blob: 77c9dbe0add8a9cac408c8ddc774a0276072d177 [file] [log] [blame]
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <link rel="stylesheet" href="../llvm.css" type="text/css">
10</head>
11
12<body>
13
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000014<h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000015
Chris Lattner128eb862007-11-05 19:06:59 +000016<ul>
Chris Lattner0e555b12007-11-05 20:04:56 +000017<li><a href="index.html">Up to Tutorial Index</a></li>
Chris Lattner128eb862007-11-05 19:06:59 +000018<li>Chapter 4
19 <ol>
20 <li><a href="#intro">Chapter 4 Introduction</a></li>
21 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
22 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
23 <li><a href="#jit">Adding a JIT Compiler</a></li>
24 <li><a href="#code">Full Code Listing</a></li>
25 </ol>
26</li>
Chris Lattner0e555b12007-11-05 20:04:56 +000027<li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control
28Flow</li>
Chris Lattner128eb862007-11-05 19:06:59 +000029</ul>
30
Chris Lattnerc0b42e92007-10-23 06:27:55 +000031<div class="doc_author">
32 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
33</div>
34
35<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000036<h2><a name="intro">Chapter 4 Introduction</a></h2>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000037<!-- *********************************************************************** -->
38
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +000039<div>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000040
Chris Lattner128eb862007-11-05 19:06:59 +000041<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
Chris Lattnera54c2012007-11-07 05:28:43 +000042with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple
43language and added support for generating LLVM IR. This chapter describes
Chris Lattner128eb862007-11-05 19:06:59 +000044two new techniques: adding optimizer support to your language, and adding JIT
Chris Lattner41fcea32007-11-13 07:06:30 +000045compiler support. These additions will demonstrate how to get nice, efficient code
46for the Kaleidoscope language.</p>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000047
48</div>
49
50<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000051<h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000052<!-- *********************************************************************** -->
53
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +000054<div>
Chris Lattnerc0b42e92007-10-23 06:27:55 +000055
56<p>
Chris Lattner118749e2007-10-25 06:23:36 +000057Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately,
Duncan Sands89f6d882008-04-13 06:22:09 +000058it does not produce wonderful code. The IRBuilder, however, does give us
59obvious optimizations when compiling simple code:</p>
Chris Lattner118749e2007-10-25 06:23:36 +000060
61<div class="doc_code">
62<pre>
63ready&gt; <b>def test(x) 1+2+x;</b>
64Read function definition:
65define double @test(double %x) {
66entry:
Dan Gohmana9445e12010-03-02 01:11:08 +000067 %addtmp = fadd double 3.000000e+00, %x
Chris Lattner118749e2007-10-25 06:23:36 +000068 ret double %addtmp
69}
70</pre>
71</div>
72
Duncan Sands89f6d882008-04-13 06:22:09 +000073<p>This code is not a literal transcription of the AST built by parsing the
74input. That would be:
75
76<div class="doc_code">
77<pre>
78ready&gt; <b>def test(x) 1+2+x;</b>
79Read function definition:
80define double @test(double %x) {
81entry:
Dan Gohmana9445e12010-03-02 01:11:08 +000082 %addtmp = fadd double 2.000000e+00, 1.000000e+00
83 %addtmp1 = fadd double %addtmp, %x
Duncan Sands89f6d882008-04-13 06:22:09 +000084 ret double %addtmp1
85}
86</pre>
87</div>
88
Gabor Greif94244f32009-03-11 20:04:08 +000089<p>Constant folding, as seen above, in particular, is a very common and very
Duncan Sands89f6d882008-04-13 06:22:09 +000090important optimization: so much so that many language implementors implement
91constant folding support in their AST representation.</p>
92
93<p>With LLVM, you don't need this support in the AST. Since all calls to build
94LLVM IR go through the LLVM IR builder, the builder itself checked to see if
95there was a constant folding opportunity when you call it. If so, it just does
96the constant fold and return the constant instead of creating an instruction.
97
Chris Lattnera54c2012007-11-07 05:28:43 +000098<p>Well, that was easy :). In practice, we recommend always using
Duncan Sands89f6d882008-04-13 06:22:09 +000099<tt>IRBuilder</tt> when generating code like this. It has no
Chris Lattner118749e2007-10-25 06:23:36 +0000100"syntactic overhead" for its use (you don't have to uglify your compiler with
101constant checks everywhere) and it can dramatically reduce the amount of
102LLVM IR that is generated in some cases (particular for languages with a macro
103preprocessor or that use a lot of constants).</p>
104
Duncan Sands89f6d882008-04-13 06:22:09 +0000105<p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
Chris Lattner118749e2007-10-25 06:23:36 +0000106that it does all of its analysis inline with the code as it is built. If you
107take a slightly more complex example:</p>
108
109<div class="doc_code">
110<pre>
111ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
112ready> Read function definition:
113define double @test(double %x) {
114entry:
Dan Gohmana9445e12010-03-02 01:11:08 +0000115 %addtmp = fadd double 3.000000e+00, %x
116 %addtmp1 = fadd double %x, 3.000000e+00
117 %multmp = fmul double %addtmp, %addtmp1
Chris Lattner118749e2007-10-25 06:23:36 +0000118 ret double %multmp
119}
120</pre>
121</div>
122
123<p>In this case, the LHS and RHS of the multiplication are the same value. We'd
124really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
Chris Lattner1ace67c2008-04-15 16:59:22 +0000125of computing "<tt>x+3</tt>" twice.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000126
127<p>Unfortunately, no amount of local analysis will be able to detect and correct
128this. This requires two transformations: reassociation of expressions (to
129make the add's lexically identical) and Common Subexpression Elimination (CSE)
130to delete the redundant add instruction. Fortunately, LLVM provides a broad
131range of optimizations that you can use, in the form of "passes".</p>
132
133</div>
134
135<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000136<h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
Chris Lattner118749e2007-10-25 06:23:36 +0000137<!-- *********************************************************************** -->
138
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000139<div>
Chris Lattner118749e2007-10-25 06:23:36 +0000140
Chris Lattner41fcea32007-11-13 07:06:30 +0000141<p>LLVM provides many optimization passes, which do many different sorts of
Chris Lattner118749e2007-10-25 06:23:36 +0000142things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
143to the mistaken notion that one set of optimizations is right for all languages
144and for all situations. LLVM allows a compiler implementor to make complete
145decisions about what optimizations to use, in which order, and in what
146situation.</p>
147
148<p>As a concrete example, LLVM supports both "whole module" passes, which look
149across as large of body of code as they can (often a whole file, but if run
150at link time, this can be a substantial portion of the whole program). It also
151supports and includes "per-function" passes which just operate on a single
152function at a time, without looking at other functions. For more information
Chris Lattner41fcea32007-11-13 07:06:30 +0000153on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
Chris Lattnera54c2012007-11-07 05:28:43 +0000154to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
155Passes</a>.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000156
157<p>For Kaleidoscope, we are currently generating functions on the fly, one at
158a time, as the user types them in. We aren't shooting for the ultimate
159optimization experience in this setting, but we also want to catch the easy and
160quick stuff where possible. As such, we will choose to run a few per-function
161optimizations as the user types the function in. If we wanted to make a "static
162Kaleidoscope compiler", we would use exactly the code we have now, except that
163we would defer running the optimizer until the entire file has been parsed.</p>
164
165<p>In order to get per-function optimizations going, we need to set up a
166<a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
167organize the LLVM optimizations that we want to run. Once we have that, we can
168add a set of optimizations to run. The code looks like this:</p>
169
170<div class="doc_code">
171<pre>
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000172 FunctionPassManager OurFPM(TheModule);
Chris Lattner118749e2007-10-25 06:23:36 +0000173
Reid Kleckner60130f02009-08-26 20:58:25 +0000174 // Set up the optimizer pipeline. Start with registering info about how the
175 // target lays out data structures.
176 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
Dan Gohmandfa1a792010-11-15 18:41:10 +0000177 // Provide basic AliasAnalysis support for GVN.
178 OurFPM.add(createBasicAliasAnalysisPass());
Reid Kleckner60130f02009-08-26 20:58:25 +0000179 // Do simple "peephole" optimizations and bit-twiddling optzns.
180 OurFPM.add(createInstructionCombiningPass());
181 // Reassociate expressions.
182 OurFPM.add(createReassociatePass());
183 // Eliminate Common SubExpressions.
184 OurFPM.add(createGVNPass());
185 // Simplify the control flow graph (deleting unreachable blocks, etc).
186 OurFPM.add(createCFGSimplificationPass());
187
Nick Lewycky422094c2009-09-13 21:38:54 +0000188 OurFPM.doInitialization();
189
Reid Kleckner60130f02009-08-26 20:58:25 +0000190 // Set the global so the code gen can use this.
191 TheFPM = &amp;OurFPM;
192
193 // Run the main "interpreter loop" now.
194 MainLoop();
Chris Lattner118749e2007-10-25 06:23:36 +0000195</pre>
196</div>
197
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000198<p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>". It
199requires a pointer to the <tt>Module</tt> to construct itself. Once it is set
200up, we use a series of "add" calls to add a bunch of LLVM passes. The first
201pass is basically boilerplate, it adds a pass so that later optimizations know
202how the data structures in the program are laid out. The
203"<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get
204to in the next section.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000205
206<p>In this case, we choose to add 4 optimization passes. The passes we chose
207here are a pretty standard set of "cleanup" optimizations that are useful for
Chris Lattner41fcea32007-11-13 07:06:30 +0000208a wide variety of code. I won't delve into what they do but, believe me,
Chris Lattnera54c2012007-11-07 05:28:43 +0000209they are a good starting place :).</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000210
Chris Lattnera54c2012007-11-07 05:28:43 +0000211<p>Once the PassManager is set up, we need to make use of it. We do this by
Chris Lattner118749e2007-10-25 06:23:36 +0000212running it after our newly created function is constructed (in
213<tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
214
215<div class="doc_code">
216<pre>
217 if (Value *RetVal = Body->Codegen()) {
218 // Finish off the function.
219 Builder.CreateRet(RetVal);
220
221 // Validate the generated code, checking for consistency.
222 verifyFunction(*TheFunction);
223
Chris Lattnera54c2012007-11-07 05:28:43 +0000224 <b>// Optimize the function.
225 TheFPM-&gt;run(*TheFunction);</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000226
227 return TheFunction;
228 }
229</pre>
230</div>
231
Chris Lattner41fcea32007-11-13 07:06:30 +0000232<p>As you can see, this is pretty straightforward. The
Chris Lattner118749e2007-10-25 06:23:36 +0000233<tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
234improving (hopefully) its body. With this in place, we can try our test above
235again:</p>
236
237<div class="doc_code">
238<pre>
239ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
240ready> Read function definition:
241define double @test(double %x) {
242entry:
Dan Gohmana9445e12010-03-02 01:11:08 +0000243 %addtmp = fadd double %x, 3.000000e+00
244 %multmp = fmul double %addtmp, %addtmp
Chris Lattner118749e2007-10-25 06:23:36 +0000245 ret double %multmp
246}
247</pre>
248</div>
249
250<p>As expected, we now get our nicely optimized code, saving a floating point
Chris Lattnera54c2012007-11-07 05:28:43 +0000251add instruction from every execution of this function.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000252
253<p>LLVM provides a wide variety of optimizations that can be used in certain
Chris Lattner72714232007-10-25 17:52:39 +0000254circumstances. Some <a href="../Passes.html">documentation about the various
255passes</a> is available, but it isn't very complete. Another good source of
Chris Lattner41fcea32007-11-13 07:06:30 +0000256ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
Chris Lattner118749e2007-10-25 06:23:36 +0000257<tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to
258experiment with passes from the command line, so you can see if they do
259anything.</p>
260
261<p>Now that we have reasonable code coming out of our front-end, lets talk about
262executing it!</p>
263
264</div>
265
266<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000267<h2><a name="jit">Adding a JIT Compiler</a></h2>
Chris Lattner118749e2007-10-25 06:23:36 +0000268<!-- *********************************************************************** -->
269
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000270<div>
Chris Lattner118749e2007-10-25 06:23:36 +0000271
Chris Lattnera54c2012007-11-07 05:28:43 +0000272<p>Code that is available in LLVM IR can have a wide variety of tools
Chris Lattner118749e2007-10-25 06:23:36 +0000273applied to it. For example, you can run optimizations on it (as we did above),
274you can dump it out in textual or binary forms, you can compile the code to an
275assembly file (.s) for some target, or you can JIT compile it. The nice thing
Chris Lattnera54c2012007-11-07 05:28:43 +0000276about the LLVM IR representation is that it is the "common currency" between
277many different parts of the compiler.
Chris Lattner118749e2007-10-25 06:23:36 +0000278</p>
279
Chris Lattnera54c2012007-11-07 05:28:43 +0000280<p>In this section, we'll add JIT compiler support to our interpreter. The
Chris Lattner118749e2007-10-25 06:23:36 +0000281basic idea that we want for Kaleidoscope is to have the user enter function
282bodies as they do now, but immediately evaluate the top-level expressions they
283type in. For example, if they type in "1 + 2;", we should evaluate and print
284out 3. If they define a function, they should be able to call it from the
285command line.</p>
286
287<p>In order to do this, we first declare and initialize the JIT. This is done
288by adding a global variable and a call in <tt>main</tt>:</p>
289
290<div class="doc_code">
291<pre>
Chris Lattnera54c2012007-11-07 05:28:43 +0000292<b>static ExecutionEngine *TheExecutionEngine;</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000293...
294int main() {
295 ..
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000296 <b>// Create the JIT. This takes ownership of the module.
297 TheExecutionEngine = EngineBuilder(TheModule).create();</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000298 ..
299}
300</pre>
301</div>
302
303<p>This creates an abstract "Execution Engine" which can be either a JIT
304compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
305for you if one is available for your platform, otherwise it will fall back to
306the interpreter.</p>
307
308<p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
Chris Lattner41fcea32007-11-13 07:06:30 +0000309There are a variety of APIs that are useful, but the simplest one is the
Chris Lattner118749e2007-10-25 06:23:36 +0000310"<tt>getPointerToFunction(F)</tt>" method. This method JIT compiles the
311specified LLVM Function and returns a function pointer to the generated machine
312code. In our case, this means that we can change the code that parses a
313top-level expression to look like this:</p>
314
315<div class="doc_code">
316<pre>
317static void HandleTopLevelExpression() {
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000318 // Evaluate a top-level expression into an anonymous function.
Chris Lattner118749e2007-10-25 06:23:36 +0000319 if (FunctionAST *F = ParseTopLevelExpr()) {
320 if (Function *LF = F-&gt;Codegen()) {
321 LF->dump(); // Dump the function for exposition purposes.
322
Chris Lattnera54c2012007-11-07 05:28:43 +0000323 <b>// JIT the function, returning a function pointer.
Chris Lattner118749e2007-10-25 06:23:36 +0000324 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
325
326 // Cast it to the right type (takes no arguments, returns a double) so we
327 // can call it as a native function.
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000328 double (*FP)() = (double (*)())(intptr_t)FPtr;
Chris Lattnera54c2012007-11-07 05:28:43 +0000329 fprintf(stderr, "Evaluated to %f\n", FP());</b>
Chris Lattner118749e2007-10-25 06:23:36 +0000330 }
331</pre>
332</div>
333
334<p>Recall that we compile top-level expressions into a self-contained LLVM
335function that takes no arguments and returns the computed double. Because the
336LLVM JIT compiler matches the native platform ABI, this means that you can just
337cast the result pointer to a function pointer of that type and call it directly.
Chris Lattner41fcea32007-11-13 07:06:30 +0000338This means, there is no difference between JIT compiled code and native machine
Chris Lattner118749e2007-10-25 06:23:36 +0000339code that is statically linked into your application.</p>
340
341<p>With just these two changes, lets see how Kaleidoscope works now!</p>
342
343<div class="doc_code">
344<pre>
345ready&gt; <b>4+5;</b>
Bill Wendling545a2be2011-10-16 08:06:54 +0000346Read top-level expression:
347define double @0() {
Chris Lattner118749e2007-10-25 06:23:36 +0000348entry:
Bill Wendling545a2be2011-10-16 08:06:54 +0000349 ret double 9.000000e+00
Chris Lattner118749e2007-10-25 06:23:36 +0000350}
351
352<em>Evaluated to 9.000000</em>
353</pre>
354</div>
355
356<p>Well this looks like it is basically working. The dump of the function
357shows the "no argument function that always returns double" that we synthesize
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000358for each top-level expression that is typed in. This demonstrates very basic
Chris Lattner118749e2007-10-25 06:23:36 +0000359functionality, but can we do more?</p>
360
361<div class="doc_code">
362<pre>
Chris Lattner2e89f3a2007-10-31 07:30:39 +0000363ready&gt; <b>def testfunc(x y) x + y*2; </b>
Chris Lattner118749e2007-10-25 06:23:36 +0000364Read function definition:
365define double @testfunc(double %x, double %y) {
366entry:
Bill Wendling545a2be2011-10-16 08:06:54 +0000367 %multmp = fmul double %y, 2.000000e+00
368 %addtmp = fadd double %multmp, %x
369 ret double %addtmp
Chris Lattner118749e2007-10-25 06:23:36 +0000370}
371
372ready&gt; <b>testfunc(4, 10);</b>
Bill Wendling545a2be2011-10-16 08:06:54 +0000373Read top-level expression:
374define double @1() {
Chris Lattner118749e2007-10-25 06:23:36 +0000375entry:
Bill Wendling545a2be2011-10-16 08:06:54 +0000376 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
377 ret double %calltmp
Chris Lattner118749e2007-10-25 06:23:36 +0000378}
379
380<em>Evaluated to 24.000000</em>
381</pre>
382</div>
383
Jeffrey Yasskindc857242009-10-27 20:30:28 +0000384<p>This illustrates that we can now call user code, but there is something a bit
385subtle going on here. Note that we only invoke the JIT on the anonymous
386functions that <em>call testfunc</em>, but we never invoked it
387on <em>testfunc</em> itself. What actually happened here is that the JIT
388scanned for all non-JIT'd functions transitively called from the anonymous
389function and compiled all of them before returning
390from <tt>getPointerToFunction()</tt>.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000391
Jeffrey Yasskindc857242009-10-27 20:30:28 +0000392<p>The JIT provides a number of other more advanced interfaces for things like
393freeing allocated machine code, rejit'ing functions to update them, etc.
394However, even with this simple code, we get some surprisingly powerful
395capabilities - check this out (I removed the dump of the anonymous functions,
396you should get the idea by now :) :</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000397
398<div class="doc_code">
399<pre>
400ready&gt; <b>extern sin(x);</b>
401Read extern:
402declare double @sin(double)
403
404ready&gt; <b>extern cos(x);</b>
405Read extern:
406declare double @cos(double)
407
408ready&gt; <b>sin(1.0);</b>
Bill Wendling545a2be2011-10-16 08:06:54 +0000409Read top-level expression:
410define double @2() {
411entry:
412 ret double 0x3FEAED548F090CEE
413}
414
Chris Lattner118749e2007-10-25 06:23:36 +0000415<em>Evaluated to 0.841471</em>
Chris Lattner72714232007-10-25 17:52:39 +0000416
Chris Lattner118749e2007-10-25 06:23:36 +0000417ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
418Read function definition:
419define double @foo(double %x) {
420entry:
Bill Wendling545a2be2011-10-16 08:06:54 +0000421 %calltmp = call double @sin(double %x)
422 %multmp = fmul double %calltmp, %calltmp
423 %calltmp2 = call double @cos(double %x)
424 %multmp4 = fmul double %calltmp2, %calltmp2
425 %addtmp = fadd double %multmp, %multmp4
426 ret double %addtmp
Chris Lattner118749e2007-10-25 06:23:36 +0000427}
428
429ready&gt; <b>foo(4.0);</b>
Bill Wendling545a2be2011-10-16 08:06:54 +0000430Read top-level expression:
431define double @3() {
432entry:
433 %calltmp = call double @foo(double 4.000000e+00)
434 ret double %calltmp
435}
436
Chris Lattner118749e2007-10-25 06:23:36 +0000437<em>Evaluated to 1.000000</em>
438</pre>
439</div>
440
Chris Lattnera54c2012007-11-07 05:28:43 +0000441<p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
442simple: in this
Chris Lattner118749e2007-10-25 06:23:36 +0000443example, the JIT started execution of a function and got to a function call. It
444realized that the function was not yet JIT compiled and invoked the standard set
445of routines to resolve the function. In this case, there is no body defined
Chris Lattnera54c2012007-11-07 05:28:43 +0000446for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
447Kaleidoscope process itself.
Chris Lattner118749e2007-10-25 06:23:36 +0000448Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
449patches up calls in the module to call the libm version of <tt>sin</tt>
450directly.</p>
451
452<p>The LLVM JIT provides a number of interfaces (look in the
453<tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
454resolved. It allows you to establish explicit mappings between IR objects and
455addresses (useful for LLVM global variables that you want to map to static
456tables, for example), allows you to dynamically decide on the fly based on the
Jeffrey Yasskindc857242009-10-27 20:30:28 +0000457function name, and even allows you to have the JIT compile functions lazily the
458first time they're called.</p>
Chris Lattner118749e2007-10-25 06:23:36 +0000459
Chris Lattner72714232007-10-25 17:52:39 +0000460<p>One interesting application of this is that we can now extend the language
461by writing arbitrary C++ code to implement operations. For example, if we add:
462</p>
463
464<div class="doc_code">
465<pre>
466/// putchard - putchar that takes a double and returns 0.
467extern "C"
468double putchard(double X) {
469 putchar((char)X);
470 return 0;
471}
472</pre>
473</div>
474
475<p>Now we can produce simple output to the console by using things like:
476"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
Chris Lattnera54c2012007-11-07 05:28:43 +0000477the console (120 is the ASCII code for 'x'). Similar code could be used to
Chris Lattner72714232007-10-25 17:52:39 +0000478implement file I/O, console input, and many other capabilities in
479Kaleidoscope.</p>
480
Chris Lattner118749e2007-10-25 06:23:36 +0000481<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
482this point, we can compile a non-Turing-complete programming language, optimize
483and JIT compile it in a user-driven way. Next up we'll look into <a
484href="LangImpl5.html">extending the language with control flow constructs</a>,
485tackling some interesting LLVM IR issues along the way.</p>
486
487</div>
488
489<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000490<h2><a name="code">Full Code Listing</a></h2>
Chris Lattner118749e2007-10-25 06:23:36 +0000491<!-- *********************************************************************** -->
492
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000493<div>
Chris Lattner118749e2007-10-25 06:23:36 +0000494
495<p>
496Here is the complete code listing for our running example, enhanced with the
497LLVM JIT and optimizer. To build this example, use:
498</p>
499
500<div class="doc_code">
501<pre>
Bill Wendling545a2be2011-10-16 08:06:54 +0000502# Compile
503clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
504# Run
505./toy
Chris Lattner118749e2007-10-25 06:23:36 +0000506</pre>
507</div>
508
Chris Lattner7c770892009-02-09 00:04:40 +0000509<p>
510If you are compiling this on Linux, make sure to add the "-rdynamic" option
511as well. This makes sure that the external functions are resolved properly
512at runtime.</p>
513
Chris Lattner118749e2007-10-25 06:23:36 +0000514<p>Here is the code:</p>
515
516<div class="doc_code">
517<pre>
518#include "llvm/DerivedTypes.h"
519#include "llvm/ExecutionEngine/ExecutionEngine.h"
Nick Lewycky422094c2009-09-13 21:38:54 +0000520#include "llvm/ExecutionEngine/JIT.h"
Owen Andersond1fbd142009-07-08 20:50:47 +0000521#include "llvm/LLVMContext.h"
Chris Lattner118749e2007-10-25 06:23:36 +0000522#include "llvm/Module.h"
Chris Lattner118749e2007-10-25 06:23:36 +0000523#include "llvm/PassManager.h"
524#include "llvm/Analysis/Verifier.h"
Dan Gohmanab7fa082010-11-16 17:28:22 +0000525#include "llvm/Analysis/Passes.h"
Chris Lattner118749e2007-10-25 06:23:36 +0000526#include "llvm/Target/TargetData.h"
527#include "llvm/Transforms/Scalar.h"
Duncan Sands89f6d882008-04-13 06:22:09 +0000528#include "llvm/Support/IRBuilder.h"
Bill Wendling545a2be2011-10-16 08:06:54 +0000529#include "llvm/Support/TargetSelect.h"
Chris Lattner118749e2007-10-25 06:23:36 +0000530#include &lt;cstdio&gt;
531#include &lt;string&gt;
532#include &lt;map&gt;
533#include &lt;vector&gt;
534using namespace llvm;
535
536//===----------------------------------------------------------------------===//
537// Lexer
538//===----------------------------------------------------------------------===//
539
540// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
541// of these for known things.
542enum Token {
543 tok_eof = -1,
544
545 // commands
546 tok_def = -2, tok_extern = -3,
547
548 // primary
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000549 tok_identifier = -4, tok_number = -5
Chris Lattner118749e2007-10-25 06:23:36 +0000550};
551
552static std::string IdentifierStr; // Filled in if tok_identifier
553static double NumVal; // Filled in if tok_number
554
555/// gettok - Return the next token from standard input.
556static int gettok() {
557 static int LastChar = ' ';
558
559 // Skip any whitespace.
560 while (isspace(LastChar))
561 LastChar = getchar();
562
563 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
564 IdentifierStr = LastChar;
565 while (isalnum((LastChar = getchar())))
566 IdentifierStr += LastChar;
567
568 if (IdentifierStr == "def") return tok_def;
569 if (IdentifierStr == "extern") return tok_extern;
570 return tok_identifier;
571 }
572
573 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
574 std::string NumStr;
575 do {
576 NumStr += LastChar;
577 LastChar = getchar();
578 } while (isdigit(LastChar) || LastChar == '.');
579
580 NumVal = strtod(NumStr.c_str(), 0);
581 return tok_number;
582 }
583
584 if (LastChar == '#') {
585 // Comment until end of line.
586 do LastChar = getchar();
Chris Lattnerc80c23f2007-12-02 22:46:01 +0000587 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
Chris Lattner118749e2007-10-25 06:23:36 +0000588
589 if (LastChar != EOF)
590 return gettok();
591 }
592
593 // Check for end of file. Don't eat the EOF.
594 if (LastChar == EOF)
595 return tok_eof;
596
597 // Otherwise, just return the character as its ascii value.
598 int ThisChar = LastChar;
599 LastChar = getchar();
600 return ThisChar;
601}
602
603//===----------------------------------------------------------------------===//
604// Abstract Syntax Tree (aka Parse Tree)
605//===----------------------------------------------------------------------===//
606
Chris Lattnerc0b42e92007-10-23 06:27:55 +0000607/// ExprAST - Base class for all expression nodes.
608class ExprAST {
609public:
610 virtual ~ExprAST() {}
611 virtual Value *Codegen() = 0;
612};
613
614/// NumberExprAST - Expression class for numeric literals like "1.0".
615class NumberExprAST : public ExprAST {
616 double Val;
617public:
Chris Lattner118749e2007-10-25 06:23:36 +0000618 NumberExprAST(double val) : Val(val) {}
Chris Lattnerc0b42e92007-10-23 06:27:55 +0000619 virtual Value *Codegen();
620};
Chris Lattner118749e2007-10-25 06:23:36 +0000621
622/// VariableExprAST - Expression class for referencing a variable, like "a".
623class VariableExprAST : public ExprAST {
624 std::string Name;
625public:
626 VariableExprAST(const std::string &amp;name) : Name(name) {}
627 virtual Value *Codegen();
628};
629
630/// BinaryExprAST - Expression class for a binary operator.
631class BinaryExprAST : public ExprAST {
632 char Op;
633 ExprAST *LHS, *RHS;
634public:
635 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
636 : Op(op), LHS(lhs), RHS(rhs) {}
637 virtual Value *Codegen();
638};
639
640/// CallExprAST - Expression class for function calls.
641class CallExprAST : public ExprAST {
642 std::string Callee;
643 std::vector&lt;ExprAST*&gt; Args;
644public:
645 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
646 : Callee(callee), Args(args) {}
647 virtual Value *Codegen();
648};
649
650/// PrototypeAST - This class represents the "prototype" for a function,
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000651/// which captures its name, and its argument names (thus implicitly the number
652/// of arguments the function takes).
Chris Lattner118749e2007-10-25 06:23:36 +0000653class PrototypeAST {
654 std::string Name;
655 std::vector&lt;std::string&gt; Args;
656public:
657 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
658 : Name(name), Args(args) {}
659
660 Function *Codegen();
661};
662
663/// FunctionAST - This class represents a function definition itself.
664class FunctionAST {
665 PrototypeAST *Proto;
666 ExprAST *Body;
667public:
668 FunctionAST(PrototypeAST *proto, ExprAST *body)
669 : Proto(proto), Body(body) {}
670
671 Function *Codegen();
672};
673
674//===----------------------------------------------------------------------===//
675// Parser
676//===----------------------------------------------------------------------===//
677
678/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000679/// token the parser is looking at. getNextToken reads another token from the
Chris Lattner118749e2007-10-25 06:23:36 +0000680/// lexer and updates CurTok with its results.
681static int CurTok;
682static int getNextToken() {
683 return CurTok = gettok();
684}
685
686/// BinopPrecedence - This holds the precedence for each binary operator that is
687/// defined.
688static std::map&lt;char, int&gt; BinopPrecedence;
689
690/// GetTokPrecedence - Get the precedence of the pending binary operator token.
691static int GetTokPrecedence() {
692 if (!isascii(CurTok))
693 return -1;
694
695 // Make sure it's a declared binop.
696 int TokPrec = BinopPrecedence[CurTok];
697 if (TokPrec &lt;= 0) return -1;
698 return TokPrec;
699}
700
701/// Error* - These are little helper functions for error handling.
702ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
703PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
704FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
705
706static ExprAST *ParseExpression();
707
708/// identifierexpr
Chris Lattner20a0c802007-11-05 17:54:34 +0000709/// ::= identifier
710/// ::= identifier '(' expression* ')'
Chris Lattner118749e2007-10-25 06:23:36 +0000711static ExprAST *ParseIdentifierExpr() {
712 std::string IdName = IdentifierStr;
713
Chris Lattner20a0c802007-11-05 17:54:34 +0000714 getNextToken(); // eat identifier.
Chris Lattner118749e2007-10-25 06:23:36 +0000715
716 if (CurTok != '(') // Simple variable ref.
717 return new VariableExprAST(IdName);
718
719 // Call.
720 getNextToken(); // eat (
721 std::vector&lt;ExprAST*&gt; Args;
Chris Lattner71155212007-11-06 01:39:12 +0000722 if (CurTok != ')') {
723 while (1) {
724 ExprAST *Arg = ParseExpression();
725 if (!Arg) return 0;
726 Args.push_back(Arg);
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000727
Chris Lattner71155212007-11-06 01:39:12 +0000728 if (CurTok == ')') break;
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +0000729
Chris Lattner71155212007-11-06 01:39:12 +0000730 if (CurTok != ',')
Chris Lattner6c4be9c2008-04-14 16:44:41 +0000731 return Error("Expected ')' or ',' in argument list");
Chris Lattner71155212007-11-06 01:39:12 +0000732 getNextToken();
733 }
Chris Lattner118749e2007-10-25 06:23:36 +0000734 }
735
736 // Eat the ')'.
737 getNextToken();
738
739 return new CallExprAST(IdName, Args);
740}
741
742/// numberexpr ::= number
743static ExprAST *ParseNumberExpr() {
744 ExprAST *Result = new NumberExprAST(NumVal);
745 getNextToken(); // consume the number
746 return Result;
747}
748
749/// parenexpr ::= '(' expression ')'
750static ExprAST *ParseParenExpr() {
751 getNextToken(); // eat (.
752 ExprAST *V = ParseExpression();
753 if (!V) return 0;
754
755 if (CurTok != ')')
756 return Error("expected ')'");
757 getNextToken(); // eat ).
758 return V;
759}
760
761/// primary
762/// ::= identifierexpr
763/// ::= numberexpr
764/// ::= parenexpr
765static ExprAST *ParsePrimary() {
766 switch (CurTok) {
767 default: return Error("unknown token when expecting an expression");
768 case tok_identifier: return ParseIdentifierExpr();
769 case tok_number: return ParseNumberExpr();
770 case '(': return ParseParenExpr();
771 }
772}
773
774/// binoprhs
775/// ::= ('+' primary)*
776static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
777 // If this is a binop, find its precedence.
778 while (1) {
779 int TokPrec = GetTokPrecedence();
780
781 // If this is a binop that binds at least as tightly as the current binop,
782 // consume it, otherwise we are done.
783 if (TokPrec &lt; ExprPrec)
784 return LHS;
785
786 // Okay, we know this is a binop.
787 int BinOp = CurTok;
788 getNextToken(); // eat binop
789
790 // Parse the primary expression after the binary operator.
791 ExprAST *RHS = ParsePrimary();
792 if (!RHS) return 0;
793
794 // If BinOp binds less tightly with RHS than the operator after RHS, let
795 // the pending operator take RHS as its LHS.
796 int NextPrec = GetTokPrecedence();
797 if (TokPrec &lt; NextPrec) {
798 RHS = ParseBinOpRHS(TokPrec+1, RHS);
799 if (RHS == 0) return 0;
800 }
801
802 // Merge LHS/RHS.
803 LHS = new BinaryExprAST(BinOp, LHS, RHS);
804 }
805}
806
807/// expression
808/// ::= primary binoprhs
809///
810static ExprAST *ParseExpression() {
811 ExprAST *LHS = ParsePrimary();
812 if (!LHS) return 0;
813
814 return ParseBinOpRHS(0, LHS);
815}
816
817/// prototype
818/// ::= id '(' id* ')'
819static PrototypeAST *ParsePrototype() {
820 if (CurTok != tok_identifier)
821 return ErrorP("Expected function name in prototype");
822
823 std::string FnName = IdentifierStr;
824 getNextToken();
825
826 if (CurTok != '(')
827 return ErrorP("Expected '(' in prototype");
828
829 std::vector&lt;std::string&gt; ArgNames;
830 while (getNextToken() == tok_identifier)
831 ArgNames.push_back(IdentifierStr);
832 if (CurTok != ')')
833 return ErrorP("Expected ')' in prototype");
834
835 // success.
836 getNextToken(); // eat ')'.
837
838 return new PrototypeAST(FnName, ArgNames);
839}
840
841/// definition ::= 'def' prototype expression
842static FunctionAST *ParseDefinition() {
843 getNextToken(); // eat def.
844 PrototypeAST *Proto = ParsePrototype();
845 if (Proto == 0) return 0;
846
847 if (ExprAST *E = ParseExpression())
848 return new FunctionAST(Proto, E);
849 return 0;
850}
851
852/// toplevelexpr ::= expression
853static FunctionAST *ParseTopLevelExpr() {
854 if (ExprAST *E = ParseExpression()) {
855 // Make an anonymous proto.
856 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
857 return new FunctionAST(Proto, E);
858 }
859 return 0;
860}
861
862/// external ::= 'extern' prototype
863static PrototypeAST *ParseExtern() {
864 getNextToken(); // eat extern.
865 return ParsePrototype();
866}
867
868//===----------------------------------------------------------------------===//
869// Code Generation
870//===----------------------------------------------------------------------===//
871
872static Module *TheModule;
Owen Andersond1fbd142009-07-08 20:50:47 +0000873static IRBuilder&lt;&gt; Builder(getGlobalContext());
Chris Lattner118749e2007-10-25 06:23:36 +0000874static std::map&lt;std::string, Value*&gt; NamedValues;
875static FunctionPassManager *TheFPM;
876
877Value *ErrorV(const char *Str) { Error(Str); return 0; }
878
879Value *NumberExprAST::Codegen() {
Owen Anderson6f83c9c2009-07-27 20:59:43 +0000880 return ConstantFP::get(getGlobalContext(), APFloat(Val));
Chris Lattner118749e2007-10-25 06:23:36 +0000881}
882
883Value *VariableExprAST::Codegen() {
884 // Look this variable up in the function.
885 Value *V = NamedValues[Name];
886 return V ? V : ErrorV("Unknown variable name");
887}
888
889Value *BinaryExprAST::Codegen() {
890 Value *L = LHS-&gt;Codegen();
891 Value *R = RHS-&gt;Codegen();
892 if (L == 0 || R == 0) return 0;
893
894 switch (Op) {
Eric Christopher2214b812010-06-14 06:09:39 +0000895 case '+': return Builder.CreateFAdd(L, R, "addtmp");
896 case '-': return Builder.CreateFSub(L, R, "subtmp");
897 case '*': return Builder.CreateFMul(L, R, "multmp");
Chris Lattner118749e2007-10-25 06:23:36 +0000898 case '&lt;':
Chris Lattner71155212007-11-06 01:39:12 +0000899 L = Builder.CreateFCmpULT(L, R, "cmptmp");
Chris Lattner118749e2007-10-25 06:23:36 +0000900 // Convert bool 0/1 to double 0.0 or 1.0
Nick Lewycky422094c2009-09-13 21:38:54 +0000901 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
902 "booltmp");
Chris Lattner118749e2007-10-25 06:23:36 +0000903 default: return ErrorV("invalid binary operator");
904 }
905}
906
907Value *CallExprAST::Codegen() {
908 // Look up the name in the global module table.
909 Function *CalleeF = TheModule-&gt;getFunction(Callee);
910 if (CalleeF == 0)
911 return ErrorV("Unknown function referenced");
912
913 // If argument mismatch error.
914 if (CalleeF-&gt;arg_size() != Args.size())
915 return ErrorV("Incorrect # arguments passed");
916
917 std::vector&lt;Value*&gt; ArgsV;
918 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
919 ArgsV.push_back(Args[i]-&gt;Codegen());
920 if (ArgsV.back() == 0) return 0;
921 }
922
Bill Wendling545a2be2011-10-16 08:06:54 +0000923 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
Chris Lattner118749e2007-10-25 06:23:36 +0000924}
925
926Function *PrototypeAST::Codegen() {
927 // Make the function type: double(double,double) etc.
Bill Wendling545a2be2011-10-16 08:06:54 +0000928 std::vector&lt;Type*&gt; Doubles(Args.size(),
929 Type::getDoubleTy(getGlobalContext()));
Nick Lewycky422094c2009-09-13 21:38:54 +0000930 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
931 Doubles, false);
Chris Lattner118749e2007-10-25 06:23:36 +0000932
Gabor Greifdf7d2b42008-04-19 22:25:09 +0000933 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
Chris Lattner118749e2007-10-25 06:23:36 +0000934
935 // If F conflicted, there was already something named 'Name'. If it has a
936 // body, don't allow redefinition or reextern.
937 if (F-&gt;getName() != Name) {
938 // Delete the one we just made and get the existing one.
939 F-&gt;eraseFromParent();
940 F = TheModule-&gt;getFunction(Name);
941
942 // If F already has a body, reject this.
943 if (!F-&gt;empty()) {
944 ErrorF("redefinition of function");
945 return 0;
946 }
947
948 // If F took a different number of args, reject.
949 if (F-&gt;arg_size() != Args.size()) {
950 ErrorF("redefinition of function with different # args");
951 return 0;
952 }
953 }
954
955 // Set names for all arguments.
956 unsigned Idx = 0;
957 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
958 ++AI, ++Idx) {
959 AI-&gt;setName(Args[Idx]);
960
961 // Add arguments to variable symbol table.
962 NamedValues[Args[Idx]] = AI;
963 }
964
965 return F;
966}
967
968Function *FunctionAST::Codegen() {
969 NamedValues.clear();
970
971 Function *TheFunction = Proto-&gt;Codegen();
972 if (TheFunction == 0)
973 return 0;
974
975 // Create a new basic block to start insertion into.
Owen Anderson1d0be152009-08-13 21:58:54 +0000976 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
Chris Lattner118749e2007-10-25 06:23:36 +0000977 Builder.SetInsertPoint(BB);
978
979 if (Value *RetVal = Body-&gt;Codegen()) {
980 // Finish off the function.
981 Builder.CreateRet(RetVal);
982
983 // Validate the generated code, checking for consistency.
984 verifyFunction(*TheFunction);
985
986 // Optimize the function.
987 TheFPM-&gt;run(*TheFunction);
988
989 return TheFunction;
990 }
991
992 // Error reading body, remove function.
993 TheFunction-&gt;eraseFromParent();
994 return 0;
995}
996
997//===----------------------------------------------------------------------===//
998// Top-Level parsing and JIT Driver
999//===----------------------------------------------------------------------===//
1000
1001static ExecutionEngine *TheExecutionEngine;
1002
1003static void HandleDefinition() {
1004 if (FunctionAST *F = ParseDefinition()) {
1005 if (Function *LF = F-&gt;Codegen()) {
1006 fprintf(stderr, "Read function definition:");
1007 LF-&gt;dump();
1008 }
1009 } else {
1010 // Skip token for error recovery.
1011 getNextToken();
1012 }
1013}
1014
1015static void HandleExtern() {
1016 if (PrototypeAST *P = ParseExtern()) {
1017 if (Function *F = P-&gt;Codegen()) {
1018 fprintf(stderr, "Read extern: ");
1019 F-&gt;dump();
1020 }
1021 } else {
1022 // Skip token for error recovery.
1023 getNextToken();
1024 }
1025}
1026
1027static void HandleTopLevelExpression() {
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001028 // Evaluate a top-level expression into an anonymous function.
Chris Lattner118749e2007-10-25 06:23:36 +00001029 if (FunctionAST *F = ParseTopLevelExpr()) {
1030 if (Function *LF = F-&gt;Codegen()) {
Bill Wendling545a2be2011-10-16 08:06:54 +00001031 fprintf(stderr, "Read top-level expression:");
1032 LF->dump();
1033
Chris Lattner118749e2007-10-25 06:23:36 +00001034 // JIT the function, returning a function pointer.
1035 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
1036
1037 // Cast it to the right type (takes no arguments, returns a double) so we
1038 // can call it as a native function.
Nick Lewycky422094c2009-09-13 21:38:54 +00001039 double (*FP)() = (double (*)())(intptr_t)FPtr;
Chris Lattner118749e2007-10-25 06:23:36 +00001040 fprintf(stderr, "Evaluated to %f\n", FP());
1041 }
1042 } else {
1043 // Skip token for error recovery.
1044 getNextToken();
1045 }
1046}
1047
1048/// top ::= definition | external | expression | ';'
1049static void MainLoop() {
1050 while (1) {
1051 fprintf(stderr, "ready&gt; ");
1052 switch (CurTok) {
1053 case tok_eof: return;
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001054 case ';': getNextToken(); break; // ignore top-level semicolons.
Chris Lattner118749e2007-10-25 06:23:36 +00001055 case tok_def: HandleDefinition(); break;
1056 case tok_extern: HandleExtern(); break;
1057 default: HandleTopLevelExpression(); break;
1058 }
1059 }
1060}
1061
Chris Lattner118749e2007-10-25 06:23:36 +00001062//===----------------------------------------------------------------------===//
1063// "Library" functions that can be "extern'd" from user code.
1064//===----------------------------------------------------------------------===//
1065
1066/// putchard - putchar that takes a double and returns 0.
1067extern "C"
1068double putchard(double X) {
1069 putchar((char)X);
1070 return 0;
1071}
1072
1073//===----------------------------------------------------------------------===//
1074// Main driver code.
1075//===----------------------------------------------------------------------===//
1076
1077int main() {
Nick Lewycky422094c2009-09-13 21:38:54 +00001078 InitializeNativeTarget();
1079 LLVMContext &amp;Context = getGlobalContext();
1080
Chris Lattner118749e2007-10-25 06:23:36 +00001081 // Install standard binary operators.
1082 // 1 is lowest precedence.
1083 BinopPrecedence['&lt;'] = 10;
1084 BinopPrecedence['+'] = 20;
1085 BinopPrecedence['-'] = 20;
1086 BinopPrecedence['*'] = 40; // highest.
1087
1088 // Prime the first token.
1089 fprintf(stderr, "ready&gt; ");
1090 getNextToken();
1091
1092 // Make the module, which holds all the code.
Nick Lewycky422094c2009-09-13 21:38:54 +00001093 TheModule = new Module("my cool jit", Context);
Chris Lattner118749e2007-10-25 06:23:36 +00001094
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +00001095 // Create the JIT. This takes ownership of the module.
Jeffrey Yasskin42fc5582010-02-11 19:15:20 +00001096 std::string ErrStr;
Bill Wendling545a2be2011-10-16 08:06:54 +00001097 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
Jeffrey Yasskin42fc5582010-02-11 19:15:20 +00001098 if (!TheExecutionEngine) {
1099 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1100 exit(1);
1101 }
Chris Lattner118749e2007-10-25 06:23:36 +00001102
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +00001103 FunctionPassManager OurFPM(TheModule);
Reid Kleckner60130f02009-08-26 20:58:25 +00001104
1105 // Set up the optimizer pipeline. Start with registering info about how the
1106 // target lays out data structures.
1107 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
Dan Gohmandfa1a792010-11-15 18:41:10 +00001108 // Provide basic AliasAnalysis support for GVN.
1109 OurFPM.add(createBasicAliasAnalysisPass());
Reid Kleckner60130f02009-08-26 20:58:25 +00001110 // Do simple "peephole" optimizations and bit-twiddling optzns.
1111 OurFPM.add(createInstructionCombiningPass());
1112 // Reassociate expressions.
1113 OurFPM.add(createReassociatePass());
1114 // Eliminate Common SubExpressions.
1115 OurFPM.add(createGVNPass());
1116 // Simplify the control flow graph (deleting unreachable blocks, etc).
1117 OurFPM.add(createCFGSimplificationPass());
1118
Nick Lewycky422094c2009-09-13 21:38:54 +00001119 OurFPM.doInitialization();
1120
Reid Kleckner60130f02009-08-26 20:58:25 +00001121 // Set the global so the code gen can use this.
1122 TheFPM = &amp;OurFPM;
1123
1124 // Run the main "interpreter loop" now.
1125 MainLoop();
1126
1127 TheFPM = 0;
1128
1129 // Print out all of the generated code.
1130 TheModule-&gt;dump();
1131
Chris Lattner118749e2007-10-25 06:23:36 +00001132 return 0;
1133}
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001134</pre>
1135</div>
1136
Chris Lattner729eb142008-02-10 19:11:04 +00001137<a href="LangImpl5.html">Next: Extending the language: control flow</a>
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001138</div>
1139
1140<!-- *********************************************************************** -->
1141<hr>
1142<address>
1143 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1144 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1145 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner8eef4b22007-10-23 06:30:50 +00001146 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001147
1148 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumib9a33632011-04-09 02:13:37 +00001149 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Dan Gohman523e3922010-02-03 17:27:31 +00001150 Last modified: $Date$
Chris Lattnerc0b42e92007-10-23 06:27:55 +00001151</address>
1152</body>
1153</html>