blob: c86309029eb601141cbd0218c098d4b527dad025 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesmanf5735882013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000504By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000511
Sean Silvaf722b002012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
722 attribute for return values.
Bill Wendling143d4642013-02-22 00:12:35 +0000723``nobuiltin``
724 This indicates that the callee function at a call site is not
725 recognized as a built-in function. LLVM will retain the original call
726 and not replace it with equivalent code based on the semantics of the
727 built-in function.
Sean Silvaf722b002012-12-07 10:36:55 +0000728
729.. _gc:
730
731Garbage Collector Names
732-----------------------
733
734Each function may specify a garbage collector name, which is simply a
735string:
736
737.. code-block:: llvm
738
739 define void @f() gc "name" { ... }
740
741The compiler declares the supported values of *name*. Specifying a
742collector which will cause the compiler to alter its output in order to
743support the named garbage collection algorithm.
744
Bill Wendling95ce4c22013-02-06 06:52:58 +0000745.. _attrgrp:
746
747Attribute Groups
748----------------
749
750Attribute groups are groups of attributes that are referenced by objects within
751the IR. They are important for keeping ``.ll`` files readable, because a lot of
752functions will use the same set of attributes. In the degenerative case of a
753``.ll`` file that corresponds to a single ``.c`` file, the single attribute
754group will capture the important command line flags used to build that file.
755
756An attribute group is a module-level object. To use an attribute group, an
757object references the attribute group's ID (e.g. ``#37``). An object may refer
758to more than one attribute group. In that situation, the attributes from the
759different groups are merged.
760
761Here is an example of attribute groups for a function that should always be
762inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
763
764.. code-block:: llvm
765
766 ; Target-independent attributes:
767 #0 = attributes { alwaysinline alignstack=4 }
768
769 ; Target-dependent attributes:
770 #1 = attributes { "no-sse" }
771
772 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
773 define void @f() #0 #1 { ... }
774
Sean Silvaf722b002012-12-07 10:36:55 +0000775.. _fnattrs:
776
777Function Attributes
778-------------------
779
780Function attributes are set to communicate additional information about
781a function. Function attributes are considered to be part of the
782function, not of the function type, so functions with different function
783attributes can have the same function type.
784
785Function attributes are simple keywords that follow the type specified.
786If multiple attributes are needed, they are space separated. For
787example:
788
789.. code-block:: llvm
790
791 define void @f() noinline { ... }
792 define void @f() alwaysinline { ... }
793 define void @f() alwaysinline optsize { ... }
794 define void @f() optsize { ... }
795
796``address_safety``
797 This attribute indicates that the address safety analysis is enabled
798 for this function.
799``alignstack(<n>)``
800 This attribute indicates that, when emitting the prologue and
801 epilogue, the backend should forcibly align the stack pointer.
802 Specify the desired alignment, which must be a power of two, in
803 parentheses.
804``alwaysinline``
805 This attribute indicates that the inliner should attempt to inline
806 this function into callers whenever possible, ignoring any active
807 inlining size threshold for this caller.
808``nonlazybind``
809 This attribute suppresses lazy symbol binding for the function. This
810 may make calls to the function faster, at the cost of extra program
811 startup time if the function is not called during program startup.
812``inlinehint``
813 This attribute indicates that the source code contained a hint that
814 inlining this function is desirable (such as the "inline" keyword in
815 C/C++). It is just a hint; it imposes no requirements on the
816 inliner.
817``naked``
818 This attribute disables prologue / epilogue emission for the
819 function. This can have very system-specific consequences.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000820``noduplicate``
821 This attribute indicates that calls to the function cannot be
822 duplicated. A call to a ``noduplicate`` function may be moved
823 within its parent function, but may not be duplicated within
824 its parent function.
825
826 A function containing a ``noduplicate`` call may still
827 be an inlining candidate, provided that the call is not
828 duplicated by inlining. That implies that the function has
829 internal linkage and only has one call site, so the original
830 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000831``noimplicitfloat``
832 This attributes disables implicit floating point instructions.
833``noinline``
834 This attribute indicates that the inliner should never inline this
835 function in any situation. This attribute may not be used together
836 with the ``alwaysinline`` attribute.
837``noredzone``
838 This attribute indicates that the code generator should not use a
839 red zone, even if the target-specific ABI normally permits it.
840``noreturn``
841 This function attribute indicates that the function never returns
842 normally. This produces undefined behavior at runtime if the
843 function ever does dynamically return.
844``nounwind``
845 This function attribute indicates that the function never returns
846 with an unwind or exceptional control flow. If the function does
847 unwind, its runtime behavior is undefined.
848``optsize``
849 This attribute suggests that optimization passes and code generator
850 passes make choices that keep the code size of this function low,
851 and otherwise do optimizations specifically to reduce code size.
852``readnone``
853 This attribute indicates that the function computes its result (or
854 decides to unwind an exception) based strictly on its arguments,
855 without dereferencing any pointer arguments or otherwise accessing
856 any mutable state (e.g. memory, control registers, etc) visible to
857 caller functions. It does not write through any pointer arguments
858 (including ``byval`` arguments) and never changes any state visible
859 to callers. This means that it cannot unwind exceptions by calling
860 the ``C++`` exception throwing methods.
861``readonly``
862 This attribute indicates that the function does not write through
863 any pointer arguments (including ``byval`` arguments) or otherwise
864 modify any state (e.g. memory, control registers, etc) visible to
865 caller functions. It may dereference pointer arguments and read
866 state that may be set in the caller. A readonly function always
867 returns the same value (or unwinds an exception identically) when
868 called with the same set of arguments and global state. It cannot
869 unwind an exception by calling the ``C++`` exception throwing
870 methods.
871``returns_twice``
872 This attribute indicates that this function can return twice. The C
873 ``setjmp`` is an example of such a function. The compiler disables
874 some optimizations (like tail calls) in the caller of these
875 functions.
876``ssp``
877 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000878 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000879 placed on the stack before the local variables that's checked upon
880 return from the function to see if it has been overwritten. A
881 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000882 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000883
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000884 - Character arrays larger than ``ssp-buffer-size`` (default 8).
885 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
886 - Calls to alloca() with variable sizes or constant sizes greater than
887 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000888
889 If a function that has an ``ssp`` attribute is inlined into a
890 function that doesn't have an ``ssp`` attribute, then the resulting
891 function will have an ``ssp`` attribute.
892``sspreq``
893 This attribute indicates that the function should *always* emit a
894 stack smashing protector. This overrides the ``ssp`` function
895 attribute.
896
897 If a function that has an ``sspreq`` attribute is inlined into a
898 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000899 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
900 an ``sspreq`` attribute.
901``sspstrong``
902 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000903 protector. This attribute causes a strong heuristic to be used when
904 determining if a function needs stack protectors. The strong heuristic
905 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000906
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000907 - Arrays of any size and type
908 - Aggregates containing an array of any size and type.
909 - Calls to alloca().
910 - Local variables that have had their address taken.
911
912 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000913
914 If a function that has an ``sspstrong`` attribute is inlined into a
915 function that doesn't have an ``sspstrong`` attribute, then the
916 resulting function will have an ``sspstrong`` attribute.
Kostya Serebryanyab39afa2013-02-11 08:13:54 +0000917``thread_safety``
918 This attribute indicates that the thread safety analysis is enabled
919 for this function.
920``uninitialized_checks``
921 This attribute indicates that the checks for uses of uninitialized
922 memory are enabled.
Sean Silvaf722b002012-12-07 10:36:55 +0000923``uwtable``
924 This attribute indicates that the ABI being targeted requires that
925 an unwind table entry be produce for this function even if we can
926 show that no exceptions passes by it. This is normally the case for
927 the ELF x86-64 abi, but it can be disabled for some compilation
928 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000929
930.. _moduleasm:
931
932Module-Level Inline Assembly
933----------------------------
934
935Modules may contain "module-level inline asm" blocks, which corresponds
936to the GCC "file scope inline asm" blocks. These blocks are internally
937concatenated by LLVM and treated as a single unit, but may be separated
938in the ``.ll`` file if desired. The syntax is very simple:
939
940.. code-block:: llvm
941
942 module asm "inline asm code goes here"
943 module asm "more can go here"
944
945The strings can contain any character by escaping non-printable
946characters. The escape sequence used is simply "\\xx" where "xx" is the
947two digit hex code for the number.
948
949The inline asm code is simply printed to the machine code .s file when
950assembly code is generated.
951
952Data Layout
953-----------
954
955A module may specify a target specific data layout string that specifies
956how data is to be laid out in memory. The syntax for the data layout is
957simply:
958
959.. code-block:: llvm
960
961 target datalayout = "layout specification"
962
963The *layout specification* consists of a list of specifications
964separated by the minus sign character ('-'). Each specification starts
965with a letter and may include other information after the letter to
966define some aspect of the data layout. The specifications accepted are
967as follows:
968
969``E``
970 Specifies that the target lays out data in big-endian form. That is,
971 the bits with the most significance have the lowest address
972 location.
973``e``
974 Specifies that the target lays out data in little-endian form. That
975 is, the bits with the least significance have the lowest address
976 location.
977``S<size>``
978 Specifies the natural alignment of the stack in bits. Alignment
979 promotion of stack variables is limited to the natural stack
980 alignment to avoid dynamic stack realignment. The stack alignment
981 must be a multiple of 8-bits. If omitted, the natural stack
982 alignment defaults to "unspecified", which does not prevent any
983 alignment promotions.
984``p[n]:<size>:<abi>:<pref>``
985 This specifies the *size* of a pointer and its ``<abi>`` and
986 ``<pref>``\erred alignments for address space ``n``. All sizes are in
987 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
988 preceding ``:`` should be omitted too. The address space, ``n`` is
989 optional, and if not specified, denotes the default address space 0.
990 The value of ``n`` must be in the range [1,2^23).
991``i<size>:<abi>:<pref>``
992 This specifies the alignment for an integer type of a given bit
993 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
994``v<size>:<abi>:<pref>``
995 This specifies the alignment for a vector type of a given bit
996 ``<size>``.
997``f<size>:<abi>:<pref>``
998 This specifies the alignment for a floating point type of a given bit
999 ``<size>``. Only values of ``<size>`` that are supported by the target
1000 will work. 32 (float) and 64 (double) are supported on all targets; 80
1001 or 128 (different flavors of long double) are also supported on some
1002 targets.
1003``a<size>:<abi>:<pref>``
1004 This specifies the alignment for an aggregate type of a given bit
1005 ``<size>``.
1006``s<size>:<abi>:<pref>``
1007 This specifies the alignment for a stack object of a given bit
1008 ``<size>``.
1009``n<size1>:<size2>:<size3>...``
1010 This specifies a set of native integer widths for the target CPU in
1011 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1012 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1013 this set are considered to support most general arithmetic operations
1014 efficiently.
1015
1016When constructing the data layout for a given target, LLVM starts with a
1017default set of specifications which are then (possibly) overridden by
1018the specifications in the ``datalayout`` keyword. The default
1019specifications are given in this list:
1020
1021- ``E`` - big endian
1022- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001023- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001024- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1025- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1026- ``i16:16:16`` - i16 is 16-bit aligned
1027- ``i32:32:32`` - i32 is 32-bit aligned
1028- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1029 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001030- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001031- ``f32:32:32`` - float is 32-bit aligned
1032- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001033- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001034- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1035- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001036- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001037
1038When LLVM is determining the alignment for a given type, it uses the
1039following rules:
1040
1041#. If the type sought is an exact match for one of the specifications,
1042 that specification is used.
1043#. If no match is found, and the type sought is an integer type, then
1044 the smallest integer type that is larger than the bitwidth of the
1045 sought type is used. If none of the specifications are larger than
1046 the bitwidth then the largest integer type is used. For example,
1047 given the default specifications above, the i7 type will use the
1048 alignment of i8 (next largest) while both i65 and i256 will use the
1049 alignment of i64 (largest specified).
1050#. If no match is found, and the type sought is a vector type, then the
1051 largest vector type that is smaller than the sought vector type will
1052 be used as a fall back. This happens because <128 x double> can be
1053 implemented in terms of 64 <2 x double>, for example.
1054
1055The function of the data layout string may not be what you expect.
1056Notably, this is not a specification from the frontend of what alignment
1057the code generator should use.
1058
1059Instead, if specified, the target data layout is required to match what
1060the ultimate *code generator* expects. This string is used by the
1061mid-level optimizers to improve code, and this only works if it matches
1062what the ultimate code generator uses. If you would like to generate IR
1063that does not embed this target-specific detail into the IR, then you
1064don't have to specify the string. This will disable some optimizations
1065that require precise layout information, but this also prevents those
1066optimizations from introducing target specificity into the IR.
1067
1068.. _pointeraliasing:
1069
1070Pointer Aliasing Rules
1071----------------------
1072
1073Any memory access must be done through a pointer value associated with
1074an address range of the memory access, otherwise the behavior is
1075undefined. Pointer values are associated with address ranges according
1076to the following rules:
1077
1078- A pointer value is associated with the addresses associated with any
1079 value it is *based* on.
1080- An address of a global variable is associated with the address range
1081 of the variable's storage.
1082- The result value of an allocation instruction is associated with the
1083 address range of the allocated storage.
1084- A null pointer in the default address-space is associated with no
1085 address.
1086- An integer constant other than zero or a pointer value returned from
1087 a function not defined within LLVM may be associated with address
1088 ranges allocated through mechanisms other than those provided by
1089 LLVM. Such ranges shall not overlap with any ranges of addresses
1090 allocated by mechanisms provided by LLVM.
1091
1092A pointer value is *based* on another pointer value according to the
1093following rules:
1094
1095- A pointer value formed from a ``getelementptr`` operation is *based*
1096 on the first operand of the ``getelementptr``.
1097- The result value of a ``bitcast`` is *based* on the operand of the
1098 ``bitcast``.
1099- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1100 values that contribute (directly or indirectly) to the computation of
1101 the pointer's value.
1102- The "*based* on" relationship is transitive.
1103
1104Note that this definition of *"based"* is intentionally similar to the
1105definition of *"based"* in C99, though it is slightly weaker.
1106
1107LLVM IR does not associate types with memory. The result type of a
1108``load`` merely indicates the size and alignment of the memory from
1109which to load, as well as the interpretation of the value. The first
1110operand type of a ``store`` similarly only indicates the size and
1111alignment of the store.
1112
1113Consequently, type-based alias analysis, aka TBAA, aka
1114``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1115:ref:`Metadata <metadata>` may be used to encode additional information
1116which specialized optimization passes may use to implement type-based
1117alias analysis.
1118
1119.. _volatile:
1120
1121Volatile Memory Accesses
1122------------------------
1123
1124Certain memory accesses, such as :ref:`load <i_load>`'s,
1125:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1126marked ``volatile``. The optimizers must not change the number of
1127volatile operations or change their order of execution relative to other
1128volatile operations. The optimizers *may* change the order of volatile
1129operations relative to non-volatile operations. This is not Java's
1130"volatile" and has no cross-thread synchronization behavior.
1131
Andrew Trick9a6dd022013-01-30 21:19:35 +00001132IR-level volatile loads and stores cannot safely be optimized into
1133llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1134flagged volatile. Likewise, the backend should never split or merge
1135target-legal volatile load/store instructions.
1136
Andrew Trick946317d2013-01-31 00:49:39 +00001137.. admonition:: Rationale
1138
1139 Platforms may rely on volatile loads and stores of natively supported
1140 data width to be executed as single instruction. For example, in C
1141 this holds for an l-value of volatile primitive type with native
1142 hardware support, but not necessarily for aggregate types. The
1143 frontend upholds these expectations, which are intentionally
1144 unspecified in the IR. The rules above ensure that IR transformation
1145 do not violate the frontend's contract with the language.
1146
Sean Silvaf722b002012-12-07 10:36:55 +00001147.. _memmodel:
1148
1149Memory Model for Concurrent Operations
1150--------------------------------------
1151
1152The LLVM IR does not define any way to start parallel threads of
1153execution or to register signal handlers. Nonetheless, there are
1154platform-specific ways to create them, and we define LLVM IR's behavior
1155in their presence. This model is inspired by the C++0x memory model.
1156
1157For a more informal introduction to this model, see the :doc:`Atomics`.
1158
1159We define a *happens-before* partial order as the least partial order
1160that
1161
1162- Is a superset of single-thread program order, and
1163- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1164 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1165 techniques, like pthread locks, thread creation, thread joining,
1166 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1167 Constraints <ordering>`).
1168
1169Note that program order does not introduce *happens-before* edges
1170between a thread and signals executing inside that thread.
1171
1172Every (defined) read operation (load instructions, memcpy, atomic
1173loads/read-modify-writes, etc.) R reads a series of bytes written by
1174(defined) write operations (store instructions, atomic
1175stores/read-modify-writes, memcpy, etc.). For the purposes of this
1176section, initialized globals are considered to have a write of the
1177initializer which is atomic and happens before any other read or write
1178of the memory in question. For each byte of a read R, R\ :sub:`byte`
1179may see any write to the same byte, except:
1180
1181- If write\ :sub:`1` happens before write\ :sub:`2`, and
1182 write\ :sub:`2` happens before R\ :sub:`byte`, then
1183 R\ :sub:`byte` does not see write\ :sub:`1`.
1184- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1185 R\ :sub:`byte` does not see write\ :sub:`3`.
1186
1187Given that definition, R\ :sub:`byte` is defined as follows:
1188
1189- If R is volatile, the result is target-dependent. (Volatile is
1190 supposed to give guarantees which can support ``sig_atomic_t`` in
1191 C/C++, and may be used for accesses to addresses which do not behave
1192 like normal memory. It does not generally provide cross-thread
1193 synchronization.)
1194- Otherwise, if there is no write to the same byte that happens before
1195 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1196- Otherwise, if R\ :sub:`byte` may see exactly one write,
1197 R\ :sub:`byte` returns the value written by that write.
1198- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1199 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1200 Memory Ordering Constraints <ordering>` section for additional
1201 constraints on how the choice is made.
1202- Otherwise R\ :sub:`byte` returns ``undef``.
1203
1204R returns the value composed of the series of bytes it read. This
1205implies that some bytes within the value may be ``undef`` **without**
1206the entire value being ``undef``. Note that this only defines the
1207semantics of the operation; it doesn't mean that targets will emit more
1208than one instruction to read the series of bytes.
1209
1210Note that in cases where none of the atomic intrinsics are used, this
1211model places only one restriction on IR transformations on top of what
1212is required for single-threaded execution: introducing a store to a byte
1213which might not otherwise be stored is not allowed in general.
1214(Specifically, in the case where another thread might write to and read
1215from an address, introducing a store can change a load that may see
1216exactly one write into a load that may see multiple writes.)
1217
1218.. _ordering:
1219
1220Atomic Memory Ordering Constraints
1221----------------------------------
1222
1223Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1224:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1225:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1226an ordering parameter that determines which other atomic instructions on
1227the same address they *synchronize with*. These semantics are borrowed
1228from Java and C++0x, but are somewhat more colloquial. If these
1229descriptions aren't precise enough, check those specs (see spec
1230references in the :doc:`atomics guide <Atomics>`).
1231:ref:`fence <i_fence>` instructions treat these orderings somewhat
1232differently since they don't take an address. See that instruction's
1233documentation for details.
1234
1235For a simpler introduction to the ordering constraints, see the
1236:doc:`Atomics`.
1237
1238``unordered``
1239 The set of values that can be read is governed by the happens-before
1240 partial order. A value cannot be read unless some operation wrote
1241 it. This is intended to provide a guarantee strong enough to model
1242 Java's non-volatile shared variables. This ordering cannot be
1243 specified for read-modify-write operations; it is not strong enough
1244 to make them atomic in any interesting way.
1245``monotonic``
1246 In addition to the guarantees of ``unordered``, there is a single
1247 total order for modifications by ``monotonic`` operations on each
1248 address. All modification orders must be compatible with the
1249 happens-before order. There is no guarantee that the modification
1250 orders can be combined to a global total order for the whole program
1251 (and this often will not be possible). The read in an atomic
1252 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1253 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1254 order immediately before the value it writes. If one atomic read
1255 happens before another atomic read of the same address, the later
1256 read must see the same value or a later value in the address's
1257 modification order. This disallows reordering of ``monotonic`` (or
1258 stronger) operations on the same address. If an address is written
1259 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1260 read that address repeatedly, the other threads must eventually see
1261 the write. This corresponds to the C++0x/C1x
1262 ``memory_order_relaxed``.
1263``acquire``
1264 In addition to the guarantees of ``monotonic``, a
1265 *synchronizes-with* edge may be formed with a ``release`` operation.
1266 This is intended to model C++'s ``memory_order_acquire``.
1267``release``
1268 In addition to the guarantees of ``monotonic``, if this operation
1269 writes a value which is subsequently read by an ``acquire``
1270 operation, it *synchronizes-with* that operation. (This isn't a
1271 complete description; see the C++0x definition of a release
1272 sequence.) This corresponds to the C++0x/C1x
1273 ``memory_order_release``.
1274``acq_rel`` (acquire+release)
1275 Acts as both an ``acquire`` and ``release`` operation on its
1276 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1277``seq_cst`` (sequentially consistent)
1278 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1279 operation which only reads, ``release`` for an operation which only
1280 writes), there is a global total order on all
1281 sequentially-consistent operations on all addresses, which is
1282 consistent with the *happens-before* partial order and with the
1283 modification orders of all the affected addresses. Each
1284 sequentially-consistent read sees the last preceding write to the
1285 same address in this global order. This corresponds to the C++0x/C1x
1286 ``memory_order_seq_cst`` and Java volatile.
1287
1288.. _singlethread:
1289
1290If an atomic operation is marked ``singlethread``, it only *synchronizes
1291with* or participates in modification and seq\_cst total orderings with
1292other operations running in the same thread (for example, in signal
1293handlers).
1294
1295.. _fastmath:
1296
1297Fast-Math Flags
1298---------------
1299
1300LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1301:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1302:ref:`frem <i_frem>`) have the following flags that can set to enable
1303otherwise unsafe floating point operations
1304
1305``nnan``
1306 No NaNs - Allow optimizations to assume the arguments and result are not
1307 NaN. Such optimizations are required to retain defined behavior over
1308 NaNs, but the value of the result is undefined.
1309
1310``ninf``
1311 No Infs - Allow optimizations to assume the arguments and result are not
1312 +/-Inf. Such optimizations are required to retain defined behavior over
1313 +/-Inf, but the value of the result is undefined.
1314
1315``nsz``
1316 No Signed Zeros - Allow optimizations to treat the sign of a zero
1317 argument or result as insignificant.
1318
1319``arcp``
1320 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1321 argument rather than perform division.
1322
1323``fast``
1324 Fast - Allow algebraically equivalent transformations that may
1325 dramatically change results in floating point (e.g. reassociate). This
1326 flag implies all the others.
1327
1328.. _typesystem:
1329
1330Type System
1331===========
1332
1333The LLVM type system is one of the most important features of the
1334intermediate representation. Being typed enables a number of
1335optimizations to be performed on the intermediate representation
1336directly, without having to do extra analyses on the side before the
1337transformation. A strong type system makes it easier to read the
1338generated code and enables novel analyses and transformations that are
1339not feasible to perform on normal three address code representations.
1340
1341Type Classifications
1342--------------------
1343
1344The types fall into a few useful classifications:
1345
1346
1347.. list-table::
1348 :header-rows: 1
1349
1350 * - Classification
1351 - Types
1352
1353 * - :ref:`integer <t_integer>`
1354 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1355 ``i64``, ...
1356
1357 * - :ref:`floating point <t_floating>`
1358 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1359 ``ppc_fp128``
1360
1361
1362 * - first class
1363
1364 .. _t_firstclass:
1365
1366 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1367 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1368 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1369 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1370
1371 * - :ref:`primitive <t_primitive>`
1372 - :ref:`label <t_label>`,
1373 :ref:`void <t_void>`,
1374 :ref:`integer <t_integer>`,
1375 :ref:`floating point <t_floating>`,
1376 :ref:`x86mmx <t_x86mmx>`,
1377 :ref:`metadata <t_metadata>`.
1378
1379 * - :ref:`derived <t_derived>`
1380 - :ref:`array <t_array>`,
1381 :ref:`function <t_function>`,
1382 :ref:`pointer <t_pointer>`,
1383 :ref:`structure <t_struct>`,
1384 :ref:`vector <t_vector>`,
1385 :ref:`opaque <t_opaque>`.
1386
1387The :ref:`first class <t_firstclass>` types are perhaps the most important.
1388Values of these types are the only ones which can be produced by
1389instructions.
1390
1391.. _t_primitive:
1392
1393Primitive Types
1394---------------
1395
1396The primitive types are the fundamental building blocks of the LLVM
1397system.
1398
1399.. _t_integer:
1400
1401Integer Type
1402^^^^^^^^^^^^
1403
1404Overview:
1405"""""""""
1406
1407The integer type is a very simple type that simply specifies an
1408arbitrary bit width for the integer type desired. Any bit width from 1
1409bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1410
1411Syntax:
1412"""""""
1413
1414::
1415
1416 iN
1417
1418The number of bits the integer will occupy is specified by the ``N``
1419value.
1420
1421Examples:
1422"""""""""
1423
1424+----------------+------------------------------------------------+
1425| ``i1`` | a single-bit integer. |
1426+----------------+------------------------------------------------+
1427| ``i32`` | a 32-bit integer. |
1428+----------------+------------------------------------------------+
1429| ``i1942652`` | a really big integer of over 1 million bits. |
1430+----------------+------------------------------------------------+
1431
1432.. _t_floating:
1433
1434Floating Point Types
1435^^^^^^^^^^^^^^^^^^^^
1436
1437.. list-table::
1438 :header-rows: 1
1439
1440 * - Type
1441 - Description
1442
1443 * - ``half``
1444 - 16-bit floating point value
1445
1446 * - ``float``
1447 - 32-bit floating point value
1448
1449 * - ``double``
1450 - 64-bit floating point value
1451
1452 * - ``fp128``
1453 - 128-bit floating point value (112-bit mantissa)
1454
1455 * - ``x86_fp80``
1456 - 80-bit floating point value (X87)
1457
1458 * - ``ppc_fp128``
1459 - 128-bit floating point value (two 64-bits)
1460
1461.. _t_x86mmx:
1462
1463X86mmx Type
1464^^^^^^^^^^^
1465
1466Overview:
1467"""""""""
1468
1469The x86mmx type represents a value held in an MMX register on an x86
1470machine. The operations allowed on it are quite limited: parameters and
1471return values, load and store, and bitcast. User-specified MMX
1472instructions are represented as intrinsic or asm calls with arguments
1473and/or results of this type. There are no arrays, vectors or constants
1474of this type.
1475
1476Syntax:
1477"""""""
1478
1479::
1480
1481 x86mmx
1482
1483.. _t_void:
1484
1485Void Type
1486^^^^^^^^^
1487
1488Overview:
1489"""""""""
1490
1491The void type does not represent any value and has no size.
1492
1493Syntax:
1494"""""""
1495
1496::
1497
1498 void
1499
1500.. _t_label:
1501
1502Label Type
1503^^^^^^^^^^
1504
1505Overview:
1506"""""""""
1507
1508The label type represents code labels.
1509
1510Syntax:
1511"""""""
1512
1513::
1514
1515 label
1516
1517.. _t_metadata:
1518
1519Metadata Type
1520^^^^^^^^^^^^^
1521
1522Overview:
1523"""""""""
1524
1525The metadata type represents embedded metadata. No derived types may be
1526created from metadata except for :ref:`function <t_function>` arguments.
1527
1528Syntax:
1529"""""""
1530
1531::
1532
1533 metadata
1534
1535.. _t_derived:
1536
1537Derived Types
1538-------------
1539
1540The real power in LLVM comes from the derived types in the system. This
1541is what allows a programmer to represent arrays, functions, pointers,
1542and other useful types. Each of these types contain one or more element
1543types which may be a primitive type, or another derived type. For
1544example, it is possible to have a two dimensional array, using an array
1545as the element type of another array.
1546
1547.. _t_aggregate:
1548
1549Aggregate Types
1550^^^^^^^^^^^^^^^
1551
1552Aggregate Types are a subset of derived types that can contain multiple
1553member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1554aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1555aggregate types.
1556
1557.. _t_array:
1558
1559Array Type
1560^^^^^^^^^^
1561
1562Overview:
1563"""""""""
1564
1565The array type is a very simple derived type that arranges elements
1566sequentially in memory. The array type requires a size (number of
1567elements) and an underlying data type.
1568
1569Syntax:
1570"""""""
1571
1572::
1573
1574 [<# elements> x <elementtype>]
1575
1576The number of elements is a constant integer value; ``elementtype`` may
1577be any type with a size.
1578
1579Examples:
1580"""""""""
1581
1582+------------------+--------------------------------------+
1583| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1584+------------------+--------------------------------------+
1585| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1586+------------------+--------------------------------------+
1587| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1588+------------------+--------------------------------------+
1589
1590Here are some examples of multidimensional arrays:
1591
1592+-----------------------------+----------------------------------------------------------+
1593| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1594+-----------------------------+----------------------------------------------------------+
1595| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1596+-----------------------------+----------------------------------------------------------+
1597| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1598+-----------------------------+----------------------------------------------------------+
1599
1600There is no restriction on indexing beyond the end of the array implied
1601by a static type (though there are restrictions on indexing beyond the
1602bounds of an allocated object in some cases). This means that
1603single-dimension 'variable sized array' addressing can be implemented in
1604LLVM with a zero length array type. An implementation of 'pascal style
1605arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1606example.
1607
1608.. _t_function:
1609
1610Function Type
1611^^^^^^^^^^^^^
1612
1613Overview:
1614"""""""""
1615
1616The function type can be thought of as a function signature. It consists
1617of a return type and a list of formal parameter types. The return type
1618of a function type is a first class type or a void type.
1619
1620Syntax:
1621"""""""
1622
1623::
1624
1625 <returntype> (<parameter list>)
1626
1627...where '``<parameter list>``' is a comma-separated list of type
1628specifiers. Optionally, the parameter list may include a type ``...``,
1629which indicates that the function takes a variable number of arguments.
1630Variable argument functions can access their arguments with the
1631:ref:`variable argument handling intrinsic <int_varargs>` functions.
1632'``<returntype>``' is any type except :ref:`label <t_label>`.
1633
1634Examples:
1635"""""""""
1636
1637+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1638| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1639+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001640| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001641+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1642| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1643+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1644| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1645+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1646
1647.. _t_struct:
1648
1649Structure Type
1650^^^^^^^^^^^^^^
1651
1652Overview:
1653"""""""""
1654
1655The structure type is used to represent a collection of data members
1656together in memory. The elements of a structure may be any type that has
1657a size.
1658
1659Structures in memory are accessed using '``load``' and '``store``' by
1660getting a pointer to a field with the '``getelementptr``' instruction.
1661Structures in registers are accessed using the '``extractvalue``' and
1662'``insertvalue``' instructions.
1663
1664Structures may optionally be "packed" structures, which indicate that
1665the alignment of the struct is one byte, and that there is no padding
1666between the elements. In non-packed structs, padding between field types
1667is inserted as defined by the DataLayout string in the module, which is
1668required to match what the underlying code generator expects.
1669
1670Structures can either be "literal" or "identified". A literal structure
1671is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1672identified types are always defined at the top level with a name.
1673Literal types are uniqued by their contents and can never be recursive
1674or opaque since there is no way to write one. Identified types can be
1675recursive, can be opaqued, and are never uniqued.
1676
1677Syntax:
1678"""""""
1679
1680::
1681
1682 %T1 = type { <type list> } ; Identified normal struct type
1683 %T2 = type <{ <type list> }> ; Identified packed struct type
1684
1685Examples:
1686"""""""""
1687
1688+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1689| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1690+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001691| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001692+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1693| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1694+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1695
1696.. _t_opaque:
1697
1698Opaque Structure Types
1699^^^^^^^^^^^^^^^^^^^^^^
1700
1701Overview:
1702"""""""""
1703
1704Opaque structure types are used to represent named structure types that
1705do not have a body specified. This corresponds (for example) to the C
1706notion of a forward declared structure.
1707
1708Syntax:
1709"""""""
1710
1711::
1712
1713 %X = type opaque
1714 %52 = type opaque
1715
1716Examples:
1717"""""""""
1718
1719+--------------+-------------------+
1720| ``opaque`` | An opaque type. |
1721+--------------+-------------------+
1722
1723.. _t_pointer:
1724
1725Pointer Type
1726^^^^^^^^^^^^
1727
1728Overview:
1729"""""""""
1730
1731The pointer type is used to specify memory locations. Pointers are
1732commonly used to reference objects in memory.
1733
1734Pointer types may have an optional address space attribute defining the
1735numbered address space where the pointed-to object resides. The default
1736address space is number zero. The semantics of non-zero address spaces
1737are target-specific.
1738
1739Note that LLVM does not permit pointers to void (``void*``) nor does it
1740permit pointers to labels (``label*``). Use ``i8*`` instead.
1741
1742Syntax:
1743"""""""
1744
1745::
1746
1747 <type> *
1748
1749Examples:
1750"""""""""
1751
1752+-------------------------+--------------------------------------------------------------------------------------------------------------+
1753| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1754+-------------------------+--------------------------------------------------------------------------------------------------------------+
1755| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1756+-------------------------+--------------------------------------------------------------------------------------------------------------+
1757| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1758+-------------------------+--------------------------------------------------------------------------------------------------------------+
1759
1760.. _t_vector:
1761
1762Vector Type
1763^^^^^^^^^^^
1764
1765Overview:
1766"""""""""
1767
1768A vector type is a simple derived type that represents a vector of
1769elements. Vector types are used when multiple primitive data are
1770operated in parallel using a single instruction (SIMD). A vector type
1771requires a size (number of elements) and an underlying primitive data
1772type. Vector types are considered :ref:`first class <t_firstclass>`.
1773
1774Syntax:
1775"""""""
1776
1777::
1778
1779 < <# elements> x <elementtype> >
1780
1781The number of elements is a constant integer value larger than 0;
1782elementtype may be any integer or floating point type, or a pointer to
1783these types. Vectors of size zero are not allowed.
1784
1785Examples:
1786"""""""""
1787
1788+-------------------+--------------------------------------------------+
1789| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1790+-------------------+--------------------------------------------------+
1791| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1792+-------------------+--------------------------------------------------+
1793| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1794+-------------------+--------------------------------------------------+
1795| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1796+-------------------+--------------------------------------------------+
1797
1798Constants
1799=========
1800
1801LLVM has several different basic types of constants. This section
1802describes them all and their syntax.
1803
1804Simple Constants
1805----------------
1806
1807**Boolean constants**
1808 The two strings '``true``' and '``false``' are both valid constants
1809 of the ``i1`` type.
1810**Integer constants**
1811 Standard integers (such as '4') are constants of the
1812 :ref:`integer <t_integer>` type. Negative numbers may be used with
1813 integer types.
1814**Floating point constants**
1815 Floating point constants use standard decimal notation (e.g.
1816 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1817 hexadecimal notation (see below). The assembler requires the exact
1818 decimal value of a floating-point constant. For example, the
1819 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1820 decimal in binary. Floating point constants must have a :ref:`floating
1821 point <t_floating>` type.
1822**Null pointer constants**
1823 The identifier '``null``' is recognized as a null pointer constant
1824 and must be of :ref:`pointer type <t_pointer>`.
1825
1826The one non-intuitive notation for constants is the hexadecimal form of
1827floating point constants. For example, the form
1828'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1829than) '``double 4.5e+15``'. The only time hexadecimal floating point
1830constants are required (and the only time that they are generated by the
1831disassembler) is when a floating point constant must be emitted but it
1832cannot be represented as a decimal floating point number in a reasonable
1833number of digits. For example, NaN's, infinities, and other special
1834values are represented in their IEEE hexadecimal format so that assembly
1835and disassembly do not cause any bits to change in the constants.
1836
1837When using the hexadecimal form, constants of types half, float, and
1838double are represented using the 16-digit form shown above (which
1839matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001840must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001841precision, respectively. Hexadecimal format is always used for long
1842double, and there are three forms of long double. The 80-bit format used
1843by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1844128-bit format used by PowerPC (two adjacent doubles) is represented by
1845``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1846represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1847supported target uses this format. Long doubles will only work if they
1848match the long double format on your target. The IEEE 16-bit format
1849(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1850digits. All hexadecimal formats are big-endian (sign bit at the left).
1851
1852There are no constants of type x86mmx.
1853
1854Complex Constants
1855-----------------
1856
1857Complex constants are a (potentially recursive) combination of simple
1858constants and smaller complex constants.
1859
1860**Structure constants**
1861 Structure constants are represented with notation similar to
1862 structure type definitions (a comma separated list of elements,
1863 surrounded by braces (``{}``)). For example:
1864 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1865 "``@G = external global i32``". Structure constants must have
1866 :ref:`structure type <t_struct>`, and the number and types of elements
1867 must match those specified by the type.
1868**Array constants**
1869 Array constants are represented with notation similar to array type
1870 definitions (a comma separated list of elements, surrounded by
1871 square brackets (``[]``)). For example:
1872 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1873 :ref:`array type <t_array>`, and the number and types of elements must
1874 match those specified by the type.
1875**Vector constants**
1876 Vector constants are represented with notation similar to vector
1877 type definitions (a comma separated list of elements, surrounded by
1878 less-than/greater-than's (``<>``)). For example:
1879 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1880 must have :ref:`vector type <t_vector>`, and the number and types of
1881 elements must match those specified by the type.
1882**Zero initialization**
1883 The string '``zeroinitializer``' can be used to zero initialize a
1884 value to zero of *any* type, including scalar and
1885 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1886 having to print large zero initializers (e.g. for large arrays) and
1887 is always exactly equivalent to using explicit zero initializers.
1888**Metadata node**
1889 A metadata node is a structure-like constant with :ref:`metadata
1890 type <t_metadata>`. For example:
1891 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1892 constants that are meant to be interpreted as part of the
1893 instruction stream, metadata is a place to attach additional
1894 information such as debug info.
1895
1896Global Variable and Function Addresses
1897--------------------------------------
1898
1899The addresses of :ref:`global variables <globalvars>` and
1900:ref:`functions <functionstructure>` are always implicitly valid
1901(link-time) constants. These constants are explicitly referenced when
1902the :ref:`identifier for the global <identifiers>` is used and always have
1903:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1904file:
1905
1906.. code-block:: llvm
1907
1908 @X = global i32 17
1909 @Y = global i32 42
1910 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1911
1912.. _undefvalues:
1913
1914Undefined Values
1915----------------
1916
1917The string '``undef``' can be used anywhere a constant is expected, and
1918indicates that the user of the value may receive an unspecified
1919bit-pattern. Undefined values may be of any type (other than '``label``'
1920or '``void``') and be used anywhere a constant is permitted.
1921
1922Undefined values are useful because they indicate to the compiler that
1923the program is well defined no matter what value is used. This gives the
1924compiler more freedom to optimize. Here are some examples of
1925(potentially surprising) transformations that are valid (in pseudo IR):
1926
1927.. code-block:: llvm
1928
1929 %A = add %X, undef
1930 %B = sub %X, undef
1931 %C = xor %X, undef
1932 Safe:
1933 %A = undef
1934 %B = undef
1935 %C = undef
1936
1937This is safe because all of the output bits are affected by the undef
1938bits. Any output bit can have a zero or one depending on the input bits.
1939
1940.. code-block:: llvm
1941
1942 %A = or %X, undef
1943 %B = and %X, undef
1944 Safe:
1945 %A = -1
1946 %B = 0
1947 Unsafe:
1948 %A = undef
1949 %B = undef
1950
1951These logical operations have bits that are not always affected by the
1952input. For example, if ``%X`` has a zero bit, then the output of the
1953'``and``' operation will always be a zero for that bit, no matter what
1954the corresponding bit from the '``undef``' is. As such, it is unsafe to
1955optimize or assume that the result of the '``and``' is '``undef``'.
1956However, it is safe to assume that all bits of the '``undef``' could be
19570, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1958all the bits of the '``undef``' operand to the '``or``' could be set,
1959allowing the '``or``' to be folded to -1.
1960
1961.. code-block:: llvm
1962
1963 %A = select undef, %X, %Y
1964 %B = select undef, 42, %Y
1965 %C = select %X, %Y, undef
1966 Safe:
1967 %A = %X (or %Y)
1968 %B = 42 (or %Y)
1969 %C = %Y
1970 Unsafe:
1971 %A = undef
1972 %B = undef
1973 %C = undef
1974
1975This set of examples shows that undefined '``select``' (and conditional
1976branch) conditions can go *either way*, but they have to come from one
1977of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1978both known to have a clear low bit, then ``%A`` would have to have a
1979cleared low bit. However, in the ``%C`` example, the optimizer is
1980allowed to assume that the '``undef``' operand could be the same as
1981``%Y``, allowing the whole '``select``' to be eliminated.
1982
1983.. code-block:: llvm
1984
1985 %A = xor undef, undef
1986
1987 %B = undef
1988 %C = xor %B, %B
1989
1990 %D = undef
1991 %E = icmp lt %D, 4
1992 %F = icmp gte %D, 4
1993
1994 Safe:
1995 %A = undef
1996 %B = undef
1997 %C = undef
1998 %D = undef
1999 %E = undef
2000 %F = undef
2001
2002This example points out that two '``undef``' operands are not
2003necessarily the same. This can be surprising to people (and also matches
2004C semantics) where they assume that "``X^X``" is always zero, even if
2005``X`` is undefined. This isn't true for a number of reasons, but the
2006short answer is that an '``undef``' "variable" can arbitrarily change
2007its value over its "live range". This is true because the variable
2008doesn't actually *have a live range*. Instead, the value is logically
2009read from arbitrary registers that happen to be around when needed, so
2010the value is not necessarily consistent over time. In fact, ``%A`` and
2011``%C`` need to have the same semantics or the core LLVM "replace all
2012uses with" concept would not hold.
2013
2014.. code-block:: llvm
2015
2016 %A = fdiv undef, %X
2017 %B = fdiv %X, undef
2018 Safe:
2019 %A = undef
2020 b: unreachable
2021
2022These examples show the crucial difference between an *undefined value*
2023and *undefined behavior*. An undefined value (like '``undef``') is
2024allowed to have an arbitrary bit-pattern. This means that the ``%A``
2025operation can be constant folded to '``undef``', because the '``undef``'
2026could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2027However, in the second example, we can make a more aggressive
2028assumption: because the ``undef`` is allowed to be an arbitrary value,
2029we are allowed to assume that it could be zero. Since a divide by zero
2030has *undefined behavior*, we are allowed to assume that the operation
2031does not execute at all. This allows us to delete the divide and all
2032code after it. Because the undefined operation "can't happen", the
2033optimizer can assume that it occurs in dead code.
2034
2035.. code-block:: llvm
2036
2037 a: store undef -> %X
2038 b: store %X -> undef
2039 Safe:
2040 a: <deleted>
2041 b: unreachable
2042
2043These examples reiterate the ``fdiv`` example: a store *of* an undefined
2044value can be assumed to not have any effect; we can assume that the
2045value is overwritten with bits that happen to match what was already
2046there. However, a store *to* an undefined location could clobber
2047arbitrary memory, therefore, it has undefined behavior.
2048
2049.. _poisonvalues:
2050
2051Poison Values
2052-------------
2053
2054Poison values are similar to :ref:`undef values <undefvalues>`, however
2055they also represent the fact that an instruction or constant expression
2056which cannot evoke side effects has nevertheless detected a condition
2057which results in undefined behavior.
2058
2059There is currently no way of representing a poison value in the IR; they
2060only exist when produced by operations such as :ref:`add <i_add>` with
2061the ``nsw`` flag.
2062
2063Poison value behavior is defined in terms of value *dependence*:
2064
2065- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2066- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2067 their dynamic predecessor basic block.
2068- Function arguments depend on the corresponding actual argument values
2069 in the dynamic callers of their functions.
2070- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2071 instructions that dynamically transfer control back to them.
2072- :ref:`Invoke <i_invoke>` instructions depend on the
2073 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2074 call instructions that dynamically transfer control back to them.
2075- Non-volatile loads and stores depend on the most recent stores to all
2076 of the referenced memory addresses, following the order in the IR
2077 (including loads and stores implied by intrinsics such as
2078 :ref:`@llvm.memcpy <int_memcpy>`.)
2079- An instruction with externally visible side effects depends on the
2080 most recent preceding instruction with externally visible side
2081 effects, following the order in the IR. (This includes :ref:`volatile
2082 operations <volatile>`.)
2083- An instruction *control-depends* on a :ref:`terminator
2084 instruction <terminators>` if the terminator instruction has
2085 multiple successors and the instruction is always executed when
2086 control transfers to one of the successors, and may not be executed
2087 when control is transferred to another.
2088- Additionally, an instruction also *control-depends* on a terminator
2089 instruction if the set of instructions it otherwise depends on would
2090 be different if the terminator had transferred control to a different
2091 successor.
2092- Dependence is transitive.
2093
2094Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2095with the additional affect that any instruction which has a *dependence*
2096on a poison value has undefined behavior.
2097
2098Here are some examples:
2099
2100.. code-block:: llvm
2101
2102 entry:
2103 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2104 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2105 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2106 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2107
2108 store i32 %poison, i32* @g ; Poison value stored to memory.
2109 %poison2 = load i32* @g ; Poison value loaded back from memory.
2110
2111 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2112
2113 %narrowaddr = bitcast i32* @g to i16*
2114 %wideaddr = bitcast i32* @g to i64*
2115 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2116 %poison4 = load i64* %wideaddr ; Returns a poison value.
2117
2118 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2119 br i1 %cmp, label %true, label %end ; Branch to either destination.
2120
2121 true:
2122 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2123 ; it has undefined behavior.
2124 br label %end
2125
2126 end:
2127 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2128 ; Both edges into this PHI are
2129 ; control-dependent on %cmp, so this
2130 ; always results in a poison value.
2131
2132 store volatile i32 0, i32* @g ; This would depend on the store in %true
2133 ; if %cmp is true, or the store in %entry
2134 ; otherwise, so this is undefined behavior.
2135
2136 br i1 %cmp, label %second_true, label %second_end
2137 ; The same branch again, but this time the
2138 ; true block doesn't have side effects.
2139
2140 second_true:
2141 ; No side effects!
2142 ret void
2143
2144 second_end:
2145 store volatile i32 0, i32* @g ; This time, the instruction always depends
2146 ; on the store in %end. Also, it is
2147 ; control-equivalent to %end, so this is
2148 ; well-defined (ignoring earlier undefined
2149 ; behavior in this example).
2150
2151.. _blockaddress:
2152
2153Addresses of Basic Blocks
2154-------------------------
2155
2156``blockaddress(@function, %block)``
2157
2158The '``blockaddress``' constant computes the address of the specified
2159basic block in the specified function, and always has an ``i8*`` type.
2160Taking the address of the entry block is illegal.
2161
2162This value only has defined behavior when used as an operand to the
2163':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2164against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002165undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002166no label is equal to the null pointer. This may be passed around as an
2167opaque pointer sized value as long as the bits are not inspected. This
2168allows ``ptrtoint`` and arithmetic to be performed on these values so
2169long as the original value is reconstituted before the ``indirectbr``
2170instruction.
2171
2172Finally, some targets may provide defined semantics when using the value
2173as the operand to an inline assembly, but that is target specific.
2174
2175Constant Expressions
2176--------------------
2177
2178Constant expressions are used to allow expressions involving other
2179constants to be used as constants. Constant expressions may be of any
2180:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2181that does not have side effects (e.g. load and call are not supported).
2182The following is the syntax for constant expressions:
2183
2184``trunc (CST to TYPE)``
2185 Truncate a constant to another type. The bit size of CST must be
2186 larger than the bit size of TYPE. Both types must be integers.
2187``zext (CST to TYPE)``
2188 Zero extend a constant to another type. The bit size of CST must be
2189 smaller than the bit size of TYPE. Both types must be integers.
2190``sext (CST to TYPE)``
2191 Sign extend a constant to another type. The bit size of CST must be
2192 smaller than the bit size of TYPE. Both types must be integers.
2193``fptrunc (CST to TYPE)``
2194 Truncate a floating point constant to another floating point type.
2195 The size of CST must be larger than the size of TYPE. Both types
2196 must be floating point.
2197``fpext (CST to TYPE)``
2198 Floating point extend a constant to another type. The size of CST
2199 must be smaller or equal to the size of TYPE. Both types must be
2200 floating point.
2201``fptoui (CST to TYPE)``
2202 Convert a floating point constant to the corresponding unsigned
2203 integer constant. TYPE must be a scalar or vector integer type. CST
2204 must be of scalar or vector floating point type. Both CST and TYPE
2205 must be scalars, or vectors of the same number of elements. If the
2206 value won't fit in the integer type, the results are undefined.
2207``fptosi (CST to TYPE)``
2208 Convert a floating point constant to the corresponding signed
2209 integer constant. TYPE must be a scalar or vector integer type. CST
2210 must be of scalar or vector floating point type. Both CST and TYPE
2211 must be scalars, or vectors of the same number of elements. If the
2212 value won't fit in the integer type, the results are undefined.
2213``uitofp (CST to TYPE)``
2214 Convert an unsigned integer constant to the corresponding floating
2215 point constant. TYPE must be a scalar or vector floating point type.
2216 CST must be of scalar or vector integer type. Both CST and TYPE must
2217 be scalars, or vectors of the same number of elements. If the value
2218 won't fit in the floating point type, the results are undefined.
2219``sitofp (CST to TYPE)``
2220 Convert a signed integer constant to the corresponding floating
2221 point constant. TYPE must be a scalar or vector floating point type.
2222 CST must be of scalar or vector integer type. Both CST and TYPE must
2223 be scalars, or vectors of the same number of elements. If the value
2224 won't fit in the floating point type, the results are undefined.
2225``ptrtoint (CST to TYPE)``
2226 Convert a pointer typed constant to the corresponding integer
2227 constant ``TYPE`` must be an integer type. ``CST`` must be of
2228 pointer type. The ``CST`` value is zero extended, truncated, or
2229 unchanged to make it fit in ``TYPE``.
2230``inttoptr (CST to TYPE)``
2231 Convert an integer constant to a pointer constant. TYPE must be a
2232 pointer type. CST must be of integer type. The CST value is zero
2233 extended, truncated, or unchanged to make it fit in a pointer size.
2234 This one is *really* dangerous!
2235``bitcast (CST to TYPE)``
2236 Convert a constant, CST, to another TYPE. The constraints of the
2237 operands are the same as those for the :ref:`bitcast
2238 instruction <i_bitcast>`.
2239``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2240 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2241 constants. As with the :ref:`getelementptr <i_getelementptr>`
2242 instruction, the index list may have zero or more indexes, which are
2243 required to make sense for the type of "CSTPTR".
2244``select (COND, VAL1, VAL2)``
2245 Perform the :ref:`select operation <i_select>` on constants.
2246``icmp COND (VAL1, VAL2)``
2247 Performs the :ref:`icmp operation <i_icmp>` on constants.
2248``fcmp COND (VAL1, VAL2)``
2249 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2250``extractelement (VAL, IDX)``
2251 Perform the :ref:`extractelement operation <i_extractelement>` on
2252 constants.
2253``insertelement (VAL, ELT, IDX)``
2254 Perform the :ref:`insertelement operation <i_insertelement>` on
2255 constants.
2256``shufflevector (VEC1, VEC2, IDXMASK)``
2257 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2258 constants.
2259``extractvalue (VAL, IDX0, IDX1, ...)``
2260 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2261 constants. The index list is interpreted in a similar manner as
2262 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2263 least one index value must be specified.
2264``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2265 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2266 The index list is interpreted in a similar manner as indices in a
2267 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2268 value must be specified.
2269``OPCODE (LHS, RHS)``
2270 Perform the specified operation of the LHS and RHS constants. OPCODE
2271 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2272 binary <bitwiseops>` operations. The constraints on operands are
2273 the same as those for the corresponding instruction (e.g. no bitwise
2274 operations on floating point values are allowed).
2275
2276Other Values
2277============
2278
2279Inline Assembler Expressions
2280----------------------------
2281
2282LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2283Inline Assembly <moduleasm>`) through the use of a special value. This
2284value represents the inline assembler as a string (containing the
2285instructions to emit), a list of operand constraints (stored as a
2286string), a flag that indicates whether or not the inline asm expression
2287has side effects, and a flag indicating whether the function containing
2288the asm needs to align its stack conservatively. An example inline
2289assembler expression is:
2290
2291.. code-block:: llvm
2292
2293 i32 (i32) asm "bswap $0", "=r,r"
2294
2295Inline assembler expressions may **only** be used as the callee operand
2296of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2297Thus, typically we have:
2298
2299.. code-block:: llvm
2300
2301 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2302
2303Inline asms with side effects not visible in the constraint list must be
2304marked as having side effects. This is done through the use of the
2305'``sideeffect``' keyword, like so:
2306
2307.. code-block:: llvm
2308
2309 call void asm sideeffect "eieio", ""()
2310
2311In some cases inline asms will contain code that will not work unless
2312the stack is aligned in some way, such as calls or SSE instructions on
2313x86, yet will not contain code that does that alignment within the asm.
2314The compiler should make conservative assumptions about what the asm
2315might contain and should generate its usual stack alignment code in the
2316prologue if the '``alignstack``' keyword is present:
2317
2318.. code-block:: llvm
2319
2320 call void asm alignstack "eieio", ""()
2321
2322Inline asms also support using non-standard assembly dialects. The
2323assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2324the inline asm is using the Intel dialect. Currently, ATT and Intel are
2325the only supported dialects. An example is:
2326
2327.. code-block:: llvm
2328
2329 call void asm inteldialect "eieio", ""()
2330
2331If multiple keywords appear the '``sideeffect``' keyword must come
2332first, the '``alignstack``' keyword second and the '``inteldialect``'
2333keyword last.
2334
2335Inline Asm Metadata
2336^^^^^^^^^^^^^^^^^^^
2337
2338The call instructions that wrap inline asm nodes may have a
2339"``!srcloc``" MDNode attached to it that contains a list of constant
2340integers. If present, the code generator will use the integer as the
2341location cookie value when report errors through the ``LLVMContext``
2342error reporting mechanisms. This allows a front-end to correlate backend
2343errors that occur with inline asm back to the source code that produced
2344it. For example:
2345
2346.. code-block:: llvm
2347
2348 call void asm sideeffect "something bad", ""(), !srcloc !42
2349 ...
2350 !42 = !{ i32 1234567 }
2351
2352It is up to the front-end to make sense of the magic numbers it places
2353in the IR. If the MDNode contains multiple constants, the code generator
2354will use the one that corresponds to the line of the asm that the error
2355occurs on.
2356
2357.. _metadata:
2358
2359Metadata Nodes and Metadata Strings
2360-----------------------------------
2361
2362LLVM IR allows metadata to be attached to instructions in the program
2363that can convey extra information about the code to the optimizers and
2364code generator. One example application of metadata is source-level
2365debug information. There are two metadata primitives: strings and nodes.
2366All metadata has the ``metadata`` type and is identified in syntax by a
2367preceding exclamation point ('``!``').
2368
2369A metadata string is a string surrounded by double quotes. It can
2370contain any character by escaping non-printable characters with
2371"``\xx``" where "``xx``" is the two digit hex code. For example:
2372"``!"test\00"``".
2373
2374Metadata nodes are represented with notation similar to structure
2375constants (a comma separated list of elements, surrounded by braces and
2376preceded by an exclamation point). Metadata nodes can have any values as
2377their operand. For example:
2378
2379.. code-block:: llvm
2380
2381 !{ metadata !"test\00", i32 10}
2382
2383A :ref:`named metadata <namedmetadatastructure>` is a collection of
2384metadata nodes, which can be looked up in the module symbol table. For
2385example:
2386
2387.. code-block:: llvm
2388
2389 !foo = metadata !{!4, !3}
2390
2391Metadata can be used as function arguments. Here ``llvm.dbg.value``
2392function is using two metadata arguments:
2393
2394.. code-block:: llvm
2395
2396 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2397
2398Metadata can be attached with an instruction. Here metadata ``!21`` is
2399attached to the ``add`` instruction using the ``!dbg`` identifier:
2400
2401.. code-block:: llvm
2402
2403 %indvar.next = add i64 %indvar, 1, !dbg !21
2404
2405More information about specific metadata nodes recognized by the
2406optimizers and code generator is found below.
2407
2408'``tbaa``' Metadata
2409^^^^^^^^^^^^^^^^^^^
2410
2411In LLVM IR, memory does not have types, so LLVM's own type system is not
2412suitable for doing TBAA. Instead, metadata is added to the IR to
2413describe a type system of a higher level language. This can be used to
2414implement typical C/C++ TBAA, but it can also be used to implement
2415custom alias analysis behavior for other languages.
2416
2417The current metadata format is very simple. TBAA metadata nodes have up
2418to three fields, e.g.:
2419
2420.. code-block:: llvm
2421
2422 !0 = metadata !{ metadata !"an example type tree" }
2423 !1 = metadata !{ metadata !"int", metadata !0 }
2424 !2 = metadata !{ metadata !"float", metadata !0 }
2425 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2426
2427The first field is an identity field. It can be any value, usually a
2428metadata string, which uniquely identifies the type. The most important
2429name in the tree is the name of the root node. Two trees with different
2430root node names are entirely disjoint, even if they have leaves with
2431common names.
2432
2433The second field identifies the type's parent node in the tree, or is
2434null or omitted for a root node. A type is considered to alias all of
2435its descendants and all of its ancestors in the tree. Also, a type is
2436considered to alias all types in other trees, so that bitcode produced
2437from multiple front-ends is handled conservatively.
2438
2439If the third field is present, it's an integer which if equal to 1
2440indicates that the type is "constant" (meaning
2441``pointsToConstantMemory`` should return true; see `other useful
2442AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2443
2444'``tbaa.struct``' Metadata
2445^^^^^^^^^^^^^^^^^^^^^^^^^^
2446
2447The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2448aggregate assignment operations in C and similar languages, however it
2449is defined to copy a contiguous region of memory, which is more than
2450strictly necessary for aggregate types which contain holes due to
2451padding. Also, it doesn't contain any TBAA information about the fields
2452of the aggregate.
2453
2454``!tbaa.struct`` metadata can describe which memory subregions in a
2455memcpy are padding and what the TBAA tags of the struct are.
2456
2457The current metadata format is very simple. ``!tbaa.struct`` metadata
2458nodes are a list of operands which are in conceptual groups of three.
2459For each group of three, the first operand gives the byte offset of a
2460field in bytes, the second gives its size in bytes, and the third gives
2461its tbaa tag. e.g.:
2462
2463.. code-block:: llvm
2464
2465 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2466
2467This describes a struct with two fields. The first is at offset 0 bytes
2468with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2469and has size 4 bytes and has tbaa tag !2.
2470
2471Note that the fields need not be contiguous. In this example, there is a
24724 byte gap between the two fields. This gap represents padding which
2473does not carry useful data and need not be preserved.
2474
2475'``fpmath``' Metadata
2476^^^^^^^^^^^^^^^^^^^^^
2477
2478``fpmath`` metadata may be attached to any instruction of floating point
2479type. It can be used to express the maximum acceptable error in the
2480result of that instruction, in ULPs, thus potentially allowing the
2481compiler to use a more efficient but less accurate method of computing
2482it. ULP is defined as follows:
2483
2484 If ``x`` is a real number that lies between two finite consecutive
2485 floating-point numbers ``a`` and ``b``, without being equal to one
2486 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2487 distance between the two non-equal finite floating-point numbers
2488 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2489
2490The metadata node shall consist of a single positive floating point
2491number representing the maximum relative error, for example:
2492
2493.. code-block:: llvm
2494
2495 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2496
2497'``range``' Metadata
2498^^^^^^^^^^^^^^^^^^^^
2499
2500``range`` metadata may be attached only to loads of integer types. It
2501expresses the possible ranges the loaded value is in. The ranges are
2502represented with a flattened list of integers. The loaded value is known
2503to be in the union of the ranges defined by each consecutive pair. Each
2504pair has the following properties:
2505
2506- The type must match the type loaded by the instruction.
2507- The pair ``a,b`` represents the range ``[a,b)``.
2508- Both ``a`` and ``b`` are constants.
2509- The range is allowed to wrap.
2510- The range should not represent the full or empty set. That is,
2511 ``a!=b``.
2512
2513In addition, the pairs must be in signed order of the lower bound and
2514they must be non-contiguous.
2515
2516Examples:
2517
2518.. code-block:: llvm
2519
2520 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2521 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2522 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2523 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2524 ...
2525 !0 = metadata !{ i8 0, i8 2 }
2526 !1 = metadata !{ i8 255, i8 2 }
2527 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2528 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2529
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002530'``llvm.loop``'
2531^^^^^^^^^^^^^^^
2532
2533It is sometimes useful to attach information to loop constructs. Currently,
2534loop metadata is implemented as metadata attached to the branch instruction
2535in the loop latch block. This type of metadata refer to a metadata node that is
2536guaranteed to be separate for each loop. The loop-level metadata is prefixed
2537with ``llvm.loop``.
2538
2539The loop identifier metadata is implemented using a metadata that refers to
2540itself as follows:
2541
2542.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002543
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002544 !0 = metadata !{ metadata !0 }
2545
2546'``llvm.loop.parallel``' Metadata
2547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2548
2549This loop metadata can be used to communicate that a loop should be considered
2550a parallel loop. The semantics of parallel loops in this case is the one
2551with the strongest cross-iteration instruction ordering freedom: the
2552iterations in the loop can be considered completely independent of each
2553other (also known as embarrassingly parallel loops).
2554
2555This metadata can originate from a programming language with parallel loop
2556constructs. In such a case it is completely the programmer's responsibility
2557to ensure the instructions from the different iterations of the loop can be
2558executed in an arbitrary order, in parallel, or intertwined. No loop-carried
2559dependency checking at all must be expected from the compiler.
2560
2561In order to fulfill the LLVM requirement for metadata to be safely ignored,
2562it is important to ensure that a parallel loop is converted to
2563a sequential loop in case an optimization (agnostic of the parallel loop
2564semantics) converts the loop back to such. This happens when new memory
2565accesses that do not fulfill the requirement of free ordering across iterations
2566are added to the loop. Therefore, this metadata is required, but not
2567sufficient, to consider the loop at hand a parallel loop. For a loop
2568to be parallel, all its memory accessing instructions need to be
2569marked with the ``llvm.mem.parallel_loop_access`` metadata that refer
2570to the same loop identifier metadata that identify the loop at hand.
2571
2572'``llvm.mem``'
2573^^^^^^^^^^^^^^^
2574
2575Metadata types used to annotate memory accesses with information helpful
2576for optimizations are prefixed with ``llvm.mem``.
2577
2578'``llvm.mem.parallel_loop_access``' Metadata
2579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2580
2581For a loop to be parallel, in addition to using
2582the ``llvm.loop.parallel`` metadata to mark the loop latch branch instruction,
2583also all of the memory accessing instructions in the loop body need to be
2584marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2585is at least one memory accessing instruction not marked with the metadata,
2586the loop, despite it possibly using the ``llvm.loop.parallel`` metadata,
2587must be considered a sequential loop. This causes parallel loops to be
2588converted to sequential loops due to optimization passes that are unaware of
2589the parallel semantics and that insert new memory instructions to the loop
2590body.
2591
2592Example of a loop that is considered parallel due to its correct use of
2593both ``llvm.loop.parallel`` and ``llvm.mem.parallel_loop_access``
2594metadata types that refer to the same loop identifier metadata.
2595
2596.. code-block:: llvm
2597
2598 for.body:
2599 ...
2600 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2601 ...
2602 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2603 ...
2604 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop.parallel !0
2605
2606 for.end:
2607 ...
2608 !0 = metadata !{ metadata !0 }
2609
2610It is also possible to have nested parallel loops. In that case the
2611memory accesses refer to a list of loop identifier metadata nodes instead of
2612the loop identifier metadata node directly:
2613
2614.. code-block:: llvm
2615
2616 outer.for.body:
2617 ...
2618
2619 inner.for.body:
2620 ...
2621 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2622 ...
2623 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2624 ...
2625 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop.parallel !1
2626
2627 inner.for.end:
2628 ...
2629 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2630 ...
2631 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2632 ...
2633 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop.parallel !2
2634
2635 outer.for.end: ; preds = %for.body
2636 ...
2637 !0 = metadata !{ metadata !1, metadata !2 } ; a list of parallel loop identifiers
2638 !1 = metadata !{ metadata !1 } ; an identifier for the inner parallel loop
2639 !2 = metadata !{ metadata !2 } ; an identifier for the outer parallel loop
2640
2641
Sean Silvaf722b002012-12-07 10:36:55 +00002642Module Flags Metadata
2643=====================
2644
2645Information about the module as a whole is difficult to convey to LLVM's
2646subsystems. The LLVM IR isn't sufficient to transmit this information.
2647The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002648this. These flags are in the form of key / value pairs --- much like a
2649dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002650look it up.
2651
2652The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2653Each triplet has the following form:
2654
2655- The first element is a *behavior* flag, which specifies the behavior
2656 when two (or more) modules are merged together, and it encounters two
2657 (or more) metadata with the same ID. The supported behaviors are
2658 described below.
2659- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002660 metadata. Each module may only have one flag entry for each unique ID (not
2661 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002662- The third element is the value of the flag.
2663
2664When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002665``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2666each unique metadata ID string, there will be exactly one entry in the merged
2667modules ``llvm.module.flags`` metadata table, and the value for that entry will
2668be determined by the merge behavior flag, as described below. The only exception
2669is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002670
2671The following behaviors are supported:
2672
2673.. list-table::
2674 :header-rows: 1
2675 :widths: 10 90
2676
2677 * - Value
2678 - Behavior
2679
2680 * - 1
2681 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002682 Emits an error if two values disagree, otherwise the resulting value
2683 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002684
2685 * - 2
2686 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002687 Emits a warning if two values disagree. The result value will be the
2688 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002689
2690 * - 3
2691 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002692 Adds a requirement that another module flag be present and have a
2693 specified value after linking is performed. The value must be a
2694 metadata pair, where the first element of the pair is the ID of the
2695 module flag to be restricted, and the second element of the pair is
2696 the value the module flag should be restricted to. This behavior can
2697 be used to restrict the allowable results (via triggering of an
2698 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002699
2700 * - 4
2701 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002702 Uses the specified value, regardless of the behavior or value of the
2703 other module. If both modules specify **Override**, but the values
2704 differ, an error will be emitted.
2705
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002706 * - 5
2707 - **Append**
2708 Appends the two values, which are required to be metadata nodes.
2709
2710 * - 6
2711 - **AppendUnique**
2712 Appends the two values, which are required to be metadata
2713 nodes. However, duplicate entries in the second list are dropped
2714 during the append operation.
2715
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002716It is an error for a particular unique flag ID to have multiple behaviors,
2717except in the case of **Require** (which adds restrictions on another metadata
2718value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002719
2720An example of module flags:
2721
2722.. code-block:: llvm
2723
2724 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2725 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2726 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2727 !3 = metadata !{ i32 3, metadata !"qux",
2728 metadata !{
2729 metadata !"foo", i32 1
2730 }
2731 }
2732 !llvm.module.flags = !{ !0, !1, !2, !3 }
2733
2734- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2735 if two or more ``!"foo"`` flags are seen is to emit an error if their
2736 values are not equal.
2737
2738- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2739 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002740 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002741
2742- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2743 behavior if two or more ``!"qux"`` flags are seen is to emit a
2744 warning if their values are not equal.
2745
2746- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2747
2748 ::
2749
2750 metadata !{ metadata !"foo", i32 1 }
2751
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002752 The behavior is to emit an error if the ``llvm.module.flags`` does not
2753 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2754 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002755
2756Objective-C Garbage Collection Module Flags Metadata
2757----------------------------------------------------
2758
2759On the Mach-O platform, Objective-C stores metadata about garbage
2760collection in a special section called "image info". The metadata
2761consists of a version number and a bitmask specifying what types of
2762garbage collection are supported (if any) by the file. If two or more
2763modules are linked together their garbage collection metadata needs to
2764be merged rather than appended together.
2765
2766The Objective-C garbage collection module flags metadata consists of the
2767following key-value pairs:
2768
2769.. list-table::
2770 :header-rows: 1
2771 :widths: 30 70
2772
2773 * - Key
2774 - Value
2775
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002776 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002777 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002778
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002779 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002780 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002781 always 0.
2782
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002783 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002784 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002785 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2786 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2787 Objective-C ABI version 2.
2788
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002789 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002790 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002791 not. Valid values are 0, for no garbage collection, and 2, for garbage
2792 collection supported.
2793
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002794 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002795 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002796 If present, its value must be 6. This flag requires that the
2797 ``Objective-C Garbage Collection`` flag have the value 2.
2798
2799Some important flag interactions:
2800
2801- If a module with ``Objective-C Garbage Collection`` set to 0 is
2802 merged with a module with ``Objective-C Garbage Collection`` set to
2803 2, then the resulting module has the
2804 ``Objective-C Garbage Collection`` flag set to 0.
2805- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2806 merged with a module with ``Objective-C GC Only`` set to 6.
2807
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002808Automatic Linker Flags Module Flags Metadata
2809--------------------------------------------
2810
2811Some targets support embedding flags to the linker inside individual object
2812files. Typically this is used in conjunction with language extensions which
2813allow source files to explicitly declare the libraries they depend on, and have
2814these automatically be transmitted to the linker via object files.
2815
2816These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002817using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002818to be ``AppendUnique``, and the value for the key is expected to be a metadata
2819node which should be a list of other metadata nodes, each of which should be a
2820list of metadata strings defining linker options.
2821
2822For example, the following metadata section specifies two separate sets of
2823linker options, presumably to link against ``libz`` and the ``Cocoa``
2824framework::
2825
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002826 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002827 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002828 metadata !{ metadata !"-lz" },
2829 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002830 !llvm.module.flags = !{ !0 }
2831
2832The metadata encoding as lists of lists of options, as opposed to a collapsed
2833list of options, is chosen so that the IR encoding can use multiple option
2834strings to specify e.g., a single library, while still having that specifier be
2835preserved as an atomic element that can be recognized by a target specific
2836assembly writer or object file emitter.
2837
2838Each individual option is required to be either a valid option for the target's
2839linker, or an option that is reserved by the target specific assembly writer or
2840object file emitter. No other aspect of these options is defined by the IR.
2841
Sean Silvaf722b002012-12-07 10:36:55 +00002842Intrinsic Global Variables
2843==========================
2844
2845LLVM has a number of "magic" global variables that contain data that
2846affect code generation or other IR semantics. These are documented here.
2847All globals of this sort should have a section specified as
2848"``llvm.metadata``". This section and all globals that start with
2849"``llvm.``" are reserved for use by LLVM.
2850
2851The '``llvm.used``' Global Variable
2852-----------------------------------
2853
2854The ``@llvm.used`` global is an array with i8\* element type which has
2855:ref:`appending linkage <linkage_appending>`. This array contains a list of
2856pointers to global variables and functions which may optionally have a
2857pointer cast formed of bitcast or getelementptr. For example, a legal
2858use of it is:
2859
2860.. code-block:: llvm
2861
2862 @X = global i8 4
2863 @Y = global i32 123
2864
2865 @llvm.used = appending global [2 x i8*] [
2866 i8* @X,
2867 i8* bitcast (i32* @Y to i8*)
2868 ], section "llvm.metadata"
2869
2870If a global variable appears in the ``@llvm.used`` list, then the
2871compiler, assembler, and linker are required to treat the symbol as if
2872there is a reference to the global that it cannot see. For example, if a
2873variable has internal linkage and no references other than that from the
2874``@llvm.used`` list, it cannot be deleted. This is commonly used to
2875represent references from inline asms and other things the compiler
2876cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2877
2878On some targets, the code generator must emit a directive to the
2879assembler or object file to prevent the assembler and linker from
2880molesting the symbol.
2881
2882The '``llvm.compiler.used``' Global Variable
2883--------------------------------------------
2884
2885The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2886directive, except that it only prevents the compiler from touching the
2887symbol. On targets that support it, this allows an intelligent linker to
2888optimize references to the symbol without being impeded as it would be
2889by ``@llvm.used``.
2890
2891This is a rare construct that should only be used in rare circumstances,
2892and should not be exposed to source languages.
2893
2894The '``llvm.global_ctors``' Global Variable
2895-------------------------------------------
2896
2897.. code-block:: llvm
2898
2899 %0 = type { i32, void ()* }
2900 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2901
2902The ``@llvm.global_ctors`` array contains a list of constructor
2903functions and associated priorities. The functions referenced by this
2904array will be called in ascending order of priority (i.e. lowest first)
2905when the module is loaded. The order of functions with the same priority
2906is not defined.
2907
2908The '``llvm.global_dtors``' Global Variable
2909-------------------------------------------
2910
2911.. code-block:: llvm
2912
2913 %0 = type { i32, void ()* }
2914 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2915
2916The ``@llvm.global_dtors`` array contains a list of destructor functions
2917and associated priorities. The functions referenced by this array will
2918be called in descending order of priority (i.e. highest first) when the
2919module is loaded. The order of functions with the same priority is not
2920defined.
2921
2922Instruction Reference
2923=====================
2924
2925The LLVM instruction set consists of several different classifications
2926of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2927instructions <binaryops>`, :ref:`bitwise binary
2928instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2929:ref:`other instructions <otherops>`.
2930
2931.. _terminators:
2932
2933Terminator Instructions
2934-----------------------
2935
2936As mentioned :ref:`previously <functionstructure>`, every basic block in a
2937program ends with a "Terminator" instruction, which indicates which
2938block should be executed after the current block is finished. These
2939terminator instructions typically yield a '``void``' value: they produce
2940control flow, not values (the one exception being the
2941':ref:`invoke <i_invoke>`' instruction).
2942
2943The terminator instructions are: ':ref:`ret <i_ret>`',
2944':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2945':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2946':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2947
2948.. _i_ret:
2949
2950'``ret``' Instruction
2951^^^^^^^^^^^^^^^^^^^^^
2952
2953Syntax:
2954"""""""
2955
2956::
2957
2958 ret <type> <value> ; Return a value from a non-void function
2959 ret void ; Return from void function
2960
2961Overview:
2962"""""""""
2963
2964The '``ret``' instruction is used to return control flow (and optionally
2965a value) from a function back to the caller.
2966
2967There are two forms of the '``ret``' instruction: one that returns a
2968value and then causes control flow, and one that just causes control
2969flow to occur.
2970
2971Arguments:
2972""""""""""
2973
2974The '``ret``' instruction optionally accepts a single argument, the
2975return value. The type of the return value must be a ':ref:`first
2976class <t_firstclass>`' type.
2977
2978A function is not :ref:`well formed <wellformed>` if it it has a non-void
2979return type and contains a '``ret``' instruction with no return value or
2980a return value with a type that does not match its type, or if it has a
2981void return type and contains a '``ret``' instruction with a return
2982value.
2983
2984Semantics:
2985""""""""""
2986
2987When the '``ret``' instruction is executed, control flow returns back to
2988the calling function's context. If the caller is a
2989":ref:`call <i_call>`" instruction, execution continues at the
2990instruction after the call. If the caller was an
2991":ref:`invoke <i_invoke>`" instruction, execution continues at the
2992beginning of the "normal" destination block. If the instruction returns
2993a value, that value shall set the call or invoke instruction's return
2994value.
2995
2996Example:
2997""""""""
2998
2999.. code-block:: llvm
3000
3001 ret i32 5 ; Return an integer value of 5
3002 ret void ; Return from a void function
3003 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3004
3005.. _i_br:
3006
3007'``br``' Instruction
3008^^^^^^^^^^^^^^^^^^^^
3009
3010Syntax:
3011"""""""
3012
3013::
3014
3015 br i1 <cond>, label <iftrue>, label <iffalse>
3016 br label <dest> ; Unconditional branch
3017
3018Overview:
3019"""""""""
3020
3021The '``br``' instruction is used to cause control flow to transfer to a
3022different basic block in the current function. There are two forms of
3023this instruction, corresponding to a conditional branch and an
3024unconditional branch.
3025
3026Arguments:
3027""""""""""
3028
3029The conditional branch form of the '``br``' instruction takes a single
3030'``i1``' value and two '``label``' values. The unconditional form of the
3031'``br``' instruction takes a single '``label``' value as a target.
3032
3033Semantics:
3034""""""""""
3035
3036Upon execution of a conditional '``br``' instruction, the '``i1``'
3037argument is evaluated. If the value is ``true``, control flows to the
3038'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3039to the '``iffalse``' ``label`` argument.
3040
3041Example:
3042""""""""
3043
3044.. code-block:: llvm
3045
3046 Test:
3047 %cond = icmp eq i32 %a, %b
3048 br i1 %cond, label %IfEqual, label %IfUnequal
3049 IfEqual:
3050 ret i32 1
3051 IfUnequal:
3052 ret i32 0
3053
3054.. _i_switch:
3055
3056'``switch``' Instruction
3057^^^^^^^^^^^^^^^^^^^^^^^^
3058
3059Syntax:
3060"""""""
3061
3062::
3063
3064 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3065
3066Overview:
3067"""""""""
3068
3069The '``switch``' instruction is used to transfer control flow to one of
3070several different places. It is a generalization of the '``br``'
3071instruction, allowing a branch to occur to one of many possible
3072destinations.
3073
3074Arguments:
3075""""""""""
3076
3077The '``switch``' instruction uses three parameters: an integer
3078comparison value '``value``', a default '``label``' destination, and an
3079array of pairs of comparison value constants and '``label``'s. The table
3080is not allowed to contain duplicate constant entries.
3081
3082Semantics:
3083""""""""""
3084
3085The ``switch`` instruction specifies a table of values and destinations.
3086When the '``switch``' instruction is executed, this table is searched
3087for the given value. If the value is found, control flow is transferred
3088to the corresponding destination; otherwise, control flow is transferred
3089to the default destination.
3090
3091Implementation:
3092"""""""""""""""
3093
3094Depending on properties of the target machine and the particular
3095``switch`` instruction, this instruction may be code generated in
3096different ways. For example, it could be generated as a series of
3097chained conditional branches or with a lookup table.
3098
3099Example:
3100""""""""
3101
3102.. code-block:: llvm
3103
3104 ; Emulate a conditional br instruction
3105 %Val = zext i1 %value to i32
3106 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3107
3108 ; Emulate an unconditional br instruction
3109 switch i32 0, label %dest [ ]
3110
3111 ; Implement a jump table:
3112 switch i32 %val, label %otherwise [ i32 0, label %onzero
3113 i32 1, label %onone
3114 i32 2, label %ontwo ]
3115
3116.. _i_indirectbr:
3117
3118'``indirectbr``' Instruction
3119^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3120
3121Syntax:
3122"""""""
3123
3124::
3125
3126 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3127
3128Overview:
3129"""""""""
3130
3131The '``indirectbr``' instruction implements an indirect branch to a
3132label within the current function, whose address is specified by
3133"``address``". Address must be derived from a
3134:ref:`blockaddress <blockaddress>` constant.
3135
3136Arguments:
3137""""""""""
3138
3139The '``address``' argument is the address of the label to jump to. The
3140rest of the arguments indicate the full set of possible destinations
3141that the address may point to. Blocks are allowed to occur multiple
3142times in the destination list, though this isn't particularly useful.
3143
3144This destination list is required so that dataflow analysis has an
3145accurate understanding of the CFG.
3146
3147Semantics:
3148""""""""""
3149
3150Control transfers to the block specified in the address argument. All
3151possible destination blocks must be listed in the label list, otherwise
3152this instruction has undefined behavior. This implies that jumps to
3153labels defined in other functions have undefined behavior as well.
3154
3155Implementation:
3156"""""""""""""""
3157
3158This is typically implemented with a jump through a register.
3159
3160Example:
3161""""""""
3162
3163.. code-block:: llvm
3164
3165 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3166
3167.. _i_invoke:
3168
3169'``invoke``' Instruction
3170^^^^^^^^^^^^^^^^^^^^^^^^
3171
3172Syntax:
3173"""""""
3174
3175::
3176
3177 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3178 to label <normal label> unwind label <exception label>
3179
3180Overview:
3181"""""""""
3182
3183The '``invoke``' instruction causes control to transfer to a specified
3184function, with the possibility of control flow transfer to either the
3185'``normal``' label or the '``exception``' label. If the callee function
3186returns with the "``ret``" instruction, control flow will return to the
3187"normal" label. If the callee (or any indirect callees) returns via the
3188":ref:`resume <i_resume>`" instruction or other exception handling
3189mechanism, control is interrupted and continued at the dynamically
3190nearest "exception" label.
3191
3192The '``exception``' label is a `landing
3193pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3194'``exception``' label is required to have the
3195":ref:`landingpad <i_landingpad>`" instruction, which contains the
3196information about the behavior of the program after unwinding happens,
3197as its first non-PHI instruction. The restrictions on the
3198"``landingpad``" instruction's tightly couples it to the "``invoke``"
3199instruction, so that the important information contained within the
3200"``landingpad``" instruction can't be lost through normal code motion.
3201
3202Arguments:
3203""""""""""
3204
3205This instruction requires several arguments:
3206
3207#. The optional "cconv" marker indicates which :ref:`calling
3208 convention <callingconv>` the call should use. If none is
3209 specified, the call defaults to using C calling conventions.
3210#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3211 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3212 are valid here.
3213#. '``ptr to function ty``': shall be the signature of the pointer to
3214 function value being invoked. In most cases, this is a direct
3215 function invocation, but indirect ``invoke``'s are just as possible,
3216 branching off an arbitrary pointer to function value.
3217#. '``function ptr val``': An LLVM value containing a pointer to a
3218 function to be invoked.
3219#. '``function args``': argument list whose types match the function
3220 signature argument types and parameter attributes. All arguments must
3221 be of :ref:`first class <t_firstclass>` type. If the function signature
3222 indicates the function accepts a variable number of arguments, the
3223 extra arguments can be specified.
3224#. '``normal label``': the label reached when the called function
3225 executes a '``ret``' instruction.
3226#. '``exception label``': the label reached when a callee returns via
3227 the :ref:`resume <i_resume>` instruction or other exception handling
3228 mechanism.
3229#. The optional :ref:`function attributes <fnattrs>` list. Only
3230 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3231 attributes are valid here.
3232
3233Semantics:
3234""""""""""
3235
3236This instruction is designed to operate as a standard '``call``'
3237instruction in most regards. The primary difference is that it
3238establishes an association with a label, which is used by the runtime
3239library to unwind the stack.
3240
3241This instruction is used in languages with destructors to ensure that
3242proper cleanup is performed in the case of either a ``longjmp`` or a
3243thrown exception. Additionally, this is important for implementation of
3244'``catch``' clauses in high-level languages that support them.
3245
3246For the purposes of the SSA form, the definition of the value returned
3247by the '``invoke``' instruction is deemed to occur on the edge from the
3248current block to the "normal" label. If the callee unwinds then no
3249return value is available.
3250
3251Example:
3252""""""""
3253
3254.. code-block:: llvm
3255
3256 %retval = invoke i32 @Test(i32 15) to label %Continue
3257 unwind label %TestCleanup ; {i32}:retval set
3258 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3259 unwind label %TestCleanup ; {i32}:retval set
3260
3261.. _i_resume:
3262
3263'``resume``' Instruction
3264^^^^^^^^^^^^^^^^^^^^^^^^
3265
3266Syntax:
3267"""""""
3268
3269::
3270
3271 resume <type> <value>
3272
3273Overview:
3274"""""""""
3275
3276The '``resume``' instruction is a terminator instruction that has no
3277successors.
3278
3279Arguments:
3280""""""""""
3281
3282The '``resume``' instruction requires one argument, which must have the
3283same type as the result of any '``landingpad``' instruction in the same
3284function.
3285
3286Semantics:
3287""""""""""
3288
3289The '``resume``' instruction resumes propagation of an existing
3290(in-flight) exception whose unwinding was interrupted with a
3291:ref:`landingpad <i_landingpad>` instruction.
3292
3293Example:
3294""""""""
3295
3296.. code-block:: llvm
3297
3298 resume { i8*, i32 } %exn
3299
3300.. _i_unreachable:
3301
3302'``unreachable``' Instruction
3303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3304
3305Syntax:
3306"""""""
3307
3308::
3309
3310 unreachable
3311
3312Overview:
3313"""""""""
3314
3315The '``unreachable``' instruction has no defined semantics. This
3316instruction is used to inform the optimizer that a particular portion of
3317the code is not reachable. This can be used to indicate that the code
3318after a no-return function cannot be reached, and other facts.
3319
3320Semantics:
3321""""""""""
3322
3323The '``unreachable``' instruction has no defined semantics.
3324
3325.. _binaryops:
3326
3327Binary Operations
3328-----------------
3329
3330Binary operators are used to do most of the computation in a program.
3331They require two operands of the same type, execute an operation on
3332them, and produce a single value. The operands might represent multiple
3333data, as is the case with the :ref:`vector <t_vector>` data type. The
3334result value has the same type as its operands.
3335
3336There are several different binary operators:
3337
3338.. _i_add:
3339
3340'``add``' Instruction
3341^^^^^^^^^^^^^^^^^^^^^
3342
3343Syntax:
3344"""""""
3345
3346::
3347
3348 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3349 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3350 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3351 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3352
3353Overview:
3354"""""""""
3355
3356The '``add``' instruction returns the sum of its two operands.
3357
3358Arguments:
3359""""""""""
3360
3361The two arguments to the '``add``' instruction must be
3362:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3363arguments must have identical types.
3364
3365Semantics:
3366""""""""""
3367
3368The value produced is the integer sum of the two operands.
3369
3370If the sum has unsigned overflow, the result returned is the
3371mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3372the result.
3373
3374Because LLVM integers use a two's complement representation, this
3375instruction is appropriate for both signed and unsigned integers.
3376
3377``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3378respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3379result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3380unsigned and/or signed overflow, respectively, occurs.
3381
3382Example:
3383""""""""
3384
3385.. code-block:: llvm
3386
3387 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3388
3389.. _i_fadd:
3390
3391'``fadd``' Instruction
3392^^^^^^^^^^^^^^^^^^^^^^
3393
3394Syntax:
3395"""""""
3396
3397::
3398
3399 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3400
3401Overview:
3402"""""""""
3403
3404The '``fadd``' instruction returns the sum of its two operands.
3405
3406Arguments:
3407""""""""""
3408
3409The two arguments to the '``fadd``' instruction must be :ref:`floating
3410point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3411Both arguments must have identical types.
3412
3413Semantics:
3414""""""""""
3415
3416The value produced is the floating point sum of the two operands. This
3417instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3418which are optimization hints to enable otherwise unsafe floating point
3419optimizations:
3420
3421Example:
3422""""""""
3423
3424.. code-block:: llvm
3425
3426 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3427
3428'``sub``' Instruction
3429^^^^^^^^^^^^^^^^^^^^^
3430
3431Syntax:
3432"""""""
3433
3434::
3435
3436 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3437 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3438 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3439 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3440
3441Overview:
3442"""""""""
3443
3444The '``sub``' instruction returns the difference of its two operands.
3445
3446Note that the '``sub``' instruction is used to represent the '``neg``'
3447instruction present in most other intermediate representations.
3448
3449Arguments:
3450""""""""""
3451
3452The two arguments to the '``sub``' instruction must be
3453:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3454arguments must have identical types.
3455
3456Semantics:
3457""""""""""
3458
3459The value produced is the integer difference of the two operands.
3460
3461If the difference has unsigned overflow, the result returned is the
3462mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3463the result.
3464
3465Because LLVM integers use a two's complement representation, this
3466instruction is appropriate for both signed and unsigned integers.
3467
3468``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3469respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3470result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3471unsigned and/or signed overflow, respectively, occurs.
3472
3473Example:
3474""""""""
3475
3476.. code-block:: llvm
3477
3478 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3479 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3480
3481.. _i_fsub:
3482
3483'``fsub``' Instruction
3484^^^^^^^^^^^^^^^^^^^^^^
3485
3486Syntax:
3487"""""""
3488
3489::
3490
3491 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3492
3493Overview:
3494"""""""""
3495
3496The '``fsub``' instruction returns the difference of its two operands.
3497
3498Note that the '``fsub``' instruction is used to represent the '``fneg``'
3499instruction present in most other intermediate representations.
3500
3501Arguments:
3502""""""""""
3503
3504The two arguments to the '``fsub``' instruction must be :ref:`floating
3505point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3506Both arguments must have identical types.
3507
3508Semantics:
3509""""""""""
3510
3511The value produced is the floating point difference of the two operands.
3512This instruction can also take any number of :ref:`fast-math
3513flags <fastmath>`, which are optimization hints to enable otherwise
3514unsafe floating point optimizations:
3515
3516Example:
3517""""""""
3518
3519.. code-block:: llvm
3520
3521 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3522 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3523
3524'``mul``' Instruction
3525^^^^^^^^^^^^^^^^^^^^^
3526
3527Syntax:
3528"""""""
3529
3530::
3531
3532 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3533 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3534 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3535 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3536
3537Overview:
3538"""""""""
3539
3540The '``mul``' instruction returns the product of its two operands.
3541
3542Arguments:
3543""""""""""
3544
3545The two arguments to the '``mul``' instruction must be
3546:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3547arguments must have identical types.
3548
3549Semantics:
3550""""""""""
3551
3552The value produced is the integer product of the two operands.
3553
3554If the result of the multiplication has unsigned overflow, the result
3555returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3556bit width of the result.
3557
3558Because LLVM integers use a two's complement representation, and the
3559result is the same width as the operands, this instruction returns the
3560correct result for both signed and unsigned integers. If a full product
3561(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3562sign-extended or zero-extended as appropriate to the width of the full
3563product.
3564
3565``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3566respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3567result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3568unsigned and/or signed overflow, respectively, occurs.
3569
3570Example:
3571""""""""
3572
3573.. code-block:: llvm
3574
3575 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3576
3577.. _i_fmul:
3578
3579'``fmul``' Instruction
3580^^^^^^^^^^^^^^^^^^^^^^
3581
3582Syntax:
3583"""""""
3584
3585::
3586
3587 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3588
3589Overview:
3590"""""""""
3591
3592The '``fmul``' instruction returns the product of its two operands.
3593
3594Arguments:
3595""""""""""
3596
3597The two arguments to the '``fmul``' instruction must be :ref:`floating
3598point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3599Both arguments must have identical types.
3600
3601Semantics:
3602""""""""""
3603
3604The value produced is the floating point product of the two operands.
3605This instruction can also take any number of :ref:`fast-math
3606flags <fastmath>`, which are optimization hints to enable otherwise
3607unsafe floating point optimizations:
3608
3609Example:
3610""""""""
3611
3612.. code-block:: llvm
3613
3614 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3615
3616'``udiv``' Instruction
3617^^^^^^^^^^^^^^^^^^^^^^
3618
3619Syntax:
3620"""""""
3621
3622::
3623
3624 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3625 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3626
3627Overview:
3628"""""""""
3629
3630The '``udiv``' instruction returns the quotient of its two operands.
3631
3632Arguments:
3633""""""""""
3634
3635The two arguments to the '``udiv``' instruction must be
3636:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3637arguments must have identical types.
3638
3639Semantics:
3640""""""""""
3641
3642The value produced is the unsigned integer quotient of the two operands.
3643
3644Note that unsigned integer division and signed integer division are
3645distinct operations; for signed integer division, use '``sdiv``'.
3646
3647Division by zero leads to undefined behavior.
3648
3649If the ``exact`` keyword is present, the result value of the ``udiv`` is
3650a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3651such, "((a udiv exact b) mul b) == a").
3652
3653Example:
3654""""""""
3655
3656.. code-block:: llvm
3657
3658 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3659
3660'``sdiv``' Instruction
3661^^^^^^^^^^^^^^^^^^^^^^
3662
3663Syntax:
3664"""""""
3665
3666::
3667
3668 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3669 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3670
3671Overview:
3672"""""""""
3673
3674The '``sdiv``' instruction returns the quotient of its two operands.
3675
3676Arguments:
3677""""""""""
3678
3679The two arguments to the '``sdiv``' instruction must be
3680:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3681arguments must have identical types.
3682
3683Semantics:
3684""""""""""
3685
3686The value produced is the signed integer quotient of the two operands
3687rounded towards zero.
3688
3689Note that signed integer division and unsigned integer division are
3690distinct operations; for unsigned integer division, use '``udiv``'.
3691
3692Division by zero leads to undefined behavior. Overflow also leads to
3693undefined behavior; this is a rare case, but can occur, for example, by
3694doing a 32-bit division of -2147483648 by -1.
3695
3696If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3697a :ref:`poison value <poisonvalues>` if the result would be rounded.
3698
3699Example:
3700""""""""
3701
3702.. code-block:: llvm
3703
3704 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3705
3706.. _i_fdiv:
3707
3708'``fdiv``' Instruction
3709^^^^^^^^^^^^^^^^^^^^^^
3710
3711Syntax:
3712"""""""
3713
3714::
3715
3716 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3717
3718Overview:
3719"""""""""
3720
3721The '``fdiv``' instruction returns the quotient of its two operands.
3722
3723Arguments:
3724""""""""""
3725
3726The two arguments to the '``fdiv``' instruction must be :ref:`floating
3727point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3728Both arguments must have identical types.
3729
3730Semantics:
3731""""""""""
3732
3733The value produced is the floating point quotient of the two operands.
3734This instruction can also take any number of :ref:`fast-math
3735flags <fastmath>`, which are optimization hints to enable otherwise
3736unsafe floating point optimizations:
3737
3738Example:
3739""""""""
3740
3741.. code-block:: llvm
3742
3743 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3744
3745'``urem``' Instruction
3746^^^^^^^^^^^^^^^^^^^^^^
3747
3748Syntax:
3749"""""""
3750
3751::
3752
3753 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3754
3755Overview:
3756"""""""""
3757
3758The '``urem``' instruction returns the remainder from the unsigned
3759division of its two arguments.
3760
3761Arguments:
3762""""""""""
3763
3764The two arguments to the '``urem``' instruction must be
3765:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3766arguments must have identical types.
3767
3768Semantics:
3769""""""""""
3770
3771This instruction returns the unsigned integer *remainder* of a division.
3772This instruction always performs an unsigned division to get the
3773remainder.
3774
3775Note that unsigned integer remainder and signed integer remainder are
3776distinct operations; for signed integer remainder, use '``srem``'.
3777
3778Taking the remainder of a division by zero leads to undefined behavior.
3779
3780Example:
3781""""""""
3782
3783.. code-block:: llvm
3784
3785 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3786
3787'``srem``' Instruction
3788^^^^^^^^^^^^^^^^^^^^^^
3789
3790Syntax:
3791"""""""
3792
3793::
3794
3795 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3796
3797Overview:
3798"""""""""
3799
3800The '``srem``' instruction returns the remainder from the signed
3801division of its two operands. This instruction can also take
3802:ref:`vector <t_vector>` versions of the values in which case the elements
3803must be integers.
3804
3805Arguments:
3806""""""""""
3807
3808The two arguments to the '``srem``' instruction must be
3809:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3810arguments must have identical types.
3811
3812Semantics:
3813""""""""""
3814
3815This instruction returns the *remainder* of a division (where the result
3816is either zero or has the same sign as the dividend, ``op1``), not the
3817*modulo* operator (where the result is either zero or has the same sign
3818as the divisor, ``op2``) of a value. For more information about the
3819difference, see `The Math
3820Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3821table of how this is implemented in various languages, please see
3822`Wikipedia: modulo
3823operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3824
3825Note that signed integer remainder and unsigned integer remainder are
3826distinct operations; for unsigned integer remainder, use '``urem``'.
3827
3828Taking the remainder of a division by zero leads to undefined behavior.
3829Overflow also leads to undefined behavior; this is a rare case, but can
3830occur, for example, by taking the remainder of a 32-bit division of
3831-2147483648 by -1. (The remainder doesn't actually overflow, but this
3832rule lets srem be implemented using instructions that return both the
3833result of the division and the remainder.)
3834
3835Example:
3836""""""""
3837
3838.. code-block:: llvm
3839
3840 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3841
3842.. _i_frem:
3843
3844'``frem``' Instruction
3845^^^^^^^^^^^^^^^^^^^^^^
3846
3847Syntax:
3848"""""""
3849
3850::
3851
3852 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3853
3854Overview:
3855"""""""""
3856
3857The '``frem``' instruction returns the remainder from the division of
3858its two operands.
3859
3860Arguments:
3861""""""""""
3862
3863The two arguments to the '``frem``' instruction must be :ref:`floating
3864point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3865Both arguments must have identical types.
3866
3867Semantics:
3868""""""""""
3869
3870This instruction returns the *remainder* of a division. The remainder
3871has the same sign as the dividend. This instruction can also take any
3872number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3873to enable otherwise unsafe floating point optimizations:
3874
3875Example:
3876""""""""
3877
3878.. code-block:: llvm
3879
3880 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3881
3882.. _bitwiseops:
3883
3884Bitwise Binary Operations
3885-------------------------
3886
3887Bitwise binary operators are used to do various forms of bit-twiddling
3888in a program. They are generally very efficient instructions and can
3889commonly be strength reduced from other instructions. They require two
3890operands of the same type, execute an operation on them, and produce a
3891single value. The resulting value is the same type as its operands.
3892
3893'``shl``' Instruction
3894^^^^^^^^^^^^^^^^^^^^^
3895
3896Syntax:
3897"""""""
3898
3899::
3900
3901 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3902 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3903 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3904 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3905
3906Overview:
3907"""""""""
3908
3909The '``shl``' instruction returns the first operand shifted to the left
3910a specified number of bits.
3911
3912Arguments:
3913""""""""""
3914
3915Both arguments to the '``shl``' instruction must be the same
3916:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3917'``op2``' is treated as an unsigned value.
3918
3919Semantics:
3920""""""""""
3921
3922The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3923where ``n`` is the width of the result. If ``op2`` is (statically or
3924dynamically) negative or equal to or larger than the number of bits in
3925``op1``, the result is undefined. If the arguments are vectors, each
3926vector element of ``op1`` is shifted by the corresponding shift amount
3927in ``op2``.
3928
3929If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3930value <poisonvalues>` if it shifts out any non-zero bits. If the
3931``nsw`` keyword is present, then the shift produces a :ref:`poison
3932value <poisonvalues>` if it shifts out any bits that disagree with the
3933resultant sign bit. As such, NUW/NSW have the same semantics as they
3934would if the shift were expressed as a mul instruction with the same
3935nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3936
3937Example:
3938""""""""
3939
3940.. code-block:: llvm
3941
3942 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3943 <result> = shl i32 4, 2 ; yields {i32}: 16
3944 <result> = shl i32 1, 10 ; yields {i32}: 1024
3945 <result> = shl i32 1, 32 ; undefined
3946 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3947
3948'``lshr``' Instruction
3949^^^^^^^^^^^^^^^^^^^^^^
3950
3951Syntax:
3952"""""""
3953
3954::
3955
3956 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3957 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3958
3959Overview:
3960"""""""""
3961
3962The '``lshr``' instruction (logical shift right) returns the first
3963operand shifted to the right a specified number of bits with zero fill.
3964
3965Arguments:
3966""""""""""
3967
3968Both arguments to the '``lshr``' instruction must be the same
3969:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3970'``op2``' is treated as an unsigned value.
3971
3972Semantics:
3973""""""""""
3974
3975This instruction always performs a logical shift right operation. The
3976most significant bits of the result will be filled with zero bits after
3977the shift. If ``op2`` is (statically or dynamically) equal to or larger
3978than the number of bits in ``op1``, the result is undefined. If the
3979arguments are vectors, each vector element of ``op1`` is shifted by the
3980corresponding shift amount in ``op2``.
3981
3982If the ``exact`` keyword is present, the result value of the ``lshr`` is
3983a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3984non-zero.
3985
3986Example:
3987""""""""
3988
3989.. code-block:: llvm
3990
3991 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3992 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3993 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3994 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3995 <result> = lshr i32 1, 32 ; undefined
3996 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3997
3998'``ashr``' Instruction
3999^^^^^^^^^^^^^^^^^^^^^^
4000
4001Syntax:
4002"""""""
4003
4004::
4005
4006 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4007 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4008
4009Overview:
4010"""""""""
4011
4012The '``ashr``' instruction (arithmetic shift right) returns the first
4013operand shifted to the right a specified number of bits with sign
4014extension.
4015
4016Arguments:
4017""""""""""
4018
4019Both arguments to the '``ashr``' instruction must be the same
4020:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4021'``op2``' is treated as an unsigned value.
4022
4023Semantics:
4024""""""""""
4025
4026This instruction always performs an arithmetic shift right operation,
4027The most significant bits of the result will be filled with the sign bit
4028of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4029than the number of bits in ``op1``, the result is undefined. If the
4030arguments are vectors, each vector element of ``op1`` is shifted by the
4031corresponding shift amount in ``op2``.
4032
4033If the ``exact`` keyword is present, the result value of the ``ashr`` is
4034a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4035non-zero.
4036
4037Example:
4038""""""""
4039
4040.. code-block:: llvm
4041
4042 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4043 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4044 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4045 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4046 <result> = ashr i32 1, 32 ; undefined
4047 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4048
4049'``and``' Instruction
4050^^^^^^^^^^^^^^^^^^^^^
4051
4052Syntax:
4053"""""""
4054
4055::
4056
4057 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4058
4059Overview:
4060"""""""""
4061
4062The '``and``' instruction returns the bitwise logical and of its two
4063operands.
4064
4065Arguments:
4066""""""""""
4067
4068The two arguments to the '``and``' instruction must be
4069:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4070arguments must have identical types.
4071
4072Semantics:
4073""""""""""
4074
4075The truth table used for the '``and``' instruction is:
4076
4077+-----+-----+-----+
4078| In0 | In1 | Out |
4079+-----+-----+-----+
4080| 0 | 0 | 0 |
4081+-----+-----+-----+
4082| 0 | 1 | 0 |
4083+-----+-----+-----+
4084| 1 | 0 | 0 |
4085+-----+-----+-----+
4086| 1 | 1 | 1 |
4087+-----+-----+-----+
4088
4089Example:
4090""""""""
4091
4092.. code-block:: llvm
4093
4094 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4095 <result> = and i32 15, 40 ; yields {i32}:result = 8
4096 <result> = and i32 4, 8 ; yields {i32}:result = 0
4097
4098'``or``' Instruction
4099^^^^^^^^^^^^^^^^^^^^
4100
4101Syntax:
4102"""""""
4103
4104::
4105
4106 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4107
4108Overview:
4109"""""""""
4110
4111The '``or``' instruction returns the bitwise logical inclusive or of its
4112two operands.
4113
4114Arguments:
4115""""""""""
4116
4117The two arguments to the '``or``' instruction must be
4118:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4119arguments must have identical types.
4120
4121Semantics:
4122""""""""""
4123
4124The truth table used for the '``or``' instruction is:
4125
4126+-----+-----+-----+
4127| In0 | In1 | Out |
4128+-----+-----+-----+
4129| 0 | 0 | 0 |
4130+-----+-----+-----+
4131| 0 | 1 | 1 |
4132+-----+-----+-----+
4133| 1 | 0 | 1 |
4134+-----+-----+-----+
4135| 1 | 1 | 1 |
4136+-----+-----+-----+
4137
4138Example:
4139""""""""
4140
4141::
4142
4143 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4144 <result> = or i32 15, 40 ; yields {i32}:result = 47
4145 <result> = or i32 4, 8 ; yields {i32}:result = 12
4146
4147'``xor``' Instruction
4148^^^^^^^^^^^^^^^^^^^^^
4149
4150Syntax:
4151"""""""
4152
4153::
4154
4155 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4156
4157Overview:
4158"""""""""
4159
4160The '``xor``' instruction returns the bitwise logical exclusive or of
4161its two operands. The ``xor`` is used to implement the "one's
4162complement" operation, which is the "~" operator in C.
4163
4164Arguments:
4165""""""""""
4166
4167The two arguments to the '``xor``' instruction must be
4168:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4169arguments must have identical types.
4170
4171Semantics:
4172""""""""""
4173
4174The truth table used for the '``xor``' instruction is:
4175
4176+-----+-----+-----+
4177| In0 | In1 | Out |
4178+-----+-----+-----+
4179| 0 | 0 | 0 |
4180+-----+-----+-----+
4181| 0 | 1 | 1 |
4182+-----+-----+-----+
4183| 1 | 0 | 1 |
4184+-----+-----+-----+
4185| 1 | 1 | 0 |
4186+-----+-----+-----+
4187
4188Example:
4189""""""""
4190
4191.. code-block:: llvm
4192
4193 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4194 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4195 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4196 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4197
4198Vector Operations
4199-----------------
4200
4201LLVM supports several instructions to represent vector operations in a
4202target-independent manner. These instructions cover the element-access
4203and vector-specific operations needed to process vectors effectively.
4204While LLVM does directly support these vector operations, many
4205sophisticated algorithms will want to use target-specific intrinsics to
4206take full advantage of a specific target.
4207
4208.. _i_extractelement:
4209
4210'``extractelement``' Instruction
4211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4212
4213Syntax:
4214"""""""
4215
4216::
4217
4218 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4219
4220Overview:
4221"""""""""
4222
4223The '``extractelement``' instruction extracts a single scalar element
4224from a vector at a specified index.
4225
4226Arguments:
4227""""""""""
4228
4229The first operand of an '``extractelement``' instruction is a value of
4230:ref:`vector <t_vector>` type. The second operand is an index indicating
4231the position from which to extract the element. The index may be a
4232variable.
4233
4234Semantics:
4235""""""""""
4236
4237The result is a scalar of the same type as the element type of ``val``.
4238Its value is the value at position ``idx`` of ``val``. If ``idx``
4239exceeds the length of ``val``, the results are undefined.
4240
4241Example:
4242""""""""
4243
4244.. code-block:: llvm
4245
4246 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4247
4248.. _i_insertelement:
4249
4250'``insertelement``' Instruction
4251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4252
4253Syntax:
4254"""""""
4255
4256::
4257
4258 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4259
4260Overview:
4261"""""""""
4262
4263The '``insertelement``' instruction inserts a scalar element into a
4264vector at a specified index.
4265
4266Arguments:
4267""""""""""
4268
4269The first operand of an '``insertelement``' instruction is a value of
4270:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4271type must equal the element type of the first operand. The third operand
4272is an index indicating the position at which to insert the value. The
4273index may be a variable.
4274
4275Semantics:
4276""""""""""
4277
4278The result is a vector of the same type as ``val``. Its element values
4279are those of ``val`` except at position ``idx``, where it gets the value
4280``elt``. If ``idx`` exceeds the length of ``val``, the results are
4281undefined.
4282
4283Example:
4284""""""""
4285
4286.. code-block:: llvm
4287
4288 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4289
4290.. _i_shufflevector:
4291
4292'``shufflevector``' Instruction
4293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4294
4295Syntax:
4296"""""""
4297
4298::
4299
4300 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4301
4302Overview:
4303"""""""""
4304
4305The '``shufflevector``' instruction constructs a permutation of elements
4306from two input vectors, returning a vector with the same element type as
4307the input and length that is the same as the shuffle mask.
4308
4309Arguments:
4310""""""""""
4311
4312The first two operands of a '``shufflevector``' instruction are vectors
4313with the same type. The third argument is a shuffle mask whose element
4314type is always 'i32'. The result of the instruction is a vector whose
4315length is the same as the shuffle mask and whose element type is the
4316same as the element type of the first two operands.
4317
4318The shuffle mask operand is required to be a constant vector with either
4319constant integer or undef values.
4320
4321Semantics:
4322""""""""""
4323
4324The elements of the two input vectors are numbered from left to right
4325across both of the vectors. The shuffle mask operand specifies, for each
4326element of the result vector, which element of the two input vectors the
4327result element gets. The element selector may be undef (meaning "don't
4328care") and the second operand may be undef if performing a shuffle from
4329only one vector.
4330
4331Example:
4332""""""""
4333
4334.. code-block:: llvm
4335
4336 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4337 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4338 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4339 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4340 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4341 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4342 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4343 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4344
4345Aggregate Operations
4346--------------------
4347
4348LLVM supports several instructions for working with
4349:ref:`aggregate <t_aggregate>` values.
4350
4351.. _i_extractvalue:
4352
4353'``extractvalue``' Instruction
4354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4355
4356Syntax:
4357"""""""
4358
4359::
4360
4361 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4362
4363Overview:
4364"""""""""
4365
4366The '``extractvalue``' instruction extracts the value of a member field
4367from an :ref:`aggregate <t_aggregate>` value.
4368
4369Arguments:
4370""""""""""
4371
4372The first operand of an '``extractvalue``' instruction is a value of
4373:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4374constant indices to specify which value to extract in a similar manner
4375as indices in a '``getelementptr``' instruction.
4376
4377The major differences to ``getelementptr`` indexing are:
4378
4379- Since the value being indexed is not a pointer, the first index is
4380 omitted and assumed to be zero.
4381- At least one index must be specified.
4382- Not only struct indices but also array indices must be in bounds.
4383
4384Semantics:
4385""""""""""
4386
4387The result is the value at the position in the aggregate specified by
4388the index operands.
4389
4390Example:
4391""""""""
4392
4393.. code-block:: llvm
4394
4395 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4396
4397.. _i_insertvalue:
4398
4399'``insertvalue``' Instruction
4400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4401
4402Syntax:
4403"""""""
4404
4405::
4406
4407 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4408
4409Overview:
4410"""""""""
4411
4412The '``insertvalue``' instruction inserts a value into a member field in
4413an :ref:`aggregate <t_aggregate>` value.
4414
4415Arguments:
4416""""""""""
4417
4418The first operand of an '``insertvalue``' instruction is a value of
4419:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4420a first-class value to insert. The following operands are constant
4421indices indicating the position at which to insert the value in a
4422similar manner as indices in a '``extractvalue``' instruction. The value
4423to insert must have the same type as the value identified by the
4424indices.
4425
4426Semantics:
4427""""""""""
4428
4429The result is an aggregate of the same type as ``val``. Its value is
4430that of ``val`` except that the value at the position specified by the
4431indices is that of ``elt``.
4432
4433Example:
4434""""""""
4435
4436.. code-block:: llvm
4437
4438 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4439 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4440 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4441
4442.. _memoryops:
4443
4444Memory Access and Addressing Operations
4445---------------------------------------
4446
4447A key design point of an SSA-based representation is how it represents
4448memory. In LLVM, no memory locations are in SSA form, which makes things
4449very simple. This section describes how to read, write, and allocate
4450memory in LLVM.
4451
4452.. _i_alloca:
4453
4454'``alloca``' Instruction
4455^^^^^^^^^^^^^^^^^^^^^^^^
4456
4457Syntax:
4458"""""""
4459
4460::
4461
4462 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4463
4464Overview:
4465"""""""""
4466
4467The '``alloca``' instruction allocates memory on the stack frame of the
4468currently executing function, to be automatically released when this
4469function returns to its caller. The object is always allocated in the
4470generic address space (address space zero).
4471
4472Arguments:
4473""""""""""
4474
4475The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4476bytes of memory on the runtime stack, returning a pointer of the
4477appropriate type to the program. If "NumElements" is specified, it is
4478the number of elements allocated, otherwise "NumElements" is defaulted
4479to be one. If a constant alignment is specified, the value result of the
4480allocation is guaranteed to be aligned to at least that boundary. If not
4481specified, or if zero, the target can choose to align the allocation on
4482any convenient boundary compatible with the type.
4483
4484'``type``' may be any sized type.
4485
4486Semantics:
4487""""""""""
4488
4489Memory is allocated; a pointer is returned. The operation is undefined
4490if there is insufficient stack space for the allocation. '``alloca``'d
4491memory is automatically released when the function returns. The
4492'``alloca``' instruction is commonly used to represent automatic
4493variables that must have an address available. When the function returns
4494(either with the ``ret`` or ``resume`` instructions), the memory is
4495reclaimed. Allocating zero bytes is legal, but the result is undefined.
4496The order in which memory is allocated (ie., which way the stack grows)
4497is not specified.
4498
4499Example:
4500""""""""
4501
4502.. code-block:: llvm
4503
4504 %ptr = alloca i32 ; yields {i32*}:ptr
4505 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4506 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4507 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4508
4509.. _i_load:
4510
4511'``load``' Instruction
4512^^^^^^^^^^^^^^^^^^^^^^
4513
4514Syntax:
4515"""""""
4516
4517::
4518
4519 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4520 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4521 !<index> = !{ i32 1 }
4522
4523Overview:
4524"""""""""
4525
4526The '``load``' instruction is used to read from memory.
4527
4528Arguments:
4529""""""""""
4530
4531The argument to the '``load``' instruction specifies the memory address
4532from which to load. The pointer must point to a :ref:`first
4533class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4534then the optimizer is not allowed to modify the number or order of
4535execution of this ``load`` with other :ref:`volatile
4536operations <volatile>`.
4537
4538If the ``load`` is marked as ``atomic``, it takes an extra
4539:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4540``release`` and ``acq_rel`` orderings are not valid on ``load``
4541instructions. Atomic loads produce :ref:`defined <memmodel>` results
4542when they may see multiple atomic stores. The type of the pointee must
4543be an integer type whose bit width is a power of two greater than or
4544equal to eight and less than or equal to a target-specific size limit.
4545``align`` must be explicitly specified on atomic loads, and the load has
4546undefined behavior if the alignment is not set to a value which is at
4547least the size in bytes of the pointee. ``!nontemporal`` does not have
4548any defined semantics for atomic loads.
4549
4550The optional constant ``align`` argument specifies the alignment of the
4551operation (that is, the alignment of the memory address). A value of 0
4552or an omitted ``align`` argument means that the operation has the abi
4553alignment for the target. It is the responsibility of the code emitter
4554to ensure that the alignment information is correct. Overestimating the
4555alignment results in undefined behavior. Underestimating the alignment
4556may produce less efficient code. An alignment of 1 is always safe.
4557
4558The optional ``!nontemporal`` metadata must reference a single
4559metatadata name <index> corresponding to a metadata node with one
4560``i32`` entry of value 1. The existence of the ``!nontemporal``
4561metatadata on the instruction tells the optimizer and code generator
4562that this load is not expected to be reused in the cache. The code
4563generator may select special instructions to save cache bandwidth, such
4564as the ``MOVNT`` instruction on x86.
4565
4566The optional ``!invariant.load`` metadata must reference a single
4567metatadata name <index> corresponding to a metadata node with no
4568entries. The existence of the ``!invariant.load`` metatadata on the
4569instruction tells the optimizer and code generator that this load
4570address points to memory which does not change value during program
4571execution. The optimizer may then move this load around, for example, by
4572hoisting it out of loops using loop invariant code motion.
4573
4574Semantics:
4575""""""""""
4576
4577The location of memory pointed to is loaded. If the value being loaded
4578is of scalar type then the number of bytes read does not exceed the
4579minimum number of bytes needed to hold all bits of the type. For
4580example, loading an ``i24`` reads at most three bytes. When loading a
4581value of a type like ``i20`` with a size that is not an integral number
4582of bytes, the result is undefined if the value was not originally
4583written using a store of the same type.
4584
4585Examples:
4586"""""""""
4587
4588.. code-block:: llvm
4589
4590 %ptr = alloca i32 ; yields {i32*}:ptr
4591 store i32 3, i32* %ptr ; yields {void}
4592 %val = load i32* %ptr ; yields {i32}:val = i32 3
4593
4594.. _i_store:
4595
4596'``store``' Instruction
4597^^^^^^^^^^^^^^^^^^^^^^^
4598
4599Syntax:
4600"""""""
4601
4602::
4603
4604 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4605 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4606
4607Overview:
4608"""""""""
4609
4610The '``store``' instruction is used to write to memory.
4611
4612Arguments:
4613""""""""""
4614
4615There are two arguments to the '``store``' instruction: a value to store
4616and an address at which to store it. The type of the '``<pointer>``'
4617operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4618the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4619then the optimizer is not allowed to modify the number or order of
4620execution of this ``store`` with other :ref:`volatile
4621operations <volatile>`.
4622
4623If the ``store`` is marked as ``atomic``, it takes an extra
4624:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4625``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4626instructions. Atomic loads produce :ref:`defined <memmodel>` results
4627when they may see multiple atomic stores. The type of the pointee must
4628be an integer type whose bit width is a power of two greater than or
4629equal to eight and less than or equal to a target-specific size limit.
4630``align`` must be explicitly specified on atomic stores, and the store
4631has undefined behavior if the alignment is not set to a value which is
4632at least the size in bytes of the pointee. ``!nontemporal`` does not
4633have any defined semantics for atomic stores.
4634
4635The optional constant "align" argument specifies the alignment of the
4636operation (that is, the alignment of the memory address). A value of 0
4637or an omitted "align" argument means that the operation has the abi
4638alignment for the target. It is the responsibility of the code emitter
4639to ensure that the alignment information is correct. Overestimating the
4640alignment results in an undefined behavior. Underestimating the
4641alignment may produce less efficient code. An alignment of 1 is always
4642safe.
4643
4644The optional !nontemporal metadata must reference a single metatadata
4645name <index> corresponding to a metadata node with one i32 entry of
4646value 1. The existence of the !nontemporal metatadata on the instruction
4647tells the optimizer and code generator that this load is not expected to
4648be reused in the cache. The code generator may select special
4649instructions to save cache bandwidth, such as the MOVNT instruction on
4650x86.
4651
4652Semantics:
4653""""""""""
4654
4655The contents of memory are updated to contain '``<value>``' at the
4656location specified by the '``<pointer>``' operand. If '``<value>``' is
4657of scalar type then the number of bytes written does not exceed the
4658minimum number of bytes needed to hold all bits of the type. For
4659example, storing an ``i24`` writes at most three bytes. When writing a
4660value of a type like ``i20`` with a size that is not an integral number
4661of bytes, it is unspecified what happens to the extra bits that do not
4662belong to the type, but they will typically be overwritten.
4663
4664Example:
4665""""""""
4666
4667.. code-block:: llvm
4668
4669 %ptr = alloca i32 ; yields {i32*}:ptr
4670 store i32 3, i32* %ptr ; yields {void}
4671 %val = load i32* %ptr ; yields {i32}:val = i32 3
4672
4673.. _i_fence:
4674
4675'``fence``' Instruction
4676^^^^^^^^^^^^^^^^^^^^^^^
4677
4678Syntax:
4679"""""""
4680
4681::
4682
4683 fence [singlethread] <ordering> ; yields {void}
4684
4685Overview:
4686"""""""""
4687
4688The '``fence``' instruction is used to introduce happens-before edges
4689between operations.
4690
4691Arguments:
4692""""""""""
4693
4694'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4695defines what *synchronizes-with* edges they add. They can only be given
4696``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4697
4698Semantics:
4699""""""""""
4700
4701A fence A which has (at least) ``release`` ordering semantics
4702*synchronizes with* a fence B with (at least) ``acquire`` ordering
4703semantics if and only if there exist atomic operations X and Y, both
4704operating on some atomic object M, such that A is sequenced before X, X
4705modifies M (either directly or through some side effect of a sequence
4706headed by X), Y is sequenced before B, and Y observes M. This provides a
4707*happens-before* dependency between A and B. Rather than an explicit
4708``fence``, one (but not both) of the atomic operations X or Y might
4709provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4710still *synchronize-with* the explicit ``fence`` and establish the
4711*happens-before* edge.
4712
4713A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4714``acquire`` and ``release`` semantics specified above, participates in
4715the global program order of other ``seq_cst`` operations and/or fences.
4716
4717The optional ":ref:`singlethread <singlethread>`" argument specifies
4718that the fence only synchronizes with other fences in the same thread.
4719(This is useful for interacting with signal handlers.)
4720
4721Example:
4722""""""""
4723
4724.. code-block:: llvm
4725
4726 fence acquire ; yields {void}
4727 fence singlethread seq_cst ; yields {void}
4728
4729.. _i_cmpxchg:
4730
4731'``cmpxchg``' Instruction
4732^^^^^^^^^^^^^^^^^^^^^^^^^
4733
4734Syntax:
4735"""""""
4736
4737::
4738
4739 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4740
4741Overview:
4742"""""""""
4743
4744The '``cmpxchg``' instruction is used to atomically modify memory. It
4745loads a value in memory and compares it to a given value. If they are
4746equal, it stores a new value into the memory.
4747
4748Arguments:
4749""""""""""
4750
4751There are three arguments to the '``cmpxchg``' instruction: an address
4752to operate on, a value to compare to the value currently be at that
4753address, and a new value to place at that address if the compared values
4754are equal. The type of '<cmp>' must be an integer type whose bit width
4755is a power of two greater than or equal to eight and less than or equal
4756to a target-specific size limit. '<cmp>' and '<new>' must have the same
4757type, and the type of '<pointer>' must be a pointer to that type. If the
4758``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4759to modify the number or order of execution of this ``cmpxchg`` with
4760other :ref:`volatile operations <volatile>`.
4761
4762The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4763synchronizes with other atomic operations.
4764
4765The optional "``singlethread``" argument declares that the ``cmpxchg``
4766is only atomic with respect to code (usually signal handlers) running in
4767the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4768respect to all other code in the system.
4769
4770The pointer passed into cmpxchg must have alignment greater than or
4771equal to the size in memory of the operand.
4772
4773Semantics:
4774""""""""""
4775
4776The contents of memory at the location specified by the '``<pointer>``'
4777operand is read and compared to '``<cmp>``'; if the read value is the
4778equal, '``<new>``' is written. The original value at the location is
4779returned.
4780
4781A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4782of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4783atomic load with an ordering parameter determined by dropping any
4784``release`` part of the ``cmpxchg``'s ordering.
4785
4786Example:
4787""""""""
4788
4789.. code-block:: llvm
4790
4791 entry:
4792 %orig = atomic load i32* %ptr unordered ; yields {i32}
4793 br label %loop
4794
4795 loop:
4796 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4797 %squared = mul i32 %cmp, %cmp
4798 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4799 %success = icmp eq i32 %cmp, %old
4800 br i1 %success, label %done, label %loop
4801
4802 done:
4803 ...
4804
4805.. _i_atomicrmw:
4806
4807'``atomicrmw``' Instruction
4808^^^^^^^^^^^^^^^^^^^^^^^^^^^
4809
4810Syntax:
4811"""""""
4812
4813::
4814
4815 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4816
4817Overview:
4818"""""""""
4819
4820The '``atomicrmw``' instruction is used to atomically modify memory.
4821
4822Arguments:
4823""""""""""
4824
4825There are three arguments to the '``atomicrmw``' instruction: an
4826operation to apply, an address whose value to modify, an argument to the
4827operation. The operation must be one of the following keywords:
4828
4829- xchg
4830- add
4831- sub
4832- and
4833- nand
4834- or
4835- xor
4836- max
4837- min
4838- umax
4839- umin
4840
4841The type of '<value>' must be an integer type whose bit width is a power
4842of two greater than or equal to eight and less than or equal to a
4843target-specific size limit. The type of the '``<pointer>``' operand must
4844be a pointer to that type. If the ``atomicrmw`` is marked as
4845``volatile``, then the optimizer is not allowed to modify the number or
4846order of execution of this ``atomicrmw`` with other :ref:`volatile
4847operations <volatile>`.
4848
4849Semantics:
4850""""""""""
4851
4852The contents of memory at the location specified by the '``<pointer>``'
4853operand are atomically read, modified, and written back. The original
4854value at the location is returned. The modification is specified by the
4855operation argument:
4856
4857- xchg: ``*ptr = val``
4858- add: ``*ptr = *ptr + val``
4859- sub: ``*ptr = *ptr - val``
4860- and: ``*ptr = *ptr & val``
4861- nand: ``*ptr = ~(*ptr & val)``
4862- or: ``*ptr = *ptr | val``
4863- xor: ``*ptr = *ptr ^ val``
4864- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4865- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4866- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4867 comparison)
4868- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4869 comparison)
4870
4871Example:
4872""""""""
4873
4874.. code-block:: llvm
4875
4876 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4877
4878.. _i_getelementptr:
4879
4880'``getelementptr``' Instruction
4881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4882
4883Syntax:
4884"""""""
4885
4886::
4887
4888 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4889 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4890 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4891
4892Overview:
4893"""""""""
4894
4895The '``getelementptr``' instruction is used to get the address of a
4896subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4897address calculation only and does not access memory.
4898
4899Arguments:
4900""""""""""
4901
4902The first argument is always a pointer or a vector of pointers, and
4903forms the basis of the calculation. The remaining arguments are indices
4904that indicate which of the elements of the aggregate object are indexed.
4905The interpretation of each index is dependent on the type being indexed
4906into. The first index always indexes the pointer value given as the
4907first argument, the second index indexes a value of the type pointed to
4908(not necessarily the value directly pointed to, since the first index
4909can be non-zero), etc. The first type indexed into must be a pointer
4910value, subsequent types can be arrays, vectors, and structs. Note that
4911subsequent types being indexed into can never be pointers, since that
4912would require loading the pointer before continuing calculation.
4913
4914The type of each index argument depends on the type it is indexing into.
4915When indexing into a (optionally packed) structure, only ``i32`` integer
4916**constants** are allowed (when using a vector of indices they must all
4917be the **same** ``i32`` integer constant). When indexing into an array,
4918pointer or vector, integers of any width are allowed, and they are not
4919required to be constant. These integers are treated as signed values
4920where relevant.
4921
4922For example, let's consider a C code fragment and how it gets compiled
4923to LLVM:
4924
4925.. code-block:: c
4926
4927 struct RT {
4928 char A;
4929 int B[10][20];
4930 char C;
4931 };
4932 struct ST {
4933 int X;
4934 double Y;
4935 struct RT Z;
4936 };
4937
4938 int *foo(struct ST *s) {
4939 return &s[1].Z.B[5][13];
4940 }
4941
4942The LLVM code generated by Clang is:
4943
4944.. code-block:: llvm
4945
4946 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4947 %struct.ST = type { i32, double, %struct.RT }
4948
4949 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4950 entry:
4951 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4952 ret i32* %arrayidx
4953 }
4954
4955Semantics:
4956""""""""""
4957
4958In the example above, the first index is indexing into the
4959'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4960= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4961indexes into the third element of the structure, yielding a
4962'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4963structure. The third index indexes into the second element of the
4964structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4965dimensions of the array are subscripted into, yielding an '``i32``'
4966type. The '``getelementptr``' instruction returns a pointer to this
4967element, thus computing a value of '``i32*``' type.
4968
4969Note that it is perfectly legal to index partially through a structure,
4970returning a pointer to an inner element. Because of this, the LLVM code
4971for the given testcase is equivalent to:
4972
4973.. code-block:: llvm
4974
4975 define i32* @foo(%struct.ST* %s) {
4976 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4977 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4978 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4979 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4980 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4981 ret i32* %t5
4982 }
4983
4984If the ``inbounds`` keyword is present, the result value of the
4985``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4986pointer is not an *in bounds* address of an allocated object, or if any
4987of the addresses that would be formed by successive addition of the
4988offsets implied by the indices to the base address with infinitely
4989precise signed arithmetic are not an *in bounds* address of that
4990allocated object. The *in bounds* addresses for an allocated object are
4991all the addresses that point into the object, plus the address one byte
4992past the end. In cases where the base is a vector of pointers the
4993``inbounds`` keyword applies to each of the computations element-wise.
4994
4995If the ``inbounds`` keyword is not present, the offsets are added to the
4996base address with silently-wrapping two's complement arithmetic. If the
4997offsets have a different width from the pointer, they are sign-extended
4998or truncated to the width of the pointer. The result value of the
4999``getelementptr`` may be outside the object pointed to by the base
5000pointer. The result value may not necessarily be used to access memory
5001though, even if it happens to point into allocated storage. See the
5002:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5003information.
5004
5005The getelementptr instruction is often confusing. For some more insight
5006into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5007
5008Example:
5009""""""""
5010
5011.. code-block:: llvm
5012
5013 ; yields [12 x i8]*:aptr
5014 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5015 ; yields i8*:vptr
5016 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5017 ; yields i8*:eptr
5018 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5019 ; yields i32*:iptr
5020 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5021
5022In cases where the pointer argument is a vector of pointers, each index
5023must be a vector with the same number of elements. For example:
5024
5025.. code-block:: llvm
5026
5027 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5028
5029Conversion Operations
5030---------------------
5031
5032The instructions in this category are the conversion instructions
5033(casting) which all take a single operand and a type. They perform
5034various bit conversions on the operand.
5035
5036'``trunc .. to``' Instruction
5037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5038
5039Syntax:
5040"""""""
5041
5042::
5043
5044 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5045
5046Overview:
5047"""""""""
5048
5049The '``trunc``' instruction truncates its operand to the type ``ty2``.
5050
5051Arguments:
5052""""""""""
5053
5054The '``trunc``' instruction takes a value to trunc, and a type to trunc
5055it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5056of the same number of integers. The bit size of the ``value`` must be
5057larger than the bit size of the destination type, ``ty2``. Equal sized
5058types are not allowed.
5059
5060Semantics:
5061""""""""""
5062
5063The '``trunc``' instruction truncates the high order bits in ``value``
5064and converts the remaining bits to ``ty2``. Since the source size must
5065be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5066It will always truncate bits.
5067
5068Example:
5069""""""""
5070
5071.. code-block:: llvm
5072
5073 %X = trunc i32 257 to i8 ; yields i8:1
5074 %Y = trunc i32 123 to i1 ; yields i1:true
5075 %Z = trunc i32 122 to i1 ; yields i1:false
5076 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5077
5078'``zext .. to``' Instruction
5079^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5080
5081Syntax:
5082"""""""
5083
5084::
5085
5086 <result> = zext <ty> <value> to <ty2> ; yields ty2
5087
5088Overview:
5089"""""""""
5090
5091The '``zext``' instruction zero extends its operand to type ``ty2``.
5092
5093Arguments:
5094""""""""""
5095
5096The '``zext``' instruction takes a value to cast, and a type to cast it
5097to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5098the same number of integers. The bit size of the ``value`` must be
5099smaller than the bit size of the destination type, ``ty2``.
5100
5101Semantics:
5102""""""""""
5103
5104The ``zext`` fills the high order bits of the ``value`` with zero bits
5105until it reaches the size of the destination type, ``ty2``.
5106
5107When zero extending from i1, the result will always be either 0 or 1.
5108
5109Example:
5110""""""""
5111
5112.. code-block:: llvm
5113
5114 %X = zext i32 257 to i64 ; yields i64:257
5115 %Y = zext i1 true to i32 ; yields i32:1
5116 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5117
5118'``sext .. to``' Instruction
5119^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5120
5121Syntax:
5122"""""""
5123
5124::
5125
5126 <result> = sext <ty> <value> to <ty2> ; yields ty2
5127
5128Overview:
5129"""""""""
5130
5131The '``sext``' sign extends ``value`` to the type ``ty2``.
5132
5133Arguments:
5134""""""""""
5135
5136The '``sext``' instruction takes a value to cast, and a type to cast it
5137to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5138the same number of integers. The bit size of the ``value`` must be
5139smaller than the bit size of the destination type, ``ty2``.
5140
5141Semantics:
5142""""""""""
5143
5144The '``sext``' instruction performs a sign extension by copying the sign
5145bit (highest order bit) of the ``value`` until it reaches the bit size
5146of the type ``ty2``.
5147
5148When sign extending from i1, the extension always results in -1 or 0.
5149
5150Example:
5151""""""""
5152
5153.. code-block:: llvm
5154
5155 %X = sext i8 -1 to i16 ; yields i16 :65535
5156 %Y = sext i1 true to i32 ; yields i32:-1
5157 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5158
5159'``fptrunc .. to``' Instruction
5160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5161
5162Syntax:
5163"""""""
5164
5165::
5166
5167 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5168
5169Overview:
5170"""""""""
5171
5172The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5173
5174Arguments:
5175""""""""""
5176
5177The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5178value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5179The size of ``value`` must be larger than the size of ``ty2``. This
5180implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5181
5182Semantics:
5183""""""""""
5184
5185The '``fptrunc``' instruction truncates a ``value`` from a larger
5186:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5187point <t_floating>` type. If the value cannot fit within the
5188destination type, ``ty2``, then the results are undefined.
5189
5190Example:
5191""""""""
5192
5193.. code-block:: llvm
5194
5195 %X = fptrunc double 123.0 to float ; yields float:123.0
5196 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5197
5198'``fpext .. to``' Instruction
5199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5200
5201Syntax:
5202"""""""
5203
5204::
5205
5206 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5207
5208Overview:
5209"""""""""
5210
5211The '``fpext``' extends a floating point ``value`` to a larger floating
5212point value.
5213
5214Arguments:
5215""""""""""
5216
5217The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5218``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5219to. The source type must be smaller than the destination type.
5220
5221Semantics:
5222""""""""""
5223
5224The '``fpext``' instruction extends the ``value`` from a smaller
5225:ref:`floating point <t_floating>` type to a larger :ref:`floating
5226point <t_floating>` type. The ``fpext`` cannot be used to make a
5227*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5228*no-op cast* for a floating point cast.
5229
5230Example:
5231""""""""
5232
5233.. code-block:: llvm
5234
5235 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5236 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5237
5238'``fptoui .. to``' Instruction
5239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5240
5241Syntax:
5242"""""""
5243
5244::
5245
5246 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5247
5248Overview:
5249"""""""""
5250
5251The '``fptoui``' converts a floating point ``value`` to its unsigned
5252integer equivalent of type ``ty2``.
5253
5254Arguments:
5255""""""""""
5256
5257The '``fptoui``' instruction takes a value to cast, which must be a
5258scalar or vector :ref:`floating point <t_floating>` value, and a type to
5259cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5260``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5261type with the same number of elements as ``ty``
5262
5263Semantics:
5264""""""""""
5265
5266The '``fptoui``' instruction converts its :ref:`floating
5267point <t_floating>` operand into the nearest (rounding towards zero)
5268unsigned integer value. If the value cannot fit in ``ty2``, the results
5269are undefined.
5270
5271Example:
5272""""""""
5273
5274.. code-block:: llvm
5275
5276 %X = fptoui double 123.0 to i32 ; yields i32:123
5277 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5278 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5279
5280'``fptosi .. to``' Instruction
5281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5282
5283Syntax:
5284"""""""
5285
5286::
5287
5288 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5289
5290Overview:
5291"""""""""
5292
5293The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5294``value`` to type ``ty2``.
5295
5296Arguments:
5297""""""""""
5298
5299The '``fptosi``' instruction takes a value to cast, which must be a
5300scalar or vector :ref:`floating point <t_floating>` value, and a type to
5301cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5302``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5303type with the same number of elements as ``ty``
5304
5305Semantics:
5306""""""""""
5307
5308The '``fptosi``' instruction converts its :ref:`floating
5309point <t_floating>` operand into the nearest (rounding towards zero)
5310signed integer value. If the value cannot fit in ``ty2``, the results
5311are undefined.
5312
5313Example:
5314""""""""
5315
5316.. code-block:: llvm
5317
5318 %X = fptosi double -123.0 to i32 ; yields i32:-123
5319 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5320 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5321
5322'``uitofp .. to``' Instruction
5323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5324
5325Syntax:
5326"""""""
5327
5328::
5329
5330 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5331
5332Overview:
5333"""""""""
5334
5335The '``uitofp``' instruction regards ``value`` as an unsigned integer
5336and converts that value to the ``ty2`` type.
5337
5338Arguments:
5339""""""""""
5340
5341The '``uitofp``' instruction takes a value to cast, which must be a
5342scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5343``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5344``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5345type with the same number of elements as ``ty``
5346
5347Semantics:
5348""""""""""
5349
5350The '``uitofp``' instruction interprets its operand as an unsigned
5351integer quantity and converts it to the corresponding floating point
5352value. If the value cannot fit in the floating point value, the results
5353are undefined.
5354
5355Example:
5356""""""""
5357
5358.. code-block:: llvm
5359
5360 %X = uitofp i32 257 to float ; yields float:257.0
5361 %Y = uitofp i8 -1 to double ; yields double:255.0
5362
5363'``sitofp .. to``' Instruction
5364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5365
5366Syntax:
5367"""""""
5368
5369::
5370
5371 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5372
5373Overview:
5374"""""""""
5375
5376The '``sitofp``' instruction regards ``value`` as a signed integer and
5377converts that value to the ``ty2`` type.
5378
5379Arguments:
5380""""""""""
5381
5382The '``sitofp``' instruction takes a value to cast, which must be a
5383scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5384``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5385``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5386type with the same number of elements as ``ty``
5387
5388Semantics:
5389""""""""""
5390
5391The '``sitofp``' instruction interprets its operand as a signed integer
5392quantity and converts it to the corresponding floating point value. If
5393the value cannot fit in the floating point value, the results are
5394undefined.
5395
5396Example:
5397""""""""
5398
5399.. code-block:: llvm
5400
5401 %X = sitofp i32 257 to float ; yields float:257.0
5402 %Y = sitofp i8 -1 to double ; yields double:-1.0
5403
5404.. _i_ptrtoint:
5405
5406'``ptrtoint .. to``' Instruction
5407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5408
5409Syntax:
5410"""""""
5411
5412::
5413
5414 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5415
5416Overview:
5417"""""""""
5418
5419The '``ptrtoint``' instruction converts the pointer or a vector of
5420pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5421
5422Arguments:
5423""""""""""
5424
5425The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5426a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5427type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5428a vector of integers type.
5429
5430Semantics:
5431""""""""""
5432
5433The '``ptrtoint``' instruction converts ``value`` to integer type
5434``ty2`` by interpreting the pointer value as an integer and either
5435truncating or zero extending that value to the size of the integer type.
5436If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5437``value`` is larger than ``ty2`` then a truncation is done. If they are
5438the same size, then nothing is done (*no-op cast*) other than a type
5439change.
5440
5441Example:
5442""""""""
5443
5444.. code-block:: llvm
5445
5446 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5447 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5448 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5449
5450.. _i_inttoptr:
5451
5452'``inttoptr .. to``' Instruction
5453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5454
5455Syntax:
5456"""""""
5457
5458::
5459
5460 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5461
5462Overview:
5463"""""""""
5464
5465The '``inttoptr``' instruction converts an integer ``value`` to a
5466pointer type, ``ty2``.
5467
5468Arguments:
5469""""""""""
5470
5471The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5472cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5473type.
5474
5475Semantics:
5476""""""""""
5477
5478The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5479applying either a zero extension or a truncation depending on the size
5480of the integer ``value``. If ``value`` is larger than the size of a
5481pointer then a truncation is done. If ``value`` is smaller than the size
5482of a pointer then a zero extension is done. If they are the same size,
5483nothing is done (*no-op cast*).
5484
5485Example:
5486""""""""
5487
5488.. code-block:: llvm
5489
5490 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5491 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5492 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5493 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5494
5495.. _i_bitcast:
5496
5497'``bitcast .. to``' Instruction
5498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5499
5500Syntax:
5501"""""""
5502
5503::
5504
5505 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5506
5507Overview:
5508"""""""""
5509
5510The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5511changing any bits.
5512
5513Arguments:
5514""""""""""
5515
5516The '``bitcast``' instruction takes a value to cast, which must be a
5517non-aggregate first class value, and a type to cast it to, which must
5518also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5519sizes of ``value`` and the destination type, ``ty2``, must be identical.
5520If the source type is a pointer, the destination type must also be a
5521pointer. This instruction supports bitwise conversion of vectors to
5522integers and to vectors of other types (as long as they have the same
5523size).
5524
5525Semantics:
5526""""""""""
5527
5528The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5529always a *no-op cast* because no bits change with this conversion. The
5530conversion is done as if the ``value`` had been stored to memory and
5531read back as type ``ty2``. Pointer (or vector of pointers) types may
5532only be converted to other pointer (or vector of pointers) types with
5533this instruction. To convert pointers to other types, use the
5534:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5535first.
5536
5537Example:
5538""""""""
5539
5540.. code-block:: llvm
5541
5542 %X = bitcast i8 255 to i8 ; yields i8 :-1
5543 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5544 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5545 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5546
5547.. _otherops:
5548
5549Other Operations
5550----------------
5551
5552The instructions in this category are the "miscellaneous" instructions,
5553which defy better classification.
5554
5555.. _i_icmp:
5556
5557'``icmp``' Instruction
5558^^^^^^^^^^^^^^^^^^^^^^
5559
5560Syntax:
5561"""""""
5562
5563::
5564
5565 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5566
5567Overview:
5568"""""""""
5569
5570The '``icmp``' instruction returns a boolean value or a vector of
5571boolean values based on comparison of its two integer, integer vector,
5572pointer, or pointer vector operands.
5573
5574Arguments:
5575""""""""""
5576
5577The '``icmp``' instruction takes three operands. The first operand is
5578the condition code indicating the kind of comparison to perform. It is
5579not a value, just a keyword. The possible condition code are:
5580
5581#. ``eq``: equal
5582#. ``ne``: not equal
5583#. ``ugt``: unsigned greater than
5584#. ``uge``: unsigned greater or equal
5585#. ``ult``: unsigned less than
5586#. ``ule``: unsigned less or equal
5587#. ``sgt``: signed greater than
5588#. ``sge``: signed greater or equal
5589#. ``slt``: signed less than
5590#. ``sle``: signed less or equal
5591
5592The remaining two arguments must be :ref:`integer <t_integer>` or
5593:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5594must also be identical types.
5595
5596Semantics:
5597""""""""""
5598
5599The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5600code given as ``cond``. The comparison performed always yields either an
5601:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5602
5603#. ``eq``: yields ``true`` if the operands are equal, ``false``
5604 otherwise. No sign interpretation is necessary or performed.
5605#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5606 otherwise. No sign interpretation is necessary or performed.
5607#. ``ugt``: interprets the operands as unsigned values and yields
5608 ``true`` if ``op1`` is greater than ``op2``.
5609#. ``uge``: interprets the operands as unsigned values and yields
5610 ``true`` if ``op1`` is greater than or equal to ``op2``.
5611#. ``ult``: interprets the operands as unsigned values and yields
5612 ``true`` if ``op1`` is less than ``op2``.
5613#. ``ule``: interprets the operands as unsigned values and yields
5614 ``true`` if ``op1`` is less than or equal to ``op2``.
5615#. ``sgt``: interprets the operands as signed values and yields ``true``
5616 if ``op1`` is greater than ``op2``.
5617#. ``sge``: interprets the operands as signed values and yields ``true``
5618 if ``op1`` is greater than or equal to ``op2``.
5619#. ``slt``: interprets the operands as signed values and yields ``true``
5620 if ``op1`` is less than ``op2``.
5621#. ``sle``: interprets the operands as signed values and yields ``true``
5622 if ``op1`` is less than or equal to ``op2``.
5623
5624If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5625are compared as if they were integers.
5626
5627If the operands are integer vectors, then they are compared element by
5628element. The result is an ``i1`` vector with the same number of elements
5629as the values being compared. Otherwise, the result is an ``i1``.
5630
5631Example:
5632""""""""
5633
5634.. code-block:: llvm
5635
5636 <result> = icmp eq i32 4, 5 ; yields: result=false
5637 <result> = icmp ne float* %X, %X ; yields: result=false
5638 <result> = icmp ult i16 4, 5 ; yields: result=true
5639 <result> = icmp sgt i16 4, 5 ; yields: result=false
5640 <result> = icmp ule i16 -4, 5 ; yields: result=false
5641 <result> = icmp sge i16 4, 5 ; yields: result=false
5642
5643Note that the code generator does not yet support vector types with the
5644``icmp`` instruction.
5645
5646.. _i_fcmp:
5647
5648'``fcmp``' Instruction
5649^^^^^^^^^^^^^^^^^^^^^^
5650
5651Syntax:
5652"""""""
5653
5654::
5655
5656 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5657
5658Overview:
5659"""""""""
5660
5661The '``fcmp``' instruction returns a boolean value or vector of boolean
5662values based on comparison of its operands.
5663
5664If the operands are floating point scalars, then the result type is a
5665boolean (:ref:`i1 <t_integer>`).
5666
5667If the operands are floating point vectors, then the result type is a
5668vector of boolean with the same number of elements as the operands being
5669compared.
5670
5671Arguments:
5672""""""""""
5673
5674The '``fcmp``' instruction takes three operands. The first operand is
5675the condition code indicating the kind of comparison to perform. It is
5676not a value, just a keyword. The possible condition code are:
5677
5678#. ``false``: no comparison, always returns false
5679#. ``oeq``: ordered and equal
5680#. ``ogt``: ordered and greater than
5681#. ``oge``: ordered and greater than or equal
5682#. ``olt``: ordered and less than
5683#. ``ole``: ordered and less than or equal
5684#. ``one``: ordered and not equal
5685#. ``ord``: ordered (no nans)
5686#. ``ueq``: unordered or equal
5687#. ``ugt``: unordered or greater than
5688#. ``uge``: unordered or greater than or equal
5689#. ``ult``: unordered or less than
5690#. ``ule``: unordered or less than or equal
5691#. ``une``: unordered or not equal
5692#. ``uno``: unordered (either nans)
5693#. ``true``: no comparison, always returns true
5694
5695*Ordered* means that neither operand is a QNAN while *unordered* means
5696that either operand may be a QNAN.
5697
5698Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5699point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5700type. They must have identical types.
5701
5702Semantics:
5703""""""""""
5704
5705The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5706condition code given as ``cond``. If the operands are vectors, then the
5707vectors are compared element by element. Each comparison performed
5708always yields an :ref:`i1 <t_integer>` result, as follows:
5709
5710#. ``false``: always yields ``false``, regardless of operands.
5711#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5712 is equal to ``op2``.
5713#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5714 is greater than ``op2``.
5715#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5716 is greater than or equal to ``op2``.
5717#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5718 is less than ``op2``.
5719#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5720 is less than or equal to ``op2``.
5721#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5722 is not equal to ``op2``.
5723#. ``ord``: yields ``true`` if both operands are not a QNAN.
5724#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5725 equal to ``op2``.
5726#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5727 greater than ``op2``.
5728#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5729 greater than or equal to ``op2``.
5730#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5731 less than ``op2``.
5732#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5733 less than or equal to ``op2``.
5734#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5735 not equal to ``op2``.
5736#. ``uno``: yields ``true`` if either operand is a QNAN.
5737#. ``true``: always yields ``true``, regardless of operands.
5738
5739Example:
5740""""""""
5741
5742.. code-block:: llvm
5743
5744 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5745 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5746 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5747 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5748
5749Note that the code generator does not yet support vector types with the
5750``fcmp`` instruction.
5751
5752.. _i_phi:
5753
5754'``phi``' Instruction
5755^^^^^^^^^^^^^^^^^^^^^
5756
5757Syntax:
5758"""""""
5759
5760::
5761
5762 <result> = phi <ty> [ <val0>, <label0>], ...
5763
5764Overview:
5765"""""""""
5766
5767The '``phi``' instruction is used to implement the φ node in the SSA
5768graph representing the function.
5769
5770Arguments:
5771""""""""""
5772
5773The type of the incoming values is specified with the first type field.
5774After this, the '``phi``' instruction takes a list of pairs as
5775arguments, with one pair for each predecessor basic block of the current
5776block. Only values of :ref:`first class <t_firstclass>` type may be used as
5777the value arguments to the PHI node. Only labels may be used as the
5778label arguments.
5779
5780There must be no non-phi instructions between the start of a basic block
5781and the PHI instructions: i.e. PHI instructions must be first in a basic
5782block.
5783
5784For the purposes of the SSA form, the use of each incoming value is
5785deemed to occur on the edge from the corresponding predecessor block to
5786the current block (but after any definition of an '``invoke``'
5787instruction's return value on the same edge).
5788
5789Semantics:
5790""""""""""
5791
5792At runtime, the '``phi``' instruction logically takes on the value
5793specified by the pair corresponding to the predecessor basic block that
5794executed just prior to the current block.
5795
5796Example:
5797""""""""
5798
5799.. code-block:: llvm
5800
5801 Loop: ; Infinite loop that counts from 0 on up...
5802 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5803 %nextindvar = add i32 %indvar, 1
5804 br label %Loop
5805
5806.. _i_select:
5807
5808'``select``' Instruction
5809^^^^^^^^^^^^^^^^^^^^^^^^
5810
5811Syntax:
5812"""""""
5813
5814::
5815
5816 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5817
5818 selty is either i1 or {<N x i1>}
5819
5820Overview:
5821"""""""""
5822
5823The '``select``' instruction is used to choose one value based on a
5824condition, without branching.
5825
5826Arguments:
5827""""""""""
5828
5829The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5830values indicating the condition, and two values of the same :ref:`first
5831class <t_firstclass>` type. If the val1/val2 are vectors and the
5832condition is a scalar, then entire vectors are selected, not individual
5833elements.
5834
5835Semantics:
5836""""""""""
5837
5838If the condition is an i1 and it evaluates to 1, the instruction returns
5839the first value argument; otherwise, it returns the second value
5840argument.
5841
5842If the condition is a vector of i1, then the value arguments must be
5843vectors of the same size, and the selection is done element by element.
5844
5845Example:
5846""""""""
5847
5848.. code-block:: llvm
5849
5850 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5851
5852.. _i_call:
5853
5854'``call``' Instruction
5855^^^^^^^^^^^^^^^^^^^^^^
5856
5857Syntax:
5858"""""""
5859
5860::
5861
5862 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5863
5864Overview:
5865"""""""""
5866
5867The '``call``' instruction represents a simple function call.
5868
5869Arguments:
5870""""""""""
5871
5872This instruction requires several arguments:
5873
5874#. The optional "tail" marker indicates that the callee function does
5875 not access any allocas or varargs in the caller. Note that calls may
5876 be marked "tail" even if they do not occur before a
5877 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5878 function call is eligible for tail call optimization, but `might not
5879 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5880 The code generator may optimize calls marked "tail" with either 1)
5881 automatic `sibling call
5882 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5883 callee have matching signatures, or 2) forced tail call optimization
5884 when the following extra requirements are met:
5885
5886 - Caller and callee both have the calling convention ``fastcc``.
5887 - The call is in tail position (ret immediately follows call and ret
5888 uses value of call or is void).
5889 - Option ``-tailcallopt`` is enabled, or
5890 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5891 - `Platform specific constraints are
5892 met. <CodeGenerator.html#tailcallopt>`_
5893
5894#. The optional "cconv" marker indicates which :ref:`calling
5895 convention <callingconv>` the call should use. If none is
5896 specified, the call defaults to using C calling conventions. The
5897 calling convention of the call must match the calling convention of
5898 the target function, or else the behavior is undefined.
5899#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5900 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5901 are valid here.
5902#. '``ty``': the type of the call instruction itself which is also the
5903 type of the return value. Functions that return no value are marked
5904 ``void``.
5905#. '``fnty``': shall be the signature of the pointer to function value
5906 being invoked. The argument types must match the types implied by
5907 this signature. This type can be omitted if the function is not
5908 varargs and if the function type does not return a pointer to a
5909 function.
5910#. '``fnptrval``': An LLVM value containing a pointer to a function to
5911 be invoked. In most cases, this is a direct function invocation, but
5912 indirect ``call``'s are just as possible, calling an arbitrary pointer
5913 to function value.
5914#. '``function args``': argument list whose types match the function
5915 signature argument types and parameter attributes. All arguments must
5916 be of :ref:`first class <t_firstclass>` type. If the function signature
5917 indicates the function accepts a variable number of arguments, the
5918 extra arguments can be specified.
5919#. The optional :ref:`function attributes <fnattrs>` list. Only
5920 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5921 attributes are valid here.
5922
5923Semantics:
5924""""""""""
5925
5926The '``call``' instruction is used to cause control flow to transfer to
5927a specified function, with its incoming arguments bound to the specified
5928values. Upon a '``ret``' instruction in the called function, control
5929flow continues with the instruction after the function call, and the
5930return value of the function is bound to the result argument.
5931
5932Example:
5933""""""""
5934
5935.. code-block:: llvm
5936
5937 %retval = call i32 @test(i32 %argc)
5938 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5939 %X = tail call i32 @foo() ; yields i32
5940 %Y = tail call fastcc i32 @foo() ; yields i32
5941 call void %foo(i8 97 signext)
5942
5943 %struct.A = type { i32, i8 }
5944 %r = call %struct.A @foo() ; yields { 32, i8 }
5945 %gr = extractvalue %struct.A %r, 0 ; yields i32
5946 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5947 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5948 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5949
5950llvm treats calls to some functions with names and arguments that match
5951the standard C99 library as being the C99 library functions, and may
5952perform optimizations or generate code for them under that assumption.
5953This is something we'd like to change in the future to provide better
5954support for freestanding environments and non-C-based languages.
5955
5956.. _i_va_arg:
5957
5958'``va_arg``' Instruction
5959^^^^^^^^^^^^^^^^^^^^^^^^
5960
5961Syntax:
5962"""""""
5963
5964::
5965
5966 <resultval> = va_arg <va_list*> <arglist>, <argty>
5967
5968Overview:
5969"""""""""
5970
5971The '``va_arg``' instruction is used to access arguments passed through
5972the "variable argument" area of a function call. It is used to implement
5973the ``va_arg`` macro in C.
5974
5975Arguments:
5976""""""""""
5977
5978This instruction takes a ``va_list*`` value and the type of the
5979argument. It returns a value of the specified argument type and
5980increments the ``va_list`` to point to the next argument. The actual
5981type of ``va_list`` is target specific.
5982
5983Semantics:
5984""""""""""
5985
5986The '``va_arg``' instruction loads an argument of the specified type
5987from the specified ``va_list`` and causes the ``va_list`` to point to
5988the next argument. For more information, see the variable argument
5989handling :ref:`Intrinsic Functions <int_varargs>`.
5990
5991It is legal for this instruction to be called in a function which does
5992not take a variable number of arguments, for example, the ``vfprintf``
5993function.
5994
5995``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5996function <intrinsics>` because it takes a type as an argument.
5997
5998Example:
5999""""""""
6000
6001See the :ref:`variable argument processing <int_varargs>` section.
6002
6003Note that the code generator does not yet fully support va\_arg on many
6004targets. Also, it does not currently support va\_arg with aggregate
6005types on any target.
6006
6007.. _i_landingpad:
6008
6009'``landingpad``' Instruction
6010^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6011
6012Syntax:
6013"""""""
6014
6015::
6016
6017 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6018 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6019
6020 <clause> := catch <type> <value>
6021 <clause> := filter <array constant type> <array constant>
6022
6023Overview:
6024"""""""""
6025
6026The '``landingpad``' instruction is used by `LLVM's exception handling
6027system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006028is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006029code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6030defines values supplied by the personality function (``pers_fn``) upon
6031re-entry to the function. The ``resultval`` has the type ``resultty``.
6032
6033Arguments:
6034""""""""""
6035
6036This instruction takes a ``pers_fn`` value. This is the personality
6037function associated with the unwinding mechanism. The optional
6038``cleanup`` flag indicates that the landing pad block is a cleanup.
6039
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006040A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006041contains the global variable representing the "type" that may be caught
6042or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6043clause takes an array constant as its argument. Use
6044"``[0 x i8**] undef``" for a filter which cannot throw. The
6045'``landingpad``' instruction must contain *at least* one ``clause`` or
6046the ``cleanup`` flag.
6047
6048Semantics:
6049""""""""""
6050
6051The '``landingpad``' instruction defines the values which are set by the
6052personality function (``pers_fn``) upon re-entry to the function, and
6053therefore the "result type" of the ``landingpad`` instruction. As with
6054calling conventions, how the personality function results are
6055represented in LLVM IR is target specific.
6056
6057The clauses are applied in order from top to bottom. If two
6058``landingpad`` instructions are merged together through inlining, the
6059clauses from the calling function are appended to the list of clauses.
6060When the call stack is being unwound due to an exception being thrown,
6061the exception is compared against each ``clause`` in turn. If it doesn't
6062match any of the clauses, and the ``cleanup`` flag is not set, then
6063unwinding continues further up the call stack.
6064
6065The ``landingpad`` instruction has several restrictions:
6066
6067- A landing pad block is a basic block which is the unwind destination
6068 of an '``invoke``' instruction.
6069- A landing pad block must have a '``landingpad``' instruction as its
6070 first non-PHI instruction.
6071- There can be only one '``landingpad``' instruction within the landing
6072 pad block.
6073- A basic block that is not a landing pad block may not include a
6074 '``landingpad``' instruction.
6075- All '``landingpad``' instructions in a function must have the same
6076 personality function.
6077
6078Example:
6079""""""""
6080
6081.. code-block:: llvm
6082
6083 ;; A landing pad which can catch an integer.
6084 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6085 catch i8** @_ZTIi
6086 ;; A landing pad that is a cleanup.
6087 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6088 cleanup
6089 ;; A landing pad which can catch an integer and can only throw a double.
6090 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6091 catch i8** @_ZTIi
6092 filter [1 x i8**] [@_ZTId]
6093
6094.. _intrinsics:
6095
6096Intrinsic Functions
6097===================
6098
6099LLVM supports the notion of an "intrinsic function". These functions
6100have well known names and semantics and are required to follow certain
6101restrictions. Overall, these intrinsics represent an extension mechanism
6102for the LLVM language that does not require changing all of the
6103transformations in LLVM when adding to the language (or the bitcode
6104reader/writer, the parser, etc...).
6105
6106Intrinsic function names must all start with an "``llvm.``" prefix. This
6107prefix is reserved in LLVM for intrinsic names; thus, function names may
6108not begin with this prefix. Intrinsic functions must always be external
6109functions: you cannot define the body of intrinsic functions. Intrinsic
6110functions may only be used in call or invoke instructions: it is illegal
6111to take the address of an intrinsic function. Additionally, because
6112intrinsic functions are part of the LLVM language, it is required if any
6113are added that they be documented here.
6114
6115Some intrinsic functions can be overloaded, i.e., the intrinsic
6116represents a family of functions that perform the same operation but on
6117different data types. Because LLVM can represent over 8 million
6118different integer types, overloading is used commonly to allow an
6119intrinsic function to operate on any integer type. One or more of the
6120argument types or the result type can be overloaded to accept any
6121integer type. Argument types may also be defined as exactly matching a
6122previous argument's type or the result type. This allows an intrinsic
6123function which accepts multiple arguments, but needs all of them to be
6124of the same type, to only be overloaded with respect to a single
6125argument or the result.
6126
6127Overloaded intrinsics will have the names of its overloaded argument
6128types encoded into its function name, each preceded by a period. Only
6129those types which are overloaded result in a name suffix. Arguments
6130whose type is matched against another type do not. For example, the
6131``llvm.ctpop`` function can take an integer of any width and returns an
6132integer of exactly the same integer width. This leads to a family of
6133functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6134``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6135overloaded, and only one type suffix is required. Because the argument's
6136type is matched against the return type, it does not require its own
6137name suffix.
6138
6139To learn how to add an intrinsic function, please see the `Extending
6140LLVM Guide <ExtendingLLVM.html>`_.
6141
6142.. _int_varargs:
6143
6144Variable Argument Handling Intrinsics
6145-------------------------------------
6146
6147Variable argument support is defined in LLVM with the
6148:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6149functions. These functions are related to the similarly named macros
6150defined in the ``<stdarg.h>`` header file.
6151
6152All of these functions operate on arguments that use a target-specific
6153value type "``va_list``". The LLVM assembly language reference manual
6154does not define what this type is, so all transformations should be
6155prepared to handle these functions regardless of the type used.
6156
6157This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6158variable argument handling intrinsic functions are used.
6159
6160.. code-block:: llvm
6161
6162 define i32 @test(i32 %X, ...) {
6163 ; Initialize variable argument processing
6164 %ap = alloca i8*
6165 %ap2 = bitcast i8** %ap to i8*
6166 call void @llvm.va_start(i8* %ap2)
6167
6168 ; Read a single integer argument
6169 %tmp = va_arg i8** %ap, i32
6170
6171 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6172 %aq = alloca i8*
6173 %aq2 = bitcast i8** %aq to i8*
6174 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6175 call void @llvm.va_end(i8* %aq2)
6176
6177 ; Stop processing of arguments.
6178 call void @llvm.va_end(i8* %ap2)
6179 ret i32 %tmp
6180 }
6181
6182 declare void @llvm.va_start(i8*)
6183 declare void @llvm.va_copy(i8*, i8*)
6184 declare void @llvm.va_end(i8*)
6185
6186.. _int_va_start:
6187
6188'``llvm.va_start``' Intrinsic
6189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6190
6191Syntax:
6192"""""""
6193
6194::
6195
6196 declare void %llvm.va_start(i8* <arglist>)
6197
6198Overview:
6199"""""""""
6200
6201The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6202subsequent use by ``va_arg``.
6203
6204Arguments:
6205""""""""""
6206
6207The argument is a pointer to a ``va_list`` element to initialize.
6208
6209Semantics:
6210""""""""""
6211
6212The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6213available in C. In a target-dependent way, it initializes the
6214``va_list`` element to which the argument points, so that the next call
6215to ``va_arg`` will produce the first variable argument passed to the
6216function. Unlike the C ``va_start`` macro, this intrinsic does not need
6217to know the last argument of the function as the compiler can figure
6218that out.
6219
6220'``llvm.va_end``' Intrinsic
6221^^^^^^^^^^^^^^^^^^^^^^^^^^^
6222
6223Syntax:
6224"""""""
6225
6226::
6227
6228 declare void @llvm.va_end(i8* <arglist>)
6229
6230Overview:
6231"""""""""
6232
6233The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6234initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6235
6236Arguments:
6237""""""""""
6238
6239The argument is a pointer to a ``va_list`` to destroy.
6240
6241Semantics:
6242""""""""""
6243
6244The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6245available in C. In a target-dependent way, it destroys the ``va_list``
6246element to which the argument points. Calls to
6247:ref:`llvm.va_start <int_va_start>` and
6248:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6249``llvm.va_end``.
6250
6251.. _int_va_copy:
6252
6253'``llvm.va_copy``' Intrinsic
6254^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6255
6256Syntax:
6257"""""""
6258
6259::
6260
6261 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6262
6263Overview:
6264"""""""""
6265
6266The '``llvm.va_copy``' intrinsic copies the current argument position
6267from the source argument list to the destination argument list.
6268
6269Arguments:
6270""""""""""
6271
6272The first argument is a pointer to a ``va_list`` element to initialize.
6273The second argument is a pointer to a ``va_list`` element to copy from.
6274
6275Semantics:
6276""""""""""
6277
6278The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6279available in C. In a target-dependent way, it copies the source
6280``va_list`` element into the destination ``va_list`` element. This
6281intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6282arbitrarily complex and require, for example, memory allocation.
6283
6284Accurate Garbage Collection Intrinsics
6285--------------------------------------
6286
6287LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6288(GC) requires the implementation and generation of these intrinsics.
6289These intrinsics allow identification of :ref:`GC roots on the
6290stack <int_gcroot>`, as well as garbage collector implementations that
6291require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6292Front-ends for type-safe garbage collected languages should generate
6293these intrinsics to make use of the LLVM garbage collectors. For more
6294details, see `Accurate Garbage Collection with
6295LLVM <GarbageCollection.html>`_.
6296
6297The garbage collection intrinsics only operate on objects in the generic
6298address space (address space zero).
6299
6300.. _int_gcroot:
6301
6302'``llvm.gcroot``' Intrinsic
6303^^^^^^^^^^^^^^^^^^^^^^^^^^^
6304
6305Syntax:
6306"""""""
6307
6308::
6309
6310 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6311
6312Overview:
6313"""""""""
6314
6315The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6316the code generator, and allows some metadata to be associated with it.
6317
6318Arguments:
6319""""""""""
6320
6321The first argument specifies the address of a stack object that contains
6322the root pointer. The second pointer (which must be either a constant or
6323a global value address) contains the meta-data to be associated with the
6324root.
6325
6326Semantics:
6327""""""""""
6328
6329At runtime, a call to this intrinsic stores a null pointer into the
6330"ptrloc" location. At compile-time, the code generator generates
6331information to allow the runtime to find the pointer at GC safe points.
6332The '``llvm.gcroot``' intrinsic may only be used in a function which
6333:ref:`specifies a GC algorithm <gc>`.
6334
6335.. _int_gcread:
6336
6337'``llvm.gcread``' Intrinsic
6338^^^^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
6345 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6346
6347Overview:
6348"""""""""
6349
6350The '``llvm.gcread``' intrinsic identifies reads of references from heap
6351locations, allowing garbage collector implementations that require read
6352barriers.
6353
6354Arguments:
6355""""""""""
6356
6357The second argument is the address to read from, which should be an
6358address allocated from the garbage collector. The first object is a
6359pointer to the start of the referenced object, if needed by the language
6360runtime (otherwise null).
6361
6362Semantics:
6363""""""""""
6364
6365The '``llvm.gcread``' intrinsic has the same semantics as a load
6366instruction, but may be replaced with substantially more complex code by
6367the garbage collector runtime, as needed. The '``llvm.gcread``'
6368intrinsic may only be used in a function which :ref:`specifies a GC
6369algorithm <gc>`.
6370
6371.. _int_gcwrite:
6372
6373'``llvm.gcwrite``' Intrinsic
6374^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6375
6376Syntax:
6377"""""""
6378
6379::
6380
6381 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6382
6383Overview:
6384"""""""""
6385
6386The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6387locations, allowing garbage collector implementations that require write
6388barriers (such as generational or reference counting collectors).
6389
6390Arguments:
6391""""""""""
6392
6393The first argument is the reference to store, the second is the start of
6394the object to store it to, and the third is the address of the field of
6395Obj to store to. If the runtime does not require a pointer to the
6396object, Obj may be null.
6397
6398Semantics:
6399""""""""""
6400
6401The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6402instruction, but may be replaced with substantially more complex code by
6403the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6404intrinsic may only be used in a function which :ref:`specifies a GC
6405algorithm <gc>`.
6406
6407Code Generator Intrinsics
6408-------------------------
6409
6410These intrinsics are provided by LLVM to expose special features that
6411may only be implemented with code generator support.
6412
6413'``llvm.returnaddress``' Intrinsic
6414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6415
6416Syntax:
6417"""""""
6418
6419::
6420
6421 declare i8 *@llvm.returnaddress(i32 <level>)
6422
6423Overview:
6424"""""""""
6425
6426The '``llvm.returnaddress``' intrinsic attempts to compute a
6427target-specific value indicating the return address of the current
6428function or one of its callers.
6429
6430Arguments:
6431""""""""""
6432
6433The argument to this intrinsic indicates which function to return the
6434address for. Zero indicates the calling function, one indicates its
6435caller, etc. The argument is **required** to be a constant integer
6436value.
6437
6438Semantics:
6439""""""""""
6440
6441The '``llvm.returnaddress``' intrinsic either returns a pointer
6442indicating the return address of the specified call frame, or zero if it
6443cannot be identified. The value returned by this intrinsic is likely to
6444be incorrect or 0 for arguments other than zero, so it should only be
6445used for debugging purposes.
6446
6447Note that calling this intrinsic does not prevent function inlining or
6448other aggressive transformations, so the value returned may not be that
6449of the obvious source-language caller.
6450
6451'``llvm.frameaddress``' Intrinsic
6452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
6459 declare i8* @llvm.frameaddress(i32 <level>)
6460
6461Overview:
6462"""""""""
6463
6464The '``llvm.frameaddress``' intrinsic attempts to return the
6465target-specific frame pointer value for the specified stack frame.
6466
6467Arguments:
6468""""""""""
6469
6470The argument to this intrinsic indicates which function to return the
6471frame pointer for. Zero indicates the calling function, one indicates
6472its caller, etc. The argument is **required** to be a constant integer
6473value.
6474
6475Semantics:
6476""""""""""
6477
6478The '``llvm.frameaddress``' intrinsic either returns a pointer
6479indicating the frame address of the specified call frame, or zero if it
6480cannot be identified. The value returned by this intrinsic is likely to
6481be incorrect or 0 for arguments other than zero, so it should only be
6482used for debugging purposes.
6483
6484Note that calling this intrinsic does not prevent function inlining or
6485other aggressive transformations, so the value returned may not be that
6486of the obvious source-language caller.
6487
6488.. _int_stacksave:
6489
6490'``llvm.stacksave``' Intrinsic
6491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6492
6493Syntax:
6494"""""""
6495
6496::
6497
6498 declare i8* @llvm.stacksave()
6499
6500Overview:
6501"""""""""
6502
6503The '``llvm.stacksave``' intrinsic is used to remember the current state
6504of the function stack, for use with
6505:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6506implementing language features like scoped automatic variable sized
6507arrays in C99.
6508
6509Semantics:
6510""""""""""
6511
6512This intrinsic returns a opaque pointer value that can be passed to
6513:ref:`llvm.stackrestore <int_stackrestore>`. When an
6514``llvm.stackrestore`` intrinsic is executed with a value saved from
6515``llvm.stacksave``, it effectively restores the state of the stack to
6516the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6517practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6518were allocated after the ``llvm.stacksave`` was executed.
6519
6520.. _int_stackrestore:
6521
6522'``llvm.stackrestore``' Intrinsic
6523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6524
6525Syntax:
6526"""""""
6527
6528::
6529
6530 declare void @llvm.stackrestore(i8* %ptr)
6531
6532Overview:
6533"""""""""
6534
6535The '``llvm.stackrestore``' intrinsic is used to restore the state of
6536the function stack to the state it was in when the corresponding
6537:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6538useful for implementing language features like scoped automatic variable
6539sized arrays in C99.
6540
6541Semantics:
6542""""""""""
6543
6544See the description for :ref:`llvm.stacksave <int_stacksave>`.
6545
6546'``llvm.prefetch``' Intrinsic
6547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6548
6549Syntax:
6550"""""""
6551
6552::
6553
6554 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6555
6556Overview:
6557"""""""""
6558
6559The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6560insert a prefetch instruction if supported; otherwise, it is a noop.
6561Prefetches have no effect on the behavior of the program but can change
6562its performance characteristics.
6563
6564Arguments:
6565""""""""""
6566
6567``address`` is the address to be prefetched, ``rw`` is the specifier
6568determining if the fetch should be for a read (0) or write (1), and
6569``locality`` is a temporal locality specifier ranging from (0) - no
6570locality, to (3) - extremely local keep in cache. The ``cache type``
6571specifies whether the prefetch is performed on the data (1) or
6572instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6573arguments must be constant integers.
6574
6575Semantics:
6576""""""""""
6577
6578This intrinsic does not modify the behavior of the program. In
6579particular, prefetches cannot trap and do not produce a value. On
6580targets that support this intrinsic, the prefetch can provide hints to
6581the processor cache for better performance.
6582
6583'``llvm.pcmarker``' Intrinsic
6584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6585
6586Syntax:
6587"""""""
6588
6589::
6590
6591 declare void @llvm.pcmarker(i32 <id>)
6592
6593Overview:
6594"""""""""
6595
6596The '``llvm.pcmarker``' intrinsic is a method to export a Program
6597Counter (PC) in a region of code to simulators and other tools. The
6598method is target specific, but it is expected that the marker will use
6599exported symbols to transmit the PC of the marker. The marker makes no
6600guarantees that it will remain with any specific instruction after
6601optimizations. It is possible that the presence of a marker will inhibit
6602optimizations. The intended use is to be inserted after optimizations to
6603allow correlations of simulation runs.
6604
6605Arguments:
6606""""""""""
6607
6608``id`` is a numerical id identifying the marker.
6609
6610Semantics:
6611""""""""""
6612
6613This intrinsic does not modify the behavior of the program. Backends
6614that do not support this intrinsic may ignore it.
6615
6616'``llvm.readcyclecounter``' Intrinsic
6617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
6624 declare i64 @llvm.readcyclecounter()
6625
6626Overview:
6627"""""""""
6628
6629The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6630counter register (or similar low latency, high accuracy clocks) on those
6631targets that support it. On X86, it should map to RDTSC. On Alpha, it
6632should map to RPCC. As the backing counters overflow quickly (on the
6633order of 9 seconds on alpha), this should only be used for small
6634timings.
6635
6636Semantics:
6637""""""""""
6638
6639When directly supported, reading the cycle counter should not modify any
6640memory. Implementations are allowed to either return a application
6641specific value or a system wide value. On backends without support, this
6642is lowered to a constant 0.
6643
6644Standard C Library Intrinsics
6645-----------------------------
6646
6647LLVM provides intrinsics for a few important standard C library
6648functions. These intrinsics allow source-language front-ends to pass
6649information about the alignment of the pointer arguments to the code
6650generator, providing opportunity for more efficient code generation.
6651
6652.. _int_memcpy:
6653
6654'``llvm.memcpy``' Intrinsic
6655^^^^^^^^^^^^^^^^^^^^^^^^^^^
6656
6657Syntax:
6658"""""""
6659
6660This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6661integer bit width and for different address spaces. Not all targets
6662support all bit widths however.
6663
6664::
6665
6666 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6667 i32 <len>, i32 <align>, i1 <isvolatile>)
6668 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6669 i64 <len>, i32 <align>, i1 <isvolatile>)
6670
6671Overview:
6672"""""""""
6673
6674The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6675source location to the destination location.
6676
6677Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6678intrinsics do not return a value, takes extra alignment/isvolatile
6679arguments and the pointers can be in specified address spaces.
6680
6681Arguments:
6682""""""""""
6683
6684The first argument is a pointer to the destination, the second is a
6685pointer to the source. The third argument is an integer argument
6686specifying the number of bytes to copy, the fourth argument is the
6687alignment of the source and destination locations, and the fifth is a
6688boolean indicating a volatile access.
6689
6690If the call to this intrinsic has an alignment value that is not 0 or 1,
6691then the caller guarantees that both the source and destination pointers
6692are aligned to that boundary.
6693
6694If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6695a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6696very cleanly specified and it is unwise to depend on it.
6697
6698Semantics:
6699""""""""""
6700
6701The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6702source location to the destination location, which are not allowed to
6703overlap. It copies "len" bytes of memory over. If the argument is known
6704to be aligned to some boundary, this can be specified as the fourth
6705argument, otherwise it should be set to 0 or 1.
6706
6707'``llvm.memmove``' Intrinsic
6708^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6709
6710Syntax:
6711"""""""
6712
6713This is an overloaded intrinsic. You can use llvm.memmove on any integer
6714bit width and for different address space. Not all targets support all
6715bit widths however.
6716
6717::
6718
6719 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6720 i32 <len>, i32 <align>, i1 <isvolatile>)
6721 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6722 i64 <len>, i32 <align>, i1 <isvolatile>)
6723
6724Overview:
6725"""""""""
6726
6727The '``llvm.memmove.*``' intrinsics move a block of memory from the
6728source location to the destination location. It is similar to the
6729'``llvm.memcpy``' intrinsic but allows the two memory locations to
6730overlap.
6731
6732Note that, unlike the standard libc function, the ``llvm.memmove.*``
6733intrinsics do not return a value, takes extra alignment/isvolatile
6734arguments and the pointers can be in specified address spaces.
6735
6736Arguments:
6737""""""""""
6738
6739The first argument is a pointer to the destination, the second is a
6740pointer to the source. The third argument is an integer argument
6741specifying the number of bytes to copy, the fourth argument is the
6742alignment of the source and destination locations, and the fifth is a
6743boolean indicating a volatile access.
6744
6745If the call to this intrinsic has an alignment value that is not 0 or 1,
6746then the caller guarantees that the source and destination pointers are
6747aligned to that boundary.
6748
6749If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6750is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6751not very cleanly specified and it is unwise to depend on it.
6752
6753Semantics:
6754""""""""""
6755
6756The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6757source location to the destination location, which may overlap. It
6758copies "len" bytes of memory over. If the argument is known to be
6759aligned to some boundary, this can be specified as the fourth argument,
6760otherwise it should be set to 0 or 1.
6761
6762'``llvm.memset.*``' Intrinsics
6763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6764
6765Syntax:
6766"""""""
6767
6768This is an overloaded intrinsic. You can use llvm.memset on any integer
6769bit width and for different address spaces. However, not all targets
6770support all bit widths.
6771
6772::
6773
6774 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6775 i32 <len>, i32 <align>, i1 <isvolatile>)
6776 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6777 i64 <len>, i32 <align>, i1 <isvolatile>)
6778
6779Overview:
6780"""""""""
6781
6782The '``llvm.memset.*``' intrinsics fill a block of memory with a
6783particular byte value.
6784
6785Note that, unlike the standard libc function, the ``llvm.memset``
6786intrinsic does not return a value and takes extra alignment/volatile
6787arguments. Also, the destination can be in an arbitrary address space.
6788
6789Arguments:
6790""""""""""
6791
6792The first argument is a pointer to the destination to fill, the second
6793is the byte value with which to fill it, the third argument is an
6794integer argument specifying the number of bytes to fill, and the fourth
6795argument is the known alignment of the destination location.
6796
6797If the call to this intrinsic has an alignment value that is not 0 or 1,
6798then the caller guarantees that the destination pointer is aligned to
6799that boundary.
6800
6801If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6802a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6803very cleanly specified and it is unwise to depend on it.
6804
6805Semantics:
6806""""""""""
6807
6808The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6809at the destination location. If the argument is known to be aligned to
6810some boundary, this can be specified as the fourth argument, otherwise
6811it should be set to 0 or 1.
6812
6813'``llvm.sqrt.*``' Intrinsic
6814^^^^^^^^^^^^^^^^^^^^^^^^^^^
6815
6816Syntax:
6817"""""""
6818
6819This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6820floating point or vector of floating point type. Not all targets support
6821all types however.
6822
6823::
6824
6825 declare float @llvm.sqrt.f32(float %Val)
6826 declare double @llvm.sqrt.f64(double %Val)
6827 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6828 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6829 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6830
6831Overview:
6832"""""""""
6833
6834The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6835returning the same value as the libm '``sqrt``' functions would. Unlike
6836``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6837negative numbers other than -0.0 (which allows for better optimization,
6838because there is no need to worry about errno being set).
6839``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6840
6841Arguments:
6842""""""""""
6843
6844The argument and return value are floating point numbers of the same
6845type.
6846
6847Semantics:
6848""""""""""
6849
6850This function returns the sqrt of the specified operand if it is a
6851nonnegative floating point number.
6852
6853'``llvm.powi.*``' Intrinsic
6854^^^^^^^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6860floating point or vector of floating point type. Not all targets support
6861all types however.
6862
6863::
6864
6865 declare float @llvm.powi.f32(float %Val, i32 %power)
6866 declare double @llvm.powi.f64(double %Val, i32 %power)
6867 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6868 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6869 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6870
6871Overview:
6872"""""""""
6873
6874The '``llvm.powi.*``' intrinsics return the first operand raised to the
6875specified (positive or negative) power. The order of evaluation of
6876multiplications is not defined. When a vector of floating point type is
6877used, the second argument remains a scalar integer value.
6878
6879Arguments:
6880""""""""""
6881
6882The second argument is an integer power, and the first is a value to
6883raise to that power.
6884
6885Semantics:
6886""""""""""
6887
6888This function returns the first value raised to the second power with an
6889unspecified sequence of rounding operations.
6890
6891'``llvm.sin.*``' Intrinsic
6892^^^^^^^^^^^^^^^^^^^^^^^^^^
6893
6894Syntax:
6895"""""""
6896
6897This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6898floating point or vector of floating point type. Not all targets support
6899all types however.
6900
6901::
6902
6903 declare float @llvm.sin.f32(float %Val)
6904 declare double @llvm.sin.f64(double %Val)
6905 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6906 declare fp128 @llvm.sin.f128(fp128 %Val)
6907 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6908
6909Overview:
6910"""""""""
6911
6912The '``llvm.sin.*``' intrinsics return the sine of the operand.
6913
6914Arguments:
6915""""""""""
6916
6917The argument and return value are floating point numbers of the same
6918type.
6919
6920Semantics:
6921""""""""""
6922
6923This function returns the sine of the specified operand, returning the
6924same values as the libm ``sin`` functions would, and handles error
6925conditions in the same way.
6926
6927'``llvm.cos.*``' Intrinsic
6928^^^^^^^^^^^^^^^^^^^^^^^^^^
6929
6930Syntax:
6931"""""""
6932
6933This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6934floating point or vector of floating point type. Not all targets support
6935all types however.
6936
6937::
6938
6939 declare float @llvm.cos.f32(float %Val)
6940 declare double @llvm.cos.f64(double %Val)
6941 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6942 declare fp128 @llvm.cos.f128(fp128 %Val)
6943 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6944
6945Overview:
6946"""""""""
6947
6948The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6949
6950Arguments:
6951""""""""""
6952
6953The argument and return value are floating point numbers of the same
6954type.
6955
6956Semantics:
6957""""""""""
6958
6959This function returns the cosine of the specified operand, returning the
6960same values as the libm ``cos`` functions would, and handles error
6961conditions in the same way.
6962
6963'``llvm.pow.*``' Intrinsic
6964^^^^^^^^^^^^^^^^^^^^^^^^^^
6965
6966Syntax:
6967"""""""
6968
6969This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6970floating point or vector of floating point type. Not all targets support
6971all types however.
6972
6973::
6974
6975 declare float @llvm.pow.f32(float %Val, float %Power)
6976 declare double @llvm.pow.f64(double %Val, double %Power)
6977 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6978 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6979 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6980
6981Overview:
6982"""""""""
6983
6984The '``llvm.pow.*``' intrinsics return the first operand raised to the
6985specified (positive or negative) power.
6986
6987Arguments:
6988""""""""""
6989
6990The second argument is a floating point power, and the first is a value
6991to raise to that power.
6992
6993Semantics:
6994""""""""""
6995
6996This function returns the first value raised to the second power,
6997returning the same values as the libm ``pow`` functions would, and
6998handles error conditions in the same way.
6999
7000'``llvm.exp.*``' Intrinsic
7001^^^^^^^^^^^^^^^^^^^^^^^^^^
7002
7003Syntax:
7004"""""""
7005
7006This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7007floating point or vector of floating point type. Not all targets support
7008all types however.
7009
7010::
7011
7012 declare float @llvm.exp.f32(float %Val)
7013 declare double @llvm.exp.f64(double %Val)
7014 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7015 declare fp128 @llvm.exp.f128(fp128 %Val)
7016 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7017
7018Overview:
7019"""""""""
7020
7021The '``llvm.exp.*``' intrinsics perform the exp function.
7022
7023Arguments:
7024""""""""""
7025
7026The argument and return value are floating point numbers of the same
7027type.
7028
7029Semantics:
7030""""""""""
7031
7032This function returns the same values as the libm ``exp`` functions
7033would, and handles error conditions in the same way.
7034
7035'``llvm.exp2.*``' Intrinsic
7036^^^^^^^^^^^^^^^^^^^^^^^^^^^
7037
7038Syntax:
7039"""""""
7040
7041This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7042floating point or vector of floating point type. Not all targets support
7043all types however.
7044
7045::
7046
7047 declare float @llvm.exp2.f32(float %Val)
7048 declare double @llvm.exp2.f64(double %Val)
7049 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7050 declare fp128 @llvm.exp2.f128(fp128 %Val)
7051 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7052
7053Overview:
7054"""""""""
7055
7056The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7057
7058Arguments:
7059""""""""""
7060
7061The argument and return value are floating point numbers of the same
7062type.
7063
7064Semantics:
7065""""""""""
7066
7067This function returns the same values as the libm ``exp2`` functions
7068would, and handles error conditions in the same way.
7069
7070'``llvm.log.*``' Intrinsic
7071^^^^^^^^^^^^^^^^^^^^^^^^^^
7072
7073Syntax:
7074"""""""
7075
7076This is an overloaded intrinsic. You can use ``llvm.log`` on any
7077floating point or vector of floating point type. Not all targets support
7078all types however.
7079
7080::
7081
7082 declare float @llvm.log.f32(float %Val)
7083 declare double @llvm.log.f64(double %Val)
7084 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7085 declare fp128 @llvm.log.f128(fp128 %Val)
7086 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7087
7088Overview:
7089"""""""""
7090
7091The '``llvm.log.*``' intrinsics perform the log function.
7092
7093Arguments:
7094""""""""""
7095
7096The argument and return value are floating point numbers of the same
7097type.
7098
7099Semantics:
7100""""""""""
7101
7102This function returns the same values as the libm ``log`` functions
7103would, and handles error conditions in the same way.
7104
7105'``llvm.log10.*``' Intrinsic
7106^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7107
7108Syntax:
7109"""""""
7110
7111This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7112floating point or vector of floating point type. Not all targets support
7113all types however.
7114
7115::
7116
7117 declare float @llvm.log10.f32(float %Val)
7118 declare double @llvm.log10.f64(double %Val)
7119 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7120 declare fp128 @llvm.log10.f128(fp128 %Val)
7121 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7122
7123Overview:
7124"""""""""
7125
7126The '``llvm.log10.*``' intrinsics perform the log10 function.
7127
7128Arguments:
7129""""""""""
7130
7131The argument and return value are floating point numbers of the same
7132type.
7133
7134Semantics:
7135""""""""""
7136
7137This function returns the same values as the libm ``log10`` functions
7138would, and handles error conditions in the same way.
7139
7140'``llvm.log2.*``' Intrinsic
7141^^^^^^^^^^^^^^^^^^^^^^^^^^^
7142
7143Syntax:
7144"""""""
7145
7146This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7147floating point or vector of floating point type. Not all targets support
7148all types however.
7149
7150::
7151
7152 declare float @llvm.log2.f32(float %Val)
7153 declare double @llvm.log2.f64(double %Val)
7154 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7155 declare fp128 @llvm.log2.f128(fp128 %Val)
7156 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.log2.*``' intrinsics perform the log2 function.
7162
7163Arguments:
7164""""""""""
7165
7166The argument and return value are floating point numbers of the same
7167type.
7168
7169Semantics:
7170""""""""""
7171
7172This function returns the same values as the libm ``log2`` functions
7173would, and handles error conditions in the same way.
7174
7175'``llvm.fma.*``' Intrinsic
7176^^^^^^^^^^^^^^^^^^^^^^^^^^
7177
7178Syntax:
7179"""""""
7180
7181This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7182floating point or vector of floating point type. Not all targets support
7183all types however.
7184
7185::
7186
7187 declare float @llvm.fma.f32(float %a, float %b, float %c)
7188 declare double @llvm.fma.f64(double %a, double %b, double %c)
7189 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7190 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7191 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7192
7193Overview:
7194"""""""""
7195
7196The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7197operation.
7198
7199Arguments:
7200""""""""""
7201
7202The argument and return value are floating point numbers of the same
7203type.
7204
7205Semantics:
7206""""""""""
7207
7208This function returns the same values as the libm ``fma`` functions
7209would.
7210
7211'``llvm.fabs.*``' Intrinsic
7212^^^^^^^^^^^^^^^^^^^^^^^^^^^
7213
7214Syntax:
7215"""""""
7216
7217This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7218floating point or vector of floating point type. Not all targets support
7219all types however.
7220
7221::
7222
7223 declare float @llvm.fabs.f32(float %Val)
7224 declare double @llvm.fabs.f64(double %Val)
7225 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7226 declare fp128 @llvm.fabs.f128(fp128 %Val)
7227 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7228
7229Overview:
7230"""""""""
7231
7232The '``llvm.fabs.*``' intrinsics return the absolute value of the
7233operand.
7234
7235Arguments:
7236""""""""""
7237
7238The argument and return value are floating point numbers of the same
7239type.
7240
7241Semantics:
7242""""""""""
7243
7244This function returns the same values as the libm ``fabs`` functions
7245would, and handles error conditions in the same way.
7246
7247'``llvm.floor.*``' Intrinsic
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7254floating point or vector of floating point type. Not all targets support
7255all types however.
7256
7257::
7258
7259 declare float @llvm.floor.f32(float %Val)
7260 declare double @llvm.floor.f64(double %Val)
7261 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7262 declare fp128 @llvm.floor.f128(fp128 %Val)
7263 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7264
7265Overview:
7266"""""""""
7267
7268The '``llvm.floor.*``' intrinsics return the floor of the operand.
7269
7270Arguments:
7271""""""""""
7272
7273The argument and return value are floating point numbers of the same
7274type.
7275
7276Semantics:
7277""""""""""
7278
7279This function returns the same values as the libm ``floor`` functions
7280would, and handles error conditions in the same way.
7281
7282'``llvm.ceil.*``' Intrinsic
7283^^^^^^^^^^^^^^^^^^^^^^^^^^^
7284
7285Syntax:
7286"""""""
7287
7288This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7289floating point or vector of floating point type. Not all targets support
7290all types however.
7291
7292::
7293
7294 declare float @llvm.ceil.f32(float %Val)
7295 declare double @llvm.ceil.f64(double %Val)
7296 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7297 declare fp128 @llvm.ceil.f128(fp128 %Val)
7298 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7299
7300Overview:
7301"""""""""
7302
7303The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7304
7305Arguments:
7306""""""""""
7307
7308The argument and return value are floating point numbers of the same
7309type.
7310
7311Semantics:
7312""""""""""
7313
7314This function returns the same values as the libm ``ceil`` functions
7315would, and handles error conditions in the same way.
7316
7317'``llvm.trunc.*``' Intrinsic
7318^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7319
7320Syntax:
7321"""""""
7322
7323This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7324floating point or vector of floating point type. Not all targets support
7325all types however.
7326
7327::
7328
7329 declare float @llvm.trunc.f32(float %Val)
7330 declare double @llvm.trunc.f64(double %Val)
7331 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7332 declare fp128 @llvm.trunc.f128(fp128 %Val)
7333 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7334
7335Overview:
7336"""""""""
7337
7338The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7339nearest integer not larger in magnitude than the operand.
7340
7341Arguments:
7342""""""""""
7343
7344The argument and return value are floating point numbers of the same
7345type.
7346
7347Semantics:
7348""""""""""
7349
7350This function returns the same values as the libm ``trunc`` functions
7351would, and handles error conditions in the same way.
7352
7353'``llvm.rint.*``' Intrinsic
7354^^^^^^^^^^^^^^^^^^^^^^^^^^^
7355
7356Syntax:
7357"""""""
7358
7359This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7360floating point or vector of floating point type. Not all targets support
7361all types however.
7362
7363::
7364
7365 declare float @llvm.rint.f32(float %Val)
7366 declare double @llvm.rint.f64(double %Val)
7367 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7368 declare fp128 @llvm.rint.f128(fp128 %Val)
7369 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7370
7371Overview:
7372"""""""""
7373
7374The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7375nearest integer. It may raise an inexact floating-point exception if the
7376operand isn't an integer.
7377
7378Arguments:
7379""""""""""
7380
7381The argument and return value are floating point numbers of the same
7382type.
7383
7384Semantics:
7385""""""""""
7386
7387This function returns the same values as the libm ``rint`` functions
7388would, and handles error conditions in the same way.
7389
7390'``llvm.nearbyint.*``' Intrinsic
7391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7392
7393Syntax:
7394"""""""
7395
7396This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7397floating point or vector of floating point type. Not all targets support
7398all types however.
7399
7400::
7401
7402 declare float @llvm.nearbyint.f32(float %Val)
7403 declare double @llvm.nearbyint.f64(double %Val)
7404 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7405 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7406 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7407
7408Overview:
7409"""""""""
7410
7411The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7412nearest integer.
7413
7414Arguments:
7415""""""""""
7416
7417The argument and return value are floating point numbers of the same
7418type.
7419
7420Semantics:
7421""""""""""
7422
7423This function returns the same values as the libm ``nearbyint``
7424functions would, and handles error conditions in the same way.
7425
7426Bit Manipulation Intrinsics
7427---------------------------
7428
7429LLVM provides intrinsics for a few important bit manipulation
7430operations. These allow efficient code generation for some algorithms.
7431
7432'``llvm.bswap.*``' Intrinsics
7433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7434
7435Syntax:
7436"""""""
7437
7438This is an overloaded intrinsic function. You can use bswap on any
7439integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7440
7441::
7442
7443 declare i16 @llvm.bswap.i16(i16 <id>)
7444 declare i32 @llvm.bswap.i32(i32 <id>)
7445 declare i64 @llvm.bswap.i64(i64 <id>)
7446
7447Overview:
7448"""""""""
7449
7450The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7451values with an even number of bytes (positive multiple of 16 bits).
7452These are useful for performing operations on data that is not in the
7453target's native byte order.
7454
7455Semantics:
7456""""""""""
7457
7458The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7459and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7460intrinsic returns an i32 value that has the four bytes of the input i32
7461swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7462returned i32 will have its bytes in 3, 2, 1, 0 order. The
7463``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7464concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7465respectively).
7466
7467'``llvm.ctpop.*``' Intrinsic
7468^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7469
7470Syntax:
7471"""""""
7472
7473This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7474bit width, or on any vector with integer elements. Not all targets
7475support all bit widths or vector types, however.
7476
7477::
7478
7479 declare i8 @llvm.ctpop.i8(i8 <src>)
7480 declare i16 @llvm.ctpop.i16(i16 <src>)
7481 declare i32 @llvm.ctpop.i32(i32 <src>)
7482 declare i64 @llvm.ctpop.i64(i64 <src>)
7483 declare i256 @llvm.ctpop.i256(i256 <src>)
7484 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7485
7486Overview:
7487"""""""""
7488
7489The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7490in a value.
7491
7492Arguments:
7493""""""""""
7494
7495The only argument is the value to be counted. The argument may be of any
7496integer type, or a vector with integer elements. The return type must
7497match the argument type.
7498
7499Semantics:
7500""""""""""
7501
7502The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7503each element of a vector.
7504
7505'``llvm.ctlz.*``' Intrinsic
7506^^^^^^^^^^^^^^^^^^^^^^^^^^^
7507
7508Syntax:
7509"""""""
7510
7511This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7512integer bit width, or any vector whose elements are integers. Not all
7513targets support all bit widths or vector types, however.
7514
7515::
7516
7517 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7518 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7519 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7520 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7521 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7522 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7523
7524Overview:
7525"""""""""
7526
7527The '``llvm.ctlz``' family of intrinsic functions counts the number of
7528leading zeros in a variable.
7529
7530Arguments:
7531""""""""""
7532
7533The first argument is the value to be counted. This argument may be of
7534any integer type, or a vectory with integer element type. The return
7535type must match the first argument type.
7536
7537The second argument must be a constant and is a flag to indicate whether
7538the intrinsic should ensure that a zero as the first argument produces a
7539defined result. Historically some architectures did not provide a
7540defined result for zero values as efficiently, and many algorithms are
7541now predicated on avoiding zero-value inputs.
7542
7543Semantics:
7544""""""""""
7545
7546The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7547zeros in a variable, or within each element of the vector. If
7548``src == 0`` then the result is the size in bits of the type of ``src``
7549if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7550``llvm.ctlz(i32 2) = 30``.
7551
7552'``llvm.cttz.*``' Intrinsic
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7559integer bit width, or any vector of integer elements. Not all targets
7560support all bit widths or vector types, however.
7561
7562::
7563
7564 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7565 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7566 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7567 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7568 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7569 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7570
7571Overview:
7572"""""""""
7573
7574The '``llvm.cttz``' family of intrinsic functions counts the number of
7575trailing zeros.
7576
7577Arguments:
7578""""""""""
7579
7580The first argument is the value to be counted. This argument may be of
7581any integer type, or a vectory with integer element type. The return
7582type must match the first argument type.
7583
7584The second argument must be a constant and is a flag to indicate whether
7585the intrinsic should ensure that a zero as the first argument produces a
7586defined result. Historically some architectures did not provide a
7587defined result for zero values as efficiently, and many algorithms are
7588now predicated on avoiding zero-value inputs.
7589
7590Semantics:
7591""""""""""
7592
7593The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7594zeros in a variable, or within each element of a vector. If ``src == 0``
7595then the result is the size in bits of the type of ``src`` if
7596``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7597``llvm.cttz(2) = 1``.
7598
7599Arithmetic with Overflow Intrinsics
7600-----------------------------------
7601
7602LLVM provides intrinsics for some arithmetic with overflow operations.
7603
7604'``llvm.sadd.with.overflow.*``' Intrinsics
7605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7606
7607Syntax:
7608"""""""
7609
7610This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7611on any integer bit width.
7612
7613::
7614
7615 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7616 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7617 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7618
7619Overview:
7620"""""""""
7621
7622The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7623a signed addition of the two arguments, and indicate whether an overflow
7624occurred during the signed summation.
7625
7626Arguments:
7627""""""""""
7628
7629The arguments (%a and %b) and the first element of the result structure
7630may be of integer types of any bit width, but they must have the same
7631bit width. The second element of the result structure must be of type
7632``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7633addition.
7634
7635Semantics:
7636""""""""""
7637
7638The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007639a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007640first element of which is the signed summation, and the second element
7641of which is a bit specifying if the signed summation resulted in an
7642overflow.
7643
7644Examples:
7645"""""""""
7646
7647.. code-block:: llvm
7648
7649 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7650 %sum = extractvalue {i32, i1} %res, 0
7651 %obit = extractvalue {i32, i1} %res, 1
7652 br i1 %obit, label %overflow, label %normal
7653
7654'``llvm.uadd.with.overflow.*``' Intrinsics
7655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7656
7657Syntax:
7658"""""""
7659
7660This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7661on any integer bit width.
7662
7663::
7664
7665 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7666 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7667 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7673an unsigned addition of the two arguments, and indicate whether a carry
7674occurred during the unsigned summation.
7675
7676Arguments:
7677""""""""""
7678
7679The arguments (%a and %b) and the first element of the result structure
7680may be of integer types of any bit width, but they must have the same
7681bit width. The second element of the result structure must be of type
7682``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7683addition.
7684
7685Semantics:
7686""""""""""
7687
7688The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007689an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007690first element of which is the sum, and the second element of which is a
7691bit specifying if the unsigned summation resulted in a carry.
7692
7693Examples:
7694"""""""""
7695
7696.. code-block:: llvm
7697
7698 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7699 %sum = extractvalue {i32, i1} %res, 0
7700 %obit = extractvalue {i32, i1} %res, 1
7701 br i1 %obit, label %carry, label %normal
7702
7703'``llvm.ssub.with.overflow.*``' Intrinsics
7704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7705
7706Syntax:
7707"""""""
7708
7709This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7710on any integer bit width.
7711
7712::
7713
7714 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7715 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7716 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7717
7718Overview:
7719"""""""""
7720
7721The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7722a signed subtraction of the two arguments, and indicate whether an
7723overflow occurred during the signed subtraction.
7724
7725Arguments:
7726""""""""""
7727
7728The arguments (%a and %b) and the first element of the result structure
7729may be of integer types of any bit width, but they must have the same
7730bit width. The second element of the result structure must be of type
7731``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7732subtraction.
7733
7734Semantics:
7735""""""""""
7736
7737The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007738a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007739first element of which is the subtraction, and the second element of
7740which is a bit specifying if the signed subtraction resulted in an
7741overflow.
7742
7743Examples:
7744"""""""""
7745
7746.. code-block:: llvm
7747
7748 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7749 %sum = extractvalue {i32, i1} %res, 0
7750 %obit = extractvalue {i32, i1} %res, 1
7751 br i1 %obit, label %overflow, label %normal
7752
7753'``llvm.usub.with.overflow.*``' Intrinsics
7754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7755
7756Syntax:
7757"""""""
7758
7759This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7760on any integer bit width.
7761
7762::
7763
7764 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7765 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7766 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7767
7768Overview:
7769"""""""""
7770
7771The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7772an unsigned subtraction of the two arguments, and indicate whether an
7773overflow occurred during the unsigned subtraction.
7774
7775Arguments:
7776""""""""""
7777
7778The arguments (%a and %b) and the first element of the result structure
7779may be of integer types of any bit width, but they must have the same
7780bit width. The second element of the result structure must be of type
7781``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7782subtraction.
7783
7784Semantics:
7785""""""""""
7786
7787The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007788an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007789the first element of which is the subtraction, and the second element of
7790which is a bit specifying if the unsigned subtraction resulted in an
7791overflow.
7792
7793Examples:
7794"""""""""
7795
7796.. code-block:: llvm
7797
7798 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7799 %sum = extractvalue {i32, i1} %res, 0
7800 %obit = extractvalue {i32, i1} %res, 1
7801 br i1 %obit, label %overflow, label %normal
7802
7803'``llvm.smul.with.overflow.*``' Intrinsics
7804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7805
7806Syntax:
7807"""""""
7808
7809This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7810on any integer bit width.
7811
7812::
7813
7814 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7815 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7816 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7817
7818Overview:
7819"""""""""
7820
7821The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7822a signed multiplication of the two arguments, and indicate whether an
7823overflow occurred during the signed multiplication.
7824
7825Arguments:
7826""""""""""
7827
7828The arguments (%a and %b) and the first element of the result structure
7829may be of integer types of any bit width, but they must have the same
7830bit width. The second element of the result structure must be of type
7831``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7832multiplication.
7833
7834Semantics:
7835""""""""""
7836
7837The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007838a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007839the first element of which is the multiplication, and the second element
7840of which is a bit specifying if the signed multiplication resulted in an
7841overflow.
7842
7843Examples:
7844"""""""""
7845
7846.. code-block:: llvm
7847
7848 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7849 %sum = extractvalue {i32, i1} %res, 0
7850 %obit = extractvalue {i32, i1} %res, 1
7851 br i1 %obit, label %overflow, label %normal
7852
7853'``llvm.umul.with.overflow.*``' Intrinsics
7854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7855
7856Syntax:
7857"""""""
7858
7859This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7860on any integer bit width.
7861
7862::
7863
7864 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7865 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7866 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7867
7868Overview:
7869"""""""""
7870
7871The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7872a unsigned multiplication of the two arguments, and indicate whether an
7873overflow occurred during the unsigned multiplication.
7874
7875Arguments:
7876""""""""""
7877
7878The arguments (%a and %b) and the first element of the result structure
7879may be of integer types of any bit width, but they must have the same
7880bit width. The second element of the result structure must be of type
7881``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7882multiplication.
7883
7884Semantics:
7885""""""""""
7886
7887The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007888an unsigned multiplication of the two arguments. They return a structure ---
7889the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007890element of which is a bit specifying if the unsigned multiplication
7891resulted in an overflow.
7892
7893Examples:
7894"""""""""
7895
7896.. code-block:: llvm
7897
7898 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7899 %sum = extractvalue {i32, i1} %res, 0
7900 %obit = extractvalue {i32, i1} %res, 1
7901 br i1 %obit, label %overflow, label %normal
7902
7903Specialised Arithmetic Intrinsics
7904---------------------------------
7905
7906'``llvm.fmuladd.*``' Intrinsic
7907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7908
7909Syntax:
7910"""""""
7911
7912::
7913
7914 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7915 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7916
7917Overview:
7918"""""""""
7919
7920The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007921expressions that can be fused if the code generator determines that (a) the
7922target instruction set has support for a fused operation, and (b) that the
7923fused operation is more efficient than the equivalent, separate pair of mul
7924and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007925
7926Arguments:
7927""""""""""
7928
7929The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7930multiplicands, a and b, and an addend c.
7931
7932Semantics:
7933""""""""""
7934
7935The expression:
7936
7937::
7938
7939 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7940
7941is equivalent to the expression a \* b + c, except that rounding will
7942not be performed between the multiplication and addition steps if the
7943code generator fuses the operations. Fusion is not guaranteed, even if
7944the target platform supports it. If a fused multiply-add is required the
7945corresponding llvm.fma.\* intrinsic function should be used instead.
7946
7947Examples:
7948"""""""""
7949
7950.. code-block:: llvm
7951
7952 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7953
7954Half Precision Floating Point Intrinsics
7955----------------------------------------
7956
7957For most target platforms, half precision floating point is a
7958storage-only format. This means that it is a dense encoding (in memory)
7959but does not support computation in the format.
7960
7961This means that code must first load the half-precision floating point
7962value as an i16, then convert it to float with
7963:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7964then be performed on the float value (including extending to double
7965etc). To store the value back to memory, it is first converted to float
7966if needed, then converted to i16 with
7967:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7968i16 value.
7969
7970.. _int_convert_to_fp16:
7971
7972'``llvm.convert.to.fp16``' Intrinsic
7973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7974
7975Syntax:
7976"""""""
7977
7978::
7979
7980 declare i16 @llvm.convert.to.fp16(f32 %a)
7981
7982Overview:
7983"""""""""
7984
7985The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7986from single precision floating point format to half precision floating
7987point format.
7988
7989Arguments:
7990""""""""""
7991
7992The intrinsic function contains single argument - the value to be
7993converted.
7994
7995Semantics:
7996""""""""""
7997
7998The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7999from single precision floating point format to half precision floating
8000point format. The return value is an ``i16`` which contains the
8001converted number.
8002
8003Examples:
8004"""""""""
8005
8006.. code-block:: llvm
8007
8008 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8009 store i16 %res, i16* @x, align 2
8010
8011.. _int_convert_from_fp16:
8012
8013'``llvm.convert.from.fp16``' Intrinsic
8014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8015
8016Syntax:
8017"""""""
8018
8019::
8020
8021 declare f32 @llvm.convert.from.fp16(i16 %a)
8022
8023Overview:
8024"""""""""
8025
8026The '``llvm.convert.from.fp16``' intrinsic function performs a
8027conversion from half precision floating point format to single precision
8028floating point format.
8029
8030Arguments:
8031""""""""""
8032
8033The intrinsic function contains single argument - the value to be
8034converted.
8035
8036Semantics:
8037""""""""""
8038
8039The '``llvm.convert.from.fp16``' intrinsic function performs a
8040conversion from half single precision floating point format to single
8041precision floating point format. The input half-float value is
8042represented by an ``i16`` value.
8043
8044Examples:
8045"""""""""
8046
8047.. code-block:: llvm
8048
8049 %a = load i16* @x, align 2
8050 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8051
8052Debugger Intrinsics
8053-------------------
8054
8055The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8056prefix), are described in the `LLVM Source Level
8057Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8058document.
8059
8060Exception Handling Intrinsics
8061-----------------------------
8062
8063The LLVM exception handling intrinsics (which all start with
8064``llvm.eh.`` prefix), are described in the `LLVM Exception
8065Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8066
8067.. _int_trampoline:
8068
8069Trampoline Intrinsics
8070---------------------
8071
8072These intrinsics make it possible to excise one parameter, marked with
8073the :ref:`nest <nest>` attribute, from a function. The result is a
8074callable function pointer lacking the nest parameter - the caller does
8075not need to provide a value for it. Instead, the value to use is stored
8076in advance in a "trampoline", a block of memory usually allocated on the
8077stack, which also contains code to splice the nest value into the
8078argument list. This is used to implement the GCC nested function address
8079extension.
8080
8081For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8082then the resulting function pointer has signature ``i32 (i32, i32)*``.
8083It can be created as follows:
8084
8085.. code-block:: llvm
8086
8087 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8088 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8089 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8090 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8091 %fp = bitcast i8* %p to i32 (i32, i32)*
8092
8093The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8094``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8095
8096.. _int_it:
8097
8098'``llvm.init.trampoline``' Intrinsic
8099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104::
8105
8106 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8107
8108Overview:
8109"""""""""
8110
8111This fills the memory pointed to by ``tramp`` with executable code,
8112turning it into a trampoline.
8113
8114Arguments:
8115""""""""""
8116
8117The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8118pointers. The ``tramp`` argument must point to a sufficiently large and
8119sufficiently aligned block of memory; this memory is written to by the
8120intrinsic. Note that the size and the alignment are target-specific -
8121LLVM currently provides no portable way of determining them, so a
8122front-end that generates this intrinsic needs to have some
8123target-specific knowledge. The ``func`` argument must hold a function
8124bitcast to an ``i8*``.
8125
8126Semantics:
8127""""""""""
8128
8129The block of memory pointed to by ``tramp`` is filled with target
8130dependent code, turning it into a function. Then ``tramp`` needs to be
8131passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8132be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8133function's signature is the same as that of ``func`` with any arguments
8134marked with the ``nest`` attribute removed. At most one such ``nest``
8135argument is allowed, and it must be of pointer type. Calling the new
8136function is equivalent to calling ``func`` with the same argument list,
8137but with ``nval`` used for the missing ``nest`` argument. If, after
8138calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8139modified, then the effect of any later call to the returned function
8140pointer is undefined.
8141
8142.. _int_at:
8143
8144'``llvm.adjust.trampoline``' Intrinsic
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150::
8151
8152 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8153
8154Overview:
8155"""""""""
8156
8157This performs any required machine-specific adjustment to the address of
8158a trampoline (passed as ``tramp``).
8159
8160Arguments:
8161""""""""""
8162
8163``tramp`` must point to a block of memory which already has trampoline
8164code filled in by a previous call to
8165:ref:`llvm.init.trampoline <int_it>`.
8166
8167Semantics:
8168""""""""""
8169
8170On some architectures the address of the code to be executed needs to be
8171different to the address where the trampoline is actually stored. This
8172intrinsic returns the executable address corresponding to ``tramp``
8173after performing the required machine specific adjustments. The pointer
8174returned can then be :ref:`bitcast and executed <int_trampoline>`.
8175
8176Memory Use Markers
8177------------------
8178
8179This class of intrinsics exists to information about the lifetime of
8180memory objects and ranges where variables are immutable.
8181
8182'``llvm.lifetime.start``' Intrinsic
8183^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8184
8185Syntax:
8186"""""""
8187
8188::
8189
8190 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8191
8192Overview:
8193"""""""""
8194
8195The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8196object's lifetime.
8197
8198Arguments:
8199""""""""""
8200
8201The first argument is a constant integer representing the size of the
8202object, or -1 if it is variable sized. The second argument is a pointer
8203to the object.
8204
8205Semantics:
8206""""""""""
8207
8208This intrinsic indicates that before this point in the code, the value
8209of the memory pointed to by ``ptr`` is dead. This means that it is known
8210to never be used and has an undefined value. A load from the pointer
8211that precedes this intrinsic can be replaced with ``'undef'``.
8212
8213'``llvm.lifetime.end``' Intrinsic
8214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8215
8216Syntax:
8217"""""""
8218
8219::
8220
8221 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8222
8223Overview:
8224"""""""""
8225
8226The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8227object's lifetime.
8228
8229Arguments:
8230""""""""""
8231
8232The first argument is a constant integer representing the size of the
8233object, or -1 if it is variable sized. The second argument is a pointer
8234to the object.
8235
8236Semantics:
8237""""""""""
8238
8239This intrinsic indicates that after this point in the code, the value of
8240the memory pointed to by ``ptr`` is dead. This means that it is known to
8241never be used and has an undefined value. Any stores into the memory
8242object following this intrinsic may be removed as dead.
8243
8244'``llvm.invariant.start``' Intrinsic
8245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8246
8247Syntax:
8248"""""""
8249
8250::
8251
8252 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8253
8254Overview:
8255"""""""""
8256
8257The '``llvm.invariant.start``' intrinsic specifies that the contents of
8258a memory object will not change.
8259
8260Arguments:
8261""""""""""
8262
8263The first argument is a constant integer representing the size of the
8264object, or -1 if it is variable sized. The second argument is a pointer
8265to the object.
8266
8267Semantics:
8268""""""""""
8269
8270This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8271the return value, the referenced memory location is constant and
8272unchanging.
8273
8274'``llvm.invariant.end``' Intrinsic
8275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280::
8281
8282 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8283
8284Overview:
8285"""""""""
8286
8287The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8288memory object are mutable.
8289
8290Arguments:
8291""""""""""
8292
8293The first argument is the matching ``llvm.invariant.start`` intrinsic.
8294The second argument is a constant integer representing the size of the
8295object, or -1 if it is variable sized and the third argument is a
8296pointer to the object.
8297
8298Semantics:
8299""""""""""
8300
8301This intrinsic indicates that the memory is mutable again.
8302
8303General Intrinsics
8304------------------
8305
8306This class of intrinsics is designed to be generic and has no specific
8307purpose.
8308
8309'``llvm.var.annotation``' Intrinsic
8310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8311
8312Syntax:
8313"""""""
8314
8315::
8316
8317 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8318
8319Overview:
8320"""""""""
8321
8322The '``llvm.var.annotation``' intrinsic.
8323
8324Arguments:
8325""""""""""
8326
8327The first argument is a pointer to a value, the second is a pointer to a
8328global string, the third is a pointer to a global string which is the
8329source file name, and the last argument is the line number.
8330
8331Semantics:
8332""""""""""
8333
8334This intrinsic allows annotation of local variables with arbitrary
8335strings. This can be useful for special purpose optimizations that want
8336to look for these annotations. These have no other defined use; they are
8337ignored by code generation and optimization.
8338
8339'``llvm.annotation.*``' Intrinsic
8340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8341
8342Syntax:
8343"""""""
8344
8345This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8346any integer bit width.
8347
8348::
8349
8350 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8351 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8352 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8353 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8354 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8355
8356Overview:
8357"""""""""
8358
8359The '``llvm.annotation``' intrinsic.
8360
8361Arguments:
8362""""""""""
8363
8364The first argument is an integer value (result of some expression), the
8365second is a pointer to a global string, the third is a pointer to a
8366global string which is the source file name, and the last argument is
8367the line number. It returns the value of the first argument.
8368
8369Semantics:
8370""""""""""
8371
8372This intrinsic allows annotations to be put on arbitrary expressions
8373with arbitrary strings. This can be useful for special purpose
8374optimizations that want to look for these annotations. These have no
8375other defined use; they are ignored by code generation and optimization.
8376
8377'``llvm.trap``' Intrinsic
8378^^^^^^^^^^^^^^^^^^^^^^^^^
8379
8380Syntax:
8381"""""""
8382
8383::
8384
8385 declare void @llvm.trap() noreturn nounwind
8386
8387Overview:
8388"""""""""
8389
8390The '``llvm.trap``' intrinsic.
8391
8392Arguments:
8393""""""""""
8394
8395None.
8396
8397Semantics:
8398""""""""""
8399
8400This intrinsic is lowered to the target dependent trap instruction. If
8401the target does not have a trap instruction, this intrinsic will be
8402lowered to a call of the ``abort()`` function.
8403
8404'``llvm.debugtrap``' Intrinsic
8405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8406
8407Syntax:
8408"""""""
8409
8410::
8411
8412 declare void @llvm.debugtrap() nounwind
8413
8414Overview:
8415"""""""""
8416
8417The '``llvm.debugtrap``' intrinsic.
8418
8419Arguments:
8420""""""""""
8421
8422None.
8423
8424Semantics:
8425""""""""""
8426
8427This intrinsic is lowered to code which is intended to cause an
8428execution trap with the intention of requesting the attention of a
8429debugger.
8430
8431'``llvm.stackprotector``' Intrinsic
8432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8433
8434Syntax:
8435"""""""
8436
8437::
8438
8439 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8440
8441Overview:
8442"""""""""
8443
8444The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8445onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8446is placed on the stack before local variables.
8447
8448Arguments:
8449""""""""""
8450
8451The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8452The first argument is the value loaded from the stack guard
8453``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8454enough space to hold the value of the guard.
8455
8456Semantics:
8457""""""""""
8458
8459This intrinsic causes the prologue/epilogue inserter to force the
8460position of the ``AllocaInst`` stack slot to be before local variables
8461on the stack. This is to ensure that if a local variable on the stack is
8462overwritten, it will destroy the value of the guard. When the function
8463exits, the guard on the stack is checked against the original guard. If
8464they are different, then the program aborts by calling the
8465``__stack_chk_fail()`` function.
8466
8467'``llvm.objectsize``' Intrinsic
8468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8469
8470Syntax:
8471"""""""
8472
8473::
8474
8475 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8476 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8477
8478Overview:
8479"""""""""
8480
8481The ``llvm.objectsize`` intrinsic is designed to provide information to
8482the optimizers to determine at compile time whether a) an operation
8483(like memcpy) will overflow a buffer that corresponds to an object, or
8484b) that a runtime check for overflow isn't necessary. An object in this
8485context means an allocation of a specific class, structure, array, or
8486other object.
8487
8488Arguments:
8489""""""""""
8490
8491The ``llvm.objectsize`` intrinsic takes two arguments. The first
8492argument is a pointer to or into the ``object``. The second argument is
8493a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8494or -1 (if false) when the object size is unknown. The second argument
8495only accepts constants.
8496
8497Semantics:
8498""""""""""
8499
8500The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8501the size of the object concerned. If the size cannot be determined at
8502compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8503on the ``min`` argument).
8504
8505'``llvm.expect``' Intrinsic
8506^^^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511::
8512
8513 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8514 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8515
8516Overview:
8517"""""""""
8518
8519The ``llvm.expect`` intrinsic provides information about expected (the
8520most probable) value of ``val``, which can be used by optimizers.
8521
8522Arguments:
8523""""""""""
8524
8525The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8526a value. The second argument is an expected value, this needs to be a
8527constant value, variables are not allowed.
8528
8529Semantics:
8530""""""""""
8531
8532This intrinsic is lowered to the ``val``.
8533
8534'``llvm.donothing``' Intrinsic
8535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8536
8537Syntax:
8538"""""""
8539
8540::
8541
8542 declare void @llvm.donothing() nounwind readnone
8543
8544Overview:
8545"""""""""
8546
8547The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8548only intrinsic that can be called with an invoke instruction.
8549
8550Arguments:
8551""""""""""
8552
8553None.
8554
8555Semantics:
8556""""""""""
8557
8558This intrinsic does nothing, and it's removed by optimizers and ignored
8559by codegen.