blob: c3b776ea01f58b54d36f143545df601624cc0288 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesmanf5735882013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000504By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000511
Sean Silvaf722b002012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
722 attribute for return values.
723
724.. _gc:
725
726Garbage Collector Names
727-----------------------
728
729Each function may specify a garbage collector name, which is simply a
730string:
731
732.. code-block:: llvm
733
734 define void @f() gc "name" { ... }
735
736The compiler declares the supported values of *name*. Specifying a
737collector which will cause the compiler to alter its output in order to
738support the named garbage collection algorithm.
739
Bill Wendling95ce4c22013-02-06 06:52:58 +0000740.. _attrgrp:
741
742Attribute Groups
743----------------
744
745Attribute groups are groups of attributes that are referenced by objects within
746the IR. They are important for keeping ``.ll`` files readable, because a lot of
747functions will use the same set of attributes. In the degenerative case of a
748``.ll`` file that corresponds to a single ``.c`` file, the single attribute
749group will capture the important command line flags used to build that file.
750
751An attribute group is a module-level object. To use an attribute group, an
752object references the attribute group's ID (e.g. ``#37``). An object may refer
753to more than one attribute group. In that situation, the attributes from the
754different groups are merged.
755
756Here is an example of attribute groups for a function that should always be
757inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
758
759.. code-block:: llvm
760
761 ; Target-independent attributes:
762 #0 = attributes { alwaysinline alignstack=4 }
763
764 ; Target-dependent attributes:
765 #1 = attributes { "no-sse" }
766
767 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
768 define void @f() #0 #1 { ... }
769
Sean Silvaf722b002012-12-07 10:36:55 +0000770.. _fnattrs:
771
772Function Attributes
773-------------------
774
775Function attributes are set to communicate additional information about
776a function. Function attributes are considered to be part of the
777function, not of the function type, so functions with different function
778attributes can have the same function type.
779
780Function attributes are simple keywords that follow the type specified.
781If multiple attributes are needed, they are space separated. For
782example:
783
784.. code-block:: llvm
785
786 define void @f() noinline { ... }
787 define void @f() alwaysinline { ... }
788 define void @f() alwaysinline optsize { ... }
789 define void @f() optsize { ... }
790
791``address_safety``
792 This attribute indicates that the address safety analysis is enabled
793 for this function.
794``alignstack(<n>)``
795 This attribute indicates that, when emitting the prologue and
796 epilogue, the backend should forcibly align the stack pointer.
797 Specify the desired alignment, which must be a power of two, in
798 parentheses.
799``alwaysinline``
800 This attribute indicates that the inliner should attempt to inline
801 this function into callers whenever possible, ignoring any active
802 inlining size threshold for this caller.
803``nonlazybind``
804 This attribute suppresses lazy symbol binding for the function. This
805 may make calls to the function faster, at the cost of extra program
806 startup time if the function is not called during program startup.
807``inlinehint``
808 This attribute indicates that the source code contained a hint that
809 inlining this function is desirable (such as the "inline" keyword in
810 C/C++). It is just a hint; it imposes no requirements on the
811 inliner.
812``naked``
813 This attribute disables prologue / epilogue emission for the
814 function. This can have very system-specific consequences.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000815``noduplicate``
816 This attribute indicates that calls to the function cannot be
817 duplicated. A call to a ``noduplicate`` function may be moved
818 within its parent function, but may not be duplicated within
819 its parent function.
820
821 A function containing a ``noduplicate`` call may still
822 be an inlining candidate, provided that the call is not
823 duplicated by inlining. That implies that the function has
824 internal linkage and only has one call site, so the original
825 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000826``noimplicitfloat``
827 This attributes disables implicit floating point instructions.
828``noinline``
829 This attribute indicates that the inliner should never inline this
830 function in any situation. This attribute may not be used together
831 with the ``alwaysinline`` attribute.
832``noredzone``
833 This attribute indicates that the code generator should not use a
834 red zone, even if the target-specific ABI normally permits it.
835``noreturn``
836 This function attribute indicates that the function never returns
837 normally. This produces undefined behavior at runtime if the
838 function ever does dynamically return.
839``nounwind``
840 This function attribute indicates that the function never returns
841 with an unwind or exceptional control flow. If the function does
842 unwind, its runtime behavior is undefined.
843``optsize``
844 This attribute suggests that optimization passes and code generator
845 passes make choices that keep the code size of this function low,
846 and otherwise do optimizations specifically to reduce code size.
847``readnone``
848 This attribute indicates that the function computes its result (or
849 decides to unwind an exception) based strictly on its arguments,
850 without dereferencing any pointer arguments or otherwise accessing
851 any mutable state (e.g. memory, control registers, etc) visible to
852 caller functions. It does not write through any pointer arguments
853 (including ``byval`` arguments) and never changes any state visible
854 to callers. This means that it cannot unwind exceptions by calling
855 the ``C++`` exception throwing methods.
856``readonly``
857 This attribute indicates that the function does not write through
858 any pointer arguments (including ``byval`` arguments) or otherwise
859 modify any state (e.g. memory, control registers, etc) visible to
860 caller functions. It may dereference pointer arguments and read
861 state that may be set in the caller. A readonly function always
862 returns the same value (or unwinds an exception identically) when
863 called with the same set of arguments and global state. It cannot
864 unwind an exception by calling the ``C++`` exception throwing
865 methods.
866``returns_twice``
867 This attribute indicates that this function can return twice. The C
868 ``setjmp`` is an example of such a function. The compiler disables
869 some optimizations (like tail calls) in the caller of these
870 functions.
871``ssp``
872 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000873 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000874 placed on the stack before the local variables that's checked upon
875 return from the function to see if it has been overwritten. A
876 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000877 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000878
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000879 - Character arrays larger than ``ssp-buffer-size`` (default 8).
880 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
881 - Calls to alloca() with variable sizes or constant sizes greater than
882 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000883
884 If a function that has an ``ssp`` attribute is inlined into a
885 function that doesn't have an ``ssp`` attribute, then the resulting
886 function will have an ``ssp`` attribute.
887``sspreq``
888 This attribute indicates that the function should *always* emit a
889 stack smashing protector. This overrides the ``ssp`` function
890 attribute.
891
892 If a function that has an ``sspreq`` attribute is inlined into a
893 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000894 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
895 an ``sspreq`` attribute.
896``sspstrong``
897 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000898 protector. This attribute causes a strong heuristic to be used when
899 determining if a function needs stack protectors. The strong heuristic
900 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000901
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000902 - Arrays of any size and type
903 - Aggregates containing an array of any size and type.
904 - Calls to alloca().
905 - Local variables that have had their address taken.
906
907 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000908
909 If a function that has an ``sspstrong`` attribute is inlined into a
910 function that doesn't have an ``sspstrong`` attribute, then the
911 resulting function will have an ``sspstrong`` attribute.
Kostya Serebryanyab39afa2013-02-11 08:13:54 +0000912``thread_safety``
913 This attribute indicates that the thread safety analysis is enabled
914 for this function.
915``uninitialized_checks``
916 This attribute indicates that the checks for uses of uninitialized
917 memory are enabled.
Sean Silvaf722b002012-12-07 10:36:55 +0000918``uwtable``
919 This attribute indicates that the ABI being targeted requires that
920 an unwind table entry be produce for this function even if we can
921 show that no exceptions passes by it. This is normally the case for
922 the ELF x86-64 abi, but it can be disabled for some compilation
923 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000924
925.. _moduleasm:
926
927Module-Level Inline Assembly
928----------------------------
929
930Modules may contain "module-level inline asm" blocks, which corresponds
931to the GCC "file scope inline asm" blocks. These blocks are internally
932concatenated by LLVM and treated as a single unit, but may be separated
933in the ``.ll`` file if desired. The syntax is very simple:
934
935.. code-block:: llvm
936
937 module asm "inline asm code goes here"
938 module asm "more can go here"
939
940The strings can contain any character by escaping non-printable
941characters. The escape sequence used is simply "\\xx" where "xx" is the
942two digit hex code for the number.
943
944The inline asm code is simply printed to the machine code .s file when
945assembly code is generated.
946
947Data Layout
948-----------
949
950A module may specify a target specific data layout string that specifies
951how data is to be laid out in memory. The syntax for the data layout is
952simply:
953
954.. code-block:: llvm
955
956 target datalayout = "layout specification"
957
958The *layout specification* consists of a list of specifications
959separated by the minus sign character ('-'). Each specification starts
960with a letter and may include other information after the letter to
961define some aspect of the data layout. The specifications accepted are
962as follows:
963
964``E``
965 Specifies that the target lays out data in big-endian form. That is,
966 the bits with the most significance have the lowest address
967 location.
968``e``
969 Specifies that the target lays out data in little-endian form. That
970 is, the bits with the least significance have the lowest address
971 location.
972``S<size>``
973 Specifies the natural alignment of the stack in bits. Alignment
974 promotion of stack variables is limited to the natural stack
975 alignment to avoid dynamic stack realignment. The stack alignment
976 must be a multiple of 8-bits. If omitted, the natural stack
977 alignment defaults to "unspecified", which does not prevent any
978 alignment promotions.
979``p[n]:<size>:<abi>:<pref>``
980 This specifies the *size* of a pointer and its ``<abi>`` and
981 ``<pref>``\erred alignments for address space ``n``. All sizes are in
982 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
983 preceding ``:`` should be omitted too. The address space, ``n`` is
984 optional, and if not specified, denotes the default address space 0.
985 The value of ``n`` must be in the range [1,2^23).
986``i<size>:<abi>:<pref>``
987 This specifies the alignment for an integer type of a given bit
988 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
989``v<size>:<abi>:<pref>``
990 This specifies the alignment for a vector type of a given bit
991 ``<size>``.
992``f<size>:<abi>:<pref>``
993 This specifies the alignment for a floating point type of a given bit
994 ``<size>``. Only values of ``<size>`` that are supported by the target
995 will work. 32 (float) and 64 (double) are supported on all targets; 80
996 or 128 (different flavors of long double) are also supported on some
997 targets.
998``a<size>:<abi>:<pref>``
999 This specifies the alignment for an aggregate type of a given bit
1000 ``<size>``.
1001``s<size>:<abi>:<pref>``
1002 This specifies the alignment for a stack object of a given bit
1003 ``<size>``.
1004``n<size1>:<size2>:<size3>...``
1005 This specifies a set of native integer widths for the target CPU in
1006 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1007 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1008 this set are considered to support most general arithmetic operations
1009 efficiently.
1010
1011When constructing the data layout for a given target, LLVM starts with a
1012default set of specifications which are then (possibly) overridden by
1013the specifications in the ``datalayout`` keyword. The default
1014specifications are given in this list:
1015
1016- ``E`` - big endian
1017- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001018- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001019- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1020- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1021- ``i16:16:16`` - i16 is 16-bit aligned
1022- ``i32:32:32`` - i32 is 32-bit aligned
1023- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1024 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001025- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001026- ``f32:32:32`` - float is 32-bit aligned
1027- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001028- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001029- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1030- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001031- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001032
1033When LLVM is determining the alignment for a given type, it uses the
1034following rules:
1035
1036#. If the type sought is an exact match for one of the specifications,
1037 that specification is used.
1038#. If no match is found, and the type sought is an integer type, then
1039 the smallest integer type that is larger than the bitwidth of the
1040 sought type is used. If none of the specifications are larger than
1041 the bitwidth then the largest integer type is used. For example,
1042 given the default specifications above, the i7 type will use the
1043 alignment of i8 (next largest) while both i65 and i256 will use the
1044 alignment of i64 (largest specified).
1045#. If no match is found, and the type sought is a vector type, then the
1046 largest vector type that is smaller than the sought vector type will
1047 be used as a fall back. This happens because <128 x double> can be
1048 implemented in terms of 64 <2 x double>, for example.
1049
1050The function of the data layout string may not be what you expect.
1051Notably, this is not a specification from the frontend of what alignment
1052the code generator should use.
1053
1054Instead, if specified, the target data layout is required to match what
1055the ultimate *code generator* expects. This string is used by the
1056mid-level optimizers to improve code, and this only works if it matches
1057what the ultimate code generator uses. If you would like to generate IR
1058that does not embed this target-specific detail into the IR, then you
1059don't have to specify the string. This will disable some optimizations
1060that require precise layout information, but this also prevents those
1061optimizations from introducing target specificity into the IR.
1062
1063.. _pointeraliasing:
1064
1065Pointer Aliasing Rules
1066----------------------
1067
1068Any memory access must be done through a pointer value associated with
1069an address range of the memory access, otherwise the behavior is
1070undefined. Pointer values are associated with address ranges according
1071to the following rules:
1072
1073- A pointer value is associated with the addresses associated with any
1074 value it is *based* on.
1075- An address of a global variable is associated with the address range
1076 of the variable's storage.
1077- The result value of an allocation instruction is associated with the
1078 address range of the allocated storage.
1079- A null pointer in the default address-space is associated with no
1080 address.
1081- An integer constant other than zero or a pointer value returned from
1082 a function not defined within LLVM may be associated with address
1083 ranges allocated through mechanisms other than those provided by
1084 LLVM. Such ranges shall not overlap with any ranges of addresses
1085 allocated by mechanisms provided by LLVM.
1086
1087A pointer value is *based* on another pointer value according to the
1088following rules:
1089
1090- A pointer value formed from a ``getelementptr`` operation is *based*
1091 on the first operand of the ``getelementptr``.
1092- The result value of a ``bitcast`` is *based* on the operand of the
1093 ``bitcast``.
1094- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1095 values that contribute (directly or indirectly) to the computation of
1096 the pointer's value.
1097- The "*based* on" relationship is transitive.
1098
1099Note that this definition of *"based"* is intentionally similar to the
1100definition of *"based"* in C99, though it is slightly weaker.
1101
1102LLVM IR does not associate types with memory. The result type of a
1103``load`` merely indicates the size and alignment of the memory from
1104which to load, as well as the interpretation of the value. The first
1105operand type of a ``store`` similarly only indicates the size and
1106alignment of the store.
1107
1108Consequently, type-based alias analysis, aka TBAA, aka
1109``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1110:ref:`Metadata <metadata>` may be used to encode additional information
1111which specialized optimization passes may use to implement type-based
1112alias analysis.
1113
1114.. _volatile:
1115
1116Volatile Memory Accesses
1117------------------------
1118
1119Certain memory accesses, such as :ref:`load <i_load>`'s,
1120:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1121marked ``volatile``. The optimizers must not change the number of
1122volatile operations or change their order of execution relative to other
1123volatile operations. The optimizers *may* change the order of volatile
1124operations relative to non-volatile operations. This is not Java's
1125"volatile" and has no cross-thread synchronization behavior.
1126
Andrew Trick9a6dd022013-01-30 21:19:35 +00001127IR-level volatile loads and stores cannot safely be optimized into
1128llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1129flagged volatile. Likewise, the backend should never split or merge
1130target-legal volatile load/store instructions.
1131
Andrew Trick946317d2013-01-31 00:49:39 +00001132.. admonition:: Rationale
1133
1134 Platforms may rely on volatile loads and stores of natively supported
1135 data width to be executed as single instruction. For example, in C
1136 this holds for an l-value of volatile primitive type with native
1137 hardware support, but not necessarily for aggregate types. The
1138 frontend upholds these expectations, which are intentionally
1139 unspecified in the IR. The rules above ensure that IR transformation
1140 do not violate the frontend's contract with the language.
1141
Sean Silvaf722b002012-12-07 10:36:55 +00001142.. _memmodel:
1143
1144Memory Model for Concurrent Operations
1145--------------------------------------
1146
1147The LLVM IR does not define any way to start parallel threads of
1148execution or to register signal handlers. Nonetheless, there are
1149platform-specific ways to create them, and we define LLVM IR's behavior
1150in their presence. This model is inspired by the C++0x memory model.
1151
1152For a more informal introduction to this model, see the :doc:`Atomics`.
1153
1154We define a *happens-before* partial order as the least partial order
1155that
1156
1157- Is a superset of single-thread program order, and
1158- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1159 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1160 techniques, like pthread locks, thread creation, thread joining,
1161 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1162 Constraints <ordering>`).
1163
1164Note that program order does not introduce *happens-before* edges
1165between a thread and signals executing inside that thread.
1166
1167Every (defined) read operation (load instructions, memcpy, atomic
1168loads/read-modify-writes, etc.) R reads a series of bytes written by
1169(defined) write operations (store instructions, atomic
1170stores/read-modify-writes, memcpy, etc.). For the purposes of this
1171section, initialized globals are considered to have a write of the
1172initializer which is atomic and happens before any other read or write
1173of the memory in question. For each byte of a read R, R\ :sub:`byte`
1174may see any write to the same byte, except:
1175
1176- If write\ :sub:`1` happens before write\ :sub:`2`, and
1177 write\ :sub:`2` happens before R\ :sub:`byte`, then
1178 R\ :sub:`byte` does not see write\ :sub:`1`.
1179- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1180 R\ :sub:`byte` does not see write\ :sub:`3`.
1181
1182Given that definition, R\ :sub:`byte` is defined as follows:
1183
1184- If R is volatile, the result is target-dependent. (Volatile is
1185 supposed to give guarantees which can support ``sig_atomic_t`` in
1186 C/C++, and may be used for accesses to addresses which do not behave
1187 like normal memory. It does not generally provide cross-thread
1188 synchronization.)
1189- Otherwise, if there is no write to the same byte that happens before
1190 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1191- Otherwise, if R\ :sub:`byte` may see exactly one write,
1192 R\ :sub:`byte` returns the value written by that write.
1193- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1194 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1195 Memory Ordering Constraints <ordering>` section for additional
1196 constraints on how the choice is made.
1197- Otherwise R\ :sub:`byte` returns ``undef``.
1198
1199R returns the value composed of the series of bytes it read. This
1200implies that some bytes within the value may be ``undef`` **without**
1201the entire value being ``undef``. Note that this only defines the
1202semantics of the operation; it doesn't mean that targets will emit more
1203than one instruction to read the series of bytes.
1204
1205Note that in cases where none of the atomic intrinsics are used, this
1206model places only one restriction on IR transformations on top of what
1207is required for single-threaded execution: introducing a store to a byte
1208which might not otherwise be stored is not allowed in general.
1209(Specifically, in the case where another thread might write to and read
1210from an address, introducing a store can change a load that may see
1211exactly one write into a load that may see multiple writes.)
1212
1213.. _ordering:
1214
1215Atomic Memory Ordering Constraints
1216----------------------------------
1217
1218Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1219:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1220:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1221an ordering parameter that determines which other atomic instructions on
1222the same address they *synchronize with*. These semantics are borrowed
1223from Java and C++0x, but are somewhat more colloquial. If these
1224descriptions aren't precise enough, check those specs (see spec
1225references in the :doc:`atomics guide <Atomics>`).
1226:ref:`fence <i_fence>` instructions treat these orderings somewhat
1227differently since they don't take an address. See that instruction's
1228documentation for details.
1229
1230For a simpler introduction to the ordering constraints, see the
1231:doc:`Atomics`.
1232
1233``unordered``
1234 The set of values that can be read is governed by the happens-before
1235 partial order. A value cannot be read unless some operation wrote
1236 it. This is intended to provide a guarantee strong enough to model
1237 Java's non-volatile shared variables. This ordering cannot be
1238 specified for read-modify-write operations; it is not strong enough
1239 to make them atomic in any interesting way.
1240``monotonic``
1241 In addition to the guarantees of ``unordered``, there is a single
1242 total order for modifications by ``monotonic`` operations on each
1243 address. All modification orders must be compatible with the
1244 happens-before order. There is no guarantee that the modification
1245 orders can be combined to a global total order for the whole program
1246 (and this often will not be possible). The read in an atomic
1247 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1248 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1249 order immediately before the value it writes. If one atomic read
1250 happens before another atomic read of the same address, the later
1251 read must see the same value or a later value in the address's
1252 modification order. This disallows reordering of ``monotonic`` (or
1253 stronger) operations on the same address. If an address is written
1254 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1255 read that address repeatedly, the other threads must eventually see
1256 the write. This corresponds to the C++0x/C1x
1257 ``memory_order_relaxed``.
1258``acquire``
1259 In addition to the guarantees of ``monotonic``, a
1260 *synchronizes-with* edge may be formed with a ``release`` operation.
1261 This is intended to model C++'s ``memory_order_acquire``.
1262``release``
1263 In addition to the guarantees of ``monotonic``, if this operation
1264 writes a value which is subsequently read by an ``acquire``
1265 operation, it *synchronizes-with* that operation. (This isn't a
1266 complete description; see the C++0x definition of a release
1267 sequence.) This corresponds to the C++0x/C1x
1268 ``memory_order_release``.
1269``acq_rel`` (acquire+release)
1270 Acts as both an ``acquire`` and ``release`` operation on its
1271 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1272``seq_cst`` (sequentially consistent)
1273 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1274 operation which only reads, ``release`` for an operation which only
1275 writes), there is a global total order on all
1276 sequentially-consistent operations on all addresses, which is
1277 consistent with the *happens-before* partial order and with the
1278 modification orders of all the affected addresses. Each
1279 sequentially-consistent read sees the last preceding write to the
1280 same address in this global order. This corresponds to the C++0x/C1x
1281 ``memory_order_seq_cst`` and Java volatile.
1282
1283.. _singlethread:
1284
1285If an atomic operation is marked ``singlethread``, it only *synchronizes
1286with* or participates in modification and seq\_cst total orderings with
1287other operations running in the same thread (for example, in signal
1288handlers).
1289
1290.. _fastmath:
1291
1292Fast-Math Flags
1293---------------
1294
1295LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1296:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1297:ref:`frem <i_frem>`) have the following flags that can set to enable
1298otherwise unsafe floating point operations
1299
1300``nnan``
1301 No NaNs - Allow optimizations to assume the arguments and result are not
1302 NaN. Such optimizations are required to retain defined behavior over
1303 NaNs, but the value of the result is undefined.
1304
1305``ninf``
1306 No Infs - Allow optimizations to assume the arguments and result are not
1307 +/-Inf. Such optimizations are required to retain defined behavior over
1308 +/-Inf, but the value of the result is undefined.
1309
1310``nsz``
1311 No Signed Zeros - Allow optimizations to treat the sign of a zero
1312 argument or result as insignificant.
1313
1314``arcp``
1315 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1316 argument rather than perform division.
1317
1318``fast``
1319 Fast - Allow algebraically equivalent transformations that may
1320 dramatically change results in floating point (e.g. reassociate). This
1321 flag implies all the others.
1322
1323.. _typesystem:
1324
1325Type System
1326===========
1327
1328The LLVM type system is one of the most important features of the
1329intermediate representation. Being typed enables a number of
1330optimizations to be performed on the intermediate representation
1331directly, without having to do extra analyses on the side before the
1332transformation. A strong type system makes it easier to read the
1333generated code and enables novel analyses and transformations that are
1334not feasible to perform on normal three address code representations.
1335
1336Type Classifications
1337--------------------
1338
1339The types fall into a few useful classifications:
1340
1341
1342.. list-table::
1343 :header-rows: 1
1344
1345 * - Classification
1346 - Types
1347
1348 * - :ref:`integer <t_integer>`
1349 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1350 ``i64``, ...
1351
1352 * - :ref:`floating point <t_floating>`
1353 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1354 ``ppc_fp128``
1355
1356
1357 * - first class
1358
1359 .. _t_firstclass:
1360
1361 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1362 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1363 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1364 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1365
1366 * - :ref:`primitive <t_primitive>`
1367 - :ref:`label <t_label>`,
1368 :ref:`void <t_void>`,
1369 :ref:`integer <t_integer>`,
1370 :ref:`floating point <t_floating>`,
1371 :ref:`x86mmx <t_x86mmx>`,
1372 :ref:`metadata <t_metadata>`.
1373
1374 * - :ref:`derived <t_derived>`
1375 - :ref:`array <t_array>`,
1376 :ref:`function <t_function>`,
1377 :ref:`pointer <t_pointer>`,
1378 :ref:`structure <t_struct>`,
1379 :ref:`vector <t_vector>`,
1380 :ref:`opaque <t_opaque>`.
1381
1382The :ref:`first class <t_firstclass>` types are perhaps the most important.
1383Values of these types are the only ones which can be produced by
1384instructions.
1385
1386.. _t_primitive:
1387
1388Primitive Types
1389---------------
1390
1391The primitive types are the fundamental building blocks of the LLVM
1392system.
1393
1394.. _t_integer:
1395
1396Integer Type
1397^^^^^^^^^^^^
1398
1399Overview:
1400"""""""""
1401
1402The integer type is a very simple type that simply specifies an
1403arbitrary bit width for the integer type desired. Any bit width from 1
1404bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1405
1406Syntax:
1407"""""""
1408
1409::
1410
1411 iN
1412
1413The number of bits the integer will occupy is specified by the ``N``
1414value.
1415
1416Examples:
1417"""""""""
1418
1419+----------------+------------------------------------------------+
1420| ``i1`` | a single-bit integer. |
1421+----------------+------------------------------------------------+
1422| ``i32`` | a 32-bit integer. |
1423+----------------+------------------------------------------------+
1424| ``i1942652`` | a really big integer of over 1 million bits. |
1425+----------------+------------------------------------------------+
1426
1427.. _t_floating:
1428
1429Floating Point Types
1430^^^^^^^^^^^^^^^^^^^^
1431
1432.. list-table::
1433 :header-rows: 1
1434
1435 * - Type
1436 - Description
1437
1438 * - ``half``
1439 - 16-bit floating point value
1440
1441 * - ``float``
1442 - 32-bit floating point value
1443
1444 * - ``double``
1445 - 64-bit floating point value
1446
1447 * - ``fp128``
1448 - 128-bit floating point value (112-bit mantissa)
1449
1450 * - ``x86_fp80``
1451 - 80-bit floating point value (X87)
1452
1453 * - ``ppc_fp128``
1454 - 128-bit floating point value (two 64-bits)
1455
1456.. _t_x86mmx:
1457
1458X86mmx Type
1459^^^^^^^^^^^
1460
1461Overview:
1462"""""""""
1463
1464The x86mmx type represents a value held in an MMX register on an x86
1465machine. The operations allowed on it are quite limited: parameters and
1466return values, load and store, and bitcast. User-specified MMX
1467instructions are represented as intrinsic or asm calls with arguments
1468and/or results of this type. There are no arrays, vectors or constants
1469of this type.
1470
1471Syntax:
1472"""""""
1473
1474::
1475
1476 x86mmx
1477
1478.. _t_void:
1479
1480Void Type
1481^^^^^^^^^
1482
1483Overview:
1484"""""""""
1485
1486The void type does not represent any value and has no size.
1487
1488Syntax:
1489"""""""
1490
1491::
1492
1493 void
1494
1495.. _t_label:
1496
1497Label Type
1498^^^^^^^^^^
1499
1500Overview:
1501"""""""""
1502
1503The label type represents code labels.
1504
1505Syntax:
1506"""""""
1507
1508::
1509
1510 label
1511
1512.. _t_metadata:
1513
1514Metadata Type
1515^^^^^^^^^^^^^
1516
1517Overview:
1518"""""""""
1519
1520The metadata type represents embedded metadata. No derived types may be
1521created from metadata except for :ref:`function <t_function>` arguments.
1522
1523Syntax:
1524"""""""
1525
1526::
1527
1528 metadata
1529
1530.. _t_derived:
1531
1532Derived Types
1533-------------
1534
1535The real power in LLVM comes from the derived types in the system. This
1536is what allows a programmer to represent arrays, functions, pointers,
1537and other useful types. Each of these types contain one or more element
1538types which may be a primitive type, or another derived type. For
1539example, it is possible to have a two dimensional array, using an array
1540as the element type of another array.
1541
1542.. _t_aggregate:
1543
1544Aggregate Types
1545^^^^^^^^^^^^^^^
1546
1547Aggregate Types are a subset of derived types that can contain multiple
1548member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1549aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1550aggregate types.
1551
1552.. _t_array:
1553
1554Array Type
1555^^^^^^^^^^
1556
1557Overview:
1558"""""""""
1559
1560The array type is a very simple derived type that arranges elements
1561sequentially in memory. The array type requires a size (number of
1562elements) and an underlying data type.
1563
1564Syntax:
1565"""""""
1566
1567::
1568
1569 [<# elements> x <elementtype>]
1570
1571The number of elements is a constant integer value; ``elementtype`` may
1572be any type with a size.
1573
1574Examples:
1575"""""""""
1576
1577+------------------+--------------------------------------+
1578| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1579+------------------+--------------------------------------+
1580| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1581+------------------+--------------------------------------+
1582| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1583+------------------+--------------------------------------+
1584
1585Here are some examples of multidimensional arrays:
1586
1587+-----------------------------+----------------------------------------------------------+
1588| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1589+-----------------------------+----------------------------------------------------------+
1590| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1591+-----------------------------+----------------------------------------------------------+
1592| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1593+-----------------------------+----------------------------------------------------------+
1594
1595There is no restriction on indexing beyond the end of the array implied
1596by a static type (though there are restrictions on indexing beyond the
1597bounds of an allocated object in some cases). This means that
1598single-dimension 'variable sized array' addressing can be implemented in
1599LLVM with a zero length array type. An implementation of 'pascal style
1600arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1601example.
1602
1603.. _t_function:
1604
1605Function Type
1606^^^^^^^^^^^^^
1607
1608Overview:
1609"""""""""
1610
1611The function type can be thought of as a function signature. It consists
1612of a return type and a list of formal parameter types. The return type
1613of a function type is a first class type or a void type.
1614
1615Syntax:
1616"""""""
1617
1618::
1619
1620 <returntype> (<parameter list>)
1621
1622...where '``<parameter list>``' is a comma-separated list of type
1623specifiers. Optionally, the parameter list may include a type ``...``,
1624which indicates that the function takes a variable number of arguments.
1625Variable argument functions can access their arguments with the
1626:ref:`variable argument handling intrinsic <int_varargs>` functions.
1627'``<returntype>``' is any type except :ref:`label <t_label>`.
1628
1629Examples:
1630"""""""""
1631
1632+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1633| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1634+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001635| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001636+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1637| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1638+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1639| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1640+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1641
1642.. _t_struct:
1643
1644Structure Type
1645^^^^^^^^^^^^^^
1646
1647Overview:
1648"""""""""
1649
1650The structure type is used to represent a collection of data members
1651together in memory. The elements of a structure may be any type that has
1652a size.
1653
1654Structures in memory are accessed using '``load``' and '``store``' by
1655getting a pointer to a field with the '``getelementptr``' instruction.
1656Structures in registers are accessed using the '``extractvalue``' and
1657'``insertvalue``' instructions.
1658
1659Structures may optionally be "packed" structures, which indicate that
1660the alignment of the struct is one byte, and that there is no padding
1661between the elements. In non-packed structs, padding between field types
1662is inserted as defined by the DataLayout string in the module, which is
1663required to match what the underlying code generator expects.
1664
1665Structures can either be "literal" or "identified". A literal structure
1666is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1667identified types are always defined at the top level with a name.
1668Literal types are uniqued by their contents and can never be recursive
1669or opaque since there is no way to write one. Identified types can be
1670recursive, can be opaqued, and are never uniqued.
1671
1672Syntax:
1673"""""""
1674
1675::
1676
1677 %T1 = type { <type list> } ; Identified normal struct type
1678 %T2 = type <{ <type list> }> ; Identified packed struct type
1679
1680Examples:
1681"""""""""
1682
1683+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1684| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1685+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001686| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001687+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1688| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1689+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1690
1691.. _t_opaque:
1692
1693Opaque Structure Types
1694^^^^^^^^^^^^^^^^^^^^^^
1695
1696Overview:
1697"""""""""
1698
1699Opaque structure types are used to represent named structure types that
1700do not have a body specified. This corresponds (for example) to the C
1701notion of a forward declared structure.
1702
1703Syntax:
1704"""""""
1705
1706::
1707
1708 %X = type opaque
1709 %52 = type opaque
1710
1711Examples:
1712"""""""""
1713
1714+--------------+-------------------+
1715| ``opaque`` | An opaque type. |
1716+--------------+-------------------+
1717
1718.. _t_pointer:
1719
1720Pointer Type
1721^^^^^^^^^^^^
1722
1723Overview:
1724"""""""""
1725
1726The pointer type is used to specify memory locations. Pointers are
1727commonly used to reference objects in memory.
1728
1729Pointer types may have an optional address space attribute defining the
1730numbered address space where the pointed-to object resides. The default
1731address space is number zero. The semantics of non-zero address spaces
1732are target-specific.
1733
1734Note that LLVM does not permit pointers to void (``void*``) nor does it
1735permit pointers to labels (``label*``). Use ``i8*`` instead.
1736
1737Syntax:
1738"""""""
1739
1740::
1741
1742 <type> *
1743
1744Examples:
1745"""""""""
1746
1747+-------------------------+--------------------------------------------------------------------------------------------------------------+
1748| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1749+-------------------------+--------------------------------------------------------------------------------------------------------------+
1750| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1751+-------------------------+--------------------------------------------------------------------------------------------------------------+
1752| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1753+-------------------------+--------------------------------------------------------------------------------------------------------------+
1754
1755.. _t_vector:
1756
1757Vector Type
1758^^^^^^^^^^^
1759
1760Overview:
1761"""""""""
1762
1763A vector type is a simple derived type that represents a vector of
1764elements. Vector types are used when multiple primitive data are
1765operated in parallel using a single instruction (SIMD). A vector type
1766requires a size (number of elements) and an underlying primitive data
1767type. Vector types are considered :ref:`first class <t_firstclass>`.
1768
1769Syntax:
1770"""""""
1771
1772::
1773
1774 < <# elements> x <elementtype> >
1775
1776The number of elements is a constant integer value larger than 0;
1777elementtype may be any integer or floating point type, or a pointer to
1778these types. Vectors of size zero are not allowed.
1779
1780Examples:
1781"""""""""
1782
1783+-------------------+--------------------------------------------------+
1784| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1785+-------------------+--------------------------------------------------+
1786| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1787+-------------------+--------------------------------------------------+
1788| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1789+-------------------+--------------------------------------------------+
1790| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1791+-------------------+--------------------------------------------------+
1792
1793Constants
1794=========
1795
1796LLVM has several different basic types of constants. This section
1797describes them all and their syntax.
1798
1799Simple Constants
1800----------------
1801
1802**Boolean constants**
1803 The two strings '``true``' and '``false``' are both valid constants
1804 of the ``i1`` type.
1805**Integer constants**
1806 Standard integers (such as '4') are constants of the
1807 :ref:`integer <t_integer>` type. Negative numbers may be used with
1808 integer types.
1809**Floating point constants**
1810 Floating point constants use standard decimal notation (e.g.
1811 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1812 hexadecimal notation (see below). The assembler requires the exact
1813 decimal value of a floating-point constant. For example, the
1814 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1815 decimal in binary. Floating point constants must have a :ref:`floating
1816 point <t_floating>` type.
1817**Null pointer constants**
1818 The identifier '``null``' is recognized as a null pointer constant
1819 and must be of :ref:`pointer type <t_pointer>`.
1820
1821The one non-intuitive notation for constants is the hexadecimal form of
1822floating point constants. For example, the form
1823'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1824than) '``double 4.5e+15``'. The only time hexadecimal floating point
1825constants are required (and the only time that they are generated by the
1826disassembler) is when a floating point constant must be emitted but it
1827cannot be represented as a decimal floating point number in a reasonable
1828number of digits. For example, NaN's, infinities, and other special
1829values are represented in their IEEE hexadecimal format so that assembly
1830and disassembly do not cause any bits to change in the constants.
1831
1832When using the hexadecimal form, constants of types half, float, and
1833double are represented using the 16-digit form shown above (which
1834matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001835must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001836precision, respectively. Hexadecimal format is always used for long
1837double, and there are three forms of long double. The 80-bit format used
1838by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1839128-bit format used by PowerPC (two adjacent doubles) is represented by
1840``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1841represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1842supported target uses this format. Long doubles will only work if they
1843match the long double format on your target. The IEEE 16-bit format
1844(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1845digits. All hexadecimal formats are big-endian (sign bit at the left).
1846
1847There are no constants of type x86mmx.
1848
1849Complex Constants
1850-----------------
1851
1852Complex constants are a (potentially recursive) combination of simple
1853constants and smaller complex constants.
1854
1855**Structure constants**
1856 Structure constants are represented with notation similar to
1857 structure type definitions (a comma separated list of elements,
1858 surrounded by braces (``{}``)). For example:
1859 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1860 "``@G = external global i32``". Structure constants must have
1861 :ref:`structure type <t_struct>`, and the number and types of elements
1862 must match those specified by the type.
1863**Array constants**
1864 Array constants are represented with notation similar to array type
1865 definitions (a comma separated list of elements, surrounded by
1866 square brackets (``[]``)). For example:
1867 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1868 :ref:`array type <t_array>`, and the number and types of elements must
1869 match those specified by the type.
1870**Vector constants**
1871 Vector constants are represented with notation similar to vector
1872 type definitions (a comma separated list of elements, surrounded by
1873 less-than/greater-than's (``<>``)). For example:
1874 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1875 must have :ref:`vector type <t_vector>`, and the number and types of
1876 elements must match those specified by the type.
1877**Zero initialization**
1878 The string '``zeroinitializer``' can be used to zero initialize a
1879 value to zero of *any* type, including scalar and
1880 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1881 having to print large zero initializers (e.g. for large arrays) and
1882 is always exactly equivalent to using explicit zero initializers.
1883**Metadata node**
1884 A metadata node is a structure-like constant with :ref:`metadata
1885 type <t_metadata>`. For example:
1886 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1887 constants that are meant to be interpreted as part of the
1888 instruction stream, metadata is a place to attach additional
1889 information such as debug info.
1890
1891Global Variable and Function Addresses
1892--------------------------------------
1893
1894The addresses of :ref:`global variables <globalvars>` and
1895:ref:`functions <functionstructure>` are always implicitly valid
1896(link-time) constants. These constants are explicitly referenced when
1897the :ref:`identifier for the global <identifiers>` is used and always have
1898:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1899file:
1900
1901.. code-block:: llvm
1902
1903 @X = global i32 17
1904 @Y = global i32 42
1905 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1906
1907.. _undefvalues:
1908
1909Undefined Values
1910----------------
1911
1912The string '``undef``' can be used anywhere a constant is expected, and
1913indicates that the user of the value may receive an unspecified
1914bit-pattern. Undefined values may be of any type (other than '``label``'
1915or '``void``') and be used anywhere a constant is permitted.
1916
1917Undefined values are useful because they indicate to the compiler that
1918the program is well defined no matter what value is used. This gives the
1919compiler more freedom to optimize. Here are some examples of
1920(potentially surprising) transformations that are valid (in pseudo IR):
1921
1922.. code-block:: llvm
1923
1924 %A = add %X, undef
1925 %B = sub %X, undef
1926 %C = xor %X, undef
1927 Safe:
1928 %A = undef
1929 %B = undef
1930 %C = undef
1931
1932This is safe because all of the output bits are affected by the undef
1933bits. Any output bit can have a zero or one depending on the input bits.
1934
1935.. code-block:: llvm
1936
1937 %A = or %X, undef
1938 %B = and %X, undef
1939 Safe:
1940 %A = -1
1941 %B = 0
1942 Unsafe:
1943 %A = undef
1944 %B = undef
1945
1946These logical operations have bits that are not always affected by the
1947input. For example, if ``%X`` has a zero bit, then the output of the
1948'``and``' operation will always be a zero for that bit, no matter what
1949the corresponding bit from the '``undef``' is. As such, it is unsafe to
1950optimize or assume that the result of the '``and``' is '``undef``'.
1951However, it is safe to assume that all bits of the '``undef``' could be
19520, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1953all the bits of the '``undef``' operand to the '``or``' could be set,
1954allowing the '``or``' to be folded to -1.
1955
1956.. code-block:: llvm
1957
1958 %A = select undef, %X, %Y
1959 %B = select undef, 42, %Y
1960 %C = select %X, %Y, undef
1961 Safe:
1962 %A = %X (or %Y)
1963 %B = 42 (or %Y)
1964 %C = %Y
1965 Unsafe:
1966 %A = undef
1967 %B = undef
1968 %C = undef
1969
1970This set of examples shows that undefined '``select``' (and conditional
1971branch) conditions can go *either way*, but they have to come from one
1972of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1973both known to have a clear low bit, then ``%A`` would have to have a
1974cleared low bit. However, in the ``%C`` example, the optimizer is
1975allowed to assume that the '``undef``' operand could be the same as
1976``%Y``, allowing the whole '``select``' to be eliminated.
1977
1978.. code-block:: llvm
1979
1980 %A = xor undef, undef
1981
1982 %B = undef
1983 %C = xor %B, %B
1984
1985 %D = undef
1986 %E = icmp lt %D, 4
1987 %F = icmp gte %D, 4
1988
1989 Safe:
1990 %A = undef
1991 %B = undef
1992 %C = undef
1993 %D = undef
1994 %E = undef
1995 %F = undef
1996
1997This example points out that two '``undef``' operands are not
1998necessarily the same. This can be surprising to people (and also matches
1999C semantics) where they assume that "``X^X``" is always zero, even if
2000``X`` is undefined. This isn't true for a number of reasons, but the
2001short answer is that an '``undef``' "variable" can arbitrarily change
2002its value over its "live range". This is true because the variable
2003doesn't actually *have a live range*. Instead, the value is logically
2004read from arbitrary registers that happen to be around when needed, so
2005the value is not necessarily consistent over time. In fact, ``%A`` and
2006``%C`` need to have the same semantics or the core LLVM "replace all
2007uses with" concept would not hold.
2008
2009.. code-block:: llvm
2010
2011 %A = fdiv undef, %X
2012 %B = fdiv %X, undef
2013 Safe:
2014 %A = undef
2015 b: unreachable
2016
2017These examples show the crucial difference between an *undefined value*
2018and *undefined behavior*. An undefined value (like '``undef``') is
2019allowed to have an arbitrary bit-pattern. This means that the ``%A``
2020operation can be constant folded to '``undef``', because the '``undef``'
2021could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2022However, in the second example, we can make a more aggressive
2023assumption: because the ``undef`` is allowed to be an arbitrary value,
2024we are allowed to assume that it could be zero. Since a divide by zero
2025has *undefined behavior*, we are allowed to assume that the operation
2026does not execute at all. This allows us to delete the divide and all
2027code after it. Because the undefined operation "can't happen", the
2028optimizer can assume that it occurs in dead code.
2029
2030.. code-block:: llvm
2031
2032 a: store undef -> %X
2033 b: store %X -> undef
2034 Safe:
2035 a: <deleted>
2036 b: unreachable
2037
2038These examples reiterate the ``fdiv`` example: a store *of* an undefined
2039value can be assumed to not have any effect; we can assume that the
2040value is overwritten with bits that happen to match what was already
2041there. However, a store *to* an undefined location could clobber
2042arbitrary memory, therefore, it has undefined behavior.
2043
2044.. _poisonvalues:
2045
2046Poison Values
2047-------------
2048
2049Poison values are similar to :ref:`undef values <undefvalues>`, however
2050they also represent the fact that an instruction or constant expression
2051which cannot evoke side effects has nevertheless detected a condition
2052which results in undefined behavior.
2053
2054There is currently no way of representing a poison value in the IR; they
2055only exist when produced by operations such as :ref:`add <i_add>` with
2056the ``nsw`` flag.
2057
2058Poison value behavior is defined in terms of value *dependence*:
2059
2060- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2061- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2062 their dynamic predecessor basic block.
2063- Function arguments depend on the corresponding actual argument values
2064 in the dynamic callers of their functions.
2065- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2066 instructions that dynamically transfer control back to them.
2067- :ref:`Invoke <i_invoke>` instructions depend on the
2068 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2069 call instructions that dynamically transfer control back to them.
2070- Non-volatile loads and stores depend on the most recent stores to all
2071 of the referenced memory addresses, following the order in the IR
2072 (including loads and stores implied by intrinsics such as
2073 :ref:`@llvm.memcpy <int_memcpy>`.)
2074- An instruction with externally visible side effects depends on the
2075 most recent preceding instruction with externally visible side
2076 effects, following the order in the IR. (This includes :ref:`volatile
2077 operations <volatile>`.)
2078- An instruction *control-depends* on a :ref:`terminator
2079 instruction <terminators>` if the terminator instruction has
2080 multiple successors and the instruction is always executed when
2081 control transfers to one of the successors, and may not be executed
2082 when control is transferred to another.
2083- Additionally, an instruction also *control-depends* on a terminator
2084 instruction if the set of instructions it otherwise depends on would
2085 be different if the terminator had transferred control to a different
2086 successor.
2087- Dependence is transitive.
2088
2089Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2090with the additional affect that any instruction which has a *dependence*
2091on a poison value has undefined behavior.
2092
2093Here are some examples:
2094
2095.. code-block:: llvm
2096
2097 entry:
2098 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2099 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2100 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2101 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2102
2103 store i32 %poison, i32* @g ; Poison value stored to memory.
2104 %poison2 = load i32* @g ; Poison value loaded back from memory.
2105
2106 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2107
2108 %narrowaddr = bitcast i32* @g to i16*
2109 %wideaddr = bitcast i32* @g to i64*
2110 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2111 %poison4 = load i64* %wideaddr ; Returns a poison value.
2112
2113 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2114 br i1 %cmp, label %true, label %end ; Branch to either destination.
2115
2116 true:
2117 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2118 ; it has undefined behavior.
2119 br label %end
2120
2121 end:
2122 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2123 ; Both edges into this PHI are
2124 ; control-dependent on %cmp, so this
2125 ; always results in a poison value.
2126
2127 store volatile i32 0, i32* @g ; This would depend on the store in %true
2128 ; if %cmp is true, or the store in %entry
2129 ; otherwise, so this is undefined behavior.
2130
2131 br i1 %cmp, label %second_true, label %second_end
2132 ; The same branch again, but this time the
2133 ; true block doesn't have side effects.
2134
2135 second_true:
2136 ; No side effects!
2137 ret void
2138
2139 second_end:
2140 store volatile i32 0, i32* @g ; This time, the instruction always depends
2141 ; on the store in %end. Also, it is
2142 ; control-equivalent to %end, so this is
2143 ; well-defined (ignoring earlier undefined
2144 ; behavior in this example).
2145
2146.. _blockaddress:
2147
2148Addresses of Basic Blocks
2149-------------------------
2150
2151``blockaddress(@function, %block)``
2152
2153The '``blockaddress``' constant computes the address of the specified
2154basic block in the specified function, and always has an ``i8*`` type.
2155Taking the address of the entry block is illegal.
2156
2157This value only has defined behavior when used as an operand to the
2158':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2159against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002160undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002161no label is equal to the null pointer. This may be passed around as an
2162opaque pointer sized value as long as the bits are not inspected. This
2163allows ``ptrtoint`` and arithmetic to be performed on these values so
2164long as the original value is reconstituted before the ``indirectbr``
2165instruction.
2166
2167Finally, some targets may provide defined semantics when using the value
2168as the operand to an inline assembly, but that is target specific.
2169
2170Constant Expressions
2171--------------------
2172
2173Constant expressions are used to allow expressions involving other
2174constants to be used as constants. Constant expressions may be of any
2175:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2176that does not have side effects (e.g. load and call are not supported).
2177The following is the syntax for constant expressions:
2178
2179``trunc (CST to TYPE)``
2180 Truncate a constant to another type. The bit size of CST must be
2181 larger than the bit size of TYPE. Both types must be integers.
2182``zext (CST to TYPE)``
2183 Zero extend a constant to another type. The bit size of CST must be
2184 smaller than the bit size of TYPE. Both types must be integers.
2185``sext (CST to TYPE)``
2186 Sign extend a constant to another type. The bit size of CST must be
2187 smaller than the bit size of TYPE. Both types must be integers.
2188``fptrunc (CST to TYPE)``
2189 Truncate a floating point constant to another floating point type.
2190 The size of CST must be larger than the size of TYPE. Both types
2191 must be floating point.
2192``fpext (CST to TYPE)``
2193 Floating point extend a constant to another type. The size of CST
2194 must be smaller or equal to the size of TYPE. Both types must be
2195 floating point.
2196``fptoui (CST to TYPE)``
2197 Convert a floating point constant to the corresponding unsigned
2198 integer constant. TYPE must be a scalar or vector integer type. CST
2199 must be of scalar or vector floating point type. Both CST and TYPE
2200 must be scalars, or vectors of the same number of elements. If the
2201 value won't fit in the integer type, the results are undefined.
2202``fptosi (CST to TYPE)``
2203 Convert a floating point constant to the corresponding signed
2204 integer constant. TYPE must be a scalar or vector integer type. CST
2205 must be of scalar or vector floating point type. Both CST and TYPE
2206 must be scalars, or vectors of the same number of elements. If the
2207 value won't fit in the integer type, the results are undefined.
2208``uitofp (CST to TYPE)``
2209 Convert an unsigned integer constant to the corresponding floating
2210 point constant. TYPE must be a scalar or vector floating point type.
2211 CST must be of scalar or vector integer type. Both CST and TYPE must
2212 be scalars, or vectors of the same number of elements. If the value
2213 won't fit in the floating point type, the results are undefined.
2214``sitofp (CST to TYPE)``
2215 Convert a signed integer constant to the corresponding floating
2216 point constant. TYPE must be a scalar or vector floating point type.
2217 CST must be of scalar or vector integer type. Both CST and TYPE must
2218 be scalars, or vectors of the same number of elements. If the value
2219 won't fit in the floating point type, the results are undefined.
2220``ptrtoint (CST to TYPE)``
2221 Convert a pointer typed constant to the corresponding integer
2222 constant ``TYPE`` must be an integer type. ``CST`` must be of
2223 pointer type. The ``CST`` value is zero extended, truncated, or
2224 unchanged to make it fit in ``TYPE``.
2225``inttoptr (CST to TYPE)``
2226 Convert an integer constant to a pointer constant. TYPE must be a
2227 pointer type. CST must be of integer type. The CST value is zero
2228 extended, truncated, or unchanged to make it fit in a pointer size.
2229 This one is *really* dangerous!
2230``bitcast (CST to TYPE)``
2231 Convert a constant, CST, to another TYPE. The constraints of the
2232 operands are the same as those for the :ref:`bitcast
2233 instruction <i_bitcast>`.
2234``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2235 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2236 constants. As with the :ref:`getelementptr <i_getelementptr>`
2237 instruction, the index list may have zero or more indexes, which are
2238 required to make sense for the type of "CSTPTR".
2239``select (COND, VAL1, VAL2)``
2240 Perform the :ref:`select operation <i_select>` on constants.
2241``icmp COND (VAL1, VAL2)``
2242 Performs the :ref:`icmp operation <i_icmp>` on constants.
2243``fcmp COND (VAL1, VAL2)``
2244 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2245``extractelement (VAL, IDX)``
2246 Perform the :ref:`extractelement operation <i_extractelement>` on
2247 constants.
2248``insertelement (VAL, ELT, IDX)``
2249 Perform the :ref:`insertelement operation <i_insertelement>` on
2250 constants.
2251``shufflevector (VEC1, VEC2, IDXMASK)``
2252 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2253 constants.
2254``extractvalue (VAL, IDX0, IDX1, ...)``
2255 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2256 constants. The index list is interpreted in a similar manner as
2257 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2258 least one index value must be specified.
2259``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2260 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2261 The index list is interpreted in a similar manner as indices in a
2262 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2263 value must be specified.
2264``OPCODE (LHS, RHS)``
2265 Perform the specified operation of the LHS and RHS constants. OPCODE
2266 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2267 binary <bitwiseops>` operations. The constraints on operands are
2268 the same as those for the corresponding instruction (e.g. no bitwise
2269 operations on floating point values are allowed).
2270
2271Other Values
2272============
2273
2274Inline Assembler Expressions
2275----------------------------
2276
2277LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2278Inline Assembly <moduleasm>`) through the use of a special value. This
2279value represents the inline assembler as a string (containing the
2280instructions to emit), a list of operand constraints (stored as a
2281string), a flag that indicates whether or not the inline asm expression
2282has side effects, and a flag indicating whether the function containing
2283the asm needs to align its stack conservatively. An example inline
2284assembler expression is:
2285
2286.. code-block:: llvm
2287
2288 i32 (i32) asm "bswap $0", "=r,r"
2289
2290Inline assembler expressions may **only** be used as the callee operand
2291of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2292Thus, typically we have:
2293
2294.. code-block:: llvm
2295
2296 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2297
2298Inline asms with side effects not visible in the constraint list must be
2299marked as having side effects. This is done through the use of the
2300'``sideeffect``' keyword, like so:
2301
2302.. code-block:: llvm
2303
2304 call void asm sideeffect "eieio", ""()
2305
2306In some cases inline asms will contain code that will not work unless
2307the stack is aligned in some way, such as calls or SSE instructions on
2308x86, yet will not contain code that does that alignment within the asm.
2309The compiler should make conservative assumptions about what the asm
2310might contain and should generate its usual stack alignment code in the
2311prologue if the '``alignstack``' keyword is present:
2312
2313.. code-block:: llvm
2314
2315 call void asm alignstack "eieio", ""()
2316
2317Inline asms also support using non-standard assembly dialects. The
2318assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2319the inline asm is using the Intel dialect. Currently, ATT and Intel are
2320the only supported dialects. An example is:
2321
2322.. code-block:: llvm
2323
2324 call void asm inteldialect "eieio", ""()
2325
2326If multiple keywords appear the '``sideeffect``' keyword must come
2327first, the '``alignstack``' keyword second and the '``inteldialect``'
2328keyword last.
2329
2330Inline Asm Metadata
2331^^^^^^^^^^^^^^^^^^^
2332
2333The call instructions that wrap inline asm nodes may have a
2334"``!srcloc``" MDNode attached to it that contains a list of constant
2335integers. If present, the code generator will use the integer as the
2336location cookie value when report errors through the ``LLVMContext``
2337error reporting mechanisms. This allows a front-end to correlate backend
2338errors that occur with inline asm back to the source code that produced
2339it. For example:
2340
2341.. code-block:: llvm
2342
2343 call void asm sideeffect "something bad", ""(), !srcloc !42
2344 ...
2345 !42 = !{ i32 1234567 }
2346
2347It is up to the front-end to make sense of the magic numbers it places
2348in the IR. If the MDNode contains multiple constants, the code generator
2349will use the one that corresponds to the line of the asm that the error
2350occurs on.
2351
2352.. _metadata:
2353
2354Metadata Nodes and Metadata Strings
2355-----------------------------------
2356
2357LLVM IR allows metadata to be attached to instructions in the program
2358that can convey extra information about the code to the optimizers and
2359code generator. One example application of metadata is source-level
2360debug information. There are two metadata primitives: strings and nodes.
2361All metadata has the ``metadata`` type and is identified in syntax by a
2362preceding exclamation point ('``!``').
2363
2364A metadata string is a string surrounded by double quotes. It can
2365contain any character by escaping non-printable characters with
2366"``\xx``" where "``xx``" is the two digit hex code. For example:
2367"``!"test\00"``".
2368
2369Metadata nodes are represented with notation similar to structure
2370constants (a comma separated list of elements, surrounded by braces and
2371preceded by an exclamation point). Metadata nodes can have any values as
2372their operand. For example:
2373
2374.. code-block:: llvm
2375
2376 !{ metadata !"test\00", i32 10}
2377
2378A :ref:`named metadata <namedmetadatastructure>` is a collection of
2379metadata nodes, which can be looked up in the module symbol table. For
2380example:
2381
2382.. code-block:: llvm
2383
2384 !foo = metadata !{!4, !3}
2385
2386Metadata can be used as function arguments. Here ``llvm.dbg.value``
2387function is using two metadata arguments:
2388
2389.. code-block:: llvm
2390
2391 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2392
2393Metadata can be attached with an instruction. Here metadata ``!21`` is
2394attached to the ``add`` instruction using the ``!dbg`` identifier:
2395
2396.. code-block:: llvm
2397
2398 %indvar.next = add i64 %indvar, 1, !dbg !21
2399
2400More information about specific metadata nodes recognized by the
2401optimizers and code generator is found below.
2402
2403'``tbaa``' Metadata
2404^^^^^^^^^^^^^^^^^^^
2405
2406In LLVM IR, memory does not have types, so LLVM's own type system is not
2407suitable for doing TBAA. Instead, metadata is added to the IR to
2408describe a type system of a higher level language. This can be used to
2409implement typical C/C++ TBAA, but it can also be used to implement
2410custom alias analysis behavior for other languages.
2411
2412The current metadata format is very simple. TBAA metadata nodes have up
2413to three fields, e.g.:
2414
2415.. code-block:: llvm
2416
2417 !0 = metadata !{ metadata !"an example type tree" }
2418 !1 = metadata !{ metadata !"int", metadata !0 }
2419 !2 = metadata !{ metadata !"float", metadata !0 }
2420 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2421
2422The first field is an identity field. It can be any value, usually a
2423metadata string, which uniquely identifies the type. The most important
2424name in the tree is the name of the root node. Two trees with different
2425root node names are entirely disjoint, even if they have leaves with
2426common names.
2427
2428The second field identifies the type's parent node in the tree, or is
2429null or omitted for a root node. A type is considered to alias all of
2430its descendants and all of its ancestors in the tree. Also, a type is
2431considered to alias all types in other trees, so that bitcode produced
2432from multiple front-ends is handled conservatively.
2433
2434If the third field is present, it's an integer which if equal to 1
2435indicates that the type is "constant" (meaning
2436``pointsToConstantMemory`` should return true; see `other useful
2437AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2438
2439'``tbaa.struct``' Metadata
2440^^^^^^^^^^^^^^^^^^^^^^^^^^
2441
2442The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2443aggregate assignment operations in C and similar languages, however it
2444is defined to copy a contiguous region of memory, which is more than
2445strictly necessary for aggregate types which contain holes due to
2446padding. Also, it doesn't contain any TBAA information about the fields
2447of the aggregate.
2448
2449``!tbaa.struct`` metadata can describe which memory subregions in a
2450memcpy are padding and what the TBAA tags of the struct are.
2451
2452The current metadata format is very simple. ``!tbaa.struct`` metadata
2453nodes are a list of operands which are in conceptual groups of three.
2454For each group of three, the first operand gives the byte offset of a
2455field in bytes, the second gives its size in bytes, and the third gives
2456its tbaa tag. e.g.:
2457
2458.. code-block:: llvm
2459
2460 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2461
2462This describes a struct with two fields. The first is at offset 0 bytes
2463with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2464and has size 4 bytes and has tbaa tag !2.
2465
2466Note that the fields need not be contiguous. In this example, there is a
24674 byte gap between the two fields. This gap represents padding which
2468does not carry useful data and need not be preserved.
2469
2470'``fpmath``' Metadata
2471^^^^^^^^^^^^^^^^^^^^^
2472
2473``fpmath`` metadata may be attached to any instruction of floating point
2474type. It can be used to express the maximum acceptable error in the
2475result of that instruction, in ULPs, thus potentially allowing the
2476compiler to use a more efficient but less accurate method of computing
2477it. ULP is defined as follows:
2478
2479 If ``x`` is a real number that lies between two finite consecutive
2480 floating-point numbers ``a`` and ``b``, without being equal to one
2481 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2482 distance between the two non-equal finite floating-point numbers
2483 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2484
2485The metadata node shall consist of a single positive floating point
2486number representing the maximum relative error, for example:
2487
2488.. code-block:: llvm
2489
2490 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2491
2492'``range``' Metadata
2493^^^^^^^^^^^^^^^^^^^^
2494
2495``range`` metadata may be attached only to loads of integer types. It
2496expresses the possible ranges the loaded value is in. The ranges are
2497represented with a flattened list of integers. The loaded value is known
2498to be in the union of the ranges defined by each consecutive pair. Each
2499pair has the following properties:
2500
2501- The type must match the type loaded by the instruction.
2502- The pair ``a,b`` represents the range ``[a,b)``.
2503- Both ``a`` and ``b`` are constants.
2504- The range is allowed to wrap.
2505- The range should not represent the full or empty set. That is,
2506 ``a!=b``.
2507
2508In addition, the pairs must be in signed order of the lower bound and
2509they must be non-contiguous.
2510
2511Examples:
2512
2513.. code-block:: llvm
2514
2515 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2516 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2517 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2518 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2519 ...
2520 !0 = metadata !{ i8 0, i8 2 }
2521 !1 = metadata !{ i8 255, i8 2 }
2522 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2523 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2524
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002525'``llvm.loop``'
2526^^^^^^^^^^^^^^^
2527
2528It is sometimes useful to attach information to loop constructs. Currently,
2529loop metadata is implemented as metadata attached to the branch instruction
2530in the loop latch block. This type of metadata refer to a metadata node that is
2531guaranteed to be separate for each loop. The loop-level metadata is prefixed
2532with ``llvm.loop``.
2533
2534The loop identifier metadata is implemented using a metadata that refers to
2535itself as follows:
2536
2537.. code-block:: llvm
2538 !0 = metadata !{ metadata !0 }
2539
2540'``llvm.loop.parallel``' Metadata
2541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2542
2543This loop metadata can be used to communicate that a loop should be considered
2544a parallel loop. The semantics of parallel loops in this case is the one
2545with the strongest cross-iteration instruction ordering freedom: the
2546iterations in the loop can be considered completely independent of each
2547other (also known as embarrassingly parallel loops).
2548
2549This metadata can originate from a programming language with parallel loop
2550constructs. In such a case it is completely the programmer's responsibility
2551to ensure the instructions from the different iterations of the loop can be
2552executed in an arbitrary order, in parallel, or intertwined. No loop-carried
2553dependency checking at all must be expected from the compiler.
2554
2555In order to fulfill the LLVM requirement for metadata to be safely ignored,
2556it is important to ensure that a parallel loop is converted to
2557a sequential loop in case an optimization (agnostic of the parallel loop
2558semantics) converts the loop back to such. This happens when new memory
2559accesses that do not fulfill the requirement of free ordering across iterations
2560are added to the loop. Therefore, this metadata is required, but not
2561sufficient, to consider the loop at hand a parallel loop. For a loop
2562to be parallel, all its memory accessing instructions need to be
2563marked with the ``llvm.mem.parallel_loop_access`` metadata that refer
2564to the same loop identifier metadata that identify the loop at hand.
2565
2566'``llvm.mem``'
2567^^^^^^^^^^^^^^^
2568
2569Metadata types used to annotate memory accesses with information helpful
2570for optimizations are prefixed with ``llvm.mem``.
2571
2572'``llvm.mem.parallel_loop_access``' Metadata
2573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2574
2575For a loop to be parallel, in addition to using
2576the ``llvm.loop.parallel`` metadata to mark the loop latch branch instruction,
2577also all of the memory accessing instructions in the loop body need to be
2578marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2579is at least one memory accessing instruction not marked with the metadata,
2580the loop, despite it possibly using the ``llvm.loop.parallel`` metadata,
2581must be considered a sequential loop. This causes parallel loops to be
2582converted to sequential loops due to optimization passes that are unaware of
2583the parallel semantics and that insert new memory instructions to the loop
2584body.
2585
2586Example of a loop that is considered parallel due to its correct use of
2587both ``llvm.loop.parallel`` and ``llvm.mem.parallel_loop_access``
2588metadata types that refer to the same loop identifier metadata.
2589
2590.. code-block:: llvm
2591
2592 for.body:
2593 ...
2594 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2595 ...
2596 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2597 ...
2598 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop.parallel !0
2599
2600 for.end:
2601 ...
2602 !0 = metadata !{ metadata !0 }
2603
2604It is also possible to have nested parallel loops. In that case the
2605memory accesses refer to a list of loop identifier metadata nodes instead of
2606the loop identifier metadata node directly:
2607
2608.. code-block:: llvm
2609
2610 outer.for.body:
2611 ...
2612
2613 inner.for.body:
2614 ...
2615 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2616 ...
2617 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2618 ...
2619 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop.parallel !1
2620
2621 inner.for.end:
2622 ...
2623 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2624 ...
2625 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2626 ...
2627 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop.parallel !2
2628
2629 outer.for.end: ; preds = %for.body
2630 ...
2631 !0 = metadata !{ metadata !1, metadata !2 } ; a list of parallel loop identifiers
2632 !1 = metadata !{ metadata !1 } ; an identifier for the inner parallel loop
2633 !2 = metadata !{ metadata !2 } ; an identifier for the outer parallel loop
2634
2635
Sean Silvaf722b002012-12-07 10:36:55 +00002636Module Flags Metadata
2637=====================
2638
2639Information about the module as a whole is difficult to convey to LLVM's
2640subsystems. The LLVM IR isn't sufficient to transmit this information.
2641The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002642this. These flags are in the form of key / value pairs --- much like a
2643dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002644look it up.
2645
2646The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2647Each triplet has the following form:
2648
2649- The first element is a *behavior* flag, which specifies the behavior
2650 when two (or more) modules are merged together, and it encounters two
2651 (or more) metadata with the same ID. The supported behaviors are
2652 described below.
2653- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002654 metadata. Each module may only have one flag entry for each unique ID (not
2655 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002656- The third element is the value of the flag.
2657
2658When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002659``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2660each unique metadata ID string, there will be exactly one entry in the merged
2661modules ``llvm.module.flags`` metadata table, and the value for that entry will
2662be determined by the merge behavior flag, as described below. The only exception
2663is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002664
2665The following behaviors are supported:
2666
2667.. list-table::
2668 :header-rows: 1
2669 :widths: 10 90
2670
2671 * - Value
2672 - Behavior
2673
2674 * - 1
2675 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002676 Emits an error if two values disagree, otherwise the resulting value
2677 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002678
2679 * - 2
2680 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002681 Emits a warning if two values disagree. The result value will be the
2682 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002683
2684 * - 3
2685 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002686 Adds a requirement that another module flag be present and have a
2687 specified value after linking is performed. The value must be a
2688 metadata pair, where the first element of the pair is the ID of the
2689 module flag to be restricted, and the second element of the pair is
2690 the value the module flag should be restricted to. This behavior can
2691 be used to restrict the allowable results (via triggering of an
2692 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002693
2694 * - 4
2695 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002696 Uses the specified value, regardless of the behavior or value of the
2697 other module. If both modules specify **Override**, but the values
2698 differ, an error will be emitted.
2699
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002700 * - 5
2701 - **Append**
2702 Appends the two values, which are required to be metadata nodes.
2703
2704 * - 6
2705 - **AppendUnique**
2706 Appends the two values, which are required to be metadata
2707 nodes. However, duplicate entries in the second list are dropped
2708 during the append operation.
2709
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002710It is an error for a particular unique flag ID to have multiple behaviors,
2711except in the case of **Require** (which adds restrictions on another metadata
2712value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002713
2714An example of module flags:
2715
2716.. code-block:: llvm
2717
2718 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2719 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2720 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2721 !3 = metadata !{ i32 3, metadata !"qux",
2722 metadata !{
2723 metadata !"foo", i32 1
2724 }
2725 }
2726 !llvm.module.flags = !{ !0, !1, !2, !3 }
2727
2728- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2729 if two or more ``!"foo"`` flags are seen is to emit an error if their
2730 values are not equal.
2731
2732- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2733 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002734 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002735
2736- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2737 behavior if two or more ``!"qux"`` flags are seen is to emit a
2738 warning if their values are not equal.
2739
2740- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2741
2742 ::
2743
2744 metadata !{ metadata !"foo", i32 1 }
2745
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002746 The behavior is to emit an error if the ``llvm.module.flags`` does not
2747 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2748 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002749
2750Objective-C Garbage Collection Module Flags Metadata
2751----------------------------------------------------
2752
2753On the Mach-O platform, Objective-C stores metadata about garbage
2754collection in a special section called "image info". The metadata
2755consists of a version number and a bitmask specifying what types of
2756garbage collection are supported (if any) by the file. If two or more
2757modules are linked together their garbage collection metadata needs to
2758be merged rather than appended together.
2759
2760The Objective-C garbage collection module flags metadata consists of the
2761following key-value pairs:
2762
2763.. list-table::
2764 :header-rows: 1
2765 :widths: 30 70
2766
2767 * - Key
2768 - Value
2769
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002770 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002771 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002772
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002773 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002774 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002775 always 0.
2776
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002777 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002778 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002779 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2780 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2781 Objective-C ABI version 2.
2782
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002783 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002784 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002785 not. Valid values are 0, for no garbage collection, and 2, for garbage
2786 collection supported.
2787
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002788 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002789 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002790 If present, its value must be 6. This flag requires that the
2791 ``Objective-C Garbage Collection`` flag have the value 2.
2792
2793Some important flag interactions:
2794
2795- If a module with ``Objective-C Garbage Collection`` set to 0 is
2796 merged with a module with ``Objective-C Garbage Collection`` set to
2797 2, then the resulting module has the
2798 ``Objective-C Garbage Collection`` flag set to 0.
2799- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2800 merged with a module with ``Objective-C GC Only`` set to 6.
2801
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002802Automatic Linker Flags Module Flags Metadata
2803--------------------------------------------
2804
2805Some targets support embedding flags to the linker inside individual object
2806files. Typically this is used in conjunction with language extensions which
2807allow source files to explicitly declare the libraries they depend on, and have
2808these automatically be transmitted to the linker via object files.
2809
2810These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002811using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002812to be ``AppendUnique``, and the value for the key is expected to be a metadata
2813node which should be a list of other metadata nodes, each of which should be a
2814list of metadata strings defining linker options.
2815
2816For example, the following metadata section specifies two separate sets of
2817linker options, presumably to link against ``libz`` and the ``Cocoa``
2818framework::
2819
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002820 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002821 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002822 metadata !{ metadata !"-lz" },
2823 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002824 !llvm.module.flags = !{ !0 }
2825
2826The metadata encoding as lists of lists of options, as opposed to a collapsed
2827list of options, is chosen so that the IR encoding can use multiple option
2828strings to specify e.g., a single library, while still having that specifier be
2829preserved as an atomic element that can be recognized by a target specific
2830assembly writer or object file emitter.
2831
2832Each individual option is required to be either a valid option for the target's
2833linker, or an option that is reserved by the target specific assembly writer or
2834object file emitter. No other aspect of these options is defined by the IR.
2835
Sean Silvaf722b002012-12-07 10:36:55 +00002836Intrinsic Global Variables
2837==========================
2838
2839LLVM has a number of "magic" global variables that contain data that
2840affect code generation or other IR semantics. These are documented here.
2841All globals of this sort should have a section specified as
2842"``llvm.metadata``". This section and all globals that start with
2843"``llvm.``" are reserved for use by LLVM.
2844
2845The '``llvm.used``' Global Variable
2846-----------------------------------
2847
2848The ``@llvm.used`` global is an array with i8\* element type which has
2849:ref:`appending linkage <linkage_appending>`. This array contains a list of
2850pointers to global variables and functions which may optionally have a
2851pointer cast formed of bitcast or getelementptr. For example, a legal
2852use of it is:
2853
2854.. code-block:: llvm
2855
2856 @X = global i8 4
2857 @Y = global i32 123
2858
2859 @llvm.used = appending global [2 x i8*] [
2860 i8* @X,
2861 i8* bitcast (i32* @Y to i8*)
2862 ], section "llvm.metadata"
2863
2864If a global variable appears in the ``@llvm.used`` list, then the
2865compiler, assembler, and linker are required to treat the symbol as if
2866there is a reference to the global that it cannot see. For example, if a
2867variable has internal linkage and no references other than that from the
2868``@llvm.used`` list, it cannot be deleted. This is commonly used to
2869represent references from inline asms and other things the compiler
2870cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2871
2872On some targets, the code generator must emit a directive to the
2873assembler or object file to prevent the assembler and linker from
2874molesting the symbol.
2875
2876The '``llvm.compiler.used``' Global Variable
2877--------------------------------------------
2878
2879The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2880directive, except that it only prevents the compiler from touching the
2881symbol. On targets that support it, this allows an intelligent linker to
2882optimize references to the symbol without being impeded as it would be
2883by ``@llvm.used``.
2884
2885This is a rare construct that should only be used in rare circumstances,
2886and should not be exposed to source languages.
2887
2888The '``llvm.global_ctors``' Global Variable
2889-------------------------------------------
2890
2891.. code-block:: llvm
2892
2893 %0 = type { i32, void ()* }
2894 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2895
2896The ``@llvm.global_ctors`` array contains a list of constructor
2897functions and associated priorities. The functions referenced by this
2898array will be called in ascending order of priority (i.e. lowest first)
2899when the module is loaded. The order of functions with the same priority
2900is not defined.
2901
2902The '``llvm.global_dtors``' Global Variable
2903-------------------------------------------
2904
2905.. code-block:: llvm
2906
2907 %0 = type { i32, void ()* }
2908 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2909
2910The ``@llvm.global_dtors`` array contains a list of destructor functions
2911and associated priorities. The functions referenced by this array will
2912be called in descending order of priority (i.e. highest first) when the
2913module is loaded. The order of functions with the same priority is not
2914defined.
2915
2916Instruction Reference
2917=====================
2918
2919The LLVM instruction set consists of several different classifications
2920of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2921instructions <binaryops>`, :ref:`bitwise binary
2922instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2923:ref:`other instructions <otherops>`.
2924
2925.. _terminators:
2926
2927Terminator Instructions
2928-----------------------
2929
2930As mentioned :ref:`previously <functionstructure>`, every basic block in a
2931program ends with a "Terminator" instruction, which indicates which
2932block should be executed after the current block is finished. These
2933terminator instructions typically yield a '``void``' value: they produce
2934control flow, not values (the one exception being the
2935':ref:`invoke <i_invoke>`' instruction).
2936
2937The terminator instructions are: ':ref:`ret <i_ret>`',
2938':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2939':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2940':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2941
2942.. _i_ret:
2943
2944'``ret``' Instruction
2945^^^^^^^^^^^^^^^^^^^^^
2946
2947Syntax:
2948"""""""
2949
2950::
2951
2952 ret <type> <value> ; Return a value from a non-void function
2953 ret void ; Return from void function
2954
2955Overview:
2956"""""""""
2957
2958The '``ret``' instruction is used to return control flow (and optionally
2959a value) from a function back to the caller.
2960
2961There are two forms of the '``ret``' instruction: one that returns a
2962value and then causes control flow, and one that just causes control
2963flow to occur.
2964
2965Arguments:
2966""""""""""
2967
2968The '``ret``' instruction optionally accepts a single argument, the
2969return value. The type of the return value must be a ':ref:`first
2970class <t_firstclass>`' type.
2971
2972A function is not :ref:`well formed <wellformed>` if it it has a non-void
2973return type and contains a '``ret``' instruction with no return value or
2974a return value with a type that does not match its type, or if it has a
2975void return type and contains a '``ret``' instruction with a return
2976value.
2977
2978Semantics:
2979""""""""""
2980
2981When the '``ret``' instruction is executed, control flow returns back to
2982the calling function's context. If the caller is a
2983":ref:`call <i_call>`" instruction, execution continues at the
2984instruction after the call. If the caller was an
2985":ref:`invoke <i_invoke>`" instruction, execution continues at the
2986beginning of the "normal" destination block. If the instruction returns
2987a value, that value shall set the call or invoke instruction's return
2988value.
2989
2990Example:
2991""""""""
2992
2993.. code-block:: llvm
2994
2995 ret i32 5 ; Return an integer value of 5
2996 ret void ; Return from a void function
2997 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2998
2999.. _i_br:
3000
3001'``br``' Instruction
3002^^^^^^^^^^^^^^^^^^^^
3003
3004Syntax:
3005"""""""
3006
3007::
3008
3009 br i1 <cond>, label <iftrue>, label <iffalse>
3010 br label <dest> ; Unconditional branch
3011
3012Overview:
3013"""""""""
3014
3015The '``br``' instruction is used to cause control flow to transfer to a
3016different basic block in the current function. There are two forms of
3017this instruction, corresponding to a conditional branch and an
3018unconditional branch.
3019
3020Arguments:
3021""""""""""
3022
3023The conditional branch form of the '``br``' instruction takes a single
3024'``i1``' value and two '``label``' values. The unconditional form of the
3025'``br``' instruction takes a single '``label``' value as a target.
3026
3027Semantics:
3028""""""""""
3029
3030Upon execution of a conditional '``br``' instruction, the '``i1``'
3031argument is evaluated. If the value is ``true``, control flows to the
3032'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3033to the '``iffalse``' ``label`` argument.
3034
3035Example:
3036""""""""
3037
3038.. code-block:: llvm
3039
3040 Test:
3041 %cond = icmp eq i32 %a, %b
3042 br i1 %cond, label %IfEqual, label %IfUnequal
3043 IfEqual:
3044 ret i32 1
3045 IfUnequal:
3046 ret i32 0
3047
3048.. _i_switch:
3049
3050'``switch``' Instruction
3051^^^^^^^^^^^^^^^^^^^^^^^^
3052
3053Syntax:
3054"""""""
3055
3056::
3057
3058 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3059
3060Overview:
3061"""""""""
3062
3063The '``switch``' instruction is used to transfer control flow to one of
3064several different places. It is a generalization of the '``br``'
3065instruction, allowing a branch to occur to one of many possible
3066destinations.
3067
3068Arguments:
3069""""""""""
3070
3071The '``switch``' instruction uses three parameters: an integer
3072comparison value '``value``', a default '``label``' destination, and an
3073array of pairs of comparison value constants and '``label``'s. The table
3074is not allowed to contain duplicate constant entries.
3075
3076Semantics:
3077""""""""""
3078
3079The ``switch`` instruction specifies a table of values and destinations.
3080When the '``switch``' instruction is executed, this table is searched
3081for the given value. If the value is found, control flow is transferred
3082to the corresponding destination; otherwise, control flow is transferred
3083to the default destination.
3084
3085Implementation:
3086"""""""""""""""
3087
3088Depending on properties of the target machine and the particular
3089``switch`` instruction, this instruction may be code generated in
3090different ways. For example, it could be generated as a series of
3091chained conditional branches or with a lookup table.
3092
3093Example:
3094""""""""
3095
3096.. code-block:: llvm
3097
3098 ; Emulate a conditional br instruction
3099 %Val = zext i1 %value to i32
3100 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3101
3102 ; Emulate an unconditional br instruction
3103 switch i32 0, label %dest [ ]
3104
3105 ; Implement a jump table:
3106 switch i32 %val, label %otherwise [ i32 0, label %onzero
3107 i32 1, label %onone
3108 i32 2, label %ontwo ]
3109
3110.. _i_indirectbr:
3111
3112'``indirectbr``' Instruction
3113^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3114
3115Syntax:
3116"""""""
3117
3118::
3119
3120 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3121
3122Overview:
3123"""""""""
3124
3125The '``indirectbr``' instruction implements an indirect branch to a
3126label within the current function, whose address is specified by
3127"``address``". Address must be derived from a
3128:ref:`blockaddress <blockaddress>` constant.
3129
3130Arguments:
3131""""""""""
3132
3133The '``address``' argument is the address of the label to jump to. The
3134rest of the arguments indicate the full set of possible destinations
3135that the address may point to. Blocks are allowed to occur multiple
3136times in the destination list, though this isn't particularly useful.
3137
3138This destination list is required so that dataflow analysis has an
3139accurate understanding of the CFG.
3140
3141Semantics:
3142""""""""""
3143
3144Control transfers to the block specified in the address argument. All
3145possible destination blocks must be listed in the label list, otherwise
3146this instruction has undefined behavior. This implies that jumps to
3147labels defined in other functions have undefined behavior as well.
3148
3149Implementation:
3150"""""""""""""""
3151
3152This is typically implemented with a jump through a register.
3153
3154Example:
3155""""""""
3156
3157.. code-block:: llvm
3158
3159 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3160
3161.. _i_invoke:
3162
3163'``invoke``' Instruction
3164^^^^^^^^^^^^^^^^^^^^^^^^
3165
3166Syntax:
3167"""""""
3168
3169::
3170
3171 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3172 to label <normal label> unwind label <exception label>
3173
3174Overview:
3175"""""""""
3176
3177The '``invoke``' instruction causes control to transfer to a specified
3178function, with the possibility of control flow transfer to either the
3179'``normal``' label or the '``exception``' label. If the callee function
3180returns with the "``ret``" instruction, control flow will return to the
3181"normal" label. If the callee (or any indirect callees) returns via the
3182":ref:`resume <i_resume>`" instruction or other exception handling
3183mechanism, control is interrupted and continued at the dynamically
3184nearest "exception" label.
3185
3186The '``exception``' label is a `landing
3187pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3188'``exception``' label is required to have the
3189":ref:`landingpad <i_landingpad>`" instruction, which contains the
3190information about the behavior of the program after unwinding happens,
3191as its first non-PHI instruction. The restrictions on the
3192"``landingpad``" instruction's tightly couples it to the "``invoke``"
3193instruction, so that the important information contained within the
3194"``landingpad``" instruction can't be lost through normal code motion.
3195
3196Arguments:
3197""""""""""
3198
3199This instruction requires several arguments:
3200
3201#. The optional "cconv" marker indicates which :ref:`calling
3202 convention <callingconv>` the call should use. If none is
3203 specified, the call defaults to using C calling conventions.
3204#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3205 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3206 are valid here.
3207#. '``ptr to function ty``': shall be the signature of the pointer to
3208 function value being invoked. In most cases, this is a direct
3209 function invocation, but indirect ``invoke``'s are just as possible,
3210 branching off an arbitrary pointer to function value.
3211#. '``function ptr val``': An LLVM value containing a pointer to a
3212 function to be invoked.
3213#. '``function args``': argument list whose types match the function
3214 signature argument types and parameter attributes. All arguments must
3215 be of :ref:`first class <t_firstclass>` type. If the function signature
3216 indicates the function accepts a variable number of arguments, the
3217 extra arguments can be specified.
3218#. '``normal label``': the label reached when the called function
3219 executes a '``ret``' instruction.
3220#. '``exception label``': the label reached when a callee returns via
3221 the :ref:`resume <i_resume>` instruction or other exception handling
3222 mechanism.
3223#. The optional :ref:`function attributes <fnattrs>` list. Only
3224 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3225 attributes are valid here.
3226
3227Semantics:
3228""""""""""
3229
3230This instruction is designed to operate as a standard '``call``'
3231instruction in most regards. The primary difference is that it
3232establishes an association with a label, which is used by the runtime
3233library to unwind the stack.
3234
3235This instruction is used in languages with destructors to ensure that
3236proper cleanup is performed in the case of either a ``longjmp`` or a
3237thrown exception. Additionally, this is important for implementation of
3238'``catch``' clauses in high-level languages that support them.
3239
3240For the purposes of the SSA form, the definition of the value returned
3241by the '``invoke``' instruction is deemed to occur on the edge from the
3242current block to the "normal" label. If the callee unwinds then no
3243return value is available.
3244
3245Example:
3246""""""""
3247
3248.. code-block:: llvm
3249
3250 %retval = invoke i32 @Test(i32 15) to label %Continue
3251 unwind label %TestCleanup ; {i32}:retval set
3252 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3253 unwind label %TestCleanup ; {i32}:retval set
3254
3255.. _i_resume:
3256
3257'``resume``' Instruction
3258^^^^^^^^^^^^^^^^^^^^^^^^
3259
3260Syntax:
3261"""""""
3262
3263::
3264
3265 resume <type> <value>
3266
3267Overview:
3268"""""""""
3269
3270The '``resume``' instruction is a terminator instruction that has no
3271successors.
3272
3273Arguments:
3274""""""""""
3275
3276The '``resume``' instruction requires one argument, which must have the
3277same type as the result of any '``landingpad``' instruction in the same
3278function.
3279
3280Semantics:
3281""""""""""
3282
3283The '``resume``' instruction resumes propagation of an existing
3284(in-flight) exception whose unwinding was interrupted with a
3285:ref:`landingpad <i_landingpad>` instruction.
3286
3287Example:
3288""""""""
3289
3290.. code-block:: llvm
3291
3292 resume { i8*, i32 } %exn
3293
3294.. _i_unreachable:
3295
3296'``unreachable``' Instruction
3297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3298
3299Syntax:
3300"""""""
3301
3302::
3303
3304 unreachable
3305
3306Overview:
3307"""""""""
3308
3309The '``unreachable``' instruction has no defined semantics. This
3310instruction is used to inform the optimizer that a particular portion of
3311the code is not reachable. This can be used to indicate that the code
3312after a no-return function cannot be reached, and other facts.
3313
3314Semantics:
3315""""""""""
3316
3317The '``unreachable``' instruction has no defined semantics.
3318
3319.. _binaryops:
3320
3321Binary Operations
3322-----------------
3323
3324Binary operators are used to do most of the computation in a program.
3325They require two operands of the same type, execute an operation on
3326them, and produce a single value. The operands might represent multiple
3327data, as is the case with the :ref:`vector <t_vector>` data type. The
3328result value has the same type as its operands.
3329
3330There are several different binary operators:
3331
3332.. _i_add:
3333
3334'``add``' Instruction
3335^^^^^^^^^^^^^^^^^^^^^
3336
3337Syntax:
3338"""""""
3339
3340::
3341
3342 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3343 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3344 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3345 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3346
3347Overview:
3348"""""""""
3349
3350The '``add``' instruction returns the sum of its two operands.
3351
3352Arguments:
3353""""""""""
3354
3355The two arguments to the '``add``' instruction must be
3356:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3357arguments must have identical types.
3358
3359Semantics:
3360""""""""""
3361
3362The value produced is the integer sum of the two operands.
3363
3364If the sum has unsigned overflow, the result returned is the
3365mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3366the result.
3367
3368Because LLVM integers use a two's complement representation, this
3369instruction is appropriate for both signed and unsigned integers.
3370
3371``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3372respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3373result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3374unsigned and/or signed overflow, respectively, occurs.
3375
3376Example:
3377""""""""
3378
3379.. code-block:: llvm
3380
3381 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3382
3383.. _i_fadd:
3384
3385'``fadd``' Instruction
3386^^^^^^^^^^^^^^^^^^^^^^
3387
3388Syntax:
3389"""""""
3390
3391::
3392
3393 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3394
3395Overview:
3396"""""""""
3397
3398The '``fadd``' instruction returns the sum of its two operands.
3399
3400Arguments:
3401""""""""""
3402
3403The two arguments to the '``fadd``' instruction must be :ref:`floating
3404point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3405Both arguments must have identical types.
3406
3407Semantics:
3408""""""""""
3409
3410The value produced is the floating point sum of the two operands. This
3411instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3412which are optimization hints to enable otherwise unsafe floating point
3413optimizations:
3414
3415Example:
3416""""""""
3417
3418.. code-block:: llvm
3419
3420 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3421
3422'``sub``' Instruction
3423^^^^^^^^^^^^^^^^^^^^^
3424
3425Syntax:
3426"""""""
3427
3428::
3429
3430 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3431 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3432 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3433 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3434
3435Overview:
3436"""""""""
3437
3438The '``sub``' instruction returns the difference of its two operands.
3439
3440Note that the '``sub``' instruction is used to represent the '``neg``'
3441instruction present in most other intermediate representations.
3442
3443Arguments:
3444""""""""""
3445
3446The two arguments to the '``sub``' instruction must be
3447:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3448arguments must have identical types.
3449
3450Semantics:
3451""""""""""
3452
3453The value produced is the integer difference of the two operands.
3454
3455If the difference has unsigned overflow, the result returned is the
3456mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3457the result.
3458
3459Because LLVM integers use a two's complement representation, this
3460instruction is appropriate for both signed and unsigned integers.
3461
3462``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3463respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3464result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3465unsigned and/or signed overflow, respectively, occurs.
3466
3467Example:
3468""""""""
3469
3470.. code-block:: llvm
3471
3472 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3473 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3474
3475.. _i_fsub:
3476
3477'``fsub``' Instruction
3478^^^^^^^^^^^^^^^^^^^^^^
3479
3480Syntax:
3481"""""""
3482
3483::
3484
3485 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3486
3487Overview:
3488"""""""""
3489
3490The '``fsub``' instruction returns the difference of its two operands.
3491
3492Note that the '``fsub``' instruction is used to represent the '``fneg``'
3493instruction present in most other intermediate representations.
3494
3495Arguments:
3496""""""""""
3497
3498The two arguments to the '``fsub``' instruction must be :ref:`floating
3499point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3500Both arguments must have identical types.
3501
3502Semantics:
3503""""""""""
3504
3505The value produced is the floating point difference of the two operands.
3506This instruction can also take any number of :ref:`fast-math
3507flags <fastmath>`, which are optimization hints to enable otherwise
3508unsafe floating point optimizations:
3509
3510Example:
3511""""""""
3512
3513.. code-block:: llvm
3514
3515 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3516 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3517
3518'``mul``' Instruction
3519^^^^^^^^^^^^^^^^^^^^^
3520
3521Syntax:
3522"""""""
3523
3524::
3525
3526 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3527 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3528 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3529 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3530
3531Overview:
3532"""""""""
3533
3534The '``mul``' instruction returns the product of its two operands.
3535
3536Arguments:
3537""""""""""
3538
3539The two arguments to the '``mul``' instruction must be
3540:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3541arguments must have identical types.
3542
3543Semantics:
3544""""""""""
3545
3546The value produced is the integer product of the two operands.
3547
3548If the result of the multiplication has unsigned overflow, the result
3549returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3550bit width of the result.
3551
3552Because LLVM integers use a two's complement representation, and the
3553result is the same width as the operands, this instruction returns the
3554correct result for both signed and unsigned integers. If a full product
3555(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3556sign-extended or zero-extended as appropriate to the width of the full
3557product.
3558
3559``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3560respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3561result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3562unsigned and/or signed overflow, respectively, occurs.
3563
3564Example:
3565""""""""
3566
3567.. code-block:: llvm
3568
3569 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3570
3571.. _i_fmul:
3572
3573'``fmul``' Instruction
3574^^^^^^^^^^^^^^^^^^^^^^
3575
3576Syntax:
3577"""""""
3578
3579::
3580
3581 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3582
3583Overview:
3584"""""""""
3585
3586The '``fmul``' instruction returns the product of its two operands.
3587
3588Arguments:
3589""""""""""
3590
3591The two arguments to the '``fmul``' instruction must be :ref:`floating
3592point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3593Both arguments must have identical types.
3594
3595Semantics:
3596""""""""""
3597
3598The value produced is the floating point product of the two operands.
3599This instruction can also take any number of :ref:`fast-math
3600flags <fastmath>`, which are optimization hints to enable otherwise
3601unsafe floating point optimizations:
3602
3603Example:
3604""""""""
3605
3606.. code-block:: llvm
3607
3608 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3609
3610'``udiv``' Instruction
3611^^^^^^^^^^^^^^^^^^^^^^
3612
3613Syntax:
3614"""""""
3615
3616::
3617
3618 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3619 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3620
3621Overview:
3622"""""""""
3623
3624The '``udiv``' instruction returns the quotient of its two operands.
3625
3626Arguments:
3627""""""""""
3628
3629The two arguments to the '``udiv``' instruction must be
3630:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3631arguments must have identical types.
3632
3633Semantics:
3634""""""""""
3635
3636The value produced is the unsigned integer quotient of the two operands.
3637
3638Note that unsigned integer division and signed integer division are
3639distinct operations; for signed integer division, use '``sdiv``'.
3640
3641Division by zero leads to undefined behavior.
3642
3643If the ``exact`` keyword is present, the result value of the ``udiv`` is
3644a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3645such, "((a udiv exact b) mul b) == a").
3646
3647Example:
3648""""""""
3649
3650.. code-block:: llvm
3651
3652 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3653
3654'``sdiv``' Instruction
3655^^^^^^^^^^^^^^^^^^^^^^
3656
3657Syntax:
3658"""""""
3659
3660::
3661
3662 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3663 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3664
3665Overview:
3666"""""""""
3667
3668The '``sdiv``' instruction returns the quotient of its two operands.
3669
3670Arguments:
3671""""""""""
3672
3673The two arguments to the '``sdiv``' instruction must be
3674:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3675arguments must have identical types.
3676
3677Semantics:
3678""""""""""
3679
3680The value produced is the signed integer quotient of the two operands
3681rounded towards zero.
3682
3683Note that signed integer division and unsigned integer division are
3684distinct operations; for unsigned integer division, use '``udiv``'.
3685
3686Division by zero leads to undefined behavior. Overflow also leads to
3687undefined behavior; this is a rare case, but can occur, for example, by
3688doing a 32-bit division of -2147483648 by -1.
3689
3690If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3691a :ref:`poison value <poisonvalues>` if the result would be rounded.
3692
3693Example:
3694""""""""
3695
3696.. code-block:: llvm
3697
3698 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3699
3700.. _i_fdiv:
3701
3702'``fdiv``' Instruction
3703^^^^^^^^^^^^^^^^^^^^^^
3704
3705Syntax:
3706"""""""
3707
3708::
3709
3710 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3711
3712Overview:
3713"""""""""
3714
3715The '``fdiv``' instruction returns the quotient of its two operands.
3716
3717Arguments:
3718""""""""""
3719
3720The two arguments to the '``fdiv``' instruction must be :ref:`floating
3721point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3722Both arguments must have identical types.
3723
3724Semantics:
3725""""""""""
3726
3727The value produced is the floating point quotient of the two operands.
3728This instruction can also take any number of :ref:`fast-math
3729flags <fastmath>`, which are optimization hints to enable otherwise
3730unsafe floating point optimizations:
3731
3732Example:
3733""""""""
3734
3735.. code-block:: llvm
3736
3737 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3738
3739'``urem``' Instruction
3740^^^^^^^^^^^^^^^^^^^^^^
3741
3742Syntax:
3743"""""""
3744
3745::
3746
3747 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3748
3749Overview:
3750"""""""""
3751
3752The '``urem``' instruction returns the remainder from the unsigned
3753division of its two arguments.
3754
3755Arguments:
3756""""""""""
3757
3758The two arguments to the '``urem``' instruction must be
3759:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3760arguments must have identical types.
3761
3762Semantics:
3763""""""""""
3764
3765This instruction returns the unsigned integer *remainder* of a division.
3766This instruction always performs an unsigned division to get the
3767remainder.
3768
3769Note that unsigned integer remainder and signed integer remainder are
3770distinct operations; for signed integer remainder, use '``srem``'.
3771
3772Taking the remainder of a division by zero leads to undefined behavior.
3773
3774Example:
3775""""""""
3776
3777.. code-block:: llvm
3778
3779 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3780
3781'``srem``' Instruction
3782^^^^^^^^^^^^^^^^^^^^^^
3783
3784Syntax:
3785"""""""
3786
3787::
3788
3789 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3790
3791Overview:
3792"""""""""
3793
3794The '``srem``' instruction returns the remainder from the signed
3795division of its two operands. This instruction can also take
3796:ref:`vector <t_vector>` versions of the values in which case the elements
3797must be integers.
3798
3799Arguments:
3800""""""""""
3801
3802The two arguments to the '``srem``' instruction must be
3803:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3804arguments must have identical types.
3805
3806Semantics:
3807""""""""""
3808
3809This instruction returns the *remainder* of a division (where the result
3810is either zero or has the same sign as the dividend, ``op1``), not the
3811*modulo* operator (where the result is either zero or has the same sign
3812as the divisor, ``op2``) of a value. For more information about the
3813difference, see `The Math
3814Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3815table of how this is implemented in various languages, please see
3816`Wikipedia: modulo
3817operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3818
3819Note that signed integer remainder and unsigned integer remainder are
3820distinct operations; for unsigned integer remainder, use '``urem``'.
3821
3822Taking the remainder of a division by zero leads to undefined behavior.
3823Overflow also leads to undefined behavior; this is a rare case, but can
3824occur, for example, by taking the remainder of a 32-bit division of
3825-2147483648 by -1. (The remainder doesn't actually overflow, but this
3826rule lets srem be implemented using instructions that return both the
3827result of the division and the remainder.)
3828
3829Example:
3830""""""""
3831
3832.. code-block:: llvm
3833
3834 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3835
3836.. _i_frem:
3837
3838'``frem``' Instruction
3839^^^^^^^^^^^^^^^^^^^^^^
3840
3841Syntax:
3842"""""""
3843
3844::
3845
3846 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3847
3848Overview:
3849"""""""""
3850
3851The '``frem``' instruction returns the remainder from the division of
3852its two operands.
3853
3854Arguments:
3855""""""""""
3856
3857The two arguments to the '``frem``' instruction must be :ref:`floating
3858point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3859Both arguments must have identical types.
3860
3861Semantics:
3862""""""""""
3863
3864This instruction returns the *remainder* of a division. The remainder
3865has the same sign as the dividend. This instruction can also take any
3866number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3867to enable otherwise unsafe floating point optimizations:
3868
3869Example:
3870""""""""
3871
3872.. code-block:: llvm
3873
3874 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3875
3876.. _bitwiseops:
3877
3878Bitwise Binary Operations
3879-------------------------
3880
3881Bitwise binary operators are used to do various forms of bit-twiddling
3882in a program. They are generally very efficient instructions and can
3883commonly be strength reduced from other instructions. They require two
3884operands of the same type, execute an operation on them, and produce a
3885single value. The resulting value is the same type as its operands.
3886
3887'``shl``' Instruction
3888^^^^^^^^^^^^^^^^^^^^^
3889
3890Syntax:
3891"""""""
3892
3893::
3894
3895 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3896 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3897 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3898 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3899
3900Overview:
3901"""""""""
3902
3903The '``shl``' instruction returns the first operand shifted to the left
3904a specified number of bits.
3905
3906Arguments:
3907""""""""""
3908
3909Both arguments to the '``shl``' instruction must be the same
3910:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3911'``op2``' is treated as an unsigned value.
3912
3913Semantics:
3914""""""""""
3915
3916The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3917where ``n`` is the width of the result. If ``op2`` is (statically or
3918dynamically) negative or equal to or larger than the number of bits in
3919``op1``, the result is undefined. If the arguments are vectors, each
3920vector element of ``op1`` is shifted by the corresponding shift amount
3921in ``op2``.
3922
3923If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3924value <poisonvalues>` if it shifts out any non-zero bits. If the
3925``nsw`` keyword is present, then the shift produces a :ref:`poison
3926value <poisonvalues>` if it shifts out any bits that disagree with the
3927resultant sign bit. As such, NUW/NSW have the same semantics as they
3928would if the shift were expressed as a mul instruction with the same
3929nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3930
3931Example:
3932""""""""
3933
3934.. code-block:: llvm
3935
3936 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3937 <result> = shl i32 4, 2 ; yields {i32}: 16
3938 <result> = shl i32 1, 10 ; yields {i32}: 1024
3939 <result> = shl i32 1, 32 ; undefined
3940 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3941
3942'``lshr``' Instruction
3943^^^^^^^^^^^^^^^^^^^^^^
3944
3945Syntax:
3946"""""""
3947
3948::
3949
3950 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3951 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3952
3953Overview:
3954"""""""""
3955
3956The '``lshr``' instruction (logical shift right) returns the first
3957operand shifted to the right a specified number of bits with zero fill.
3958
3959Arguments:
3960""""""""""
3961
3962Both arguments to the '``lshr``' instruction must be the same
3963:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3964'``op2``' is treated as an unsigned value.
3965
3966Semantics:
3967""""""""""
3968
3969This instruction always performs a logical shift right operation. The
3970most significant bits of the result will be filled with zero bits after
3971the shift. If ``op2`` is (statically or dynamically) equal to or larger
3972than the number of bits in ``op1``, the result is undefined. If the
3973arguments are vectors, each vector element of ``op1`` is shifted by the
3974corresponding shift amount in ``op2``.
3975
3976If the ``exact`` keyword is present, the result value of the ``lshr`` is
3977a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3978non-zero.
3979
3980Example:
3981""""""""
3982
3983.. code-block:: llvm
3984
3985 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3986 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3987 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3988 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3989 <result> = lshr i32 1, 32 ; undefined
3990 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3991
3992'``ashr``' Instruction
3993^^^^^^^^^^^^^^^^^^^^^^
3994
3995Syntax:
3996"""""""
3997
3998::
3999
4000 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4001 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4002
4003Overview:
4004"""""""""
4005
4006The '``ashr``' instruction (arithmetic shift right) returns the first
4007operand shifted to the right a specified number of bits with sign
4008extension.
4009
4010Arguments:
4011""""""""""
4012
4013Both arguments to the '``ashr``' instruction must be the same
4014:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4015'``op2``' is treated as an unsigned value.
4016
4017Semantics:
4018""""""""""
4019
4020This instruction always performs an arithmetic shift right operation,
4021The most significant bits of the result will be filled with the sign bit
4022of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4023than the number of bits in ``op1``, the result is undefined. If the
4024arguments are vectors, each vector element of ``op1`` is shifted by the
4025corresponding shift amount in ``op2``.
4026
4027If the ``exact`` keyword is present, the result value of the ``ashr`` is
4028a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4029non-zero.
4030
4031Example:
4032""""""""
4033
4034.. code-block:: llvm
4035
4036 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4037 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4038 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4039 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4040 <result> = ashr i32 1, 32 ; undefined
4041 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4042
4043'``and``' Instruction
4044^^^^^^^^^^^^^^^^^^^^^
4045
4046Syntax:
4047"""""""
4048
4049::
4050
4051 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4052
4053Overview:
4054"""""""""
4055
4056The '``and``' instruction returns the bitwise logical and of its two
4057operands.
4058
4059Arguments:
4060""""""""""
4061
4062The two arguments to the '``and``' instruction must be
4063:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4064arguments must have identical types.
4065
4066Semantics:
4067""""""""""
4068
4069The truth table used for the '``and``' instruction is:
4070
4071+-----+-----+-----+
4072| In0 | In1 | Out |
4073+-----+-----+-----+
4074| 0 | 0 | 0 |
4075+-----+-----+-----+
4076| 0 | 1 | 0 |
4077+-----+-----+-----+
4078| 1 | 0 | 0 |
4079+-----+-----+-----+
4080| 1 | 1 | 1 |
4081+-----+-----+-----+
4082
4083Example:
4084""""""""
4085
4086.. code-block:: llvm
4087
4088 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4089 <result> = and i32 15, 40 ; yields {i32}:result = 8
4090 <result> = and i32 4, 8 ; yields {i32}:result = 0
4091
4092'``or``' Instruction
4093^^^^^^^^^^^^^^^^^^^^
4094
4095Syntax:
4096"""""""
4097
4098::
4099
4100 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4101
4102Overview:
4103"""""""""
4104
4105The '``or``' instruction returns the bitwise logical inclusive or of its
4106two operands.
4107
4108Arguments:
4109""""""""""
4110
4111The two arguments to the '``or``' instruction must be
4112:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4113arguments must have identical types.
4114
4115Semantics:
4116""""""""""
4117
4118The truth table used for the '``or``' instruction is:
4119
4120+-----+-----+-----+
4121| In0 | In1 | Out |
4122+-----+-----+-----+
4123| 0 | 0 | 0 |
4124+-----+-----+-----+
4125| 0 | 1 | 1 |
4126+-----+-----+-----+
4127| 1 | 0 | 1 |
4128+-----+-----+-----+
4129| 1 | 1 | 1 |
4130+-----+-----+-----+
4131
4132Example:
4133""""""""
4134
4135::
4136
4137 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4138 <result> = or i32 15, 40 ; yields {i32}:result = 47
4139 <result> = or i32 4, 8 ; yields {i32}:result = 12
4140
4141'``xor``' Instruction
4142^^^^^^^^^^^^^^^^^^^^^
4143
4144Syntax:
4145"""""""
4146
4147::
4148
4149 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4150
4151Overview:
4152"""""""""
4153
4154The '``xor``' instruction returns the bitwise logical exclusive or of
4155its two operands. The ``xor`` is used to implement the "one's
4156complement" operation, which is the "~" operator in C.
4157
4158Arguments:
4159""""""""""
4160
4161The two arguments to the '``xor``' instruction must be
4162:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4163arguments must have identical types.
4164
4165Semantics:
4166""""""""""
4167
4168The truth table used for the '``xor``' instruction is:
4169
4170+-----+-----+-----+
4171| In0 | In1 | Out |
4172+-----+-----+-----+
4173| 0 | 0 | 0 |
4174+-----+-----+-----+
4175| 0 | 1 | 1 |
4176+-----+-----+-----+
4177| 1 | 0 | 1 |
4178+-----+-----+-----+
4179| 1 | 1 | 0 |
4180+-----+-----+-----+
4181
4182Example:
4183""""""""
4184
4185.. code-block:: llvm
4186
4187 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4188 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4189 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4190 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4191
4192Vector Operations
4193-----------------
4194
4195LLVM supports several instructions to represent vector operations in a
4196target-independent manner. These instructions cover the element-access
4197and vector-specific operations needed to process vectors effectively.
4198While LLVM does directly support these vector operations, many
4199sophisticated algorithms will want to use target-specific intrinsics to
4200take full advantage of a specific target.
4201
4202.. _i_extractelement:
4203
4204'``extractelement``' Instruction
4205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4206
4207Syntax:
4208"""""""
4209
4210::
4211
4212 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4213
4214Overview:
4215"""""""""
4216
4217The '``extractelement``' instruction extracts a single scalar element
4218from a vector at a specified index.
4219
4220Arguments:
4221""""""""""
4222
4223The first operand of an '``extractelement``' instruction is a value of
4224:ref:`vector <t_vector>` type. The second operand is an index indicating
4225the position from which to extract the element. The index may be a
4226variable.
4227
4228Semantics:
4229""""""""""
4230
4231The result is a scalar of the same type as the element type of ``val``.
4232Its value is the value at position ``idx`` of ``val``. If ``idx``
4233exceeds the length of ``val``, the results are undefined.
4234
4235Example:
4236""""""""
4237
4238.. code-block:: llvm
4239
4240 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4241
4242.. _i_insertelement:
4243
4244'``insertelement``' Instruction
4245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4246
4247Syntax:
4248"""""""
4249
4250::
4251
4252 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4253
4254Overview:
4255"""""""""
4256
4257The '``insertelement``' instruction inserts a scalar element into a
4258vector at a specified index.
4259
4260Arguments:
4261""""""""""
4262
4263The first operand of an '``insertelement``' instruction is a value of
4264:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4265type must equal the element type of the first operand. The third operand
4266is an index indicating the position at which to insert the value. The
4267index may be a variable.
4268
4269Semantics:
4270""""""""""
4271
4272The result is a vector of the same type as ``val``. Its element values
4273are those of ``val`` except at position ``idx``, where it gets the value
4274``elt``. If ``idx`` exceeds the length of ``val``, the results are
4275undefined.
4276
4277Example:
4278""""""""
4279
4280.. code-block:: llvm
4281
4282 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4283
4284.. _i_shufflevector:
4285
4286'``shufflevector``' Instruction
4287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4288
4289Syntax:
4290"""""""
4291
4292::
4293
4294 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4295
4296Overview:
4297"""""""""
4298
4299The '``shufflevector``' instruction constructs a permutation of elements
4300from two input vectors, returning a vector with the same element type as
4301the input and length that is the same as the shuffle mask.
4302
4303Arguments:
4304""""""""""
4305
4306The first two operands of a '``shufflevector``' instruction are vectors
4307with the same type. The third argument is a shuffle mask whose element
4308type is always 'i32'. The result of the instruction is a vector whose
4309length is the same as the shuffle mask and whose element type is the
4310same as the element type of the first two operands.
4311
4312The shuffle mask operand is required to be a constant vector with either
4313constant integer or undef values.
4314
4315Semantics:
4316""""""""""
4317
4318The elements of the two input vectors are numbered from left to right
4319across both of the vectors. The shuffle mask operand specifies, for each
4320element of the result vector, which element of the two input vectors the
4321result element gets. The element selector may be undef (meaning "don't
4322care") and the second operand may be undef if performing a shuffle from
4323only one vector.
4324
4325Example:
4326""""""""
4327
4328.. code-block:: llvm
4329
4330 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4331 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4332 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4333 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4334 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4335 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4336 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4337 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4338
4339Aggregate Operations
4340--------------------
4341
4342LLVM supports several instructions for working with
4343:ref:`aggregate <t_aggregate>` values.
4344
4345.. _i_extractvalue:
4346
4347'``extractvalue``' Instruction
4348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4349
4350Syntax:
4351"""""""
4352
4353::
4354
4355 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4356
4357Overview:
4358"""""""""
4359
4360The '``extractvalue``' instruction extracts the value of a member field
4361from an :ref:`aggregate <t_aggregate>` value.
4362
4363Arguments:
4364""""""""""
4365
4366The first operand of an '``extractvalue``' instruction is a value of
4367:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4368constant indices to specify which value to extract in a similar manner
4369as indices in a '``getelementptr``' instruction.
4370
4371The major differences to ``getelementptr`` indexing are:
4372
4373- Since the value being indexed is not a pointer, the first index is
4374 omitted and assumed to be zero.
4375- At least one index must be specified.
4376- Not only struct indices but also array indices must be in bounds.
4377
4378Semantics:
4379""""""""""
4380
4381The result is the value at the position in the aggregate specified by
4382the index operands.
4383
4384Example:
4385""""""""
4386
4387.. code-block:: llvm
4388
4389 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4390
4391.. _i_insertvalue:
4392
4393'``insertvalue``' Instruction
4394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4395
4396Syntax:
4397"""""""
4398
4399::
4400
4401 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4402
4403Overview:
4404"""""""""
4405
4406The '``insertvalue``' instruction inserts a value into a member field in
4407an :ref:`aggregate <t_aggregate>` value.
4408
4409Arguments:
4410""""""""""
4411
4412The first operand of an '``insertvalue``' instruction is a value of
4413:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4414a first-class value to insert. The following operands are constant
4415indices indicating the position at which to insert the value in a
4416similar manner as indices in a '``extractvalue``' instruction. The value
4417to insert must have the same type as the value identified by the
4418indices.
4419
4420Semantics:
4421""""""""""
4422
4423The result is an aggregate of the same type as ``val``. Its value is
4424that of ``val`` except that the value at the position specified by the
4425indices is that of ``elt``.
4426
4427Example:
4428""""""""
4429
4430.. code-block:: llvm
4431
4432 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4433 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4434 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4435
4436.. _memoryops:
4437
4438Memory Access and Addressing Operations
4439---------------------------------------
4440
4441A key design point of an SSA-based representation is how it represents
4442memory. In LLVM, no memory locations are in SSA form, which makes things
4443very simple. This section describes how to read, write, and allocate
4444memory in LLVM.
4445
4446.. _i_alloca:
4447
4448'``alloca``' Instruction
4449^^^^^^^^^^^^^^^^^^^^^^^^
4450
4451Syntax:
4452"""""""
4453
4454::
4455
4456 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4457
4458Overview:
4459"""""""""
4460
4461The '``alloca``' instruction allocates memory on the stack frame of the
4462currently executing function, to be automatically released when this
4463function returns to its caller. The object is always allocated in the
4464generic address space (address space zero).
4465
4466Arguments:
4467""""""""""
4468
4469The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4470bytes of memory on the runtime stack, returning a pointer of the
4471appropriate type to the program. If "NumElements" is specified, it is
4472the number of elements allocated, otherwise "NumElements" is defaulted
4473to be one. If a constant alignment is specified, the value result of the
4474allocation is guaranteed to be aligned to at least that boundary. If not
4475specified, or if zero, the target can choose to align the allocation on
4476any convenient boundary compatible with the type.
4477
4478'``type``' may be any sized type.
4479
4480Semantics:
4481""""""""""
4482
4483Memory is allocated; a pointer is returned. The operation is undefined
4484if there is insufficient stack space for the allocation. '``alloca``'d
4485memory is automatically released when the function returns. The
4486'``alloca``' instruction is commonly used to represent automatic
4487variables that must have an address available. When the function returns
4488(either with the ``ret`` or ``resume`` instructions), the memory is
4489reclaimed. Allocating zero bytes is legal, but the result is undefined.
4490The order in which memory is allocated (ie., which way the stack grows)
4491is not specified.
4492
4493Example:
4494""""""""
4495
4496.. code-block:: llvm
4497
4498 %ptr = alloca i32 ; yields {i32*}:ptr
4499 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4500 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4501 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4502
4503.. _i_load:
4504
4505'``load``' Instruction
4506^^^^^^^^^^^^^^^^^^^^^^
4507
4508Syntax:
4509"""""""
4510
4511::
4512
4513 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4514 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4515 !<index> = !{ i32 1 }
4516
4517Overview:
4518"""""""""
4519
4520The '``load``' instruction is used to read from memory.
4521
4522Arguments:
4523""""""""""
4524
4525The argument to the '``load``' instruction specifies the memory address
4526from which to load. The pointer must point to a :ref:`first
4527class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4528then the optimizer is not allowed to modify the number or order of
4529execution of this ``load`` with other :ref:`volatile
4530operations <volatile>`.
4531
4532If the ``load`` is marked as ``atomic``, it takes an extra
4533:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4534``release`` and ``acq_rel`` orderings are not valid on ``load``
4535instructions. Atomic loads produce :ref:`defined <memmodel>` results
4536when they may see multiple atomic stores. The type of the pointee must
4537be an integer type whose bit width is a power of two greater than or
4538equal to eight and less than or equal to a target-specific size limit.
4539``align`` must be explicitly specified on atomic loads, and the load has
4540undefined behavior if the alignment is not set to a value which is at
4541least the size in bytes of the pointee. ``!nontemporal`` does not have
4542any defined semantics for atomic loads.
4543
4544The optional constant ``align`` argument specifies the alignment of the
4545operation (that is, the alignment of the memory address). A value of 0
4546or an omitted ``align`` argument means that the operation has the abi
4547alignment for the target. It is the responsibility of the code emitter
4548to ensure that the alignment information is correct. Overestimating the
4549alignment results in undefined behavior. Underestimating the alignment
4550may produce less efficient code. An alignment of 1 is always safe.
4551
4552The optional ``!nontemporal`` metadata must reference a single
4553metatadata name <index> corresponding to a metadata node with one
4554``i32`` entry of value 1. The existence of the ``!nontemporal``
4555metatadata on the instruction tells the optimizer and code generator
4556that this load is not expected to be reused in the cache. The code
4557generator may select special instructions to save cache bandwidth, such
4558as the ``MOVNT`` instruction on x86.
4559
4560The optional ``!invariant.load`` metadata must reference a single
4561metatadata name <index> corresponding to a metadata node with no
4562entries. The existence of the ``!invariant.load`` metatadata on the
4563instruction tells the optimizer and code generator that this load
4564address points to memory which does not change value during program
4565execution. The optimizer may then move this load around, for example, by
4566hoisting it out of loops using loop invariant code motion.
4567
4568Semantics:
4569""""""""""
4570
4571The location of memory pointed to is loaded. If the value being loaded
4572is of scalar type then the number of bytes read does not exceed the
4573minimum number of bytes needed to hold all bits of the type. For
4574example, loading an ``i24`` reads at most three bytes. When loading a
4575value of a type like ``i20`` with a size that is not an integral number
4576of bytes, the result is undefined if the value was not originally
4577written using a store of the same type.
4578
4579Examples:
4580"""""""""
4581
4582.. code-block:: llvm
4583
4584 %ptr = alloca i32 ; yields {i32*}:ptr
4585 store i32 3, i32* %ptr ; yields {void}
4586 %val = load i32* %ptr ; yields {i32}:val = i32 3
4587
4588.. _i_store:
4589
4590'``store``' Instruction
4591^^^^^^^^^^^^^^^^^^^^^^^
4592
4593Syntax:
4594"""""""
4595
4596::
4597
4598 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4599 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4600
4601Overview:
4602"""""""""
4603
4604The '``store``' instruction is used to write to memory.
4605
4606Arguments:
4607""""""""""
4608
4609There are two arguments to the '``store``' instruction: a value to store
4610and an address at which to store it. The type of the '``<pointer>``'
4611operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4612the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4613then the optimizer is not allowed to modify the number or order of
4614execution of this ``store`` with other :ref:`volatile
4615operations <volatile>`.
4616
4617If the ``store`` is marked as ``atomic``, it takes an extra
4618:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4619``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4620instructions. Atomic loads produce :ref:`defined <memmodel>` results
4621when they may see multiple atomic stores. The type of the pointee must
4622be an integer type whose bit width is a power of two greater than or
4623equal to eight and less than or equal to a target-specific size limit.
4624``align`` must be explicitly specified on atomic stores, and the store
4625has undefined behavior if the alignment is not set to a value which is
4626at least the size in bytes of the pointee. ``!nontemporal`` does not
4627have any defined semantics for atomic stores.
4628
4629The optional constant "align" argument specifies the alignment of the
4630operation (that is, the alignment of the memory address). A value of 0
4631or an omitted "align" argument means that the operation has the abi
4632alignment for the target. It is the responsibility of the code emitter
4633to ensure that the alignment information is correct. Overestimating the
4634alignment results in an undefined behavior. Underestimating the
4635alignment may produce less efficient code. An alignment of 1 is always
4636safe.
4637
4638The optional !nontemporal metadata must reference a single metatadata
4639name <index> corresponding to a metadata node with one i32 entry of
4640value 1. The existence of the !nontemporal metatadata on the instruction
4641tells the optimizer and code generator that this load is not expected to
4642be reused in the cache. The code generator may select special
4643instructions to save cache bandwidth, such as the MOVNT instruction on
4644x86.
4645
4646Semantics:
4647""""""""""
4648
4649The contents of memory are updated to contain '``<value>``' at the
4650location specified by the '``<pointer>``' operand. If '``<value>``' is
4651of scalar type then the number of bytes written does not exceed the
4652minimum number of bytes needed to hold all bits of the type. For
4653example, storing an ``i24`` writes at most three bytes. When writing a
4654value of a type like ``i20`` with a size that is not an integral number
4655of bytes, it is unspecified what happens to the extra bits that do not
4656belong to the type, but they will typically be overwritten.
4657
4658Example:
4659""""""""
4660
4661.. code-block:: llvm
4662
4663 %ptr = alloca i32 ; yields {i32*}:ptr
4664 store i32 3, i32* %ptr ; yields {void}
4665 %val = load i32* %ptr ; yields {i32}:val = i32 3
4666
4667.. _i_fence:
4668
4669'``fence``' Instruction
4670^^^^^^^^^^^^^^^^^^^^^^^
4671
4672Syntax:
4673"""""""
4674
4675::
4676
4677 fence [singlethread] <ordering> ; yields {void}
4678
4679Overview:
4680"""""""""
4681
4682The '``fence``' instruction is used to introduce happens-before edges
4683between operations.
4684
4685Arguments:
4686""""""""""
4687
4688'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4689defines what *synchronizes-with* edges they add. They can only be given
4690``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4691
4692Semantics:
4693""""""""""
4694
4695A fence A which has (at least) ``release`` ordering semantics
4696*synchronizes with* a fence B with (at least) ``acquire`` ordering
4697semantics if and only if there exist atomic operations X and Y, both
4698operating on some atomic object M, such that A is sequenced before X, X
4699modifies M (either directly or through some side effect of a sequence
4700headed by X), Y is sequenced before B, and Y observes M. This provides a
4701*happens-before* dependency between A and B. Rather than an explicit
4702``fence``, one (but not both) of the atomic operations X or Y might
4703provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4704still *synchronize-with* the explicit ``fence`` and establish the
4705*happens-before* edge.
4706
4707A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4708``acquire`` and ``release`` semantics specified above, participates in
4709the global program order of other ``seq_cst`` operations and/or fences.
4710
4711The optional ":ref:`singlethread <singlethread>`" argument specifies
4712that the fence only synchronizes with other fences in the same thread.
4713(This is useful for interacting with signal handlers.)
4714
4715Example:
4716""""""""
4717
4718.. code-block:: llvm
4719
4720 fence acquire ; yields {void}
4721 fence singlethread seq_cst ; yields {void}
4722
4723.. _i_cmpxchg:
4724
4725'``cmpxchg``' Instruction
4726^^^^^^^^^^^^^^^^^^^^^^^^^
4727
4728Syntax:
4729"""""""
4730
4731::
4732
4733 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4734
4735Overview:
4736"""""""""
4737
4738The '``cmpxchg``' instruction is used to atomically modify memory. It
4739loads a value in memory and compares it to a given value. If they are
4740equal, it stores a new value into the memory.
4741
4742Arguments:
4743""""""""""
4744
4745There are three arguments to the '``cmpxchg``' instruction: an address
4746to operate on, a value to compare to the value currently be at that
4747address, and a new value to place at that address if the compared values
4748are equal. The type of '<cmp>' must be an integer type whose bit width
4749is a power of two greater than or equal to eight and less than or equal
4750to a target-specific size limit. '<cmp>' and '<new>' must have the same
4751type, and the type of '<pointer>' must be a pointer to that type. If the
4752``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4753to modify the number or order of execution of this ``cmpxchg`` with
4754other :ref:`volatile operations <volatile>`.
4755
4756The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4757synchronizes with other atomic operations.
4758
4759The optional "``singlethread``" argument declares that the ``cmpxchg``
4760is only atomic with respect to code (usually signal handlers) running in
4761the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4762respect to all other code in the system.
4763
4764The pointer passed into cmpxchg must have alignment greater than or
4765equal to the size in memory of the operand.
4766
4767Semantics:
4768""""""""""
4769
4770The contents of memory at the location specified by the '``<pointer>``'
4771operand is read and compared to '``<cmp>``'; if the read value is the
4772equal, '``<new>``' is written. The original value at the location is
4773returned.
4774
4775A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4776of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4777atomic load with an ordering parameter determined by dropping any
4778``release`` part of the ``cmpxchg``'s ordering.
4779
4780Example:
4781""""""""
4782
4783.. code-block:: llvm
4784
4785 entry:
4786 %orig = atomic load i32* %ptr unordered ; yields {i32}
4787 br label %loop
4788
4789 loop:
4790 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4791 %squared = mul i32 %cmp, %cmp
4792 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4793 %success = icmp eq i32 %cmp, %old
4794 br i1 %success, label %done, label %loop
4795
4796 done:
4797 ...
4798
4799.. _i_atomicrmw:
4800
4801'``atomicrmw``' Instruction
4802^^^^^^^^^^^^^^^^^^^^^^^^^^^
4803
4804Syntax:
4805"""""""
4806
4807::
4808
4809 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4810
4811Overview:
4812"""""""""
4813
4814The '``atomicrmw``' instruction is used to atomically modify memory.
4815
4816Arguments:
4817""""""""""
4818
4819There are three arguments to the '``atomicrmw``' instruction: an
4820operation to apply, an address whose value to modify, an argument to the
4821operation. The operation must be one of the following keywords:
4822
4823- xchg
4824- add
4825- sub
4826- and
4827- nand
4828- or
4829- xor
4830- max
4831- min
4832- umax
4833- umin
4834
4835The type of '<value>' must be an integer type whose bit width is a power
4836of two greater than or equal to eight and less than or equal to a
4837target-specific size limit. The type of the '``<pointer>``' operand must
4838be a pointer to that type. If the ``atomicrmw`` is marked as
4839``volatile``, then the optimizer is not allowed to modify the number or
4840order of execution of this ``atomicrmw`` with other :ref:`volatile
4841operations <volatile>`.
4842
4843Semantics:
4844""""""""""
4845
4846The contents of memory at the location specified by the '``<pointer>``'
4847operand are atomically read, modified, and written back. The original
4848value at the location is returned. The modification is specified by the
4849operation argument:
4850
4851- xchg: ``*ptr = val``
4852- add: ``*ptr = *ptr + val``
4853- sub: ``*ptr = *ptr - val``
4854- and: ``*ptr = *ptr & val``
4855- nand: ``*ptr = ~(*ptr & val)``
4856- or: ``*ptr = *ptr | val``
4857- xor: ``*ptr = *ptr ^ val``
4858- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4859- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4860- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4861 comparison)
4862- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4863 comparison)
4864
4865Example:
4866""""""""
4867
4868.. code-block:: llvm
4869
4870 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4871
4872.. _i_getelementptr:
4873
4874'``getelementptr``' Instruction
4875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4876
4877Syntax:
4878"""""""
4879
4880::
4881
4882 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4883 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4884 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4885
4886Overview:
4887"""""""""
4888
4889The '``getelementptr``' instruction is used to get the address of a
4890subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4891address calculation only and does not access memory.
4892
4893Arguments:
4894""""""""""
4895
4896The first argument is always a pointer or a vector of pointers, and
4897forms the basis of the calculation. The remaining arguments are indices
4898that indicate which of the elements of the aggregate object are indexed.
4899The interpretation of each index is dependent on the type being indexed
4900into. The first index always indexes the pointer value given as the
4901first argument, the second index indexes a value of the type pointed to
4902(not necessarily the value directly pointed to, since the first index
4903can be non-zero), etc. The first type indexed into must be a pointer
4904value, subsequent types can be arrays, vectors, and structs. Note that
4905subsequent types being indexed into can never be pointers, since that
4906would require loading the pointer before continuing calculation.
4907
4908The type of each index argument depends on the type it is indexing into.
4909When indexing into a (optionally packed) structure, only ``i32`` integer
4910**constants** are allowed (when using a vector of indices they must all
4911be the **same** ``i32`` integer constant). When indexing into an array,
4912pointer or vector, integers of any width are allowed, and they are not
4913required to be constant. These integers are treated as signed values
4914where relevant.
4915
4916For example, let's consider a C code fragment and how it gets compiled
4917to LLVM:
4918
4919.. code-block:: c
4920
4921 struct RT {
4922 char A;
4923 int B[10][20];
4924 char C;
4925 };
4926 struct ST {
4927 int X;
4928 double Y;
4929 struct RT Z;
4930 };
4931
4932 int *foo(struct ST *s) {
4933 return &s[1].Z.B[5][13];
4934 }
4935
4936The LLVM code generated by Clang is:
4937
4938.. code-block:: llvm
4939
4940 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4941 %struct.ST = type { i32, double, %struct.RT }
4942
4943 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4944 entry:
4945 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4946 ret i32* %arrayidx
4947 }
4948
4949Semantics:
4950""""""""""
4951
4952In the example above, the first index is indexing into the
4953'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4954= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4955indexes into the third element of the structure, yielding a
4956'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4957structure. The third index indexes into the second element of the
4958structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4959dimensions of the array are subscripted into, yielding an '``i32``'
4960type. The '``getelementptr``' instruction returns a pointer to this
4961element, thus computing a value of '``i32*``' type.
4962
4963Note that it is perfectly legal to index partially through a structure,
4964returning a pointer to an inner element. Because of this, the LLVM code
4965for the given testcase is equivalent to:
4966
4967.. code-block:: llvm
4968
4969 define i32* @foo(%struct.ST* %s) {
4970 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4971 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4972 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4973 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4974 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4975 ret i32* %t5
4976 }
4977
4978If the ``inbounds`` keyword is present, the result value of the
4979``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4980pointer is not an *in bounds* address of an allocated object, or if any
4981of the addresses that would be formed by successive addition of the
4982offsets implied by the indices to the base address with infinitely
4983precise signed arithmetic are not an *in bounds* address of that
4984allocated object. The *in bounds* addresses for an allocated object are
4985all the addresses that point into the object, plus the address one byte
4986past the end. In cases where the base is a vector of pointers the
4987``inbounds`` keyword applies to each of the computations element-wise.
4988
4989If the ``inbounds`` keyword is not present, the offsets are added to the
4990base address with silently-wrapping two's complement arithmetic. If the
4991offsets have a different width from the pointer, they are sign-extended
4992or truncated to the width of the pointer. The result value of the
4993``getelementptr`` may be outside the object pointed to by the base
4994pointer. The result value may not necessarily be used to access memory
4995though, even if it happens to point into allocated storage. See the
4996:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4997information.
4998
4999The getelementptr instruction is often confusing. For some more insight
5000into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5001
5002Example:
5003""""""""
5004
5005.. code-block:: llvm
5006
5007 ; yields [12 x i8]*:aptr
5008 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5009 ; yields i8*:vptr
5010 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5011 ; yields i8*:eptr
5012 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5013 ; yields i32*:iptr
5014 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5015
5016In cases where the pointer argument is a vector of pointers, each index
5017must be a vector with the same number of elements. For example:
5018
5019.. code-block:: llvm
5020
5021 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5022
5023Conversion Operations
5024---------------------
5025
5026The instructions in this category are the conversion instructions
5027(casting) which all take a single operand and a type. They perform
5028various bit conversions on the operand.
5029
5030'``trunc .. to``' Instruction
5031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5032
5033Syntax:
5034"""""""
5035
5036::
5037
5038 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5039
5040Overview:
5041"""""""""
5042
5043The '``trunc``' instruction truncates its operand to the type ``ty2``.
5044
5045Arguments:
5046""""""""""
5047
5048The '``trunc``' instruction takes a value to trunc, and a type to trunc
5049it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5050of the same number of integers. The bit size of the ``value`` must be
5051larger than the bit size of the destination type, ``ty2``. Equal sized
5052types are not allowed.
5053
5054Semantics:
5055""""""""""
5056
5057The '``trunc``' instruction truncates the high order bits in ``value``
5058and converts the remaining bits to ``ty2``. Since the source size must
5059be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5060It will always truncate bits.
5061
5062Example:
5063""""""""
5064
5065.. code-block:: llvm
5066
5067 %X = trunc i32 257 to i8 ; yields i8:1
5068 %Y = trunc i32 123 to i1 ; yields i1:true
5069 %Z = trunc i32 122 to i1 ; yields i1:false
5070 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5071
5072'``zext .. to``' Instruction
5073^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5074
5075Syntax:
5076"""""""
5077
5078::
5079
5080 <result> = zext <ty> <value> to <ty2> ; yields ty2
5081
5082Overview:
5083"""""""""
5084
5085The '``zext``' instruction zero extends its operand to type ``ty2``.
5086
5087Arguments:
5088""""""""""
5089
5090The '``zext``' instruction takes a value to cast, and a type to cast it
5091to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5092the same number of integers. The bit size of the ``value`` must be
5093smaller than the bit size of the destination type, ``ty2``.
5094
5095Semantics:
5096""""""""""
5097
5098The ``zext`` fills the high order bits of the ``value`` with zero bits
5099until it reaches the size of the destination type, ``ty2``.
5100
5101When zero extending from i1, the result will always be either 0 or 1.
5102
5103Example:
5104""""""""
5105
5106.. code-block:: llvm
5107
5108 %X = zext i32 257 to i64 ; yields i64:257
5109 %Y = zext i1 true to i32 ; yields i32:1
5110 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5111
5112'``sext .. to``' Instruction
5113^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5114
5115Syntax:
5116"""""""
5117
5118::
5119
5120 <result> = sext <ty> <value> to <ty2> ; yields ty2
5121
5122Overview:
5123"""""""""
5124
5125The '``sext``' sign extends ``value`` to the type ``ty2``.
5126
5127Arguments:
5128""""""""""
5129
5130The '``sext``' instruction takes a value to cast, and a type to cast it
5131to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5132the same number of integers. The bit size of the ``value`` must be
5133smaller than the bit size of the destination type, ``ty2``.
5134
5135Semantics:
5136""""""""""
5137
5138The '``sext``' instruction performs a sign extension by copying the sign
5139bit (highest order bit) of the ``value`` until it reaches the bit size
5140of the type ``ty2``.
5141
5142When sign extending from i1, the extension always results in -1 or 0.
5143
5144Example:
5145""""""""
5146
5147.. code-block:: llvm
5148
5149 %X = sext i8 -1 to i16 ; yields i16 :65535
5150 %Y = sext i1 true to i32 ; yields i32:-1
5151 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5152
5153'``fptrunc .. to``' Instruction
5154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5155
5156Syntax:
5157"""""""
5158
5159::
5160
5161 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5162
5163Overview:
5164"""""""""
5165
5166The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5167
5168Arguments:
5169""""""""""
5170
5171The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5172value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5173The size of ``value`` must be larger than the size of ``ty2``. This
5174implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5175
5176Semantics:
5177""""""""""
5178
5179The '``fptrunc``' instruction truncates a ``value`` from a larger
5180:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5181point <t_floating>` type. If the value cannot fit within the
5182destination type, ``ty2``, then the results are undefined.
5183
5184Example:
5185""""""""
5186
5187.. code-block:: llvm
5188
5189 %X = fptrunc double 123.0 to float ; yields float:123.0
5190 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5191
5192'``fpext .. to``' Instruction
5193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5194
5195Syntax:
5196"""""""
5197
5198::
5199
5200 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5201
5202Overview:
5203"""""""""
5204
5205The '``fpext``' extends a floating point ``value`` to a larger floating
5206point value.
5207
5208Arguments:
5209""""""""""
5210
5211The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5212``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5213to. The source type must be smaller than the destination type.
5214
5215Semantics:
5216""""""""""
5217
5218The '``fpext``' instruction extends the ``value`` from a smaller
5219:ref:`floating point <t_floating>` type to a larger :ref:`floating
5220point <t_floating>` type. The ``fpext`` cannot be used to make a
5221*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5222*no-op cast* for a floating point cast.
5223
5224Example:
5225""""""""
5226
5227.. code-block:: llvm
5228
5229 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5230 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5231
5232'``fptoui .. to``' Instruction
5233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5234
5235Syntax:
5236"""""""
5237
5238::
5239
5240 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5241
5242Overview:
5243"""""""""
5244
5245The '``fptoui``' converts a floating point ``value`` to its unsigned
5246integer equivalent of type ``ty2``.
5247
5248Arguments:
5249""""""""""
5250
5251The '``fptoui``' instruction takes a value to cast, which must be a
5252scalar or vector :ref:`floating point <t_floating>` value, and a type to
5253cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5254``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5255type with the same number of elements as ``ty``
5256
5257Semantics:
5258""""""""""
5259
5260The '``fptoui``' instruction converts its :ref:`floating
5261point <t_floating>` operand into the nearest (rounding towards zero)
5262unsigned integer value. If the value cannot fit in ``ty2``, the results
5263are undefined.
5264
5265Example:
5266""""""""
5267
5268.. code-block:: llvm
5269
5270 %X = fptoui double 123.0 to i32 ; yields i32:123
5271 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5272 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5273
5274'``fptosi .. to``' Instruction
5275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5276
5277Syntax:
5278"""""""
5279
5280::
5281
5282 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5283
5284Overview:
5285"""""""""
5286
5287The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5288``value`` to type ``ty2``.
5289
5290Arguments:
5291""""""""""
5292
5293The '``fptosi``' instruction takes a value to cast, which must be a
5294scalar or vector :ref:`floating point <t_floating>` value, and a type to
5295cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5296``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5297type with the same number of elements as ``ty``
5298
5299Semantics:
5300""""""""""
5301
5302The '``fptosi``' instruction converts its :ref:`floating
5303point <t_floating>` operand into the nearest (rounding towards zero)
5304signed integer value. If the value cannot fit in ``ty2``, the results
5305are undefined.
5306
5307Example:
5308""""""""
5309
5310.. code-block:: llvm
5311
5312 %X = fptosi double -123.0 to i32 ; yields i32:-123
5313 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5314 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5315
5316'``uitofp .. to``' Instruction
5317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5318
5319Syntax:
5320"""""""
5321
5322::
5323
5324 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5325
5326Overview:
5327"""""""""
5328
5329The '``uitofp``' instruction regards ``value`` as an unsigned integer
5330and converts that value to the ``ty2`` type.
5331
5332Arguments:
5333""""""""""
5334
5335The '``uitofp``' instruction takes a value to cast, which must be a
5336scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5337``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5338``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5339type with the same number of elements as ``ty``
5340
5341Semantics:
5342""""""""""
5343
5344The '``uitofp``' instruction interprets its operand as an unsigned
5345integer quantity and converts it to the corresponding floating point
5346value. If the value cannot fit in the floating point value, the results
5347are undefined.
5348
5349Example:
5350""""""""
5351
5352.. code-block:: llvm
5353
5354 %X = uitofp i32 257 to float ; yields float:257.0
5355 %Y = uitofp i8 -1 to double ; yields double:255.0
5356
5357'``sitofp .. to``' Instruction
5358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5359
5360Syntax:
5361"""""""
5362
5363::
5364
5365 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5366
5367Overview:
5368"""""""""
5369
5370The '``sitofp``' instruction regards ``value`` as a signed integer and
5371converts that value to the ``ty2`` type.
5372
5373Arguments:
5374""""""""""
5375
5376The '``sitofp``' instruction takes a value to cast, which must be a
5377scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5378``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5379``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5380type with the same number of elements as ``ty``
5381
5382Semantics:
5383""""""""""
5384
5385The '``sitofp``' instruction interprets its operand as a signed integer
5386quantity and converts it to the corresponding floating point value. If
5387the value cannot fit in the floating point value, the results are
5388undefined.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 %X = sitofp i32 257 to float ; yields float:257.0
5396 %Y = sitofp i8 -1 to double ; yields double:-1.0
5397
5398.. _i_ptrtoint:
5399
5400'``ptrtoint .. to``' Instruction
5401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5402
5403Syntax:
5404"""""""
5405
5406::
5407
5408 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5409
5410Overview:
5411"""""""""
5412
5413The '``ptrtoint``' instruction converts the pointer or a vector of
5414pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5415
5416Arguments:
5417""""""""""
5418
5419The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5420a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5421type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5422a vector of integers type.
5423
5424Semantics:
5425""""""""""
5426
5427The '``ptrtoint``' instruction converts ``value`` to integer type
5428``ty2`` by interpreting the pointer value as an integer and either
5429truncating or zero extending that value to the size of the integer type.
5430If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5431``value`` is larger than ``ty2`` then a truncation is done. If they are
5432the same size, then nothing is done (*no-op cast*) other than a type
5433change.
5434
5435Example:
5436""""""""
5437
5438.. code-block:: llvm
5439
5440 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5441 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5442 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5443
5444.. _i_inttoptr:
5445
5446'``inttoptr .. to``' Instruction
5447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5448
5449Syntax:
5450"""""""
5451
5452::
5453
5454 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5455
5456Overview:
5457"""""""""
5458
5459The '``inttoptr``' instruction converts an integer ``value`` to a
5460pointer type, ``ty2``.
5461
5462Arguments:
5463""""""""""
5464
5465The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5466cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5467type.
5468
5469Semantics:
5470""""""""""
5471
5472The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5473applying either a zero extension or a truncation depending on the size
5474of the integer ``value``. If ``value`` is larger than the size of a
5475pointer then a truncation is done. If ``value`` is smaller than the size
5476of a pointer then a zero extension is done. If they are the same size,
5477nothing is done (*no-op cast*).
5478
5479Example:
5480""""""""
5481
5482.. code-block:: llvm
5483
5484 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5485 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5486 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5487 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5488
5489.. _i_bitcast:
5490
5491'``bitcast .. to``' Instruction
5492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5493
5494Syntax:
5495"""""""
5496
5497::
5498
5499 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5500
5501Overview:
5502"""""""""
5503
5504The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5505changing any bits.
5506
5507Arguments:
5508""""""""""
5509
5510The '``bitcast``' instruction takes a value to cast, which must be a
5511non-aggregate first class value, and a type to cast it to, which must
5512also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5513sizes of ``value`` and the destination type, ``ty2``, must be identical.
5514If the source type is a pointer, the destination type must also be a
5515pointer. This instruction supports bitwise conversion of vectors to
5516integers and to vectors of other types (as long as they have the same
5517size).
5518
5519Semantics:
5520""""""""""
5521
5522The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5523always a *no-op cast* because no bits change with this conversion. The
5524conversion is done as if the ``value`` had been stored to memory and
5525read back as type ``ty2``. Pointer (or vector of pointers) types may
5526only be converted to other pointer (or vector of pointers) types with
5527this instruction. To convert pointers to other types, use the
5528:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5529first.
5530
5531Example:
5532""""""""
5533
5534.. code-block:: llvm
5535
5536 %X = bitcast i8 255 to i8 ; yields i8 :-1
5537 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5538 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5539 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5540
5541.. _otherops:
5542
5543Other Operations
5544----------------
5545
5546The instructions in this category are the "miscellaneous" instructions,
5547which defy better classification.
5548
5549.. _i_icmp:
5550
5551'``icmp``' Instruction
5552^^^^^^^^^^^^^^^^^^^^^^
5553
5554Syntax:
5555"""""""
5556
5557::
5558
5559 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5560
5561Overview:
5562"""""""""
5563
5564The '``icmp``' instruction returns a boolean value or a vector of
5565boolean values based on comparison of its two integer, integer vector,
5566pointer, or pointer vector operands.
5567
5568Arguments:
5569""""""""""
5570
5571The '``icmp``' instruction takes three operands. The first operand is
5572the condition code indicating the kind of comparison to perform. It is
5573not a value, just a keyword. The possible condition code are:
5574
5575#. ``eq``: equal
5576#. ``ne``: not equal
5577#. ``ugt``: unsigned greater than
5578#. ``uge``: unsigned greater or equal
5579#. ``ult``: unsigned less than
5580#. ``ule``: unsigned less or equal
5581#. ``sgt``: signed greater than
5582#. ``sge``: signed greater or equal
5583#. ``slt``: signed less than
5584#. ``sle``: signed less or equal
5585
5586The remaining two arguments must be :ref:`integer <t_integer>` or
5587:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5588must also be identical types.
5589
5590Semantics:
5591""""""""""
5592
5593The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5594code given as ``cond``. The comparison performed always yields either an
5595:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5596
5597#. ``eq``: yields ``true`` if the operands are equal, ``false``
5598 otherwise. No sign interpretation is necessary or performed.
5599#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5600 otherwise. No sign interpretation is necessary or performed.
5601#. ``ugt``: interprets the operands as unsigned values and yields
5602 ``true`` if ``op1`` is greater than ``op2``.
5603#. ``uge``: interprets the operands as unsigned values and yields
5604 ``true`` if ``op1`` is greater than or equal to ``op2``.
5605#. ``ult``: interprets the operands as unsigned values and yields
5606 ``true`` if ``op1`` is less than ``op2``.
5607#. ``ule``: interprets the operands as unsigned values and yields
5608 ``true`` if ``op1`` is less than or equal to ``op2``.
5609#. ``sgt``: interprets the operands as signed values and yields ``true``
5610 if ``op1`` is greater than ``op2``.
5611#. ``sge``: interprets the operands as signed values and yields ``true``
5612 if ``op1`` is greater than or equal to ``op2``.
5613#. ``slt``: interprets the operands as signed values and yields ``true``
5614 if ``op1`` is less than ``op2``.
5615#. ``sle``: interprets the operands as signed values and yields ``true``
5616 if ``op1`` is less than or equal to ``op2``.
5617
5618If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5619are compared as if they were integers.
5620
5621If the operands are integer vectors, then they are compared element by
5622element. The result is an ``i1`` vector with the same number of elements
5623as the values being compared. Otherwise, the result is an ``i1``.
5624
5625Example:
5626""""""""
5627
5628.. code-block:: llvm
5629
5630 <result> = icmp eq i32 4, 5 ; yields: result=false
5631 <result> = icmp ne float* %X, %X ; yields: result=false
5632 <result> = icmp ult i16 4, 5 ; yields: result=true
5633 <result> = icmp sgt i16 4, 5 ; yields: result=false
5634 <result> = icmp ule i16 -4, 5 ; yields: result=false
5635 <result> = icmp sge i16 4, 5 ; yields: result=false
5636
5637Note that the code generator does not yet support vector types with the
5638``icmp`` instruction.
5639
5640.. _i_fcmp:
5641
5642'``fcmp``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
5650 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5651
5652Overview:
5653"""""""""
5654
5655The '``fcmp``' instruction returns a boolean value or vector of boolean
5656values based on comparison of its operands.
5657
5658If the operands are floating point scalars, then the result type is a
5659boolean (:ref:`i1 <t_integer>`).
5660
5661If the operands are floating point vectors, then the result type is a
5662vector of boolean with the same number of elements as the operands being
5663compared.
5664
5665Arguments:
5666""""""""""
5667
5668The '``fcmp``' instruction takes three operands. The first operand is
5669the condition code indicating the kind of comparison to perform. It is
5670not a value, just a keyword. The possible condition code are:
5671
5672#. ``false``: no comparison, always returns false
5673#. ``oeq``: ordered and equal
5674#. ``ogt``: ordered and greater than
5675#. ``oge``: ordered and greater than or equal
5676#. ``olt``: ordered and less than
5677#. ``ole``: ordered and less than or equal
5678#. ``one``: ordered and not equal
5679#. ``ord``: ordered (no nans)
5680#. ``ueq``: unordered or equal
5681#. ``ugt``: unordered or greater than
5682#. ``uge``: unordered or greater than or equal
5683#. ``ult``: unordered or less than
5684#. ``ule``: unordered or less than or equal
5685#. ``une``: unordered or not equal
5686#. ``uno``: unordered (either nans)
5687#. ``true``: no comparison, always returns true
5688
5689*Ordered* means that neither operand is a QNAN while *unordered* means
5690that either operand may be a QNAN.
5691
5692Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5693point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5694type. They must have identical types.
5695
5696Semantics:
5697""""""""""
5698
5699The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5700condition code given as ``cond``. If the operands are vectors, then the
5701vectors are compared element by element. Each comparison performed
5702always yields an :ref:`i1 <t_integer>` result, as follows:
5703
5704#. ``false``: always yields ``false``, regardless of operands.
5705#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5706 is equal to ``op2``.
5707#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5708 is greater than ``op2``.
5709#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5710 is greater than or equal to ``op2``.
5711#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5712 is less than ``op2``.
5713#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5714 is less than or equal to ``op2``.
5715#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5716 is not equal to ``op2``.
5717#. ``ord``: yields ``true`` if both operands are not a QNAN.
5718#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5719 equal to ``op2``.
5720#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5721 greater than ``op2``.
5722#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5723 greater than or equal to ``op2``.
5724#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5725 less than ``op2``.
5726#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5727 less than or equal to ``op2``.
5728#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5729 not equal to ``op2``.
5730#. ``uno``: yields ``true`` if either operand is a QNAN.
5731#. ``true``: always yields ``true``, regardless of operands.
5732
5733Example:
5734""""""""
5735
5736.. code-block:: llvm
5737
5738 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5739 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5740 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5741 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5742
5743Note that the code generator does not yet support vector types with the
5744``fcmp`` instruction.
5745
5746.. _i_phi:
5747
5748'``phi``' Instruction
5749^^^^^^^^^^^^^^^^^^^^^
5750
5751Syntax:
5752"""""""
5753
5754::
5755
5756 <result> = phi <ty> [ <val0>, <label0>], ...
5757
5758Overview:
5759"""""""""
5760
5761The '``phi``' instruction is used to implement the φ node in the SSA
5762graph representing the function.
5763
5764Arguments:
5765""""""""""
5766
5767The type of the incoming values is specified with the first type field.
5768After this, the '``phi``' instruction takes a list of pairs as
5769arguments, with one pair for each predecessor basic block of the current
5770block. Only values of :ref:`first class <t_firstclass>` type may be used as
5771the value arguments to the PHI node. Only labels may be used as the
5772label arguments.
5773
5774There must be no non-phi instructions between the start of a basic block
5775and the PHI instructions: i.e. PHI instructions must be first in a basic
5776block.
5777
5778For the purposes of the SSA form, the use of each incoming value is
5779deemed to occur on the edge from the corresponding predecessor block to
5780the current block (but after any definition of an '``invoke``'
5781instruction's return value on the same edge).
5782
5783Semantics:
5784""""""""""
5785
5786At runtime, the '``phi``' instruction logically takes on the value
5787specified by the pair corresponding to the predecessor basic block that
5788executed just prior to the current block.
5789
5790Example:
5791""""""""
5792
5793.. code-block:: llvm
5794
5795 Loop: ; Infinite loop that counts from 0 on up...
5796 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5797 %nextindvar = add i32 %indvar, 1
5798 br label %Loop
5799
5800.. _i_select:
5801
5802'``select``' Instruction
5803^^^^^^^^^^^^^^^^^^^^^^^^
5804
5805Syntax:
5806"""""""
5807
5808::
5809
5810 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5811
5812 selty is either i1 or {<N x i1>}
5813
5814Overview:
5815"""""""""
5816
5817The '``select``' instruction is used to choose one value based on a
5818condition, without branching.
5819
5820Arguments:
5821""""""""""
5822
5823The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5824values indicating the condition, and two values of the same :ref:`first
5825class <t_firstclass>` type. If the val1/val2 are vectors and the
5826condition is a scalar, then entire vectors are selected, not individual
5827elements.
5828
5829Semantics:
5830""""""""""
5831
5832If the condition is an i1 and it evaluates to 1, the instruction returns
5833the first value argument; otherwise, it returns the second value
5834argument.
5835
5836If the condition is a vector of i1, then the value arguments must be
5837vectors of the same size, and the selection is done element by element.
5838
5839Example:
5840""""""""
5841
5842.. code-block:: llvm
5843
5844 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5845
5846.. _i_call:
5847
5848'``call``' Instruction
5849^^^^^^^^^^^^^^^^^^^^^^
5850
5851Syntax:
5852"""""""
5853
5854::
5855
5856 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5857
5858Overview:
5859"""""""""
5860
5861The '``call``' instruction represents a simple function call.
5862
5863Arguments:
5864""""""""""
5865
5866This instruction requires several arguments:
5867
5868#. The optional "tail" marker indicates that the callee function does
5869 not access any allocas or varargs in the caller. Note that calls may
5870 be marked "tail" even if they do not occur before a
5871 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5872 function call is eligible for tail call optimization, but `might not
5873 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5874 The code generator may optimize calls marked "tail" with either 1)
5875 automatic `sibling call
5876 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5877 callee have matching signatures, or 2) forced tail call optimization
5878 when the following extra requirements are met:
5879
5880 - Caller and callee both have the calling convention ``fastcc``.
5881 - The call is in tail position (ret immediately follows call and ret
5882 uses value of call or is void).
5883 - Option ``-tailcallopt`` is enabled, or
5884 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5885 - `Platform specific constraints are
5886 met. <CodeGenerator.html#tailcallopt>`_
5887
5888#. The optional "cconv" marker indicates which :ref:`calling
5889 convention <callingconv>` the call should use. If none is
5890 specified, the call defaults to using C calling conventions. The
5891 calling convention of the call must match the calling convention of
5892 the target function, or else the behavior is undefined.
5893#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5894 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5895 are valid here.
5896#. '``ty``': the type of the call instruction itself which is also the
5897 type of the return value. Functions that return no value are marked
5898 ``void``.
5899#. '``fnty``': shall be the signature of the pointer to function value
5900 being invoked. The argument types must match the types implied by
5901 this signature. This type can be omitted if the function is not
5902 varargs and if the function type does not return a pointer to a
5903 function.
5904#. '``fnptrval``': An LLVM value containing a pointer to a function to
5905 be invoked. In most cases, this is a direct function invocation, but
5906 indirect ``call``'s are just as possible, calling an arbitrary pointer
5907 to function value.
5908#. '``function args``': argument list whose types match the function
5909 signature argument types and parameter attributes. All arguments must
5910 be of :ref:`first class <t_firstclass>` type. If the function signature
5911 indicates the function accepts a variable number of arguments, the
5912 extra arguments can be specified.
5913#. The optional :ref:`function attributes <fnattrs>` list. Only
5914 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5915 attributes are valid here.
5916
5917Semantics:
5918""""""""""
5919
5920The '``call``' instruction is used to cause control flow to transfer to
5921a specified function, with its incoming arguments bound to the specified
5922values. Upon a '``ret``' instruction in the called function, control
5923flow continues with the instruction after the function call, and the
5924return value of the function is bound to the result argument.
5925
5926Example:
5927""""""""
5928
5929.. code-block:: llvm
5930
5931 %retval = call i32 @test(i32 %argc)
5932 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5933 %X = tail call i32 @foo() ; yields i32
5934 %Y = tail call fastcc i32 @foo() ; yields i32
5935 call void %foo(i8 97 signext)
5936
5937 %struct.A = type { i32, i8 }
5938 %r = call %struct.A @foo() ; yields { 32, i8 }
5939 %gr = extractvalue %struct.A %r, 0 ; yields i32
5940 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5941 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5942 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5943
5944llvm treats calls to some functions with names and arguments that match
5945the standard C99 library as being the C99 library functions, and may
5946perform optimizations or generate code for them under that assumption.
5947This is something we'd like to change in the future to provide better
5948support for freestanding environments and non-C-based languages.
5949
5950.. _i_va_arg:
5951
5952'``va_arg``' Instruction
5953^^^^^^^^^^^^^^^^^^^^^^^^
5954
5955Syntax:
5956"""""""
5957
5958::
5959
5960 <resultval> = va_arg <va_list*> <arglist>, <argty>
5961
5962Overview:
5963"""""""""
5964
5965The '``va_arg``' instruction is used to access arguments passed through
5966the "variable argument" area of a function call. It is used to implement
5967the ``va_arg`` macro in C.
5968
5969Arguments:
5970""""""""""
5971
5972This instruction takes a ``va_list*`` value and the type of the
5973argument. It returns a value of the specified argument type and
5974increments the ``va_list`` to point to the next argument. The actual
5975type of ``va_list`` is target specific.
5976
5977Semantics:
5978""""""""""
5979
5980The '``va_arg``' instruction loads an argument of the specified type
5981from the specified ``va_list`` and causes the ``va_list`` to point to
5982the next argument. For more information, see the variable argument
5983handling :ref:`Intrinsic Functions <int_varargs>`.
5984
5985It is legal for this instruction to be called in a function which does
5986not take a variable number of arguments, for example, the ``vfprintf``
5987function.
5988
5989``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5990function <intrinsics>` because it takes a type as an argument.
5991
5992Example:
5993""""""""
5994
5995See the :ref:`variable argument processing <int_varargs>` section.
5996
5997Note that the code generator does not yet fully support va\_arg on many
5998targets. Also, it does not currently support va\_arg with aggregate
5999types on any target.
6000
6001.. _i_landingpad:
6002
6003'``landingpad``' Instruction
6004^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6005
6006Syntax:
6007"""""""
6008
6009::
6010
6011 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6012 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6013
6014 <clause> := catch <type> <value>
6015 <clause> := filter <array constant type> <array constant>
6016
6017Overview:
6018"""""""""
6019
6020The '``landingpad``' instruction is used by `LLVM's exception handling
6021system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006022is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006023code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6024defines values supplied by the personality function (``pers_fn``) upon
6025re-entry to the function. The ``resultval`` has the type ``resultty``.
6026
6027Arguments:
6028""""""""""
6029
6030This instruction takes a ``pers_fn`` value. This is the personality
6031function associated with the unwinding mechanism. The optional
6032``cleanup`` flag indicates that the landing pad block is a cleanup.
6033
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006034A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006035contains the global variable representing the "type" that may be caught
6036or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6037clause takes an array constant as its argument. Use
6038"``[0 x i8**] undef``" for a filter which cannot throw. The
6039'``landingpad``' instruction must contain *at least* one ``clause`` or
6040the ``cleanup`` flag.
6041
6042Semantics:
6043""""""""""
6044
6045The '``landingpad``' instruction defines the values which are set by the
6046personality function (``pers_fn``) upon re-entry to the function, and
6047therefore the "result type" of the ``landingpad`` instruction. As with
6048calling conventions, how the personality function results are
6049represented in LLVM IR is target specific.
6050
6051The clauses are applied in order from top to bottom. If two
6052``landingpad`` instructions are merged together through inlining, the
6053clauses from the calling function are appended to the list of clauses.
6054When the call stack is being unwound due to an exception being thrown,
6055the exception is compared against each ``clause`` in turn. If it doesn't
6056match any of the clauses, and the ``cleanup`` flag is not set, then
6057unwinding continues further up the call stack.
6058
6059The ``landingpad`` instruction has several restrictions:
6060
6061- A landing pad block is a basic block which is the unwind destination
6062 of an '``invoke``' instruction.
6063- A landing pad block must have a '``landingpad``' instruction as its
6064 first non-PHI instruction.
6065- There can be only one '``landingpad``' instruction within the landing
6066 pad block.
6067- A basic block that is not a landing pad block may not include a
6068 '``landingpad``' instruction.
6069- All '``landingpad``' instructions in a function must have the same
6070 personality function.
6071
6072Example:
6073""""""""
6074
6075.. code-block:: llvm
6076
6077 ;; A landing pad which can catch an integer.
6078 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6079 catch i8** @_ZTIi
6080 ;; A landing pad that is a cleanup.
6081 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6082 cleanup
6083 ;; A landing pad which can catch an integer and can only throw a double.
6084 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6085 catch i8** @_ZTIi
6086 filter [1 x i8**] [@_ZTId]
6087
6088.. _intrinsics:
6089
6090Intrinsic Functions
6091===================
6092
6093LLVM supports the notion of an "intrinsic function". These functions
6094have well known names and semantics and are required to follow certain
6095restrictions. Overall, these intrinsics represent an extension mechanism
6096for the LLVM language that does not require changing all of the
6097transformations in LLVM when adding to the language (or the bitcode
6098reader/writer, the parser, etc...).
6099
6100Intrinsic function names must all start with an "``llvm.``" prefix. This
6101prefix is reserved in LLVM for intrinsic names; thus, function names may
6102not begin with this prefix. Intrinsic functions must always be external
6103functions: you cannot define the body of intrinsic functions. Intrinsic
6104functions may only be used in call or invoke instructions: it is illegal
6105to take the address of an intrinsic function. Additionally, because
6106intrinsic functions are part of the LLVM language, it is required if any
6107are added that they be documented here.
6108
6109Some intrinsic functions can be overloaded, i.e., the intrinsic
6110represents a family of functions that perform the same operation but on
6111different data types. Because LLVM can represent over 8 million
6112different integer types, overloading is used commonly to allow an
6113intrinsic function to operate on any integer type. One or more of the
6114argument types or the result type can be overloaded to accept any
6115integer type. Argument types may also be defined as exactly matching a
6116previous argument's type or the result type. This allows an intrinsic
6117function which accepts multiple arguments, but needs all of them to be
6118of the same type, to only be overloaded with respect to a single
6119argument or the result.
6120
6121Overloaded intrinsics will have the names of its overloaded argument
6122types encoded into its function name, each preceded by a period. Only
6123those types which are overloaded result in a name suffix. Arguments
6124whose type is matched against another type do not. For example, the
6125``llvm.ctpop`` function can take an integer of any width and returns an
6126integer of exactly the same integer width. This leads to a family of
6127functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6128``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6129overloaded, and only one type suffix is required. Because the argument's
6130type is matched against the return type, it does not require its own
6131name suffix.
6132
6133To learn how to add an intrinsic function, please see the `Extending
6134LLVM Guide <ExtendingLLVM.html>`_.
6135
6136.. _int_varargs:
6137
6138Variable Argument Handling Intrinsics
6139-------------------------------------
6140
6141Variable argument support is defined in LLVM with the
6142:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6143functions. These functions are related to the similarly named macros
6144defined in the ``<stdarg.h>`` header file.
6145
6146All of these functions operate on arguments that use a target-specific
6147value type "``va_list``". The LLVM assembly language reference manual
6148does not define what this type is, so all transformations should be
6149prepared to handle these functions regardless of the type used.
6150
6151This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6152variable argument handling intrinsic functions are used.
6153
6154.. code-block:: llvm
6155
6156 define i32 @test(i32 %X, ...) {
6157 ; Initialize variable argument processing
6158 %ap = alloca i8*
6159 %ap2 = bitcast i8** %ap to i8*
6160 call void @llvm.va_start(i8* %ap2)
6161
6162 ; Read a single integer argument
6163 %tmp = va_arg i8** %ap, i32
6164
6165 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6166 %aq = alloca i8*
6167 %aq2 = bitcast i8** %aq to i8*
6168 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6169 call void @llvm.va_end(i8* %aq2)
6170
6171 ; Stop processing of arguments.
6172 call void @llvm.va_end(i8* %ap2)
6173 ret i32 %tmp
6174 }
6175
6176 declare void @llvm.va_start(i8*)
6177 declare void @llvm.va_copy(i8*, i8*)
6178 declare void @llvm.va_end(i8*)
6179
6180.. _int_va_start:
6181
6182'``llvm.va_start``' Intrinsic
6183^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6184
6185Syntax:
6186"""""""
6187
6188::
6189
6190 declare void %llvm.va_start(i8* <arglist>)
6191
6192Overview:
6193"""""""""
6194
6195The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6196subsequent use by ``va_arg``.
6197
6198Arguments:
6199""""""""""
6200
6201The argument is a pointer to a ``va_list`` element to initialize.
6202
6203Semantics:
6204""""""""""
6205
6206The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6207available in C. In a target-dependent way, it initializes the
6208``va_list`` element to which the argument points, so that the next call
6209to ``va_arg`` will produce the first variable argument passed to the
6210function. Unlike the C ``va_start`` macro, this intrinsic does not need
6211to know the last argument of the function as the compiler can figure
6212that out.
6213
6214'``llvm.va_end``' Intrinsic
6215^^^^^^^^^^^^^^^^^^^^^^^^^^^
6216
6217Syntax:
6218"""""""
6219
6220::
6221
6222 declare void @llvm.va_end(i8* <arglist>)
6223
6224Overview:
6225"""""""""
6226
6227The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6228initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6229
6230Arguments:
6231""""""""""
6232
6233The argument is a pointer to a ``va_list`` to destroy.
6234
6235Semantics:
6236""""""""""
6237
6238The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6239available in C. In a target-dependent way, it destroys the ``va_list``
6240element to which the argument points. Calls to
6241:ref:`llvm.va_start <int_va_start>` and
6242:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6243``llvm.va_end``.
6244
6245.. _int_va_copy:
6246
6247'``llvm.va_copy``' Intrinsic
6248^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6249
6250Syntax:
6251"""""""
6252
6253::
6254
6255 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6256
6257Overview:
6258"""""""""
6259
6260The '``llvm.va_copy``' intrinsic copies the current argument position
6261from the source argument list to the destination argument list.
6262
6263Arguments:
6264""""""""""
6265
6266The first argument is a pointer to a ``va_list`` element to initialize.
6267The second argument is a pointer to a ``va_list`` element to copy from.
6268
6269Semantics:
6270""""""""""
6271
6272The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6273available in C. In a target-dependent way, it copies the source
6274``va_list`` element into the destination ``va_list`` element. This
6275intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6276arbitrarily complex and require, for example, memory allocation.
6277
6278Accurate Garbage Collection Intrinsics
6279--------------------------------------
6280
6281LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6282(GC) requires the implementation and generation of these intrinsics.
6283These intrinsics allow identification of :ref:`GC roots on the
6284stack <int_gcroot>`, as well as garbage collector implementations that
6285require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6286Front-ends for type-safe garbage collected languages should generate
6287these intrinsics to make use of the LLVM garbage collectors. For more
6288details, see `Accurate Garbage Collection with
6289LLVM <GarbageCollection.html>`_.
6290
6291The garbage collection intrinsics only operate on objects in the generic
6292address space (address space zero).
6293
6294.. _int_gcroot:
6295
6296'``llvm.gcroot``' Intrinsic
6297^^^^^^^^^^^^^^^^^^^^^^^^^^^
6298
6299Syntax:
6300"""""""
6301
6302::
6303
6304 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6305
6306Overview:
6307"""""""""
6308
6309The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6310the code generator, and allows some metadata to be associated with it.
6311
6312Arguments:
6313""""""""""
6314
6315The first argument specifies the address of a stack object that contains
6316the root pointer. The second pointer (which must be either a constant or
6317a global value address) contains the meta-data to be associated with the
6318root.
6319
6320Semantics:
6321""""""""""
6322
6323At runtime, a call to this intrinsic stores a null pointer into the
6324"ptrloc" location. At compile-time, the code generator generates
6325information to allow the runtime to find the pointer at GC safe points.
6326The '``llvm.gcroot``' intrinsic may only be used in a function which
6327:ref:`specifies a GC algorithm <gc>`.
6328
6329.. _int_gcread:
6330
6331'``llvm.gcread``' Intrinsic
6332^^^^^^^^^^^^^^^^^^^^^^^^^^^
6333
6334Syntax:
6335"""""""
6336
6337::
6338
6339 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6340
6341Overview:
6342"""""""""
6343
6344The '``llvm.gcread``' intrinsic identifies reads of references from heap
6345locations, allowing garbage collector implementations that require read
6346barriers.
6347
6348Arguments:
6349""""""""""
6350
6351The second argument is the address to read from, which should be an
6352address allocated from the garbage collector. The first object is a
6353pointer to the start of the referenced object, if needed by the language
6354runtime (otherwise null).
6355
6356Semantics:
6357""""""""""
6358
6359The '``llvm.gcread``' intrinsic has the same semantics as a load
6360instruction, but may be replaced with substantially more complex code by
6361the garbage collector runtime, as needed. The '``llvm.gcread``'
6362intrinsic may only be used in a function which :ref:`specifies a GC
6363algorithm <gc>`.
6364
6365.. _int_gcwrite:
6366
6367'``llvm.gcwrite``' Intrinsic
6368^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6369
6370Syntax:
6371"""""""
6372
6373::
6374
6375 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6376
6377Overview:
6378"""""""""
6379
6380The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6381locations, allowing garbage collector implementations that require write
6382barriers (such as generational or reference counting collectors).
6383
6384Arguments:
6385""""""""""
6386
6387The first argument is the reference to store, the second is the start of
6388the object to store it to, and the third is the address of the field of
6389Obj to store to. If the runtime does not require a pointer to the
6390object, Obj may be null.
6391
6392Semantics:
6393""""""""""
6394
6395The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6396instruction, but may be replaced with substantially more complex code by
6397the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6398intrinsic may only be used in a function which :ref:`specifies a GC
6399algorithm <gc>`.
6400
6401Code Generator Intrinsics
6402-------------------------
6403
6404These intrinsics are provided by LLVM to expose special features that
6405may only be implemented with code generator support.
6406
6407'``llvm.returnaddress``' Intrinsic
6408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6409
6410Syntax:
6411"""""""
6412
6413::
6414
6415 declare i8 *@llvm.returnaddress(i32 <level>)
6416
6417Overview:
6418"""""""""
6419
6420The '``llvm.returnaddress``' intrinsic attempts to compute a
6421target-specific value indicating the return address of the current
6422function or one of its callers.
6423
6424Arguments:
6425""""""""""
6426
6427The argument to this intrinsic indicates which function to return the
6428address for. Zero indicates the calling function, one indicates its
6429caller, etc. The argument is **required** to be a constant integer
6430value.
6431
6432Semantics:
6433""""""""""
6434
6435The '``llvm.returnaddress``' intrinsic either returns a pointer
6436indicating the return address of the specified call frame, or zero if it
6437cannot be identified. The value returned by this intrinsic is likely to
6438be incorrect or 0 for arguments other than zero, so it should only be
6439used for debugging purposes.
6440
6441Note that calling this intrinsic does not prevent function inlining or
6442other aggressive transformations, so the value returned may not be that
6443of the obvious source-language caller.
6444
6445'``llvm.frameaddress``' Intrinsic
6446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6447
6448Syntax:
6449"""""""
6450
6451::
6452
6453 declare i8* @llvm.frameaddress(i32 <level>)
6454
6455Overview:
6456"""""""""
6457
6458The '``llvm.frameaddress``' intrinsic attempts to return the
6459target-specific frame pointer value for the specified stack frame.
6460
6461Arguments:
6462""""""""""
6463
6464The argument to this intrinsic indicates which function to return the
6465frame pointer for. Zero indicates the calling function, one indicates
6466its caller, etc. The argument is **required** to be a constant integer
6467value.
6468
6469Semantics:
6470""""""""""
6471
6472The '``llvm.frameaddress``' intrinsic either returns a pointer
6473indicating the frame address of the specified call frame, or zero if it
6474cannot be identified. The value returned by this intrinsic is likely to
6475be incorrect or 0 for arguments other than zero, so it should only be
6476used for debugging purposes.
6477
6478Note that calling this intrinsic does not prevent function inlining or
6479other aggressive transformations, so the value returned may not be that
6480of the obvious source-language caller.
6481
6482.. _int_stacksave:
6483
6484'``llvm.stacksave``' Intrinsic
6485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6486
6487Syntax:
6488"""""""
6489
6490::
6491
6492 declare i8* @llvm.stacksave()
6493
6494Overview:
6495"""""""""
6496
6497The '``llvm.stacksave``' intrinsic is used to remember the current state
6498of the function stack, for use with
6499:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6500implementing language features like scoped automatic variable sized
6501arrays in C99.
6502
6503Semantics:
6504""""""""""
6505
6506This intrinsic returns a opaque pointer value that can be passed to
6507:ref:`llvm.stackrestore <int_stackrestore>`. When an
6508``llvm.stackrestore`` intrinsic is executed with a value saved from
6509``llvm.stacksave``, it effectively restores the state of the stack to
6510the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6511practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6512were allocated after the ``llvm.stacksave`` was executed.
6513
6514.. _int_stackrestore:
6515
6516'``llvm.stackrestore``' Intrinsic
6517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6518
6519Syntax:
6520"""""""
6521
6522::
6523
6524 declare void @llvm.stackrestore(i8* %ptr)
6525
6526Overview:
6527"""""""""
6528
6529The '``llvm.stackrestore``' intrinsic is used to restore the state of
6530the function stack to the state it was in when the corresponding
6531:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6532useful for implementing language features like scoped automatic variable
6533sized arrays in C99.
6534
6535Semantics:
6536""""""""""
6537
6538See the description for :ref:`llvm.stacksave <int_stacksave>`.
6539
6540'``llvm.prefetch``' Intrinsic
6541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6542
6543Syntax:
6544"""""""
6545
6546::
6547
6548 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6549
6550Overview:
6551"""""""""
6552
6553The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6554insert a prefetch instruction if supported; otherwise, it is a noop.
6555Prefetches have no effect on the behavior of the program but can change
6556its performance characteristics.
6557
6558Arguments:
6559""""""""""
6560
6561``address`` is the address to be prefetched, ``rw`` is the specifier
6562determining if the fetch should be for a read (0) or write (1), and
6563``locality`` is a temporal locality specifier ranging from (0) - no
6564locality, to (3) - extremely local keep in cache. The ``cache type``
6565specifies whether the prefetch is performed on the data (1) or
6566instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6567arguments must be constant integers.
6568
6569Semantics:
6570""""""""""
6571
6572This intrinsic does not modify the behavior of the program. In
6573particular, prefetches cannot trap and do not produce a value. On
6574targets that support this intrinsic, the prefetch can provide hints to
6575the processor cache for better performance.
6576
6577'``llvm.pcmarker``' Intrinsic
6578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6579
6580Syntax:
6581"""""""
6582
6583::
6584
6585 declare void @llvm.pcmarker(i32 <id>)
6586
6587Overview:
6588"""""""""
6589
6590The '``llvm.pcmarker``' intrinsic is a method to export a Program
6591Counter (PC) in a region of code to simulators and other tools. The
6592method is target specific, but it is expected that the marker will use
6593exported symbols to transmit the PC of the marker. The marker makes no
6594guarantees that it will remain with any specific instruction after
6595optimizations. It is possible that the presence of a marker will inhibit
6596optimizations. The intended use is to be inserted after optimizations to
6597allow correlations of simulation runs.
6598
6599Arguments:
6600""""""""""
6601
6602``id`` is a numerical id identifying the marker.
6603
6604Semantics:
6605""""""""""
6606
6607This intrinsic does not modify the behavior of the program. Backends
6608that do not support this intrinsic may ignore it.
6609
6610'``llvm.readcyclecounter``' Intrinsic
6611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6612
6613Syntax:
6614"""""""
6615
6616::
6617
6618 declare i64 @llvm.readcyclecounter()
6619
6620Overview:
6621"""""""""
6622
6623The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6624counter register (or similar low latency, high accuracy clocks) on those
6625targets that support it. On X86, it should map to RDTSC. On Alpha, it
6626should map to RPCC. As the backing counters overflow quickly (on the
6627order of 9 seconds on alpha), this should only be used for small
6628timings.
6629
6630Semantics:
6631""""""""""
6632
6633When directly supported, reading the cycle counter should not modify any
6634memory. Implementations are allowed to either return a application
6635specific value or a system wide value. On backends without support, this
6636is lowered to a constant 0.
6637
6638Standard C Library Intrinsics
6639-----------------------------
6640
6641LLVM provides intrinsics for a few important standard C library
6642functions. These intrinsics allow source-language front-ends to pass
6643information about the alignment of the pointer arguments to the code
6644generator, providing opportunity for more efficient code generation.
6645
6646.. _int_memcpy:
6647
6648'``llvm.memcpy``' Intrinsic
6649^^^^^^^^^^^^^^^^^^^^^^^^^^^
6650
6651Syntax:
6652"""""""
6653
6654This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6655integer bit width and for different address spaces. Not all targets
6656support all bit widths however.
6657
6658::
6659
6660 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6661 i32 <len>, i32 <align>, i1 <isvolatile>)
6662 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6663 i64 <len>, i32 <align>, i1 <isvolatile>)
6664
6665Overview:
6666"""""""""
6667
6668The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6669source location to the destination location.
6670
6671Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6672intrinsics do not return a value, takes extra alignment/isvolatile
6673arguments and the pointers can be in specified address spaces.
6674
6675Arguments:
6676""""""""""
6677
6678The first argument is a pointer to the destination, the second is a
6679pointer to the source. The third argument is an integer argument
6680specifying the number of bytes to copy, the fourth argument is the
6681alignment of the source and destination locations, and the fifth is a
6682boolean indicating a volatile access.
6683
6684If the call to this intrinsic has an alignment value that is not 0 or 1,
6685then the caller guarantees that both the source and destination pointers
6686are aligned to that boundary.
6687
6688If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6689a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6690very cleanly specified and it is unwise to depend on it.
6691
6692Semantics:
6693""""""""""
6694
6695The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6696source location to the destination location, which are not allowed to
6697overlap. It copies "len" bytes of memory over. If the argument is known
6698to be aligned to some boundary, this can be specified as the fourth
6699argument, otherwise it should be set to 0 or 1.
6700
6701'``llvm.memmove``' Intrinsic
6702^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6703
6704Syntax:
6705"""""""
6706
6707This is an overloaded intrinsic. You can use llvm.memmove on any integer
6708bit width and for different address space. Not all targets support all
6709bit widths however.
6710
6711::
6712
6713 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6714 i32 <len>, i32 <align>, i1 <isvolatile>)
6715 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6716 i64 <len>, i32 <align>, i1 <isvolatile>)
6717
6718Overview:
6719"""""""""
6720
6721The '``llvm.memmove.*``' intrinsics move a block of memory from the
6722source location to the destination location. It is similar to the
6723'``llvm.memcpy``' intrinsic but allows the two memory locations to
6724overlap.
6725
6726Note that, unlike the standard libc function, the ``llvm.memmove.*``
6727intrinsics do not return a value, takes extra alignment/isvolatile
6728arguments and the pointers can be in specified address spaces.
6729
6730Arguments:
6731""""""""""
6732
6733The first argument is a pointer to the destination, the second is a
6734pointer to the source. The third argument is an integer argument
6735specifying the number of bytes to copy, the fourth argument is the
6736alignment of the source and destination locations, and the fifth is a
6737boolean indicating a volatile access.
6738
6739If the call to this intrinsic has an alignment value that is not 0 or 1,
6740then the caller guarantees that the source and destination pointers are
6741aligned to that boundary.
6742
6743If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6744is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6745not very cleanly specified and it is unwise to depend on it.
6746
6747Semantics:
6748""""""""""
6749
6750The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6751source location to the destination location, which may overlap. It
6752copies "len" bytes of memory over. If the argument is known to be
6753aligned to some boundary, this can be specified as the fourth argument,
6754otherwise it should be set to 0 or 1.
6755
6756'``llvm.memset.*``' Intrinsics
6757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6758
6759Syntax:
6760"""""""
6761
6762This is an overloaded intrinsic. You can use llvm.memset on any integer
6763bit width and for different address spaces. However, not all targets
6764support all bit widths.
6765
6766::
6767
6768 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6769 i32 <len>, i32 <align>, i1 <isvolatile>)
6770 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6771 i64 <len>, i32 <align>, i1 <isvolatile>)
6772
6773Overview:
6774"""""""""
6775
6776The '``llvm.memset.*``' intrinsics fill a block of memory with a
6777particular byte value.
6778
6779Note that, unlike the standard libc function, the ``llvm.memset``
6780intrinsic does not return a value and takes extra alignment/volatile
6781arguments. Also, the destination can be in an arbitrary address space.
6782
6783Arguments:
6784""""""""""
6785
6786The first argument is a pointer to the destination to fill, the second
6787is the byte value with which to fill it, the third argument is an
6788integer argument specifying the number of bytes to fill, and the fourth
6789argument is the known alignment of the destination location.
6790
6791If the call to this intrinsic has an alignment value that is not 0 or 1,
6792then the caller guarantees that the destination pointer is aligned to
6793that boundary.
6794
6795If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6796a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6797very cleanly specified and it is unwise to depend on it.
6798
6799Semantics:
6800""""""""""
6801
6802The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6803at the destination location. If the argument is known to be aligned to
6804some boundary, this can be specified as the fourth argument, otherwise
6805it should be set to 0 or 1.
6806
6807'``llvm.sqrt.*``' Intrinsic
6808^^^^^^^^^^^^^^^^^^^^^^^^^^^
6809
6810Syntax:
6811"""""""
6812
6813This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6814floating point or vector of floating point type. Not all targets support
6815all types however.
6816
6817::
6818
6819 declare float @llvm.sqrt.f32(float %Val)
6820 declare double @llvm.sqrt.f64(double %Val)
6821 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6822 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6823 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6824
6825Overview:
6826"""""""""
6827
6828The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6829returning the same value as the libm '``sqrt``' functions would. Unlike
6830``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6831negative numbers other than -0.0 (which allows for better optimization,
6832because there is no need to worry about errno being set).
6833``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6834
6835Arguments:
6836""""""""""
6837
6838The argument and return value are floating point numbers of the same
6839type.
6840
6841Semantics:
6842""""""""""
6843
6844This function returns the sqrt of the specified operand if it is a
6845nonnegative floating point number.
6846
6847'``llvm.powi.*``' Intrinsic
6848^^^^^^^^^^^^^^^^^^^^^^^^^^^
6849
6850Syntax:
6851"""""""
6852
6853This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6854floating point or vector of floating point type. Not all targets support
6855all types however.
6856
6857::
6858
6859 declare float @llvm.powi.f32(float %Val, i32 %power)
6860 declare double @llvm.powi.f64(double %Val, i32 %power)
6861 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6862 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6863 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6864
6865Overview:
6866"""""""""
6867
6868The '``llvm.powi.*``' intrinsics return the first operand raised to the
6869specified (positive or negative) power. The order of evaluation of
6870multiplications is not defined. When a vector of floating point type is
6871used, the second argument remains a scalar integer value.
6872
6873Arguments:
6874""""""""""
6875
6876The second argument is an integer power, and the first is a value to
6877raise to that power.
6878
6879Semantics:
6880""""""""""
6881
6882This function returns the first value raised to the second power with an
6883unspecified sequence of rounding operations.
6884
6885'``llvm.sin.*``' Intrinsic
6886^^^^^^^^^^^^^^^^^^^^^^^^^^
6887
6888Syntax:
6889"""""""
6890
6891This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6892floating point or vector of floating point type. Not all targets support
6893all types however.
6894
6895::
6896
6897 declare float @llvm.sin.f32(float %Val)
6898 declare double @llvm.sin.f64(double %Val)
6899 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6900 declare fp128 @llvm.sin.f128(fp128 %Val)
6901 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6902
6903Overview:
6904"""""""""
6905
6906The '``llvm.sin.*``' intrinsics return the sine of the operand.
6907
6908Arguments:
6909""""""""""
6910
6911The argument and return value are floating point numbers of the same
6912type.
6913
6914Semantics:
6915""""""""""
6916
6917This function returns the sine of the specified operand, returning the
6918same values as the libm ``sin`` functions would, and handles error
6919conditions in the same way.
6920
6921'``llvm.cos.*``' Intrinsic
6922^^^^^^^^^^^^^^^^^^^^^^^^^^
6923
6924Syntax:
6925"""""""
6926
6927This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6928floating point or vector of floating point type. Not all targets support
6929all types however.
6930
6931::
6932
6933 declare float @llvm.cos.f32(float %Val)
6934 declare double @llvm.cos.f64(double %Val)
6935 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6936 declare fp128 @llvm.cos.f128(fp128 %Val)
6937 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6938
6939Overview:
6940"""""""""
6941
6942The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6943
6944Arguments:
6945""""""""""
6946
6947The argument and return value are floating point numbers of the same
6948type.
6949
6950Semantics:
6951""""""""""
6952
6953This function returns the cosine of the specified operand, returning the
6954same values as the libm ``cos`` functions would, and handles error
6955conditions in the same way.
6956
6957'``llvm.pow.*``' Intrinsic
6958^^^^^^^^^^^^^^^^^^^^^^^^^^
6959
6960Syntax:
6961"""""""
6962
6963This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6964floating point or vector of floating point type. Not all targets support
6965all types however.
6966
6967::
6968
6969 declare float @llvm.pow.f32(float %Val, float %Power)
6970 declare double @llvm.pow.f64(double %Val, double %Power)
6971 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6972 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6973 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.pow.*``' intrinsics return the first operand raised to the
6979specified (positive or negative) power.
6980
6981Arguments:
6982""""""""""
6983
6984The second argument is a floating point power, and the first is a value
6985to raise to that power.
6986
6987Semantics:
6988""""""""""
6989
6990This function returns the first value raised to the second power,
6991returning the same values as the libm ``pow`` functions would, and
6992handles error conditions in the same way.
6993
6994'``llvm.exp.*``' Intrinsic
6995^^^^^^^^^^^^^^^^^^^^^^^^^^
6996
6997Syntax:
6998"""""""
6999
7000This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7001floating point or vector of floating point type. Not all targets support
7002all types however.
7003
7004::
7005
7006 declare float @llvm.exp.f32(float %Val)
7007 declare double @llvm.exp.f64(double %Val)
7008 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7009 declare fp128 @llvm.exp.f128(fp128 %Val)
7010 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7011
7012Overview:
7013"""""""""
7014
7015The '``llvm.exp.*``' intrinsics perform the exp function.
7016
7017Arguments:
7018""""""""""
7019
7020The argument and return value are floating point numbers of the same
7021type.
7022
7023Semantics:
7024""""""""""
7025
7026This function returns the same values as the libm ``exp`` functions
7027would, and handles error conditions in the same way.
7028
7029'``llvm.exp2.*``' Intrinsic
7030^^^^^^^^^^^^^^^^^^^^^^^^^^^
7031
7032Syntax:
7033"""""""
7034
7035This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7036floating point or vector of floating point type. Not all targets support
7037all types however.
7038
7039::
7040
7041 declare float @llvm.exp2.f32(float %Val)
7042 declare double @llvm.exp2.f64(double %Val)
7043 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7044 declare fp128 @llvm.exp2.f128(fp128 %Val)
7045 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7046
7047Overview:
7048"""""""""
7049
7050The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7051
7052Arguments:
7053""""""""""
7054
7055The argument and return value are floating point numbers of the same
7056type.
7057
7058Semantics:
7059""""""""""
7060
7061This function returns the same values as the libm ``exp2`` functions
7062would, and handles error conditions in the same way.
7063
7064'``llvm.log.*``' Intrinsic
7065^^^^^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070This is an overloaded intrinsic. You can use ``llvm.log`` on any
7071floating point or vector of floating point type. Not all targets support
7072all types however.
7073
7074::
7075
7076 declare float @llvm.log.f32(float %Val)
7077 declare double @llvm.log.f64(double %Val)
7078 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7079 declare fp128 @llvm.log.f128(fp128 %Val)
7080 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7081
7082Overview:
7083"""""""""
7084
7085The '``llvm.log.*``' intrinsics perform the log function.
7086
7087Arguments:
7088""""""""""
7089
7090The argument and return value are floating point numbers of the same
7091type.
7092
7093Semantics:
7094""""""""""
7095
7096This function returns the same values as the libm ``log`` functions
7097would, and handles error conditions in the same way.
7098
7099'``llvm.log10.*``' Intrinsic
7100^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7101
7102Syntax:
7103"""""""
7104
7105This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7106floating point or vector of floating point type. Not all targets support
7107all types however.
7108
7109::
7110
7111 declare float @llvm.log10.f32(float %Val)
7112 declare double @llvm.log10.f64(double %Val)
7113 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7114 declare fp128 @llvm.log10.f128(fp128 %Val)
7115 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7116
7117Overview:
7118"""""""""
7119
7120The '``llvm.log10.*``' intrinsics perform the log10 function.
7121
7122Arguments:
7123""""""""""
7124
7125The argument and return value are floating point numbers of the same
7126type.
7127
7128Semantics:
7129""""""""""
7130
7131This function returns the same values as the libm ``log10`` functions
7132would, and handles error conditions in the same way.
7133
7134'``llvm.log2.*``' Intrinsic
7135^^^^^^^^^^^^^^^^^^^^^^^^^^^
7136
7137Syntax:
7138"""""""
7139
7140This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7141floating point or vector of floating point type. Not all targets support
7142all types however.
7143
7144::
7145
7146 declare float @llvm.log2.f32(float %Val)
7147 declare double @llvm.log2.f64(double %Val)
7148 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7149 declare fp128 @llvm.log2.f128(fp128 %Val)
7150 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7151
7152Overview:
7153"""""""""
7154
7155The '``llvm.log2.*``' intrinsics perform the log2 function.
7156
7157Arguments:
7158""""""""""
7159
7160The argument and return value are floating point numbers of the same
7161type.
7162
7163Semantics:
7164""""""""""
7165
7166This function returns the same values as the libm ``log2`` functions
7167would, and handles error conditions in the same way.
7168
7169'``llvm.fma.*``' Intrinsic
7170^^^^^^^^^^^^^^^^^^^^^^^^^^
7171
7172Syntax:
7173"""""""
7174
7175This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7176floating point or vector of floating point type. Not all targets support
7177all types however.
7178
7179::
7180
7181 declare float @llvm.fma.f32(float %a, float %b, float %c)
7182 declare double @llvm.fma.f64(double %a, double %b, double %c)
7183 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7184 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7185 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7186
7187Overview:
7188"""""""""
7189
7190The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7191operation.
7192
7193Arguments:
7194""""""""""
7195
7196The argument and return value are floating point numbers of the same
7197type.
7198
7199Semantics:
7200""""""""""
7201
7202This function returns the same values as the libm ``fma`` functions
7203would.
7204
7205'``llvm.fabs.*``' Intrinsic
7206^^^^^^^^^^^^^^^^^^^^^^^^^^^
7207
7208Syntax:
7209"""""""
7210
7211This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7212floating point or vector of floating point type. Not all targets support
7213all types however.
7214
7215::
7216
7217 declare float @llvm.fabs.f32(float %Val)
7218 declare double @llvm.fabs.f64(double %Val)
7219 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7220 declare fp128 @llvm.fabs.f128(fp128 %Val)
7221 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7222
7223Overview:
7224"""""""""
7225
7226The '``llvm.fabs.*``' intrinsics return the absolute value of the
7227operand.
7228
7229Arguments:
7230""""""""""
7231
7232The argument and return value are floating point numbers of the same
7233type.
7234
7235Semantics:
7236""""""""""
7237
7238This function returns the same values as the libm ``fabs`` functions
7239would, and handles error conditions in the same way.
7240
7241'``llvm.floor.*``' Intrinsic
7242^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7243
7244Syntax:
7245"""""""
7246
7247This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7248floating point or vector of floating point type. Not all targets support
7249all types however.
7250
7251::
7252
7253 declare float @llvm.floor.f32(float %Val)
7254 declare double @llvm.floor.f64(double %Val)
7255 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7256 declare fp128 @llvm.floor.f128(fp128 %Val)
7257 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7258
7259Overview:
7260"""""""""
7261
7262The '``llvm.floor.*``' intrinsics return the floor of the operand.
7263
7264Arguments:
7265""""""""""
7266
7267The argument and return value are floating point numbers of the same
7268type.
7269
7270Semantics:
7271""""""""""
7272
7273This function returns the same values as the libm ``floor`` functions
7274would, and handles error conditions in the same way.
7275
7276'``llvm.ceil.*``' Intrinsic
7277^^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7283floating point or vector of floating point type. Not all targets support
7284all types however.
7285
7286::
7287
7288 declare float @llvm.ceil.f32(float %Val)
7289 declare double @llvm.ceil.f64(double %Val)
7290 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7291 declare fp128 @llvm.ceil.f128(fp128 %Val)
7292 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7293
7294Overview:
7295"""""""""
7296
7297The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7298
7299Arguments:
7300""""""""""
7301
7302The argument and return value are floating point numbers of the same
7303type.
7304
7305Semantics:
7306""""""""""
7307
7308This function returns the same values as the libm ``ceil`` functions
7309would, and handles error conditions in the same way.
7310
7311'``llvm.trunc.*``' Intrinsic
7312^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7318floating point or vector of floating point type. Not all targets support
7319all types however.
7320
7321::
7322
7323 declare float @llvm.trunc.f32(float %Val)
7324 declare double @llvm.trunc.f64(double %Val)
7325 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7326 declare fp128 @llvm.trunc.f128(fp128 %Val)
7327 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7328
7329Overview:
7330"""""""""
7331
7332The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7333nearest integer not larger in magnitude than the operand.
7334
7335Arguments:
7336""""""""""
7337
7338The argument and return value are floating point numbers of the same
7339type.
7340
7341Semantics:
7342""""""""""
7343
7344This function returns the same values as the libm ``trunc`` functions
7345would, and handles error conditions in the same way.
7346
7347'``llvm.rint.*``' Intrinsic
7348^^^^^^^^^^^^^^^^^^^^^^^^^^^
7349
7350Syntax:
7351"""""""
7352
7353This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7354floating point or vector of floating point type. Not all targets support
7355all types however.
7356
7357::
7358
7359 declare float @llvm.rint.f32(float %Val)
7360 declare double @llvm.rint.f64(double %Val)
7361 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7362 declare fp128 @llvm.rint.f128(fp128 %Val)
7363 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7364
7365Overview:
7366"""""""""
7367
7368The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7369nearest integer. It may raise an inexact floating-point exception if the
7370operand isn't an integer.
7371
7372Arguments:
7373""""""""""
7374
7375The argument and return value are floating point numbers of the same
7376type.
7377
7378Semantics:
7379""""""""""
7380
7381This function returns the same values as the libm ``rint`` functions
7382would, and handles error conditions in the same way.
7383
7384'``llvm.nearbyint.*``' Intrinsic
7385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7386
7387Syntax:
7388"""""""
7389
7390This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7391floating point or vector of floating point type. Not all targets support
7392all types however.
7393
7394::
7395
7396 declare float @llvm.nearbyint.f32(float %Val)
7397 declare double @llvm.nearbyint.f64(double %Val)
7398 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7399 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7400 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7401
7402Overview:
7403"""""""""
7404
7405The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7406nearest integer.
7407
7408Arguments:
7409""""""""""
7410
7411The argument and return value are floating point numbers of the same
7412type.
7413
7414Semantics:
7415""""""""""
7416
7417This function returns the same values as the libm ``nearbyint``
7418functions would, and handles error conditions in the same way.
7419
7420Bit Manipulation Intrinsics
7421---------------------------
7422
7423LLVM provides intrinsics for a few important bit manipulation
7424operations. These allow efficient code generation for some algorithms.
7425
7426'``llvm.bswap.*``' Intrinsics
7427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7428
7429Syntax:
7430"""""""
7431
7432This is an overloaded intrinsic function. You can use bswap on any
7433integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7434
7435::
7436
7437 declare i16 @llvm.bswap.i16(i16 <id>)
7438 declare i32 @llvm.bswap.i32(i32 <id>)
7439 declare i64 @llvm.bswap.i64(i64 <id>)
7440
7441Overview:
7442"""""""""
7443
7444The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7445values with an even number of bytes (positive multiple of 16 bits).
7446These are useful for performing operations on data that is not in the
7447target's native byte order.
7448
7449Semantics:
7450""""""""""
7451
7452The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7453and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7454intrinsic returns an i32 value that has the four bytes of the input i32
7455swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7456returned i32 will have its bytes in 3, 2, 1, 0 order. The
7457``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7458concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7459respectively).
7460
7461'``llvm.ctpop.*``' Intrinsic
7462^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7463
7464Syntax:
7465"""""""
7466
7467This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7468bit width, or on any vector with integer elements. Not all targets
7469support all bit widths or vector types, however.
7470
7471::
7472
7473 declare i8 @llvm.ctpop.i8(i8 <src>)
7474 declare i16 @llvm.ctpop.i16(i16 <src>)
7475 declare i32 @llvm.ctpop.i32(i32 <src>)
7476 declare i64 @llvm.ctpop.i64(i64 <src>)
7477 declare i256 @llvm.ctpop.i256(i256 <src>)
7478 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7479
7480Overview:
7481"""""""""
7482
7483The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7484in a value.
7485
7486Arguments:
7487""""""""""
7488
7489The only argument is the value to be counted. The argument may be of any
7490integer type, or a vector with integer elements. The return type must
7491match the argument type.
7492
7493Semantics:
7494""""""""""
7495
7496The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7497each element of a vector.
7498
7499'``llvm.ctlz.*``' Intrinsic
7500^^^^^^^^^^^^^^^^^^^^^^^^^^^
7501
7502Syntax:
7503"""""""
7504
7505This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7506integer bit width, or any vector whose elements are integers. Not all
7507targets support all bit widths or vector types, however.
7508
7509::
7510
7511 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7512 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7513 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7514 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7515 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7516 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7517
7518Overview:
7519"""""""""
7520
7521The '``llvm.ctlz``' family of intrinsic functions counts the number of
7522leading zeros in a variable.
7523
7524Arguments:
7525""""""""""
7526
7527The first argument is the value to be counted. This argument may be of
7528any integer type, or a vectory with integer element type. The return
7529type must match the first argument type.
7530
7531The second argument must be a constant and is a flag to indicate whether
7532the intrinsic should ensure that a zero as the first argument produces a
7533defined result. Historically some architectures did not provide a
7534defined result for zero values as efficiently, and many algorithms are
7535now predicated on avoiding zero-value inputs.
7536
7537Semantics:
7538""""""""""
7539
7540The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7541zeros in a variable, or within each element of the vector. If
7542``src == 0`` then the result is the size in bits of the type of ``src``
7543if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7544``llvm.ctlz(i32 2) = 30``.
7545
7546'``llvm.cttz.*``' Intrinsic
7547^^^^^^^^^^^^^^^^^^^^^^^^^^^
7548
7549Syntax:
7550"""""""
7551
7552This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7553integer bit width, or any vector of integer elements. Not all targets
7554support all bit widths or vector types, however.
7555
7556::
7557
7558 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7559 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7560 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7561 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7562 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7563 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7564
7565Overview:
7566"""""""""
7567
7568The '``llvm.cttz``' family of intrinsic functions counts the number of
7569trailing zeros.
7570
7571Arguments:
7572""""""""""
7573
7574The first argument is the value to be counted. This argument may be of
7575any integer type, or a vectory with integer element type. The return
7576type must match the first argument type.
7577
7578The second argument must be a constant and is a flag to indicate whether
7579the intrinsic should ensure that a zero as the first argument produces a
7580defined result. Historically some architectures did not provide a
7581defined result for zero values as efficiently, and many algorithms are
7582now predicated on avoiding zero-value inputs.
7583
7584Semantics:
7585""""""""""
7586
7587The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7588zeros in a variable, or within each element of a vector. If ``src == 0``
7589then the result is the size in bits of the type of ``src`` if
7590``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7591``llvm.cttz(2) = 1``.
7592
7593Arithmetic with Overflow Intrinsics
7594-----------------------------------
7595
7596LLVM provides intrinsics for some arithmetic with overflow operations.
7597
7598'``llvm.sadd.with.overflow.*``' Intrinsics
7599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7600
7601Syntax:
7602"""""""
7603
7604This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7605on any integer bit width.
7606
7607::
7608
7609 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7610 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7611 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7612
7613Overview:
7614"""""""""
7615
7616The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7617a signed addition of the two arguments, and indicate whether an overflow
7618occurred during the signed summation.
7619
7620Arguments:
7621""""""""""
7622
7623The arguments (%a and %b) and the first element of the result structure
7624may be of integer types of any bit width, but they must have the same
7625bit width. The second element of the result structure must be of type
7626``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7627addition.
7628
7629Semantics:
7630""""""""""
7631
7632The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007633a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007634first element of which is the signed summation, and the second element
7635of which is a bit specifying if the signed summation resulted in an
7636overflow.
7637
7638Examples:
7639"""""""""
7640
7641.. code-block:: llvm
7642
7643 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7644 %sum = extractvalue {i32, i1} %res, 0
7645 %obit = extractvalue {i32, i1} %res, 1
7646 br i1 %obit, label %overflow, label %normal
7647
7648'``llvm.uadd.with.overflow.*``' Intrinsics
7649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7650
7651Syntax:
7652"""""""
7653
7654This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7655on any integer bit width.
7656
7657::
7658
7659 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7660 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7661 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7662
7663Overview:
7664"""""""""
7665
7666The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7667an unsigned addition of the two arguments, and indicate whether a carry
7668occurred during the unsigned summation.
7669
7670Arguments:
7671""""""""""
7672
7673The arguments (%a and %b) and the first element of the result structure
7674may be of integer types of any bit width, but they must have the same
7675bit width. The second element of the result structure must be of type
7676``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7677addition.
7678
7679Semantics:
7680""""""""""
7681
7682The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007683an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007684first element of which is the sum, and the second element of which is a
7685bit specifying if the unsigned summation resulted in a carry.
7686
7687Examples:
7688"""""""""
7689
7690.. code-block:: llvm
7691
7692 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7693 %sum = extractvalue {i32, i1} %res, 0
7694 %obit = extractvalue {i32, i1} %res, 1
7695 br i1 %obit, label %carry, label %normal
7696
7697'``llvm.ssub.with.overflow.*``' Intrinsics
7698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7704on any integer bit width.
7705
7706::
7707
7708 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7709 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7710 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7711
7712Overview:
7713"""""""""
7714
7715The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7716a signed subtraction of the two arguments, and indicate whether an
7717overflow occurred during the signed subtraction.
7718
7719Arguments:
7720""""""""""
7721
7722The arguments (%a and %b) and the first element of the result structure
7723may be of integer types of any bit width, but they must have the same
7724bit width. The second element of the result structure must be of type
7725``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7726subtraction.
7727
7728Semantics:
7729""""""""""
7730
7731The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007732a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007733first element of which is the subtraction, and the second element of
7734which is a bit specifying if the signed subtraction resulted in an
7735overflow.
7736
7737Examples:
7738"""""""""
7739
7740.. code-block:: llvm
7741
7742 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7743 %sum = extractvalue {i32, i1} %res, 0
7744 %obit = extractvalue {i32, i1} %res, 1
7745 br i1 %obit, label %overflow, label %normal
7746
7747'``llvm.usub.with.overflow.*``' Intrinsics
7748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7749
7750Syntax:
7751"""""""
7752
7753This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7754on any integer bit width.
7755
7756::
7757
7758 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7759 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7760 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7761
7762Overview:
7763"""""""""
7764
7765The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7766an unsigned subtraction of the two arguments, and indicate whether an
7767overflow occurred during the unsigned subtraction.
7768
7769Arguments:
7770""""""""""
7771
7772The arguments (%a and %b) and the first element of the result structure
7773may be of integer types of any bit width, but they must have the same
7774bit width. The second element of the result structure must be of type
7775``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7776subtraction.
7777
7778Semantics:
7779""""""""""
7780
7781The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007782an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007783the first element of which is the subtraction, and the second element of
7784which is a bit specifying if the unsigned subtraction resulted in an
7785overflow.
7786
7787Examples:
7788"""""""""
7789
7790.. code-block:: llvm
7791
7792 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7793 %sum = extractvalue {i32, i1} %res, 0
7794 %obit = extractvalue {i32, i1} %res, 1
7795 br i1 %obit, label %overflow, label %normal
7796
7797'``llvm.smul.with.overflow.*``' Intrinsics
7798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7799
7800Syntax:
7801"""""""
7802
7803This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7804on any integer bit width.
7805
7806::
7807
7808 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7809 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7810 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7811
7812Overview:
7813"""""""""
7814
7815The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7816a signed multiplication of the two arguments, and indicate whether an
7817overflow occurred during the signed multiplication.
7818
7819Arguments:
7820""""""""""
7821
7822The arguments (%a and %b) and the first element of the result structure
7823may be of integer types of any bit width, but they must have the same
7824bit width. The second element of the result structure must be of type
7825``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7826multiplication.
7827
7828Semantics:
7829""""""""""
7830
7831The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007832a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007833the first element of which is the multiplication, and the second element
7834of which is a bit specifying if the signed multiplication resulted in an
7835overflow.
7836
7837Examples:
7838"""""""""
7839
7840.. code-block:: llvm
7841
7842 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7843 %sum = extractvalue {i32, i1} %res, 0
7844 %obit = extractvalue {i32, i1} %res, 1
7845 br i1 %obit, label %overflow, label %normal
7846
7847'``llvm.umul.with.overflow.*``' Intrinsics
7848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7849
7850Syntax:
7851"""""""
7852
7853This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7854on any integer bit width.
7855
7856::
7857
7858 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7859 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7860 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7866a unsigned multiplication of the two arguments, and indicate whether an
7867overflow occurred during the unsigned multiplication.
7868
7869Arguments:
7870""""""""""
7871
7872The arguments (%a and %b) and the first element of the result structure
7873may be of integer types of any bit width, but they must have the same
7874bit width. The second element of the result structure must be of type
7875``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7876multiplication.
7877
7878Semantics:
7879""""""""""
7880
7881The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007882an unsigned multiplication of the two arguments. They return a structure ---
7883the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007884element of which is a bit specifying if the unsigned multiplication
7885resulted in an overflow.
7886
7887Examples:
7888"""""""""
7889
7890.. code-block:: llvm
7891
7892 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7893 %sum = extractvalue {i32, i1} %res, 0
7894 %obit = extractvalue {i32, i1} %res, 1
7895 br i1 %obit, label %overflow, label %normal
7896
7897Specialised Arithmetic Intrinsics
7898---------------------------------
7899
7900'``llvm.fmuladd.*``' Intrinsic
7901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7902
7903Syntax:
7904"""""""
7905
7906::
7907
7908 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7909 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7910
7911Overview:
7912"""""""""
7913
7914The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007915expressions that can be fused if the code generator determines that (a) the
7916target instruction set has support for a fused operation, and (b) that the
7917fused operation is more efficient than the equivalent, separate pair of mul
7918and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007919
7920Arguments:
7921""""""""""
7922
7923The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7924multiplicands, a and b, and an addend c.
7925
7926Semantics:
7927""""""""""
7928
7929The expression:
7930
7931::
7932
7933 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7934
7935is equivalent to the expression a \* b + c, except that rounding will
7936not be performed between the multiplication and addition steps if the
7937code generator fuses the operations. Fusion is not guaranteed, even if
7938the target platform supports it. If a fused multiply-add is required the
7939corresponding llvm.fma.\* intrinsic function should be used instead.
7940
7941Examples:
7942"""""""""
7943
7944.. code-block:: llvm
7945
7946 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7947
7948Half Precision Floating Point Intrinsics
7949----------------------------------------
7950
7951For most target platforms, half precision floating point is a
7952storage-only format. This means that it is a dense encoding (in memory)
7953but does not support computation in the format.
7954
7955This means that code must first load the half-precision floating point
7956value as an i16, then convert it to float with
7957:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7958then be performed on the float value (including extending to double
7959etc). To store the value back to memory, it is first converted to float
7960if needed, then converted to i16 with
7961:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7962i16 value.
7963
7964.. _int_convert_to_fp16:
7965
7966'``llvm.convert.to.fp16``' Intrinsic
7967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7968
7969Syntax:
7970"""""""
7971
7972::
7973
7974 declare i16 @llvm.convert.to.fp16(f32 %a)
7975
7976Overview:
7977"""""""""
7978
7979The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7980from single precision floating point format to half precision floating
7981point format.
7982
7983Arguments:
7984""""""""""
7985
7986The intrinsic function contains single argument - the value to be
7987converted.
7988
7989Semantics:
7990""""""""""
7991
7992The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7993from single precision floating point format to half precision floating
7994point format. The return value is an ``i16`` which contains the
7995converted number.
7996
7997Examples:
7998"""""""""
7999
8000.. code-block:: llvm
8001
8002 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8003 store i16 %res, i16* @x, align 2
8004
8005.. _int_convert_from_fp16:
8006
8007'``llvm.convert.from.fp16``' Intrinsic
8008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8009
8010Syntax:
8011"""""""
8012
8013::
8014
8015 declare f32 @llvm.convert.from.fp16(i16 %a)
8016
8017Overview:
8018"""""""""
8019
8020The '``llvm.convert.from.fp16``' intrinsic function performs a
8021conversion from half precision floating point format to single precision
8022floating point format.
8023
8024Arguments:
8025""""""""""
8026
8027The intrinsic function contains single argument - the value to be
8028converted.
8029
8030Semantics:
8031""""""""""
8032
8033The '``llvm.convert.from.fp16``' intrinsic function performs a
8034conversion from half single precision floating point format to single
8035precision floating point format. The input half-float value is
8036represented by an ``i16`` value.
8037
8038Examples:
8039"""""""""
8040
8041.. code-block:: llvm
8042
8043 %a = load i16* @x, align 2
8044 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8045
8046Debugger Intrinsics
8047-------------------
8048
8049The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8050prefix), are described in the `LLVM Source Level
8051Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8052document.
8053
8054Exception Handling Intrinsics
8055-----------------------------
8056
8057The LLVM exception handling intrinsics (which all start with
8058``llvm.eh.`` prefix), are described in the `LLVM Exception
8059Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8060
8061.. _int_trampoline:
8062
8063Trampoline Intrinsics
8064---------------------
8065
8066These intrinsics make it possible to excise one parameter, marked with
8067the :ref:`nest <nest>` attribute, from a function. The result is a
8068callable function pointer lacking the nest parameter - the caller does
8069not need to provide a value for it. Instead, the value to use is stored
8070in advance in a "trampoline", a block of memory usually allocated on the
8071stack, which also contains code to splice the nest value into the
8072argument list. This is used to implement the GCC nested function address
8073extension.
8074
8075For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8076then the resulting function pointer has signature ``i32 (i32, i32)*``.
8077It can be created as follows:
8078
8079.. code-block:: llvm
8080
8081 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8082 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8083 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8084 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8085 %fp = bitcast i8* %p to i32 (i32, i32)*
8086
8087The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8088``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8089
8090.. _int_it:
8091
8092'``llvm.init.trampoline``' Intrinsic
8093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8094
8095Syntax:
8096"""""""
8097
8098::
8099
8100 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8101
8102Overview:
8103"""""""""
8104
8105This fills the memory pointed to by ``tramp`` with executable code,
8106turning it into a trampoline.
8107
8108Arguments:
8109""""""""""
8110
8111The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8112pointers. The ``tramp`` argument must point to a sufficiently large and
8113sufficiently aligned block of memory; this memory is written to by the
8114intrinsic. Note that the size and the alignment are target-specific -
8115LLVM currently provides no portable way of determining them, so a
8116front-end that generates this intrinsic needs to have some
8117target-specific knowledge. The ``func`` argument must hold a function
8118bitcast to an ``i8*``.
8119
8120Semantics:
8121""""""""""
8122
8123The block of memory pointed to by ``tramp`` is filled with target
8124dependent code, turning it into a function. Then ``tramp`` needs to be
8125passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8126be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8127function's signature is the same as that of ``func`` with any arguments
8128marked with the ``nest`` attribute removed. At most one such ``nest``
8129argument is allowed, and it must be of pointer type. Calling the new
8130function is equivalent to calling ``func`` with the same argument list,
8131but with ``nval`` used for the missing ``nest`` argument. If, after
8132calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8133modified, then the effect of any later call to the returned function
8134pointer is undefined.
8135
8136.. _int_at:
8137
8138'``llvm.adjust.trampoline``' Intrinsic
8139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8140
8141Syntax:
8142"""""""
8143
8144::
8145
8146 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8147
8148Overview:
8149"""""""""
8150
8151This performs any required machine-specific adjustment to the address of
8152a trampoline (passed as ``tramp``).
8153
8154Arguments:
8155""""""""""
8156
8157``tramp`` must point to a block of memory which already has trampoline
8158code filled in by a previous call to
8159:ref:`llvm.init.trampoline <int_it>`.
8160
8161Semantics:
8162""""""""""
8163
8164On some architectures the address of the code to be executed needs to be
8165different to the address where the trampoline is actually stored. This
8166intrinsic returns the executable address corresponding to ``tramp``
8167after performing the required machine specific adjustments. The pointer
8168returned can then be :ref:`bitcast and executed <int_trampoline>`.
8169
8170Memory Use Markers
8171------------------
8172
8173This class of intrinsics exists to information about the lifetime of
8174memory objects and ranges where variables are immutable.
8175
8176'``llvm.lifetime.start``' Intrinsic
8177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8178
8179Syntax:
8180"""""""
8181
8182::
8183
8184 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8185
8186Overview:
8187"""""""""
8188
8189The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8190object's lifetime.
8191
8192Arguments:
8193""""""""""
8194
8195The first argument is a constant integer representing the size of the
8196object, or -1 if it is variable sized. The second argument is a pointer
8197to the object.
8198
8199Semantics:
8200""""""""""
8201
8202This intrinsic indicates that before this point in the code, the value
8203of the memory pointed to by ``ptr`` is dead. This means that it is known
8204to never be used and has an undefined value. A load from the pointer
8205that precedes this intrinsic can be replaced with ``'undef'``.
8206
8207'``llvm.lifetime.end``' Intrinsic
8208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8209
8210Syntax:
8211"""""""
8212
8213::
8214
8215 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8216
8217Overview:
8218"""""""""
8219
8220The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8221object's lifetime.
8222
8223Arguments:
8224""""""""""
8225
8226The first argument is a constant integer representing the size of the
8227object, or -1 if it is variable sized. The second argument is a pointer
8228to the object.
8229
8230Semantics:
8231""""""""""
8232
8233This intrinsic indicates that after this point in the code, the value of
8234the memory pointed to by ``ptr`` is dead. This means that it is known to
8235never be used and has an undefined value. Any stores into the memory
8236object following this intrinsic may be removed as dead.
8237
8238'``llvm.invariant.start``' Intrinsic
8239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8240
8241Syntax:
8242"""""""
8243
8244::
8245
8246 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8247
8248Overview:
8249"""""""""
8250
8251The '``llvm.invariant.start``' intrinsic specifies that the contents of
8252a memory object will not change.
8253
8254Arguments:
8255""""""""""
8256
8257The first argument is a constant integer representing the size of the
8258object, or -1 if it is variable sized. The second argument is a pointer
8259to the object.
8260
8261Semantics:
8262""""""""""
8263
8264This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8265the return value, the referenced memory location is constant and
8266unchanging.
8267
8268'``llvm.invariant.end``' Intrinsic
8269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8270
8271Syntax:
8272"""""""
8273
8274::
8275
8276 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8277
8278Overview:
8279"""""""""
8280
8281The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8282memory object are mutable.
8283
8284Arguments:
8285""""""""""
8286
8287The first argument is the matching ``llvm.invariant.start`` intrinsic.
8288The second argument is a constant integer representing the size of the
8289object, or -1 if it is variable sized and the third argument is a
8290pointer to the object.
8291
8292Semantics:
8293""""""""""
8294
8295This intrinsic indicates that the memory is mutable again.
8296
8297General Intrinsics
8298------------------
8299
8300This class of intrinsics is designed to be generic and has no specific
8301purpose.
8302
8303'``llvm.var.annotation``' Intrinsic
8304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8305
8306Syntax:
8307"""""""
8308
8309::
8310
8311 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8312
8313Overview:
8314"""""""""
8315
8316The '``llvm.var.annotation``' intrinsic.
8317
8318Arguments:
8319""""""""""
8320
8321The first argument is a pointer to a value, the second is a pointer to a
8322global string, the third is a pointer to a global string which is the
8323source file name, and the last argument is the line number.
8324
8325Semantics:
8326""""""""""
8327
8328This intrinsic allows annotation of local variables with arbitrary
8329strings. This can be useful for special purpose optimizations that want
8330to look for these annotations. These have no other defined use; they are
8331ignored by code generation and optimization.
8332
8333'``llvm.annotation.*``' Intrinsic
8334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8340any integer bit width.
8341
8342::
8343
8344 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8345 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8346 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8347 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8348 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8349
8350Overview:
8351"""""""""
8352
8353The '``llvm.annotation``' intrinsic.
8354
8355Arguments:
8356""""""""""
8357
8358The first argument is an integer value (result of some expression), the
8359second is a pointer to a global string, the third is a pointer to a
8360global string which is the source file name, and the last argument is
8361the line number. It returns the value of the first argument.
8362
8363Semantics:
8364""""""""""
8365
8366This intrinsic allows annotations to be put on arbitrary expressions
8367with arbitrary strings. This can be useful for special purpose
8368optimizations that want to look for these annotations. These have no
8369other defined use; they are ignored by code generation and optimization.
8370
8371'``llvm.trap``' Intrinsic
8372^^^^^^^^^^^^^^^^^^^^^^^^^
8373
8374Syntax:
8375"""""""
8376
8377::
8378
8379 declare void @llvm.trap() noreturn nounwind
8380
8381Overview:
8382"""""""""
8383
8384The '``llvm.trap``' intrinsic.
8385
8386Arguments:
8387""""""""""
8388
8389None.
8390
8391Semantics:
8392""""""""""
8393
8394This intrinsic is lowered to the target dependent trap instruction. If
8395the target does not have a trap instruction, this intrinsic will be
8396lowered to a call of the ``abort()`` function.
8397
8398'``llvm.debugtrap``' Intrinsic
8399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8400
8401Syntax:
8402"""""""
8403
8404::
8405
8406 declare void @llvm.debugtrap() nounwind
8407
8408Overview:
8409"""""""""
8410
8411The '``llvm.debugtrap``' intrinsic.
8412
8413Arguments:
8414""""""""""
8415
8416None.
8417
8418Semantics:
8419""""""""""
8420
8421This intrinsic is lowered to code which is intended to cause an
8422execution trap with the intention of requesting the attention of a
8423debugger.
8424
8425'``llvm.stackprotector``' Intrinsic
8426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8427
8428Syntax:
8429"""""""
8430
8431::
8432
8433 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8434
8435Overview:
8436"""""""""
8437
8438The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8439onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8440is placed on the stack before local variables.
8441
8442Arguments:
8443""""""""""
8444
8445The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8446The first argument is the value loaded from the stack guard
8447``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8448enough space to hold the value of the guard.
8449
8450Semantics:
8451""""""""""
8452
8453This intrinsic causes the prologue/epilogue inserter to force the
8454position of the ``AllocaInst`` stack slot to be before local variables
8455on the stack. This is to ensure that if a local variable on the stack is
8456overwritten, it will destroy the value of the guard. When the function
8457exits, the guard on the stack is checked against the original guard. If
8458they are different, then the program aborts by calling the
8459``__stack_chk_fail()`` function.
8460
8461'``llvm.objectsize``' Intrinsic
8462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8463
8464Syntax:
8465"""""""
8466
8467::
8468
8469 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8470 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8471
8472Overview:
8473"""""""""
8474
8475The ``llvm.objectsize`` intrinsic is designed to provide information to
8476the optimizers to determine at compile time whether a) an operation
8477(like memcpy) will overflow a buffer that corresponds to an object, or
8478b) that a runtime check for overflow isn't necessary. An object in this
8479context means an allocation of a specific class, structure, array, or
8480other object.
8481
8482Arguments:
8483""""""""""
8484
8485The ``llvm.objectsize`` intrinsic takes two arguments. The first
8486argument is a pointer to or into the ``object``. The second argument is
8487a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8488or -1 (if false) when the object size is unknown. The second argument
8489only accepts constants.
8490
8491Semantics:
8492""""""""""
8493
8494The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8495the size of the object concerned. If the size cannot be determined at
8496compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8497on the ``min`` argument).
8498
8499'``llvm.expect``' Intrinsic
8500^^^^^^^^^^^^^^^^^^^^^^^^^^^
8501
8502Syntax:
8503"""""""
8504
8505::
8506
8507 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8508 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8509
8510Overview:
8511"""""""""
8512
8513The ``llvm.expect`` intrinsic provides information about expected (the
8514most probable) value of ``val``, which can be used by optimizers.
8515
8516Arguments:
8517""""""""""
8518
8519The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8520a value. The second argument is an expected value, this needs to be a
8521constant value, variables are not allowed.
8522
8523Semantics:
8524""""""""""
8525
8526This intrinsic is lowered to the ``val``.
8527
8528'``llvm.donothing``' Intrinsic
8529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8530
8531Syntax:
8532"""""""
8533
8534::
8535
8536 declare void @llvm.donothing() nounwind readnone
8537
8538Overview:
8539"""""""""
8540
8541The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8542only intrinsic that can be called with an invoke instruction.
8543
8544Arguments:
8545""""""""""
8546
8547None.
8548
8549Semantics:
8550""""""""""
8551
8552This intrinsic does nothing, and it's removed by optimizers and ignored
8553by codegen.