressive, typed, and extensible at the same time. It
254aims to be a "universal IR" of sorts, by being at a low enough level
255that high-level ideas may be cleanly mapped to it (similar to how
256microprocessors are "universal IR's", allowing many source languages to
257be mapped to them). By providing type information, LLVM can be used as
258the target of optimizations: for example, through pointer analysis, it
259can be proven that a C automatic variable is never accessed outside of
260the current function... allowing it to be promoted to a simple SSA
261value instead of a memory location.</p>
262
263</div>
264
265<!-- _______________________________________________________________________ -->
266<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
267
268<div class="doc_text">
269
270<p>It is important to note that this document describes 'well formed'
271LLVM assembly language. There is a difference between what the parser
272accepts and what is considered 'well formed'. For example, the
273following instruction is syntactically okay, but not well formed:</p>
274
275<div class="doc_code">
276<pre>
277%x = <a href="#i_add">add</a> i32 1, %x
278</pre>
279</div>
280
281<p>...because the definition of <tt>%x</tt> does not dominate all of
282its uses. The LLVM infrastructure provides a verification pass that may
283be used to verify that an LLVM module is well formed. This pass is
284automatically run by the parser after parsing input assembly and by
285the optimizer before it outputs bitcode. The violations pointed out
286by the verifier pass indicate bugs in transformation passes or input to
287the parser.</p>
288</div>
289
Reid Spencerb043f672007-07-20 19:59:11 +0000290<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291
292<!-- *********************************************************************** -->
293<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
294<!-- *********************************************************************** -->
295
296<div class="doc_text">
297
Reid Spencerc8245b02007-08-07 14:34:28 +0000298 <p>LLVM identifiers come in two basic types: global and local. Global
299 identifiers (functions, global variables) begin with the @ character. Local
300 identifiers (register names, types) begin with the % character. Additionally,
301 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302
303<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000304 <li>Named values are represented as a string of characters with their prefix.
305 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
306 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000308 with quotes. In this way, anything except a <tt>&quot;</tt> character can
309 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310
Reid Spencerc8245b02007-08-07 14:34:28 +0000311 <li>Unnamed values are represented as an unsigned numeric value with their
312 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313
314 <li>Constants, which are described in a <a href="#constants">section about
315 constants</a>, below.</li>
316</ol>
317
Reid Spencerc8245b02007-08-07 14:34:28 +0000318<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319don't need to worry about name clashes with reserved words, and the set of
320reserved words may be expanded in the future without penalty. Additionally,
321unnamed identifiers allow a compiler to quickly come up with a temporary
322variable without having to avoid symbol table conflicts.</p>
323
324<p>Reserved words in LLVM are very similar to reserved words in other
325languages. There are keywords for different opcodes
326('<tt><a href="#i_add">add</a></tt>',
327 '<tt><a href="#i_bitcast">bitcast</a></tt>',
328 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
329href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
330and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000331none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
333<p>Here is an example of LLVM code to multiply the integer variable
334'<tt>%X</tt>' by 8:</p>
335
336<p>The easy way:</p>
337
338<div class="doc_code">
339<pre>
340%result = <a href="#i_mul">mul</a> i32 %X, 8
341</pre>
342</div>
343
344<p>After strength reduction:</p>
345
346<div class="doc_code">
347<pre>
348%result = <a href="#i_shl">shl</a> i32 %X, i8 3
349</pre>
350</div>
351
352<p>And the hard way:</p>
353
354<div class="doc_code">
355<pre>
356<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
357<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
358%result = <a href="#i_add">add</a> i32 %1, %1
359</pre>
360</div>
361
362<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
363important lexical features of LLVM:</p>
364
365<ol>
366
367 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
368 line.</li>
369
370 <li>Unnamed temporaries are created when the result of a computation is not
371 assigned to a named value.</li>
372
373 <li>Unnamed temporaries are numbered sequentially</li>
374
375</ol>
376
377<p>...and it also shows a convention that we follow in this document. When
378demonstrating instructions, we will follow an instruction with a comment that
379defines the type and name of value produced. Comments are shown in italic
380text.</p>
381
382</div>
383
384<!-- *********************************************************************** -->
385<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
386<!-- *********************************************************************** -->
387
388<!-- ======================================================================= -->
389<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
390</div>
391
392<div class="doc_text">
393
394<p>LLVM programs are composed of "Module"s, each of which is a
395translation unit of the input programs. Each module consists of
396functions, global variables, and symbol table entries. Modules may be
397combined together with the LLVM linker, which merges function (and
398global variable) definitions, resolves forward declarations, and merges
399symbol table entries. Here is an example of the "hello world" module:</p>
400
401<div class="doc_code">
402<pre><i>; Declare the string constant as a global constant...</i>
403<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
404 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
405
406<i>; External declaration of the puts function</i>
407<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
408
409<i>; Definition of main function</i>
410define i32 @main() { <i>; i32()* </i>
411 <i>; Convert [13x i8 ]* to i8 *...</i>
412 %cast210 = <a
413 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
414
415 <i>; Call puts function to write out the string to stdout...</i>
416 <a
417 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
418 <a
419 href="#i_ret">ret</a> i32 0<br>}<br>
420</pre>
421</div>
422
423<p>This example is made up of a <a href="#globalvars">global variable</a>
424named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
425function, and a <a href="#functionstructure">function definition</a>
426for "<tt>main</tt>".</p>
427
428<p>In general, a module is made up of a list of global values,
429where both functions and global variables are global values. Global values are
430represented by a pointer to a memory location (in this case, a pointer to an
431array of char, and a pointer to a function), and have one of the following <a
432href="#linkage">linkage types</a>.</p>
433
434</div>
435
436<!-- ======================================================================= -->
437<div class="doc_subsection">
438 <a name="linkage">Linkage Types</a>
439</div>
440
441<div class="doc_text">
442
443<p>
444All Global Variables and Functions have one of the following types of linkage:
445</p>
446
447<dl>
448
449 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
450
451 <dd>Global values with internal linkage are only directly accessible by
452 objects in the current module. In particular, linking code into a module with
453 an internal global value may cause the internal to be renamed as necessary to
454 avoid collisions. Because the symbol is internal to the module, all
455 references can be updated. This corresponds to the notion of the
456 '<tt>static</tt>' keyword in C.
457 </dd>
458
459 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
460
461 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
462 the same name when linkage occurs. This is typically used to implement
463 inline functions, templates, or other code which must be generated in each
464 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
465 allowed to be discarded.
466 </dd>
467
468 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
469
470 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
471 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
472 used for globals that may be emitted in multiple translation units, but that
473 are not guaranteed to be emitted into every translation unit that uses them.
474 One example of this are common globals in C, such as "<tt>int X;</tt>" at
475 global scope.
476 </dd>
477
478 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
479
480 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
481 pointer to array type. When two global variables with appending linkage are
482 linked together, the two global arrays are appended together. This is the
483 LLVM, typesafe, equivalent of having the system linker append together
484 "sections" with identical names when .o files are linked.
485 </dd>
486
487 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
488 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
489 until linked, if not linked, the symbol becomes null instead of being an
490 undefined reference.
491 </dd>
492
493 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
494
495 <dd>If none of the above identifiers are used, the global is externally
496 visible, meaning that it participates in linkage and can be used to resolve
497 external symbol references.
498 </dd>
499</dl>
500
501 <p>
502 The next two types of linkage are targeted for Microsoft Windows platform
503 only. They are designed to support importing (exporting) symbols from (to)
504 DLLs.
505 </p>
506
507 <dl>
508 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
509
510 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
511 or variable via a global pointer to a pointer that is set up by the DLL
512 exporting the symbol. On Microsoft Windows targets, the pointer name is
513 formed by combining <code>_imp__</code> and the function or variable name.
514 </dd>
515
516 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
517
518 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
519 pointer to a pointer in a DLL, so that it can be referenced with the
520 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
521 name is formed by combining <code>_imp__</code> and the function or variable
522 name.
523 </dd>
524
525</dl>
526
527<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
528variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
529variable and was linked with this one, one of the two would be renamed,
530preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
531external (i.e., lacking any linkage declarations), they are accessible
532outside of the current module.</p>
533<p>It is illegal for a function <i>declaration</i>
534to have any linkage type other than "externally visible", <tt>dllimport</tt>,
535or <tt>extern_weak</tt>.</p>
536<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
537linkages.
538</div>
539
540<!-- ======================================================================= -->
541<div class="doc_subsection">
542 <a name="callingconv">Calling Conventions</a>
543</div>
544
545<div class="doc_text">
546
547<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
548and <a href="#i_invoke">invokes</a> can all have an optional calling convention
549specified for the call. The calling convention of any pair of dynamic
550caller/callee must match, or the behavior of the program is undefined. The
551following calling conventions are supported by LLVM, and more may be added in
552the future:</p>
553
554<dl>
555 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
556
557 <dd>This calling convention (the default if no other calling convention is
558 specified) matches the target C calling conventions. This calling convention
559 supports varargs function calls and tolerates some mismatch in the declared
560 prototype and implemented declaration of the function (as does normal C).
561 </dd>
562
563 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
564
565 <dd>This calling convention attempts to make calls as fast as possible
566 (e.g. by passing things in registers). This calling convention allows the
567 target to use whatever tricks it wants to produce fast code for the target,
568 without having to conform to an externally specified ABI. Implementations of
569 this convention should allow arbitrary tail call optimization to be supported.
570 This calling convention does not support varargs and requires the prototype of
571 all callees to exactly match the prototype of the function definition.
572 </dd>
573
574 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
575
576 <dd>This calling convention attempts to make code in the caller as efficient
577 as possible under the assumption that the call is not commonly executed. As
578 such, these calls often preserve all registers so that the call does not break
579 any live ranges in the caller side. This calling convention does not support
580 varargs and requires the prototype of all callees to exactly match the
581 prototype of the function definition.
582 </dd>
583
584 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
585
586 <dd>Any calling convention may be specified by number, allowing
587 target-specific calling conventions to be used. Target specific calling
588 conventions start at 64.
589 </dd>
590</dl>
591
592<p>More calling conventions can be added/defined on an as-needed basis, to
593support pascal conventions or any other well-known target-independent
594convention.</p>
595
596</div>
597
598<!-- ======================================================================= -->
599<div class="doc_subsection">
600 <a name="visibility">Visibility Styles</a>
601</div>
602
603<div class="doc_text">
604
605<p>
606All Global Variables and Functions have one of the following visibility styles:
607</p>
608
609<dl>
610 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
611
612 <dd>On ELF, default visibility means that the declaration is visible to other
613 modules and, in shared libraries, means that the declared entity may be
614 overridden. On Darwin, default visibility means that the declaration is
615 visible to other modules. Default visibility corresponds to "external
616 linkage" in the language.
617 </dd>
618
619 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
620
621 <dd>Two declarations of an object with hidden visibility refer to the same
622 object if they are in the same shared object. Usually, hidden visibility
623 indicates that the symbol will not be placed into the dynamic symbol table,
624 so no other module (executable or shared library) can reference it
625 directly.
626 </dd>
627
628 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
629
630 <dd>On ELF, protected visibility indicates that the symbol will be placed in
631 the dynamic symbol table, but that references within the defining module will
632 bind to the local symbol. That is, the symbol cannot be overridden by another
633 module.
634 </dd>
635</dl>
636
637</div>
638
639<!-- ======================================================================= -->
640<div class="doc_subsection">
641 <a name="globalvars">Global Variables</a>
642</div>
643
644<div class="doc_text">
645
646<p>Global variables define regions of memory allocated at compilation time
647instead of run-time. Global variables may optionally be initialized, may have
648an explicit section to be placed in, and may have an optional explicit alignment
649specified. A variable may be defined as "thread_local", which means that it
650will not be shared by threads (each thread will have a separated copy of the
651variable). A variable may be defined as a global "constant," which indicates
652that the contents of the variable will <b>never</b> be modified (enabling better
653optimization, allowing the global data to be placed in the read-only section of
654an executable, etc). Note that variables that need runtime initialization
655cannot be marked "constant" as there is a store to the variable.</p>
656
657<p>
658LLVM explicitly allows <em>declarations</em> of global variables to be marked
659constant, even if the final definition of the global is not. This capability
660can be used to enable slightly better optimization of the program, but requires
661the language definition to guarantee that optimizations based on the
662'constantness' are valid for the translation units that do not include the
663definition.
664</p>
665
666<p>As SSA values, global variables define pointer values that are in
667scope (i.e. they dominate) all basic blocks in the program. Global
668variables always define a pointer to their "content" type because they
669describe a region of memory, and all memory objects in LLVM are
670accessed through pointers.</p>
671
672<p>LLVM allows an explicit section to be specified for globals. If the target
673supports it, it will emit globals to the section specified.</p>
674
675<p>An explicit alignment may be specified for a global. If not present, or if
676the alignment is set to zero, the alignment of the global is set by the target
677to whatever it feels convenient. If an explicit alignment is specified, the
678global is forced to have at least that much alignment. All alignments must be
679a power of 2.</p>
680
681<p>For example, the following defines a global with an initializer, section,
682 and alignment:</p>
683
684<div class="doc_code">
685<pre>
686@G = constant float 1.0, section "foo", align 4
687</pre>
688</div>
689
690</div>
691
692
693<!-- ======================================================================= -->
694<div class="doc_subsection">
695 <a name="functionstructure">Functions</a>
696</div>
697
698<div class="doc_text">
699
700<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
701an optional <a href="#linkage">linkage type</a>, an optional
702<a href="#visibility">visibility style</a>, an optional
703<a href="#callingconv">calling convention</a>, a return type, an optional
704<a href="#paramattrs">parameter attribute</a> for the return type, a function
705name, a (possibly empty) argument list (each with optional
706<a href="#paramattrs">parameter attributes</a>), an optional section, an
707optional alignment, an opening curly brace, a list of basic blocks, and a
708closing curly brace.
709
710LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
711optional <a href="#linkage">linkage type</a>, an optional
712<a href="#visibility">visibility style</a>, an optional
713<a href="#callingconv">calling convention</a>, a return type, an optional
714<a href="#paramattrs">parameter attribute</a> for the return type, a function
715name, a possibly empty list of arguments, and an optional alignment.</p>
716
717<p>A function definition contains a list of basic blocks, forming the CFG for
718the function. Each basic block may optionally start with a label (giving the
719basic block a symbol table entry), contains a list of instructions, and ends
720with a <a href="#terminators">terminator</a> instruction (such as a branch or
721function return).</p>
722
723<p>The first basic block in a function is special in two ways: it is immediately
724executed on entrance to the function, and it is not allowed to have predecessor
725basic blocks (i.e. there can not be any branches to the entry block of a
726function). Because the block can have no predecessors, it also cannot have any
727<a href="#i_phi">PHI nodes</a>.</p>
728
729<p>LLVM allows an explicit section to be specified for functions. If the target
730supports it, it will emit functions to the section specified.</p>
731
732<p>An explicit alignment may be specified for a function. If not present, or if
733the alignment is set to zero, the alignment of the function is set by the target
734to whatever it feels convenient. If an explicit alignment is specified, the
735function is forced to have at least that much alignment. All alignments must be
736a power of 2.</p>
737
738</div>
739
740
741<!-- ======================================================================= -->
742<div class="doc_subsection">
743 <a name="aliasstructure">Aliases</a>
744</div>
745<div class="doc_text">
746 <p>Aliases act as "second name" for the aliasee value (which can be either
747 function or global variable or bitcast of global value). Aliases may have an
748 optional <a href="#linkage">linkage type</a>, and an
749 optional <a href="#visibility">visibility style</a>.</p>
750
751 <h5>Syntax:</h5>
752
753<div class="doc_code">
754<pre>
755@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
756</pre>
757</div>
758
759</div>
760
761
762
763<!-- ======================================================================= -->
764<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
765<div class="doc_text">
766 <p>The return type and each parameter of a function type may have a set of
767 <i>parameter attributes</i> associated with them. Parameter attributes are
768 used to communicate additional information about the result or parameters of
769 a function. Parameter attributes are considered to be part of the function
770 type so two functions types that differ only by the parameter attributes
771 are different function types.</p>
772
773 <p>Parameter attributes are simple keywords that follow the type specified. If
774 multiple parameter attributes are needed, they are space separated. For
775 example:</p>
776
777<div class="doc_code">
778<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000779%someFunc = i16 (i8 signext %someParam) zeroext
780%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781</pre>
782</div>
783
784 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000785 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
786 the second). Also note that the attribute for the function result
787 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788
789 <p>Currently, only the following parameter attributes are defined:</p>
790 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000791 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792 <dd>This indicates that the parameter should be zero extended just before
793 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000794 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000795 <dd>This indicates that the parameter should be sign extended just before
796 a call to this function.</dd>
797 <dt><tt>inreg</tt></dt>
798 <dd>This indicates that the parameter should be placed in register (if
799 possible) during assembling function call. Support for this attribute is
800 target-specific</dd>
801 <dt><tt>sret</tt></dt>
802 <dd>This indicates that the parameter specifies the address of a structure
803 that is the return value of the function in the source program.</dd>
804 <dt><tt>noalias</tt></dt>
805 <dd>This indicates that the parameter not alias any other object or any
806 other "noalias" objects during the function call.
807 <dt><tt>noreturn</tt></dt>
808 <dd>This function attribute indicates that the function never returns. This
809 indicates to LLVM that every call to this function should be treated as if
810 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
811 <dt><tt>nounwind</tt></dt>
812 <dd>This function attribute indicates that the function type does not use
813 the unwind instruction and does not allow stack unwinding to propagate
814 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000815 <dt><tt>nest</tt></dt>
816 <dd>This indicates that the parameter can be excised using the
817 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000818 </dl>
819
820</div>
821
822<!-- ======================================================================= -->
823<div class="doc_subsection">
824 <a name="moduleasm">Module-Level Inline Assembly</a>
825</div>
826
827<div class="doc_text">
828<p>
829Modules may contain "module-level inline asm" blocks, which corresponds to the
830GCC "file scope inline asm" blocks. These blocks are internally concatenated by
831LLVM and treated as a single unit, but may be separated in the .ll file if
832desired. The syntax is very simple:
833</p>
834
835<div class="doc_code">
836<pre>
837module asm "inline asm code goes here"
838module asm "more can go here"
839</pre>
840</div>
841
842<p>The strings can contain any character by escaping non-printable characters.
843 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
844 for the number.
845</p>
846
847<p>
848 The inline asm code is simply printed to the machine code .s file when
849 assembly code is generated.
850</p>
851</div>
852
853<!-- ======================================================================= -->
854<div class="doc_subsection">
855 <a name="datalayout">Data Layout</a>
856</div>
857
858<div class="doc_text">
859<p>A module may specify a target specific data layout string that specifies how
860data is to be laid out in memory. The syntax for the data layout is simply:</p>
861<pre> target datalayout = "<i>layout specification</i>"</pre>
862<p>The <i>layout specification</i> consists of a list of specifications
863separated by the minus sign character ('-'). Each specification starts with a
864letter and may include other information after the letter to define some
865aspect of the data layout. The specifications accepted are as follows: </p>
866<dl>
867 <dt><tt>E</tt></dt>
868 <dd>Specifies that the target lays out data in big-endian form. That is, the
869 bits with the most significance have the lowest address location.</dd>
870 <dt><tt>e</tt></dt>
871 <dd>Specifies that hte target lays out data in little-endian form. That is,
872 the bits with the least significance have the lowest address location.</dd>
873 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
874 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
875 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
876 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
877 too.</dd>
878 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
879 <dd>This specifies the alignment for an integer type of a given bit
880 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
881 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
882 <dd>This specifies the alignment for a vector type of a given bit
883 <i>size</i>.</dd>
884 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
885 <dd>This specifies the alignment for a floating point type of a given bit
886 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
887 (double).</dd>
888 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
889 <dd>This specifies the alignment for an aggregate type of a given bit
890 <i>size</i>.</dd>
891</dl>
892<p>When constructing the data layout for a given target, LLVM starts with a
893default set of specifications which are then (possibly) overriden by the
894specifications in the <tt>datalayout</tt> keyword. The default specifications
895are given in this list:</p>
896<ul>
897 <li><tt>E</tt> - big endian</li>
898 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
899 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
900 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
901 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
902 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
903 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
904 alignment of 64-bits</li>
905 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
906 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
907 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
908 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
909 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
910</ul>
911<p>When llvm is determining the alignment for a given type, it uses the
912following rules:
913<ol>
914 <li>If the type sought is an exact match for one of the specifications, that
915 specification is used.</li>
916 <li>If no match is found, and the type sought is an integer type, then the
917 smallest integer type that is larger than the bitwidth of the sought type is
918 used. If none of the specifications are larger than the bitwidth then the the
919 largest integer type is used. For example, given the default specifications
920 above, the i7 type will use the alignment of i8 (next largest) while both
921 i65 and i256 will use the alignment of i64 (largest specified).</li>
922 <li>If no match is found, and the type sought is a vector type, then the
923 largest vector type that is smaller than the sought vector type will be used
924 as a fall back. This happens because <128 x double> can be implemented in
925 terms of 64 <2 x double>, for example.</li>
926</ol>
927</div>
928
929<!-- *********************************************************************** -->
930<div class="doc_section"> <a name="typesystem">Type System</a> </div>
931<!-- *********************************************************************** -->
932
933<div class="doc_text">
934
935<p>The LLVM type system is one of the most important features of the
936intermediate representation. Being typed enables a number of
937optimizations to be performed on the IR directly, without having to do
938extra analyses on the side before the transformation. A strong type
939system makes it easier to read the generated code and enables novel
940analyses and transformations that are not feasible to perform on normal
941three address code representations.</p>
942
943</div>
944
945<!-- ======================================================================= -->
946<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
947<div class="doc_text">
948<p>The primitive types are the fundamental building blocks of the LLVM
949system. The current set of primitive types is as follows:</p>
950
951<table class="layout">
952 <tr class="layout">
953 <td class="left">
954 <table>
955 <tbody>
956 <tr><th>Type</th><th>Description</th></tr>
957 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
958 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
959 </tbody>
960 </table>
961 </td>
962 <td class="right">
963 <table>
964 <tbody>
965 <tr><th>Type</th><th>Description</th></tr>
966 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
967 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
968 </tbody>
969 </table>
970 </td>
971 </tr>
972</table>
973</div>
974
975<!-- _______________________________________________________________________ -->
976<div class="doc_subsubsection"> <a name="t_classifications">Type
977Classifications</a> </div>
978<div class="doc_text">
979<p>These different primitive types fall into a few useful
980classifications:</p>
981
982<table border="1" cellspacing="0" cellpadding="4">
983 <tbody>
984 <tr><th>Classification</th><th>Types</th></tr>
985 <tr>
986 <td><a name="t_integer">integer</a></td>
987 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
988 </tr>
989 <tr>
990 <td><a name="t_floating">floating point</a></td>
991 <td><tt>float, double</tt></td>
992 </tr>
993 <tr>
994 <td><a name="t_firstclass">first class</a></td>
995 <td><tt>i1, ..., float, double, <br/>
996 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
997 </td>
998 </tr>
999 </tbody>
1000</table>
1001
1002<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1003most important. Values of these types are the only ones which can be
1004produced by instructions, passed as arguments, or used as operands to
1005instructions. This means that all structures and arrays must be
1006manipulated either by pointer or by component.</p>
1007</div>
1008
1009<!-- ======================================================================= -->
1010<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1011
1012<div class="doc_text">
1013
1014<p>The real power in LLVM comes from the derived types in the system.
1015This is what allows a programmer to represent arrays, functions,
1016pointers, and other useful types. Note that these derived types may be
1017recursive: For example, it is possible to have a two dimensional array.</p>
1018
1019</div>
1020
1021<!-- _______________________________________________________________________ -->
1022<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1023
1024<div class="doc_text">
1025
1026<h5>Overview:</h5>
1027<p>The integer type is a very simple derived type that simply specifies an
1028arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10292^23-1 (about 8 million) can be specified.</p>
1030
1031<h5>Syntax:</h5>
1032
1033<pre>
1034 iN
1035</pre>
1036
1037<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1038value.</p>
1039
1040<h5>Examples:</h5>
1041<table class="layout">
1042 <tr class="layout">
1043 <td class="left">
1044 <tt>i1</tt><br/>
1045 <tt>i4</tt><br/>
1046 <tt>i8</tt><br/>
1047 <tt>i16</tt><br/>
1048 <tt>i32</tt><br/>
1049 <tt>i42</tt><br/>
1050 <tt>i64</tt><br/>
1051 <tt>i1942652</tt><br/>
1052 </td>
1053 <td class="left">
1054 A boolean integer of 1 bit<br/>
1055 A nibble sized integer of 4 bits.<br/>
1056 A byte sized integer of 8 bits.<br/>
1057 A half word sized integer of 16 bits.<br/>
1058 A word sized integer of 32 bits.<br/>
1059 An integer whose bit width is the answer. <br/>
1060 A double word sized integer of 64 bits.<br/>
1061 A really big integer of over 1 million bits.<br/>
1062 </td>
1063 </tr>
1064</table>
1065</div>
1066
1067<!-- _______________________________________________________________________ -->
1068<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1069
1070<div class="doc_text">
1071
1072<h5>Overview:</h5>
1073
1074<p>The array type is a very simple derived type that arranges elements
1075sequentially in memory. The array type requires a size (number of
1076elements) and an underlying data type.</p>
1077
1078<h5>Syntax:</h5>
1079
1080<pre>
1081 [&lt;# elements&gt; x &lt;elementtype&gt;]
1082</pre>
1083
1084<p>The number of elements is a constant integer value; elementtype may
1085be any type with a size.</p>
1086
1087<h5>Examples:</h5>
1088<table class="layout">
1089 <tr class="layout">
1090 <td class="left">
1091 <tt>[40 x i32 ]</tt><br/>
1092 <tt>[41 x i32 ]</tt><br/>
1093 <tt>[40 x i8]</tt><br/>
1094 </td>
1095 <td class="left">
1096 Array of 40 32-bit integer values.<br/>
1097 Array of 41 32-bit integer values.<br/>
1098 Array of 40 8-bit integer values.<br/>
1099 </td>
1100 </tr>
1101</table>
1102<p>Here are some examples of multidimensional arrays:</p>
1103<table class="layout">
1104 <tr class="layout">
1105 <td class="left">
1106 <tt>[3 x [4 x i32]]</tt><br/>
1107 <tt>[12 x [10 x float]]</tt><br/>
1108 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1109 </td>
1110 <td class="left">
1111 3x4 array of 32-bit integer values.<br/>
1112 12x10 array of single precision floating point values.<br/>
1113 2x3x4 array of 16-bit integer values.<br/>
1114 </td>
1115 </tr>
1116</table>
1117
1118<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1119length array. Normally, accesses past the end of an array are undefined in
1120LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1121As a special case, however, zero length arrays are recognized to be variable
1122length. This allows implementation of 'pascal style arrays' with the LLVM
1123type "{ i32, [0 x float]}", for example.</p>
1124
1125</div>
1126
1127<!-- _______________________________________________________________________ -->
1128<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1129<div class="doc_text">
1130<h5>Overview:</h5>
1131<p>The function type can be thought of as a function signature. It
1132consists of a return type and a list of formal parameter types.
1133Function types are usually used to build virtual function tables
1134(which are structures of pointers to functions), for indirect function
1135calls, and when defining a function.</p>
1136<p>
1137The return type of a function type cannot be an aggregate type.
1138</p>
1139<h5>Syntax:</h5>
1140<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1141<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1142specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1143which indicates that the function takes a variable number of arguments.
1144Variable argument functions can access their arguments with the <a
1145 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1146<h5>Examples:</h5>
1147<table class="layout">
1148 <tr class="layout">
1149 <td class="left"><tt>i32 (i32)</tt></td>
1150 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1151 </td>
1152 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001153 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001154 </tt></td>
1155 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1156 an <tt>i16</tt> that should be sign extended and a
1157 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1158 <tt>float</tt>.
1159 </td>
1160 </tr><tr class="layout">
1161 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1162 <td class="left">A vararg function that takes at least one
1163 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1164 which returns an integer. This is the signature for <tt>printf</tt> in
1165 LLVM.
1166 </td>
1167 </tr>
1168</table>
1169
1170</div>
1171<!-- _______________________________________________________________________ -->
1172<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1173<div class="doc_text">
1174<h5>Overview:</h5>
1175<p>The structure type is used to represent a collection of data members
1176together in memory. The packing of the field types is defined to match
1177the ABI of the underlying processor. The elements of a structure may
1178be any type that has a size.</p>
1179<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1180and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1181field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1182instruction.</p>
1183<h5>Syntax:</h5>
1184<pre> { &lt;type list&gt; }<br></pre>
1185<h5>Examples:</h5>
1186<table class="layout">
1187 <tr class="layout">
1188 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1189 <td class="left">A triple of three <tt>i32</tt> values</td>
1190 </tr><tr class="layout">
1191 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1192 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1193 second element is a <a href="#t_pointer">pointer</a> to a
1194 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1195 an <tt>i32</tt>.</td>
1196 </tr>
1197</table>
1198</div>
1199
1200<!-- _______________________________________________________________________ -->
1201<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1202</div>
1203<div class="doc_text">
1204<h5>Overview:</h5>
1205<p>The packed structure type is used to represent a collection of data members
1206together in memory. There is no padding between fields. Further, the alignment
1207of a packed structure is 1 byte. The elements of a packed structure may
1208be any type that has a size.</p>
1209<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1210and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1211field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1212instruction.</p>
1213<h5>Syntax:</h5>
1214<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1215<h5>Examples:</h5>
1216<table class="layout">
1217 <tr class="layout">
1218 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1219 <td class="left">A triple of three <tt>i32</tt> values</td>
1220 </tr><tr class="layout">
1221 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1222 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1223 second element is a <a href="#t_pointer">pointer</a> to a
1224 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1225 an <tt>i32</tt>.</td>
1226 </tr>
1227</table>
1228</div>
1229
1230<!-- _______________________________________________________________________ -->
1231<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1232<div class="doc_text">
1233<h5>Overview:</h5>
1234<p>As in many languages, the pointer type represents a pointer or
1235reference to another object, which must live in memory.</p>
1236<h5>Syntax:</h5>
1237<pre> &lt;type&gt; *<br></pre>
1238<h5>Examples:</h5>
1239<table class="layout">
1240 <tr class="layout">
1241 <td class="left">
1242 <tt>[4x i32]*</tt><br/>
1243 <tt>i32 (i32 *) *</tt><br/>
1244 </td>
1245 <td class="left">
1246 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1247 four <tt>i32</tt> values<br/>
1248 A <a href="#t_pointer">pointer</a> to a <a
1249 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1250 <tt>i32</tt>.<br/>
1251 </td>
1252 </tr>
1253</table>
1254</div>
1255
1256<!-- _______________________________________________________________________ -->
1257<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1258<div class="doc_text">
1259
1260<h5>Overview:</h5>
1261
1262<p>A vector type is a simple derived type that represents a vector
1263of elements. Vector types are used when multiple primitive data
1264are operated in parallel using a single instruction (SIMD).
1265A vector type requires a size (number of
1266elements) and an underlying primitive data type. Vectors must have a power
1267of two length (1, 2, 4, 8, 16 ...). Vector types are
1268considered <a href="#t_firstclass">first class</a>.</p>
1269
1270<h5>Syntax:</h5>
1271
1272<pre>
1273 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1274</pre>
1275
1276<p>The number of elements is a constant integer value; elementtype may
1277be any integer or floating point type.</p>
1278
1279<h5>Examples:</h5>
1280
1281<table class="layout">
1282 <tr class="layout">
1283 <td class="left">
1284 <tt>&lt;4 x i32&gt;</tt><br/>
1285 <tt>&lt;8 x float&gt;</tt><br/>
1286 <tt>&lt;2 x i64&gt;</tt><br/>
1287 </td>
1288 <td class="left">
1289 Vector of 4 32-bit integer values.<br/>
1290 Vector of 8 floating-point values.<br/>
1291 Vector of 2 64-bit integer values.<br/>
1292 </td>
1293 </tr>
1294</table>
1295</div>
1296
1297<!-- _______________________________________________________________________ -->
1298<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1299<div class="doc_text">
1300
1301<h5>Overview:</h5>
1302
1303<p>Opaque types are used to represent unknown types in the system. This
1304corresponds (for example) to the C notion of a foward declared structure type.
1305In LLVM, opaque types can eventually be resolved to any type (not just a
1306structure type).</p>
1307
1308<h5>Syntax:</h5>
1309
1310<pre>
1311 opaque
1312</pre>
1313
1314<h5>Examples:</h5>
1315
1316<table class="layout">
1317 <tr class="layout">
1318 <td class="left">
1319 <tt>opaque</tt>
1320 </td>
1321 <td class="left">
1322 An opaque type.<br/>
1323 </td>
1324 </tr>
1325</table>
1326</div>
1327
1328
1329<!-- *********************************************************************** -->
1330<div class="doc_section"> <a name="constants">Constants</a> </div>
1331<!-- *********************************************************************** -->
1332
1333<div class="doc_text">
1334
1335<p>LLVM has several different basic types of constants. This section describes
1336them all and their syntax.</p>
1337
1338</div>
1339
1340<!-- ======================================================================= -->
1341<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1342
1343<div class="doc_text">
1344
1345<dl>
1346 <dt><b>Boolean constants</b></dt>
1347
1348 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1349 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1350 </dd>
1351
1352 <dt><b>Integer constants</b></dt>
1353
1354 <dd>Standard integers (such as '4') are constants of the <a
1355 href="#t_integer">integer</a> type. Negative numbers may be used with
1356 integer types.
1357 </dd>
1358
1359 <dt><b>Floating point constants</b></dt>
1360
1361 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1362 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1363 notation (see below). Floating point constants must have a <a
1364 href="#t_floating">floating point</a> type. </dd>
1365
1366 <dt><b>Null pointer constants</b></dt>
1367
1368 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1369 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1370
1371</dl>
1372
1373<p>The one non-intuitive notation for constants is the optional hexadecimal form
1374of floating point constants. For example, the form '<tt>double
13750x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13764.5e+15</tt>'. The only time hexadecimal floating point constants are required
1377(and the only time that they are generated by the disassembler) is when a
1378floating point constant must be emitted but it cannot be represented as a
1379decimal floating point number. For example, NaN's, infinities, and other
1380special values are represented in their IEEE hexadecimal format so that
1381assembly and disassembly do not cause any bits to change in the constants.</p>
1382
1383</div>
1384
1385<!-- ======================================================================= -->
1386<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1387</div>
1388
1389<div class="doc_text">
1390<p>Aggregate constants arise from aggregation of simple constants
1391and smaller aggregate constants.</p>
1392
1393<dl>
1394 <dt><b>Structure constants</b></dt>
1395
1396 <dd>Structure constants are represented with notation similar to structure
1397 type definitions (a comma separated list of elements, surrounded by braces
1398 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1399 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1400 must have <a href="#t_struct">structure type</a>, and the number and
1401 types of elements must match those specified by the type.
1402 </dd>
1403
1404 <dt><b>Array constants</b></dt>
1405
1406 <dd>Array constants are represented with notation similar to array type
1407 definitions (a comma separated list of elements, surrounded by square brackets
1408 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1409 constants must have <a href="#t_array">array type</a>, and the number and
1410 types of elements must match those specified by the type.
1411 </dd>
1412
1413 <dt><b>Vector constants</b></dt>
1414
1415 <dd>Vector constants are represented with notation similar to vector type
1416 definitions (a comma separated list of elements, surrounded by
1417 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1418 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1419 href="#t_vector">vector type</a>, and the number and types of elements must
1420 match those specified by the type.
1421 </dd>
1422
1423 <dt><b>Zero initialization</b></dt>
1424
1425 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1426 value to zero of <em>any</em> type, including scalar and aggregate types.
1427 This is often used to avoid having to print large zero initializers (e.g. for
1428 large arrays) and is always exactly equivalent to using explicit zero
1429 initializers.
1430 </dd>
1431</dl>
1432
1433</div>
1434
1435<!-- ======================================================================= -->
1436<div class="doc_subsection">
1437 <a name="globalconstants">Global Variable and Function Addresses</a>
1438</div>
1439
1440<div class="doc_text">
1441
1442<p>The addresses of <a href="#globalvars">global variables</a> and <a
1443href="#functionstructure">functions</a> are always implicitly valid (link-time)
1444constants. These constants are explicitly referenced when the <a
1445href="#identifiers">identifier for the global</a> is used and always have <a
1446href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1447file:</p>
1448
1449<div class="doc_code">
1450<pre>
1451@X = global i32 17
1452@Y = global i32 42
1453@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1454</pre>
1455</div>
1456
1457</div>
1458
1459<!-- ======================================================================= -->
1460<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1461<div class="doc_text">
1462 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1463 no specific value. Undefined values may be of any type and be used anywhere
1464 a constant is permitted.</p>
1465
1466 <p>Undefined values indicate to the compiler that the program is well defined
1467 no matter what value is used, giving the compiler more freedom to optimize.
1468 </p>
1469</div>
1470
1471<!-- ======================================================================= -->
1472<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1473</div>
1474
1475<div class="doc_text">
1476
1477<p>Constant expressions are used to allow expressions involving other constants
1478to be used as constants. Constant expressions may be of any <a
1479href="#t_firstclass">first class</a> type and may involve any LLVM operation
1480that does not have side effects (e.g. load and call are not supported). The
1481following is the syntax for constant expressions:</p>
1482
1483<dl>
1484 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1485 <dd>Truncate a constant to another type. The bit size of CST must be larger
1486 than the bit size of TYPE. Both types must be integers.</dd>
1487
1488 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1489 <dd>Zero extend a constant to another type. The bit size of CST must be
1490 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1491
1492 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1493 <dd>Sign extend a constant to another type. The bit size of CST must be
1494 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1495
1496 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1497 <dd>Truncate a floating point constant to another floating point type. The
1498 size of CST must be larger than the size of TYPE. Both types must be
1499 floating point.</dd>
1500
1501 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1502 <dd>Floating point extend a constant to another type. The size of CST must be
1503 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1504
Reid Spencere6adee82007-07-31 14:40:14 +00001505 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506 <dd>Convert a floating point constant to the corresponding unsigned integer
1507 constant. TYPE must be an integer type. CST must be floating point. If the
1508 value won't fit in the integer type, the results are undefined.</dd>
1509
1510 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1511 <dd>Convert a floating point constant to the corresponding signed integer
1512 constant. TYPE must be an integer type. CST must be floating point. If the
1513 value won't fit in the integer type, the results are undefined.</dd>
1514
1515 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1516 <dd>Convert an unsigned integer constant to the corresponding floating point
1517 constant. TYPE must be floating point. CST must be of integer type. If the
1518 value won't fit in the floating point type, the results are undefined.</dd>
1519
1520 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1521 <dd>Convert a signed integer constant to the corresponding floating point
1522 constant. TYPE must be floating point. CST must be of integer type. If the
1523 value won't fit in the floating point type, the results are undefined.</dd>
1524
1525 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1526 <dd>Convert a pointer typed constant to the corresponding integer constant
1527 TYPE must be an integer type. CST must be of pointer type. The CST value is
1528 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1529
1530 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1531 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1532 pointer type. CST must be of integer type. The CST value is zero extended,
1533 truncated, or unchanged to make it fit in a pointer size. This one is
1534 <i>really</i> dangerous!</dd>
1535
1536 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1537 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1538 identical (same number of bits). The conversion is done as if the CST value
1539 was stored to memory and read back as TYPE. In other words, no bits change
1540 with this operator, just the type. This can be used for conversion of
1541 vector types to any other type, as long as they have the same bit width. For
1542 pointers it is only valid to cast to another pointer type.
1543 </dd>
1544
1545 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1546
1547 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1548 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1549 instruction, the index list may have zero or more indexes, which are required
1550 to make sense for the type of "CSTPTR".</dd>
1551
1552 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1553
1554 <dd>Perform the <a href="#i_select">select operation</a> on
1555 constants.</dd>
1556
1557 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1558 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1559
1560 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1561 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1562
1563 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1564
1565 <dd>Perform the <a href="#i_extractelement">extractelement
1566 operation</a> on constants.
1567
1568 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1569
1570 <dd>Perform the <a href="#i_insertelement">insertelement
1571 operation</a> on constants.</dd>
1572
1573
1574 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1575
1576 <dd>Perform the <a href="#i_shufflevector">shufflevector
1577 operation</a> on constants.</dd>
1578
1579 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1580
1581 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1582 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1583 binary</a> operations. The constraints on operands are the same as those for
1584 the corresponding instruction (e.g. no bitwise operations on floating point
1585 values are allowed).</dd>
1586</dl>
1587</div>
1588
1589<!-- *********************************************************************** -->
1590<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1591<!-- *********************************************************************** -->
1592
1593<!-- ======================================================================= -->
1594<div class="doc_subsection">
1595<a name="inlineasm">Inline Assembler Expressions</a>
1596</div>
1597
1598<div class="doc_text">
1599
1600<p>
1601LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1602Module-Level Inline Assembly</a>) through the use of a special value. This
1603value represents the inline assembler as a string (containing the instructions
1604to emit), a list of operand constraints (stored as a string), and a flag that
1605indicates whether or not the inline asm expression has side effects. An example
1606inline assembler expression is:
1607</p>
1608
1609<div class="doc_code">
1610<pre>
1611i32 (i32) asm "bswap $0", "=r,r"
1612</pre>
1613</div>
1614
1615<p>
1616Inline assembler expressions may <b>only</b> be used as the callee operand of
1617a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1618</p>
1619
1620<div class="doc_code">
1621<pre>
1622%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1623</pre>
1624</div>
1625
1626<p>
1627Inline asms with side effects not visible in the constraint list must be marked
1628as having side effects. This is done through the use of the
1629'<tt>sideeffect</tt>' keyword, like so:
1630</p>
1631
1632<div class="doc_code">
1633<pre>
1634call void asm sideeffect "eieio", ""()
1635</pre>
1636</div>
1637
1638<p>TODO: The format of the asm and constraints string still need to be
1639documented here. Constraints on what can be done (e.g. duplication, moving, etc
1640need to be documented).
1641</p>
1642
1643</div>
1644
1645<!-- *********************************************************************** -->
1646<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1647<!-- *********************************************************************** -->
1648
1649<div class="doc_text">
1650
1651<p>The LLVM instruction set consists of several different
1652classifications of instructions: <a href="#terminators">terminator
1653instructions</a>, <a href="#binaryops">binary instructions</a>,
1654<a href="#bitwiseops">bitwise binary instructions</a>, <a
1655 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1656instructions</a>.</p>
1657
1658</div>
1659
1660<!-- ======================================================================= -->
1661<div class="doc_subsection"> <a name="terminators">Terminator
1662Instructions</a> </div>
1663
1664<div class="doc_text">
1665
1666<p>As mentioned <a href="#functionstructure">previously</a>, every
1667basic block in a program ends with a "Terminator" instruction, which
1668indicates which block should be executed after the current block is
1669finished. These terminator instructions typically yield a '<tt>void</tt>'
1670value: they produce control flow, not values (the one exception being
1671the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1672<p>There are six different terminator instructions: the '<a
1673 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1674instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1675the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1676 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1677 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1678
1679</div>
1680
1681<!-- _______________________________________________________________________ -->
1682<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1683Instruction</a> </div>
1684<div class="doc_text">
1685<h5>Syntax:</h5>
1686<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1687 ret void <i>; Return from void function</i>
1688</pre>
1689<h5>Overview:</h5>
1690<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1691value) from a function back to the caller.</p>
1692<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1693returns a value and then causes control flow, and one that just causes
1694control flow to occur.</p>
1695<h5>Arguments:</h5>
1696<p>The '<tt>ret</tt>' instruction may return any '<a
1697 href="#t_firstclass">first class</a>' type. Notice that a function is
1698not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1699instruction inside of the function that returns a value that does not
1700match the return type of the function.</p>
1701<h5>Semantics:</h5>
1702<p>When the '<tt>ret</tt>' instruction is executed, control flow
1703returns back to the calling function's context. If the caller is a "<a
1704 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1705the instruction after the call. If the caller was an "<a
1706 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1707at the beginning of the "normal" destination block. If the instruction
1708returns a value, that value shall set the call or invoke instruction's
1709return value.</p>
1710<h5>Example:</h5>
1711<pre> ret i32 5 <i>; Return an integer value of 5</i>
1712 ret void <i>; Return from a void function</i>
1713</pre>
1714</div>
1715<!-- _______________________________________________________________________ -->
1716<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1717<div class="doc_text">
1718<h5>Syntax:</h5>
1719<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1720</pre>
1721<h5>Overview:</h5>
1722<p>The '<tt>br</tt>' instruction is used to cause control flow to
1723transfer to a different basic block in the current function. There are
1724two forms of this instruction, corresponding to a conditional branch
1725and an unconditional branch.</p>
1726<h5>Arguments:</h5>
1727<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1728single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1729unconditional form of the '<tt>br</tt>' instruction takes a single
1730'<tt>label</tt>' value as a target.</p>
1731<h5>Semantics:</h5>
1732<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1733argument is evaluated. If the value is <tt>true</tt>, control flows
1734to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1735control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1736<h5>Example:</h5>
1737<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1738 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1739</div>
1740<!-- _______________________________________________________________________ -->
1741<div class="doc_subsubsection">
1742 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1743</div>
1744
1745<div class="doc_text">
1746<h5>Syntax:</h5>
1747
1748<pre>
1749 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1750</pre>
1751
1752<h5>Overview:</h5>
1753
1754<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1755several different places. It is a generalization of the '<tt>br</tt>'
1756instruction, allowing a branch to occur to one of many possible
1757destinations.</p>
1758
1759
1760<h5>Arguments:</h5>
1761
1762<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1763comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1764an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1765table is not allowed to contain duplicate constant entries.</p>
1766
1767<h5>Semantics:</h5>
1768
1769<p>The <tt>switch</tt> instruction specifies a table of values and
1770destinations. When the '<tt>switch</tt>' instruction is executed, this
1771table is searched for the given value. If the value is found, control flow is
1772transfered to the corresponding destination; otherwise, control flow is
1773transfered to the default destination.</p>
1774
1775<h5>Implementation:</h5>
1776
1777<p>Depending on properties of the target machine and the particular
1778<tt>switch</tt> instruction, this instruction may be code generated in different
1779ways. For example, it could be generated as a series of chained conditional
1780branches or with a lookup table.</p>
1781
1782<h5>Example:</h5>
1783
1784<pre>
1785 <i>; Emulate a conditional br instruction</i>
1786 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1787 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1788
1789 <i>; Emulate an unconditional br instruction</i>
1790 switch i32 0, label %dest [ ]
1791
1792 <i>; Implement a jump table:</i>
1793 switch i32 %val, label %otherwise [ i32 0, label %onzero
1794 i32 1, label %onone
1795 i32 2, label %ontwo ]
1796</pre>
1797</div>
1798
1799<!-- _______________________________________________________________________ -->
1800<div class="doc_subsubsection">
1801 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1802</div>
1803
1804<div class="doc_text">
1805
1806<h5>Syntax:</h5>
1807
1808<pre>
1809 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1810 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1811</pre>
1812
1813<h5>Overview:</h5>
1814
1815<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1816function, with the possibility of control flow transfer to either the
1817'<tt>normal</tt>' label or the
1818'<tt>exception</tt>' label. If the callee function returns with the
1819"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1820"normal" label. If the callee (or any indirect callees) returns with the "<a
1821href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1822continued at the dynamically nearest "exception" label.</p>
1823
1824<h5>Arguments:</h5>
1825
1826<p>This instruction requires several arguments:</p>
1827
1828<ol>
1829 <li>
1830 The optional "cconv" marker indicates which <a href="#callingconv">calling
1831 convention</a> the call should use. If none is specified, the call defaults
1832 to using C calling conventions.
1833 </li>
1834 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1835 function value being invoked. In most cases, this is a direct function
1836 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1837 an arbitrary pointer to function value.
1838 </li>
1839
1840 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1841 function to be invoked. </li>
1842
1843 <li>'<tt>function args</tt>': argument list whose types match the function
1844 signature argument types. If the function signature indicates the function
1845 accepts a variable number of arguments, the extra arguments can be
1846 specified. </li>
1847
1848 <li>'<tt>normal label</tt>': the label reached when the called function
1849 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1850
1851 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1852 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1853
1854</ol>
1855
1856<h5>Semantics:</h5>
1857
1858<p>This instruction is designed to operate as a standard '<tt><a
1859href="#i_call">call</a></tt>' instruction in most regards. The primary
1860difference is that it establishes an association with a label, which is used by
1861the runtime library to unwind the stack.</p>
1862
1863<p>This instruction is used in languages with destructors to ensure that proper
1864cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1865exception. Additionally, this is important for implementation of
1866'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1867
1868<h5>Example:</h5>
1869<pre>
1870 %retval = invoke i32 %Test(i32 15) to label %Continue
1871 unwind label %TestCleanup <i>; {i32}:retval set</i>
1872 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1873 unwind label %TestCleanup <i>; {i32}:retval set</i>
1874</pre>
1875</div>
1876
1877
1878<!-- _______________________________________________________________________ -->
1879
1880<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1881Instruction</a> </div>
1882
1883<div class="doc_text">
1884
1885<h5>Syntax:</h5>
1886<pre>
1887 unwind
1888</pre>
1889
1890<h5>Overview:</h5>
1891
1892<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1893at the first callee in the dynamic call stack which used an <a
1894href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1895primarily used to implement exception handling.</p>
1896
1897<h5>Semantics:</h5>
1898
1899<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1900immediately halt. The dynamic call stack is then searched for the first <a
1901href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1902execution continues at the "exceptional" destination block specified by the
1903<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1904dynamic call chain, undefined behavior results.</p>
1905</div>
1906
1907<!-- _______________________________________________________________________ -->
1908
1909<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1910Instruction</a> </div>
1911
1912<div class="doc_text">
1913
1914<h5>Syntax:</h5>
1915<pre>
1916 unreachable
1917</pre>
1918
1919<h5>Overview:</h5>
1920
1921<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1922instruction is used to inform the optimizer that a particular portion of the
1923code is not reachable. This can be used to indicate that the code after a
1924no-return function cannot be reached, and other facts.</p>
1925
1926<h5>Semantics:</h5>
1927
1928<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1929</div>
1930
1931
1932
1933<!-- ======================================================================= -->
1934<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1935<div class="doc_text">
1936<p>Binary operators are used to do most of the computation in a
1937program. They require two operands, execute an operation on them, and
1938produce a single value. The operands might represent
1939multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1940The result value of a binary operator is not
1941necessarily the same type as its operands.</p>
1942<p>There are several different binary operators:</p>
1943</div>
1944<!-- _______________________________________________________________________ -->
1945<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1946Instruction</a> </div>
1947<div class="doc_text">
1948<h5>Syntax:</h5>
1949<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1950</pre>
1951<h5>Overview:</h5>
1952<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1953<h5>Arguments:</h5>
1954<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1955 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1956 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1957Both arguments must have identical types.</p>
1958<h5>Semantics:</h5>
1959<p>The value produced is the integer or floating point sum of the two
1960operands.</p>
1961<h5>Example:</h5>
1962<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1963</pre>
1964</div>
1965<!-- _______________________________________________________________________ -->
1966<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1967Instruction</a> </div>
1968<div class="doc_text">
1969<h5>Syntax:</h5>
1970<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1971</pre>
1972<h5>Overview:</h5>
1973<p>The '<tt>sub</tt>' instruction returns the difference of its two
1974operands.</p>
1975<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1976instruction present in most other intermediate representations.</p>
1977<h5>Arguments:</h5>
1978<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1979 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1980values.
1981This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1982Both arguments must have identical types.</p>
1983<h5>Semantics:</h5>
1984<p>The value produced is the integer or floating point difference of
1985the two operands.</p>
1986<h5>Example:</h5>
1987<pre>
1988 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1989 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1990</pre>
1991</div>
1992<!-- _______________________________________________________________________ -->
1993<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1994Instruction</a> </div>
1995<div class="doc_text">
1996<h5>Syntax:</h5>
1997<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1998</pre>
1999<h5>Overview:</h5>
2000<p>The '<tt>mul</tt>' instruction returns the product of its two
2001operands.</p>
2002<h5>Arguments:</h5>
2003<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2004 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2005values.
2006This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2007Both arguments must have identical types.</p>
2008<h5>Semantics:</h5>
2009<p>The value produced is the integer or floating point product of the
2010two operands.</p>
2011<p>Because the operands are the same width, the result of an integer
2012multiplication is the same whether the operands should be deemed unsigned or
2013signed.</p>
2014<h5>Example:</h5>
2015<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2016</pre>
2017</div>
2018<!-- _______________________________________________________________________ -->
2019<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2020</a></div>
2021<div class="doc_text">
2022<h5>Syntax:</h5>
2023<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2024</pre>
2025<h5>Overview:</h5>
2026<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2027operands.</p>
2028<h5>Arguments:</h5>
2029<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2030<a href="#t_integer">integer</a> values. Both arguments must have identical
2031types. This instruction can also take <a href="#t_vector">vector</a> versions
2032of the values in which case the elements must be integers.</p>
2033<h5>Semantics:</h5>
2034<p>The value produced is the unsigned integer quotient of the two operands. This
2035instruction always performs an unsigned division operation, regardless of
2036whether the arguments are unsigned or not.</p>
2037<h5>Example:</h5>
2038<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2039</pre>
2040</div>
2041<!-- _______________________________________________________________________ -->
2042<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2043</a> </div>
2044<div class="doc_text">
2045<h5>Syntax:</h5>
2046<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2047</pre>
2048<h5>Overview:</h5>
2049<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2050operands.</p>
2051<h5>Arguments:</h5>
2052<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2053<a href="#t_integer">integer</a> values. Both arguments must have identical
2054types. This instruction can also take <a href="#t_vector">vector</a> versions
2055of the values in which case the elements must be integers.</p>
2056<h5>Semantics:</h5>
2057<p>The value produced is the signed integer quotient of the two operands. This
2058instruction always performs a signed division operation, regardless of whether
2059the arguments are signed or not.</p>
2060<h5>Example:</h5>
2061<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2062</pre>
2063</div>
2064<!-- _______________________________________________________________________ -->
2065<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2066Instruction</a> </div>
2067<div class="doc_text">
2068<h5>Syntax:</h5>
2069<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2070</pre>
2071<h5>Overview:</h5>
2072<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2073operands.</p>
2074<h5>Arguments:</h5>
2075<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2076<a href="#t_floating">floating point</a> values. Both arguments must have
2077identical types. This instruction can also take <a href="#t_vector">vector</a>
2078versions of floating point values.</p>
2079<h5>Semantics:</h5>
2080<p>The value produced is the floating point quotient of the two operands.</p>
2081<h5>Example:</h5>
2082<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2083</pre>
2084</div>
2085<!-- _______________________________________________________________________ -->
2086<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2087</div>
2088<div class="doc_text">
2089<h5>Syntax:</h5>
2090<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2091</pre>
2092<h5>Overview:</h5>
2093<p>The '<tt>urem</tt>' instruction returns the remainder from the
2094unsigned division of its two arguments.</p>
2095<h5>Arguments:</h5>
2096<p>The two arguments to the '<tt>urem</tt>' instruction must be
2097<a href="#t_integer">integer</a> values. Both arguments must have identical
2098types.</p>
2099<h5>Semantics:</h5>
2100<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2101This instruction always performs an unsigned division to get the remainder,
2102regardless of whether the arguments are unsigned or not.</p>
2103<h5>Example:</h5>
2104<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2105</pre>
2106
2107</div>
2108<!-- _______________________________________________________________________ -->
2109<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2110Instruction</a> </div>
2111<div class="doc_text">
2112<h5>Syntax:</h5>
2113<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2114</pre>
2115<h5>Overview:</h5>
2116<p>The '<tt>srem</tt>' instruction returns the remainder from the
2117signed division of its two operands.</p>
2118<h5>Arguments:</h5>
2119<p>The two arguments to the '<tt>srem</tt>' instruction must be
2120<a href="#t_integer">integer</a> values. Both arguments must have identical
2121types.</p>
2122<h5>Semantics:</h5>
2123<p>This instruction returns the <i>remainder</i> of a division (where the result
2124has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2125operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2126a value. For more information about the difference, see <a
2127 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2128Math Forum</a>. For a table of how this is implemented in various languages,
2129please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2130Wikipedia: modulo operation</a>.</p>
2131<h5>Example:</h5>
2132<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2133</pre>
2134
2135</div>
2136<!-- _______________________________________________________________________ -->
2137<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2138Instruction</a> </div>
2139<div class="doc_text">
2140<h5>Syntax:</h5>
2141<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2142</pre>
2143<h5>Overview:</h5>
2144<p>The '<tt>frem</tt>' instruction returns the remainder from the
2145division of its two operands.</p>
2146<h5>Arguments:</h5>
2147<p>The two arguments to the '<tt>frem</tt>' instruction must be
2148<a href="#t_floating">floating point</a> values. Both arguments must have
2149identical types.</p>
2150<h5>Semantics:</h5>
2151<p>This instruction returns the <i>remainder</i> of a division.</p>
2152<h5>Example:</h5>
2153<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2154</pre>
2155</div>
2156
2157<!-- ======================================================================= -->
2158<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2159Operations</a> </div>
2160<div class="doc_text">
2161<p>Bitwise binary operators are used to do various forms of
2162bit-twiddling in a program. They are generally very efficient
2163instructions and can commonly be strength reduced from other
2164instructions. They require two operands, execute an operation on them,
2165and produce a single value. The resulting value of the bitwise binary
2166operators is always the same type as its first operand.</p>
2167</div>
2168
2169<!-- _______________________________________________________________________ -->
2170<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2171Instruction</a> </div>
2172<div class="doc_text">
2173<h5>Syntax:</h5>
2174<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2175</pre>
2176<h5>Overview:</h5>
2177<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2178the left a specified number of bits.</p>
2179<h5>Arguments:</h5>
2180<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2181 href="#t_integer">integer</a> type.</p>
2182<h5>Semantics:</h5>
2183<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2184<h5>Example:</h5><pre>
2185 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2186 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2187 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2188</pre>
2189</div>
2190<!-- _______________________________________________________________________ -->
2191<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2192Instruction</a> </div>
2193<div class="doc_text">
2194<h5>Syntax:</h5>
2195<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2196</pre>
2197
2198<h5>Overview:</h5>
2199<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2200operand shifted to the right a specified number of bits with zero fill.</p>
2201
2202<h5>Arguments:</h5>
2203<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2204<a href="#t_integer">integer</a> type.</p>
2205
2206<h5>Semantics:</h5>
2207<p>This instruction always performs a logical shift right operation. The most
2208significant bits of the result will be filled with zero bits after the
2209shift.</p>
2210
2211<h5>Example:</h5>
2212<pre>
2213 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2214 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2215 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2216 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2217</pre>
2218</div>
2219
2220<!-- _______________________________________________________________________ -->
2221<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2222Instruction</a> </div>
2223<div class="doc_text">
2224
2225<h5>Syntax:</h5>
2226<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2227</pre>
2228
2229<h5>Overview:</h5>
2230<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2231operand shifted to the right a specified number of bits with sign extension.</p>
2232
2233<h5>Arguments:</h5>
2234<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2235<a href="#t_integer">integer</a> type.</p>
2236
2237<h5>Semantics:</h5>
2238<p>This instruction always performs an arithmetic shift right operation,
2239The most significant bits of the result will be filled with the sign bit
2240of <tt>var1</tt>.</p>
2241
2242<h5>Example:</h5>
2243<pre>
2244 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2245 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2246 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2247 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2248</pre>
2249</div>
2250
2251<!-- _______________________________________________________________________ -->
2252<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2253Instruction</a> </div>
2254<div class="doc_text">
2255<h5>Syntax:</h5>
2256<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2257</pre>
2258<h5>Overview:</h5>
2259<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2260its two operands.</p>
2261<h5>Arguments:</h5>
2262<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2263 href="#t_integer">integer</a> values. Both arguments must have
2264identical types.</p>
2265<h5>Semantics:</h5>
2266<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2267<p> </p>
2268<div style="align: center">
2269<table border="1" cellspacing="0" cellpadding="4">
2270 <tbody>
2271 <tr>
2272 <td>In0</td>
2273 <td>In1</td>
2274 <td>Out</td>
2275 </tr>
2276 <tr>
2277 <td>0</td>
2278 <td>0</td>
2279 <td>0</td>
2280 </tr>
2281 <tr>
2282 <td>0</td>
2283 <td>1</td>
2284 <td>0</td>
2285 </tr>
2286 <tr>
2287 <td>1</td>
2288 <td>0</td>
2289 <td>0</td>
2290 </tr>
2291 <tr>
2292 <td>1</td>
2293 <td>1</td>
2294 <td>1</td>
2295 </tr>
2296 </tbody>
2297</table>
2298</div>
2299<h5>Example:</h5>
2300<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2301 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2302 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2303</pre>
2304</div>
2305<!-- _______________________________________________________________________ -->
2306<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2307<div class="doc_text">
2308<h5>Syntax:</h5>
2309<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2310</pre>
2311<h5>Overview:</h5>
2312<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2313or of its two operands.</p>
2314<h5>Arguments:</h5>
2315<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2316 href="#t_integer">integer</a> values. Both arguments must have
2317identical types.</p>
2318<h5>Semantics:</h5>
2319<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2320<p> </p>
2321<div style="align: center">
2322<table border="1" cellspacing="0" cellpadding="4">
2323 <tbody>
2324 <tr>
2325 <td>In0</td>
2326 <td>In1</td>
2327 <td>Out</td>
2328 </tr>
2329 <tr>
2330 <td>0</td>
2331 <td>0</td>
2332 <td>0</td>
2333 </tr>
2334 <tr>
2335 <td>0</td>
2336 <td>1</td>
2337 <td>1</td>
2338 </tr>
2339 <tr>
2340 <td>1</td>
2341 <td>0</td>
2342 <td>1</td>
2343 </tr>
2344 <tr>
2345 <td>1</td>
2346 <td>1</td>
2347 <td>1</td>
2348 </tr>
2349 </tbody>
2350</table>
2351</div>
2352<h5>Example:</h5>
2353<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2354 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2355 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2356</pre>
2357</div>
2358<!-- _______________________________________________________________________ -->
2359<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2360Instruction</a> </div>
2361<div class="doc_text">
2362<h5>Syntax:</h5>
2363<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2364</pre>
2365<h5>Overview:</h5>
2366<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2367or of its two operands. The <tt>xor</tt> is used to implement the
2368"one's complement" operation, which is the "~" operator in C.</p>
2369<h5>Arguments:</h5>
2370<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2371 href="#t_integer">integer</a> values. Both arguments must have
2372identical types.</p>
2373<h5>Semantics:</h5>
2374<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2375<p> </p>
2376<div style="align: center">
2377<table border="1" cellspacing="0" cellpadding="4">
2378 <tbody>
2379 <tr>
2380 <td>In0</td>
2381 <td>In1</td>
2382 <td>Out</td>
2383 </tr>
2384 <tr>
2385 <td>0</td>
2386 <td>0</td>
2387 <td>0</td>
2388 </tr>
2389 <tr>
2390 <td>0</td>
2391 <td>1</td>
2392 <td>1</td>
2393 </tr>
2394 <tr>
2395 <td>1</td>
2396 <td>0</td>
2397 <td>1</td>
2398 </tr>
2399 <tr>
2400 <td>1</td>
2401 <td>1</td>
2402 <td>0</td>
2403 </tr>
2404 </tbody>
2405</table>
2406</div>
2407<p> </p>
2408<h5>Example:</h5>
2409<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2410 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2411 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2412 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2413</pre>
2414</div>
2415
2416<!-- ======================================================================= -->
2417<div class="doc_subsection">
2418 <a name="vectorops">Vector Operations</a>
2419</div>
2420
2421<div class="doc_text">
2422
2423<p>LLVM supports several instructions to represent vector operations in a
2424target-independent manner. These instructions cover the element-access and
2425vector-specific operations needed to process vectors effectively. While LLVM
2426does directly support these vector operations, many sophisticated algorithms
2427will want to use target-specific intrinsics to take full advantage of a specific
2428target.</p>
2429
2430</div>
2431
2432<!-- _______________________________________________________________________ -->
2433<div class="doc_subsubsection">
2434 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2435</div>
2436
2437<div class="doc_text">
2438
2439<h5>Syntax:</h5>
2440
2441<pre>
2442 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2443</pre>
2444
2445<h5>Overview:</h5>
2446
2447<p>
2448The '<tt>extractelement</tt>' instruction extracts a single scalar
2449element from a vector at a specified index.
2450</p>
2451
2452
2453<h5>Arguments:</h5>
2454
2455<p>
2456The first operand of an '<tt>extractelement</tt>' instruction is a
2457value of <a href="#t_vector">vector</a> type. The second operand is
2458an index indicating the position from which to extract the element.
2459The index may be a variable.</p>
2460
2461<h5>Semantics:</h5>
2462
2463<p>
2464The result is a scalar of the same type as the element type of
2465<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2466<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2467results are undefined.
2468</p>
2469
2470<h5>Example:</h5>
2471
2472<pre>
2473 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2474</pre>
2475</div>
2476
2477
2478<!-- _______________________________________________________________________ -->
2479<div class="doc_subsubsection">
2480 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2481</div>
2482
2483<div class="doc_text">
2484
2485<h5>Syntax:</h5>
2486
2487<pre>
2488 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2489</pre>
2490
2491<h5>Overview:</h5>
2492
2493<p>
2494The '<tt>insertelement</tt>' instruction inserts a scalar
2495element into a vector at a specified index.
2496</p>
2497
2498
2499<h5>Arguments:</h5>
2500
2501<p>
2502The first operand of an '<tt>insertelement</tt>' instruction is a
2503value of <a href="#t_vector">vector</a> type. The second operand is a
2504scalar value whose type must equal the element type of the first
2505operand. The third operand is an index indicating the position at
2506which to insert the value. The index may be a variable.</p>
2507
2508<h5>Semantics:</h5>
2509
2510<p>
2511The result is a vector of the same type as <tt>val</tt>. Its
2512element values are those of <tt>val</tt> except at position
2513<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2514exceeds the length of <tt>val</tt>, the results are undefined.
2515</p>
2516
2517<h5>Example:</h5>
2518
2519<pre>
2520 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2521</pre>
2522</div>
2523
2524<!-- _______________________________________________________________________ -->
2525<div class="doc_subsubsection">
2526 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2527</div>
2528
2529<div class="doc_text">
2530
2531<h5>Syntax:</h5>
2532
2533<pre>
2534 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2535</pre>
2536
2537<h5>Overview:</h5>
2538
2539<p>
2540The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2541from two input vectors, returning a vector of the same type.
2542</p>
2543
2544<h5>Arguments:</h5>
2545
2546<p>
2547The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2548with types that match each other and types that match the result of the
2549instruction. The third argument is a shuffle mask, which has the same number
2550of elements as the other vector type, but whose element type is always 'i32'.
2551</p>
2552
2553<p>
2554The shuffle mask operand is required to be a constant vector with either
2555constant integer or undef values.
2556</p>
2557
2558<h5>Semantics:</h5>
2559
2560<p>
2561The elements of the two input vectors are numbered from left to right across
2562both of the vectors. The shuffle mask operand specifies, for each element of
2563the result vector, which element of the two input registers the result element
2564gets. The element selector may be undef (meaning "don't care") and the second
2565operand may be undef if performing a shuffle from only one vector.
2566</p>
2567
2568<h5>Example:</h5>
2569
2570<pre>
2571 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2572 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2573 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2574 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2575</pre>
2576</div>
2577
2578
2579<!-- ======================================================================= -->
2580<div class="doc_subsection">
2581 <a name="memoryops">Memory Access and Addressing Operations</a>
2582</div>
2583
2584<div class="doc_text">
2585
2586<p>A key design point of an SSA-based representation is how it
2587represents memory. In LLVM, no memory locations are in SSA form, which
2588makes things very simple. This section describes how to read, write,
2589allocate, and free memory in LLVM.</p>
2590
2591</div>
2592
2593<!-- _______________________________________________________________________ -->
2594<div class="doc_subsubsection">
2595 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2596</div>
2597
2598<div class="doc_text">
2599
2600<h5>Syntax:</h5>
2601
2602<pre>
2603 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2604</pre>
2605
2606<h5>Overview:</h5>
2607
2608<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2609heap and returns a pointer to it.</p>
2610
2611<h5>Arguments:</h5>
2612
2613<p>The '<tt>malloc</tt>' instruction allocates
2614<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2615bytes of memory from the operating system and returns a pointer of the
2616appropriate type to the program. If "NumElements" is specified, it is the
2617number of elements allocated. If an alignment is specified, the value result
2618of the allocation is guaranteed to be aligned to at least that boundary. If
2619not specified, or if zero, the target can choose to align the allocation on any
2620convenient boundary.</p>
2621
2622<p>'<tt>type</tt>' must be a sized type.</p>
2623
2624<h5>Semantics:</h5>
2625
2626<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2627a pointer is returned.</p>
2628
2629<h5>Example:</h5>
2630
2631<pre>
2632 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2633
2634 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2635 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2636 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2637 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2638 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2639</pre>
2640</div>
2641
2642<!-- _______________________________________________________________________ -->
2643<div class="doc_subsubsection">
2644 <a name="i_free">'<tt>free</tt>' Instruction</a>
2645</div>
2646
2647<div class="doc_text">
2648
2649<h5>Syntax:</h5>
2650
2651<pre>
2652 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2653</pre>
2654
2655<h5>Overview:</h5>
2656
2657<p>The '<tt>free</tt>' instruction returns memory back to the unused
2658memory heap to be reallocated in the future.</p>
2659
2660<h5>Arguments:</h5>
2661
2662<p>'<tt>value</tt>' shall be a pointer value that points to a value
2663that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2664instruction.</p>
2665
2666<h5>Semantics:</h5>
2667
2668<p>Access to the memory pointed to by the pointer is no longer defined
2669after this instruction executes.</p>
2670
2671<h5>Example:</h5>
2672
2673<pre>
2674 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2675 free [4 x i8]* %array
2676</pre>
2677</div>
2678
2679<!-- _______________________________________________________________________ -->
2680<div class="doc_subsubsection">
2681 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2682</div>
2683
2684<div class="doc_text">
2685
2686<h5>Syntax:</h5>
2687
2688<pre>
2689 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2690</pre>
2691
2692<h5>Overview:</h5>
2693
2694<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2695currently executing function, to be automatically released when this function
2696returns to its caller.</p>
2697
2698<h5>Arguments:</h5>
2699
2700<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2701bytes of memory on the runtime stack, returning a pointer of the
2702appropriate type to the program. If "NumElements" is specified, it is the
2703number of elements allocated. If an alignment is specified, the value result
2704of the allocation is guaranteed to be aligned to at least that boundary. If
2705not specified, or if zero, the target can choose to align the allocation on any
2706convenient boundary.</p>
2707
2708<p>'<tt>type</tt>' may be any sized type.</p>
2709
2710<h5>Semantics:</h5>
2711
2712<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2713memory is automatically released when the function returns. The '<tt>alloca</tt>'
2714instruction is commonly used to represent automatic variables that must
2715have an address available. When the function returns (either with the <tt><a
2716 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2717instructions), the memory is reclaimed.</p>
2718
2719<h5>Example:</h5>
2720
2721<pre>
2722 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2723 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2724 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2725 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2726</pre>
2727</div>
2728
2729<!-- _______________________________________________________________________ -->
2730<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2731Instruction</a> </div>
2732<div class="doc_text">
2733<h5>Syntax:</h5>
2734<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2735<h5>Overview:</h5>
2736<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2737<h5>Arguments:</h5>
2738<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2739address from which to load. The pointer must point to a <a
2740 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2741marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2742the number or order of execution of this <tt>load</tt> with other
2743volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2744instructions. </p>
2745<h5>Semantics:</h5>
2746<p>The location of memory pointed to is loaded.</p>
2747<h5>Examples:</h5>
2748<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2749 <a
2750 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2751 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2752</pre>
2753</div>
2754<!-- _______________________________________________________________________ -->
2755<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2756Instruction</a> </div>
2757<div class="doc_text">
2758<h5>Syntax:</h5>
2759<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2760 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2761</pre>
2762<h5>Overview:</h5>
2763<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2764<h5>Arguments:</h5>
2765<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2766to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2767operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2768operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2769optimizer is not allowed to modify the number or order of execution of
2770this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2771 href="#i_store">store</a></tt> instructions.</p>
2772<h5>Semantics:</h5>
2773<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2774at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2775<h5>Example:</h5>
2776<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2777 <a
2778 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2779 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2780</pre>
2781</div>
2782
2783<!-- _______________________________________________________________________ -->
2784<div class="doc_subsubsection">
2785 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2786</div>
2787
2788<div class="doc_text">
2789<h5>Syntax:</h5>
2790<pre>
2791 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2792</pre>
2793
2794<h5>Overview:</h5>
2795
2796<p>
2797The '<tt>getelementptr</tt>' instruction is used to get the address of a
2798subelement of an aggregate data structure.</p>
2799
2800<h5>Arguments:</h5>
2801
2802<p>This instruction takes a list of integer operands that indicate what
2803elements of the aggregate object to index to. The actual types of the arguments
2804provided depend on the type of the first pointer argument. The
2805'<tt>getelementptr</tt>' instruction is used to index down through the type
2806levels of a structure or to a specific index in an array. When indexing into a
2807structure, only <tt>i32</tt> integer constants are allowed. When indexing
2808into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2809be sign extended to 64-bit values.</p>
2810
2811<p>For example, let's consider a C code fragment and how it gets
2812compiled to LLVM:</p>
2813
2814<div class="doc_code">
2815<pre>
2816struct RT {
2817 char A;
2818 int B[10][20];
2819 char C;
2820};
2821struct ST {
2822 int X;
2823 double Y;
2824 struct RT Z;
2825};
2826
2827int *foo(struct ST *s) {
2828 return &amp;s[1].Z.B[5][13];
2829}
2830</pre>
2831</div>
2832
2833<p>The LLVM code generated by the GCC frontend is:</p>
2834
2835<div class="doc_code">
2836<pre>
2837%RT = type { i8 , [10 x [20 x i32]], i8 }
2838%ST = type { i32, double, %RT }
2839
2840define i32* %foo(%ST* %s) {
2841entry:
2842 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2843 ret i32* %reg
2844}
2845</pre>
2846</div>
2847
2848<h5>Semantics:</h5>
2849
2850<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2851on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2852and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2853<a href="#t_integer">integer</a> type but the value will always be sign extended
2854to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2855<b>constants</b>.</p>
2856
2857<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2858type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2859}</tt>' type, a structure. The second index indexes into the third element of
2860the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2861i8 }</tt>' type, another structure. The third index indexes into the second
2862element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2863array. The two dimensions of the array are subscripted into, yielding an
2864'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2865to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2866
2867<p>Note that it is perfectly legal to index partially through a
2868structure, returning a pointer to an inner element. Because of this,
2869the LLVM code for the given testcase is equivalent to:</p>
2870
2871<pre>
2872 define i32* %foo(%ST* %s) {
2873 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2874 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2875 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2876 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2877 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2878 ret i32* %t5
2879 }
2880</pre>
2881
2882<p>Note that it is undefined to access an array out of bounds: array and
2883pointer indexes must always be within the defined bounds of the array type.
2884The one exception for this rules is zero length arrays. These arrays are
2885defined to be accessible as variable length arrays, which requires access
2886beyond the zero'th element.</p>
2887
2888<p>The getelementptr instruction is often confusing. For some more insight
2889into how it works, see <a href="GetElementPtr.html">the getelementptr
2890FAQ</a>.</p>
2891
2892<h5>Example:</h5>
2893
2894<pre>
2895 <i>; yields [12 x i8]*:aptr</i>
2896 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2897</pre>
2898</div>
2899
2900<!-- ======================================================================= -->
2901<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2902</div>
2903<div class="doc_text">
2904<p>The instructions in this category are the conversion instructions (casting)
2905which all take a single operand and a type. They perform various bit conversions
2906on the operand.</p>
2907</div>
2908
2909<!-- _______________________________________________________________________ -->
2910<div class="doc_subsubsection">
2911 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2912</div>
2913<div class="doc_text">
2914
2915<h5>Syntax:</h5>
2916<pre>
2917 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2918</pre>
2919
2920<h5>Overview:</h5>
2921<p>
2922The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2923</p>
2924
2925<h5>Arguments:</h5>
2926<p>
2927The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2928be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2929and type of the result, which must be an <a href="#t_integer">integer</a>
2930type. The bit size of <tt>value</tt> must be larger than the bit size of
2931<tt>ty2</tt>. Equal sized types are not allowed.</p>
2932
2933<h5>Semantics:</h5>
2934<p>
2935The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2936and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2937larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2938It will always truncate bits.</p>
2939
2940<h5>Example:</h5>
2941<pre>
2942 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2943 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2944 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2945</pre>
2946</div>
2947
2948<!-- _______________________________________________________________________ -->
2949<div class="doc_subsubsection">
2950 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2951</div>
2952<div class="doc_text">
2953
2954<h5>Syntax:</h5>
2955<pre>
2956 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2957</pre>
2958
2959<h5>Overview:</h5>
2960<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2961<tt>ty2</tt>.</p>
2962
2963
2964<h5>Arguments:</h5>
2965<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2966<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2967also be of <a href="#t_integer">integer</a> type. The bit size of the
2968<tt>value</tt> must be smaller than the bit size of the destination type,
2969<tt>ty2</tt>.</p>
2970
2971<h5>Semantics:</h5>
2972<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2973bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2974
2975<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2976
2977<h5>Example:</h5>
2978<pre>
2979 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2980 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2981</pre>
2982</div>
2983
2984<!-- _______________________________________________________________________ -->
2985<div class="doc_subsubsection">
2986 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2987</div>
2988<div class="doc_text">
2989
2990<h5>Syntax:</h5>
2991<pre>
2992 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2993</pre>
2994
2995<h5>Overview:</h5>
2996<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2997
2998<h5>Arguments:</h5>
2999<p>
3000The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3001<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3002also be of <a href="#t_integer">integer</a> type. The bit size of the
3003<tt>value</tt> must be smaller than the bit size of the destination type,
3004<tt>ty2</tt>.</p>
3005
3006<h5>Semantics:</h5>
3007<p>
3008The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3009bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3010the type <tt>ty2</tt>.</p>
3011
3012<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3013
3014<h5>Example:</h5>
3015<pre>
3016 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3017 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3018</pre>
3019</div>
3020
3021<!-- _______________________________________________________________________ -->
3022<div class="doc_subsubsection">
3023 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3024</div>
3025
3026<div class="doc_text">
3027
3028<h5>Syntax:</h5>
3029
3030<pre>
3031 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3032</pre>
3033
3034<h5>Overview:</h5>
3035<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3036<tt>ty2</tt>.</p>
3037
3038
3039<h5>Arguments:</h5>
3040<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3041 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3042cast it to. The size of <tt>value</tt> must be larger than the size of
3043<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3044<i>no-op cast</i>.</p>
3045
3046<h5>Semantics:</h5>
3047<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3048<a href="#t_floating">floating point</a> type to a smaller
3049<a href="#t_floating">floating point</a> type. If the value cannot fit within
3050the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3051
3052<h5>Example:</h5>
3053<pre>
3054 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3055 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3056</pre>
3057</div>
3058
3059<!-- _______________________________________________________________________ -->
3060<div class="doc_subsubsection">
3061 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3062</div>
3063<div class="doc_text">
3064
3065<h5>Syntax:</h5>
3066<pre>
3067 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3068</pre>
3069
3070<h5>Overview:</h5>
3071<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3072floating point value.</p>
3073
3074<h5>Arguments:</h5>
3075<p>The '<tt>fpext</tt>' instruction takes a
3076<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3077and a <a href="#t_floating">floating point</a> type to cast it to. The source
3078type must be smaller than the destination type.</p>
3079
3080<h5>Semantics:</h5>
3081<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3082<a href="#t_floating">floating point</a> type to a larger
3083<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3084used to make a <i>no-op cast</i> because it always changes bits. Use
3085<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3086
3087<h5>Example:</h5>
3088<pre>
3089 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3090 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3091</pre>
3092</div>
3093
3094<!-- _______________________________________________________________________ -->
3095<div class="doc_subsubsection">
3096 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3097</div>
3098<div class="doc_text">
3099
3100<h5>Syntax:</h5>
3101<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003102 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003103</pre>
3104
3105<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003106<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003107unsigned integer equivalent of type <tt>ty2</tt>.
3108</p>
3109
3110<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003111<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3113must be an <a href="#t_integer">integer</a> type.</p>
3114
3115<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003116<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003117<a href="#t_floating">floating point</a> operand into the nearest (rounding
3118towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3119the results are undefined.</p>
3120
3121<p>When converting to i1, the conversion is done as a comparison against
3122zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3123If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3124
3125<h5>Example:</h5>
3126<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003127 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
3128 %Y = fptoui float 1.0E+300 to i1 <i>; yields i1:true</i>
3129 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003130</pre>
3131</div>
3132
3133<!-- _______________________________________________________________________ -->
3134<div class="doc_subsubsection">
3135 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3136</div>
3137<div class="doc_text">
3138
3139<h5>Syntax:</h5>
3140<pre>
3141 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3142</pre>
3143
3144<h5>Overview:</h5>
3145<p>The '<tt>fptosi</tt>' instruction converts
3146<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3147</p>
3148
3149
3150<h5>Arguments:</h5>
3151<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3152<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3153must also be an <a href="#t_integer">integer</a> type.</p>
3154
3155<h5>Semantics:</h5>
3156<p>The '<tt>fptosi</tt>' instruction converts its
3157<a href="#t_floating">floating point</a> operand into the nearest (rounding
3158towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3159the results are undefined.</p>
3160
3161<p>When converting to i1, the conversion is done as a comparison against
3162zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3163If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3164
3165<h5>Example:</h5>
3166<pre>
3167 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3168 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3169 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3170</pre>
3171</div>
3172
3173<!-- _______________________________________________________________________ -->
3174<div class="doc_subsubsection">
3175 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3176</div>
3177<div class="doc_text">
3178
3179<h5>Syntax:</h5>
3180<pre>
3181 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3182</pre>
3183
3184<h5>Overview:</h5>
3185<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3186integer and converts that value to the <tt>ty2</tt> type.</p>
3187
3188
3189<h5>Arguments:</h5>
3190<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3191<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3192be a <a href="#t_floating">floating point</a> type.</p>
3193
3194<h5>Semantics:</h5>
3195<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3196integer quantity and converts it to the corresponding floating point value. If
3197the value cannot fit in the floating point value, the results are undefined.</p>
3198
3199
3200<h5>Example:</h5>
3201<pre>
3202 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3203 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3204</pre>
3205</div>
3206
3207<!-- _______________________________________________________________________ -->
3208<div class="doc_subsubsection">
3209 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3210</div>
3211<div class="doc_text">
3212
3213<h5>Syntax:</h5>
3214<pre>
3215 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3216</pre>
3217
3218<h5>Overview:</h5>
3219<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3220integer and converts that value to the <tt>ty2</tt> type.</p>
3221
3222<h5>Arguments:</h5>
3223<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3224<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3225a <a href="#t_floating">floating point</a> type.</p>
3226
3227<h5>Semantics:</h5>
3228<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3229integer quantity and converts it to the corresponding floating point value. If
3230the value cannot fit in the floating point value, the results are undefined.</p>
3231
3232<h5>Example:</h5>
3233<pre>
3234 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3235 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3236</pre>
3237</div>
3238
3239<!-- _______________________________________________________________________ -->
3240<div class="doc_subsubsection">
3241 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3242</div>
3243<div class="doc_text">
3244
3245<h5>Syntax:</h5>
3246<pre>
3247 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3248</pre>
3249
3250<h5>Overview:</h5>
3251<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3252the integer type <tt>ty2</tt>.</p>
3253
3254<h5>Arguments:</h5>
3255<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3256must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3257<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3258
3259<h5>Semantics:</h5>
3260<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3261<tt>ty2</tt> by interpreting the pointer value as an integer and either
3262truncating or zero extending that value to the size of the integer type. If
3263<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3264<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3265are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3266change.</p>
3267
3268<h5>Example:</h5>
3269<pre>
3270 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3271 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3272</pre>
3273</div>
3274
3275<!-- _______________________________________________________________________ -->
3276<div class="doc_subsubsection">
3277 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3278</div>
3279<div class="doc_text">
3280
3281<h5>Syntax:</h5>
3282<pre>
3283 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3284</pre>
3285
3286<h5>Overview:</h5>
3287<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3288a pointer type, <tt>ty2</tt>.</p>
3289
3290<h5>Arguments:</h5>
3291<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3292value to cast, and a type to cast it to, which must be a
3293<a href="#t_pointer">pointer</a> type.
3294
3295<h5>Semantics:</h5>
3296<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3297<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3298the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3299size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3300the size of a pointer then a zero extension is done. If they are the same size,
3301nothing is done (<i>no-op cast</i>).</p>
3302
3303<h5>Example:</h5>
3304<pre>
3305 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3306 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3307 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3308</pre>
3309</div>
3310
3311<!-- _______________________________________________________________________ -->
3312<div class="doc_subsubsection">
3313 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3314</div>
3315<div class="doc_text">
3316
3317<h5>Syntax:</h5>
3318<pre>
3319 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3320</pre>
3321
3322<h5>Overview:</h5>
3323<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3324<tt>ty2</tt> without changing any bits.</p>
3325
3326<h5>Arguments:</h5>
3327<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3328a first class value, and a type to cast it to, which must also be a <a
3329 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3330and the destination type, <tt>ty2</tt>, must be identical. If the source
3331type is a pointer, the destination type must also be a pointer.</p>
3332
3333<h5>Semantics:</h5>
3334<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3335<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3336this conversion. The conversion is done as if the <tt>value</tt> had been
3337stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3338converted to other pointer types with this instruction. To convert pointers to
3339other types, use the <a href="#i_inttoptr">inttoptr</a> or
3340<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3341
3342<h5>Example:</h5>
3343<pre>
3344 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3345 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3346 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3347</pre>
3348</div>
3349
3350<!-- ======================================================================= -->
3351<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3352<div class="doc_text">
3353<p>The instructions in this category are the "miscellaneous"
3354instructions, which defy better classification.</p>
3355</div>
3356
3357<!-- _______________________________________________________________________ -->
3358<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3359</div>
3360<div class="doc_text">
3361<h5>Syntax:</h5>
3362<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3363</pre>
3364<h5>Overview:</h5>
3365<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3366of its two integer operands.</p>
3367<h5>Arguments:</h5>
3368<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3369the condition code indicating the kind of comparison to perform. It is not
3370a value, just a keyword. The possible condition code are:
3371<ol>
3372 <li><tt>eq</tt>: equal</li>
3373 <li><tt>ne</tt>: not equal </li>
3374 <li><tt>ugt</tt>: unsigned greater than</li>
3375 <li><tt>uge</tt>: unsigned greater or equal</li>
3376 <li><tt>ult</tt>: unsigned less than</li>
3377 <li><tt>ule</tt>: unsigned less or equal</li>
3378 <li><tt>sgt</tt>: signed greater than</li>
3379 <li><tt>sge</tt>: signed greater or equal</li>
3380 <li><tt>slt</tt>: signed less than</li>
3381 <li><tt>sle</tt>: signed less or equal</li>
3382</ol>
3383<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3384<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3385<h5>Semantics:</h5>
3386<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3387the condition code given as <tt>cond</tt>. The comparison performed always
3388yields a <a href="#t_primitive">i1</a> result, as follows:
3389<ol>
3390 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3391 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3392 </li>
3393 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3394 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3395 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3396 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3397 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3398 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3399 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3400 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3401 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3402 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3403 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3404 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3405 <li><tt>sge</tt>: interprets the operands as signed values and yields
3406 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3407 <li><tt>slt</tt>: interprets the operands as signed values and yields
3408 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3409 <li><tt>sle</tt>: interprets the operands as signed values and yields
3410 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3411</ol>
3412<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3413values are compared as if they were integers.</p>
3414
3415<h5>Example:</h5>
3416<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3417 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3418 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3419 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3420 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3421 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3422</pre>
3423</div>
3424
3425<!-- _______________________________________________________________________ -->
3426<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3427</div>
3428<div class="doc_text">
3429<h5>Syntax:</h5>
3430<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3431</pre>
3432<h5>Overview:</h5>
3433<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3434of its floating point operands.</p>
3435<h5>Arguments:</h5>
3436<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3437the condition code indicating the kind of comparison to perform. It is not
3438a value, just a keyword. The possible condition code are:
3439<ol>
3440 <li><tt>false</tt>: no comparison, always returns false</li>
3441 <li><tt>oeq</tt>: ordered and equal</li>
3442 <li><tt>ogt</tt>: ordered and greater than </li>
3443 <li><tt>oge</tt>: ordered and greater than or equal</li>
3444 <li><tt>olt</tt>: ordered and less than </li>
3445 <li><tt>ole</tt>: ordered and less than or equal</li>
3446 <li><tt>one</tt>: ordered and not equal</li>
3447 <li><tt>ord</tt>: ordered (no nans)</li>
3448 <li><tt>ueq</tt>: unordered or equal</li>
3449 <li><tt>ugt</tt>: unordered or greater than </li>
3450 <li><tt>uge</tt>: unordered or greater than or equal</li>
3451 <li><tt>ult</tt>: unordered or less than </li>
3452 <li><tt>ule</tt>: unordered or less than or equal</li>
3453 <li><tt>une</tt>: unordered or not equal</li>
3454 <li><tt>uno</tt>: unordered (either nans)</li>
3455 <li><tt>true</tt>: no comparison, always returns true</li>
3456</ol>
3457<p><i>Ordered</i> means that neither operand is a QNAN while
3458<i>unordered</i> means that either operand may be a QNAN.</p>
3459<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3460<a href="#t_floating">floating point</a> typed. They must have identical
3461types.</p>
3462<h5>Semantics:</h5>
3463<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3464the condition code given as <tt>cond</tt>. The comparison performed always
3465yields a <a href="#t_primitive">i1</a> result, as follows:
3466<ol>
3467 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3468 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3469 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3470 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3471 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3472 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3473 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3474 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3475 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3476 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3477 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3478 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3479 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3480 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3481 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3482 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3483 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3484 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3485 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3486 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3487 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3488 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3489 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3490 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3491 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3492 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3493 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3494 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3495</ol>
3496
3497<h5>Example:</h5>
3498<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3499 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3500 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3501 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3502</pre>
3503</div>
3504
3505<!-- _______________________________________________________________________ -->
3506<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3507Instruction</a> </div>
3508<div class="doc_text">
3509<h5>Syntax:</h5>
3510<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3511<h5>Overview:</h5>
3512<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3513the SSA graph representing the function.</p>
3514<h5>Arguments:</h5>
3515<p>The type of the incoming values is specified with the first type
3516field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3517as arguments, with one pair for each predecessor basic block of the
3518current block. Only values of <a href="#t_firstclass">first class</a>
3519type may be used as the value arguments to the PHI node. Only labels
3520may be used as the label arguments.</p>
3521<p>There must be no non-phi instructions between the start of a basic
3522block and the PHI instructions: i.e. PHI instructions must be first in
3523a basic block.</p>
3524<h5>Semantics:</h5>
3525<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3526specified by the pair corresponding to the predecessor basic block that executed
3527just prior to the current block.</p>
3528<h5>Example:</h5>
3529<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3530</div>
3531
3532<!-- _______________________________________________________________________ -->
3533<div class="doc_subsubsection">
3534 <a name="i_select">'<tt>select</tt>' Instruction</a>
3535</div>
3536
3537<div class="doc_text">
3538
3539<h5>Syntax:</h5>
3540
3541<pre>
3542 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3543</pre>
3544
3545<h5>Overview:</h5>
3546
3547<p>
3548The '<tt>select</tt>' instruction is used to choose one value based on a
3549condition, without branching.
3550</p>
3551
3552
3553<h5>Arguments:</h5>
3554
3555<p>
3556The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3557</p>
3558
3559<h5>Semantics:</h5>
3560
3561<p>
3562If the boolean condition evaluates to true, the instruction returns the first
3563value argument; otherwise, it returns the second value argument.
3564</p>
3565
3566<h5>Example:</h5>
3567
3568<pre>
3569 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3570</pre>
3571</div>
3572
3573
3574<!-- _______________________________________________________________________ -->
3575<div class="doc_subsubsection">
3576 <a name="i_call">'<tt>call</tt>' Instruction</a>
3577</div>
3578
3579<div class="doc_text">
3580
3581<h5>Syntax:</h5>
3582<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003583 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003584</pre>
3585
3586<h5>Overview:</h5>
3587
3588<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3589
3590<h5>Arguments:</h5>
3591
3592<p>This instruction requires several arguments:</p>
3593
3594<ol>
3595 <li>
3596 <p>The optional "tail" marker indicates whether the callee function accesses
3597 any allocas or varargs in the caller. If the "tail" marker is present, the
3598 function call is eligible for tail call optimization. Note that calls may
3599 be marked "tail" even if they do not occur before a <a
3600 href="#i_ret"><tt>ret</tt></a> instruction.
3601 </li>
3602 <li>
3603 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3604 convention</a> the call should use. If none is specified, the call defaults
3605 to using C calling conventions.
3606 </li>
3607 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003608 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3609 the type of the return value. Functions that return no value are marked
3610 <tt><a href="#t_void">void</a></tt>.</p>
3611 </li>
3612 <li>
3613 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3614 value being invoked. The argument types must match the types implied by
3615 this signature. This type can be omitted if the function is not varargs
3616 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003617 </li>
3618 <li>
3619 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3620 be invoked. In most cases, this is a direct function invocation, but
3621 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3622 to function value.</p>
3623 </li>
3624 <li>
3625 <p>'<tt>function args</tt>': argument list whose types match the
3626 function signature argument types. All arguments must be of
3627 <a href="#t_firstclass">first class</a> type. If the function signature
3628 indicates the function accepts a variable number of arguments, the extra
3629 arguments can be specified.</p>
3630 </li>
3631</ol>
3632
3633<h5>Semantics:</h5>
3634
3635<p>The '<tt>call</tt>' instruction is used to cause control flow to
3636transfer to a specified function, with its incoming arguments bound to
3637the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3638instruction in the called function, control flow continues with the
3639instruction after the function call, and the return value of the
3640function is bound to the result argument. This is a simpler case of
3641the <a href="#i_invoke">invoke</a> instruction.</p>
3642
3643<h5>Example:</h5>
3644
3645<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003646 %retval = call i32 @test(i32 %argc)
3647 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3648 %X = tail call i32 @foo()
3649 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3650 %Z = call void %foo(i8 97 signext)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003651</pre>
3652
3653</div>
3654
3655<!-- _______________________________________________________________________ -->
3656<div class="doc_subsubsection">
3657 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3658</div>
3659
3660<div class="doc_text">
3661
3662<h5>Syntax:</h5>
3663
3664<pre>
3665 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3666</pre>
3667
3668<h5>Overview:</h5>
3669
3670<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3671the "variable argument" area of a function call. It is used to implement the
3672<tt>va_arg</tt> macro in C.</p>
3673
3674<h5>Arguments:</h5>
3675
3676<p>This instruction takes a <tt>va_list*</tt> value and the type of
3677the argument. It returns a value of the specified argument type and
3678increments the <tt>va_list</tt> to point to the next argument. The
3679actual type of <tt>va_list</tt> is target specific.</p>
3680
3681<h5>Semantics:</h5>
3682
3683<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3684type from the specified <tt>va_list</tt> and causes the
3685<tt>va_list</tt> to point to the next argument. For more information,
3686see the variable argument handling <a href="#int_varargs">Intrinsic
3687Functions</a>.</p>
3688
3689<p>It is legal for this instruction to be called in a function which does not
3690take a variable number of arguments, for example, the <tt>vfprintf</tt>
3691function.</p>
3692
3693<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3694href="#intrinsics">intrinsic function</a> because it takes a type as an
3695argument.</p>
3696
3697<h5>Example:</h5>
3698
3699<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3700
3701</div>
3702
3703<!-- *********************************************************************** -->
3704<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3705<!-- *********************************************************************** -->
3706
3707<div class="doc_text">
3708
3709<p>LLVM supports the notion of an "intrinsic function". These functions have
3710well known names and semantics and are required to follow certain restrictions.
3711Overall, these intrinsics represent an extension mechanism for the LLVM
3712language that does not require changing all of the transformations in LLVM when
3713adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3714
3715<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3716prefix is reserved in LLVM for intrinsic names; thus, function names may not
3717begin with this prefix. Intrinsic functions must always be external functions:
3718you cannot define the body of intrinsic functions. Intrinsic functions may
3719only be used in call or invoke instructions: it is illegal to take the address
3720of an intrinsic function. Additionally, because intrinsic functions are part
3721of the LLVM language, it is required if any are added that they be documented
3722here.</p>
3723
Chandler Carrutha228e392007-08-04 01:51:18 +00003724<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3725a family of functions that perform the same operation but on different data
3726types. Because LLVM can represent over 8 million different integer types,
3727overloading is used commonly to allow an intrinsic function to operate on any
3728integer type. One or more of the argument types or the result type can be
3729overloaded to accept any integer type. Argument types may also be defined as
3730exactly matching a previous argument's type or the result type. This allows an
3731intrinsic function which accepts multiple arguments, but needs all of them to
3732be of the same type, to only be overloaded with respect to a single argument or
3733the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003734
Chandler Carrutha228e392007-08-04 01:51:18 +00003735<p>Overloaded intrinsics will have the names of its overloaded argument types
3736encoded into its function name, each preceded by a period. Only those types
3737which are overloaded result in a name suffix. Arguments whose type is matched
3738against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3739take an integer of any width and returns an integer of exactly the same integer
3740width. This leads to a family of functions such as
3741<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3742Only one type, the return type, is overloaded, and only one type suffix is
3743required. Because the argument's type is matched against the return type, it
3744does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003745
3746<p>To learn how to add an intrinsic function, please see the
3747<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3748</p>
3749
3750</div>
3751
3752<!-- ======================================================================= -->
3753<div class="doc_subsection">
3754 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3755</div>
3756
3757<div class="doc_text">
3758
3759<p>Variable argument support is defined in LLVM with the <a
3760 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3761intrinsic functions. These functions are related to the similarly
3762named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3763
3764<p>All of these functions operate on arguments that use a
3765target-specific value type "<tt>va_list</tt>". The LLVM assembly
3766language reference manual does not define what this type is, so all
3767transformations should be prepared to handle these functions regardless of
3768the type used.</p>
3769
3770<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3771instruction and the variable argument handling intrinsic functions are
3772used.</p>
3773
3774<div class="doc_code">
3775<pre>
3776define i32 @test(i32 %X, ...) {
3777 ; Initialize variable argument processing
3778 %ap = alloca i8*
3779 %ap2 = bitcast i8** %ap to i8*
3780 call void @llvm.va_start(i8* %ap2)
3781
3782 ; Read a single integer argument
3783 %tmp = va_arg i8** %ap, i32
3784
3785 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3786 %aq = alloca i8*
3787 %aq2 = bitcast i8** %aq to i8*
3788 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3789 call void @llvm.va_end(i8* %aq2)
3790
3791 ; Stop processing of arguments.
3792 call void @llvm.va_end(i8* %ap2)
3793 ret i32 %tmp
3794}
3795
3796declare void @llvm.va_start(i8*)
3797declare void @llvm.va_copy(i8*, i8*)
3798declare void @llvm.va_end(i8*)
3799</pre>
3800</div>
3801
3802</div>
3803
3804<!-- _______________________________________________________________________ -->
3805<div class="doc_subsubsection">
3806 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3807</div>
3808
3809
3810<div class="doc_text">
3811<h5>Syntax:</h5>
3812<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3813<h5>Overview:</h5>
3814<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3815<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3816href="#i_va_arg">va_arg</a></tt>.</p>
3817
3818<h5>Arguments:</h5>
3819
3820<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3821
3822<h5>Semantics:</h5>
3823
3824<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3825macro available in C. In a target-dependent way, it initializes the
3826<tt>va_list</tt> element to which the argument points, so that the next call to
3827<tt>va_arg</tt> will produce the first variable argument passed to the function.
3828Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3829last argument of the function as the compiler can figure that out.</p>
3830
3831</div>
3832
3833<!-- _______________________________________________________________________ -->
3834<div class="doc_subsubsection">
3835 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3836</div>
3837
3838<div class="doc_text">
3839<h5>Syntax:</h5>
3840<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3841<h5>Overview:</h5>
3842
3843<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3844which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3845or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3846
3847<h5>Arguments:</h5>
3848
3849<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3850
3851<h5>Semantics:</h5>
3852
3853<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3854macro available in C. In a target-dependent way, it destroys the
3855<tt>va_list</tt> element to which the argument points. Calls to <a
3856href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3857<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3858<tt>llvm.va_end</tt>.</p>
3859
3860</div>
3861
3862<!-- _______________________________________________________________________ -->
3863<div class="doc_subsubsection">
3864 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3865</div>
3866
3867<div class="doc_text">
3868
3869<h5>Syntax:</h5>
3870
3871<pre>
3872 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3873</pre>
3874
3875<h5>Overview:</h5>
3876
3877<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3878from the source argument list to the destination argument list.</p>
3879
3880<h5>Arguments:</h5>
3881
3882<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3883The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3884
3885
3886<h5>Semantics:</h5>
3887
3888<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3889macro available in C. In a target-dependent way, it copies the source
3890<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3891intrinsic is necessary because the <tt><a href="#int_va_start">
3892llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3893example, memory allocation.</p>
3894
3895</div>
3896
3897<!-- ======================================================================= -->
3898<div class="doc_subsection">
3899 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3900</div>
3901
3902<div class="doc_text">
3903
3904<p>
3905LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3906Collection</a> requires the implementation and generation of these intrinsics.
3907These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3908stack</a>, as well as garbage collector implementations that require <a
3909href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3910Front-ends for type-safe garbage collected languages should generate these
3911intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3912href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3913</p>
3914</div>
3915
3916<!-- _______________________________________________________________________ -->
3917<div class="doc_subsubsection">
3918 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3919</div>
3920
3921<div class="doc_text">
3922
3923<h5>Syntax:</h5>
3924
3925<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003926 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003927</pre>
3928
3929<h5>Overview:</h5>
3930
3931<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3932the code generator, and allows some metadata to be associated with it.</p>
3933
3934<h5>Arguments:</h5>
3935
3936<p>The first argument specifies the address of a stack object that contains the
3937root pointer. The second pointer (which must be either a constant or a global
3938value address) contains the meta-data to be associated with the root.</p>
3939
3940<h5>Semantics:</h5>
3941
3942<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3943location. At compile-time, the code generator generates information to allow
3944the runtime to find the pointer at GC safe points.
3945</p>
3946
3947</div>
3948
3949
3950<!-- _______________________________________________________________________ -->
3951<div class="doc_subsubsection">
3952 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3953</div>
3954
3955<div class="doc_text">
3956
3957<h5>Syntax:</h5>
3958
3959<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003960 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003961</pre>
3962
3963<h5>Overview:</h5>
3964
3965<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3966locations, allowing garbage collector implementations that require read
3967barriers.</p>
3968
3969<h5>Arguments:</h5>
3970
3971<p>The second argument is the address to read from, which should be an address
3972allocated from the garbage collector. The first object is a pointer to the
3973start of the referenced object, if needed by the language runtime (otherwise
3974null).</p>
3975
3976<h5>Semantics:</h5>
3977
3978<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3979instruction, but may be replaced with substantially more complex code by the
3980garbage collector runtime, as needed.</p>
3981
3982</div>
3983
3984
3985<!-- _______________________________________________________________________ -->
3986<div class="doc_subsubsection">
3987 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3988</div>
3989
3990<div class="doc_text">
3991
3992<h5>Syntax:</h5>
3993
3994<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003995 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003996</pre>
3997
3998<h5>Overview:</h5>
3999
4000<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4001locations, allowing garbage collector implementations that require write
4002barriers (such as generational or reference counting collectors).</p>
4003
4004<h5>Arguments:</h5>
4005
4006<p>The first argument is the reference to store, the second is the start of the
4007object to store it to, and the third is the address of the field of Obj to
4008store to. If the runtime does not require a pointer to the object, Obj may be
4009null.</p>
4010
4011<h5>Semantics:</h5>
4012
4013<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4014instruction, but may be replaced with substantially more complex code by the
4015garbage collector runtime, as needed.</p>
4016
4017</div>
4018
4019
4020
4021<!-- ======================================================================= -->
4022<div class="doc_subsection">
4023 <a name="int_codegen">Code Generator Intrinsics</a>
4024</div>
4025
4026<div class="doc_text">
4027<p>
4028These intrinsics are provided by LLVM to expose special features that may only
4029be implemented with code generator support.
4030</p>
4031
4032</div>
4033
4034<!-- _______________________________________________________________________ -->
4035<div class="doc_subsubsection">
4036 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4037</div>
4038
4039<div class="doc_text">
4040
4041<h5>Syntax:</h5>
4042<pre>
4043 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4044</pre>
4045
4046<h5>Overview:</h5>
4047
4048<p>
4049The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4050target-specific value indicating the return address of the current function
4051or one of its callers.
4052</p>
4053
4054<h5>Arguments:</h5>
4055
4056<p>
4057The argument to this intrinsic indicates which function to return the address
4058for. Zero indicates the calling function, one indicates its caller, etc. The
4059argument is <b>required</b> to be a constant integer value.
4060</p>
4061
4062<h5>Semantics:</h5>
4063
4064<p>
4065The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4066the return address of the specified call frame, or zero if it cannot be
4067identified. The value returned by this intrinsic is likely to be incorrect or 0
4068for arguments other than zero, so it should only be used for debugging purposes.
4069</p>
4070
4071<p>
4072Note that calling this intrinsic does not prevent function inlining or other
4073aggressive transformations, so the value returned may not be that of the obvious
4074source-language caller.
4075</p>
4076</div>
4077
4078
4079<!-- _______________________________________________________________________ -->
4080<div class="doc_subsubsection">
4081 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4082</div>
4083
4084<div class="doc_text">
4085
4086<h5>Syntax:</h5>
4087<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004088 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004089</pre>
4090
4091<h5>Overview:</h5>
4092
4093<p>
4094The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4095target-specific frame pointer value for the specified stack frame.
4096</p>
4097
4098<h5>Arguments:</h5>
4099
4100<p>
4101The argument to this intrinsic indicates which function to return the frame
4102pointer for. Zero indicates the calling function, one indicates its caller,
4103etc. The argument is <b>required</b> to be a constant integer value.
4104</p>
4105
4106<h5>Semantics:</h5>
4107
4108<p>
4109The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4110the frame address of the specified call frame, or zero if it cannot be
4111identified. The value returned by this intrinsic is likely to be incorrect or 0
4112for arguments other than zero, so it should only be used for debugging purposes.
4113</p>
4114
4115<p>
4116Note that calling this intrinsic does not prevent function inlining or other
4117aggressive transformations, so the value returned may not be that of the obvious
4118source-language caller.
4119</p>
4120</div>
4121
4122<!-- _______________________________________________________________________ -->
4123<div class="doc_subsubsection">
4124 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4125</div>
4126
4127<div class="doc_text">
4128
4129<h5>Syntax:</h5>
4130<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004131 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004132</pre>
4133
4134<h5>Overview:</h5>
4135
4136<p>
4137The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4138the function stack, for use with <a href="#int_stackrestore">
4139<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4140features like scoped automatic variable sized arrays in C99.
4141</p>
4142
4143<h5>Semantics:</h5>
4144
4145<p>
4146This intrinsic returns a opaque pointer value that can be passed to <a
4147href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4148<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4149<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4150state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4151practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4152that were allocated after the <tt>llvm.stacksave</tt> was executed.
4153</p>
4154
4155</div>
4156
4157<!-- _______________________________________________________________________ -->
4158<div class="doc_subsubsection">
4159 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4160</div>
4161
4162<div class="doc_text">
4163
4164<h5>Syntax:</h5>
4165<pre>
4166 declare void @llvm.stackrestore(i8 * %ptr)
4167</pre>
4168
4169<h5>Overview:</h5>
4170
4171<p>
4172The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4173the function stack to the state it was in when the corresponding <a
4174href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4175useful for implementing language features like scoped automatic variable sized
4176arrays in C99.
4177</p>
4178
4179<h5>Semantics:</h5>
4180
4181<p>
4182See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4183</p>
4184
4185</div>
4186
4187
4188<!-- _______________________________________________________________________ -->
4189<div class="doc_subsubsection">
4190 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4191</div>
4192
4193<div class="doc_text">
4194
4195<h5>Syntax:</h5>
4196<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004197 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004198</pre>
4199
4200<h5>Overview:</h5>
4201
4202
4203<p>
4204The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4205a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4206no
4207effect on the behavior of the program but can change its performance
4208characteristics.
4209</p>
4210
4211<h5>Arguments:</h5>
4212
4213<p>
4214<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4215determining if the fetch should be for a read (0) or write (1), and
4216<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4217locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4218<tt>locality</tt> arguments must be constant integers.
4219</p>
4220
4221<h5>Semantics:</h5>
4222
4223<p>
4224This intrinsic does not modify the behavior of the program. In particular,
4225prefetches cannot trap and do not produce a value. On targets that support this
4226intrinsic, the prefetch can provide hints to the processor cache for better
4227performance.
4228</p>
4229
4230</div>
4231
4232<!-- _______________________________________________________________________ -->
4233<div class="doc_subsubsection">
4234 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4235</div>
4236
4237<div class="doc_text">
4238
4239<h5>Syntax:</h5>
4240<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004241 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004242</pre>
4243
4244<h5>Overview:</h5>
4245
4246
4247<p>
4248The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4249(PC) in a region of
4250code to simulators and other tools. The method is target specific, but it is
4251expected that the marker will use exported symbols to transmit the PC of the marker.
4252The marker makes no guarantees that it will remain with any specific instruction
4253after optimizations. It is possible that the presence of a marker will inhibit
4254optimizations. The intended use is to be inserted after optimizations to allow
4255correlations of simulation runs.
4256</p>
4257
4258<h5>Arguments:</h5>
4259
4260<p>
4261<tt>id</tt> is a numerical id identifying the marker.
4262</p>
4263
4264<h5>Semantics:</h5>
4265
4266<p>
4267This intrinsic does not modify the behavior of the program. Backends that do not
4268support this intrinisic may ignore it.
4269</p>
4270
4271</div>
4272
4273<!-- _______________________________________________________________________ -->
4274<div class="doc_subsubsection">
4275 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4276</div>
4277
4278<div class="doc_text">
4279
4280<h5>Syntax:</h5>
4281<pre>
4282 declare i64 @llvm.readcyclecounter( )
4283</pre>
4284
4285<h5>Overview:</h5>
4286
4287
4288<p>
4289The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4290counter register (or similar low latency, high accuracy clocks) on those targets
4291that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4292As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4293should only be used for small timings.
4294</p>
4295
4296<h5>Semantics:</h5>
4297
4298<p>
4299When directly supported, reading the cycle counter should not modify any memory.
4300Implementations are allowed to either return a application specific value or a
4301system wide value. On backends without support, this is lowered to a constant 0.
4302</p>
4303
4304</div>
4305
4306<!-- ======================================================================= -->
4307<div class="doc_subsection">
4308 <a name="int_libc">Standard C Library Intrinsics</a>
4309</div>
4310
4311<div class="doc_text">
4312<p>
4313LLVM provides intrinsics for a few important standard C library functions.
4314These intrinsics allow source-language front-ends to pass information about the
4315alignment of the pointer arguments to the code generator, providing opportunity
4316for more efficient code generation.
4317</p>
4318
4319</div>
4320
4321<!-- _______________________________________________________________________ -->
4322<div class="doc_subsubsection">
4323 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4324</div>
4325
4326<div class="doc_text">
4327
4328<h5>Syntax:</h5>
4329<pre>
4330 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4331 i32 &lt;len&gt;, i32 &lt;align&gt;)
4332 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4333 i64 &lt;len&gt;, i32 &lt;align&gt;)
4334</pre>
4335
4336<h5>Overview:</h5>
4337
4338<p>
4339The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4340location to the destination location.
4341</p>
4342
4343<p>
4344Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4345intrinsics do not return a value, and takes an extra alignment argument.
4346</p>
4347
4348<h5>Arguments:</h5>
4349
4350<p>
4351The first argument is a pointer to the destination, the second is a pointer to
4352the source. The third argument is an integer argument
4353specifying the number of bytes to copy, and the fourth argument is the alignment
4354of the source and destination locations.
4355</p>
4356
4357<p>
4358If the call to this intrinisic has an alignment value that is not 0 or 1, then
4359the caller guarantees that both the source and destination pointers are aligned
4360to that boundary.
4361</p>
4362
4363<h5>Semantics:</h5>
4364
4365<p>
4366The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4367location to the destination location, which are not allowed to overlap. It
4368copies "len" bytes of memory over. If the argument is known to be aligned to
4369some boundary, this can be specified as the fourth argument, otherwise it should
4370be set to 0 or 1.
4371</p>
4372</div>
4373
4374
4375<!-- _______________________________________________________________________ -->
4376<div class="doc_subsubsection">
4377 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4378</div>
4379
4380<div class="doc_text">
4381
4382<h5>Syntax:</h5>
4383<pre>
4384 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4385 i32 &lt;len&gt;, i32 &lt;align&gt;)
4386 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4387 i64 &lt;len&gt;, i32 &lt;align&gt;)
4388</pre>
4389
4390<h5>Overview:</h5>
4391
4392<p>
4393The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4394location to the destination location. It is similar to the
4395'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4396</p>
4397
4398<p>
4399Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4400intrinsics do not return a value, and takes an extra alignment argument.
4401</p>
4402
4403<h5>Arguments:</h5>
4404
4405<p>
4406The first argument is a pointer to the destination, the second is a pointer to
4407the source. The third argument is an integer argument
4408specifying the number of bytes to copy, and the fourth argument is the alignment
4409of the source and destination locations.
4410</p>
4411
4412<p>
4413If the call to this intrinisic has an alignment value that is not 0 or 1, then
4414the caller guarantees that the source and destination pointers are aligned to
4415that boundary.
4416</p>
4417
4418<h5>Semantics:</h5>
4419
4420<p>
4421The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4422location to the destination location, which may overlap. It
4423copies "len" bytes of memory over. If the argument is known to be aligned to
4424some boundary, this can be specified as the fourth argument, otherwise it should
4425be set to 0 or 1.
4426</p>
4427</div>
4428
4429
4430<!-- _______________________________________________________________________ -->
4431<div class="doc_subsubsection">
4432 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4433</div>
4434
4435<div class="doc_text">
4436
4437<h5>Syntax:</h5>
4438<pre>
4439 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4440 i32 &lt;len&gt;, i32 &lt;align&gt;)
4441 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4442 i64 &lt;len&gt;, i32 &lt;align&gt;)
4443</pre>
4444
4445<h5>Overview:</h5>
4446
4447<p>
4448The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4449byte value.
4450</p>
4451
4452<p>
4453Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4454does not return a value, and takes an extra alignment argument.
4455</p>
4456
4457<h5>Arguments:</h5>
4458
4459<p>
4460The first argument is a pointer to the destination to fill, the second is the
4461byte value to fill it with, the third argument is an integer
4462argument specifying the number of bytes to fill, and the fourth argument is the
4463known alignment of destination location.
4464</p>
4465
4466<p>
4467If the call to this intrinisic has an alignment value that is not 0 or 1, then
4468the caller guarantees that the destination pointer is aligned to that boundary.
4469</p>
4470
4471<h5>Semantics:</h5>
4472
4473<p>
4474The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4475the
4476destination location. If the argument is known to be aligned to some boundary,
4477this can be specified as the fourth argument, otherwise it should be set to 0 or
44781.
4479</p>
4480</div>
4481
4482
4483<!-- _______________________________________________________________________ -->
4484<div class="doc_subsubsection">
4485 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4486</div>
4487
4488<div class="doc_text">
4489
4490<h5>Syntax:</h5>
4491<pre>
4492 declare float @llvm.sqrt.f32(float %Val)
4493 declare double @llvm.sqrt.f64(double %Val)
4494</pre>
4495
4496<h5>Overview:</h5>
4497
4498<p>
4499The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4500returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4501<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4502negative numbers (which allows for better optimization).
4503</p>
4504
4505<h5>Arguments:</h5>
4506
4507<p>
4508The argument and return value are floating point numbers of the same type.
4509</p>
4510
4511<h5>Semantics:</h5>
4512
4513<p>
4514This function returns the sqrt of the specified operand if it is a nonnegative
4515floating point number.
4516</p>
4517</div>
4518
4519<!-- _______________________________________________________________________ -->
4520<div class="doc_subsubsection">
4521 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4522</div>
4523
4524<div class="doc_text">
4525
4526<h5>Syntax:</h5>
4527<pre>
4528 declare float @llvm.powi.f32(float %Val, i32 %power)
4529 declare double @llvm.powi.f64(double %Val, i32 %power)
4530</pre>
4531
4532<h5>Overview:</h5>
4533
4534<p>
4535The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4536specified (positive or negative) power. The order of evaluation of
4537multiplications is not defined.
4538</p>
4539
4540<h5>Arguments:</h5>
4541
4542<p>
4543The second argument is an integer power, and the first is a value to raise to
4544that power.
4545</p>
4546
4547<h5>Semantics:</h5>
4548
4549<p>
4550This function returns the first value raised to the second power with an
4551unspecified sequence of rounding operations.</p>
4552</div>
4553
4554
4555<!-- ======================================================================= -->
4556<div class="doc_subsection">
4557 <a name="int_manip">Bit Manipulation Intrinsics</a>
4558</div>
4559
4560<div class="doc_text">
4561<p>
4562LLVM provides intrinsics for a few important bit manipulation operations.
4563These allow efficient code generation for some algorithms.
4564</p>
4565
4566</div>
4567
4568<!-- _______________________________________________________________________ -->
4569<div class="doc_subsubsection">
4570 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4571</div>
4572
4573<div class="doc_text">
4574
4575<h5>Syntax:</h5>
4576<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004577type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004578<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004579 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4580 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4581 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004582</pre>
4583
4584<h5>Overview:</h5>
4585
4586<p>
4587The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4588values with an even number of bytes (positive multiple of 16 bits). These are
4589useful for performing operations on data that is not in the target's native
4590byte order.
4591</p>
4592
4593<h5>Semantics:</h5>
4594
4595<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004596The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004597and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4598intrinsic returns an i32 value that has the four bytes of the input i32
4599swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004600i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4601<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004602additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4603</p>
4604
4605</div>
4606
4607<!-- _______________________________________________________________________ -->
4608<div class="doc_subsubsection">
4609 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4610</div>
4611
4612<div class="doc_text">
4613
4614<h5>Syntax:</h5>
4615<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4616width. Not all targets support all bit widths however.
4617<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004618 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4619 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004620 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004621 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4622 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004623</pre>
4624
4625<h5>Overview:</h5>
4626
4627<p>
4628The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4629value.
4630</p>
4631
4632<h5>Arguments:</h5>
4633
4634<p>
4635The only argument is the value to be counted. The argument may be of any
4636integer type. The return type must match the argument type.
4637</p>
4638
4639<h5>Semantics:</h5>
4640
4641<p>
4642The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4643</p>
4644</div>
4645
4646<!-- _______________________________________________________________________ -->
4647<div class="doc_subsubsection">
4648 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4649</div>
4650
4651<div class="doc_text">
4652
4653<h5>Syntax:</h5>
4654<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4655integer bit width. Not all targets support all bit widths however.
4656<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004657 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4658 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004659 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004660 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4661 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004662</pre>
4663
4664<h5>Overview:</h5>
4665
4666<p>
4667The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4668leading zeros in a variable.
4669</p>
4670
4671<h5>Arguments:</h5>
4672
4673<p>
4674The only argument is the value to be counted. The argument may be of any
4675integer type. The return type must match the argument type.
4676</p>
4677
4678<h5>Semantics:</h5>
4679
4680<p>
4681The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4682in a variable. If the src == 0 then the result is the size in bits of the type
4683of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4684</p>
4685</div>
4686
4687
4688
4689<!-- _______________________________________________________________________ -->
4690<div class="doc_subsubsection">
4691 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4692</div>
4693
4694<div class="doc_text">
4695
4696<h5>Syntax:</h5>
4697<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4698integer bit width. Not all targets support all bit widths however.
4699<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004700 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4701 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004702 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004703 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4704 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004705</pre>
4706
4707<h5>Overview:</h5>
4708
4709<p>
4710The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4711trailing zeros.
4712</p>
4713
4714<h5>Arguments:</h5>
4715
4716<p>
4717The only argument is the value to be counted. The argument may be of any
4718integer type. The return type must match the argument type.
4719</p>
4720
4721<h5>Semantics:</h5>
4722
4723<p>
4724The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4725in a variable. If the src == 0 then the result is the size in bits of the type
4726of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4727</p>
4728</div>
4729
4730<!-- _______________________________________________________________________ -->
4731<div class="doc_subsubsection">
4732 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4733</div>
4734
4735<div class="doc_text">
4736
4737<h5>Syntax:</h5>
4738<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4739on any integer bit width.
4740<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004741 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4742 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004743</pre>
4744
4745<h5>Overview:</h5>
4746<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4747range of bits from an integer value and returns them in the same bit width as
4748the original value.</p>
4749
4750<h5>Arguments:</h5>
4751<p>The first argument, <tt>%val</tt> and the result may be integer types of
4752any bit width but they must have the same bit width. The second and third
4753arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4754
4755<h5>Semantics:</h5>
4756<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4757of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4758<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4759operates in forward mode.</p>
4760<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4761right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4762only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4763<ol>
4764 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4765 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4766 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4767 to determine the number of bits to retain.</li>
4768 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4769 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4770</ol>
4771<p>In reverse mode, a similar computation is made except that the bits are
4772returned in the reverse order. So, for example, if <tt>X</tt> has the value
4773<tt>i16 0x0ACF (101011001111)</tt> and we apply
4774<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4775<tt>i16 0x0026 (000000100110)</tt>.</p>
4776</div>
4777
4778<div class="doc_subsubsection">
4779 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4780</div>
4781
4782<div class="doc_text">
4783
4784<h5>Syntax:</h5>
4785<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4786on any integer bit width.
4787<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004788 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4789 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004790</pre>
4791
4792<h5>Overview:</h5>
4793<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4794of bits in an integer value with another integer value. It returns the integer
4795with the replaced bits.</p>
4796
4797<h5>Arguments:</h5>
4798<p>The first argument, <tt>%val</tt> and the result may be integer types of
4799any bit width but they must have the same bit width. <tt>%val</tt> is the value
4800whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4801integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4802type since they specify only a bit index.</p>
4803
4804<h5>Semantics:</h5>
4805<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4806of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4807<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4808operates in forward mode.</p>
4809<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4810truncating it down to the size of the replacement area or zero extending it
4811up to that size.</p>
4812<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4813are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4814in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4815to the <tt>%hi</tt>th bit.
4816<p>In reverse mode, a similar computation is made except that the bits are
4817reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4818<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4819<h5>Examples:</h5>
4820<pre>
4821 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4822 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4823 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4824 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4825 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4826</pre>
4827</div>
4828
4829<!-- ======================================================================= -->
4830<div class="doc_subsection">
4831 <a name="int_debugger">Debugger Intrinsics</a>
4832</div>
4833
4834<div class="doc_text">
4835<p>
4836The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4837are described in the <a
4838href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4839Debugging</a> document.
4840</p>
4841</div>
4842
4843
4844<!-- ======================================================================= -->
4845<div class="doc_subsection">
4846 <a name="int_eh">Exception Handling Intrinsics</a>
4847</div>
4848
4849<div class="doc_text">
4850<p> The LLVM exception handling intrinsics (which all start with
4851<tt>llvm.eh.</tt> prefix), are described in the <a
4852href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4853Handling</a> document. </p>
4854</div>
4855
4856<!-- ======================================================================= -->
4857<div class="doc_subsection">
Chandler Carruthc0470a82007-07-20 19:34:37 +00004858 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4859</div>
4860
4861<div class="doc_text">
4862<p>
4863 These intrinsic functions expand the "universal IR" of LLVM to represent
4864 hardware constructs for atomic operations and memory synchronization. This
4865 provides an interface to the hardware, not an interface to the programmer. It
4866 is aimed at a low enough level to allow any programming models or APIs which
4867 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004868 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruthc0470a82007-07-20 19:34:37 +00004869 languages, it also provides a starting point for developing a "universal"
4870 atomic operation and synchronization IR.
4871</p>
4872<p>
4873 These do <em>not</em> form an API such as high-level threading libraries,
4874 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencerb043f672007-07-20 19:59:11 +00004875 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruthc0470a82007-07-20 19:34:37 +00004876 application libraries. The hardware interface provided by LLVM should allow
4877 a clean implementation of all of these APIs and parallel programming models.
4878 No one model or paradigm should be selected above others unless the hardware
4879 itself ubiquitously does so.
4880</p>
4881</div>
4882
4883<!-- _______________________________________________________________________ -->
4884<div class="doc_subsubsection">
4885 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4886</div>
4887<div class="doc_text">
4888<h5>Syntax:</h5>
4889<p>
4890 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004891 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004892<pre>
4893declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4894declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4895declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4896declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4897</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004898<h5>Overview:</h5>
4899<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004900 This loads a value in memory and compares it to a given value. If they are
4901 equal, it stores a new value into the memory.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004902</p>
4903<h5>Arguments:</h5>
4904<p>
4905 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4906 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4907 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4908 this integer type. While any bit width integer may be used, targets may only
4909 lower representations they support in hardware.
4910</p>
4911<h5>Semantics:</h5>
4912<p>
4913 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004914 in memory pointed to by <tt>ptr</tt> and compares it with the value
4915 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4916 loaded value is yielded in all cases. This provides the equivalent of an
4917 atomic compare-and-swap operation within the SSA framework.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004918</p>
4919<h5>Examples:</h5>
4920<pre>
4921%ptr = malloc i32
4922 store i32 4, %ptr
4923
4924%val1 = add i32 4, 4
4925%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4926 <i>; yields {i32}:result1 = 4</i>
4927%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4928%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4929
4930%val2 = add i32 1, 1
4931%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4932 <i>; yields {i32}:result2 = 8</i>
4933%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4934%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4935</pre>
4936</div>
4937
4938<!-- _______________________________________________________________________ -->
4939<div class="doc_subsubsection">
4940 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4941</div>
4942<div class="doc_text">
4943<h5>Syntax:</h5>
4944<p>
4945 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004946 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004947<pre>
4948declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4949declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4950declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4951declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4952</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004953<h5>Overview:</h5>
4954<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004955 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4956 the value from memory. It then stores the value in <tt>val</tt> in the memory
4957 at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004958</p>
4959<h5>Arguments:</h5>
4960<p>
4961 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4962 <tt>val</tt> argument and the result must be integers of the same bit width.
4963 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4964 integer type. The targets may only lower integer representations they
4965 support.
4966</p>
4967<h5>Semantics:</h5>
4968<p>
4969 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4970 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4971 equivalent of an atomic swap operation within the SSA framework.
4972</p>
4973<h5>Examples:</h5>
4974<pre>
4975%ptr = malloc i32
4976 store i32 4, %ptr
4977
4978%val1 = add i32 4, 4
4979%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4980 <i>; yields {i32}:result1 = 4</i>
4981%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4982%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4983
4984%val2 = add i32 1, 1
4985%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4986 <i>; yields {i32}:result2 = 8</i>
4987%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4988%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4989</pre>
4990 </div>
4991
4992<!-- _______________________________________________________________________ -->
4993<div class="doc_subsubsection">
4994 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4995</div>
4996<div class="doc_text">
4997<h5>Syntax:</h5>
4998<p>
4999 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005000 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005001<pre>
5002declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5003declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5004declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5005declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5006</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005007<h5>Overview:</h5>
5008<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005009 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruthc0470a82007-07-20 19:34:37 +00005010 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5011</p>
5012<h5>Arguments:</h5>
5013<p>
5014 The intrinsic takes two arguments, the first a pointer to an integer value
5015 and the second an integer value. The result is also an integer value. These
5016 integer types can have any bit width, but they must all have the same bit
5017 width. The targets may only lower integer representations they support.
5018</p>
5019<h5>Semantics:</h5>
5020<p>
5021 This intrinsic does a series of operations atomically. It first loads the
5022 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5023 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5024</p>
5025<h5>Examples:</h5>
5026<pre>
5027%ptr = malloc i32
5028 store i32 4, %ptr
5029%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5030 <i>; yields {i32}:result1 = 4</i>
5031%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5032 <i>; yields {i32}:result2 = 8</i>
5033%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5034 <i>; yields {i32}:result3 = 10</i>
5035%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5036</pre>
5037</div>
5038
5039<!-- _______________________________________________________________________ -->
5040<div class="doc_subsubsection">
5041 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5042</div>
5043<div class="doc_text">
5044<h5>Syntax:</h5>
5045<p>
5046 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005047 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005048<pre>
5049declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5050declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5051declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5052declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5053</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005054<h5>Overview:</h5>
5055<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005056 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5057 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00005058</p>
5059<h5>Arguments:</h5>
5060<p>
5061 The intrinsic takes two arguments, the first a pointer to an integer value
5062 and the second an integer value. The result is also an integer value. These
5063 integer types can have any bit width, but they must all have the same bit
5064 width. The targets may only lower integer representations they support.
5065</p>
5066<h5>Semantics:</h5>
5067<p>
5068 This intrinsic does a series of operations atomically. It first loads the
5069 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5070 stores the result to <tt>ptr</tt>. It yields the original value stored
5071 at <tt>ptr</tt>.
5072</p>
5073<h5>Examples:</h5>
5074<pre>
5075%ptr = malloc i32
5076 store i32 32, %ptr
5077%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5078 <i>; yields {i32}:result1 = 32</i>
5079%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5080 <i>; yields {i32}:result2 = 28</i>
5081%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5082 <i>; yields {i32}:result3 = 26</i>
5083%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5084</pre>
5085</div>
5086
5087<!-- _______________________________________________________________________ -->
5088<div class="doc_subsubsection">
5089 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5090</div>
5091<div class="doc_text">
5092<h5>Syntax:</h5>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005093<pre>
5094declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5095</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005096<h5>Overview:</h5>
5097<p>
5098 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5099 specific pairs of memory access types.
5100</p>
5101<h5>Arguments:</h5>
5102<p>
5103 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5104 Each argument enables a specific barrier as listed below.
Reid Spencerc64165c2007-07-20 20:03:33 +00005105</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005106 <ul>
5107 <li><tt>ll</tt>: load-load barrier</li>
5108 <li><tt>ls</tt>: load-store barrier</li>
5109 <li><tt>sl</tt>: store-load barrier</li>
5110 <li><tt>ss</tt>: store-store barrier</li>
5111 </ul>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005112<h5>Semantics:</h5>
5113<p>
5114 This intrinsic causes the system to enforce some ordering constraints upon
5115 the loads and stores of the program. This barrier does not indicate
5116 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5117 which they occur. For any of the specified pairs of load and store operations
5118 (f.ex. load-load, or store-load), all of the first operations preceding the
5119 barrier will complete before any of the second operations succeeding the
5120 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencerc64165c2007-07-20 20:03:33 +00005121</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005122 <ul>
5123 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5124 after the barrier begins.</li>
5125 <li><tt>ls</tt>: All loads before the barrier must complete before any
5126 store after the barrier begins.</li>
5127 <li><tt>ss</tt>: All stores before the barrier must complete before any
5128 store after the barrier begins.</li>
5129 <li><tt>sl</tt>: All stores before the barrier must complete before any
5130 load after the barrier begins.</li>
5131 </ul>
Reid Spencerc64165c2007-07-20 20:03:33 +00005132<p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005133 These semantics are applied with a logical "and" behavior when more than one
5134 is enabled in a single memory barrier intrinsic.
5135</p>
5136<h5>Example:</h5>
5137<pre>
5138%ptr = malloc i32
5139 store i32 4, %ptr
5140
5141%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5142 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5143 <i>; guarantee the above finishes</i>
5144 store i32 8, %ptr <i>; before this begins</i>
5145</pre>
5146</div>
5147
5148<!-- ======================================================================= -->
5149<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005150 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005151</div>
5152
5153<div class="doc_text">
5154<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005155 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005156 the <tt>nest</tt> attribute, from a function. The result is a callable
5157 function pointer lacking the nest parameter - the caller does not need
5158 to provide a value for it. Instead, the value to use is stored in
5159 advance in a "trampoline", a block of memory usually allocated
5160 on the stack, which also contains code to splice the nest value into the
5161 argument list. This is used to implement the GCC nested function address
5162 extension.
5163</p>
5164<p>
5165 For example, if the function is
5166 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
5167 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:
5168<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005169 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5170 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5171 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5172 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005173</pre>
5174 The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
5175 <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
5176</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005177</div>
5178
5179<!-- _______________________________________________________________________ -->
5180<div class="doc_subsubsection">
5181 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5182</div>
5183<div class="doc_text">
5184<h5>Syntax:</h5>
5185<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005186declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005187</pre>
5188<h5>Overview:</h5>
5189<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005190 This fills the memory pointed to by <tt>tramp</tt> with code
5191 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005192</p>
5193<h5>Arguments:</h5>
5194<p>
5195 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5196 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5197 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005198 intrinsic. Note that the size and the alignment are target-specific - LLVM
5199 currently provides no portable way of determining them, so a front-end that
5200 generates this intrinsic needs to have some target-specific knowledge.
5201 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005202</p>
5203<h5>Semantics:</h5>
5204<p>
5205 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005206 dependent code, turning it into a function. A pointer to this function is
5207 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005208 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005209 before being called. The new function's signature is the same as that of
5210 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5211 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5212 of pointer type. Calling the new function is equivalent to calling
5213 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5214 missing <tt>nest</tt> argument. If, after calling
5215 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5216 modified, then the effect of any later call to the returned function pointer is
5217 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005218</p>
5219</div>
5220
5221<!-- ======================================================================= -->
5222<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005223 <a name="int_general">General Intrinsics</a>
5224</div>
5225
5226<div class="doc_text">
5227<p> This class of intrinsics is designed to be generic and has
5228no specific purpose. </p>
5229</div>
5230
5231<!-- _______________________________________________________________________ -->
5232<div class="doc_subsubsection">
5233 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5234</div>
5235
5236<div class="doc_text">
5237
5238<h5>Syntax:</h5>
5239<pre>
5240 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5241</pre>
5242
5243<h5>Overview:</h5>
5244
5245<p>
5246The '<tt>llvm.var.annotation</tt>' intrinsic
5247</p>
5248
5249<h5>Arguments:</h5>
5250
5251<p>
5252The first argument is a pointer to a value, the second is a pointer to a
5253global string, the third is a pointer to a global string which is the source
5254file name, and the last argument is the line number.
5255</p>
5256
5257<h5>Semantics:</h5>
5258
5259<p>
5260This intrinsic allows annotation of local variables with arbitrary strings.
5261This can be useful for special purpose optimizations that want to look for these
5262 annotations. These have no other defined use, they are ignored by code
5263 generation and optimization.
5264</div>
5265
5266
5267<!-- *********************************************************************** -->
5268<hr>
5269<address>
5270 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5271 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5272 <a href="http://validator.w3.org/check/referer"><img
5273 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5274
5275 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5276 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5277 Last modified: $Date$
5278</address>
5279</body>
5280</html>