blob: cd7000503ca7ac070e44532df4abc0081845570f [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000066#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000068#include "llvm/Analysis/LoopInfo.h"
69#include "llvm/Assembly/Writer.h"
70#include "llvm/Transforms/Scalar.h"
71#include "llvm/Support/CFG.h"
Chris Lattner95255282006-06-28 23:17:24 +000072#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000073#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Support/ConstantRange.h"
75#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000076#include "llvm/Support/ManagedStatic.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000077#include "llvm/ADT/Statistic.h"
Chris Lattner72382102006-01-22 23:19:18 +000078#include <iostream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000079#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000080using namespace llvm;
81
82namespace {
Chris Lattner5d8925c2006-08-27 22:30:17 +000083 RegisterPass<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +000084 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +000085
86 Statistic<>
87 NumBruteForceEvaluations("scalar-evolution",
Chris Lattner673e02b2004-10-12 01:49:27 +000088 "Number of brute force evaluations needed to "
89 "calculate high-order polynomial exit values");
90 Statistic<>
91 NumArrayLenItCounts("scalar-evolution",
92 "Number of trip counts computed with array length");
Chris Lattner53e677a2004-04-02 20:23:17 +000093 Statistic<>
94 NumTripCountsComputed("scalar-evolution",
95 "Number of loops with predictable loop counts");
96 Statistic<>
97 NumTripCountsNotComputed("scalar-evolution",
98 "Number of loops without predictable loop counts");
Chris Lattner7980fb92004-04-17 18:36:24 +000099 Statistic<>
100 NumBruteForceTripCountsComputed("scalar-evolution",
101 "Number of loops with trip counts computed by force");
102
103 cl::opt<unsigned>
104 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
Chris Lattnerbed21de2005-09-28 22:30:58 +0000105 cl::desc("Maximum number of iterations SCEV will "
106 "symbolically execute a constant derived loop"),
Chris Lattner7980fb92004-04-17 18:36:24 +0000107 cl::init(100));
Chris Lattner53e677a2004-04-02 20:23:17 +0000108}
109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Chris Lattner53e677a2004-04-02 20:23:17 +0000117SCEV::~SCEV() {}
118void SCEV::dump() const {
119 print(std::cerr);
120}
121
122/// getValueRange - Return the tightest constant bounds that this value is
123/// known to have. This method is only valid on integer SCEV objects.
124ConstantRange SCEV::getValueRange() const {
125 const Type *Ty = getType();
126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
127 Ty = Ty->getUnsignedVersion();
128 // Default to a full range if no better information is available.
129 return ConstantRange(getType());
130}
131
132
133SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
134
135bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
136 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000137 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000138}
139
140const Type *SCEVCouldNotCompute::getType() const {
141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000142 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000143}
144
145bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147 return false;
148}
149
Chris Lattner4dc534c2005-02-13 04:37:18 +0000150SCEVHandle SCEVCouldNotCompute::
151replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
152 const SCEVHandle &Conc) const {
153 return this;
154}
155
Chris Lattner53e677a2004-04-02 20:23:17 +0000156void SCEVCouldNotCompute::print(std::ostream &OS) const {
157 OS << "***COULDNOTCOMPUTE***";
158}
159
160bool SCEVCouldNotCompute::classof(const SCEV *S) {
161 return S->getSCEVType() == scCouldNotCompute;
162}
163
164
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000165// SCEVConstants - Only allow the creation of one SCEVConstant for any
166// particular value. Don't use a SCEVHandle here, or else the object will
167// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000168static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000169
Chris Lattner53e677a2004-04-02 20:23:17 +0000170
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000171SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000172 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000173}
Chris Lattner53e677a2004-04-02 20:23:17 +0000174
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000175SCEVHandle SCEVConstant::get(ConstantInt *V) {
176 // Make sure that SCEVConstant instances are all unsigned.
177 if (V->getType()->isSigned()) {
178 const Type *NewTy = V->getType()->getUnsignedVersion();
Reid Spencerb83eb642006-10-20 07:07:24 +0000179 V = cast<ConstantInt>(ConstantExpr::getCast(V, NewTy));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000180 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000181
Chris Lattnerb3364092006-10-04 21:49:37 +0000182 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183 if (R == 0) R = new SCEVConstant(V);
184 return R;
185}
Chris Lattner53e677a2004-04-02 20:23:17 +0000186
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000187ConstantRange SCEVConstant::getValueRange() const {
188 return ConstantRange(V);
189}
Chris Lattner53e677a2004-04-02 20:23:17 +0000190
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000191const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000192
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000193void SCEVConstant::print(std::ostream &OS) const {
194 WriteAsOperand(OS, V, false);
195}
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000197// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
198// particular input. Don't use a SCEVHandle here, or else the object will
199// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000200static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
201 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000202
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000203SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
204 : SCEV(scTruncate), Op(op), Ty(ty) {
205 assert(Op->getType()->isInteger() && Ty->isInteger() &&
206 Ty->isUnsigned() &&
207 "Cannot truncate non-integer value!");
208 assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
209 "This is not a truncating conversion!");
210}
Chris Lattner53e677a2004-04-02 20:23:17 +0000211
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000212SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000213 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000214}
Chris Lattner53e677a2004-04-02 20:23:17 +0000215
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000216ConstantRange SCEVTruncateExpr::getValueRange() const {
217 return getOperand()->getValueRange().truncate(getType());
218}
Chris Lattner53e677a2004-04-02 20:23:17 +0000219
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000220void SCEVTruncateExpr::print(std::ostream &OS) const {
221 OS << "(truncate " << *Op << " to " << *Ty << ")";
222}
223
224// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
225// particular input. Don't use a SCEVHandle here, or else the object will never
226// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000227static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
228 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000229
230SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Reid Spencer48d8a702006-11-01 21:53:12 +0000231 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000232 assert(Op->getType()->isInteger() && Ty->isInteger() &&
233 Ty->isUnsigned() &&
234 "Cannot zero extend non-integer value!");
235 assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
236 "This is not an extending conversion!");
237}
238
239SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000240 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000241}
242
243ConstantRange SCEVZeroExtendExpr::getValueRange() const {
244 return getOperand()->getValueRange().zeroExtend(getType());
245}
246
247void SCEVZeroExtendExpr::print(std::ostream &OS) const {
248 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
249}
250
251// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
252// particular input. Don't use a SCEVHandle here, or else the object will never
253// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000254static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
255 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000256
257SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000258 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
259 std::vector<SCEV*>(Operands.begin(),
260 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000261}
262
263void SCEVCommutativeExpr::print(std::ostream &OS) const {
264 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
265 const char *OpStr = getOperationStr();
266 OS << "(" << *Operands[0];
267 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
268 OS << OpStr << *Operands[i];
269 OS << ")";
270}
271
Chris Lattner4dc534c2005-02-13 04:37:18 +0000272SCEVHandle SCEVCommutativeExpr::
273replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
274 const SCEVHandle &Conc) const {
275 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
276 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
277 if (H != getOperand(i)) {
278 std::vector<SCEVHandle> NewOps;
279 NewOps.reserve(getNumOperands());
280 for (unsigned j = 0; j != i; ++j)
281 NewOps.push_back(getOperand(j));
282 NewOps.push_back(H);
283 for (++i; i != e; ++i)
284 NewOps.push_back(getOperand(i)->
285 replaceSymbolicValuesWithConcrete(Sym, Conc));
286
287 if (isa<SCEVAddExpr>(this))
288 return SCEVAddExpr::get(NewOps);
289 else if (isa<SCEVMulExpr>(this))
290 return SCEVMulExpr::get(NewOps);
291 else
292 assert(0 && "Unknown commutative expr!");
293 }
294 }
295 return this;
296}
297
298
Chris Lattner60a05cc2006-04-01 04:48:52 +0000299// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000300// input. Don't use a SCEVHandle here, or else the object will never be
301// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000302static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
303 SCEVSDivExpr*> > SCEVSDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000304
Chris Lattner60a05cc2006-04-01 04:48:52 +0000305SCEVSDivExpr::~SCEVSDivExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000306 SCEVSDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000307}
308
Chris Lattner60a05cc2006-04-01 04:48:52 +0000309void SCEVSDivExpr::print(std::ostream &OS) const {
310 OS << "(" << *LHS << " /s " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311}
312
Chris Lattner60a05cc2006-04-01 04:48:52 +0000313const Type *SCEVSDivExpr::getType() const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000314 const Type *Ty = LHS->getType();
Chris Lattner60a05cc2006-04-01 04:48:52 +0000315 if (Ty->isUnsigned()) Ty = Ty->getSignedVersion();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000316 return Ty;
317}
318
319// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
320// particular input. Don't use a SCEVHandle here, or else the object will never
321// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000322static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
323 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000324
325SCEVAddRecExpr::~SCEVAddRecExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000326 SCEVAddRecExprs->erase(std::make_pair(L,
327 std::vector<SCEV*>(Operands.begin(),
328 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000329}
330
Chris Lattner4dc534c2005-02-13 04:37:18 +0000331SCEVHandle SCEVAddRecExpr::
332replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
333 const SCEVHandle &Conc) const {
334 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
335 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
336 if (H != getOperand(i)) {
337 std::vector<SCEVHandle> NewOps;
338 NewOps.reserve(getNumOperands());
339 for (unsigned j = 0; j != i; ++j)
340 NewOps.push_back(getOperand(j));
341 NewOps.push_back(H);
342 for (++i; i != e; ++i)
343 NewOps.push_back(getOperand(i)->
344 replaceSymbolicValuesWithConcrete(Sym, Conc));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000345
Chris Lattner4dc534c2005-02-13 04:37:18 +0000346 return get(NewOps, L);
347 }
348 }
349 return this;
350}
351
352
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
354 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000355 // contain L and if the start is invariant.
356 return !QueryLoop->contains(L->getHeader()) &&
357 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000358}
359
360
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000361void SCEVAddRecExpr::print(std::ostream &OS) const {
362 OS << "{" << *Operands[0];
363 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
364 OS << ",+," << *Operands[i];
365 OS << "}<" << L->getHeader()->getName() + ">";
366}
Chris Lattner53e677a2004-04-02 20:23:17 +0000367
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000368// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
369// value. Don't use a SCEVHandle here, or else the object will never be
370// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000371static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000372
Chris Lattnerb3364092006-10-04 21:49:37 +0000373SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000374
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000375bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
376 // All non-instruction values are loop invariant. All instructions are loop
377 // invariant if they are not contained in the specified loop.
378 if (Instruction *I = dyn_cast<Instruction>(V))
379 return !L->contains(I->getParent());
380 return true;
381}
Chris Lattner53e677a2004-04-02 20:23:17 +0000382
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000383const Type *SCEVUnknown::getType() const {
384 return V->getType();
385}
Chris Lattner53e677a2004-04-02 20:23:17 +0000386
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000387void SCEVUnknown::print(std::ostream &OS) const {
388 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000389}
390
Chris Lattner8d741b82004-06-20 06:23:15 +0000391//===----------------------------------------------------------------------===//
392// SCEV Utilities
393//===----------------------------------------------------------------------===//
394
395namespace {
396 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
397 /// than the complexity of the RHS. This comparator is used to canonicalize
398 /// expressions.
Chris Lattner95255282006-06-28 23:17:24 +0000399 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Chris Lattner8d741b82004-06-20 06:23:15 +0000400 bool operator()(SCEV *LHS, SCEV *RHS) {
401 return LHS->getSCEVType() < RHS->getSCEVType();
402 }
403 };
404}
405
406/// GroupByComplexity - Given a list of SCEV objects, order them by their
407/// complexity, and group objects of the same complexity together by value.
408/// When this routine is finished, we know that any duplicates in the vector are
409/// consecutive and that complexity is monotonically increasing.
410///
411/// Note that we go take special precautions to ensure that we get determinstic
412/// results from this routine. In other words, we don't want the results of
413/// this to depend on where the addresses of various SCEV objects happened to
414/// land in memory.
415///
416static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
417 if (Ops.size() < 2) return; // Noop
418 if (Ops.size() == 2) {
419 // This is the common case, which also happens to be trivially simple.
420 // Special case it.
421 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
422 std::swap(Ops[0], Ops[1]);
423 return;
424 }
425
426 // Do the rough sort by complexity.
427 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
428
429 // Now that we are sorted by complexity, group elements of the same
430 // complexity. Note that this is, at worst, N^2, but the vector is likely to
431 // be extremely short in practice. Note that we take this approach because we
432 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000433 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000434 SCEV *S = Ops[i];
435 unsigned Complexity = S->getSCEVType();
436
437 // If there are any objects of the same complexity and same value as this
438 // one, group them.
439 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
440 if (Ops[j] == S) { // Found a duplicate.
441 // Move it to immediately after i'th element.
442 std::swap(Ops[i+1], Ops[j]);
443 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000444 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000445 }
446 }
447 }
448}
449
Chris Lattner53e677a2004-04-02 20:23:17 +0000450
Chris Lattner53e677a2004-04-02 20:23:17 +0000451
452//===----------------------------------------------------------------------===//
453// Simple SCEV method implementations
454//===----------------------------------------------------------------------===//
455
456/// getIntegerSCEV - Given an integer or FP type, create a constant for the
457/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000458SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000459 Constant *C;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000460 if (Val == 0)
Chris Lattner53e677a2004-04-02 20:23:17 +0000461 C = Constant::getNullValue(Ty);
462 else if (Ty->isFloatingPoint())
463 C = ConstantFP::get(Ty, Val);
464 else if (Ty->isSigned())
Reid Spencerb83eb642006-10-20 07:07:24 +0000465 C = ConstantInt::get(Ty, Val);
Chris Lattner53e677a2004-04-02 20:23:17 +0000466 else {
Reid Spencerb83eb642006-10-20 07:07:24 +0000467 C = ConstantInt::get(Ty->getSignedVersion(), Val);
Chris Lattner53e677a2004-04-02 20:23:17 +0000468 C = ConstantExpr::getCast(C, Ty);
469 }
470 return SCEVUnknown::get(C);
471}
472
473/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
474/// input value to the specified type. If the type must be extended, it is zero
475/// extended.
476static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
477 const Type *SrcTy = V->getType();
478 assert(SrcTy->isInteger() && Ty->isInteger() &&
479 "Cannot truncate or zero extend with non-integer arguments!");
480 if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
481 return V; // No conversion
482 if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
483 return SCEVTruncateExpr::get(V, Ty);
484 return SCEVZeroExtendExpr::get(V, Ty);
485}
486
487/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
488///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000489SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000490 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
491 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000492
Chris Lattnerb06432c2004-04-23 21:29:03 +0000493 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000494}
495
496/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
497///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000498SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000499 // X - Y --> X + -Y
Chris Lattnerbac5b462005-03-09 05:34:41 +0000500 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000501}
502
503
Chris Lattner53e677a2004-04-02 20:23:17 +0000504/// PartialFact - Compute V!/(V-NumSteps)!
505static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
506 // Handle this case efficiently, it is common to have constant iteration
507 // counts while computing loop exit values.
508 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
Reid Spencerb83eb642006-10-20 07:07:24 +0000509 uint64_t Val = SC->getValue()->getZExtValue();
Chris Lattner53e677a2004-04-02 20:23:17 +0000510 uint64_t Result = 1;
511 for (; NumSteps; --NumSteps)
512 Result *= Val-(NumSteps-1);
Reid Spencerb83eb642006-10-20 07:07:24 +0000513 Constant *Res = ConstantInt::get(Type::ULongTy, Result);
Chris Lattner53e677a2004-04-02 20:23:17 +0000514 return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
515 }
516
517 const Type *Ty = V->getType();
518 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000519 return SCEVUnknown::getIntegerSCEV(1, Ty);
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000520
Chris Lattner53e677a2004-04-02 20:23:17 +0000521 SCEVHandle Result = V;
522 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerbac5b462005-03-09 05:34:41 +0000523 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
Chris Lattnerb06432c2004-04-23 21:29:03 +0000524 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000525 return Result;
526}
527
528
529/// evaluateAtIteration - Return the value of this chain of recurrences at
530/// the specified iteration number. We can evaluate this recurrence by
531/// multiplying each element in the chain by the binomial coefficient
532/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
533///
534/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
535///
536/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
537/// Is the binomial equation safe using modular arithmetic??
538///
539SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
540 SCEVHandle Result = getStart();
541 int Divisor = 1;
542 const Type *Ty = It->getType();
543 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
544 SCEVHandle BC = PartialFact(It, i);
545 Divisor *= i;
Chris Lattner60a05cc2006-04-01 04:48:52 +0000546 SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000547 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000548 Result = SCEVAddExpr::get(Result, Val);
549 }
550 return Result;
551}
552
553
554//===----------------------------------------------------------------------===//
555// SCEV Expression folder implementations
556//===----------------------------------------------------------------------===//
557
558SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
559 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
560 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
561
562 // If the input value is a chrec scev made out of constants, truncate
563 // all of the constants.
564 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
565 std::vector<SCEVHandle> Operands;
566 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
567 // FIXME: This should allow truncation of other expression types!
568 if (isa<SCEVConstant>(AddRec->getOperand(i)))
569 Operands.push_back(get(AddRec->getOperand(i), Ty));
570 else
571 break;
572 if (Operands.size() == AddRec->getNumOperands())
573 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
574 }
575
Chris Lattnerb3364092006-10-04 21:49:37 +0000576 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000577 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
578 return Result;
579}
580
581SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
582 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
583 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
584
585 // FIXME: If the input value is a chrec scev, and we can prove that the value
586 // did not overflow the old, smaller, value, we can zero extend all of the
587 // operands (often constants). This would allow analysis of something like
588 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
589
Chris Lattnerb3364092006-10-04 21:49:37 +0000590 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000591 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
592 return Result;
593}
594
595// get - Get a canonical add expression, or something simpler if possible.
596SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
597 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000598 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000599
600 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000601 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000602
603 // If there are any constants, fold them together.
604 unsigned Idx = 0;
605 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
606 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000607 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000608 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
609 // We found two constants, fold them together!
610 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
611 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
612 Ops[0] = SCEVConstant::get(CI);
613 Ops.erase(Ops.begin()+1); // Erase the folded element
614 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000615 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000616 } else {
617 // If we couldn't fold the expression, move to the next constant. Note
618 // that this is impossible to happen in practice because we always
619 // constant fold constant ints to constant ints.
620 ++Idx;
621 }
622 }
623
624 // If we are left with a constant zero being added, strip it off.
625 if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
626 Ops.erase(Ops.begin());
627 --Idx;
628 }
629 }
630
Chris Lattner627018b2004-04-07 16:16:11 +0000631 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000632
Chris Lattner53e677a2004-04-02 20:23:17 +0000633 // Okay, check to see if the same value occurs in the operand list twice. If
634 // so, merge them together into an multiply expression. Since we sorted the
635 // list, these values are required to be adjacent.
636 const Type *Ty = Ops[0]->getType();
637 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
638 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
639 // Found a match, merge the two values into a multiply, and add any
640 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000641 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000642 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
643 if (Ops.size() == 2)
644 return Mul;
645 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
646 Ops.push_back(Mul);
647 return SCEVAddExpr::get(Ops);
648 }
649
650 // Okay, now we know the first non-constant operand. If there are add
651 // operands they would be next.
652 if (Idx < Ops.size()) {
653 bool DeletedAdd = false;
654 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
655 // If we have an add, expand the add operands onto the end of the operands
656 // list.
657 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
658 Ops.erase(Ops.begin()+Idx);
659 DeletedAdd = true;
660 }
661
662 // If we deleted at least one add, we added operands to the end of the list,
663 // and they are not necessarily sorted. Recurse to resort and resimplify
664 // any operands we just aquired.
665 if (DeletedAdd)
666 return get(Ops);
667 }
668
669 // Skip over the add expression until we get to a multiply.
670 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
671 ++Idx;
672
673 // If we are adding something to a multiply expression, make sure the
674 // something is not already an operand of the multiply. If so, merge it into
675 // the multiply.
676 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
677 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
678 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
679 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
680 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000681 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000682 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
683 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
684 if (Mul->getNumOperands() != 2) {
685 // If the multiply has more than two operands, we must get the
686 // Y*Z term.
687 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
688 MulOps.erase(MulOps.begin()+MulOp);
689 InnerMul = SCEVMulExpr::get(MulOps);
690 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000691 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000692 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
693 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
694 if (Ops.size() == 2) return OuterMul;
695 if (AddOp < Idx) {
696 Ops.erase(Ops.begin()+AddOp);
697 Ops.erase(Ops.begin()+Idx-1);
698 } else {
699 Ops.erase(Ops.begin()+Idx);
700 Ops.erase(Ops.begin()+AddOp-1);
701 }
702 Ops.push_back(OuterMul);
703 return SCEVAddExpr::get(Ops);
704 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000705
Chris Lattner53e677a2004-04-02 20:23:17 +0000706 // Check this multiply against other multiplies being added together.
707 for (unsigned OtherMulIdx = Idx+1;
708 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
709 ++OtherMulIdx) {
710 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
711 // If MulOp occurs in OtherMul, we can fold the two multiplies
712 // together.
713 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
714 OMulOp != e; ++OMulOp)
715 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
716 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
717 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
718 if (Mul->getNumOperands() != 2) {
719 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
720 MulOps.erase(MulOps.begin()+MulOp);
721 InnerMul1 = SCEVMulExpr::get(MulOps);
722 }
723 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
724 if (OtherMul->getNumOperands() != 2) {
725 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
726 OtherMul->op_end());
727 MulOps.erase(MulOps.begin()+OMulOp);
728 InnerMul2 = SCEVMulExpr::get(MulOps);
729 }
730 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
731 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
732 if (Ops.size() == 2) return OuterMul;
733 Ops.erase(Ops.begin()+Idx);
734 Ops.erase(Ops.begin()+OtherMulIdx-1);
735 Ops.push_back(OuterMul);
736 return SCEVAddExpr::get(Ops);
737 }
738 }
739 }
740 }
741
742 // If there are any add recurrences in the operands list, see if any other
743 // added values are loop invariant. If so, we can fold them into the
744 // recurrence.
745 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
746 ++Idx;
747
748 // Scan over all recurrences, trying to fold loop invariants into them.
749 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
750 // Scan all of the other operands to this add and add them to the vector if
751 // they are loop invariant w.r.t. the recurrence.
752 std::vector<SCEVHandle> LIOps;
753 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
754 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
755 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
756 LIOps.push_back(Ops[i]);
757 Ops.erase(Ops.begin()+i);
758 --i; --e;
759 }
760
761 // If we found some loop invariants, fold them into the recurrence.
762 if (!LIOps.empty()) {
763 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
764 LIOps.push_back(AddRec->getStart());
765
766 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
767 AddRecOps[0] = SCEVAddExpr::get(LIOps);
768
769 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
770 // If all of the other operands were loop invariant, we are done.
771 if (Ops.size() == 1) return NewRec;
772
773 // Otherwise, add the folded AddRec by the non-liv parts.
774 for (unsigned i = 0;; ++i)
775 if (Ops[i] == AddRec) {
776 Ops[i] = NewRec;
777 break;
778 }
779 return SCEVAddExpr::get(Ops);
780 }
781
782 // Okay, if there weren't any loop invariants to be folded, check to see if
783 // there are multiple AddRec's with the same loop induction variable being
784 // added together. If so, we can fold them.
785 for (unsigned OtherIdx = Idx+1;
786 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
787 if (OtherIdx != Idx) {
788 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
789 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
790 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
791 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
792 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
793 if (i >= NewOps.size()) {
794 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
795 OtherAddRec->op_end());
796 break;
797 }
798 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
799 }
800 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
801
802 if (Ops.size() == 2) return NewAddRec;
803
804 Ops.erase(Ops.begin()+Idx);
805 Ops.erase(Ops.begin()+OtherIdx-1);
806 Ops.push_back(NewAddRec);
807 return SCEVAddExpr::get(Ops);
808 }
809 }
810
811 // Otherwise couldn't fold anything into this recurrence. Move onto the
812 // next one.
813 }
814
815 // Okay, it looks like we really DO need an add expr. Check to see if we
816 // already have one, otherwise create a new one.
817 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000818 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
819 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000820 if (Result == 0) Result = new SCEVAddExpr(Ops);
821 return Result;
822}
823
824
825SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
826 assert(!Ops.empty() && "Cannot get empty mul!");
827
828 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000829 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000830
831 // If there are any constants, fold them together.
832 unsigned Idx = 0;
833 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
834
835 // C1*(C2+V) -> C1*C2 + C1*V
836 if (Ops.size() == 2)
837 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
838 if (Add->getNumOperands() == 2 &&
839 isa<SCEVConstant>(Add->getOperand(0)))
840 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
841 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
842
843
844 ++Idx;
845 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
846 // We found two constants, fold them together!
847 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
848 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
849 Ops[0] = SCEVConstant::get(CI);
850 Ops.erase(Ops.begin()+1); // Erase the folded element
851 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000852 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000853 } else {
854 // If we couldn't fold the expression, move to the next constant. Note
855 // that this is impossible to happen in practice because we always
856 // constant fold constant ints to constant ints.
857 ++Idx;
858 }
859 }
860
861 // If we are left with a constant one being multiplied, strip it off.
862 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
863 Ops.erase(Ops.begin());
864 --Idx;
865 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
866 // If we have a multiply of zero, it will always be zero.
867 return Ops[0];
868 }
869 }
870
871 // Skip over the add expression until we get to a multiply.
872 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
873 ++Idx;
874
875 if (Ops.size() == 1)
876 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000877
Chris Lattner53e677a2004-04-02 20:23:17 +0000878 // If there are mul operands inline them all into this expression.
879 if (Idx < Ops.size()) {
880 bool DeletedMul = false;
881 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
882 // If we have an mul, expand the mul operands onto the end of the operands
883 // list.
884 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
885 Ops.erase(Ops.begin()+Idx);
886 DeletedMul = true;
887 }
888
889 // If we deleted at least one mul, we added operands to the end of the list,
890 // and they are not necessarily sorted. Recurse to resort and resimplify
891 // any operands we just aquired.
892 if (DeletedMul)
893 return get(Ops);
894 }
895
896 // If there are any add recurrences in the operands list, see if any other
897 // added values are loop invariant. If so, we can fold them into the
898 // recurrence.
899 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
900 ++Idx;
901
902 // Scan over all recurrences, trying to fold loop invariants into them.
903 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
904 // Scan all of the other operands to this mul and add them to the vector if
905 // they are loop invariant w.r.t. the recurrence.
906 std::vector<SCEVHandle> LIOps;
907 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
908 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
909 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
910 LIOps.push_back(Ops[i]);
911 Ops.erase(Ops.begin()+i);
912 --i; --e;
913 }
914
915 // If we found some loop invariants, fold them into the recurrence.
916 if (!LIOps.empty()) {
917 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
918 std::vector<SCEVHandle> NewOps;
919 NewOps.reserve(AddRec->getNumOperands());
920 if (LIOps.size() == 1) {
921 SCEV *Scale = LIOps[0];
922 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
923 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
924 } else {
925 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
926 std::vector<SCEVHandle> MulOps(LIOps);
927 MulOps.push_back(AddRec->getOperand(i));
928 NewOps.push_back(SCEVMulExpr::get(MulOps));
929 }
930 }
931
932 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
933
934 // If all of the other operands were loop invariant, we are done.
935 if (Ops.size() == 1) return NewRec;
936
937 // Otherwise, multiply the folded AddRec by the non-liv parts.
938 for (unsigned i = 0;; ++i)
939 if (Ops[i] == AddRec) {
940 Ops[i] = NewRec;
941 break;
942 }
943 return SCEVMulExpr::get(Ops);
944 }
945
946 // Okay, if there weren't any loop invariants to be folded, check to see if
947 // there are multiple AddRec's with the same loop induction variable being
948 // multiplied together. If so, we can fold them.
949 for (unsigned OtherIdx = Idx+1;
950 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
951 if (OtherIdx != Idx) {
952 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
953 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
954 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
955 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
956 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
957 G->getStart());
958 SCEVHandle B = F->getStepRecurrence();
959 SCEVHandle D = G->getStepRecurrence();
960 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
961 SCEVMulExpr::get(G, B),
962 SCEVMulExpr::get(B, D));
963 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
964 F->getLoop());
965 if (Ops.size() == 2) return NewAddRec;
966
967 Ops.erase(Ops.begin()+Idx);
968 Ops.erase(Ops.begin()+OtherIdx-1);
969 Ops.push_back(NewAddRec);
970 return SCEVMulExpr::get(Ops);
971 }
972 }
973
974 // Otherwise couldn't fold anything into this recurrence. Move onto the
975 // next one.
976 }
977
978 // Okay, it looks like we really DO need an mul expr. Check to see if we
979 // already have one, otherwise create a new one.
980 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000981 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
982 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000983 if (Result == 0)
984 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000985 return Result;
986}
987
Chris Lattner60a05cc2006-04-01 04:48:52 +0000988SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000989 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
990 if (RHSC->getValue()->equalsInt(1))
Reid Spencer1628cec2006-10-26 06:15:43 +0000991 return LHS; // X sdiv 1 --> x
Chris Lattner53e677a2004-04-02 20:23:17 +0000992 if (RHSC->getValue()->isAllOnesValue())
Reid Spencer1628cec2006-10-26 06:15:43 +0000993 return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x
Chris Lattner53e677a2004-04-02 20:23:17 +0000994
995 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
996 Constant *LHSCV = LHSC->getValue();
997 Constant *RHSCV = RHSC->getValue();
Chris Lattner60a05cc2006-04-01 04:48:52 +0000998 if (LHSCV->getType()->isUnsigned())
Chris Lattner53e677a2004-04-02 20:23:17 +0000999 LHSCV = ConstantExpr::getCast(LHSCV,
Chris Lattner60a05cc2006-04-01 04:48:52 +00001000 LHSCV->getType()->getSignedVersion());
1001 if (RHSCV->getType()->isUnsigned())
Chris Lattner53e677a2004-04-02 20:23:17 +00001002 RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
Reid Spencer1628cec2006-10-26 06:15:43 +00001003 return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +00001004 }
1005 }
1006
1007 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1008
Chris Lattnerb3364092006-10-04 21:49:37 +00001009 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
Chris Lattner60a05cc2006-04-01 04:48:52 +00001010 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00001011 return Result;
1012}
1013
1014
1015/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1016/// specified loop. Simplify the expression as much as possible.
1017SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1018 const SCEVHandle &Step, const Loop *L) {
1019 std::vector<SCEVHandle> Operands;
1020 Operands.push_back(Start);
1021 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1022 if (StepChrec->getLoop() == L) {
1023 Operands.insert(Operands.end(), StepChrec->op_begin(),
1024 StepChrec->op_end());
1025 return get(Operands, L);
1026 }
1027
1028 Operands.push_back(Step);
1029 return get(Operands, L);
1030}
1031
1032/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1033/// specified loop. Simplify the expression as much as possible.
1034SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1035 const Loop *L) {
1036 if (Operands.size() == 1) return Operands[0];
1037
1038 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1039 if (StepC->getValue()->isNullValue()) {
1040 Operands.pop_back();
1041 return get(Operands, L); // { X,+,0 } --> X
1042 }
1043
1044 SCEVAddRecExpr *&Result =
Chris Lattnerb3364092006-10-04 21:49:37 +00001045 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1046 Operands.end()))];
Chris Lattner53e677a2004-04-02 20:23:17 +00001047 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1048 return Result;
1049}
1050
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001051SCEVHandle SCEVUnknown::get(Value *V) {
1052 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1053 return SCEVConstant::get(CI);
Chris Lattnerb3364092006-10-04 21:49:37 +00001054 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001055 if (Result == 0) Result = new SCEVUnknown(V);
1056 return Result;
1057}
1058
Chris Lattner53e677a2004-04-02 20:23:17 +00001059
1060//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001061// ScalarEvolutionsImpl Definition and Implementation
1062//===----------------------------------------------------------------------===//
1063//
1064/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1065/// evolution code.
1066///
1067namespace {
Chris Lattner95255282006-06-28 23:17:24 +00001068 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Chris Lattner53e677a2004-04-02 20:23:17 +00001069 /// F - The function we are analyzing.
1070 ///
1071 Function &F;
1072
1073 /// LI - The loop information for the function we are currently analyzing.
1074 ///
1075 LoopInfo &LI;
1076
1077 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1078 /// things.
1079 SCEVHandle UnknownValue;
1080
1081 /// Scalars - This is a cache of the scalars we have analyzed so far.
1082 ///
1083 std::map<Value*, SCEVHandle> Scalars;
1084
1085 /// IterationCounts - Cache the iteration count of the loops for this
1086 /// function as they are computed.
1087 std::map<const Loop*, SCEVHandle> IterationCounts;
1088
Chris Lattner3221ad02004-04-17 22:58:41 +00001089 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1090 /// the PHI instructions that we attempt to compute constant evolutions for.
1091 /// This allows us to avoid potentially expensive recomputation of these
1092 /// properties. An instruction maps to null if we are unable to compute its
1093 /// exit value.
1094 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001095
Chris Lattner53e677a2004-04-02 20:23:17 +00001096 public:
1097 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1098 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1099
1100 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1101 /// expression and create a new one.
1102 SCEVHandle getSCEV(Value *V);
1103
Chris Lattnera0740fb2005-08-09 23:36:33 +00001104 /// hasSCEV - Return true if the SCEV for this value has already been
1105 /// computed.
1106 bool hasSCEV(Value *V) const {
1107 return Scalars.count(V);
1108 }
1109
1110 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1111 /// the specified value.
1112 void setSCEV(Value *V, const SCEVHandle &H) {
1113 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1114 assert(isNew && "This entry already existed!");
1115 }
1116
1117
Chris Lattner53e677a2004-04-02 20:23:17 +00001118 /// getSCEVAtScope - Compute the value of the specified expression within
1119 /// the indicated loop (which may be null to indicate in no loop). If the
1120 /// expression cannot be evaluated, return UnknownValue itself.
1121 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1122
1123
1124 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1125 /// an analyzable loop-invariant iteration count.
1126 bool hasLoopInvariantIterationCount(const Loop *L);
1127
1128 /// getIterationCount - If the specified loop has a predictable iteration
1129 /// count, return it. Note that it is not valid to call this method on a
1130 /// loop without a loop-invariant iteration count.
1131 SCEVHandle getIterationCount(const Loop *L);
1132
1133 /// deleteInstructionFromRecords - This method should be called by the
1134 /// client before it removes an instruction from the program, to make sure
1135 /// that no dangling references are left around.
1136 void deleteInstructionFromRecords(Instruction *I);
1137
1138 private:
1139 /// createSCEV - We know that there is no SCEV for the specified value.
1140 /// Analyze the expression.
1141 SCEVHandle createSCEV(Value *V);
1142 SCEVHandle createNodeForCast(CastInst *CI);
1143
1144 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1145 /// SCEVs.
1146 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001147
1148 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1149 /// for the specified instruction and replaces any references to the
1150 /// symbolic value SymName with the specified value. This is used during
1151 /// PHI resolution.
1152 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1153 const SCEVHandle &SymName,
1154 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001155
1156 /// ComputeIterationCount - Compute the number of times the specified loop
1157 /// will iterate.
1158 SCEVHandle ComputeIterationCount(const Loop *L);
1159
Chris Lattner673e02b2004-10-12 01:49:27 +00001160 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1161 /// 'setcc load X, cst', try to se if we can compute the trip count.
1162 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1163 Constant *RHS,
1164 const Loop *L,
1165 unsigned SetCCOpcode);
1166
Chris Lattner7980fb92004-04-17 18:36:24 +00001167 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1168 /// constant number of times (the condition evolves only from constants),
1169 /// try to evaluate a few iterations of the loop until we get the exit
1170 /// condition gets a value of ExitWhen (true or false). If we cannot
1171 /// evaluate the trip count of the loop, return UnknownValue.
1172 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1173 bool ExitWhen);
1174
Chris Lattner53e677a2004-04-02 20:23:17 +00001175 /// HowFarToZero - Return the number of times a backedge comparing the
1176 /// specified value to zero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001177 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001178 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1179
1180 /// HowFarToNonZero - Return the number of times a backedge checking the
1181 /// specified value for nonzero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001182 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001183 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001184
Chris Lattnerdb25de42005-08-15 23:33:51 +00001185 /// HowManyLessThans - Return the number of times a backedge containing the
1186 /// specified less-than comparison will execute. If not computable, return
1187 /// UnknownValue.
1188 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1189
Chris Lattner3221ad02004-04-17 22:58:41 +00001190 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1191 /// in the header of its containing loop, we know the loop executes a
1192 /// constant number of times, and the PHI node is just a recurrence
1193 /// involving constants, fold it.
1194 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1195 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001196 };
1197}
1198
1199//===----------------------------------------------------------------------===//
1200// Basic SCEV Analysis and PHI Idiom Recognition Code
1201//
1202
1203/// deleteInstructionFromRecords - This method should be called by the
1204/// client before it removes an instruction from the program, to make sure
1205/// that no dangling references are left around.
1206void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1207 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001208 if (PHINode *PN = dyn_cast<PHINode>(I))
1209 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001210}
1211
1212
1213/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1214/// expression and create a new one.
1215SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1216 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1217
1218 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1219 if (I != Scalars.end()) return I->second;
1220 SCEVHandle S = createSCEV(V);
1221 Scalars.insert(std::make_pair(V, S));
1222 return S;
1223}
1224
Chris Lattner4dc534c2005-02-13 04:37:18 +00001225/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1226/// the specified instruction and replaces any references to the symbolic value
1227/// SymName with the specified value. This is used during PHI resolution.
1228void ScalarEvolutionsImpl::
1229ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1230 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001231 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001232 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001233
Chris Lattner4dc534c2005-02-13 04:37:18 +00001234 SCEVHandle NV =
1235 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1236 if (NV == SI->second) return; // No change.
1237
1238 SI->second = NV; // Update the scalars map!
1239
1240 // Any instruction values that use this instruction might also need to be
1241 // updated!
1242 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1243 UI != E; ++UI)
1244 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1245}
Chris Lattner53e677a2004-04-02 20:23:17 +00001246
1247/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1248/// a loop header, making it a potential recurrence, or it doesn't.
1249///
1250SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1251 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1252 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1253 if (L->getHeader() == PN->getParent()) {
1254 // If it lives in the loop header, it has two incoming values, one
1255 // from outside the loop, and one from inside.
1256 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1257 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001258
Chris Lattner53e677a2004-04-02 20:23:17 +00001259 // While we are analyzing this PHI node, handle its value symbolically.
1260 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1261 assert(Scalars.find(PN) == Scalars.end() &&
1262 "PHI node already processed?");
1263 Scalars.insert(std::make_pair(PN, SymbolicName));
1264
1265 // Using this symbolic name for the PHI, analyze the value coming around
1266 // the back-edge.
1267 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1268
1269 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1270 // has a special value for the first iteration of the loop.
1271
1272 // If the value coming around the backedge is an add with the symbolic
1273 // value we just inserted, then we found a simple induction variable!
1274 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1275 // If there is a single occurrence of the symbolic value, replace it
1276 // with a recurrence.
1277 unsigned FoundIndex = Add->getNumOperands();
1278 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1279 if (Add->getOperand(i) == SymbolicName)
1280 if (FoundIndex == e) {
1281 FoundIndex = i;
1282 break;
1283 }
1284
1285 if (FoundIndex != Add->getNumOperands()) {
1286 // Create an add with everything but the specified operand.
1287 std::vector<SCEVHandle> Ops;
1288 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1289 if (i != FoundIndex)
1290 Ops.push_back(Add->getOperand(i));
1291 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1292
1293 // This is not a valid addrec if the step amount is varying each
1294 // loop iteration, but is not itself an addrec in this loop.
1295 if (Accum->isLoopInvariant(L) ||
1296 (isa<SCEVAddRecExpr>(Accum) &&
1297 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1298 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1299 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1300
1301 // Okay, for the entire analysis of this edge we assumed the PHI
1302 // to be symbolic. We now need to go back and update all of the
1303 // entries for the scalars that use the PHI (except for the PHI
1304 // itself) to use the new analyzed value instead of the "symbolic"
1305 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001306 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001307 return PHISCEV;
1308 }
1309 }
Chris Lattner97156e72006-04-26 18:34:07 +00001310 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1311 // Otherwise, this could be a loop like this:
1312 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1313 // In this case, j = {1,+,1} and BEValue is j.
1314 // Because the other in-value of i (0) fits the evolution of BEValue
1315 // i really is an addrec evolution.
1316 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1317 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1318
1319 // If StartVal = j.start - j.stride, we can use StartVal as the
1320 // initial step of the addrec evolution.
1321 if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1322 AddRec->getOperand(1))) {
1323 SCEVHandle PHISCEV =
1324 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1325
1326 // Okay, for the entire analysis of this edge we assumed the PHI
1327 // to be symbolic. We now need to go back and update all of the
1328 // entries for the scalars that use the PHI (except for the PHI
1329 // itself) to use the new analyzed value instead of the "symbolic"
1330 // value.
1331 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1332 return PHISCEV;
1333 }
1334 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001335 }
1336
1337 return SymbolicName;
1338 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001339
Chris Lattner53e677a2004-04-02 20:23:17 +00001340 // If it's not a loop phi, we can't handle it yet.
1341 return SCEVUnknown::get(PN);
1342}
1343
1344/// createNodeForCast - Handle the various forms of casts that we support.
1345///
1346SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1347 const Type *SrcTy = CI->getOperand(0)->getType();
1348 const Type *DestTy = CI->getType();
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001349
Chris Lattner53e677a2004-04-02 20:23:17 +00001350 // If this is a noop cast (ie, conversion from int to uint), ignore it.
1351 if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1352 return getSCEV(CI->getOperand(0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001353
Chris Lattner53e677a2004-04-02 20:23:17 +00001354 if (SrcTy->isInteger() && DestTy->isInteger()) {
1355 // Otherwise, if this is a truncating integer cast, we can represent this
1356 // cast.
1357 if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1358 return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1359 CI->getType()->getUnsignedVersion());
1360 if (SrcTy->isUnsigned() &&
Reid Spencer48d8a702006-11-01 21:53:12 +00001361 SrcTy->getPrimitiveSize() <= DestTy->getPrimitiveSize())
Chris Lattner53e677a2004-04-02 20:23:17 +00001362 return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1363 CI->getType()->getUnsignedVersion());
1364 }
1365
1366 // If this is an sign or zero extending cast and we can prove that the value
1367 // will never overflow, we could do similar transformations.
1368
1369 // Otherwise, we can't handle this cast!
1370 return SCEVUnknown::get(CI);
1371}
1372
1373
1374/// createSCEV - We know that there is no SCEV for the specified value.
1375/// Analyze the expression.
1376///
1377SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1378 if (Instruction *I = dyn_cast<Instruction>(V)) {
1379 switch (I->getOpcode()) {
1380 case Instruction::Add:
1381 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1382 getSCEV(I->getOperand(1)));
1383 case Instruction::Mul:
1384 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1385 getSCEV(I->getOperand(1)));
Reid Spencer1628cec2006-10-26 06:15:43 +00001386 case Instruction::SDiv:
1387 return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1388 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001389 break;
1390
1391 case Instruction::Sub:
Chris Lattnerbac5b462005-03-09 05:34:41 +00001392 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1393 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001394
1395 case Instruction::Shl:
1396 // Turn shift left of a constant amount into a multiply.
1397 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1398 Constant *X = ConstantInt::get(V->getType(), 1);
1399 X = ConstantExpr::getShl(X, SA);
1400 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1401 }
1402 break;
1403
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 case Instruction::Cast:
1405 return createNodeForCast(cast<CastInst>(I));
1406
1407 case Instruction::PHI:
1408 return createNodeForPHI(cast<PHINode>(I));
1409
1410 default: // We cannot analyze this expression.
1411 break;
1412 }
1413 }
1414
1415 return SCEVUnknown::get(V);
1416}
1417
1418
1419
1420//===----------------------------------------------------------------------===//
1421// Iteration Count Computation Code
1422//
1423
1424/// getIterationCount - If the specified loop has a predictable iteration
1425/// count, return it. Note that it is not valid to call this method on a
1426/// loop without a loop-invariant iteration count.
1427SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1428 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1429 if (I == IterationCounts.end()) {
1430 SCEVHandle ItCount = ComputeIterationCount(L);
1431 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1432 if (ItCount != UnknownValue) {
1433 assert(ItCount->isLoopInvariant(L) &&
1434 "Computed trip count isn't loop invariant for loop!");
1435 ++NumTripCountsComputed;
1436 } else if (isa<PHINode>(L->getHeader()->begin())) {
1437 // Only count loops that have phi nodes as not being computable.
1438 ++NumTripCountsNotComputed;
1439 }
1440 }
1441 return I->second;
1442}
1443
1444/// ComputeIterationCount - Compute the number of times the specified loop
1445/// will iterate.
1446SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1447 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001448 std::vector<BasicBlock*> ExitBlocks;
1449 L->getExitBlocks(ExitBlocks);
1450 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001451
1452 // Okay, there is one exit block. Try to find the condition that causes the
1453 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001454 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001455
1456 BasicBlock *ExitingBlock = 0;
1457 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1458 PI != E; ++PI)
1459 if (L->contains(*PI)) {
1460 if (ExitingBlock == 0)
1461 ExitingBlock = *PI;
1462 else
1463 return UnknownValue; // More than one block exiting!
1464 }
1465 assert(ExitingBlock && "No exits from loop, something is broken!");
1466
1467 // Okay, we've computed the exiting block. See what condition causes us to
1468 // exit.
1469 //
1470 // FIXME: we should be able to handle switch instructions (with a single exit)
1471 // FIXME: We should handle cast of int to bool as well
1472 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1473 if (ExitBr == 0) return UnknownValue;
1474 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1475 SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
Chris Lattner7980fb92004-04-17 18:36:24 +00001476 if (ExitCond == 0) // Not a setcc
1477 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1478 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001479
Chris Lattner673e02b2004-10-12 01:49:27 +00001480 // If the condition was exit on true, convert the condition to exit on false.
1481 Instruction::BinaryOps Cond;
1482 if (ExitBr->getSuccessor(1) == ExitBlock)
1483 Cond = ExitCond->getOpcode();
1484 else
1485 Cond = ExitCond->getInverseCondition();
1486
1487 // Handle common loops like: for (X = "string"; *X; ++X)
1488 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1489 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1490 SCEVHandle ItCnt =
1491 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1492 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1493 }
1494
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1496 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1497
1498 // Try to evaluate any dependencies out of the loop.
1499 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1500 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1501 Tmp = getSCEVAtScope(RHS, L);
1502 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1503
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 // At this point, we would like to compute how many iterations of the loop the
1505 // predicate will return true for these inputs.
1506 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1507 // If there is a constant, force it into the RHS.
1508 std::swap(LHS, RHS);
1509 Cond = SetCondInst::getSwappedCondition(Cond);
1510 }
1511
1512 // FIXME: think about handling pointer comparisons! i.e.:
1513 // while (P != P+100) ++P;
1514
1515 // If we have a comparison of a chrec against a constant, try to use value
1516 // ranges to answer this query.
1517 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1518 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1519 if (AddRec->getLoop() == L) {
1520 // Form the comparison range using the constant of the correct type so
1521 // that the ConstantRange class knows to do a signed or unsigned
1522 // comparison.
1523 ConstantInt *CompVal = RHSC->getValue();
1524 const Type *RealTy = ExitCond->getOperand(0)->getType();
1525 CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1526 if (CompVal) {
1527 // Form the constant range.
1528 ConstantRange CompRange(Cond, CompVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001529
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 // Now that we have it, if it's signed, convert it to an unsigned
1531 // range.
1532 if (CompRange.getLower()->getType()->isSigned()) {
1533 const Type *NewTy = RHSC->getValue()->getType();
1534 Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1535 Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1536 CompRange = ConstantRange(NewL, NewU);
1537 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001538
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1540 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1541 }
1542 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001543
Chris Lattner53e677a2004-04-02 20:23:17 +00001544 switch (Cond) {
1545 case Instruction::SetNE: // while (X != Y)
1546 // Convert to: while (X-Y != 0)
Chris Lattner7980fb92004-04-17 18:36:24 +00001547 if (LHS->getType()->isInteger()) {
Chris Lattnerbac5b462005-03-09 05:34:41 +00001548 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
Chris Lattner7980fb92004-04-17 18:36:24 +00001549 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1550 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001551 break;
1552 case Instruction::SetEQ:
1553 // Convert to: while (X-Y == 0) // while (X == Y)
Chris Lattner7980fb92004-04-17 18:36:24 +00001554 if (LHS->getType()->isInteger()) {
Chris Lattnerbac5b462005-03-09 05:34:41 +00001555 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
Chris Lattner7980fb92004-04-17 18:36:24 +00001556 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1557 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001558 break;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001559 case Instruction::SetLT:
1560 if (LHS->getType()->isInteger() &&
1561 ExitCond->getOperand(0)->getType()->isSigned()) {
1562 SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1563 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1564 }
1565 break;
1566 case Instruction::SetGT:
1567 if (LHS->getType()->isInteger() &&
1568 ExitCond->getOperand(0)->getType()->isSigned()) {
1569 SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1570 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1571 }
1572 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001574#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 std::cerr << "ComputeIterationCount ";
1576 if (ExitCond->getOperand(0)->getType()->isUnsigned())
1577 std::cerr << "[unsigned] ";
1578 std::cerr << *LHS << " "
1579 << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001580#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001581 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001583
1584 return ComputeIterationCountExhaustively(L, ExitCond,
1585 ExitBr->getSuccessor(0) == ExitBlock);
1586}
1587
Chris Lattner673e02b2004-10-12 01:49:27 +00001588static ConstantInt *
1589EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1590 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1591 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1592 assert(isa<SCEVConstant>(Val) &&
1593 "Evaluation of SCEV at constant didn't fold correctly?");
1594 return cast<SCEVConstant>(Val)->getValue();
1595}
1596
1597/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1598/// and a GEP expression (missing the pointer index) indexing into it, return
1599/// the addressed element of the initializer or null if the index expression is
1600/// invalid.
1601static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001602GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00001603 const std::vector<ConstantInt*> &Indices) {
1604 Constant *Init = GV->getInitializer();
1605 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001606 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00001607 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1608 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1609 Init = cast<Constant>(CS->getOperand(Idx));
1610 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1611 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1612 Init = cast<Constant>(CA->getOperand(Idx));
1613 } else if (isa<ConstantAggregateZero>(Init)) {
1614 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1615 assert(Idx < STy->getNumElements() && "Bad struct index!");
1616 Init = Constant::getNullValue(STy->getElementType(Idx));
1617 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1618 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1619 Init = Constant::getNullValue(ATy->getElementType());
1620 } else {
1621 assert(0 && "Unknown constant aggregate type!");
1622 }
1623 return 0;
1624 } else {
1625 return 0; // Unknown initializer type
1626 }
1627 }
1628 return Init;
1629}
1630
1631/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1632/// 'setcc load X, cst', try to se if we can compute the trip count.
1633SCEVHandle ScalarEvolutionsImpl::
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001634ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
Chris Lattner673e02b2004-10-12 01:49:27 +00001635 const Loop *L, unsigned SetCCOpcode) {
1636 if (LI->isVolatile()) return UnknownValue;
1637
1638 // Check to see if the loaded pointer is a getelementptr of a global.
1639 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1640 if (!GEP) return UnknownValue;
1641
1642 // Make sure that it is really a constant global we are gepping, with an
1643 // initializer, and make sure the first IDX is really 0.
1644 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1645 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1646 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1647 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1648 return UnknownValue;
1649
1650 // Okay, we allow one non-constant index into the GEP instruction.
1651 Value *VarIdx = 0;
1652 std::vector<ConstantInt*> Indexes;
1653 unsigned VarIdxNum = 0;
1654 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1655 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1656 Indexes.push_back(CI);
1657 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1658 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1659 VarIdx = GEP->getOperand(i);
1660 VarIdxNum = i-2;
1661 Indexes.push_back(0);
1662 }
1663
1664 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1665 // Check to see if X is a loop variant variable value now.
1666 SCEVHandle Idx = getSCEV(VarIdx);
1667 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1668 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1669
1670 // We can only recognize very limited forms of loop index expressions, in
1671 // particular, only affine AddRec's like {C1,+,C2}.
1672 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1673 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1674 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1675 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1676 return UnknownValue;
1677
1678 unsigned MaxSteps = MaxBruteForceIterations;
1679 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001680 ConstantInt *ItCst =
1681 ConstantInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
Chris Lattner673e02b2004-10-12 01:49:27 +00001682 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1683
1684 // Form the GEP offset.
1685 Indexes[VarIdxNum] = Val;
1686
1687 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1688 if (Result == 0) break; // Cannot compute!
1689
1690 // Evaluate the condition for this iteration.
1691 Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1692 if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure
Chris Lattner003cbf32006-09-28 23:36:21 +00001693 if (cast<ConstantBool>(Result)->getValue() == false) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001694#if 0
1695 std::cerr << "\n***\n*** Computed loop count " << *ItCst
1696 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1697 << "***\n";
1698#endif
1699 ++NumArrayLenItCounts;
1700 return SCEVConstant::get(ItCst); // Found terminating iteration!
1701 }
1702 }
1703 return UnknownValue;
1704}
1705
1706
Chris Lattner3221ad02004-04-17 22:58:41 +00001707/// CanConstantFold - Return true if we can constant fold an instruction of the
1708/// specified type, assuming that all operands were constants.
1709static bool CanConstantFold(const Instruction *I) {
1710 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1711 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1712 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001713
Chris Lattner3221ad02004-04-17 22:58:41 +00001714 if (const CallInst *CI = dyn_cast<CallInst>(I))
1715 if (const Function *F = CI->getCalledFunction())
1716 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1717 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001718}
1719
Chris Lattner3221ad02004-04-17 22:58:41 +00001720/// ConstantFold - Constant fold an instruction of the specified type with the
1721/// specified constant operands. This function may modify the operands vector.
1722static Constant *ConstantFold(const Instruction *I,
1723 std::vector<Constant*> &Operands) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001724 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1725 return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1726
1727 switch (I->getOpcode()) {
1728 case Instruction::Cast:
1729 return ConstantExpr::getCast(Operands[0], I->getType());
1730 case Instruction::Select:
1731 return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1732 case Instruction::Call:
Reid Spencere8404342004-07-18 00:18:30 +00001733 if (Function *GV = dyn_cast<Function>(Operands[0])) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001734 Operands.erase(Operands.begin());
Reid Spencere8404342004-07-18 00:18:30 +00001735 return ConstantFoldCall(cast<Function>(GV), Operands);
Chris Lattner7980fb92004-04-17 18:36:24 +00001736 }
1737
1738 return 0;
1739 case Instruction::GetElementPtr:
1740 Constant *Base = Operands[0];
1741 Operands.erase(Operands.begin());
1742 return ConstantExpr::getGetElementPtr(Base, Operands);
1743 }
1744 return 0;
1745}
1746
1747
Chris Lattner3221ad02004-04-17 22:58:41 +00001748/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1749/// in the loop that V is derived from. We allow arbitrary operations along the
1750/// way, but the operands of an operation must either be constants or a value
1751/// derived from a constant PHI. If this expression does not fit with these
1752/// constraints, return null.
1753static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1754 // If this is not an instruction, or if this is an instruction outside of the
1755 // loop, it can't be derived from a loop PHI.
1756 Instruction *I = dyn_cast<Instruction>(V);
1757 if (I == 0 || !L->contains(I->getParent())) return 0;
1758
1759 if (PHINode *PN = dyn_cast<PHINode>(I))
1760 if (L->getHeader() == I->getParent())
1761 return PN;
1762 else
1763 // We don't currently keep track of the control flow needed to evaluate
1764 // PHIs, so we cannot handle PHIs inside of loops.
1765 return 0;
1766
1767 // If we won't be able to constant fold this expression even if the operands
1768 // are constants, return early.
1769 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001770
Chris Lattner3221ad02004-04-17 22:58:41 +00001771 // Otherwise, we can evaluate this instruction if all of its operands are
1772 // constant or derived from a PHI node themselves.
1773 PHINode *PHI = 0;
1774 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1775 if (!(isa<Constant>(I->getOperand(Op)) ||
1776 isa<GlobalValue>(I->getOperand(Op)))) {
1777 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1778 if (P == 0) return 0; // Not evolving from PHI
1779 if (PHI == 0)
1780 PHI = P;
1781 else if (PHI != P)
1782 return 0; // Evolving from multiple different PHIs.
1783 }
1784
1785 // This is a expression evolving from a constant PHI!
1786 return PHI;
1787}
1788
1789/// EvaluateExpression - Given an expression that passes the
1790/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1791/// in the loop has the value PHIVal. If we can't fold this expression for some
1792/// reason, return null.
1793static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1794 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001795 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001796 return GV;
1797 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001798 Instruction *I = cast<Instruction>(V);
1799
1800 std::vector<Constant*> Operands;
1801 Operands.resize(I->getNumOperands());
1802
1803 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1804 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1805 if (Operands[i] == 0) return 0;
1806 }
1807
1808 return ConstantFold(I, Operands);
1809}
1810
1811/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1812/// in the header of its containing loop, we know the loop executes a
1813/// constant number of times, and the PHI node is just a recurrence
1814/// involving constants, fold it.
1815Constant *ScalarEvolutionsImpl::
1816getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1817 std::map<PHINode*, Constant*>::iterator I =
1818 ConstantEvolutionLoopExitValue.find(PN);
1819 if (I != ConstantEvolutionLoopExitValue.end())
1820 return I->second;
1821
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001822 if (Its > MaxBruteForceIterations)
Chris Lattner3221ad02004-04-17 22:58:41 +00001823 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1824
1825 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1826
1827 // Since the loop is canonicalized, the PHI node must have two entries. One
1828 // entry must be a constant (coming in from outside of the loop), and the
1829 // second must be derived from the same PHI.
1830 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1831 Constant *StartCST =
1832 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1833 if (StartCST == 0)
1834 return RetVal = 0; // Must be a constant.
1835
1836 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1837 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1838 if (PN2 != PN)
1839 return RetVal = 0; // Not derived from same PHI.
1840
1841 // Execute the loop symbolically to determine the exit value.
1842 unsigned IterationNum = 0;
1843 unsigned NumIterations = Its;
1844 if (NumIterations != Its)
1845 return RetVal = 0; // More than 2^32 iterations??
1846
1847 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1848 if (IterationNum == NumIterations)
1849 return RetVal = PHIVal; // Got exit value!
1850
1851 // Compute the value of the PHI node for the next iteration.
1852 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1853 if (NextPHI == PHIVal)
1854 return RetVal = NextPHI; // Stopped evolving!
1855 if (NextPHI == 0)
1856 return 0; // Couldn't evaluate!
1857 PHIVal = NextPHI;
1858 }
1859}
1860
Chris Lattner7980fb92004-04-17 18:36:24 +00001861/// ComputeIterationCountExhaustively - If the trip is known to execute a
1862/// constant number of times (the condition evolves only from constants),
1863/// try to evaluate a few iterations of the loop until we get the exit
1864/// condition gets a value of ExitWhen (true or false). If we cannot
1865/// evaluate the trip count of the loop, return UnknownValue.
1866SCEVHandle ScalarEvolutionsImpl::
1867ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1868 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1869 if (PN == 0) return UnknownValue;
1870
1871 // Since the loop is canonicalized, the PHI node must have two entries. One
1872 // entry must be a constant (coming in from outside of the loop), and the
1873 // second must be derived from the same PHI.
1874 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1875 Constant *StartCST =
1876 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1877 if (StartCST == 0) return UnknownValue; // Must be a constant.
1878
1879 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1880 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1881 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1882
1883 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1884 // the loop symbolically to determine when the condition gets a value of
1885 // "ExitWhen".
1886 unsigned IterationNum = 0;
1887 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1888 for (Constant *PHIVal = StartCST;
1889 IterationNum != MaxIterations; ++IterationNum) {
1890 ConstantBool *CondVal =
1891 dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1892 if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate.
Chris Lattner3221ad02004-04-17 22:58:41 +00001893
Chris Lattner7980fb92004-04-17 18:36:24 +00001894 if (CondVal->getValue() == ExitWhen) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001895 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001896 ++NumBruteForceTripCountsComputed;
Reid Spencerb83eb642006-10-20 07:07:24 +00001897 return SCEVConstant::get(ConstantInt::get(Type::UIntTy, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00001898 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001899
Chris Lattner3221ad02004-04-17 22:58:41 +00001900 // Compute the value of the PHI node for the next iteration.
1901 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1902 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001903 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001904 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001905 }
1906
1907 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001908 return UnknownValue;
1909}
1910
1911/// getSCEVAtScope - Compute the value of the specified expression within the
1912/// indicated loop (which may be null to indicate in no loop). If the
1913/// expression cannot be evaluated, return UnknownValue.
1914SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1915 // FIXME: this should be turned into a virtual method on SCEV!
1916
Chris Lattner3221ad02004-04-17 22:58:41 +00001917 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001918
Chris Lattner3221ad02004-04-17 22:58:41 +00001919 // If this instruction is evolves from a constant-evolving PHI, compute the
1920 // exit value from the loop without using SCEVs.
1921 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1922 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1923 const Loop *LI = this->LI[I->getParent()];
1924 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1925 if (PHINode *PN = dyn_cast<PHINode>(I))
1926 if (PN->getParent() == LI->getHeader()) {
1927 // Okay, there is no closed form solution for the PHI node. Check
1928 // to see if the loop that contains it has a known iteration count.
1929 // If so, we may be able to force computation of the exit value.
1930 SCEVHandle IterationCount = getIterationCount(LI);
1931 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1932 // Okay, we know how many times the containing loop executes. If
1933 // this is a constant evolving PHI node, get the final value at
1934 // the specified iteration number.
1935 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Reid Spencerb83eb642006-10-20 07:07:24 +00001936 ICC->getValue()->getZExtValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00001937 LI);
1938 if (RV) return SCEVUnknown::get(RV);
1939 }
1940 }
1941
1942 // Okay, this is a some expression that we cannot symbolically evaluate
1943 // into a SCEV. Check to see if it's possible to symbolically evaluate
1944 // the arguments into constants, and if see, try to constant propagate the
1945 // result. This is particularly useful for computing loop exit values.
1946 if (CanConstantFold(I)) {
1947 std::vector<Constant*> Operands;
1948 Operands.reserve(I->getNumOperands());
1949 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1950 Value *Op = I->getOperand(i);
1951 if (Constant *C = dyn_cast<Constant>(Op)) {
1952 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001953 } else {
1954 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1955 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1956 Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1957 Op->getType()));
1958 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1959 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1960 Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1961 else
1962 return V;
1963 } else {
1964 return V;
1965 }
1966 }
1967 }
1968 return SCEVUnknown::get(ConstantFold(I, Operands));
1969 }
1970 }
1971
1972 // This is some other type of SCEVUnknown, just return it.
1973 return V;
1974 }
1975
Chris Lattner53e677a2004-04-02 20:23:17 +00001976 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1977 // Avoid performing the look-up in the common case where the specified
1978 // expression has no loop-variant portions.
1979 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1980 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1981 if (OpAtScope != Comm->getOperand(i)) {
1982 if (OpAtScope == UnknownValue) return UnknownValue;
1983 // Okay, at least one of these operands is loop variant but might be
1984 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00001985 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00001986 NewOps.push_back(OpAtScope);
1987
1988 for (++i; i != e; ++i) {
1989 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1990 if (OpAtScope == UnknownValue) return UnknownValue;
1991 NewOps.push_back(OpAtScope);
1992 }
1993 if (isa<SCEVAddExpr>(Comm))
1994 return SCEVAddExpr::get(NewOps);
1995 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1996 return SCEVMulExpr::get(NewOps);
1997 }
1998 }
1999 // If we got here, all operands are loop invariant.
2000 return Comm;
2001 }
2002
Chris Lattner60a05cc2006-04-01 04:48:52 +00002003 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2004 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002005 if (LHS == UnknownValue) return LHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002006 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002007 if (RHS == UnknownValue) return RHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002008 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2009 return Div; // must be loop invariant
2010 return SCEVSDivExpr::get(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00002011 }
2012
2013 // If this is a loop recurrence for a loop that does not contain L, then we
2014 // are dealing with the final value computed by the loop.
2015 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2016 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2017 // To evaluate this recurrence, we need to know how many times the AddRec
2018 // loop iterates. Compute this now.
2019 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2020 if (IterationCount == UnknownValue) return UnknownValue;
2021 IterationCount = getTruncateOrZeroExtend(IterationCount,
2022 AddRec->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002023
Chris Lattner53e677a2004-04-02 20:23:17 +00002024 // If the value is affine, simplify the expression evaluation to just
2025 // Start + Step*IterationCount.
2026 if (AddRec->isAffine())
2027 return SCEVAddExpr::get(AddRec->getStart(),
2028 SCEVMulExpr::get(IterationCount,
2029 AddRec->getOperand(1)));
2030
2031 // Otherwise, evaluate it the hard way.
2032 return AddRec->evaluateAtIteration(IterationCount);
2033 }
2034 return UnknownValue;
2035 }
2036
2037 //assert(0 && "Unknown SCEV type!");
2038 return UnknownValue;
2039}
2040
2041
2042/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2043/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2044/// might be the same) or two SCEVCouldNotCompute objects.
2045///
2046static std::pair<SCEVHandle,SCEVHandle>
2047SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2048 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2049 SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2050 SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2051 SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002052
Chris Lattner53e677a2004-04-02 20:23:17 +00002053 // We currently can only solve this if the coefficients are constants.
2054 if (!L || !M || !N) {
2055 SCEV *CNC = new SCEVCouldNotCompute();
2056 return std::make_pair(CNC, CNC);
2057 }
2058
Reid Spencer1628cec2006-10-26 06:15:43 +00002059 Constant *C = L->getValue();
2060 Constant *Two = ConstantInt::get(C->getType(), 2);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002061
Chris Lattner53e677a2004-04-02 20:23:17 +00002062 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
Chris Lattner53e677a2004-04-02 20:23:17 +00002063 // The B coefficient is M-N/2
2064 Constant *B = ConstantExpr::getSub(M->getValue(),
Reid Spencer1628cec2006-10-26 06:15:43 +00002065 ConstantExpr::getSDiv(N->getValue(),
Chris Lattner53e677a2004-04-02 20:23:17 +00002066 Two));
2067 // The A coefficient is N/2
Reid Spencer1628cec2006-10-26 06:15:43 +00002068 Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002069
Chris Lattner53e677a2004-04-02 20:23:17 +00002070 // Compute the B^2-4ac term.
2071 Constant *SqrtTerm =
2072 ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2073 ConstantExpr::getMul(A, C));
2074 SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2075
2076 // Compute floor(sqrt(B^2-4ac))
Reid Spencerb83eb642006-10-20 07:07:24 +00002077 ConstantInt *SqrtVal =
2078 cast<ConstantInt>(ConstantExpr::getCast(SqrtTerm,
Chris Lattner53e677a2004-04-02 20:23:17 +00002079 SqrtTerm->getType()->getUnsignedVersion()));
Reid Spencerb83eb642006-10-20 07:07:24 +00002080 uint64_t SqrtValV = SqrtVal->getZExtValue();
Chris Lattner219c1412004-10-25 18:40:08 +00002081 uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002082 // The square root might not be precise for arbitrary 64-bit integer
2083 // values. Do some sanity checks to ensure it's correct.
2084 if (SqrtValV2*SqrtValV2 > SqrtValV ||
2085 (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2086 SCEV *CNC = new SCEVCouldNotCompute();
2087 return std::make_pair(CNC, CNC);
2088 }
2089
Reid Spencerb83eb642006-10-20 07:07:24 +00002090 SqrtVal = ConstantInt::get(Type::ULongTy, SqrtValV2);
Chris Lattner53e677a2004-04-02 20:23:17 +00002091 SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002092
Chris Lattner53e677a2004-04-02 20:23:17 +00002093 Constant *NegB = ConstantExpr::getNeg(B);
2094 Constant *TwoA = ConstantExpr::getMul(A, Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002095
Chris Lattner53e677a2004-04-02 20:23:17 +00002096 // The divisions must be performed as signed divisions.
2097 const Type *SignedTy = NegB->getType()->getSignedVersion();
2098 NegB = ConstantExpr::getCast(NegB, SignedTy);
2099 TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2100 SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002101
Chris Lattner53e677a2004-04-02 20:23:17 +00002102 Constant *Solution1 =
Reid Spencer1628cec2006-10-26 06:15:43 +00002103 ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
Chris Lattner53e677a2004-04-02 20:23:17 +00002104 Constant *Solution2 =
Reid Spencer1628cec2006-10-26 06:15:43 +00002105 ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
Chris Lattner53e677a2004-04-02 20:23:17 +00002106 return std::make_pair(SCEVUnknown::get(Solution1),
2107 SCEVUnknown::get(Solution2));
2108}
2109
2110/// HowFarToZero - Return the number of times a backedge comparing the specified
2111/// value to zero will execute. If not computable, return UnknownValue
2112SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2113 // If the value is a constant
2114 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2115 // If the value is already zero, the branch will execute zero times.
2116 if (C->getValue()->isNullValue()) return C;
2117 return UnknownValue; // Otherwise it will loop infinitely.
2118 }
2119
2120 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2121 if (!AddRec || AddRec->getLoop() != L)
2122 return UnknownValue;
2123
2124 if (AddRec->isAffine()) {
2125 // If this is an affine expression the execution count of this branch is
2126 // equal to:
2127 //
2128 // (0 - Start/Step) iff Start % Step == 0
2129 //
2130 // Get the initial value for the loop.
2131 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002132 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002133 SCEVHandle Step = AddRec->getOperand(1);
2134
2135 Step = getSCEVAtScope(Step, L->getParentLoop());
2136
2137 // Figure out if Start % Step == 0.
2138 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2139 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2140 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Chris Lattnerbac5b462005-03-09 05:34:41 +00002141 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
Chris Lattner53e677a2004-04-02 20:23:17 +00002142 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2143 return Start; // 0 - Start/-1 == Start
2144
2145 // Check to see if Start is divisible by SC with no remainder.
2146 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2147 ConstantInt *StartCC = StartC->getValue();
2148 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
Reid Spencer0a783f72006-11-02 01:53:59 +00002149 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002150 if (Rem->isNullValue()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002151 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002152 return SCEVUnknown::get(Result);
2153 }
2154 }
2155 }
2156 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2157 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2158 // the quadratic equation to solve it.
2159 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2160 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2161 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2162 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002163#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00002164 std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2165 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002166#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002167 // Pick the smallest positive root value.
2168 assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2169 if (ConstantBool *CB =
2170 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2171 R2->getValue()))) {
Chris Lattner003cbf32006-09-28 23:36:21 +00002172 if (CB->getValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002173 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002174
Chris Lattner53e677a2004-04-02 20:23:17 +00002175 // We can only use this value if the chrec ends up with an exact zero
2176 // value at this index. When solving for "X*X != 5", for example, we
2177 // should not accept a root of 2.
2178 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2179 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2180 if (EvalVal->getValue()->isNullValue())
2181 return R1; // We found a quadratic root!
2182 }
2183 }
2184 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002185
Chris Lattner53e677a2004-04-02 20:23:17 +00002186 return UnknownValue;
2187}
2188
2189/// HowFarToNonZero - Return the number of times a backedge checking the
2190/// specified value for nonzero will execute. If not computable, return
2191/// UnknownValue
2192SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2193 // Loops that look like: while (X == 0) are very strange indeed. We don't
2194 // handle them yet except for the trivial case. This could be expanded in the
2195 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002196
Chris Lattner53e677a2004-04-02 20:23:17 +00002197 // If the value is a constant, check to see if it is known to be non-zero
2198 // already. If so, the backedge will execute zero times.
2199 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2200 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2201 Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
Chris Lattner003cbf32006-09-28 23:36:21 +00002202 if (NonZero == ConstantBool::getTrue())
Chris Lattner53e677a2004-04-02 20:23:17 +00002203 return getSCEV(Zero);
2204 return UnknownValue; // Otherwise it will loop infinitely.
2205 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002206
Chris Lattner53e677a2004-04-02 20:23:17 +00002207 // We could implement others, but I really doubt anyone writes loops like
2208 // this, and if they did, they would already be constant folded.
2209 return UnknownValue;
2210}
2211
Chris Lattnerdb25de42005-08-15 23:33:51 +00002212/// HowManyLessThans - Return the number of times a backedge containing the
2213/// specified less-than comparison will execute. If not computable, return
2214/// UnknownValue.
2215SCEVHandle ScalarEvolutionsImpl::
2216HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2217 // Only handle: "ADDREC < LoopInvariant".
2218 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2219
2220 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2221 if (!AddRec || AddRec->getLoop() != L)
2222 return UnknownValue;
2223
2224 if (AddRec->isAffine()) {
2225 // FORNOW: We only support unit strides.
2226 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2227 if (AddRec->getOperand(1) != One)
2228 return UnknownValue;
2229
2230 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't
2231 // know that m is >= n on input to the loop. If it is, the condition return
2232 // true zero times. What we really should return, for full generality, is
2233 // SMAX(0, m-n). Since we cannot check this, we will instead check for a
2234 // canonical loop form: most do-loops will have a check that dominates the
2235 // loop, that only enters the loop if [n-1]<m. If we can find this check,
2236 // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2237
2238 // Search for the check.
2239 BasicBlock *Preheader = L->getLoopPreheader();
2240 BasicBlock *PreheaderDest = L->getHeader();
2241 if (Preheader == 0) return UnknownValue;
2242
2243 BranchInst *LoopEntryPredicate =
2244 dyn_cast<BranchInst>(Preheader->getTerminator());
2245 if (!LoopEntryPredicate) return UnknownValue;
2246
2247 // This might be a critical edge broken out. If the loop preheader ends in
2248 // an unconditional branch to the loop, check to see if the preheader has a
2249 // single predecessor, and if so, look for its terminator.
2250 while (LoopEntryPredicate->isUnconditional()) {
2251 PreheaderDest = Preheader;
2252 Preheader = Preheader->getSinglePredecessor();
2253 if (!Preheader) return UnknownValue; // Multiple preds.
2254
2255 LoopEntryPredicate =
2256 dyn_cast<BranchInst>(Preheader->getTerminator());
2257 if (!LoopEntryPredicate) return UnknownValue;
2258 }
2259
2260 // Now that we found a conditional branch that dominates the loop, check to
2261 // see if it is the comparison we are looking for.
2262 SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
2263 if (!SCI) return UnknownValue;
2264 Value *PreCondLHS = SCI->getOperand(0);
2265 Value *PreCondRHS = SCI->getOperand(1);
2266 Instruction::BinaryOps Cond;
2267 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2268 Cond = SCI->getOpcode();
2269 else
2270 Cond = SCI->getInverseCondition();
2271
2272 switch (Cond) {
2273 case Instruction::SetGT:
2274 std::swap(PreCondLHS, PreCondRHS);
2275 Cond = Instruction::SetLT;
2276 // Fall Through.
2277 case Instruction::SetLT:
2278 if (PreCondLHS->getType()->isInteger() &&
2279 PreCondLHS->getType()->isSigned()) {
2280 if (RHS != getSCEV(PreCondRHS))
2281 return UnknownValue; // Not a comparison against 'm'.
2282
2283 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2284 != getSCEV(PreCondLHS))
2285 return UnknownValue; // Not a comparison against 'n-1'.
2286 break;
2287 } else {
2288 return UnknownValue;
2289 }
2290 default: break;
2291 }
2292
2293 //std::cerr << "Computed Loop Trip Count as: " <<
2294 // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2295 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2296 }
2297
2298 return UnknownValue;
2299}
2300
Chris Lattner53e677a2004-04-02 20:23:17 +00002301/// getNumIterationsInRange - Return the number of iterations of this loop that
2302/// produce values in the specified constant range. Another way of looking at
2303/// this is that it returns the first iteration number where the value is not in
2304/// the condition, thus computing the exit count. If the iteration count can't
2305/// be computed, an instance of SCEVCouldNotCompute is returned.
2306SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2307 if (Range.isFullSet()) // Infinite loop.
2308 return new SCEVCouldNotCompute();
2309
2310 // If the start is a non-zero constant, shift the range to simplify things.
2311 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2312 if (!SC->getValue()->isNullValue()) {
2313 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002314 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002315 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2316 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2317 return ShiftedAddRec->getNumIterationsInRange(
2318 Range.subtract(SC->getValue()));
2319 // This is strange and shouldn't happen.
2320 return new SCEVCouldNotCompute();
2321 }
2322
2323 // The only time we can solve this is when we have all constant indices.
2324 // Otherwise, we cannot determine the overflow conditions.
2325 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2326 if (!isa<SCEVConstant>(getOperand(i)))
2327 return new SCEVCouldNotCompute();
2328
2329
2330 // Okay at this point we know that all elements of the chrec are constants and
2331 // that the start element is zero.
2332
2333 // First check to see if the range contains zero. If not, the first
2334 // iteration exits.
2335 ConstantInt *Zero = ConstantInt::get(getType(), 0);
2336 if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002337
Chris Lattner53e677a2004-04-02 20:23:17 +00002338 if (isAffine()) {
2339 // If this is an affine expression then we have this situation:
2340 // Solve {0,+,A} in Range === Ax in Range
2341
2342 // Since we know that zero is in the range, we know that the upper value of
2343 // the range must be the first possible exit value. Also note that we
2344 // already checked for a full range.
2345 ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2346 ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue();
2347 ConstantInt *One = ConstantInt::get(getType(), 1);
2348
2349 // The exit value should be (Upper+A-1)/A.
2350 Constant *ExitValue = Upper;
2351 if (A != One) {
2352 ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
Reid Spencer1628cec2006-10-26 06:15:43 +00002353 ExitValue = ConstantExpr::getSDiv(ExitValue, A);
Chris Lattner53e677a2004-04-02 20:23:17 +00002354 }
2355 assert(isa<ConstantInt>(ExitValue) &&
2356 "Constant folding of integers not implemented?");
2357
2358 // Evaluate at the exit value. If we really did fall out of the valid
2359 // range, then we computed our trip count, otherwise wrap around or other
2360 // things must have happened.
2361 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2362 if (Range.contains(Val))
2363 return new SCEVCouldNotCompute(); // Something strange happened
2364
2365 // Ensure that the previous value is in the range. This is a sanity check.
2366 assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2367 ConstantExpr::getSub(ExitValue, One))) &&
2368 "Linear scev computation is off in a bad way!");
2369 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2370 } else if (isQuadratic()) {
2371 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2372 // quadratic equation to solve it. To do this, we must frame our problem in
2373 // terms of figuring out when zero is crossed, instead of when
2374 // Range.getUpper() is crossed.
2375 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Chris Lattnerbac5b462005-03-09 05:34:41 +00002376 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
Chris Lattner53e677a2004-04-02 20:23:17 +00002377 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2378
2379 // Next, solve the constructed addrec
2380 std::pair<SCEVHandle,SCEVHandle> Roots =
2381 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2382 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2383 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2384 if (R1) {
2385 // Pick the smallest positive root value.
2386 assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2387 if (ConstantBool *CB =
2388 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2389 R2->getValue()))) {
Chris Lattner003cbf32006-09-28 23:36:21 +00002390 if (CB->getValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002391 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002392
Chris Lattner53e677a2004-04-02 20:23:17 +00002393 // Make sure the root is not off by one. The returned iteration should
2394 // not be in the range, but the previous one should be. When solving
2395 // for "X*X < 5", for example, we should not return a root of 2.
2396 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2397 R1->getValue());
2398 if (Range.contains(R1Val)) {
2399 // The next iteration must be out of the range...
2400 Constant *NextVal =
2401 ConstantExpr::getAdd(R1->getValue(),
2402 ConstantInt::get(R1->getType(), 1));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002403
Chris Lattner53e677a2004-04-02 20:23:17 +00002404 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2405 if (!Range.contains(R1Val))
2406 return SCEVUnknown::get(NextVal);
2407 return new SCEVCouldNotCompute(); // Something strange happened
2408 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002409
Chris Lattner53e677a2004-04-02 20:23:17 +00002410 // If R1 was not in the range, then it is a good return value. Make
2411 // sure that R1-1 WAS in the range though, just in case.
2412 Constant *NextVal =
2413 ConstantExpr::getSub(R1->getValue(),
2414 ConstantInt::get(R1->getType(), 1));
2415 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2416 if (Range.contains(R1Val))
2417 return R1;
2418 return new SCEVCouldNotCompute(); // Something strange happened
2419 }
2420 }
2421 }
2422
2423 // Fallback, if this is a general polynomial, figure out the progression
2424 // through brute force: evaluate until we find an iteration that fails the
2425 // test. This is likely to be slow, but getting an accurate trip count is
2426 // incredibly important, we will be able to simplify the exit test a lot, and
2427 // we are almost guaranteed to get a trip count in this case.
2428 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2429 ConstantInt *One = ConstantInt::get(getType(), 1);
2430 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2431 do {
2432 ++NumBruteForceEvaluations;
2433 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2434 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2435 return new SCEVCouldNotCompute();
2436
2437 // Check to see if we found the value!
2438 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2439 return SCEVConstant::get(TestVal);
2440
2441 // Increment to test the next index.
2442 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2443 } while (TestVal != EndVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002444
Chris Lattner53e677a2004-04-02 20:23:17 +00002445 return new SCEVCouldNotCompute();
2446}
2447
2448
2449
2450//===----------------------------------------------------------------------===//
2451// ScalarEvolution Class Implementation
2452//===----------------------------------------------------------------------===//
2453
2454bool ScalarEvolution::runOnFunction(Function &F) {
2455 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2456 return false;
2457}
2458
2459void ScalarEvolution::releaseMemory() {
2460 delete (ScalarEvolutionsImpl*)Impl;
2461 Impl = 0;
2462}
2463
2464void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2465 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00002466 AU.addRequiredTransitive<LoopInfo>();
2467}
2468
2469SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2470 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2471}
2472
Chris Lattnera0740fb2005-08-09 23:36:33 +00002473/// hasSCEV - Return true if the SCEV for this value has already been
2474/// computed.
2475bool ScalarEvolution::hasSCEV(Value *V) const {
Chris Lattner05bd3742005-08-10 00:59:40 +00002476 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
Chris Lattnera0740fb2005-08-09 23:36:33 +00002477}
2478
2479
2480/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2481/// the specified value.
2482void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2483 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2484}
2485
2486
Chris Lattner53e677a2004-04-02 20:23:17 +00002487SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2488 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2489}
2490
2491bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2492 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2493}
2494
2495SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2496 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2497}
2498
2499void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2500 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2501}
2502
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002503static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00002504 const Loop *L) {
2505 // Print all inner loops first
2506 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2507 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002508
Chris Lattner53e677a2004-04-02 20:23:17 +00002509 std::cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002510
2511 std::vector<BasicBlock*> ExitBlocks;
2512 L->getExitBlocks(ExitBlocks);
2513 if (ExitBlocks.size() != 1)
Chris Lattner53e677a2004-04-02 20:23:17 +00002514 std::cerr << "<multiple exits> ";
2515
2516 if (SE->hasLoopInvariantIterationCount(L)) {
2517 std::cerr << *SE->getIterationCount(L) << " iterations! ";
2518 } else {
2519 std::cerr << "Unpredictable iteration count. ";
2520 }
2521
2522 std::cerr << "\n";
2523}
2524
Reid Spencerce9653c2004-12-07 04:03:45 +00002525void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002526 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2527 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2528
2529 OS << "Classifying expressions for: " << F.getName() << "\n";
2530 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner6ffe5512004-04-27 15:13:33 +00002531 if (I->getType()->isInteger()) {
2532 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002533 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002534 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002535 SV->print(OS);
2536 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002537
Chris Lattner6ffe5512004-04-27 15:13:33 +00002538 if ((*I).getType()->isIntegral()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002539 ConstantRange Bounds = SV->getValueRange();
2540 if (!Bounds.isFullSet())
2541 OS << "Bounds: " << Bounds << " ";
2542 }
2543
Chris Lattner6ffe5512004-04-27 15:13:33 +00002544 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002545 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002546 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002547 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2548 OS << "<<Unknown>>";
2549 } else {
2550 OS << *ExitValue;
2551 }
2552 }
2553
2554
2555 OS << "\n";
2556 }
2557
2558 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2559 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2560 PrintLoopInfo(OS, this, *I);
2561}
2562