blob: d8ccc8ea6214a06ca00372cb07685a62a92923fc [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000066#include "llvm/Instructions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Assembly/Writer.h"
69#include "llvm/Transforms/Scalar.h"
Chris Lattner7980fb92004-04-17 18:36:24 +000070#include "llvm/Transforms/Utils/Local.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000071#include "llvm/Support/CFG.h"
72#include "llvm/Support/ConstantRange.h"
73#include "llvm/Support/InstIterator.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000074#include "llvm/Support/CommandLine.h"
75#include "llvm/ADT/Statistic.h"
Brian Gaekec5985172004-04-16 15:57:32 +000076#include <cmath>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000077#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000078using namespace llvm;
79
80namespace {
81 RegisterAnalysis<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +000082 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +000083
84 Statistic<>
85 NumBruteForceEvaluations("scalar-evolution",
Chris Lattner673e02b2004-10-12 01:49:27 +000086 "Number of brute force evaluations needed to "
87 "calculate high-order polynomial exit values");
88 Statistic<>
89 NumArrayLenItCounts("scalar-evolution",
90 "Number of trip counts computed with array length");
Chris Lattner53e677a2004-04-02 20:23:17 +000091 Statistic<>
92 NumTripCountsComputed("scalar-evolution",
93 "Number of loops with predictable loop counts");
94 Statistic<>
95 NumTripCountsNotComputed("scalar-evolution",
96 "Number of loops without predictable loop counts");
Chris Lattner7980fb92004-04-17 18:36:24 +000097 Statistic<>
98 NumBruteForceTripCountsComputed("scalar-evolution",
99 "Number of loops with trip counts computed by force");
100
101 cl::opt<unsigned>
102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
104 cl::init(100));
Chris Lattner53e677a2004-04-02 20:23:17 +0000105}
106
107//===----------------------------------------------------------------------===//
108// SCEV class definitions
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Implementation of the SCEV class.
113//
Chris Lattner53e677a2004-04-02 20:23:17 +0000114SCEV::~SCEV() {}
115void SCEV::dump() const {
116 print(std::cerr);
117}
118
119/// getValueRange - Return the tightest constant bounds that this value is
120/// known to have. This method is only valid on integer SCEV objects.
121ConstantRange SCEV::getValueRange() const {
122 const Type *Ty = getType();
123 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
124 Ty = Ty->getUnsignedVersion();
125 // Default to a full range if no better information is available.
126 return ConstantRange(getType());
127}
128
129
130SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
131
132bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
133 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000134 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000135}
136
137const Type *SCEVCouldNotCompute::getType() const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000139 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000140}
141
142bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144 return false;
145}
146
Chris Lattner4dc534c2005-02-13 04:37:18 +0000147SCEVHandle SCEVCouldNotCompute::
148replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
149 const SCEVHandle &Conc) const {
150 return this;
151}
152
Chris Lattner53e677a2004-04-02 20:23:17 +0000153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154 OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158 return S->getSCEVType() == scCouldNotCompute;
159}
160
161
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value. Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
166
Chris Lattner53e677a2004-04-02 20:23:17 +0000167
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000168SCEVConstant::~SCEVConstant() {
169 SCEVConstants.erase(V);
170}
Chris Lattner53e677a2004-04-02 20:23:17 +0000171
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000172SCEVHandle SCEVConstant::get(ConstantInt *V) {
173 // Make sure that SCEVConstant instances are all unsigned.
174 if (V->getType()->isSigned()) {
175 const Type *NewTy = V->getType()->getUnsignedVersion();
176 V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
177 }
178
179 SCEVConstant *&R = SCEVConstants[V];
180 if (R == 0) R = new SCEVConstant(V);
181 return R;
182}
Chris Lattner53e677a2004-04-02 20:23:17 +0000183
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000184ConstantRange SCEVConstant::getValueRange() const {
185 return ConstantRange(V);
186}
Chris Lattner53e677a2004-04-02 20:23:17 +0000187
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000189
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000190void SCEVConstant::print(std::ostream &OS) const {
191 WriteAsOperand(OS, V, false);
192}
Chris Lattner53e677a2004-04-02 20:23:17 +0000193
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000194// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
195// particular input. Don't use a SCEVHandle here, or else the object will
196// never be deleted!
197static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000198
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200 : SCEV(scTruncate), Op(op), Ty(ty) {
201 assert(Op->getType()->isInteger() && Ty->isInteger() &&
202 Ty->isUnsigned() &&
203 "Cannot truncate non-integer value!");
204 assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
205 "This is not a truncating conversion!");
206}
Chris Lattner53e677a2004-04-02 20:23:17 +0000207
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000208SCEVTruncateExpr::~SCEVTruncateExpr() {
209 SCEVTruncates.erase(std::make_pair(Op, Ty));
210}
Chris Lattner53e677a2004-04-02 20:23:17 +0000211
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000212ConstantRange SCEVTruncateExpr::getValueRange() const {
213 return getOperand()->getValueRange().truncate(getType());
214}
Chris Lattner53e677a2004-04-02 20:23:17 +0000215
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000216void SCEVTruncateExpr::print(std::ostream &OS) const {
217 OS << "(truncate " << *Op << " to " << *Ty << ")";
218}
219
220// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
221// particular input. Don't use a SCEVHandle here, or else the object will never
222// be deleted!
223static std::map<std::pair<SCEV*, const Type*>,
224 SCEVZeroExtendExpr*> SCEVZeroExtends;
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Chris Lattner2352fec2005-02-17 16:54:16 +0000227 : SCEV(scTruncate), Op(op), Ty(ty) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000228 assert(Op->getType()->isInteger() && Ty->isInteger() &&
229 Ty->isUnsigned() &&
230 "Cannot zero extend non-integer value!");
231 assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
232 "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236 SCEVZeroExtends.erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240 return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static std::map<std::pair<unsigned, std::vector<SCEV*> >,
251 SCEVCommutativeExpr*> SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254 SCEVCommExprs.erase(std::make_pair(getSCEVType(),
255 std::vector<SCEV*>(Operands.begin(),
256 Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261 const char *OpStr = getOperationStr();
262 OS << "(" << *Operands[0];
263 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264 OS << OpStr << *Operands[i];
265 OS << ")";
266}
267
Chris Lattner4dc534c2005-02-13 04:37:18 +0000268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270 const SCEVHandle &Conc) const {
271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273 if (H != getOperand(i)) {
274 std::vector<SCEVHandle> NewOps;
275 NewOps.reserve(getNumOperands());
276 for (unsigned j = 0; j != i; ++j)
277 NewOps.push_back(getOperand(j));
278 NewOps.push_back(H);
279 for (++i; i != e; ++i)
280 NewOps.push_back(getOperand(i)->
281 replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283 if (isa<SCEVAddExpr>(this))
284 return SCEVAddExpr::get(NewOps);
285 else if (isa<SCEVMulExpr>(this))
286 return SCEVMulExpr::get(NewOps);
287 else
288 assert(0 && "Unknown commutative expr!");
289 }
290 }
291 return this;
292}
293
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
296// input. Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
299
300SCEVUDivExpr::~SCEVUDivExpr() {
301 SCEVUDivs.erase(std::make_pair(LHS, RHS));
302}
303
304void SCEVUDivExpr::print(std::ostream &OS) const {
305 OS << "(" << *LHS << " /u " << *RHS << ")";
306}
307
308const Type *SCEVUDivExpr::getType() const {
309 const Type *Ty = LHS->getType();
310 if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
311 return Ty;
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input. Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318 SCEVAddRecExpr*> SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321 SCEVAddRecExprs.erase(std::make_pair(L,
322 std::vector<SCEV*>(Operands.begin(),
323 Operands.end())));
324}
325
Chris Lattner4dc534c2005-02-13 04:37:18 +0000326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328 const SCEVHandle &Conc) const {
329 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331 if (H != getOperand(i)) {
332 std::vector<SCEVHandle> NewOps;
333 NewOps.reserve(getNumOperands());
334 for (unsigned j = 0; j != i; ++j)
335 NewOps.push_back(getOperand(j));
336 NewOps.push_back(H);
337 for (++i; i != e; ++i)
338 NewOps.push_back(getOperand(i)->
339 replaceSymbolicValuesWithConcrete(Sym, Conc));
340
341 return get(NewOps, L);
342 }
343 }
344 return this;
345}
346
347
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
350 // contain L.
351 return !QueryLoop->contains(L->getHeader());
Chris Lattner53e677a2004-04-02 20:23:17 +0000352}
353
354
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000355void SCEVAddRecExpr::print(std::ostream &OS) const {
356 OS << "{" << *Operands[0];
357 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358 OS << ",+," << *Operands[i];
359 OS << "}<" << L->getHeader()->getName() + ">";
360}
Chris Lattner53e677a2004-04-02 20:23:17 +0000361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value. Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000366
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000368
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370 // All non-instruction values are loop invariant. All instructions are loop
371 // invariant if they are not contained in the specified loop.
372 if (Instruction *I = dyn_cast<Instruction>(V))
373 return !L->contains(I->getParent());
374 return true;
375}
Chris Lattner53e677a2004-04-02 20:23:17 +0000376
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377const Type *SCEVUnknown::getType() const {
378 return V->getType();
379}
Chris Lattner53e677a2004-04-02 20:23:17 +0000380
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000381void SCEVUnknown::print(std::ostream &OS) const {
382 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000383}
384
Chris Lattner8d741b82004-06-20 06:23:15 +0000385//===----------------------------------------------------------------------===//
386// SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391 /// than the complexity of the RHS. This comparator is used to canonicalize
392 /// expressions.
393 struct SCEVComplexityCompare {
394 bool operator()(SCEV *LHS, SCEV *RHS) {
395 return LHS->getSCEVType() < RHS->getSCEVType();
396 }
397 };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine. In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411 if (Ops.size() < 2) return; // Noop
412 if (Ops.size() == 2) {
413 // This is the common case, which also happens to be trivially simple.
414 // Special case it.
415 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416 std::swap(Ops[0], Ops[1]);
417 return;
418 }
419
420 // Do the rough sort by complexity.
421 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423 // Now that we are sorted by complexity, group elements of the same
424 // complexity. Note that this is, at worst, N^2, but the vector is likely to
425 // be extremely short in practice. Note that we take this approach because we
426 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000427 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000428 SCEV *S = Ops[i];
429 unsigned Complexity = S->getSCEVType();
430
431 // If there are any objects of the same complexity and same value as this
432 // one, group them.
433 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434 if (Ops[j] == S) { // Found a duplicate.
435 // Move it to immediately after i'th element.
436 std::swap(Ops[i+1], Ops[j]);
437 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000438 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000439 }
440 }
441 }
442}
443
Chris Lattner53e677a2004-04-02 20:23:17 +0000444
Chris Lattner53e677a2004-04-02 20:23:17 +0000445
446//===----------------------------------------------------------------------===//
447// Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000453 Constant *C;
454 if (Val == 0)
455 C = Constant::getNullValue(Ty);
456 else if (Ty->isFloatingPoint())
457 C = ConstantFP::get(Ty, Val);
458 else if (Ty->isSigned())
459 C = ConstantSInt::get(Ty, Val);
460 else {
461 C = ConstantSInt::get(Ty->getSignedVersion(), Val);
462 C = ConstantExpr::getCast(C, Ty);
463 }
464 return SCEVUnknown::get(C);
465}
466
467/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
468/// input value to the specified type. If the type must be extended, it is zero
469/// extended.
470static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
471 const Type *SrcTy = V->getType();
472 assert(SrcTy->isInteger() && Ty->isInteger() &&
473 "Cannot truncate or zero extend with non-integer arguments!");
474 if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
475 return V; // No conversion
476 if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
477 return SCEVTruncateExpr::get(V, Ty);
478 return SCEVZeroExtendExpr::get(V, Ty);
479}
480
481/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
482///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000483SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000484 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
485 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
486
Chris Lattnerb06432c2004-04-23 21:29:03 +0000487 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000488}
489
490/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
491///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000492SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000493 // X - Y --> X + -Y
Chris Lattnerbac5b462005-03-09 05:34:41 +0000494 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000495}
496
497
Chris Lattner53e677a2004-04-02 20:23:17 +0000498/// PartialFact - Compute V!/(V-NumSteps)!
499static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
500 // Handle this case efficiently, it is common to have constant iteration
501 // counts while computing loop exit values.
502 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
503 uint64_t Val = SC->getValue()->getRawValue();
504 uint64_t Result = 1;
505 for (; NumSteps; --NumSteps)
506 Result *= Val-(NumSteps-1);
507 Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
508 return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
509 }
510
511 const Type *Ty = V->getType();
512 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000513 return SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000514
515 SCEVHandle Result = V;
516 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerbac5b462005-03-09 05:34:41 +0000517 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
Chris Lattnerb06432c2004-04-23 21:29:03 +0000518 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000519 return Result;
520}
521
522
523/// evaluateAtIteration - Return the value of this chain of recurrences at
524/// the specified iteration number. We can evaluate this recurrence by
525/// multiplying each element in the chain by the binomial coefficient
526/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
527///
528/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
529///
530/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
531/// Is the binomial equation safe using modular arithmetic??
532///
533SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
534 SCEVHandle Result = getStart();
535 int Divisor = 1;
536 const Type *Ty = It->getType();
537 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
538 SCEVHandle BC = PartialFact(It, i);
539 Divisor *= i;
540 SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000541 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000542 Result = SCEVAddExpr::get(Result, Val);
543 }
544 return Result;
545}
546
547
548//===----------------------------------------------------------------------===//
549// SCEV Expression folder implementations
550//===----------------------------------------------------------------------===//
551
552SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
553 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
554 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
555
556 // If the input value is a chrec scev made out of constants, truncate
557 // all of the constants.
558 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
559 std::vector<SCEVHandle> Operands;
560 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
561 // FIXME: This should allow truncation of other expression types!
562 if (isa<SCEVConstant>(AddRec->getOperand(i)))
563 Operands.push_back(get(AddRec->getOperand(i), Ty));
564 else
565 break;
566 if (Operands.size() == AddRec->getNumOperands())
567 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
568 }
569
570 SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
571 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
572 return Result;
573}
574
575SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
576 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
577 return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
578
579 // FIXME: If the input value is a chrec scev, and we can prove that the value
580 // did not overflow the old, smaller, value, we can zero extend all of the
581 // operands (often constants). This would allow analysis of something like
582 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
583
584 SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
585 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
586 return Result;
587}
588
589// get - Get a canonical add expression, or something simpler if possible.
590SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
591 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000592 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000593
594 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000595 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000596
597 // If there are any constants, fold them together.
598 unsigned Idx = 0;
599 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
600 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000601 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000602 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
603 // We found two constants, fold them together!
604 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
605 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
606 Ops[0] = SCEVConstant::get(CI);
607 Ops.erase(Ops.begin()+1); // Erase the folded element
608 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000609 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000610 } else {
611 // If we couldn't fold the expression, move to the next constant. Note
612 // that this is impossible to happen in practice because we always
613 // constant fold constant ints to constant ints.
614 ++Idx;
615 }
616 }
617
618 // If we are left with a constant zero being added, strip it off.
619 if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
620 Ops.erase(Ops.begin());
621 --Idx;
622 }
623 }
624
Chris Lattner627018b2004-04-07 16:16:11 +0000625 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000626
627 // Okay, check to see if the same value occurs in the operand list twice. If
628 // so, merge them together into an multiply expression. Since we sorted the
629 // list, these values are required to be adjacent.
630 const Type *Ty = Ops[0]->getType();
631 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
632 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
633 // Found a match, merge the two values into a multiply, and add any
634 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000635 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000636 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
637 if (Ops.size() == 2)
638 return Mul;
639 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
640 Ops.push_back(Mul);
641 return SCEVAddExpr::get(Ops);
642 }
643
644 // Okay, now we know the first non-constant operand. If there are add
645 // operands they would be next.
646 if (Idx < Ops.size()) {
647 bool DeletedAdd = false;
648 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
649 // If we have an add, expand the add operands onto the end of the operands
650 // list.
651 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
652 Ops.erase(Ops.begin()+Idx);
653 DeletedAdd = true;
654 }
655
656 // If we deleted at least one add, we added operands to the end of the list,
657 // and they are not necessarily sorted. Recurse to resort and resimplify
658 // any operands we just aquired.
659 if (DeletedAdd)
660 return get(Ops);
661 }
662
663 // Skip over the add expression until we get to a multiply.
664 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
665 ++Idx;
666
667 // If we are adding something to a multiply expression, make sure the
668 // something is not already an operand of the multiply. If so, merge it into
669 // the multiply.
670 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
671 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
672 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
673 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
674 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000675 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000676 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
677 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
678 if (Mul->getNumOperands() != 2) {
679 // If the multiply has more than two operands, we must get the
680 // Y*Z term.
681 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
682 MulOps.erase(MulOps.begin()+MulOp);
683 InnerMul = SCEVMulExpr::get(MulOps);
684 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000685 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000686 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
687 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
688 if (Ops.size() == 2) return OuterMul;
689 if (AddOp < Idx) {
690 Ops.erase(Ops.begin()+AddOp);
691 Ops.erase(Ops.begin()+Idx-1);
692 } else {
693 Ops.erase(Ops.begin()+Idx);
694 Ops.erase(Ops.begin()+AddOp-1);
695 }
696 Ops.push_back(OuterMul);
697 return SCEVAddExpr::get(Ops);
698 }
699
700 // Check this multiply against other multiplies being added together.
701 for (unsigned OtherMulIdx = Idx+1;
702 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
703 ++OtherMulIdx) {
704 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
705 // If MulOp occurs in OtherMul, we can fold the two multiplies
706 // together.
707 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
708 OMulOp != e; ++OMulOp)
709 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
710 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
711 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
712 if (Mul->getNumOperands() != 2) {
713 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
714 MulOps.erase(MulOps.begin()+MulOp);
715 InnerMul1 = SCEVMulExpr::get(MulOps);
716 }
717 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
718 if (OtherMul->getNumOperands() != 2) {
719 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
720 OtherMul->op_end());
721 MulOps.erase(MulOps.begin()+OMulOp);
722 InnerMul2 = SCEVMulExpr::get(MulOps);
723 }
724 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
725 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
726 if (Ops.size() == 2) return OuterMul;
727 Ops.erase(Ops.begin()+Idx);
728 Ops.erase(Ops.begin()+OtherMulIdx-1);
729 Ops.push_back(OuterMul);
730 return SCEVAddExpr::get(Ops);
731 }
732 }
733 }
734 }
735
736 // If there are any add recurrences in the operands list, see if any other
737 // added values are loop invariant. If so, we can fold them into the
738 // recurrence.
739 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
740 ++Idx;
741
742 // Scan over all recurrences, trying to fold loop invariants into them.
743 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
744 // Scan all of the other operands to this add and add them to the vector if
745 // they are loop invariant w.r.t. the recurrence.
746 std::vector<SCEVHandle> LIOps;
747 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
748 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
749 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
750 LIOps.push_back(Ops[i]);
751 Ops.erase(Ops.begin()+i);
752 --i; --e;
753 }
754
755 // If we found some loop invariants, fold them into the recurrence.
756 if (!LIOps.empty()) {
757 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
758 LIOps.push_back(AddRec->getStart());
759
760 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
761 AddRecOps[0] = SCEVAddExpr::get(LIOps);
762
763 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
764 // If all of the other operands were loop invariant, we are done.
765 if (Ops.size() == 1) return NewRec;
766
767 // Otherwise, add the folded AddRec by the non-liv parts.
768 for (unsigned i = 0;; ++i)
769 if (Ops[i] == AddRec) {
770 Ops[i] = NewRec;
771 break;
772 }
773 return SCEVAddExpr::get(Ops);
774 }
775
776 // Okay, if there weren't any loop invariants to be folded, check to see if
777 // there are multiple AddRec's with the same loop induction variable being
778 // added together. If so, we can fold them.
779 for (unsigned OtherIdx = Idx+1;
780 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
781 if (OtherIdx != Idx) {
782 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
783 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
784 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
785 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
786 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
787 if (i >= NewOps.size()) {
788 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
789 OtherAddRec->op_end());
790 break;
791 }
792 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
793 }
794 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
795
796 if (Ops.size() == 2) return NewAddRec;
797
798 Ops.erase(Ops.begin()+Idx);
799 Ops.erase(Ops.begin()+OtherIdx-1);
800 Ops.push_back(NewAddRec);
801 return SCEVAddExpr::get(Ops);
802 }
803 }
804
805 // Otherwise couldn't fold anything into this recurrence. Move onto the
806 // next one.
807 }
808
809 // Okay, it looks like we really DO need an add expr. Check to see if we
810 // already have one, otherwise create a new one.
811 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
812 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
813 SCEVOps)];
814 if (Result == 0) Result = new SCEVAddExpr(Ops);
815 return Result;
816}
817
818
819SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
820 assert(!Ops.empty() && "Cannot get empty mul!");
821
822 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000823 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000824
825 // If there are any constants, fold them together.
826 unsigned Idx = 0;
827 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
828
829 // C1*(C2+V) -> C1*C2 + C1*V
830 if (Ops.size() == 2)
831 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
832 if (Add->getNumOperands() == 2 &&
833 isa<SCEVConstant>(Add->getOperand(0)))
834 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
835 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
836
837
838 ++Idx;
839 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
840 // We found two constants, fold them together!
841 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
842 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
843 Ops[0] = SCEVConstant::get(CI);
844 Ops.erase(Ops.begin()+1); // Erase the folded element
845 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000846 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000847 } else {
848 // If we couldn't fold the expression, move to the next constant. Note
849 // that this is impossible to happen in practice because we always
850 // constant fold constant ints to constant ints.
851 ++Idx;
852 }
853 }
854
855 // If we are left with a constant one being multiplied, strip it off.
856 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
857 Ops.erase(Ops.begin());
858 --Idx;
859 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
860 // If we have a multiply of zero, it will always be zero.
861 return Ops[0];
862 }
863 }
864
865 // Skip over the add expression until we get to a multiply.
866 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
867 ++Idx;
868
869 if (Ops.size() == 1)
870 return Ops[0];
871
872 // If there are mul operands inline them all into this expression.
873 if (Idx < Ops.size()) {
874 bool DeletedMul = false;
875 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
876 // If we have an mul, expand the mul operands onto the end of the operands
877 // list.
878 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
879 Ops.erase(Ops.begin()+Idx);
880 DeletedMul = true;
881 }
882
883 // If we deleted at least one mul, we added operands to the end of the list,
884 // and they are not necessarily sorted. Recurse to resort and resimplify
885 // any operands we just aquired.
886 if (DeletedMul)
887 return get(Ops);
888 }
889
890 // If there are any add recurrences in the operands list, see if any other
891 // added values are loop invariant. If so, we can fold them into the
892 // recurrence.
893 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
894 ++Idx;
895
896 // Scan over all recurrences, trying to fold loop invariants into them.
897 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
898 // Scan all of the other operands to this mul and add them to the vector if
899 // they are loop invariant w.r.t. the recurrence.
900 std::vector<SCEVHandle> LIOps;
901 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
902 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
903 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
904 LIOps.push_back(Ops[i]);
905 Ops.erase(Ops.begin()+i);
906 --i; --e;
907 }
908
909 // If we found some loop invariants, fold them into the recurrence.
910 if (!LIOps.empty()) {
911 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
912 std::vector<SCEVHandle> NewOps;
913 NewOps.reserve(AddRec->getNumOperands());
914 if (LIOps.size() == 1) {
915 SCEV *Scale = LIOps[0];
916 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
917 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
918 } else {
919 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
920 std::vector<SCEVHandle> MulOps(LIOps);
921 MulOps.push_back(AddRec->getOperand(i));
922 NewOps.push_back(SCEVMulExpr::get(MulOps));
923 }
924 }
925
926 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
927
928 // If all of the other operands were loop invariant, we are done.
929 if (Ops.size() == 1) return NewRec;
930
931 // Otherwise, multiply the folded AddRec by the non-liv parts.
932 for (unsigned i = 0;; ++i)
933 if (Ops[i] == AddRec) {
934 Ops[i] = NewRec;
935 break;
936 }
937 return SCEVMulExpr::get(Ops);
938 }
939
940 // Okay, if there weren't any loop invariants to be folded, check to see if
941 // there are multiple AddRec's with the same loop induction variable being
942 // multiplied together. If so, we can fold them.
943 for (unsigned OtherIdx = Idx+1;
944 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
945 if (OtherIdx != Idx) {
946 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
947 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
948 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
949 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
950 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
951 G->getStart());
952 SCEVHandle B = F->getStepRecurrence();
953 SCEVHandle D = G->getStepRecurrence();
954 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
955 SCEVMulExpr::get(G, B),
956 SCEVMulExpr::get(B, D));
957 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
958 F->getLoop());
959 if (Ops.size() == 2) return NewAddRec;
960
961 Ops.erase(Ops.begin()+Idx);
962 Ops.erase(Ops.begin()+OtherIdx-1);
963 Ops.push_back(NewAddRec);
964 return SCEVMulExpr::get(Ops);
965 }
966 }
967
968 // Otherwise couldn't fold anything into this recurrence. Move onto the
969 // next one.
970 }
971
972 // Okay, it looks like we really DO need an mul expr. Check to see if we
973 // already have one, otherwise create a new one.
974 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
975 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
976 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000977 if (Result == 0)
978 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000979 return Result;
980}
981
982SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
983 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
984 if (RHSC->getValue()->equalsInt(1))
985 return LHS; // X /u 1 --> x
986 if (RHSC->getValue()->isAllOnesValue())
Chris Lattnerbac5b462005-03-09 05:34:41 +0000987 return SCEV::getNegativeSCEV(LHS); // X /u -1 --> -x
Chris Lattner53e677a2004-04-02 20:23:17 +0000988
989 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
990 Constant *LHSCV = LHSC->getValue();
991 Constant *RHSCV = RHSC->getValue();
992 if (LHSCV->getType()->isSigned())
993 LHSCV = ConstantExpr::getCast(LHSCV,
994 LHSCV->getType()->getUnsignedVersion());
995 if (RHSCV->getType()->isSigned())
996 RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
997 return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
998 }
999 }
1000
1001 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1002
1003 SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1004 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1005 return Result;
1006}
1007
1008
1009/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1010/// specified loop. Simplify the expression as much as possible.
1011SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1012 const SCEVHandle &Step, const Loop *L) {
1013 std::vector<SCEVHandle> Operands;
1014 Operands.push_back(Start);
1015 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1016 if (StepChrec->getLoop() == L) {
1017 Operands.insert(Operands.end(), StepChrec->op_begin(),
1018 StepChrec->op_end());
1019 return get(Operands, L);
1020 }
1021
1022 Operands.push_back(Step);
1023 return get(Operands, L);
1024}
1025
1026/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1027/// specified loop. Simplify the expression as much as possible.
1028SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1029 const Loop *L) {
1030 if (Operands.size() == 1) return Operands[0];
1031
1032 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1033 if (StepC->getValue()->isNullValue()) {
1034 Operands.pop_back();
1035 return get(Operands, L); // { X,+,0 } --> X
1036 }
1037
1038 SCEVAddRecExpr *&Result =
1039 SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1040 Operands.end()))];
1041 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1042 return Result;
1043}
1044
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001045SCEVHandle SCEVUnknown::get(Value *V) {
1046 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1047 return SCEVConstant::get(CI);
1048 SCEVUnknown *&Result = SCEVUnknowns[V];
1049 if (Result == 0) Result = new SCEVUnknown(V);
1050 return Result;
1051}
1052
Chris Lattner53e677a2004-04-02 20:23:17 +00001053
1054//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001055// ScalarEvolutionsImpl Definition and Implementation
1056//===----------------------------------------------------------------------===//
1057//
1058/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1059/// evolution code.
1060///
1061namespace {
1062 struct ScalarEvolutionsImpl {
1063 /// F - The function we are analyzing.
1064 ///
1065 Function &F;
1066
1067 /// LI - The loop information for the function we are currently analyzing.
1068 ///
1069 LoopInfo &LI;
1070
1071 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1072 /// things.
1073 SCEVHandle UnknownValue;
1074
1075 /// Scalars - This is a cache of the scalars we have analyzed so far.
1076 ///
1077 std::map<Value*, SCEVHandle> Scalars;
1078
1079 /// IterationCounts - Cache the iteration count of the loops for this
1080 /// function as they are computed.
1081 std::map<const Loop*, SCEVHandle> IterationCounts;
1082
Chris Lattner3221ad02004-04-17 22:58:41 +00001083 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1084 /// the PHI instructions that we attempt to compute constant evolutions for.
1085 /// This allows us to avoid potentially expensive recomputation of these
1086 /// properties. An instruction maps to null if we are unable to compute its
1087 /// exit value.
1088 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1089
Chris Lattner53e677a2004-04-02 20:23:17 +00001090 public:
1091 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1092 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1093
1094 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1095 /// expression and create a new one.
1096 SCEVHandle getSCEV(Value *V);
1097
1098 /// getSCEVAtScope - Compute the value of the specified expression within
1099 /// the indicated loop (which may be null to indicate in no loop). If the
1100 /// expression cannot be evaluated, return UnknownValue itself.
1101 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1102
1103
1104 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1105 /// an analyzable loop-invariant iteration count.
1106 bool hasLoopInvariantIterationCount(const Loop *L);
1107
1108 /// getIterationCount - If the specified loop has a predictable iteration
1109 /// count, return it. Note that it is not valid to call this method on a
1110 /// loop without a loop-invariant iteration count.
1111 SCEVHandle getIterationCount(const Loop *L);
1112
1113 /// deleteInstructionFromRecords - This method should be called by the
1114 /// client before it removes an instruction from the program, to make sure
1115 /// that no dangling references are left around.
1116 void deleteInstructionFromRecords(Instruction *I);
1117
1118 private:
1119 /// createSCEV - We know that there is no SCEV for the specified value.
1120 /// Analyze the expression.
1121 SCEVHandle createSCEV(Value *V);
1122 SCEVHandle createNodeForCast(CastInst *CI);
1123
1124 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1125 /// SCEVs.
1126 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001127
1128 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1129 /// for the specified instruction and replaces any references to the
1130 /// symbolic value SymName with the specified value. This is used during
1131 /// PHI resolution.
1132 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1133 const SCEVHandle &SymName,
1134 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001135
1136 /// ComputeIterationCount - Compute the number of times the specified loop
1137 /// will iterate.
1138 SCEVHandle ComputeIterationCount(const Loop *L);
1139
Chris Lattner673e02b2004-10-12 01:49:27 +00001140 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1141 /// 'setcc load X, cst', try to se if we can compute the trip count.
1142 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1143 Constant *RHS,
1144 const Loop *L,
1145 unsigned SetCCOpcode);
1146
Chris Lattner7980fb92004-04-17 18:36:24 +00001147 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1148 /// constant number of times (the condition evolves only from constants),
1149 /// try to evaluate a few iterations of the loop until we get the exit
1150 /// condition gets a value of ExitWhen (true or false). If we cannot
1151 /// evaluate the trip count of the loop, return UnknownValue.
1152 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1153 bool ExitWhen);
1154
Chris Lattner53e677a2004-04-02 20:23:17 +00001155 /// HowFarToZero - Return the number of times a backedge comparing the
1156 /// specified value to zero will execute. If not computable, return
1157 /// UnknownValue
1158 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1159
1160 /// HowFarToNonZero - Return the number of times a backedge checking the
1161 /// specified value for nonzero will execute. If not computable, return
1162 /// UnknownValue
1163 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001164
1165 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1166 /// in the header of its containing loop, we know the loop executes a
1167 /// constant number of times, and the PHI node is just a recurrence
1168 /// involving constants, fold it.
1169 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1170 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001171 };
1172}
1173
1174//===----------------------------------------------------------------------===//
1175// Basic SCEV Analysis and PHI Idiom Recognition Code
1176//
1177
1178/// deleteInstructionFromRecords - This method should be called by the
1179/// client before it removes an instruction from the program, to make sure
1180/// that no dangling references are left around.
1181void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1182 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001183 if (PHINode *PN = dyn_cast<PHINode>(I))
1184 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001185}
1186
1187
1188/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1189/// expression and create a new one.
1190SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1191 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1192
1193 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1194 if (I != Scalars.end()) return I->second;
1195 SCEVHandle S = createSCEV(V);
1196 Scalars.insert(std::make_pair(V, S));
1197 return S;
1198}
1199
Chris Lattner4dc534c2005-02-13 04:37:18 +00001200/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1201/// the specified instruction and replaces any references to the symbolic value
1202/// SymName with the specified value. This is used during PHI resolution.
1203void ScalarEvolutionsImpl::
1204ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1205 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001206 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001207 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001208
Chris Lattner4dc534c2005-02-13 04:37:18 +00001209 SCEVHandle NV =
1210 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1211 if (NV == SI->second) return; // No change.
1212
1213 SI->second = NV; // Update the scalars map!
1214
1215 // Any instruction values that use this instruction might also need to be
1216 // updated!
1217 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1218 UI != E; ++UI)
1219 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1220}
Chris Lattner53e677a2004-04-02 20:23:17 +00001221
1222/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1223/// a loop header, making it a potential recurrence, or it doesn't.
1224///
1225SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1226 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1227 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1228 if (L->getHeader() == PN->getParent()) {
1229 // If it lives in the loop header, it has two incoming values, one
1230 // from outside the loop, and one from inside.
1231 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1232 unsigned BackEdge = IncomingEdge^1;
1233
1234 // While we are analyzing this PHI node, handle its value symbolically.
1235 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1236 assert(Scalars.find(PN) == Scalars.end() &&
1237 "PHI node already processed?");
1238 Scalars.insert(std::make_pair(PN, SymbolicName));
1239
1240 // Using this symbolic name for the PHI, analyze the value coming around
1241 // the back-edge.
1242 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1243
1244 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1245 // has a special value for the first iteration of the loop.
1246
1247 // If the value coming around the backedge is an add with the symbolic
1248 // value we just inserted, then we found a simple induction variable!
1249 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1250 // If there is a single occurrence of the symbolic value, replace it
1251 // with a recurrence.
1252 unsigned FoundIndex = Add->getNumOperands();
1253 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1254 if (Add->getOperand(i) == SymbolicName)
1255 if (FoundIndex == e) {
1256 FoundIndex = i;
1257 break;
1258 }
1259
1260 if (FoundIndex != Add->getNumOperands()) {
1261 // Create an add with everything but the specified operand.
1262 std::vector<SCEVHandle> Ops;
1263 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1264 if (i != FoundIndex)
1265 Ops.push_back(Add->getOperand(i));
1266 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1267
1268 // This is not a valid addrec if the step amount is varying each
1269 // loop iteration, but is not itself an addrec in this loop.
1270 if (Accum->isLoopInvariant(L) ||
1271 (isa<SCEVAddRecExpr>(Accum) &&
1272 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1273 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1274 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1275
1276 // Okay, for the entire analysis of this edge we assumed the PHI
1277 // to be symbolic. We now need to go back and update all of the
1278 // entries for the scalars that use the PHI (except for the PHI
1279 // itself) to use the new analyzed value instead of the "symbolic"
1280 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001281 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001282 return PHISCEV;
1283 }
1284 }
1285 }
1286
1287 return SymbolicName;
1288 }
1289
1290 // If it's not a loop phi, we can't handle it yet.
1291 return SCEVUnknown::get(PN);
1292}
1293
1294/// createNodeForCast - Handle the various forms of casts that we support.
1295///
1296SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1297 const Type *SrcTy = CI->getOperand(0)->getType();
1298 const Type *DestTy = CI->getType();
1299
1300 // If this is a noop cast (ie, conversion from int to uint), ignore it.
1301 if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1302 return getSCEV(CI->getOperand(0));
1303
1304 if (SrcTy->isInteger() && DestTy->isInteger()) {
1305 // Otherwise, if this is a truncating integer cast, we can represent this
1306 // cast.
1307 if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1308 return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1309 CI->getType()->getUnsignedVersion());
1310 if (SrcTy->isUnsigned() &&
1311 SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1312 return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1313 CI->getType()->getUnsignedVersion());
1314 }
1315
1316 // If this is an sign or zero extending cast and we can prove that the value
1317 // will never overflow, we could do similar transformations.
1318
1319 // Otherwise, we can't handle this cast!
1320 return SCEVUnknown::get(CI);
1321}
1322
1323
1324/// createSCEV - We know that there is no SCEV for the specified value.
1325/// Analyze the expression.
1326///
1327SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1328 if (Instruction *I = dyn_cast<Instruction>(V)) {
1329 switch (I->getOpcode()) {
1330 case Instruction::Add:
1331 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1332 getSCEV(I->getOperand(1)));
1333 case Instruction::Mul:
1334 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1335 getSCEV(I->getOperand(1)));
1336 case Instruction::Div:
1337 if (V->getType()->isInteger() && V->getType()->isUnsigned())
1338 return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1339 getSCEV(I->getOperand(1)));
1340 break;
1341
1342 case Instruction::Sub:
Chris Lattnerbac5b462005-03-09 05:34:41 +00001343 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1344 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001345
1346 case Instruction::Shl:
1347 // Turn shift left of a constant amount into a multiply.
1348 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1349 Constant *X = ConstantInt::get(V->getType(), 1);
1350 X = ConstantExpr::getShl(X, SA);
1351 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1352 }
1353 break;
1354
1355 case Instruction::Shr:
1356 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1357 if (V->getType()->isUnsigned()) {
1358 Constant *X = ConstantInt::get(V->getType(), 1);
1359 X = ConstantExpr::getShl(X, SA);
1360 return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1361 }
1362 break;
1363
1364 case Instruction::Cast:
1365 return createNodeForCast(cast<CastInst>(I));
1366
1367 case Instruction::PHI:
1368 return createNodeForPHI(cast<PHINode>(I));
1369
1370 default: // We cannot analyze this expression.
1371 break;
1372 }
1373 }
1374
1375 return SCEVUnknown::get(V);
1376}
1377
1378
1379
1380//===----------------------------------------------------------------------===//
1381// Iteration Count Computation Code
1382//
1383
1384/// getIterationCount - If the specified loop has a predictable iteration
1385/// count, return it. Note that it is not valid to call this method on a
1386/// loop without a loop-invariant iteration count.
1387SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1388 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1389 if (I == IterationCounts.end()) {
1390 SCEVHandle ItCount = ComputeIterationCount(L);
1391 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1392 if (ItCount != UnknownValue) {
1393 assert(ItCount->isLoopInvariant(L) &&
1394 "Computed trip count isn't loop invariant for loop!");
1395 ++NumTripCountsComputed;
1396 } else if (isa<PHINode>(L->getHeader()->begin())) {
1397 // Only count loops that have phi nodes as not being computable.
1398 ++NumTripCountsNotComputed;
1399 }
1400 }
1401 return I->second;
1402}
1403
1404/// ComputeIterationCount - Compute the number of times the specified loop
1405/// will iterate.
1406SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1407 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001408 std::vector<BasicBlock*> ExitBlocks;
1409 L->getExitBlocks(ExitBlocks);
1410 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001411
1412 // Okay, there is one exit block. Try to find the condition that causes the
1413 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001414 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001415
1416 BasicBlock *ExitingBlock = 0;
1417 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1418 PI != E; ++PI)
1419 if (L->contains(*PI)) {
1420 if (ExitingBlock == 0)
1421 ExitingBlock = *PI;
1422 else
1423 return UnknownValue; // More than one block exiting!
1424 }
1425 assert(ExitingBlock && "No exits from loop, something is broken!");
1426
1427 // Okay, we've computed the exiting block. See what condition causes us to
1428 // exit.
1429 //
1430 // FIXME: we should be able to handle switch instructions (with a single exit)
1431 // FIXME: We should handle cast of int to bool as well
1432 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1433 if (ExitBr == 0) return UnknownValue;
1434 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1435 SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
Chris Lattner7980fb92004-04-17 18:36:24 +00001436 if (ExitCond == 0) // Not a setcc
1437 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1438 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001439
Chris Lattner673e02b2004-10-12 01:49:27 +00001440 // If the condition was exit on true, convert the condition to exit on false.
1441 Instruction::BinaryOps Cond;
1442 if (ExitBr->getSuccessor(1) == ExitBlock)
1443 Cond = ExitCond->getOpcode();
1444 else
1445 Cond = ExitCond->getInverseCondition();
1446
1447 // Handle common loops like: for (X = "string"; *X; ++X)
1448 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1449 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1450 SCEVHandle ItCnt =
1451 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1452 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1453 }
1454
Chris Lattner53e677a2004-04-02 20:23:17 +00001455 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1456 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1457
1458 // Try to evaluate any dependencies out of the loop.
1459 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1460 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1461 Tmp = getSCEVAtScope(RHS, L);
1462 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1463
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 // At this point, we would like to compute how many iterations of the loop the
1465 // predicate will return true for these inputs.
1466 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1467 // If there is a constant, force it into the RHS.
1468 std::swap(LHS, RHS);
1469 Cond = SetCondInst::getSwappedCondition(Cond);
1470 }
1471
1472 // FIXME: think about handling pointer comparisons! i.e.:
1473 // while (P != P+100) ++P;
1474
1475 // If we have a comparison of a chrec against a constant, try to use value
1476 // ranges to answer this query.
1477 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1478 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1479 if (AddRec->getLoop() == L) {
1480 // Form the comparison range using the constant of the correct type so
1481 // that the ConstantRange class knows to do a signed or unsigned
1482 // comparison.
1483 ConstantInt *CompVal = RHSC->getValue();
1484 const Type *RealTy = ExitCond->getOperand(0)->getType();
1485 CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1486 if (CompVal) {
1487 // Form the constant range.
1488 ConstantRange CompRange(Cond, CompVal);
1489
1490 // Now that we have it, if it's signed, convert it to an unsigned
1491 // range.
1492 if (CompRange.getLower()->getType()->isSigned()) {
1493 const Type *NewTy = RHSC->getValue()->getType();
1494 Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1495 Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1496 CompRange = ConstantRange(NewL, NewU);
1497 }
1498
1499 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1500 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1501 }
1502 }
1503
1504 switch (Cond) {
1505 case Instruction::SetNE: // while (X != Y)
1506 // Convert to: while (X-Y != 0)
Chris Lattner7980fb92004-04-17 18:36:24 +00001507 if (LHS->getType()->isInteger()) {
Chris Lattnerbac5b462005-03-09 05:34:41 +00001508 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
Chris Lattner7980fb92004-04-17 18:36:24 +00001509 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1510 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 break;
1512 case Instruction::SetEQ:
1513 // Convert to: while (X-Y == 0) // while (X == Y)
Chris Lattner7980fb92004-04-17 18:36:24 +00001514 if (LHS->getType()->isInteger()) {
Chris Lattnerbac5b462005-03-09 05:34:41 +00001515 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
Chris Lattner7980fb92004-04-17 18:36:24 +00001516 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1517 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 break;
1519 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001520#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 std::cerr << "ComputeIterationCount ";
1522 if (ExitCond->getOperand(0)->getType()->isUnsigned())
1523 std::cerr << "[unsigned] ";
1524 std::cerr << *LHS << " "
1525 << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001526#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001527 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001529
1530 return ComputeIterationCountExhaustively(L, ExitCond,
1531 ExitBr->getSuccessor(0) == ExitBlock);
1532}
1533
Chris Lattner673e02b2004-10-12 01:49:27 +00001534static ConstantInt *
1535EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1536 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1537 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1538 assert(isa<SCEVConstant>(Val) &&
1539 "Evaluation of SCEV at constant didn't fold correctly?");
1540 return cast<SCEVConstant>(Val)->getValue();
1541}
1542
1543/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1544/// and a GEP expression (missing the pointer index) indexing into it, return
1545/// the addressed element of the initializer or null if the index expression is
1546/// invalid.
1547static Constant *
1548GetAddressedElementFromGlobal(GlobalVariable *GV,
1549 const std::vector<ConstantInt*> &Indices) {
1550 Constant *Init = GV->getInitializer();
1551 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1552 uint64_t Idx = Indices[i]->getRawValue();
1553 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1554 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1555 Init = cast<Constant>(CS->getOperand(Idx));
1556 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1557 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1558 Init = cast<Constant>(CA->getOperand(Idx));
1559 } else if (isa<ConstantAggregateZero>(Init)) {
1560 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1561 assert(Idx < STy->getNumElements() && "Bad struct index!");
1562 Init = Constant::getNullValue(STy->getElementType(Idx));
1563 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1564 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1565 Init = Constant::getNullValue(ATy->getElementType());
1566 } else {
1567 assert(0 && "Unknown constant aggregate type!");
1568 }
1569 return 0;
1570 } else {
1571 return 0; // Unknown initializer type
1572 }
1573 }
1574 return Init;
1575}
1576
1577/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1578/// 'setcc load X, cst', try to se if we can compute the trip count.
1579SCEVHandle ScalarEvolutionsImpl::
1580ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1581 const Loop *L, unsigned SetCCOpcode) {
1582 if (LI->isVolatile()) return UnknownValue;
1583
1584 // Check to see if the loaded pointer is a getelementptr of a global.
1585 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1586 if (!GEP) return UnknownValue;
1587
1588 // Make sure that it is really a constant global we are gepping, with an
1589 // initializer, and make sure the first IDX is really 0.
1590 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1591 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1592 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1593 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1594 return UnknownValue;
1595
1596 // Okay, we allow one non-constant index into the GEP instruction.
1597 Value *VarIdx = 0;
1598 std::vector<ConstantInt*> Indexes;
1599 unsigned VarIdxNum = 0;
1600 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1601 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1602 Indexes.push_back(CI);
1603 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1604 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1605 VarIdx = GEP->getOperand(i);
1606 VarIdxNum = i-2;
1607 Indexes.push_back(0);
1608 }
1609
1610 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1611 // Check to see if X is a loop variant variable value now.
1612 SCEVHandle Idx = getSCEV(VarIdx);
1613 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1614 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1615
1616 // We can only recognize very limited forms of loop index expressions, in
1617 // particular, only affine AddRec's like {C1,+,C2}.
1618 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1619 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1620 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1621 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1622 return UnknownValue;
1623
1624 unsigned MaxSteps = MaxBruteForceIterations;
1625 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1626 ConstantUInt *ItCst =
1627 ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1628 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1629
1630 // Form the GEP offset.
1631 Indexes[VarIdxNum] = Val;
1632
1633 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1634 if (Result == 0) break; // Cannot compute!
1635
1636 // Evaluate the condition for this iteration.
1637 Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1638 if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure
1639 if (Result == ConstantBool::False) {
1640#if 0
1641 std::cerr << "\n***\n*** Computed loop count " << *ItCst
1642 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1643 << "***\n";
1644#endif
1645 ++NumArrayLenItCounts;
1646 return SCEVConstant::get(ItCst); // Found terminating iteration!
1647 }
1648 }
1649 return UnknownValue;
1650}
1651
1652
Chris Lattner3221ad02004-04-17 22:58:41 +00001653/// CanConstantFold - Return true if we can constant fold an instruction of the
1654/// specified type, assuming that all operands were constants.
1655static bool CanConstantFold(const Instruction *I) {
1656 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1657 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1658 return true;
Chris Lattner7980fb92004-04-17 18:36:24 +00001659
Chris Lattner3221ad02004-04-17 22:58:41 +00001660 if (const CallInst *CI = dyn_cast<CallInst>(I))
1661 if (const Function *F = CI->getCalledFunction())
1662 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1663 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001664}
1665
Chris Lattner3221ad02004-04-17 22:58:41 +00001666/// ConstantFold - Constant fold an instruction of the specified type with the
1667/// specified constant operands. This function may modify the operands vector.
1668static Constant *ConstantFold(const Instruction *I,
1669 std::vector<Constant*> &Operands) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001670 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1671 return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1672
1673 switch (I->getOpcode()) {
1674 case Instruction::Cast:
1675 return ConstantExpr::getCast(Operands[0], I->getType());
1676 case Instruction::Select:
1677 return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1678 case Instruction::Call:
Reid Spencere8404342004-07-18 00:18:30 +00001679 if (Function *GV = dyn_cast<Function>(Operands[0])) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001680 Operands.erase(Operands.begin());
Reid Spencere8404342004-07-18 00:18:30 +00001681 return ConstantFoldCall(cast<Function>(GV), Operands);
Chris Lattner7980fb92004-04-17 18:36:24 +00001682 }
1683
1684 return 0;
1685 case Instruction::GetElementPtr:
1686 Constant *Base = Operands[0];
1687 Operands.erase(Operands.begin());
1688 return ConstantExpr::getGetElementPtr(Base, Operands);
1689 }
1690 return 0;
1691}
1692
1693
Chris Lattner3221ad02004-04-17 22:58:41 +00001694/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1695/// in the loop that V is derived from. We allow arbitrary operations along the
1696/// way, but the operands of an operation must either be constants or a value
1697/// derived from a constant PHI. If this expression does not fit with these
1698/// constraints, return null.
1699static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1700 // If this is not an instruction, or if this is an instruction outside of the
1701 // loop, it can't be derived from a loop PHI.
1702 Instruction *I = dyn_cast<Instruction>(V);
1703 if (I == 0 || !L->contains(I->getParent())) return 0;
1704
1705 if (PHINode *PN = dyn_cast<PHINode>(I))
1706 if (L->getHeader() == I->getParent())
1707 return PN;
1708 else
1709 // We don't currently keep track of the control flow needed to evaluate
1710 // PHIs, so we cannot handle PHIs inside of loops.
1711 return 0;
1712
1713 // If we won't be able to constant fold this expression even if the operands
1714 // are constants, return early.
1715 if (!CanConstantFold(I)) return 0;
1716
1717 // Otherwise, we can evaluate this instruction if all of its operands are
1718 // constant or derived from a PHI node themselves.
1719 PHINode *PHI = 0;
1720 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1721 if (!(isa<Constant>(I->getOperand(Op)) ||
1722 isa<GlobalValue>(I->getOperand(Op)))) {
1723 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1724 if (P == 0) return 0; // Not evolving from PHI
1725 if (PHI == 0)
1726 PHI = P;
1727 else if (PHI != P)
1728 return 0; // Evolving from multiple different PHIs.
1729 }
1730
1731 // This is a expression evolving from a constant PHI!
1732 return PHI;
1733}
1734
1735/// EvaluateExpression - Given an expression that passes the
1736/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1737/// in the loop has the value PHIVal. If we can't fold this expression for some
1738/// reason, return null.
1739static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1740 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001741 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001742 return GV;
1743 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001744 Instruction *I = cast<Instruction>(V);
1745
1746 std::vector<Constant*> Operands;
1747 Operands.resize(I->getNumOperands());
1748
1749 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1750 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1751 if (Operands[i] == 0) return 0;
1752 }
1753
1754 return ConstantFold(I, Operands);
1755}
1756
1757/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1758/// in the header of its containing loop, we know the loop executes a
1759/// constant number of times, and the PHI node is just a recurrence
1760/// involving constants, fold it.
1761Constant *ScalarEvolutionsImpl::
1762getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1763 std::map<PHINode*, Constant*>::iterator I =
1764 ConstantEvolutionLoopExitValue.find(PN);
1765 if (I != ConstantEvolutionLoopExitValue.end())
1766 return I->second;
1767
1768 if (Its > MaxBruteForceIterations)
1769 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1770
1771 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1772
1773 // Since the loop is canonicalized, the PHI node must have two entries. One
1774 // entry must be a constant (coming in from outside of the loop), and the
1775 // second must be derived from the same PHI.
1776 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1777 Constant *StartCST =
1778 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1779 if (StartCST == 0)
1780 return RetVal = 0; // Must be a constant.
1781
1782 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1783 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1784 if (PN2 != PN)
1785 return RetVal = 0; // Not derived from same PHI.
1786
1787 // Execute the loop symbolically to determine the exit value.
1788 unsigned IterationNum = 0;
1789 unsigned NumIterations = Its;
1790 if (NumIterations != Its)
1791 return RetVal = 0; // More than 2^32 iterations??
1792
1793 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1794 if (IterationNum == NumIterations)
1795 return RetVal = PHIVal; // Got exit value!
1796
1797 // Compute the value of the PHI node for the next iteration.
1798 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1799 if (NextPHI == PHIVal)
1800 return RetVal = NextPHI; // Stopped evolving!
1801 if (NextPHI == 0)
1802 return 0; // Couldn't evaluate!
1803 PHIVal = NextPHI;
1804 }
1805}
1806
Chris Lattner7980fb92004-04-17 18:36:24 +00001807/// ComputeIterationCountExhaustively - If the trip is known to execute a
1808/// constant number of times (the condition evolves only from constants),
1809/// try to evaluate a few iterations of the loop until we get the exit
1810/// condition gets a value of ExitWhen (true or false). If we cannot
1811/// evaluate the trip count of the loop, return UnknownValue.
1812SCEVHandle ScalarEvolutionsImpl::
1813ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1814 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1815 if (PN == 0) return UnknownValue;
1816
1817 // Since the loop is canonicalized, the PHI node must have two entries. One
1818 // entry must be a constant (coming in from outside of the loop), and the
1819 // second must be derived from the same PHI.
1820 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1821 Constant *StartCST =
1822 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1823 if (StartCST == 0) return UnknownValue; // Must be a constant.
1824
1825 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1826 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1827 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1828
1829 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1830 // the loop symbolically to determine when the condition gets a value of
1831 // "ExitWhen".
1832 unsigned IterationNum = 0;
1833 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1834 for (Constant *PHIVal = StartCST;
1835 IterationNum != MaxIterations; ++IterationNum) {
1836 ConstantBool *CondVal =
1837 dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1838 if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate.
Chris Lattner3221ad02004-04-17 22:58:41 +00001839
Chris Lattner7980fb92004-04-17 18:36:24 +00001840 if (CondVal->getValue() == ExitWhen) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001841 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001842 ++NumBruteForceTripCountsComputed;
1843 return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1844 }
1845
Chris Lattner3221ad02004-04-17 22:58:41 +00001846 // Compute the value of the PHI node for the next iteration.
1847 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1848 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001849 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001850 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001851 }
1852
1853 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001854 return UnknownValue;
1855}
1856
1857/// getSCEVAtScope - Compute the value of the specified expression within the
1858/// indicated loop (which may be null to indicate in no loop). If the
1859/// expression cannot be evaluated, return UnknownValue.
1860SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1861 // FIXME: this should be turned into a virtual method on SCEV!
1862
Chris Lattner3221ad02004-04-17 22:58:41 +00001863 if (isa<SCEVConstant>(V)) return V;
1864
1865 // If this instruction is evolves from a constant-evolving PHI, compute the
1866 // exit value from the loop without using SCEVs.
1867 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1868 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1869 const Loop *LI = this->LI[I->getParent()];
1870 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1871 if (PHINode *PN = dyn_cast<PHINode>(I))
1872 if (PN->getParent() == LI->getHeader()) {
1873 // Okay, there is no closed form solution for the PHI node. Check
1874 // to see if the loop that contains it has a known iteration count.
1875 // If so, we may be able to force computation of the exit value.
1876 SCEVHandle IterationCount = getIterationCount(LI);
1877 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1878 // Okay, we know how many times the containing loop executes. If
1879 // this is a constant evolving PHI node, get the final value at
1880 // the specified iteration number.
1881 Constant *RV = getConstantEvolutionLoopExitValue(PN,
1882 ICC->getValue()->getRawValue(),
1883 LI);
1884 if (RV) return SCEVUnknown::get(RV);
1885 }
1886 }
1887
1888 // Okay, this is a some expression that we cannot symbolically evaluate
1889 // into a SCEV. Check to see if it's possible to symbolically evaluate
1890 // the arguments into constants, and if see, try to constant propagate the
1891 // result. This is particularly useful for computing loop exit values.
1892 if (CanConstantFold(I)) {
1893 std::vector<Constant*> Operands;
1894 Operands.reserve(I->getNumOperands());
1895 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1896 Value *Op = I->getOperand(i);
1897 if (Constant *C = dyn_cast<Constant>(Op)) {
1898 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001899 } else {
1900 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1901 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1902 Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1903 Op->getType()));
1904 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1905 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1906 Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1907 else
1908 return V;
1909 } else {
1910 return V;
1911 }
1912 }
1913 }
1914 return SCEVUnknown::get(ConstantFold(I, Operands));
1915 }
1916 }
1917
1918 // This is some other type of SCEVUnknown, just return it.
1919 return V;
1920 }
1921
Chris Lattner53e677a2004-04-02 20:23:17 +00001922 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1923 // Avoid performing the look-up in the common case where the specified
1924 // expression has no loop-variant portions.
1925 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1926 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1927 if (OpAtScope != Comm->getOperand(i)) {
1928 if (OpAtScope == UnknownValue) return UnknownValue;
1929 // Okay, at least one of these operands is loop variant but might be
1930 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00001931 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00001932 NewOps.push_back(OpAtScope);
1933
1934 for (++i; i != e; ++i) {
1935 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1936 if (OpAtScope == UnknownValue) return UnknownValue;
1937 NewOps.push_back(OpAtScope);
1938 }
1939 if (isa<SCEVAddExpr>(Comm))
1940 return SCEVAddExpr::get(NewOps);
1941 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1942 return SCEVMulExpr::get(NewOps);
1943 }
1944 }
1945 // If we got here, all operands are loop invariant.
1946 return Comm;
1947 }
1948
1949 if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1950 SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1951 if (LHS == UnknownValue) return LHS;
1952 SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1953 if (RHS == UnknownValue) return RHS;
1954 if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1955 return UDiv; // must be loop invariant
1956 return SCEVUDivExpr::get(LHS, RHS);
1957 }
1958
1959 // If this is a loop recurrence for a loop that does not contain L, then we
1960 // are dealing with the final value computed by the loop.
1961 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1962 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1963 // To evaluate this recurrence, we need to know how many times the AddRec
1964 // loop iterates. Compute this now.
1965 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
1966 if (IterationCount == UnknownValue) return UnknownValue;
1967 IterationCount = getTruncateOrZeroExtend(IterationCount,
1968 AddRec->getType());
1969
1970 // If the value is affine, simplify the expression evaluation to just
1971 // Start + Step*IterationCount.
1972 if (AddRec->isAffine())
1973 return SCEVAddExpr::get(AddRec->getStart(),
1974 SCEVMulExpr::get(IterationCount,
1975 AddRec->getOperand(1)));
1976
1977 // Otherwise, evaluate it the hard way.
1978 return AddRec->evaluateAtIteration(IterationCount);
1979 }
1980 return UnknownValue;
1981 }
1982
1983 //assert(0 && "Unknown SCEV type!");
1984 return UnknownValue;
1985}
1986
1987
1988/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
1989/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
1990/// might be the same) or two SCEVCouldNotCompute objects.
1991///
1992static std::pair<SCEVHandle,SCEVHandle>
1993SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
1994 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
1995 SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
1996 SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
1997 SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
1998
1999 // We currently can only solve this if the coefficients are constants.
2000 if (!L || !M || !N) {
2001 SCEV *CNC = new SCEVCouldNotCompute();
2002 return std::make_pair(CNC, CNC);
2003 }
2004
2005 Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2006
2007 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2008 Constant *C = L->getValue();
2009 // The B coefficient is M-N/2
2010 Constant *B = ConstantExpr::getSub(M->getValue(),
2011 ConstantExpr::getDiv(N->getValue(),
2012 Two));
2013 // The A coefficient is N/2
2014 Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2015
2016 // Compute the B^2-4ac term.
2017 Constant *SqrtTerm =
2018 ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2019 ConstantExpr::getMul(A, C));
2020 SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2021
2022 // Compute floor(sqrt(B^2-4ac))
2023 ConstantUInt *SqrtVal =
2024 cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2025 SqrtTerm->getType()->getUnsignedVersion()));
2026 uint64_t SqrtValV = SqrtVal->getValue();
Chris Lattner219c1412004-10-25 18:40:08 +00002027 uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002028 // The square root might not be precise for arbitrary 64-bit integer
2029 // values. Do some sanity checks to ensure it's correct.
2030 if (SqrtValV2*SqrtValV2 > SqrtValV ||
2031 (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2032 SCEV *CNC = new SCEVCouldNotCompute();
2033 return std::make_pair(CNC, CNC);
2034 }
2035
2036 SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2037 SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2038
2039 Constant *NegB = ConstantExpr::getNeg(B);
2040 Constant *TwoA = ConstantExpr::getMul(A, Two);
2041
2042 // The divisions must be performed as signed divisions.
2043 const Type *SignedTy = NegB->getType()->getSignedVersion();
2044 NegB = ConstantExpr::getCast(NegB, SignedTy);
2045 TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2046 SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2047
2048 Constant *Solution1 =
2049 ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2050 Constant *Solution2 =
2051 ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2052 return std::make_pair(SCEVUnknown::get(Solution1),
2053 SCEVUnknown::get(Solution2));
2054}
2055
2056/// HowFarToZero - Return the number of times a backedge comparing the specified
2057/// value to zero will execute. If not computable, return UnknownValue
2058SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2059 // If the value is a constant
2060 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2061 // If the value is already zero, the branch will execute zero times.
2062 if (C->getValue()->isNullValue()) return C;
2063 return UnknownValue; // Otherwise it will loop infinitely.
2064 }
2065
2066 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2067 if (!AddRec || AddRec->getLoop() != L)
2068 return UnknownValue;
2069
2070 if (AddRec->isAffine()) {
2071 // If this is an affine expression the execution count of this branch is
2072 // equal to:
2073 //
2074 // (0 - Start/Step) iff Start % Step == 0
2075 //
2076 // Get the initial value for the loop.
2077 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002078 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002079 SCEVHandle Step = AddRec->getOperand(1);
2080
2081 Step = getSCEVAtScope(Step, L->getParentLoop());
2082
2083 // Figure out if Start % Step == 0.
2084 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2085 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2086 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Chris Lattnerbac5b462005-03-09 05:34:41 +00002087 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
Chris Lattner53e677a2004-04-02 20:23:17 +00002088 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2089 return Start; // 0 - Start/-1 == Start
2090
2091 // Check to see if Start is divisible by SC with no remainder.
2092 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2093 ConstantInt *StartCC = StartC->getValue();
2094 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2095 Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2096 if (Rem->isNullValue()) {
2097 Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2098 return SCEVUnknown::get(Result);
2099 }
2100 }
2101 }
2102 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2103 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2104 // the quadratic equation to solve it.
2105 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2106 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2107 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2108 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002109#if 0
Chris Lattner53e677a2004-04-02 20:23:17 +00002110 std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2111 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002112#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002113 // Pick the smallest positive root value.
2114 assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2115 if (ConstantBool *CB =
2116 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2117 R2->getValue()))) {
2118 if (CB != ConstantBool::True)
2119 std::swap(R1, R2); // R1 is the minimum root now.
2120
2121 // We can only use this value if the chrec ends up with an exact zero
2122 // value at this index. When solving for "X*X != 5", for example, we
2123 // should not accept a root of 2.
2124 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2125 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2126 if (EvalVal->getValue()->isNullValue())
2127 return R1; // We found a quadratic root!
2128 }
2129 }
2130 }
2131
2132 return UnknownValue;
2133}
2134
2135/// HowFarToNonZero - Return the number of times a backedge checking the
2136/// specified value for nonzero will execute. If not computable, return
2137/// UnknownValue
2138SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2139 // Loops that look like: while (X == 0) are very strange indeed. We don't
2140 // handle them yet except for the trivial case. This could be expanded in the
2141 // future as needed.
2142
2143 // If the value is a constant, check to see if it is known to be non-zero
2144 // already. If so, the backedge will execute zero times.
2145 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2146 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2147 Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2148 if (NonZero == ConstantBool::True)
2149 return getSCEV(Zero);
2150 return UnknownValue; // Otherwise it will loop infinitely.
2151 }
2152
2153 // We could implement others, but I really doubt anyone writes loops like
2154 // this, and if they did, they would already be constant folded.
2155 return UnknownValue;
2156}
2157
Chris Lattner53e677a2004-04-02 20:23:17 +00002158/// getNumIterationsInRange - Return the number of iterations of this loop that
2159/// produce values in the specified constant range. Another way of looking at
2160/// this is that it returns the first iteration number where the value is not in
2161/// the condition, thus computing the exit count. If the iteration count can't
2162/// be computed, an instance of SCEVCouldNotCompute is returned.
2163SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2164 if (Range.isFullSet()) // Infinite loop.
2165 return new SCEVCouldNotCompute();
2166
2167 // If the start is a non-zero constant, shift the range to simplify things.
2168 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2169 if (!SC->getValue()->isNullValue()) {
2170 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002171 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002172 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2173 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2174 return ShiftedAddRec->getNumIterationsInRange(
2175 Range.subtract(SC->getValue()));
2176 // This is strange and shouldn't happen.
2177 return new SCEVCouldNotCompute();
2178 }
2179
2180 // The only time we can solve this is when we have all constant indices.
2181 // Otherwise, we cannot determine the overflow conditions.
2182 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2183 if (!isa<SCEVConstant>(getOperand(i)))
2184 return new SCEVCouldNotCompute();
2185
2186
2187 // Okay at this point we know that all elements of the chrec are constants and
2188 // that the start element is zero.
2189
2190 // First check to see if the range contains zero. If not, the first
2191 // iteration exits.
2192 ConstantInt *Zero = ConstantInt::get(getType(), 0);
2193 if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2194
2195 if (isAffine()) {
2196 // If this is an affine expression then we have this situation:
2197 // Solve {0,+,A} in Range === Ax in Range
2198
2199 // Since we know that zero is in the range, we know that the upper value of
2200 // the range must be the first possible exit value. Also note that we
2201 // already checked for a full range.
2202 ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2203 ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue();
2204 ConstantInt *One = ConstantInt::get(getType(), 1);
2205
2206 // The exit value should be (Upper+A-1)/A.
2207 Constant *ExitValue = Upper;
2208 if (A != One) {
2209 ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2210 ExitValue = ConstantExpr::getDiv(ExitValue, A);
2211 }
2212 assert(isa<ConstantInt>(ExitValue) &&
2213 "Constant folding of integers not implemented?");
2214
2215 // Evaluate at the exit value. If we really did fall out of the valid
2216 // range, then we computed our trip count, otherwise wrap around or other
2217 // things must have happened.
2218 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2219 if (Range.contains(Val))
2220 return new SCEVCouldNotCompute(); // Something strange happened
2221
2222 // Ensure that the previous value is in the range. This is a sanity check.
2223 assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2224 ConstantExpr::getSub(ExitValue, One))) &&
2225 "Linear scev computation is off in a bad way!");
2226 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2227 } else if (isQuadratic()) {
2228 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2229 // quadratic equation to solve it. To do this, we must frame our problem in
2230 // terms of figuring out when zero is crossed, instead of when
2231 // Range.getUpper() is crossed.
2232 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Chris Lattnerbac5b462005-03-09 05:34:41 +00002233 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
Chris Lattner53e677a2004-04-02 20:23:17 +00002234 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2235
2236 // Next, solve the constructed addrec
2237 std::pair<SCEVHandle,SCEVHandle> Roots =
2238 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2239 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2240 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2241 if (R1) {
2242 // Pick the smallest positive root value.
2243 assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2244 if (ConstantBool *CB =
2245 dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2246 R2->getValue()))) {
2247 if (CB != ConstantBool::True)
2248 std::swap(R1, R2); // R1 is the minimum root now.
2249
2250 // Make sure the root is not off by one. The returned iteration should
2251 // not be in the range, but the previous one should be. When solving
2252 // for "X*X < 5", for example, we should not return a root of 2.
2253 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2254 R1->getValue());
2255 if (Range.contains(R1Val)) {
2256 // The next iteration must be out of the range...
2257 Constant *NextVal =
2258 ConstantExpr::getAdd(R1->getValue(),
2259 ConstantInt::get(R1->getType(), 1));
2260
2261 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2262 if (!Range.contains(R1Val))
2263 return SCEVUnknown::get(NextVal);
2264 return new SCEVCouldNotCompute(); // Something strange happened
2265 }
2266
2267 // If R1 was not in the range, then it is a good return value. Make
2268 // sure that R1-1 WAS in the range though, just in case.
2269 Constant *NextVal =
2270 ConstantExpr::getSub(R1->getValue(),
2271 ConstantInt::get(R1->getType(), 1));
2272 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2273 if (Range.contains(R1Val))
2274 return R1;
2275 return new SCEVCouldNotCompute(); // Something strange happened
2276 }
2277 }
2278 }
2279
2280 // Fallback, if this is a general polynomial, figure out the progression
2281 // through brute force: evaluate until we find an iteration that fails the
2282 // test. This is likely to be slow, but getting an accurate trip count is
2283 // incredibly important, we will be able to simplify the exit test a lot, and
2284 // we are almost guaranteed to get a trip count in this case.
2285 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2286 ConstantInt *One = ConstantInt::get(getType(), 1);
2287 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2288 do {
2289 ++NumBruteForceEvaluations;
2290 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2291 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2292 return new SCEVCouldNotCompute();
2293
2294 // Check to see if we found the value!
2295 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2296 return SCEVConstant::get(TestVal);
2297
2298 // Increment to test the next index.
2299 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2300 } while (TestVal != EndVal);
2301
2302 return new SCEVCouldNotCompute();
2303}
2304
2305
2306
2307//===----------------------------------------------------------------------===//
2308// ScalarEvolution Class Implementation
2309//===----------------------------------------------------------------------===//
2310
2311bool ScalarEvolution::runOnFunction(Function &F) {
2312 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2313 return false;
2314}
2315
2316void ScalarEvolution::releaseMemory() {
2317 delete (ScalarEvolutionsImpl*)Impl;
2318 Impl = 0;
2319}
2320
2321void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2322 AU.setPreservesAll();
2323 AU.addRequiredID(LoopSimplifyID);
2324 AU.addRequiredTransitive<LoopInfo>();
2325}
2326
2327SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2328 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2329}
2330
2331SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2332 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2333}
2334
2335bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2336 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2337}
2338
2339SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2340 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2341}
2342
2343void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2344 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2345}
2346
Chris Lattner53e677a2004-04-02 20:23:17 +00002347static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2348 const Loop *L) {
2349 // Print all inner loops first
2350 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2351 PrintLoopInfo(OS, SE, *I);
2352
2353 std::cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002354
2355 std::vector<BasicBlock*> ExitBlocks;
2356 L->getExitBlocks(ExitBlocks);
2357 if (ExitBlocks.size() != 1)
Chris Lattner53e677a2004-04-02 20:23:17 +00002358 std::cerr << "<multiple exits> ";
2359
2360 if (SE->hasLoopInvariantIterationCount(L)) {
2361 std::cerr << *SE->getIterationCount(L) << " iterations! ";
2362 } else {
2363 std::cerr << "Unpredictable iteration count. ";
2364 }
2365
2366 std::cerr << "\n";
2367}
2368
Reid Spencerce9653c2004-12-07 04:03:45 +00002369void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002370 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2371 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2372
2373 OS << "Classifying expressions for: " << F.getName() << "\n";
2374 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner6ffe5512004-04-27 15:13:33 +00002375 if (I->getType()->isInteger()) {
2376 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002377 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002378 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002379 SV->print(OS);
2380 OS << "\t\t";
2381
Chris Lattner6ffe5512004-04-27 15:13:33 +00002382 if ((*I).getType()->isIntegral()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002383 ConstantRange Bounds = SV->getValueRange();
2384 if (!Bounds.isFullSet())
2385 OS << "Bounds: " << Bounds << " ";
2386 }
2387
Chris Lattner6ffe5512004-04-27 15:13:33 +00002388 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002389 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002390 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002391 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2392 OS << "<<Unknown>>";
2393 } else {
2394 OS << *ExitValue;
2395 }
2396 }
2397
2398
2399 OS << "\n";
2400 }
2401
2402 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2403 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2404 PrintLoopInfo(OS, this, *I);
2405}
2406