blob: 04aa472d8f6378673e2dc6762865a223e0979ba1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000029#include "llvm/CodeGen/Collector.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000033#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohman1e57df32008-02-10 18:45:23 +000038#include "llvm/Target/TargetRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54 cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000058static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
Chris Lattner2f69f132008-01-25 17:24:52 +000060 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061#else
Dan Gohman134c5b62007-08-28 20:32:58 +000062static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78 cl::opt<RegisterScheduler::FunctionPassCtor, false,
79 RegisterPassParser<RegisterScheduler> >
80 ISHeuristic("pre-RA-sched",
81 cl::init(&createDefaultScheduler),
Chris Lattner2f69f132008-01-25 17:24:52 +000082 cl::desc("Instruction schedulers available (before register"
83 " allocation):"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 static RegisterScheduler
86 defaultListDAGScheduler("default", " Best scheduler for the target",
87 createDefaultScheduler);
88} // namespace
89
Evan Chengbcd66442008-02-26 02:33:44 +000090namespace { struct SDISelAsmOperandInfo; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92namespace {
93 /// RegsForValue - This struct represents the physical registers that a
94 /// particular value is assigned and the type information about the value.
95 /// This is needed because values can be promoted into larger registers and
96 /// expanded into multiple smaller registers than the value.
97 struct VISIBILITY_HIDDEN RegsForValue {
98 /// Regs - This list holds the register (for legal and promoted values)
99 /// or register set (for expanded values) that the value should be assigned
100 /// to.
101 std::vector<unsigned> Regs;
102
103 /// RegVT - The value type of each register.
104 ///
105 MVT::ValueType RegVT;
106
107 /// ValueVT - The value type of the LLVM value, which may be promoted from
108 /// RegVT or made from merging the two expanded parts.
109 MVT::ValueType ValueVT;
110
111 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
112
113 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
114 : RegVT(regvt), ValueVT(valuevt) {
115 Regs.push_back(Reg);
116 }
117 RegsForValue(const std::vector<unsigned> &regs,
118 MVT::ValueType regvt, MVT::ValueType valuevt)
119 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
120 }
121
122 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
123 /// this value and returns the result as a ValueVT value. This uses
124 /// Chain/Flag as the input and updates them for the output Chain/Flag.
125 /// If the Flag pointer is NULL, no flag is used.
126 SDOperand getCopyFromRegs(SelectionDAG &DAG,
127 SDOperand &Chain, SDOperand *Flag) const;
128
129 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
130 /// specified value into the registers specified by this object. This uses
131 /// Chain/Flag as the input and updates them for the output Chain/Flag.
132 /// If the Flag pointer is NULL, no flag is used.
133 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134 SDOperand &Chain, SDOperand *Flag) const;
135
136 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137 /// operand list. This adds the code marker and includes the number of
138 /// values added into it.
139 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140 std::vector<SDOperand> &Ops) const;
141 };
142}
143
144namespace llvm {
145 //===--------------------------------------------------------------------===//
146 /// createDefaultScheduler - This creates an instruction scheduler appropriate
147 /// for the target.
148 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
149 SelectionDAG *DAG,
150 MachineBasicBlock *BB) {
151 TargetLowering &TLI = IS->getTargetLowering();
152
153 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
154 return createTDListDAGScheduler(IS, DAG, BB);
155 } else {
156 assert(TLI.getSchedulingPreference() ==
157 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
158 return createBURRListDAGScheduler(IS, DAG, BB);
159 }
160 }
161
162
163 //===--------------------------------------------------------------------===//
164 /// FunctionLoweringInfo - This contains information that is global to a
165 /// function that is used when lowering a region of the function.
166 class FunctionLoweringInfo {
167 public:
168 TargetLowering &TLI;
169 Function &Fn;
170 MachineFunction &MF;
Chris Lattner1b989192007-12-31 04:13:23 +0000171 MachineRegisterInfo &RegInfo;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000172
173 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
174
175 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
176 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
177
178 /// ValueMap - Since we emit code for the function a basic block at a time,
179 /// we must remember which virtual registers hold the values for
180 /// cross-basic-block values.
181 DenseMap<const Value*, unsigned> ValueMap;
182
183 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
184 /// the entry block. This allows the allocas to be efficiently referenced
185 /// anywhere in the function.
186 std::map<const AllocaInst*, int> StaticAllocaMap;
187
188#ifndef NDEBUG
189 SmallSet<Instruction*, 8> CatchInfoLost;
190 SmallSet<Instruction*, 8> CatchInfoFound;
191#endif
192
193 unsigned MakeReg(MVT::ValueType VT) {
Chris Lattner1b989192007-12-31 04:13:23 +0000194 return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195 }
196
197 /// isExportedInst - Return true if the specified value is an instruction
198 /// exported from its block.
199 bool isExportedInst(const Value *V) {
200 return ValueMap.count(V);
201 }
202
203 unsigned CreateRegForValue(const Value *V);
204
205 unsigned InitializeRegForValue(const Value *V) {
206 unsigned &R = ValueMap[V];
207 assert(R == 0 && "Already initialized this value register!");
208 return R = CreateRegForValue(V);
209 }
210 };
211}
212
213/// isSelector - Return true if this instruction is a call to the
214/// eh.selector intrinsic.
215static bool isSelector(Instruction *I) {
216 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000217 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
218 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 return false;
220}
221
222/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
223/// PHI nodes or outside of the basic block that defines it, or used by a
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000224/// switch or atomic instruction, which may expand to multiple basic blocks.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
226 if (isa<PHINode>(I)) return true;
227 BasicBlock *BB = I->getParent();
228 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
229 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
230 // FIXME: Remove switchinst special case.
231 isa<SwitchInst>(*UI))
232 return true;
233 return false;
234}
235
236/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
237/// entry block, return true. This includes arguments used by switches, since
238/// the switch may expand into multiple basic blocks.
239static bool isOnlyUsedInEntryBlock(Argument *A) {
240 BasicBlock *Entry = A->getParent()->begin();
241 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
242 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
243 return false; // Use not in entry block.
244 return true;
245}
246
247FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
248 Function &fn, MachineFunction &mf)
Chris Lattner1b989192007-12-31 04:13:23 +0000249 : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000250
251 // Create a vreg for each argument register that is not dead and is used
252 // outside of the entry block for the function.
253 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
254 AI != E; ++AI)
255 if (!isOnlyUsedInEntryBlock(AI))
256 InitializeRegForValue(AI);
257
258 // Initialize the mapping of values to registers. This is only set up for
259 // instruction values that are used outside of the block that defines
260 // them.
261 Function::iterator BB = Fn.begin(), EB = Fn.end();
262 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
263 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
264 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
265 const Type *Ty = AI->getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000266 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267 unsigned Align =
268 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
269 AI->getAlignment());
270
271 TySize *= CUI->getZExtValue(); // Get total allocated size.
272 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
273 StaticAllocaMap[AI] =
274 MF.getFrameInfo()->CreateStackObject(TySize, Align);
275 }
276
277 for (; BB != EB; ++BB)
278 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
279 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
280 if (!isa<AllocaInst>(I) ||
281 !StaticAllocaMap.count(cast<AllocaInst>(I)))
282 InitializeRegForValue(I);
283
284 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
285 // also creates the initial PHI MachineInstrs, though none of the input
286 // operands are populated.
287 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
288 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
289 MBBMap[BB] = MBB;
290 MF.getBasicBlockList().push_back(MBB);
291
292 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
293 // appropriate.
294 PHINode *PN;
295 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
296 if (PN->use_empty()) continue;
297
298 MVT::ValueType VT = TLI.getValueType(PN->getType());
299 unsigned NumRegisters = TLI.getNumRegisters(VT);
300 unsigned PHIReg = ValueMap[PN];
301 assert(PHIReg && "PHI node does not have an assigned virtual register!");
302 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
303 for (unsigned i = 0; i != NumRegisters; ++i)
304 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
305 }
306 }
307}
308
309/// CreateRegForValue - Allocate the appropriate number of virtual registers of
310/// the correctly promoted or expanded types. Assign these registers
311/// consecutive vreg numbers and return the first assigned number.
312unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
313 MVT::ValueType VT = TLI.getValueType(V->getType());
314
315 unsigned NumRegisters = TLI.getNumRegisters(VT);
316 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
317
318 unsigned R = MakeReg(RegisterVT);
319 for (unsigned i = 1; i != NumRegisters; ++i)
320 MakeReg(RegisterVT);
321
322 return R;
323}
324
325//===----------------------------------------------------------------------===//
326/// SelectionDAGLowering - This is the common target-independent lowering
327/// implementation that is parameterized by a TargetLowering object.
328/// Also, targets can overload any lowering method.
329///
330namespace llvm {
331class SelectionDAGLowering {
332 MachineBasicBlock *CurMBB;
333
334 DenseMap<const Value*, SDOperand> NodeMap;
335
336 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
337 /// them up and then emit token factor nodes when possible. This allows us to
338 /// get simple disambiguation between loads without worrying about alias
339 /// analysis.
340 std::vector<SDOperand> PendingLoads;
341
Dan Gohman9fe5bd62008-03-27 19:56:19 +0000342 /// PendingExports - CopyToReg nodes that copy values to virtual registers
343 /// for export to other blocks need to be emitted before any terminator
344 /// instruction, but they have no other ordering requirements. We bunch them
345 /// up and the emit a single tokenfactor for them just before terminator
346 /// instructions.
347 std::vector<SDOperand> PendingExports;
348
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 /// Case - A struct to record the Value for a switch case, and the
350 /// case's target basic block.
351 struct Case {
352 Constant* Low;
353 Constant* High;
354 MachineBasicBlock* BB;
355
356 Case() : Low(0), High(0), BB(0) { }
357 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
358 Low(low), High(high), BB(bb) { }
359 uint64_t size() const {
360 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
361 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
362 return (rHigh - rLow + 1ULL);
363 }
364 };
365
366 struct CaseBits {
367 uint64_t Mask;
368 MachineBasicBlock* BB;
369 unsigned Bits;
370
371 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
372 Mask(mask), BB(bb), Bits(bits) { }
373 };
374
375 typedef std::vector<Case> CaseVector;
376 typedef std::vector<CaseBits> CaseBitsVector;
377 typedef CaseVector::iterator CaseItr;
378 typedef std::pair<CaseItr, CaseItr> CaseRange;
379
380 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
381 /// of conditional branches.
382 struct CaseRec {
383 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
384 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
385
386 /// CaseBB - The MBB in which to emit the compare and branch
387 MachineBasicBlock *CaseBB;
388 /// LT, GE - If nonzero, we know the current case value must be less-than or
389 /// greater-than-or-equal-to these Constants.
390 Constant *LT;
391 Constant *GE;
392 /// Range - A pair of iterators representing the range of case values to be
393 /// processed at this point in the binary search tree.
394 CaseRange Range;
395 };
396
397 typedef std::vector<CaseRec> CaseRecVector;
398
399 /// The comparison function for sorting the switch case values in the vector.
400 /// WARNING: Case ranges should be disjoint!
401 struct CaseCmp {
402 bool operator () (const Case& C1, const Case& C2) {
403 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
404 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
405 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
406 return CI1->getValue().slt(CI2->getValue());
407 }
408 };
409
410 struct CaseBitsCmp {
411 bool operator () (const CaseBits& C1, const CaseBits& C2) {
412 return C1.Bits > C2.Bits;
413 }
414 };
415
416 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
417
418public:
419 // TLI - This is information that describes the available target features we
420 // need for lowering. This indicates when operations are unavailable,
421 // implemented with a libcall, etc.
422 TargetLowering &TLI;
423 SelectionDAG &DAG;
424 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000425 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426
427 /// SwitchCases - Vector of CaseBlock structures used to communicate
428 /// SwitchInst code generation information.
429 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
430 /// JTCases - Vector of JumpTable structures used to communicate
431 /// SwitchInst code generation information.
432 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
433 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
434
435 /// FuncInfo - Information about the function as a whole.
436 ///
437 FunctionLoweringInfo &FuncInfo;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +0000438
439 /// GCI - Garbage collection metadata for the function.
440 CollectorMetadata *GCI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441
442 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000443 AliasAnalysis &aa,
Gordon Henriksendf87fdc2008-01-07 01:30:38 +0000444 FunctionLoweringInfo &funcinfo,
445 CollectorMetadata *gci)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000446 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Gordon Henriksendf87fdc2008-01-07 01:30:38 +0000447 FuncInfo(funcinfo), GCI(gci) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 }
449
Dan Gohman9fe5bd62008-03-27 19:56:19 +0000450 /// getRoot - Return the current virtual root of the Selection DAG,
451 /// flushing any PendingLoad items. This must be done before emitting
452 /// a store or any other node that may need to be ordered after any
453 /// prior load instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 ///
455 SDOperand getRoot() {
456 if (PendingLoads.empty())
457 return DAG.getRoot();
458
459 if (PendingLoads.size() == 1) {
460 SDOperand Root = PendingLoads[0];
461 DAG.setRoot(Root);
462 PendingLoads.clear();
463 return Root;
464 }
465
466 // Otherwise, we have to make a token factor node.
467 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
468 &PendingLoads[0], PendingLoads.size());
469 PendingLoads.clear();
470 DAG.setRoot(Root);
471 return Root;
472 }
473
Dan Gohman9fe5bd62008-03-27 19:56:19 +0000474 /// getControlRoot - Similar to getRoot, but instead of flushing all the
475 /// PendingLoad items, flush all the PendingExports items. It is necessary
476 /// to do this before emitting a terminator instruction.
477 ///
478 SDOperand getControlRoot() {
479 SDOperand Root = DAG.getRoot();
480
481 if (PendingExports.empty())
482 return Root;
483
484 // Turn all of the CopyToReg chains into one factored node.
485 if (Root.getOpcode() != ISD::EntryToken) {
486 unsigned i = 0, e = PendingExports.size();
487 for (; i != e; ++i) {
488 assert(PendingExports[i].Val->getNumOperands() > 1);
489 if (PendingExports[i].Val->getOperand(0) == Root)
490 break; // Don't add the root if we already indirectly depend on it.
491 }
492
493 if (i == e)
494 PendingExports.push_back(Root);
495 }
496
497 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
498 &PendingExports[0],
499 PendingExports.size());
500 PendingExports.clear();
501 DAG.setRoot(Root);
502 return Root;
503 }
504
505 void CopyValueToVirtualRegister(Value *V, unsigned Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506
507 void visit(Instruction &I) { visit(I.getOpcode(), I); }
508
509 void visit(unsigned Opcode, User &I) {
510 // Note: this doesn't use InstVisitor, because it has to work with
511 // ConstantExpr's in addition to instructions.
512 switch (Opcode) {
513 default: assert(0 && "Unknown instruction type encountered!");
514 abort();
515 // Build the switch statement using the Instruction.def file.
516#define HANDLE_INST(NUM, OPCODE, CLASS) \
517 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
518#include "llvm/Instruction.def"
519 }
520 }
521
522 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
523
524 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
525 const Value *SV, SDOperand Root,
526 bool isVolatile, unsigned Alignment);
527
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000528 SDOperand getValue(const Value *V);
529
530 void setValue(const Value *V, SDOperand NewN) {
531 SDOperand &N = NodeMap[V];
532 assert(N.Val == 0 && "Already set a value for this node!");
533 N = NewN;
534 }
535
Evan Chengbcd66442008-02-26 02:33:44 +0000536 void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000537 std::set<unsigned> &OutputRegs,
538 std::set<unsigned> &InputRegs);
539
540 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
541 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
542 unsigned Opc);
543 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
544 void ExportFromCurrentBlock(Value *V);
Duncan Sandse9bc9132007-12-19 09:48:52 +0000545 void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000546 MachineBasicBlock *LandingPad = NULL);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000547
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000548 // Terminator instructions.
549 void visitRet(ReturnInst &I);
550 void visitBr(BranchInst &I);
551 void visitSwitch(SwitchInst &I);
552 void visitUnreachable(UnreachableInst &I) { /* noop */ }
553
554 // Helpers for visitSwitch
555 bool handleSmallSwitchRange(CaseRec& CR,
556 CaseRecVector& WorkList,
557 Value* SV,
558 MachineBasicBlock* Default);
559 bool handleJTSwitchCase(CaseRec& CR,
560 CaseRecVector& WorkList,
561 Value* SV,
562 MachineBasicBlock* Default);
563 bool handleBTSplitSwitchCase(CaseRec& CR,
564 CaseRecVector& WorkList,
565 Value* SV,
566 MachineBasicBlock* Default);
567 bool handleBitTestsSwitchCase(CaseRec& CR,
568 CaseRecVector& WorkList,
569 Value* SV,
570 MachineBasicBlock* Default);
571 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
572 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
573 void visitBitTestCase(MachineBasicBlock* NextMBB,
574 unsigned Reg,
575 SelectionDAGISel::BitTestCase &B);
576 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
577 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
578 SelectionDAGISel::JumpTableHeader &JTH);
579
580 // These all get lowered before this pass.
581 void visitInvoke(InvokeInst &I);
582 void visitUnwind(UnwindInst &I);
583
584 void visitBinary(User &I, unsigned OpCode);
585 void visitShift(User &I, unsigned Opcode);
586 void visitAdd(User &I) {
587 if (I.getType()->isFPOrFPVector())
588 visitBinary(I, ISD::FADD);
589 else
590 visitBinary(I, ISD::ADD);
591 }
592 void visitSub(User &I);
593 void visitMul(User &I) {
594 if (I.getType()->isFPOrFPVector())
595 visitBinary(I, ISD::FMUL);
596 else
597 visitBinary(I, ISD::MUL);
598 }
599 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
600 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
601 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
602 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
603 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
604 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
605 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
606 void visitOr (User &I) { visitBinary(I, ISD::OR); }
607 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
608 void visitShl (User &I) { visitShift(I, ISD::SHL); }
609 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
610 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
611 void visitICmp(User &I);
612 void visitFCmp(User &I);
613 // Visit the conversion instructions
614 void visitTrunc(User &I);
615 void visitZExt(User &I);
616 void visitSExt(User &I);
617 void visitFPTrunc(User &I);
618 void visitFPExt(User &I);
619 void visitFPToUI(User &I);
620 void visitFPToSI(User &I);
621 void visitUIToFP(User &I);
622 void visitSIToFP(User &I);
623 void visitPtrToInt(User &I);
624 void visitIntToPtr(User &I);
625 void visitBitCast(User &I);
626
627 void visitExtractElement(User &I);
628 void visitInsertElement(User &I);
629 void visitShuffleVector(User &I);
630
631 void visitGetElementPtr(User &I);
632 void visitSelect(User &I);
633
634 void visitMalloc(MallocInst &I);
635 void visitFree(FreeInst &I);
636 void visitAlloca(AllocaInst &I);
637 void visitLoad(LoadInst &I);
638 void visitStore(StoreInst &I);
639 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
640 void visitCall(CallInst &I);
Duncan Sands1c5526c2007-12-17 18:08:19 +0000641 void visitInlineAsm(CallSite CS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
643 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
644
645 void visitVAStart(CallInst &I);
646 void visitVAArg(VAArgInst &I);
647 void visitVAEnd(CallInst &I);
648 void visitVACopy(CallInst &I);
649
Dan Gohman3fdea2e2008-03-11 21:11:25 +0000650 void visitGetResult(GetResultInst &I);
Devang Pateld081ef02008-02-19 22:15:16 +0000651
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000652 void visitUserOp1(Instruction &I) {
653 assert(0 && "UserOp1 should not exist at instruction selection time!");
654 abort();
655 }
656 void visitUserOp2(Instruction &I) {
657 assert(0 && "UserOp2 should not exist at instruction selection time!");
658 abort();
659 }
660};
661} // end namespace llvm
662
663
Duncan Sandse111ce82008-02-11 20:58:28 +0000664/// getCopyFromParts - Create a value that contains the specified legal parts
665/// combined into the value they represent. If the parts combine to a type
666/// larger then ValueVT then AssertOp can be used to specify whether the extra
667/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
Chris Lattnera7355b62008-03-09 09:38:46 +0000668/// (ISD::AssertSext).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669static SDOperand getCopyFromParts(SelectionDAG &DAG,
670 const SDOperand *Parts,
671 unsigned NumParts,
672 MVT::ValueType PartVT,
673 MVT::ValueType ValueVT,
Chris Lattnera7355b62008-03-09 09:38:46 +0000674 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000675 assert(NumParts > 0 && "No parts to assemble!");
676 TargetLowering &TLI = DAG.getTargetLoweringInfo();
677 SDOperand Val = Parts[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000679 if (NumParts > 1) {
680 // Assemble the value from multiple parts.
681 if (!MVT::isVector(ValueVT)) {
682 unsigned PartBits = MVT::getSizeInBits(PartVT);
683 unsigned ValueBits = MVT::getSizeInBits(ValueVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000685 // Assemble the power of 2 part.
686 unsigned RoundParts = NumParts & (NumParts - 1) ?
687 1 << Log2_32(NumParts) : NumParts;
688 unsigned RoundBits = PartBits * RoundParts;
689 MVT::ValueType RoundVT = RoundBits == ValueBits ?
690 ValueVT : MVT::getIntegerType(RoundBits);
691 SDOperand Lo, Hi;
692
693 if (RoundParts > 2) {
694 MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
695 Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
696 Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
697 PartVT, HalfVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698 } else {
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000699 Lo = Parts[0];
700 Hi = Parts[1];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 }
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000702 if (TLI.isBigEndian())
703 std::swap(Lo, Hi);
704 Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
705
706 if (RoundParts < NumParts) {
707 // Assemble the trailing non-power-of-2 part.
708 unsigned OddParts = NumParts - RoundParts;
709 MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
710 Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
711
712 // Combine the round and odd parts.
713 Lo = Val;
714 if (TLI.isBigEndian())
715 std::swap(Lo, Hi);
716 MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
717 Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
718 Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
719 DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
720 TLI.getShiftAmountTy()));
721 Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
722 Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
723 }
724 } else {
725 // Handle a multi-element vector.
726 MVT::ValueType IntermediateVT, RegisterVT;
727 unsigned NumIntermediates;
728 unsigned NumRegs =
729 TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
730 RegisterVT);
731
732 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
733 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
734 assert(RegisterVT == Parts[0].getValueType() &&
735 "Part type doesn't match part!");
736
737 // Assemble the parts into intermediate operands.
738 SmallVector<SDOperand, 8> Ops(NumIntermediates);
739 if (NumIntermediates == NumParts) {
740 // If the register was not expanded, truncate or copy the value,
741 // as appropriate.
742 for (unsigned i = 0; i != NumParts; ++i)
743 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
744 PartVT, IntermediateVT);
745 } else if (NumParts > 0) {
746 // If the intermediate type was expanded, build the intermediate operands
747 // from the parts.
748 assert(NumParts % NumIntermediates == 0 &&
749 "Must expand into a divisible number of parts!");
750 unsigned Factor = NumParts / NumIntermediates;
751 for (unsigned i = 0; i != NumIntermediates; ++i)
752 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
753 PartVT, IntermediateVT);
754 }
755
756 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
757 // operands.
758 Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
759 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
760 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 }
763
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000764 // There is now one part, held in Val. Correct it to match ValueVT.
765 PartVT = Val.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000766
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000767 if (PartVT == ValueVT)
768 return Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000770 if (MVT::isVector(PartVT)) {
771 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
772 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 }
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000774
775 if (MVT::isVector(ValueVT)) {
776 assert(MVT::getVectorElementType(ValueVT) == PartVT &&
777 MVT::getVectorNumElements(ValueVT) == 1 &&
778 "Only trivial scalar-to-vector conversions should get here!");
779 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
780 }
781
782 if (MVT::isInteger(PartVT) &&
783 MVT::isInteger(ValueVT)) {
784 if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
785 // For a truncate, see if we have any information to
786 // indicate whether the truncated bits will always be
787 // zero or sign-extension.
788 if (AssertOp != ISD::DELETED_NODE)
789 Val = DAG.getNode(AssertOp, PartVT, Val,
790 DAG.getValueType(ValueVT));
791 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
792 } else {
793 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
794 }
795 }
796
Chris Lattnerf8eb9e82008-03-09 07:47:22 +0000797 if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
798 if (ValueVT < Val.getValueType())
Chris Lattnera7355b62008-03-09 09:38:46 +0000799 // FP_ROUND's are always exact here.
Chris Lattnerf8eb9e82008-03-09 07:47:22 +0000800 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
Chris Lattnera7355b62008-03-09 09:38:46 +0000801 DAG.getIntPtrConstant(1));
Chris Lattnerf8eb9e82008-03-09 07:47:22 +0000802 return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
803 }
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000804
805 if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
806 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
807
808 assert(0 && "Unknown mismatch!");
Chris Lattner2b06cd32008-03-30 18:22:13 +0000809 return SDOperand();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810}
811
Duncan Sandse111ce82008-02-11 20:58:28 +0000812/// getCopyToParts - Create a series of nodes that contain the specified value
813/// split into legal parts. If the parts contain more bits than Val, then, for
814/// integers, ExtendKind can be used to specify how to generate the extra bits.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000815static void getCopyToParts(SelectionDAG &DAG,
816 SDOperand Val,
817 SDOperand *Parts,
818 unsigned NumParts,
Duncan Sandse111ce82008-02-11 20:58:28 +0000819 MVT::ValueType PartVT,
820 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000821 TargetLowering &TLI = DAG.getTargetLoweringInfo();
822 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 MVT::ValueType ValueVT = Val.getValueType();
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000824 unsigned PartBits = MVT::getSizeInBits(PartVT);
825 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000826
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000827 if (!NumParts)
828 return;
829
830 if (!MVT::isVector(ValueVT)) {
831 if (PartVT == ValueVT) {
832 assert(NumParts == 1 && "No-op copy with multiple parts!");
833 Parts[0] = Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000834 return;
835 }
836
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000837 if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
838 // If the parts cover more bits than the value has, promote the value.
839 if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
840 assert(NumParts == 1 && "Do not know what to promote to!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000841 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000842 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
843 ValueVT = MVT::getIntegerType(NumParts * PartBits);
844 Val = DAG.getNode(ExtendKind, ValueVT, Val);
845 } else {
846 assert(0 && "Unknown mismatch!");
847 }
848 } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
849 // Different types of the same size.
850 assert(NumParts == 1 && PartVT != ValueVT);
851 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
852 } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
853 // If the parts cover less bits than value has, truncate the value.
854 if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
855 ValueVT = MVT::getIntegerType(NumParts * PartBits);
856 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000857 } else {
858 assert(0 && "Unknown mismatch!");
859 }
860 }
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000861
862 // The value may have changed - recompute ValueVT.
863 ValueVT = Val.getValueType();
864 assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
865 "Failed to tile the value with PartVT!");
866
867 if (NumParts == 1) {
868 assert(PartVT == ValueVT && "Type conversion failed!");
869 Parts[0] = Val;
870 return;
871 }
872
873 // Expand the value into multiple parts.
874 if (NumParts & (NumParts - 1)) {
875 // The number of parts is not a power of 2. Split off and copy the tail.
876 assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
877 "Do not know what to expand to!");
878 unsigned RoundParts = 1 << Log2_32(NumParts);
879 unsigned RoundBits = RoundParts * PartBits;
880 unsigned OddParts = NumParts - RoundParts;
881 SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
882 DAG.getConstant(RoundBits,
883 TLI.getShiftAmountTy()));
884 getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
885 if (TLI.isBigEndian())
886 // The odd parts were reversed by getCopyToParts - unreverse them.
887 std::reverse(Parts + RoundParts, Parts + NumParts);
888 NumParts = RoundParts;
889 ValueVT = MVT::getIntegerType(NumParts * PartBits);
890 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
891 }
892
893 // The number of parts is a power of 2. Repeatedly bisect the value using
894 // EXTRACT_ELEMENT.
Duncan Sandsc4d85172008-03-12 20:30:08 +0000895 Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
896 MVT::getIntegerType(MVT::getSizeInBits(ValueVT)),
897 Val);
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000898 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
899 for (unsigned i = 0; i < NumParts; i += StepSize) {
900 unsigned ThisBits = StepSize * PartBits / 2;
Duncan Sandsc4d85172008-03-12 20:30:08 +0000901 MVT::ValueType ThisVT = MVT::getIntegerType (ThisBits);
902 SDOperand &Part0 = Parts[i];
903 SDOperand &Part1 = Parts[i+StepSize/2];
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000904
Duncan Sandsc4d85172008-03-12 20:30:08 +0000905 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
906 DAG.getConstant(1, PtrVT));
907 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
908 DAG.getConstant(0, PtrVT));
909
910 if (ThisBits == PartBits && ThisVT != PartVT) {
911 Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
912 Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
913 }
Duncan Sands94f9e9a2008-02-12 20:46:31 +0000914 }
915 }
916
917 if (TLI.isBigEndian())
918 std::reverse(Parts, Parts + NumParts);
919
920 return;
921 }
922
923 // Vector ValueVT.
924 if (NumParts == 1) {
925 if (PartVT != ValueVT) {
926 if (MVT::isVector(PartVT)) {
927 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
928 } else {
929 assert(MVT::getVectorElementType(ValueVT) == PartVT &&
930 MVT::getVectorNumElements(ValueVT) == 1 &&
931 "Only trivial vector-to-scalar conversions should get here!");
932 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
933 DAG.getConstant(0, PtrVT));
934 }
935 }
936
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937 Parts[0] = Val;
938 return;
939 }
940
941 // Handle a multi-element vector.
942 MVT::ValueType IntermediateVT, RegisterVT;
943 unsigned NumIntermediates;
944 unsigned NumRegs =
945 DAG.getTargetLoweringInfo()
946 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
947 RegisterVT);
948 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
949
950 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
951 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
952
953 // Split the vector into intermediate operands.
954 SmallVector<SDOperand, 8> Ops(NumIntermediates);
955 for (unsigned i = 0; i != NumIntermediates; ++i)
956 if (MVT::isVector(IntermediateVT))
957 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
958 IntermediateVT, Val,
959 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000960 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 else
962 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
963 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000964 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965
966 // Split the intermediate operands into legal parts.
967 if (NumParts == NumIntermediates) {
968 // If the register was not expanded, promote or copy the value,
969 // as appropriate.
970 for (unsigned i = 0; i != NumParts; ++i)
971 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
972 } else if (NumParts > 0) {
973 // If the intermediate type was expanded, split each the value into
974 // legal parts.
975 assert(NumParts % NumIntermediates == 0 &&
976 "Must expand into a divisible number of parts!");
977 unsigned Factor = NumParts / NumIntermediates;
978 for (unsigned i = 0; i != NumIntermediates; ++i)
979 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
980 }
981}
982
983
984SDOperand SelectionDAGLowering::getValue(const Value *V) {
985 SDOperand &N = NodeMap[V];
986 if (N.Val) return N;
987
988 const Type *VTy = V->getType();
989 MVT::ValueType VT = TLI.getValueType(VTy);
990 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
991 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
992 visit(CE->getOpcode(), *CE);
993 SDOperand N1 = NodeMap[V];
994 assert(N1.Val && "visit didn't populate the ValueMap!");
995 return N1;
996 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
997 return N = DAG.getGlobalAddress(GV, VT);
998 } else if (isa<ConstantPointerNull>(C)) {
999 return N = DAG.getConstant(0, TLI.getPointerTy());
1000 } else if (isa<UndefValue>(C)) {
1001 if (!isa<VectorType>(VTy))
1002 return N = DAG.getNode(ISD::UNDEF, VT);
1003
1004 // Create a BUILD_VECTOR of undef nodes.
1005 const VectorType *PTy = cast<VectorType>(VTy);
1006 unsigned NumElements = PTy->getNumElements();
1007 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1008
1009 SmallVector<SDOperand, 8> Ops;
1010 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
1011
1012 // Create a VConstant node with generic Vector type.
1013 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
1014 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
1015 &Ops[0], Ops.size());
1016 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001017 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
1019 unsigned NumElements = PTy->getNumElements();
1020 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1021
1022 // Now that we know the number and type of the elements, push a
1023 // Constant or ConstantFP node onto the ops list for each element of
1024 // the vector constant.
1025 SmallVector<SDOperand, 8> Ops;
1026 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1027 for (unsigned i = 0; i != NumElements; ++i)
1028 Ops.push_back(getValue(CP->getOperand(i)));
1029 } else {
1030 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1031 SDOperand Op;
1032 if (MVT::isFloatingPoint(PVT))
1033 Op = DAG.getConstantFP(0, PVT);
1034 else
1035 Op = DAG.getConstant(0, PVT);
1036 Ops.assign(NumElements, Op);
1037 }
1038
1039 // Create a BUILD_VECTOR node.
1040 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
1041 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
1042 Ops.size());
1043 } else {
1044 // Canonicalize all constant ints to be unsigned.
Dan Gohman5d797ec2008-02-29 01:41:59 +00001045 return N = DAG.getConstant(cast<ConstantInt>(C)->getValue(),VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 }
1047 }
1048
1049 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1050 std::map<const AllocaInst*, int>::iterator SI =
1051 FuncInfo.StaticAllocaMap.find(AI);
1052 if (SI != FuncInfo.StaticAllocaMap.end())
1053 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1054 }
1055
1056 unsigned InReg = FuncInfo.ValueMap[V];
1057 assert(InReg && "Value not in map!");
1058
1059 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
1060 unsigned NumRegs = TLI.getNumRegisters(VT);
1061
1062 std::vector<unsigned> Regs(NumRegs);
1063 for (unsigned i = 0; i != NumRegs; ++i)
1064 Regs[i] = InReg + i;
1065
1066 RegsForValue RFV(Regs, RegisterVT, VT);
1067 SDOperand Chain = DAG.getEntryNode();
1068
1069 return RFV.getCopyFromRegs(DAG, Chain, NULL);
1070}
1071
1072
1073void SelectionDAGLowering::visitRet(ReturnInst &I) {
1074 if (I.getNumOperands() == 0) {
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001075 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076 return;
1077 }
1078 SmallVector<SDOperand, 8> NewValues;
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001079 NewValues.push_back(getControlRoot());
1080 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081 SDOperand RetOp = getValue(I.getOperand(i));
Duncan Sandse111ce82008-02-11 20:58:28 +00001082 MVT::ValueType VT = RetOp.getValueType();
1083
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001084 // FIXME: C calling convention requires the return type to be promoted to
1085 // at least 32-bit. But this is not necessary for non-C calling conventions.
Duncan Sandse111ce82008-02-11 20:58:28 +00001086 if (MVT::isInteger(VT)) {
1087 MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1088 if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1089 VT = MinVT;
1090 }
1091
1092 unsigned NumParts = TLI.getNumRegisters(VT);
1093 MVT::ValueType PartVT = TLI.getRegisterType(VT);
1094 SmallVector<SDOperand, 4> Parts(NumParts);
1095 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1096
1097 const Function *F = I.getParent()->getParent();
1098 if (F->paramHasAttr(0, ParamAttr::SExt))
1099 ExtendKind = ISD::SIGN_EXTEND;
1100 else if (F->paramHasAttr(0, ParamAttr::ZExt))
1101 ExtendKind = ISD::ZERO_EXTEND;
1102
1103 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1104
1105 for (unsigned i = 0; i < NumParts; ++i) {
1106 NewValues.push_back(Parts[i]);
Duncan Sandsc93fae32008-03-21 09:14:45 +00001107 NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 }
1109 }
1110 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1111 &NewValues[0], NewValues.size()));
1112}
1113
1114/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1115/// the current basic block, add it to ValueMap now so that we'll get a
1116/// CopyTo/FromReg.
1117void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1118 // No need to export constants.
1119 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1120
1121 // Already exported?
1122 if (FuncInfo.isExportedInst(V)) return;
1123
1124 unsigned Reg = FuncInfo.InitializeRegForValue(V);
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001125 CopyValueToVirtualRegister(V, Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001126}
1127
1128bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1129 const BasicBlock *FromBB) {
1130 // The operands of the setcc have to be in this block. We don't know
1131 // how to export them from some other block.
1132 if (Instruction *VI = dyn_cast<Instruction>(V)) {
1133 // Can export from current BB.
1134 if (VI->getParent() == FromBB)
1135 return true;
1136
1137 // Is already exported, noop.
1138 return FuncInfo.isExportedInst(V);
1139 }
1140
1141 // If this is an argument, we can export it if the BB is the entry block or
1142 // if it is already exported.
1143 if (isa<Argument>(V)) {
1144 if (FromBB == &FromBB->getParent()->getEntryBlock())
1145 return true;
1146
1147 // Otherwise, can only export this if it is already exported.
1148 return FuncInfo.isExportedInst(V);
1149 }
1150
1151 // Otherwise, constants can always be exported.
1152 return true;
1153}
1154
1155static bool InBlock(const Value *V, const BasicBlock *BB) {
1156 if (const Instruction *I = dyn_cast<Instruction>(V))
1157 return I->getParent() == BB;
1158 return true;
1159}
1160
1161/// FindMergedConditions - If Cond is an expression like
1162void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1163 MachineBasicBlock *TBB,
1164 MachineBasicBlock *FBB,
1165 MachineBasicBlock *CurBB,
1166 unsigned Opc) {
1167 // If this node is not part of the or/and tree, emit it as a branch.
1168 Instruction *BOp = dyn_cast<Instruction>(Cond);
1169
1170 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1171 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1172 BOp->getParent() != CurBB->getBasicBlock() ||
1173 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1174 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1175 const BasicBlock *BB = CurBB->getBasicBlock();
1176
1177 // If the leaf of the tree is a comparison, merge the condition into
1178 // the caseblock.
1179 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1180 // The operands of the cmp have to be in this block. We don't know
1181 // how to export them from some other block. If this is the first block
1182 // of the sequence, no exporting is needed.
1183 (CurBB == CurMBB ||
1184 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1185 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1186 BOp = cast<Instruction>(Cond);
1187 ISD::CondCode Condition;
1188 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1189 switch (IC->getPredicate()) {
1190 default: assert(0 && "Unknown icmp predicate opcode!");
1191 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1192 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1193 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1194 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1195 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1196 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1197 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1198 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1199 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1200 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1201 }
1202 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1203 ISD::CondCode FPC, FOC;
1204 switch (FC->getPredicate()) {
1205 default: assert(0 && "Unknown fcmp predicate opcode!");
1206 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1207 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1208 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1209 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1210 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1211 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1212 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1213 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1214 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1215 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1216 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1217 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1218 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1219 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1220 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1221 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1222 }
1223 if (FiniteOnlyFPMath())
1224 Condition = FOC;
1225 else
1226 Condition = FPC;
1227 } else {
1228 Condition = ISD::SETEQ; // silence warning.
1229 assert(0 && "Unknown compare instruction");
1230 }
1231
1232 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1233 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1234 SwitchCases.push_back(CB);
1235 return;
1236 }
1237
1238 // Create a CaseBlock record representing this branch.
1239 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1240 NULL, TBB, FBB, CurBB);
1241 SwitchCases.push_back(CB);
1242 return;
1243 }
1244
1245
1246 // Create TmpBB after CurBB.
1247 MachineFunction::iterator BBI = CurBB;
1248 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1249 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1250
1251 if (Opc == Instruction::Or) {
1252 // Codegen X | Y as:
1253 // jmp_if_X TBB
1254 // jmp TmpBB
1255 // TmpBB:
1256 // jmp_if_Y TBB
1257 // jmp FBB
1258 //
1259
1260 // Emit the LHS condition.
1261 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1262
1263 // Emit the RHS condition into TmpBB.
1264 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1265 } else {
1266 assert(Opc == Instruction::And && "Unknown merge op!");
1267 // Codegen X & Y as:
1268 // jmp_if_X TmpBB
1269 // jmp FBB
1270 // TmpBB:
1271 // jmp_if_Y TBB
1272 // jmp FBB
1273 //
1274 // This requires creation of TmpBB after CurBB.
1275
1276 // Emit the LHS condition.
1277 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1278
1279 // Emit the RHS condition into TmpBB.
1280 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1281 }
1282}
1283
1284/// If the set of cases should be emitted as a series of branches, return true.
1285/// If we should emit this as a bunch of and/or'd together conditions, return
1286/// false.
1287static bool
1288ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1289 if (Cases.size() != 2) return true;
1290
1291 // If this is two comparisons of the same values or'd or and'd together, they
1292 // will get folded into a single comparison, so don't emit two blocks.
1293 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1294 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1295 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1296 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1297 return false;
1298 }
1299
1300 return true;
1301}
1302
1303void SelectionDAGLowering::visitBr(BranchInst &I) {
1304 // Update machine-CFG edges.
1305 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1306
1307 // Figure out which block is immediately after the current one.
1308 MachineBasicBlock *NextBlock = 0;
1309 MachineFunction::iterator BBI = CurMBB;
1310 if (++BBI != CurMBB->getParent()->end())
1311 NextBlock = BBI;
1312
1313 if (I.isUnconditional()) {
1314 // If this is not a fall-through branch, emit the branch.
1315 if (Succ0MBB != NextBlock)
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001316 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001317 DAG.getBasicBlock(Succ0MBB)));
1318
1319 // Update machine-CFG edges.
1320 CurMBB->addSuccessor(Succ0MBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001321 return;
1322 }
1323
1324 // If this condition is one of the special cases we handle, do special stuff
1325 // now.
1326 Value *CondVal = I.getCondition();
1327 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1328
1329 // If this is a series of conditions that are or'd or and'd together, emit
1330 // this as a sequence of branches instead of setcc's with and/or operations.
1331 // For example, instead of something like:
1332 // cmp A, B
1333 // C = seteq
1334 // cmp D, E
1335 // F = setle
1336 // or C, F
1337 // jnz foo
1338 // Emit:
1339 // cmp A, B
1340 // je foo
1341 // cmp D, E
1342 // jle foo
1343 //
1344 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1345 if (BOp->hasOneUse() &&
1346 (BOp->getOpcode() == Instruction::And ||
1347 BOp->getOpcode() == Instruction::Or)) {
1348 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1349 // If the compares in later blocks need to use values not currently
1350 // exported from this block, export them now. This block should always
1351 // be the first entry.
1352 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1353
1354 // Allow some cases to be rejected.
1355 if (ShouldEmitAsBranches(SwitchCases)) {
1356 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1357 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1358 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1359 }
1360
1361 // Emit the branch for this block.
1362 visitSwitchCase(SwitchCases[0]);
1363 SwitchCases.erase(SwitchCases.begin());
1364 return;
1365 }
1366
1367 // Okay, we decided not to do this, remove any inserted MBB's and clear
1368 // SwitchCases.
1369 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1370 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1371
1372 SwitchCases.clear();
1373 }
1374 }
1375
1376 // Create a CaseBlock record representing this branch.
1377 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1378 NULL, Succ0MBB, Succ1MBB, CurMBB);
1379 // Use visitSwitchCase to actually insert the fast branch sequence for this
1380 // cond branch.
1381 visitSwitchCase(CB);
1382}
1383
1384/// visitSwitchCase - Emits the necessary code to represent a single node in
1385/// the binary search tree resulting from lowering a switch instruction.
1386void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1387 SDOperand Cond;
1388 SDOperand CondLHS = getValue(CB.CmpLHS);
1389
1390 // Build the setcc now.
1391 if (CB.CmpMHS == NULL) {
1392 // Fold "(X == true)" to X and "(X == false)" to !X to
1393 // handle common cases produced by branch lowering.
1394 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1395 Cond = CondLHS;
1396 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1397 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1398 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1399 } else
1400 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1401 } else {
1402 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1403
1404 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1405 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1406
1407 SDOperand CmpOp = getValue(CB.CmpMHS);
1408 MVT::ValueType VT = CmpOp.getValueType();
1409
1410 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1411 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1412 } else {
1413 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1414 Cond = DAG.getSetCC(MVT::i1, SUB,
1415 DAG.getConstant(High-Low, VT), ISD::SETULE);
1416 }
1417
1418 }
1419
1420 // Set NextBlock to be the MBB immediately after the current one, if any.
1421 // This is used to avoid emitting unnecessary branches to the next block.
1422 MachineBasicBlock *NextBlock = 0;
1423 MachineFunction::iterator BBI = CurMBB;
1424 if (++BBI != CurMBB->getParent()->end())
1425 NextBlock = BBI;
1426
1427 // If the lhs block is the next block, invert the condition so that we can
1428 // fall through to the lhs instead of the rhs block.
1429 if (CB.TrueBB == NextBlock) {
1430 std::swap(CB.TrueBB, CB.FalseBB);
1431 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1432 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1433 }
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001434 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001435 DAG.getBasicBlock(CB.TrueBB));
1436 if (CB.FalseBB == NextBlock)
1437 DAG.setRoot(BrCond);
1438 else
1439 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1440 DAG.getBasicBlock(CB.FalseBB)));
1441 // Update successor info
1442 CurMBB->addSuccessor(CB.TrueBB);
1443 CurMBB->addSuccessor(CB.FalseBB);
1444}
1445
1446/// visitJumpTable - Emit JumpTable node in the current MBB
1447void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1448 // Emit the code for the jump table
1449 assert(JT.Reg != -1U && "Should lower JT Header first!");
1450 MVT::ValueType PTy = TLI.getPointerTy();
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001451 SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001452 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1453 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1454 Table, Index));
1455 return;
1456}
1457
1458/// visitJumpTableHeader - This function emits necessary code to produce index
1459/// in the JumpTable from switch case.
1460void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1461 SelectionDAGISel::JumpTableHeader &JTH) {
1462 // Subtract the lowest switch case value from the value being switched on
1463 // and conditional branch to default mbb if the result is greater than the
1464 // difference between smallest and largest cases.
1465 SDOperand SwitchOp = getValue(JTH.SValue);
1466 MVT::ValueType VT = SwitchOp.getValueType();
1467 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1468 DAG.getConstant(JTH.First, VT));
1469
1470 // The SDNode we just created, which holds the value being switched on
1471 // minus the the smallest case value, needs to be copied to a virtual
1472 // register so it can be used as an index into the jump table in a
1473 // subsequent basic block. This value may be smaller or larger than the
1474 // target's pointer type, and therefore require extension or truncating.
1475 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1476 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1477 else
1478 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1479
1480 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001481 SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001482 JT.Reg = JumpTableReg;
1483
1484 // Emit the range check for the jump table, and branch to the default
1485 // block for the switch statement if the value being switched on exceeds
1486 // the largest case in the switch.
Scott Michel502151f2008-03-10 15:42:14 +00001487 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488 DAG.getConstant(JTH.Last-JTH.First,VT),
1489 ISD::SETUGT);
1490
1491 // Set NextBlock to be the MBB immediately after the current one, if any.
1492 // This is used to avoid emitting unnecessary branches to the next block.
1493 MachineBasicBlock *NextBlock = 0;
1494 MachineFunction::iterator BBI = CurMBB;
1495 if (++BBI != CurMBB->getParent()->end())
1496 NextBlock = BBI;
1497
1498 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1499 DAG.getBasicBlock(JT.Default));
1500
1501 if (JT.MBB == NextBlock)
1502 DAG.setRoot(BrCond);
1503 else
1504 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1505 DAG.getBasicBlock(JT.MBB)));
1506
1507 return;
1508}
1509
1510/// visitBitTestHeader - This function emits necessary code to produce value
1511/// suitable for "bit tests"
1512void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1513 // Subtract the minimum value
1514 SDOperand SwitchOp = getValue(B.SValue);
1515 MVT::ValueType VT = SwitchOp.getValueType();
1516 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1517 DAG.getConstant(B.First, VT));
1518
1519 // Check range
Scott Michel502151f2008-03-10 15:42:14 +00001520 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001521 DAG.getConstant(B.Range, VT),
1522 ISD::SETUGT);
1523
1524 SDOperand ShiftOp;
1525 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1526 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1527 else
1528 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1529
1530 // Make desired shift
1531 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1532 DAG.getConstant(1, TLI.getPointerTy()),
1533 ShiftOp);
1534
1535 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001536 SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001537 B.Reg = SwitchReg;
1538
1539 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1540 DAG.getBasicBlock(B.Default));
1541
1542 // Set NextBlock to be the MBB immediately after the current one, if any.
1543 // This is used to avoid emitting unnecessary branches to the next block.
1544 MachineBasicBlock *NextBlock = 0;
1545 MachineFunction::iterator BBI = CurMBB;
1546 if (++BBI != CurMBB->getParent()->end())
1547 NextBlock = BBI;
1548
1549 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1550 if (MBB == NextBlock)
1551 DAG.setRoot(BrRange);
1552 else
1553 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1554 DAG.getBasicBlock(MBB)));
1555
1556 CurMBB->addSuccessor(B.Default);
1557 CurMBB->addSuccessor(MBB);
1558
1559 return;
1560}
1561
1562/// visitBitTestCase - this function produces one "bit test"
1563void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1564 unsigned Reg,
1565 SelectionDAGISel::BitTestCase &B) {
1566 // Emit bit tests and jumps
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001567 SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, TLI.getPointerTy());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001568
1569 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1570 SwitchVal,
1571 DAG.getConstant(B.Mask,
1572 TLI.getPointerTy()));
Scott Michel502151f2008-03-10 15:42:14 +00001573 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001574 DAG.getConstant(0, TLI.getPointerTy()),
1575 ISD::SETNE);
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001576 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001577 AndCmp, DAG.getBasicBlock(B.TargetBB));
1578
1579 // Set NextBlock to be the MBB immediately after the current one, if any.
1580 // This is used to avoid emitting unnecessary branches to the next block.
1581 MachineBasicBlock *NextBlock = 0;
1582 MachineFunction::iterator BBI = CurMBB;
1583 if (++BBI != CurMBB->getParent()->end())
1584 NextBlock = BBI;
1585
1586 if (NextMBB == NextBlock)
1587 DAG.setRoot(BrAnd);
1588 else
1589 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1590 DAG.getBasicBlock(NextMBB)));
1591
1592 CurMBB->addSuccessor(B.TargetBB);
1593 CurMBB->addSuccessor(NextMBB);
1594
1595 return;
1596}
1597
1598void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1599 // Retrieve successors.
1600 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1601 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1602
Duncan Sands1c5526c2007-12-17 18:08:19 +00001603 if (isa<InlineAsm>(I.getCalledValue()))
1604 visitInlineAsm(&I);
1605 else
Duncan Sandse9bc9132007-12-19 09:48:52 +00001606 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001607
1608 // If the value of the invoke is used outside of its defining block, make it
1609 // available as a virtual register.
1610 if (!I.use_empty()) {
1611 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1612 if (VMI != FuncInfo.ValueMap.end())
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001613 CopyValueToVirtualRegister(&I, VMI->second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001614 }
1615
1616 // Drop into normal successor.
Dan Gohman9fe5bd62008-03-27 19:56:19 +00001617 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001618 DAG.getBasicBlock(Return)));
1619
1620 // Update successor info
1621 CurMBB->addSuccessor(Return);
1622 CurMBB->addSuccessor(LandingPad);
1623}
1624
1625void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1626}
1627
1628/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1629/// small case ranges).
1630bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1631 CaseRecVector& WorkList,
1632 Value* SV,
1633 MachineBasicBlock* Default) {
1634 Case& BackCase = *(CR.Range.second-1);
1635
1636 // Size is the number of Cases represented by this range.
1637 unsigned Size = CR.Range.second - CR.Range.first;
1638 if (Size > 3)
1639 return false;
1640
1641 // Get the MachineFunction which holds the current MBB. This is used when
1642 // inserting any additional MBBs necessary to represent the switch.
1643 MachineFunction *CurMF = CurMBB->getParent();
1644
1645 // Figure out which block is immediately after the current one.
1646 MachineBasicBlock *NextBlock = 0;
1647 MachineFunction::iterator BBI = CR.CaseBB;
1648
1649 if (++BBI != CurMBB->getParent()->end())
1650 NextBlock = BBI;
1651
1652 // TODO: If any two of the cases has the same destination, and if one value
1653 // is the same as the other, but has one bit unset that the other has set,
1654 // use bit manipulation to do two compares at once. For example:
1655 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1656
1657 // Rearrange the case blocks so that the last one falls through if possible.
1658 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1659 // The last case block won't fall through into 'NextBlock' if we emit the
1660 // branches in this order. See if rearranging a case value would help.
1661 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1662 if (I->BB == NextBlock) {
1663 std::swap(*I, BackCase);
1664 break;
1665 }
1666 }
1667 }
1668
1669 // Create a CaseBlock record representing a conditional branch to
1670 // the Case's target mbb if the value being switched on SV is equal
1671 // to C.
1672 MachineBasicBlock *CurBlock = CR.CaseBB;
1673 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1674 MachineBasicBlock *FallThrough;
1675 if (I != E-1) {
1676 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1677 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1678 } else {
1679 // If the last case doesn't match, go to the default block.
1680 FallThrough = Default;
1681 }
1682
1683 Value *RHS, *LHS, *MHS;
1684 ISD::CondCode CC;
1685 if (I->High == I->Low) {
1686 // This is just small small case range :) containing exactly 1 case
1687 CC = ISD::SETEQ;
1688 LHS = SV; RHS = I->High; MHS = NULL;
1689 } else {
1690 CC = ISD::SETLE;
1691 LHS = I->Low; MHS = SV; RHS = I->High;
1692 }
1693 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1694 I->BB, FallThrough, CurBlock);
1695
1696 // If emitting the first comparison, just call visitSwitchCase to emit the
1697 // code into the current block. Otherwise, push the CaseBlock onto the
1698 // vector to be later processed by SDISel, and insert the node's MBB
1699 // before the next MBB.
1700 if (CurBlock == CurMBB)
1701 visitSwitchCase(CB);
1702 else
1703 SwitchCases.push_back(CB);
1704
1705 CurBlock = FallThrough;
1706 }
1707
1708 return true;
1709}
1710
1711static inline bool areJTsAllowed(const TargetLowering &TLI) {
1712 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1713 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1714}
1715
1716/// handleJTSwitchCase - Emit jumptable for current switch case range
1717bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1718 CaseRecVector& WorkList,
1719 Value* SV,
1720 MachineBasicBlock* Default) {
1721 Case& FrontCase = *CR.Range.first;
1722 Case& BackCase = *(CR.Range.second-1);
1723
1724 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1725 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1726
1727 uint64_t TSize = 0;
1728 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1729 I!=E; ++I)
1730 TSize += I->size();
1731
1732 if (!areJTsAllowed(TLI) || TSize <= 3)
1733 return false;
1734
1735 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1736 if (Density < 0.4)
1737 return false;
1738
1739 DOUT << "Lowering jump table\n"
1740 << "First entry: " << First << ". Last entry: " << Last << "\n"
1741 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1742
1743 // Get the MachineFunction which holds the current MBB. This is used when
1744 // inserting any additional MBBs necessary to represent the switch.
1745 MachineFunction *CurMF = CurMBB->getParent();
1746
1747 // Figure out which block is immediately after the current one.
1748 MachineBasicBlock *NextBlock = 0;
1749 MachineFunction::iterator BBI = CR.CaseBB;
1750
1751 if (++BBI != CurMBB->getParent()->end())
1752 NextBlock = BBI;
1753
1754 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1755
1756 // Create a new basic block to hold the code for loading the address
1757 // of the jump table, and jumping to it. Update successor information;
1758 // we will either branch to the default case for the switch, or the jump
1759 // table.
1760 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1761 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1762 CR.CaseBB->addSuccessor(Default);
1763 CR.CaseBB->addSuccessor(JumpTableBB);
1764
1765 // Build a vector of destination BBs, corresponding to each target
1766 // of the jump table. If the value of the jump table slot corresponds to
1767 // a case statement, push the case's BB onto the vector, otherwise, push
1768 // the default BB.
1769 std::vector<MachineBasicBlock*> DestBBs;
1770 int64_t TEI = First;
1771 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1772 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1773 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1774
1775 if ((Low <= TEI) && (TEI <= High)) {
1776 DestBBs.push_back(I->BB);
1777 if (TEI==High)
1778 ++I;
1779 } else {
1780 DestBBs.push_back(Default);
1781 }
1782 }
1783
1784 // Update successor info. Add one edge to each unique successor.
1785 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1786 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1787 E = DestBBs.end(); I != E; ++I) {
1788 if (!SuccsHandled[(*I)->getNumber()]) {
1789 SuccsHandled[(*I)->getNumber()] = true;
1790 JumpTableBB->addSuccessor(*I);
1791 }
1792 }
1793
1794 // Create a jump table index for this jump table, or return an existing
1795 // one.
1796 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1797
1798 // Set the jump table information so that we can codegen it as a second
1799 // MachineBasicBlock
1800 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1801 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1802 (CR.CaseBB == CurMBB));
1803 if (CR.CaseBB == CurMBB)
1804 visitJumpTableHeader(JT, JTH);
1805
1806 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1807
1808 return true;
1809}
1810
1811/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1812/// 2 subtrees.
1813bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1814 CaseRecVector& WorkList,
1815 Value* SV,
1816 MachineBasicBlock* Default) {
1817 // Get the MachineFunction which holds the current MBB. This is used when
1818 // inserting any additional MBBs necessary to represent the switch.
1819 MachineFunction *CurMF = CurMBB->getParent();
1820
1821 // Figure out which block is immediately after the current one.
1822 MachineBasicBlock *NextBlock = 0;
1823 MachineFunction::iterator BBI = CR.CaseBB;
1824
1825 if (++BBI != CurMBB->getParent()->end())
1826 NextBlock = BBI;
1827
1828 Case& FrontCase = *CR.Range.first;
1829 Case& BackCase = *(CR.Range.second-1);
1830 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1831
1832 // Size is the number of Cases represented by this range.
1833 unsigned Size = CR.Range.second - CR.Range.first;
1834
1835 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1836 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1837 double FMetric = 0;
1838 CaseItr Pivot = CR.Range.first + Size/2;
1839
1840 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1841 // (heuristically) allow us to emit JumpTable's later.
1842 uint64_t TSize = 0;
1843 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1844 I!=E; ++I)
1845 TSize += I->size();
1846
1847 uint64_t LSize = FrontCase.size();
1848 uint64_t RSize = TSize-LSize;
1849 DOUT << "Selecting best pivot: \n"
1850 << "First: " << First << ", Last: " << Last <<"\n"
1851 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1852 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1853 J!=E; ++I, ++J) {
1854 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1855 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1856 assert((RBegin-LEnd>=1) && "Invalid case distance");
1857 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1858 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1859 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1860 // Should always split in some non-trivial place
1861 DOUT <<"=>Step\n"
1862 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1863 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1864 << "Metric: " << Metric << "\n";
1865 if (FMetric < Metric) {
1866 Pivot = J;
1867 FMetric = Metric;
1868 DOUT << "Current metric set to: " << FMetric << "\n";
1869 }
1870
1871 LSize += J->size();
1872 RSize -= J->size();
1873 }
1874 if (areJTsAllowed(TLI)) {
1875 // If our case is dense we *really* should handle it earlier!
1876 assert((FMetric > 0) && "Should handle dense range earlier!");
1877 } else {
1878 Pivot = CR.Range.first + Size/2;
1879 }
1880
1881 CaseRange LHSR(CR.Range.first, Pivot);
1882 CaseRange RHSR(Pivot, CR.Range.second);
1883 Constant *C = Pivot->Low;
1884 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1885
1886 // We know that we branch to the LHS if the Value being switched on is
1887 // less than the Pivot value, C. We use this to optimize our binary
1888 // tree a bit, by recognizing that if SV is greater than or equal to the
1889 // LHS's Case Value, and that Case Value is exactly one less than the
1890 // Pivot's Value, then we can branch directly to the LHS's Target,
1891 // rather than creating a leaf node for it.
1892 if ((LHSR.second - LHSR.first) == 1 &&
1893 LHSR.first->High == CR.GE &&
1894 cast<ConstantInt>(C)->getSExtValue() ==
1895 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1896 TrueBB = LHSR.first->BB;
1897 } else {
1898 TrueBB = new MachineBasicBlock(LLVMBB);
1899 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1900 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1901 }
1902
1903 // Similar to the optimization above, if the Value being switched on is
1904 // known to be less than the Constant CR.LT, and the current Case Value
1905 // is CR.LT - 1, then we can branch directly to the target block for
1906 // the current Case Value, rather than emitting a RHS leaf node for it.
1907 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1908 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1909 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1910 FalseBB = RHSR.first->BB;
1911 } else {
1912 FalseBB = new MachineBasicBlock(LLVMBB);
1913 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1914 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1915 }
1916
1917 // Create a CaseBlock record representing a conditional branch to
1918 // the LHS node if the value being switched on SV is less than C.
1919 // Otherwise, branch to LHS.
1920 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1921 TrueBB, FalseBB, CR.CaseBB);
1922
1923 if (CR.CaseBB == CurMBB)
1924 visitSwitchCase(CB);
1925 else
1926 SwitchCases.push_back(CB);
1927
1928 return true;
1929}
1930
1931/// handleBitTestsSwitchCase - if current case range has few destination and
1932/// range span less, than machine word bitwidth, encode case range into series
1933/// of masks and emit bit tests with these masks.
1934bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1935 CaseRecVector& WorkList,
1936 Value* SV,
1937 MachineBasicBlock* Default){
1938 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1939
1940 Case& FrontCase = *CR.Range.first;
1941 Case& BackCase = *(CR.Range.second-1);
1942
1943 // Get the MachineFunction which holds the current MBB. This is used when
1944 // inserting any additional MBBs necessary to represent the switch.
1945 MachineFunction *CurMF = CurMBB->getParent();
1946
1947 unsigned numCmps = 0;
1948 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1949 I!=E; ++I) {
1950 // Single case counts one, case range - two.
1951 if (I->Low == I->High)
1952 numCmps +=1;
1953 else
1954 numCmps +=2;
1955 }
1956
1957 // Count unique destinations
1958 SmallSet<MachineBasicBlock*, 4> Dests;
1959 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1960 Dests.insert(I->BB);
1961 if (Dests.size() > 3)
1962 // Don't bother the code below, if there are too much unique destinations
1963 return false;
1964 }
1965 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1966 << "Total number of comparisons: " << numCmps << "\n";
1967
1968 // Compute span of values.
1969 Constant* minValue = FrontCase.Low;
1970 Constant* maxValue = BackCase.High;
1971 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1972 cast<ConstantInt>(minValue)->getSExtValue();
1973 DOUT << "Compare range: " << range << "\n"
1974 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1975 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1976
1977 if (range>=IntPtrBits ||
1978 (!(Dests.size() == 1 && numCmps >= 3) &&
1979 !(Dests.size() == 2 && numCmps >= 5) &&
1980 !(Dests.size() >= 3 && numCmps >= 6)))
1981 return false;
1982
1983 DOUT << "Emitting bit tests\n";
1984 int64_t lowBound = 0;
1985
1986 // Optimize the case where all the case values fit in a
1987 // word without having to subtract minValue. In this case,
1988 // we can optimize away the subtraction.
1989 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1990 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1991 range = cast<ConstantInt>(maxValue)->getSExtValue();
1992 } else {
1993 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1994 }
1995
1996 CaseBitsVector CasesBits;
1997 unsigned i, count = 0;
1998
1999 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2000 MachineBasicBlock* Dest = I->BB;
2001 for (i = 0; i < count; ++i)
2002 if (Dest == CasesBits[i].BB)
2003 break;
2004
2005 if (i == count) {
2006 assert((count < 3) && "Too much destinations to test!");
2007 CasesBits.push_back(CaseBits(0, Dest, 0));
2008 count++;
2009 }
2010
2011 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2012 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2013
2014 for (uint64_t j = lo; j <= hi; j++) {
2015 CasesBits[i].Mask |= 1ULL << j;
2016 CasesBits[i].Bits++;
2017 }
2018
2019 }
2020 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2021
2022 SelectionDAGISel::BitTestInfo BTC;
2023
2024 // Figure out which block is immediately after the current one.
2025 MachineFunction::iterator BBI = CR.CaseBB;
2026 ++BBI;
2027
2028 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2029
2030 DOUT << "Cases:\n";
2031 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2032 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2033 << ", BB: " << CasesBits[i].BB << "\n";
2034
2035 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2036 CurMF->getBasicBlockList().insert(BBI, CaseBB);
2037 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2038 CaseBB,
2039 CasesBits[i].BB));
2040 }
2041
2042 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2043 -1U, (CR.CaseBB == CurMBB),
2044 CR.CaseBB, Default, BTC);
2045
2046 if (CR.CaseBB == CurMBB)
2047 visitBitTestHeader(BTB);
2048
2049 BitTestCases.push_back(BTB);
2050
2051 return true;
2052}
2053
2054
Dan Gohman9fe5bd62008-03-27 19:56:19 +00002055/// Clusterify - Transform simple list of Cases into list of CaseRange's
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002056unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2057 const SwitchInst& SI) {
2058 unsigned numCmps = 0;
2059
2060 // Start with "simple" cases
2061 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2062 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2063 Cases.push_back(Case(SI.getSuccessorValue(i),
2064 SI.getSuccessorValue(i),
2065 SMBB));
2066 }
Chris Lattner5624ae42007-11-27 06:14:32 +00002067 std::sort(Cases.begin(), Cases.end(), CaseCmp());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002068
2069 // Merge case into clusters
2070 if (Cases.size()>=2)
2071 // Must recompute end() each iteration because it may be
2072 // invalidated by erase if we hold on to it
Chris Lattnerdfb947d2007-11-24 07:07:01 +00002073 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002074 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2075 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2076 MachineBasicBlock* nextBB = J->BB;
2077 MachineBasicBlock* currentBB = I->BB;
2078
2079 // If the two neighboring cases go to the same destination, merge them
2080 // into a single case.
2081 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2082 I->High = J->High;
2083 J = Cases.erase(J);
2084 } else {
2085 I = J++;
2086 }
2087 }
2088
2089 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2090 if (I->Low != I->High)
2091 // A range counts double, since it requires two compares.
2092 ++numCmps;
2093 }
2094
2095 return numCmps;
2096}
2097
2098void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2099 // Figure out which block is immediately after the current one.
2100 MachineBasicBlock *NextBlock = 0;
2101 MachineFunction::iterator BBI = CurMBB;
2102
2103 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2104
2105 // If there is only the default destination, branch to it if it is not the
2106 // next basic block. Otherwise, just fall through.
2107 if (SI.getNumOperands() == 2) {
2108 // Update machine-CFG edges.
2109
2110 // If this is not a fall-through branch, emit the branch.
2111 if (Default != NextBlock)
Dan Gohman9fe5bd62008-03-27 19:56:19 +00002112 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002113 DAG.getBasicBlock(Default)));
2114
2115 CurMBB->addSuccessor(Default);
2116 return;
2117 }
2118
2119 // If there are any non-default case statements, create a vector of Cases
2120 // representing each one, and sort the vector so that we can efficiently
2121 // create a binary search tree from them.
2122 CaseVector Cases;
2123 unsigned numCmps = Clusterify(Cases, SI);
2124 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2125 << ". Total compares: " << numCmps << "\n";
2126
2127 // Get the Value to be switched on and default basic blocks, which will be
2128 // inserted into CaseBlock records, representing basic blocks in the binary
2129 // search tree.
2130 Value *SV = SI.getOperand(0);
2131
2132 // Push the initial CaseRec onto the worklist
2133 CaseRecVector WorkList;
2134 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2135
2136 while (!WorkList.empty()) {
2137 // Grab a record representing a case range to process off the worklist
2138 CaseRec CR = WorkList.back();
2139 WorkList.pop_back();
2140
2141 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2142 continue;
2143
2144 // If the range has few cases (two or less) emit a series of specific
2145 // tests.
2146 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2147 continue;
2148
2149 // If the switch has more than 5 blocks, and at least 40% dense, and the
2150 // target supports indirect branches, then emit a jump table rather than
2151 // lowering the switch to a binary tree of conditional branches.
2152 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2153 continue;
2154
2155 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2156 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2157 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2158 }
2159}
2160
2161
2162void SelectionDAGLowering::visitSub(User &I) {
2163 // -0.0 - X --> fneg
2164 const Type *Ty = I.getType();
2165 if (isa<VectorType>(Ty)) {
2166 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2167 const VectorType *DestTy = cast<VectorType>(I.getType());
2168 const Type *ElTy = DestTy->getElementType();
2169 if (ElTy->isFloatingPoint()) {
2170 unsigned VL = DestTy->getNumElements();
Dale Johannesen2fc20782007-09-14 22:26:36 +00002171 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002172 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2173 if (CV == CNZ) {
2174 SDOperand Op2 = getValue(I.getOperand(1));
2175 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2176 return;
2177 }
2178 }
2179 }
2180 }
2181 if (Ty->isFloatingPoint()) {
2182 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
Dale Johannesen2fc20782007-09-14 22:26:36 +00002183 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002184 SDOperand Op2 = getValue(I.getOperand(1));
2185 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2186 return;
2187 }
2188 }
2189
2190 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2191}
2192
2193void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2194 SDOperand Op1 = getValue(I.getOperand(0));
2195 SDOperand Op2 = getValue(I.getOperand(1));
2196
2197 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2198}
2199
2200void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2201 SDOperand Op1 = getValue(I.getOperand(0));
2202 SDOperand Op2 = getValue(I.getOperand(1));
2203
2204 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2205 MVT::getSizeInBits(Op2.getValueType()))
2206 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2207 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2208 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2209
2210 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2211}
2212
2213void SelectionDAGLowering::visitICmp(User &I) {
2214 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2215 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2216 predicate = IC->getPredicate();
2217 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2218 predicate = ICmpInst::Predicate(IC->getPredicate());
2219 SDOperand Op1 = getValue(I.getOperand(0));
2220 SDOperand Op2 = getValue(I.getOperand(1));
2221 ISD::CondCode Opcode;
2222 switch (predicate) {
2223 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2224 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2225 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2226 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2227 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2228 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2229 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2230 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2231 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2232 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2233 default:
2234 assert(!"Invalid ICmp predicate value");
2235 Opcode = ISD::SETEQ;
2236 break;
2237 }
2238 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2239}
2240
2241void SelectionDAGLowering::visitFCmp(User &I) {
2242 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2243 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2244 predicate = FC->getPredicate();
2245 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2246 predicate = FCmpInst::Predicate(FC->getPredicate());
2247 SDOperand Op1 = getValue(I.getOperand(0));
2248 SDOperand Op2 = getValue(I.getOperand(1));
2249 ISD::CondCode Condition, FOC, FPC;
2250 switch (predicate) {
2251 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2252 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2253 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2254 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2255 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2256 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2257 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2258 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2259 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2260 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2261 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2262 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2263 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2264 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2265 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2266 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2267 default:
2268 assert(!"Invalid FCmp predicate value");
2269 FOC = FPC = ISD::SETFALSE;
2270 break;
2271 }
2272 if (FiniteOnlyFPMath())
2273 Condition = FOC;
2274 else
2275 Condition = FPC;
2276 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2277}
2278
2279void SelectionDAGLowering::visitSelect(User &I) {
2280 SDOperand Cond = getValue(I.getOperand(0));
2281 SDOperand TrueVal = getValue(I.getOperand(1));
2282 SDOperand FalseVal = getValue(I.getOperand(2));
2283 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2284 TrueVal, FalseVal));
2285}
2286
2287
2288void SelectionDAGLowering::visitTrunc(User &I) {
2289 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2290 SDOperand N = getValue(I.getOperand(0));
2291 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2292 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2293}
2294
2295void SelectionDAGLowering::visitZExt(User &I) {
2296 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2297 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2298 SDOperand N = getValue(I.getOperand(0));
2299 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2300 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2301}
2302
2303void SelectionDAGLowering::visitSExt(User &I) {
2304 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2305 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2306 SDOperand N = getValue(I.getOperand(0));
2307 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2308 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2309}
2310
2311void SelectionDAGLowering::visitFPTrunc(User &I) {
2312 // FPTrunc is never a no-op cast, no need to check
2313 SDOperand N = getValue(I.getOperand(0));
2314 MVT::ValueType DestVT = TLI.getValueType(I.getType());
Chris Lattner5872a362008-01-17 07:00:52 +00002315 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002316}
2317
2318void SelectionDAGLowering::visitFPExt(User &I){
2319 // FPTrunc is never a no-op cast, no need to check
2320 SDOperand N = getValue(I.getOperand(0));
2321 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2322 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2323}
2324
2325void SelectionDAGLowering::visitFPToUI(User &I) {
2326 // FPToUI is never a no-op cast, no need to check
2327 SDOperand N = getValue(I.getOperand(0));
2328 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2329 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2330}
2331
2332void SelectionDAGLowering::visitFPToSI(User &I) {
2333 // FPToSI is never a no-op cast, no need to check
2334 SDOperand N = getValue(I.getOperand(0));
2335 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2336 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2337}
2338
2339void SelectionDAGLowering::visitUIToFP(User &I) {
2340 // UIToFP is never a no-op cast, no need to check
2341 SDOperand N = getValue(I.getOperand(0));
2342 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2343 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2344}
2345
2346void SelectionDAGLowering::visitSIToFP(User &I){
2347 // UIToFP is never a no-op cast, no need to check
2348 SDOperand N = getValue(I.getOperand(0));
2349 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2350 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2351}
2352
2353void SelectionDAGLowering::visitPtrToInt(User &I) {
2354 // What to do depends on the size of the integer and the size of the pointer.
2355 // We can either truncate, zero extend, or no-op, accordingly.
2356 SDOperand N = getValue(I.getOperand(0));
2357 MVT::ValueType SrcVT = N.getValueType();
2358 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2359 SDOperand Result;
2360 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2361 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2362 else
2363 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2364 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2365 setValue(&I, Result);
2366}
2367
2368void SelectionDAGLowering::visitIntToPtr(User &I) {
2369 // What to do depends on the size of the integer and the size of the pointer.
2370 // We can either truncate, zero extend, or no-op, accordingly.
2371 SDOperand N = getValue(I.getOperand(0));
2372 MVT::ValueType SrcVT = N.getValueType();
2373 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2374 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2375 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2376 else
2377 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2378 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2379}
2380
2381void SelectionDAGLowering::visitBitCast(User &I) {
2382 SDOperand N = getValue(I.getOperand(0));
2383 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2384
2385 // BitCast assures us that source and destination are the same size so this
2386 // is either a BIT_CONVERT or a no-op.
2387 if (DestVT != N.getValueType())
2388 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2389 else
2390 setValue(&I, N); // noop cast.
2391}
2392
2393void SelectionDAGLowering::visitInsertElement(User &I) {
2394 SDOperand InVec = getValue(I.getOperand(0));
2395 SDOperand InVal = getValue(I.getOperand(1));
2396 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2397 getValue(I.getOperand(2)));
2398
2399 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2400 TLI.getValueType(I.getType()),
2401 InVec, InVal, InIdx));
2402}
2403
2404void SelectionDAGLowering::visitExtractElement(User &I) {
2405 SDOperand InVec = getValue(I.getOperand(0));
2406 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2407 getValue(I.getOperand(1)));
2408 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2409 TLI.getValueType(I.getType()), InVec, InIdx));
2410}
2411
2412void SelectionDAGLowering::visitShuffleVector(User &I) {
2413 SDOperand V1 = getValue(I.getOperand(0));
2414 SDOperand V2 = getValue(I.getOperand(1));
2415 SDOperand Mask = getValue(I.getOperand(2));
2416
2417 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2418 TLI.getValueType(I.getType()),
2419 V1, V2, Mask));
2420}
2421
2422
2423void SelectionDAGLowering::visitGetElementPtr(User &I) {
2424 SDOperand N = getValue(I.getOperand(0));
2425 const Type *Ty = I.getOperand(0)->getType();
2426
2427 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2428 OI != E; ++OI) {
2429 Value *Idx = *OI;
2430 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2431 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2432 if (Field) {
2433 // N = N + Offset
2434 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2435 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
Chris Lattner5872a362008-01-17 07:00:52 +00002436 DAG.getIntPtrConstant(Offset));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002437 }
2438 Ty = StTy->getElementType(Field);
2439 } else {
2440 Ty = cast<SequentialType>(Ty)->getElementType();
2441
2442 // If this is a constant subscript, handle it quickly.
2443 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2444 if (CI->getZExtValue() == 0) continue;
2445 uint64_t Offs =
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002446 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Chris Lattner5872a362008-01-17 07:00:52 +00002447 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2448 DAG.getIntPtrConstant(Offs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002449 continue;
2450 }
2451
2452 // N = N + Idx * ElementSize;
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002453 uint64_t ElementSize = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454 SDOperand IdxN = getValue(Idx);
2455
2456 // If the index is smaller or larger than intptr_t, truncate or extend
2457 // it.
2458 if (IdxN.getValueType() < N.getValueType()) {
2459 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2460 } else if (IdxN.getValueType() > N.getValueType())
2461 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2462
2463 // If this is a multiply by a power of two, turn it into a shl
2464 // immediately. This is a very common case.
2465 if (isPowerOf2_64(ElementSize)) {
2466 unsigned Amt = Log2_64(ElementSize);
2467 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2468 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2469 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2470 continue;
2471 }
2472
Chris Lattner5872a362008-01-17 07:00:52 +00002473 SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2475 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2476 }
2477 }
2478 setValue(&I, N);
2479}
2480
2481void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2482 // If this is a fixed sized alloca in the entry block of the function,
2483 // allocate it statically on the stack.
2484 if (FuncInfo.StaticAllocaMap.count(&I))
2485 return; // getValue will auto-populate this.
2486
2487 const Type *Ty = I.getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00002488 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002489 unsigned Align =
2490 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2491 I.getAlignment());
2492
2493 SDOperand AllocSize = getValue(I.getArraySize());
2494 MVT::ValueType IntPtr = TLI.getPointerTy();
2495 if (IntPtr < AllocSize.getValueType())
2496 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2497 else if (IntPtr > AllocSize.getValueType())
2498 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2499
2500 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
Chris Lattner5872a362008-01-17 07:00:52 +00002501 DAG.getIntPtrConstant(TySize));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502
Evan Chenga31dc752007-08-16 23:46:29 +00002503 // Handle alignment. If the requested alignment is less than or equal to
2504 // the stack alignment, ignore it. If the size is greater than or equal to
2505 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506 unsigned StackAlign =
2507 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002508 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002509 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002510
2511 // Round the size of the allocation up to the stack alignment size
2512 // by add SA-1 to the size.
2513 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
Chris Lattner5872a362008-01-17 07:00:52 +00002514 DAG.getIntPtrConstant(StackAlign-1));
Evan Chenga31dc752007-08-16 23:46:29 +00002515 // Mask out the low bits for alignment purposes.
2516 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
Chris Lattner5872a362008-01-17 07:00:52 +00002517 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002518
Chris Lattner5872a362008-01-17 07:00:52 +00002519 SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002520 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2521 MVT::Other);
2522 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2523 setValue(&I, DSA);
2524 DAG.setRoot(DSA.getValue(1));
2525
2526 // Inform the Frame Information that we have just allocated a variable-sized
2527 // object.
2528 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2529}
2530
2531void SelectionDAGLowering::visitLoad(LoadInst &I) {
2532 SDOperand Ptr = getValue(I.getOperand(0));
2533
2534 SDOperand Root;
2535 if (I.isVolatile())
2536 Root = getRoot();
2537 else {
2538 // Do not serialize non-volatile loads against each other.
2539 Root = DAG.getRoot();
2540 }
2541
2542 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2543 Root, I.isVolatile(), I.getAlignment()));
2544}
2545
2546SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2547 const Value *SV, SDOperand Root,
2548 bool isVolatile,
2549 unsigned Alignment) {
2550 SDOperand L =
2551 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2552 isVolatile, Alignment);
2553
2554 if (isVolatile)
2555 DAG.setRoot(L.getValue(1));
2556 else
2557 PendingLoads.push_back(L.getValue(1));
2558
2559 return L;
2560}
2561
2562
2563void SelectionDAGLowering::visitStore(StoreInst &I) {
2564 Value *SrcV = I.getOperand(0);
2565 SDOperand Src = getValue(SrcV);
2566 SDOperand Ptr = getValue(I.getOperand(1));
2567 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2568 I.isVolatile(), I.getAlignment()));
2569}
2570
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2572/// node.
2573void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2574 unsigned Intrinsic) {
Duncan Sands79d28872007-12-03 20:06:50 +00002575 bool HasChain = !I.doesNotAccessMemory();
2576 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2577
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002578 // Build the operand list.
2579 SmallVector<SDOperand, 8> Ops;
2580 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2581 if (OnlyLoad) {
2582 // We don't need to serialize loads against other loads.
2583 Ops.push_back(DAG.getRoot());
2584 } else {
2585 Ops.push_back(getRoot());
2586 }
2587 }
2588
2589 // Add the intrinsic ID as an integer operand.
2590 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2591
2592 // Add all operands of the call to the operand list.
2593 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2594 SDOperand Op = getValue(I.getOperand(i));
2595 assert(TLI.isTypeLegal(Op.getValueType()) &&
2596 "Intrinsic uses a non-legal type?");
2597 Ops.push_back(Op);
2598 }
2599
2600 std::vector<MVT::ValueType> VTs;
2601 if (I.getType() != Type::VoidTy) {
2602 MVT::ValueType VT = TLI.getValueType(I.getType());
2603 if (MVT::isVector(VT)) {
2604 const VectorType *DestTy = cast<VectorType>(I.getType());
2605 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2606
2607 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2608 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2609 }
2610
2611 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2612 VTs.push_back(VT);
2613 }
2614 if (HasChain)
2615 VTs.push_back(MVT::Other);
2616
2617 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2618
2619 // Create the node.
2620 SDOperand Result;
2621 if (!HasChain)
2622 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2623 &Ops[0], Ops.size());
2624 else if (I.getType() != Type::VoidTy)
2625 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2626 &Ops[0], Ops.size());
2627 else
2628 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2629 &Ops[0], Ops.size());
2630
2631 if (HasChain) {
2632 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2633 if (OnlyLoad)
2634 PendingLoads.push_back(Chain);
2635 else
2636 DAG.setRoot(Chain);
2637 }
2638 if (I.getType() != Type::VoidTy) {
2639 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2640 MVT::ValueType VT = TLI.getValueType(PTy);
2641 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2642 }
2643 setValue(&I, Result);
2644 }
2645}
2646
2647/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2648static GlobalVariable *ExtractTypeInfo (Value *V) {
2649 V = IntrinsicInst::StripPointerCasts(V);
2650 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Anton Korobeynikov53422f62008-02-20 11:10:28 +00002651 assert ((GV || isa<ConstantPointerNull>(V)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002652 "TypeInfo must be a global variable or NULL");
2653 return GV;
2654}
2655
2656/// addCatchInfo - Extract the personality and type infos from an eh.selector
2657/// call, and add them to the specified machine basic block.
2658static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2659 MachineBasicBlock *MBB) {
2660 // Inform the MachineModuleInfo of the personality for this landing pad.
2661 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2662 assert(CE->getOpcode() == Instruction::BitCast &&
2663 isa<Function>(CE->getOperand(0)) &&
2664 "Personality should be a function");
2665 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2666
2667 // Gather all the type infos for this landing pad and pass them along to
2668 // MachineModuleInfo.
2669 std::vector<GlobalVariable *> TyInfo;
2670 unsigned N = I.getNumOperands();
2671
2672 for (unsigned i = N - 1; i > 2; --i) {
2673 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2674 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002675 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002676 assert (FirstCatch <= N && "Invalid filter length");
2677
2678 if (FirstCatch < N) {
2679 TyInfo.reserve(N - FirstCatch);
2680 for (unsigned j = FirstCatch; j < N; ++j)
2681 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2682 MMI->addCatchTypeInfo(MBB, TyInfo);
2683 TyInfo.clear();
2684 }
2685
Duncan Sands923fdb12007-08-27 15:47:50 +00002686 if (!FilterLength) {
2687 // Cleanup.
2688 MMI->addCleanup(MBB);
2689 } else {
2690 // Filter.
2691 TyInfo.reserve(FilterLength - 1);
2692 for (unsigned j = i + 1; j < FirstCatch; ++j)
2693 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2694 MMI->addFilterTypeInfo(MBB, TyInfo);
2695 TyInfo.clear();
2696 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002697
2698 N = i;
2699 }
2700 }
2701
2702 if (N > 3) {
2703 TyInfo.reserve(N - 3);
2704 for (unsigned j = 3; j < N; ++j)
2705 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2706 MMI->addCatchTypeInfo(MBB, TyInfo);
2707 }
2708}
2709
2710/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2711/// we want to emit this as a call to a named external function, return the name
2712/// otherwise lower it and return null.
2713const char *
2714SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2715 switch (Intrinsic) {
2716 default:
2717 // By default, turn this into a target intrinsic node.
2718 visitTargetIntrinsic(I, Intrinsic);
2719 return 0;
2720 case Intrinsic::vastart: visitVAStart(I); return 0;
2721 case Intrinsic::vaend: visitVAEnd(I); return 0;
2722 case Intrinsic::vacopy: visitVACopy(I); return 0;
2723 case Intrinsic::returnaddress:
2724 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2725 getValue(I.getOperand(1))));
2726 return 0;
2727 case Intrinsic::frameaddress:
2728 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2729 getValue(I.getOperand(1))));
2730 return 0;
2731 case Intrinsic::setjmp:
2732 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2733 break;
2734 case Intrinsic::longjmp:
2735 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2736 break;
2737 case Intrinsic::memcpy_i32:
Dan Gohmane8b391e2008-04-12 04:36:06 +00002738 case Intrinsic::memcpy_i64: {
2739 SDOperand Op1 = getValue(I.getOperand(1));
2740 SDOperand Op2 = getValue(I.getOperand(2));
2741 SDOperand Op3 = getValue(I.getOperand(3));
2742 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2743 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2744 I.getOperand(1), 0, I.getOperand(2), 0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002745 return 0;
Dan Gohmane8b391e2008-04-12 04:36:06 +00002746 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002747 case Intrinsic::memset_i32:
Dan Gohmane8b391e2008-04-12 04:36:06 +00002748 case Intrinsic::memset_i64: {
2749 SDOperand Op1 = getValue(I.getOperand(1));
2750 SDOperand Op2 = getValue(I.getOperand(2));
2751 SDOperand Op3 = getValue(I.getOperand(3));
2752 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2753 DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
2754 I.getOperand(1), 0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002755 return 0;
Dan Gohmane8b391e2008-04-12 04:36:06 +00002756 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002757 case Intrinsic::memmove_i32:
Dan Gohmane8b391e2008-04-12 04:36:06 +00002758 case Intrinsic::memmove_i64: {
2759 SDOperand Op1 = getValue(I.getOperand(1));
2760 SDOperand Op2 = getValue(I.getOperand(2));
2761 SDOperand Op3 = getValue(I.getOperand(3));
2762 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2763
2764 // If the source and destination are known to not be aliases, we can
2765 // lower memmove as memcpy.
2766 uint64_t Size = -1ULL;
2767 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
2768 Size = C->getValue();
2769 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
2770 AliasAnalysis::NoAlias) {
2771 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2772 I.getOperand(1), 0, I.getOperand(2), 0));
2773 return 0;
2774 }
2775
2776 DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
2777 I.getOperand(1), 0, I.getOperand(2), 0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002778 return 0;
Dan Gohmane8b391e2008-04-12 04:36:06 +00002779 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002780 case Intrinsic::dbg_stoppoint: {
2781 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2782 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2783 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2784 SDOperand Ops[5];
2785
2786 Ops[0] = getRoot();
2787 Ops[1] = getValue(SPI.getLineValue());
2788 Ops[2] = getValue(SPI.getColumnValue());
2789
2790 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2791 assert(DD && "Not a debug information descriptor");
2792 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2793
2794 Ops[3] = DAG.getString(CompileUnit->getFileName());
2795 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2796
2797 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2798 }
2799
2800 return 0;
2801 }
2802 case Intrinsic::dbg_region_start: {
2803 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2804 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2805 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2806 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2807 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
Evan Cheng13d1c292008-01-31 09:59:15 +00002808 DAG.getConstant(LabelID, MVT::i32),
2809 DAG.getConstant(0, MVT::i32)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002810 }
2811
2812 return 0;
2813 }
2814 case Intrinsic::dbg_region_end: {
2815 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2816 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2817 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2818 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
Evan Cheng13d1c292008-01-31 09:59:15 +00002819 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2820 DAG.getConstant(LabelID, MVT::i32),
2821 DAG.getConstant(0, MVT::i32)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002822 }
2823
2824 return 0;
2825 }
2826 case Intrinsic::dbg_func_start: {
2827 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Evan Chenga53c40a2008-02-01 09:10:45 +00002828 if (!MMI) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002829 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
Evan Chenga53c40a2008-02-01 09:10:45 +00002830 Value *SP = FSI.getSubprogram();
2831 if (SP && MMI->Verify(SP)) {
2832 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2833 // what (most?) gdb expects.
2834 DebugInfoDesc *DD = MMI->getDescFor(SP);
2835 assert(DD && "Not a debug information descriptor");
2836 SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2837 const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2838 unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2839 CompileUnit->getFileName());
2840 // Record the source line but does create a label. It will be emitted
2841 // at asm emission time.
2842 MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002843 }
2844
2845 return 0;
2846 }
2847 case Intrinsic::dbg_declare: {
2848 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2849 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
Evan Cheng2e28d622008-02-02 04:07:54 +00002850 Value *Variable = DI.getVariable();
2851 if (MMI && Variable && MMI->Verify(Variable))
2852 DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2853 getValue(DI.getAddress()), getValue(Variable)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854 return 0;
2855 }
2856
2857 case Intrinsic::eh_exception: {
Dale Johannesen85535762008-04-02 00:25:04 +00002858 if (!CurMBB->isLandingPad()) {
2859 // FIXME: Mark exception register as live in. Hack for PR1508.
2860 unsigned Reg = TLI.getExceptionAddressRegister();
2861 if (Reg) CurMBB->addLiveIn(Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002862 }
Dale Johannesen85535762008-04-02 00:25:04 +00002863 // Insert the EXCEPTIONADDR instruction.
2864 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2865 SDOperand Ops[1];
2866 Ops[0] = DAG.getRoot();
2867 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2868 setValue(&I, Op);
2869 DAG.setRoot(Op.getValue(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002870 return 0;
2871 }
2872
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002873 case Intrinsic::eh_selector_i32:
2874 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002875 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002876 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2877 MVT::i32 : MVT::i64);
2878
Dale Johannesen85535762008-04-02 00:25:04 +00002879 if (MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002880 if (CurMBB->isLandingPad())
2881 addCatchInfo(I, MMI, CurMBB);
2882 else {
2883#ifndef NDEBUG
2884 FuncInfo.CatchInfoLost.insert(&I);
2885#endif
2886 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2887 unsigned Reg = TLI.getExceptionSelectorRegister();
2888 if (Reg) CurMBB->addLiveIn(Reg);
2889 }
2890
2891 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002892 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002893 SDOperand Ops[2];
2894 Ops[0] = getValue(I.getOperand(1));
2895 Ops[1] = getRoot();
2896 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2897 setValue(&I, Op);
2898 DAG.setRoot(Op.getValue(1));
2899 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002900 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002901 }
2902
2903 return 0;
2904 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002905
2906 case Intrinsic::eh_typeid_for_i32:
2907 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002908 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002909 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2910 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911
2912 if (MMI) {
2913 // Find the type id for the given typeinfo.
2914 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2915
2916 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002917 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002918 } else {
2919 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002920 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 }
2922
2923 return 0;
2924 }
2925
2926 case Intrinsic::eh_return: {
2927 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2928
Dale Johannesen85535762008-04-02 00:25:04 +00002929 if (MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930 MMI->setCallsEHReturn(true);
2931 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2932 MVT::Other,
Dan Gohman9fe5bd62008-03-27 19:56:19 +00002933 getControlRoot(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934 getValue(I.getOperand(1)),
2935 getValue(I.getOperand(2))));
2936 } else {
2937 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2938 }
2939
2940 return 0;
2941 }
2942
2943 case Intrinsic::eh_unwind_init: {
2944 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2945 MMI->setCallsUnwindInit(true);
2946 }
2947
2948 return 0;
2949 }
2950
2951 case Intrinsic::eh_dwarf_cfa: {
Dale Johannesen85535762008-04-02 00:25:04 +00002952 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2953 SDOperand CfaArg;
2954 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2955 CfaArg = DAG.getNode(ISD::TRUNCATE,
2956 TLI.getPointerTy(), getValue(I.getOperand(1)));
2957 else
2958 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2959 TLI.getPointerTy(), getValue(I.getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002960
Dale Johannesen85535762008-04-02 00:25:04 +00002961 SDOperand Offset = DAG.getNode(ISD::ADD,
2962 TLI.getPointerTy(),
2963 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2964 TLI.getPointerTy()),
2965 CfaArg);
2966 setValue(&I, DAG.getNode(ISD::ADD,
2967 TLI.getPointerTy(),
2968 DAG.getNode(ISD::FRAMEADDR,
2969 TLI.getPointerTy(),
2970 DAG.getConstant(0,
2971 TLI.getPointerTy())),
2972 Offset));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002973 return 0;
2974 }
2975
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002976 case Intrinsic::sqrt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 setValue(&I, DAG.getNode(ISD::FSQRT,
2978 getValue(I.getOperand(1)).getValueType(),
2979 getValue(I.getOperand(1))));
2980 return 0;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002981 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002982 setValue(&I, DAG.getNode(ISD::FPOWI,
2983 getValue(I.getOperand(1)).getValueType(),
2984 getValue(I.getOperand(1)),
2985 getValue(I.getOperand(2))));
2986 return 0;
Dan Gohmane1bb8c12007-10-12 00:01:22 +00002987 case Intrinsic::sin:
2988 setValue(&I, DAG.getNode(ISD::FSIN,
2989 getValue(I.getOperand(1)).getValueType(),
2990 getValue(I.getOperand(1))));
2991 return 0;
2992 case Intrinsic::cos:
2993 setValue(&I, DAG.getNode(ISD::FCOS,
2994 getValue(I.getOperand(1)).getValueType(),
2995 getValue(I.getOperand(1))));
2996 return 0;
2997 case Intrinsic::pow:
2998 setValue(&I, DAG.getNode(ISD::FPOW,
2999 getValue(I.getOperand(1)).getValueType(),
3000 getValue(I.getOperand(1)),
3001 getValue(I.getOperand(2))));
3002 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 case Intrinsic::pcmarker: {
3004 SDOperand Tmp = getValue(I.getOperand(1));
3005 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3006 return 0;
3007 }
3008 case Intrinsic::readcyclecounter: {
3009 SDOperand Op = getRoot();
3010 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3011 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3012 &Op, 1);
3013 setValue(&I, Tmp);
3014 DAG.setRoot(Tmp.getValue(1));
3015 return 0;
3016 }
3017 case Intrinsic::part_select: {
3018 // Currently not implemented: just abort
3019 assert(0 && "part_select intrinsic not implemented");
3020 abort();
3021 }
3022 case Intrinsic::part_set: {
3023 // Currently not implemented: just abort
3024 assert(0 && "part_set intrinsic not implemented");
3025 abort();
3026 }
3027 case Intrinsic::bswap:
3028 setValue(&I, DAG.getNode(ISD::BSWAP,
3029 getValue(I.getOperand(1)).getValueType(),
3030 getValue(I.getOperand(1))));
3031 return 0;
3032 case Intrinsic::cttz: {
3033 SDOperand Arg = getValue(I.getOperand(1));
3034 MVT::ValueType Ty = Arg.getValueType();
3035 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 setValue(&I, result);
3037 return 0;
3038 }
3039 case Intrinsic::ctlz: {
3040 SDOperand Arg = getValue(I.getOperand(1));
3041 MVT::ValueType Ty = Arg.getValueType();
3042 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043 setValue(&I, result);
3044 return 0;
3045 }
3046 case Intrinsic::ctpop: {
3047 SDOperand Arg = getValue(I.getOperand(1));
3048 MVT::ValueType Ty = Arg.getValueType();
3049 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003050 setValue(&I, result);
3051 return 0;
3052 }
3053 case Intrinsic::stacksave: {
3054 SDOperand Op = getRoot();
3055 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3056 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3057 setValue(&I, Tmp);
3058 DAG.setRoot(Tmp.getValue(1));
3059 return 0;
3060 }
3061 case Intrinsic::stackrestore: {
3062 SDOperand Tmp = getValue(I.getOperand(1));
3063 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3064 return 0;
3065 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003066 case Intrinsic::var_annotation:
3067 // Discard annotate attributes
3068 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00003069
Duncan Sands38947cd2007-07-27 12:58:54 +00003070 case Intrinsic::init_trampoline: {
3071 const Function *F =
3072 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3073
3074 SDOperand Ops[6];
3075 Ops[0] = getRoot();
3076 Ops[1] = getValue(I.getOperand(1));
3077 Ops[2] = getValue(I.getOperand(2));
3078 Ops[3] = getValue(I.getOperand(3));
3079 Ops[4] = DAG.getSrcValue(I.getOperand(1));
3080 Ops[5] = DAG.getSrcValue(F);
3081
Duncan Sands7407a9f2007-09-11 14:10:23 +00003082 SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3083 DAG.getNodeValueTypes(TLI.getPointerTy(),
3084 MVT::Other), 2,
3085 Ops, 6);
3086
3087 setValue(&I, Tmp);
3088 DAG.setRoot(Tmp.getValue(1));
Duncan Sands38947cd2007-07-27 12:58:54 +00003089 return 0;
3090 }
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003091
3092 case Intrinsic::gcroot:
3093 if (GCI) {
3094 Value *Alloca = I.getOperand(1);
3095 Constant *TypeMap = cast<Constant>(I.getOperand(2));
3096
3097 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3098 GCI->addStackRoot(FI->getIndex(), TypeMap);
3099 }
3100 return 0;
3101
3102 case Intrinsic::gcread:
3103 case Intrinsic::gcwrite:
3104 assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3105 return 0;
3106
Anton Korobeynikovc915e272007-11-15 23:25:33 +00003107 case Intrinsic::flt_rounds: {
Dan Gohman819574c2008-01-31 00:41:03 +00003108 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
Anton Korobeynikovc915e272007-11-15 23:25:33 +00003109 return 0;
3110 }
Anton Korobeynikov39d40ba2008-01-15 07:02:33 +00003111
3112 case Intrinsic::trap: {
3113 DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3114 return 0;
3115 }
Evan Chengd1d68072008-03-08 00:58:38 +00003116 case Intrinsic::prefetch: {
3117 SDOperand Ops[4];
3118 Ops[0] = getRoot();
3119 Ops[1] = getValue(I.getOperand(1));
3120 Ops[2] = getValue(I.getOperand(2));
3121 Ops[3] = getValue(I.getOperand(3));
3122 DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3123 return 0;
3124 }
3125
Andrew Lenharth785610d2008-02-16 01:24:58 +00003126 case Intrinsic::memory_barrier: {
3127 SDOperand Ops[6];
3128 Ops[0] = getRoot();
3129 for (int x = 1; x < 6; ++x)
3130 Ops[x] = getValue(I.getOperand(x));
3131
3132 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3133 return 0;
3134 }
Andrew Lenharthe44f3902008-02-21 06:45:13 +00003135 case Intrinsic::atomic_lcs: {
3136 SDOperand Root = getRoot();
3137 SDOperand O3 = getValue(I.getOperand(3));
3138 SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3139 getValue(I.getOperand(1)),
3140 getValue(I.getOperand(2)),
3141 O3, O3.getValueType());
3142 setValue(&I, L);
3143 DAG.setRoot(L.getValue(1));
3144 return 0;
3145 }
3146 case Intrinsic::atomic_las: {
3147 SDOperand Root = getRoot();
3148 SDOperand O2 = getValue(I.getOperand(2));
3149 SDOperand L = DAG.getAtomic(ISD::ATOMIC_LAS, Root,
3150 getValue(I.getOperand(1)),
3151 O2, O2.getValueType());
3152 setValue(&I, L);
3153 DAG.setRoot(L.getValue(1));
3154 return 0;
3155 }
3156 case Intrinsic::atomic_swap: {
3157 SDOperand Root = getRoot();
3158 SDOperand O2 = getValue(I.getOperand(2));
3159 SDOperand L = DAG.getAtomic(ISD::ATOMIC_SWAP, Root,
3160 getValue(I.getOperand(1)),
3161 O2, O2.getValueType());
3162 setValue(&I, L);
3163 DAG.setRoot(L.getValue(1));
3164 return 0;
3165 }
3166
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003167 }
3168}
3169
3170
Duncan Sandse9bc9132007-12-19 09:48:52 +00003171void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172 bool IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003173 MachineBasicBlock *LandingPad) {
Duncan Sandse9bc9132007-12-19 09:48:52 +00003174 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3177 unsigned BeginLabel = 0, EndLabel = 0;
Duncan Sandse9bc9132007-12-19 09:48:52 +00003178
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003179 TargetLowering::ArgListTy Args;
3180 TargetLowering::ArgListEntry Entry;
Duncan Sandse9bc9132007-12-19 09:48:52 +00003181 Args.reserve(CS.arg_size());
3182 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3183 i != e; ++i) {
3184 SDOperand ArgNode = getValue(*i);
3185 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186
Duncan Sandse9bc9132007-12-19 09:48:52 +00003187 unsigned attrInd = i - CS.arg_begin() + 1;
3188 Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3189 Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3190 Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3191 Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3192 Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3193 Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
Dale Johannesen9b398782008-02-22 17:49:45 +00003194 Entry.Alignment = CS.getParamAlignment(attrInd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003195 Args.push_back(Entry);
3196 }
3197
Dale Johannesen85535762008-04-02 00:25:04 +00003198 if (LandingPad && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199 // Insert a label before the invoke call to mark the try range. This can be
3200 // used to detect deletion of the invoke via the MachineModuleInfo.
3201 BeginLabel = MMI->NextLabelID();
Dale Johannesen1f68ca82008-04-04 23:48:31 +00003202 // Both PendingLoads and PendingExports must be flushed here;
3203 // this call might not return.
3204 (void)getRoot();
3205 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
Evan Cheng13d1c292008-01-31 09:59:15 +00003206 DAG.getConstant(BeginLabel, MVT::i32),
3207 DAG.getConstant(1, MVT::i32)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003208 }
Duncan Sandse9bc9132007-12-19 09:48:52 +00003209
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003210 std::pair<SDOperand,SDOperand> Result =
Duncan Sandse9bc9132007-12-19 09:48:52 +00003211 TLI.LowerCallTo(getRoot(), CS.getType(),
3212 CS.paramHasAttr(0, ParamAttr::SExt),
Duncan Sandsead972e2008-02-14 17:28:50 +00003213 CS.paramHasAttr(0, ParamAttr::ZExt),
Duncan Sandse9bc9132007-12-19 09:48:52 +00003214 FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003215 Callee, Args, DAG);
Duncan Sandse9bc9132007-12-19 09:48:52 +00003216 if (CS.getType() != Type::VoidTy)
3217 setValue(CS.getInstruction(), Result.first);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003218 DAG.setRoot(Result.second);
3219
Dale Johannesen85535762008-04-02 00:25:04 +00003220 if (LandingPad && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003221 // Insert a label at the end of the invoke call to mark the try range. This
3222 // can be used to detect deletion of the invoke via the MachineModuleInfo.
3223 EndLabel = MMI->NextLabelID();
3224 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
Evan Cheng13d1c292008-01-31 09:59:15 +00003225 DAG.getConstant(EndLabel, MVT::i32),
3226 DAG.getConstant(1, MVT::i32)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003227
Duncan Sandse9bc9132007-12-19 09:48:52 +00003228 // Inform MachineModuleInfo of range.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003229 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3230 }
3231}
3232
3233
3234void SelectionDAGLowering::visitCall(CallInst &I) {
3235 const char *RenameFn = 0;
3236 if (Function *F = I.getCalledFunction()) {
Chris Lattner3687e342007-09-10 21:15:22 +00003237 if (F->isDeclaration()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003238 if (unsigned IID = F->getIntrinsicID()) {
3239 RenameFn = visitIntrinsicCall(I, IID);
3240 if (!RenameFn)
3241 return;
Chris Lattner3687e342007-09-10 21:15:22 +00003242 }
3243 }
3244
3245 // Check for well-known libc/libm calls. If the function is internal, it
3246 // can't be a library call.
3247 unsigned NameLen = F->getNameLen();
3248 if (!F->hasInternalLinkage() && NameLen) {
3249 const char *NameStr = F->getNameStart();
3250 if (NameStr[0] == 'c' &&
3251 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3252 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3253 if (I.getNumOperands() == 3 && // Basic sanity checks.
3254 I.getOperand(1)->getType()->isFloatingPoint() &&
3255 I.getType() == I.getOperand(1)->getType() &&
3256 I.getType() == I.getOperand(2)->getType()) {
3257 SDOperand LHS = getValue(I.getOperand(1));
3258 SDOperand RHS = getValue(I.getOperand(2));
3259 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3260 LHS, RHS));
3261 return;
3262 }
3263 } else if (NameStr[0] == 'f' &&
3264 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003265 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3266 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003267 if (I.getNumOperands() == 2 && // Basic sanity checks.
3268 I.getOperand(1)->getType()->isFloatingPoint() &&
3269 I.getType() == I.getOperand(1)->getType()) {
3270 SDOperand Tmp = getValue(I.getOperand(1));
3271 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3272 return;
3273 }
3274 } else if (NameStr[0] == 's' &&
3275 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003276 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3277 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003278 if (I.getNumOperands() == 2 && // Basic sanity checks.
3279 I.getOperand(1)->getType()->isFloatingPoint() &&
3280 I.getType() == I.getOperand(1)->getType()) {
3281 SDOperand Tmp = getValue(I.getOperand(1));
3282 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3283 return;
3284 }
3285 } else if (NameStr[0] == 'c' &&
3286 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003287 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3288 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003289 if (I.getNumOperands() == 2 && // Basic sanity checks.
3290 I.getOperand(1)->getType()->isFloatingPoint() &&
3291 I.getType() == I.getOperand(1)->getType()) {
3292 SDOperand Tmp = getValue(I.getOperand(1));
3293 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3294 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003295 }
3296 }
Chris Lattner3687e342007-09-10 21:15:22 +00003297 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003298 } else if (isa<InlineAsm>(I.getOperand(0))) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003299 visitInlineAsm(&I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003300 return;
3301 }
3302
3303 SDOperand Callee;
3304 if (!RenameFn)
3305 Callee = getValue(I.getOperand(0));
3306 else
3307 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3308
Duncan Sandse9bc9132007-12-19 09:48:52 +00003309 LowerCallTo(&I, Callee, I.isTailCall());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003310}
3311
3312
Dan Gohman3fdea2e2008-03-11 21:11:25 +00003313void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3314 SDOperand Call = getValue(I.getOperand(0));
3315 setValue(&I, SDOperand(Call.Val, I.getIndex()));
3316}
3317
3318
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003319/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3320/// this value and returns the result as a ValueVT value. This uses
3321/// Chain/Flag as the input and updates them for the output Chain/Flag.
3322/// If the Flag pointer is NULL, no flag is used.
3323SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3324 SDOperand &Chain, SDOperand *Flag)const{
3325 // Copy the legal parts from the registers.
3326 unsigned NumParts = Regs.size();
3327 SmallVector<SDOperand, 8> Parts(NumParts);
3328 for (unsigned i = 0; i != NumParts; ++i) {
3329 SDOperand Part = Flag ?
3330 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3331 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3332 Chain = Part.getValue(1);
3333 if (Flag)
3334 *Flag = Part.getValue(2);
3335 Parts[i] = Part;
3336 }
3337
3338 // Assemble the legal parts into the final value.
Chris Lattner96d0b962008-03-09 20:04:36 +00003339 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003340}
3341
3342/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3343/// specified value into the registers specified by this object. This uses
3344/// Chain/Flag as the input and updates them for the output Chain/Flag.
3345/// If the Flag pointer is NULL, no flag is used.
3346void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3347 SDOperand &Chain, SDOperand *Flag) const {
3348 // Get the list of the values's legal parts.
3349 unsigned NumParts = Regs.size();
3350 SmallVector<SDOperand, 8> Parts(NumParts);
3351 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3352
3353 // Copy the parts into the registers.
3354 for (unsigned i = 0; i != NumParts; ++i) {
3355 SDOperand Part = Flag ?
3356 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3357 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3358 Chain = Part.getValue(0);
3359 if (Flag)
3360 *Flag = Part.getValue(1);
3361 }
3362}
3363
3364/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3365/// operand list. This adds the code marker and includes the number of
3366/// values added into it.
3367void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3368 std::vector<SDOperand> &Ops) const {
3369 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3370 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3371 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3372 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3373}
3374
3375/// isAllocatableRegister - If the specified register is safe to allocate,
3376/// i.e. it isn't a stack pointer or some other special register, return the
3377/// register class for the register. Otherwise, return null.
3378static const TargetRegisterClass *
3379isAllocatableRegister(unsigned Reg, MachineFunction &MF,
Dan Gohman1e57df32008-02-10 18:45:23 +00003380 const TargetLowering &TLI,
3381 const TargetRegisterInfo *TRI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003382 MVT::ValueType FoundVT = MVT::Other;
3383 const TargetRegisterClass *FoundRC = 0;
Dan Gohman1e57df32008-02-10 18:45:23 +00003384 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3385 E = TRI->regclass_end(); RCI != E; ++RCI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386 MVT::ValueType ThisVT = MVT::Other;
3387
3388 const TargetRegisterClass *RC = *RCI;
3389 // If none of the the value types for this register class are valid, we
3390 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3391 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3392 I != E; ++I) {
3393 if (TLI.isTypeLegal(*I)) {
3394 // If we have already found this register in a different register class,
3395 // choose the one with the largest VT specified. For example, on
3396 // PowerPC, we favor f64 register classes over f32.
3397 if (FoundVT == MVT::Other ||
3398 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3399 ThisVT = *I;
3400 break;
3401 }
3402 }
3403 }
3404
3405 if (ThisVT == MVT::Other) continue;
3406
3407 // NOTE: This isn't ideal. In particular, this might allocate the
3408 // frame pointer in functions that need it (due to them not being taken
3409 // out of allocation, because a variable sized allocation hasn't been seen
3410 // yet). This is a slight code pessimization, but should still work.
3411 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3412 E = RC->allocation_order_end(MF); I != E; ++I)
3413 if (*I == Reg) {
3414 // We found a matching register class. Keep looking at others in case
3415 // we find one with larger registers that this physreg is also in.
3416 FoundRC = RC;
3417 FoundVT = ThisVT;
3418 break;
3419 }
3420 }
3421 return FoundRC;
3422}
3423
3424
3425namespace {
3426/// AsmOperandInfo - This contains information for each constraint that we are
3427/// lowering.
Evan Chengbcd66442008-02-26 02:33:44 +00003428struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3429 /// CallOperand - If this is the result output operand or a clobber
3430 /// this is null, otherwise it is the incoming operand to the CallInst.
3431 /// This gets modified as the asm is processed.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003432 SDOperand CallOperand;
Evan Chengbcd66442008-02-26 02:33:44 +00003433
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003434 /// AssignedRegs - If this is a register or register class operand, this
3435 /// contains the set of register corresponding to the operand.
3436 RegsForValue AssignedRegs;
3437
Evan Chengbcd66442008-02-26 02:33:44 +00003438 SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3439 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440 }
3441
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3443 /// busy in OutputRegs/InputRegs.
3444 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3445 std::set<unsigned> &OutputRegs,
Chris Lattnerbd0818b2008-02-21 04:55:52 +00003446 std::set<unsigned> &InputRegs,
3447 const TargetRegisterInfo &TRI) const {
3448 if (isOutReg) {
3449 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3450 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3451 }
3452 if (isInReg) {
3453 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3454 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3455 }
3456 }
3457
3458private:
3459 /// MarkRegAndAliases - Mark the specified register and all aliases in the
3460 /// specified set.
3461 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3462 const TargetRegisterInfo &TRI) {
3463 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3464 Regs.insert(Reg);
3465 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3466 for (; *Aliases; ++Aliases)
3467 Regs.insert(*Aliases);
3468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003469};
3470} // end anon namespace.
3471
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003472
Chris Lattner75a19162008-02-21 19:43:13 +00003473/// GetRegistersForValue - Assign registers (virtual or physical) for the
3474/// specified operand. We prefer to assign virtual registers, to allow the
3475/// register allocator handle the assignment process. However, if the asm uses
3476/// features that we can't model on machineinstrs, we have SDISel do the
3477/// allocation. This produces generally horrible, but correct, code.
3478///
3479/// OpInfo describes the operand.
3480/// HasEarlyClobber is true if there are any early clobber constraints (=&r)
3481/// or any explicitly clobbered registers.
3482/// Input and OutputRegs are the set of already allocated physical registers.
3483///
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003484void SelectionDAGLowering::
Evan Chengbcd66442008-02-26 02:33:44 +00003485GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003486 std::set<unsigned> &OutputRegs,
3487 std::set<unsigned> &InputRegs) {
3488 // Compute whether this value requires an input register, an output register,
3489 // or both.
3490 bool isOutReg = false;
3491 bool isInReg = false;
3492 switch (OpInfo.Type) {
3493 case InlineAsm::isOutput:
3494 isOutReg = true;
3495
3496 // If this is an early-clobber output, or if there is an input
3497 // constraint that matches this, we need to reserve the input register
3498 // so no other inputs allocate to it.
3499 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3500 break;
3501 case InlineAsm::isInput:
3502 isInReg = true;
3503 isOutReg = false;
3504 break;
3505 case InlineAsm::isClobber:
3506 isOutReg = true;
3507 isInReg = true;
3508 break;
3509 }
3510
3511
3512 MachineFunction &MF = DAG.getMachineFunction();
3513 std::vector<unsigned> Regs;
3514
3515 // If this is a constraint for a single physreg, or a constraint for a
3516 // register class, find it.
3517 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3518 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3519 OpInfo.ConstraintVT);
3520
3521 unsigned NumRegs = 1;
3522 if (OpInfo.ConstraintVT != MVT::Other)
3523 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3524 MVT::ValueType RegVT;
3525 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3526
3527
3528 // If this is a constraint for a specific physical register, like {r17},
3529 // assign it now.
3530 if (PhysReg.first) {
3531 if (OpInfo.ConstraintVT == MVT::Other)
3532 ValueVT = *PhysReg.second->vt_begin();
3533
3534 // Get the actual register value type. This is important, because the user
3535 // may have asked for (e.g.) the AX register in i32 type. We need to
3536 // remember that AX is actually i16 to get the right extension.
3537 RegVT = *PhysReg.second->vt_begin();
3538
3539 // This is a explicit reference to a physical register.
3540 Regs.push_back(PhysReg.first);
3541
3542 // If this is an expanded reference, add the rest of the regs to Regs.
3543 if (NumRegs != 1) {
3544 TargetRegisterClass::iterator I = PhysReg.second->begin();
3545 TargetRegisterClass::iterator E = PhysReg.second->end();
3546 for (; *I != PhysReg.first; ++I)
3547 assert(I != E && "Didn't find reg!");
3548
3549 // Already added the first reg.
3550 --NumRegs; ++I;
3551 for (; NumRegs; --NumRegs, ++I) {
3552 assert(I != E && "Ran out of registers to allocate!");
3553 Regs.push_back(*I);
3554 }
3555 }
3556 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
Chris Lattnerbd0818b2008-02-21 04:55:52 +00003557 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3558 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559 return;
3560 }
3561
3562 // Otherwise, if this was a reference to an LLVM register class, create vregs
3563 // for this reference.
3564 std::vector<unsigned> RegClassRegs;
3565 const TargetRegisterClass *RC = PhysReg.second;
3566 if (RC) {
3567 // If this is an early clobber or tied register, our regalloc doesn't know
3568 // how to maintain the constraint. If it isn't, go ahead and create vreg
3569 // and let the regalloc do the right thing.
3570 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3571 // If there is some other early clobber and this is an input register,
3572 // then we are forced to pre-allocate the input reg so it doesn't
3573 // conflict with the earlyclobber.
3574 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3575 RegVT = *PhysReg.second->vt_begin();
3576
3577 if (OpInfo.ConstraintVT == MVT::Other)
3578 ValueVT = RegVT;
3579
3580 // Create the appropriate number of virtual registers.
Chris Lattner1b989192007-12-31 04:13:23 +00003581 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003582 for (; NumRegs; --NumRegs)
Chris Lattner1b989192007-12-31 04:13:23 +00003583 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003584
3585 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586 return;
3587 }
3588
3589 // Otherwise, we can't allocate it. Let the code below figure out how to
3590 // maintain these constraints.
3591 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3592
3593 } else {
3594 // This is a reference to a register class that doesn't directly correspond
3595 // to an LLVM register class. Allocate NumRegs consecutive, available,
3596 // registers from the class.
3597 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3598 OpInfo.ConstraintVT);
3599 }
3600
Dan Gohman1e57df32008-02-10 18:45:23 +00003601 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003602 unsigned NumAllocated = 0;
3603 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3604 unsigned Reg = RegClassRegs[i];
3605 // See if this register is available.
3606 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3607 (isInReg && InputRegs.count(Reg))) { // Already used.
3608 // Make sure we find consecutive registers.
3609 NumAllocated = 0;
3610 continue;
3611 }
3612
3613 // Check to see if this register is allocatable (i.e. don't give out the
3614 // stack pointer).
3615 if (RC == 0) {
Dan Gohman1e57df32008-02-10 18:45:23 +00003616 RC = isAllocatableRegister(Reg, MF, TLI, TRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003617 if (!RC) { // Couldn't allocate this register.
3618 // Reset NumAllocated to make sure we return consecutive registers.
3619 NumAllocated = 0;
3620 continue;
3621 }
3622 }
3623
3624 // Okay, this register is good, we can use it.
3625 ++NumAllocated;
3626
3627 // If we allocated enough consecutive registers, succeed.
3628 if (NumAllocated == NumRegs) {
3629 unsigned RegStart = (i-NumAllocated)+1;
3630 unsigned RegEnd = i+1;
3631 // Mark all of the allocated registers used.
3632 for (unsigned i = RegStart; i != RegEnd; ++i)
3633 Regs.push_back(RegClassRegs[i]);
3634
3635 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3636 OpInfo.ConstraintVT);
Chris Lattnerbd0818b2008-02-21 04:55:52 +00003637 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003638 return;
3639 }
3640 }
3641
3642 // Otherwise, we couldn't allocate enough registers for this.
3643 return;
3644}
3645
3646
3647/// visitInlineAsm - Handle a call to an InlineAsm object.
3648///
Duncan Sands1c5526c2007-12-17 18:08:19 +00003649void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3650 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003651
3652 /// ConstraintOperands - Information about all of the constraints.
Evan Chengbcd66442008-02-26 02:33:44 +00003653 std::vector<SDISelAsmOperandInfo> ConstraintOperands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003654
3655 SDOperand Chain = getRoot();
3656 SDOperand Flag;
3657
3658 std::set<unsigned> OutputRegs, InputRegs;
3659
3660 // Do a prepass over the constraints, canonicalizing them, and building up the
3661 // ConstraintOperands list.
3662 std::vector<InlineAsm::ConstraintInfo>
3663 ConstraintInfos = IA->ParseConstraints();
3664
3665 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3666 // constraint. If so, we can't let the register allocator allocate any input
3667 // registers, because it will not know to avoid the earlyclobbered output reg.
3668 bool SawEarlyClobber = false;
3669
Duncan Sands1c5526c2007-12-17 18:08:19 +00003670 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003671 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
Evan Chengbcd66442008-02-26 02:33:44 +00003672 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
3673 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003674
3675 MVT::ValueType OpVT = MVT::Other;
3676
3677 // Compute the value type for each operand.
3678 switch (OpInfo.Type) {
3679 case InlineAsm::isOutput:
3680 if (!OpInfo.isIndirect) {
3681 // The return value of the call is this value. As such, there is no
3682 // corresponding argument.
Duncan Sands1c5526c2007-12-17 18:08:19 +00003683 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3684 OpVT = TLI.getValueType(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003685 } else {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003686 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003687 }
3688 break;
3689 case InlineAsm::isInput:
Duncan Sands1c5526c2007-12-17 18:08:19 +00003690 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003691 break;
3692 case InlineAsm::isClobber:
3693 // Nothing to do.
3694 break;
3695 }
3696
3697 // If this is an input or an indirect output, process the call argument.
Dale Johannesencfb19e62007-11-05 21:20:28 +00003698 // BasicBlocks are labels, currently appearing only in asm's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003699 if (OpInfo.CallOperandVal) {
Dale Johannesencfb19e62007-11-05 21:20:28 +00003700 if (isa<BasicBlock>(OpInfo.CallOperandVal))
3701 OpInfo.CallOperand =
Dale Johannesene99fc902008-01-29 02:21:21 +00003702 DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(
3703 OpInfo.CallOperandVal)]);
Dale Johannesencfb19e62007-11-05 21:20:28 +00003704 else {
3705 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3706 const Type *OpTy = OpInfo.CallOperandVal->getType();
3707 // If this is an indirect operand, the operand is a pointer to the
3708 // accessed type.
3709 if (OpInfo.isIndirect)
3710 OpTy = cast<PointerType>(OpTy)->getElementType();
3711
3712 // If OpTy is not a first-class value, it may be a struct/union that we
3713 // can tile with integers.
3714 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3715 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3716 switch (BitSize) {
3717 default: break;
3718 case 1:
3719 case 8:
3720 case 16:
3721 case 32:
3722 case 64:
3723 OpTy = IntegerType::get(BitSize);
3724 break;
3725 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003726 }
Dale Johannesencfb19e62007-11-05 21:20:28 +00003727
3728 OpVT = TLI.getValueType(OpTy, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003729 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003730 }
3731
3732 OpInfo.ConstraintVT = OpVT;
3733
3734 // Compute the constraint code and ConstraintType to use.
3735 OpInfo.ComputeConstraintToUse(TLI);
3736
3737 // Keep track of whether we see an earlyclobber.
3738 SawEarlyClobber |= OpInfo.isEarlyClobber;
3739
Chris Lattner75a19162008-02-21 19:43:13 +00003740 // If we see a clobber of a register, it is an early clobber.
Chris Lattner17ac4312008-02-21 20:54:31 +00003741 if (!SawEarlyClobber &&
3742 OpInfo.Type == InlineAsm::isClobber &&
3743 OpInfo.ConstraintType == TargetLowering::C_Register) {
3744 // Note that we want to ignore things that we don't trick here, like
3745 // dirflag, fpsr, flags, etc.
3746 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3747 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3748 OpInfo.ConstraintVT);
3749 if (PhysReg.first || PhysReg.second) {
3750 // This is a register we know of.
3751 SawEarlyClobber = true;
3752 }
3753 }
Chris Lattner75a19162008-02-21 19:43:13 +00003754
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003755 // If this is a memory input, and if the operand is not indirect, do what we
3756 // need to to provide an address for the memory input.
3757 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3758 !OpInfo.isIndirect) {
3759 assert(OpInfo.Type == InlineAsm::isInput &&
3760 "Can only indirectify direct input operands!");
3761
3762 // Memory operands really want the address of the value. If we don't have
3763 // an indirect input, put it in the constpool if we can, otherwise spill
3764 // it to a stack slot.
3765
3766 // If the operand is a float, integer, or vector constant, spill to a
3767 // constant pool entry to get its address.
3768 Value *OpVal = OpInfo.CallOperandVal;
3769 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3770 isa<ConstantVector>(OpVal)) {
3771 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3772 TLI.getPointerTy());
3773 } else {
3774 // Otherwise, create a stack slot and emit a store to it before the
3775 // asm.
3776 const Type *Ty = OpVal->getType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003777 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3779 MachineFunction &MF = DAG.getMachineFunction();
3780 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3781 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3782 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3783 OpInfo.CallOperand = StackSlot;
3784 }
3785
3786 // There is no longer a Value* corresponding to this operand.
3787 OpInfo.CallOperandVal = 0;
3788 // It is now an indirect operand.
3789 OpInfo.isIndirect = true;
3790 }
3791
3792 // If this constraint is for a specific register, allocate it before
3793 // anything else.
3794 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3795 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3796 }
3797 ConstraintInfos.clear();
3798
3799
3800 // Second pass - Loop over all of the operands, assigning virtual or physregs
3801 // to registerclass operands.
3802 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
Evan Chengbcd66442008-02-26 02:33:44 +00003803 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804
3805 // C_Register operands have already been allocated, Other/Memory don't need
3806 // to be.
3807 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3808 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3809 }
3810
3811 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3812 std::vector<SDOperand> AsmNodeOperands;
3813 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3814 AsmNodeOperands.push_back(
3815 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3816
3817
3818 // Loop over all of the inputs, copying the operand values into the
3819 // appropriate registers and processing the output regs.
3820 RegsForValue RetValRegs;
3821
3822 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3823 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3824
3825 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
Evan Chengbcd66442008-02-26 02:33:44 +00003826 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003827
3828 switch (OpInfo.Type) {
3829 case InlineAsm::isOutput: {
3830 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3831 OpInfo.ConstraintType != TargetLowering::C_Register) {
3832 // Memory output, or 'other' output (e.g. 'X' constraint).
3833 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3834
3835 // Add information to the INLINEASM node to know about this output.
3836 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3837 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3838 TLI.getPointerTy()));
3839 AsmNodeOperands.push_back(OpInfo.CallOperand);
3840 break;
3841 }
3842
3843 // Otherwise, this is a register or register class output.
3844
3845 // Copy the output from the appropriate register. Find a register that
3846 // we can use.
3847 if (OpInfo.AssignedRegs.Regs.empty()) {
3848 cerr << "Couldn't allocate output reg for contraint '"
3849 << OpInfo.ConstraintCode << "'!\n";
3850 exit(1);
3851 }
3852
3853 if (!OpInfo.isIndirect) {
3854 // This is the result value of the call.
3855 assert(RetValRegs.Regs.empty() &&
3856 "Cannot have multiple output constraints yet!");
Duncan Sands1c5526c2007-12-17 18:08:19 +00003857 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003858 RetValRegs = OpInfo.AssignedRegs;
3859 } else {
3860 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3861 OpInfo.CallOperandVal));
3862 }
3863
3864 // Add information to the INLINEASM node to know that this register is
3865 // set.
3866 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3867 AsmNodeOperands);
3868 break;
3869 }
3870 case InlineAsm::isInput: {
3871 SDOperand InOperandVal = OpInfo.CallOperand;
3872
3873 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3874 // If this is required to match an output register we have already set,
3875 // just use its register.
3876 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3877
3878 // Scan until we find the definition we already emitted of this operand.
3879 // When we find it, create a RegsForValue operand.
3880 unsigned CurOp = 2; // The first operand.
3881 for (; OperandNo; --OperandNo) {
3882 // Advance to the next operand.
3883 unsigned NumOps =
3884 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3885 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3886 (NumOps & 7) == 4 /*MEM*/) &&
3887 "Skipped past definitions?");
3888 CurOp += (NumOps>>3)+1;
3889 }
3890
3891 unsigned NumOps =
3892 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3893 if ((NumOps & 7) == 2 /*REGDEF*/) {
3894 // Add NumOps>>3 registers to MatchedRegs.
3895 RegsForValue MatchedRegs;
3896 MatchedRegs.ValueVT = InOperandVal.getValueType();
3897 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3898 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3899 unsigned Reg =
3900 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3901 MatchedRegs.Regs.push_back(Reg);
3902 }
3903
3904 // Use the produced MatchedRegs object to
3905 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3906 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3907 break;
3908 } else {
3909 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
Chris Lattner58d032b2008-02-21 05:27:19 +00003910 assert((NumOps >> 3) == 1 && "Unexpected number of operands");
3911 // Add information to the INLINEASM node to know about this input.
3912 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3913 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3914 TLI.getPointerTy()));
3915 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
3916 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003917 }
3918 }
3919
3920 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3921 assert(!OpInfo.isIndirect &&
3922 "Don't know how to handle indirect other inputs yet!");
3923
Chris Lattnera531abc2007-08-25 00:47:38 +00003924 std::vector<SDOperand> Ops;
3925 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3926 Ops, DAG);
3927 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003928 cerr << "Invalid operand for inline asm constraint '"
3929 << OpInfo.ConstraintCode << "'!\n";
3930 exit(1);
3931 }
3932
3933 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003934 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003935 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3936 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003937 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003938 break;
3939 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3940 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3941 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3942 "Memory operands expect pointer values");
3943
3944 // Add information to the INLINEASM node to know about this input.
3945 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3946 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3947 TLI.getPointerTy()));
3948 AsmNodeOperands.push_back(InOperandVal);
3949 break;
3950 }
3951
3952 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3953 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3954 "Unknown constraint type!");
3955 assert(!OpInfo.isIndirect &&
3956 "Don't know how to handle indirect register inputs yet!");
3957
3958 // Copy the input into the appropriate registers.
3959 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3960 "Couldn't allocate input reg!");
3961
3962 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3963
3964 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3965 AsmNodeOperands);
3966 break;
3967 }
3968 case InlineAsm::isClobber: {
3969 // Add the clobbered value to the operand list, so that the register
3970 // allocator is aware that the physreg got clobbered.
3971 if (!OpInfo.AssignedRegs.Regs.empty())
3972 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3973 AsmNodeOperands);
3974 break;
3975 }
3976 }
3977 }
3978
3979 // Finish up input operands.
3980 AsmNodeOperands[0] = Chain;
3981 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3982
3983 Chain = DAG.getNode(ISD::INLINEASM,
3984 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3985 &AsmNodeOperands[0], AsmNodeOperands.size());
3986 Flag = Chain.getValue(1);
3987
3988 // If this asm returns a register value, copy the result from that register
3989 // and set it as the value of the call.
3990 if (!RetValRegs.Regs.empty()) {
3991 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3992
3993 // If the result of the inline asm is a vector, it may have the wrong
3994 // width/num elts. Make sure to convert it to the right type with
3995 // bit_convert.
3996 if (MVT::isVector(Val.getValueType())) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003997 const VectorType *VTy = cast<VectorType>(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003998 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3999
4000 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
4001 }
4002
Duncan Sands1c5526c2007-12-17 18:08:19 +00004003 setValue(CS.getInstruction(), Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004004 }
4005
4006 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4007
4008 // Process indirect outputs, first output all of the flagged copies out of
4009 // physregs.
4010 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4011 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4012 Value *Ptr = IndirectStoresToEmit[i].second;
4013 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4014 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4015 }
4016
4017 // Emit the non-flagged stores from the physregs.
4018 SmallVector<SDOperand, 8> OutChains;
4019 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4020 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4021 getValue(StoresToEmit[i].second),
4022 StoresToEmit[i].second, 0));
4023 if (!OutChains.empty())
4024 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4025 &OutChains[0], OutChains.size());
4026 DAG.setRoot(Chain);
4027}
4028
4029
4030void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4031 SDOperand Src = getValue(I.getOperand(0));
4032
4033 MVT::ValueType IntPtr = TLI.getPointerTy();
4034
4035 if (IntPtr < Src.getValueType())
4036 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4037 else if (IntPtr > Src.getValueType())
4038 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4039
4040 // Scale the source by the type size.
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004041 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004042 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
Chris Lattner5872a362008-01-17 07:00:52 +00004043 Src, DAG.getIntPtrConstant(ElementSize));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004044
4045 TargetLowering::ArgListTy Args;
4046 TargetLowering::ArgListEntry Entry;
4047 Entry.Node = Src;
4048 Entry.Ty = TLI.getTargetData()->getIntPtrType();
4049 Args.push_back(Entry);
4050
4051 std::pair<SDOperand,SDOperand> Result =
Duncan Sandsead972e2008-02-14 17:28:50 +00004052 TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4053 true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004054 setValue(&I, Result.first); // Pointers always fit in registers
4055 DAG.setRoot(Result.second);
4056}
4057
4058void SelectionDAGLowering::visitFree(FreeInst &I) {
4059 TargetLowering::ArgListTy Args;
4060 TargetLowering::ArgListEntry Entry;
4061 Entry.Node = getValue(I.getOperand(0));
4062 Entry.Ty = TLI.getTargetData()->getIntPtrType();
4063 Args.push_back(Entry);
4064 MVT::ValueType IntPtr = TLI.getPointerTy();
4065 std::pair<SDOperand,SDOperand> Result =
Duncan Sandsead972e2008-02-14 17:28:50 +00004066 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4067 CallingConv::C, true,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004068 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4069 DAG.setRoot(Result.second);
4070}
4071
Evan Chenge637db12008-01-30 18:18:23 +00004072// EmitInstrWithCustomInserter - This method should be implemented by targets
4073// that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004074// instructions are special in various ways, which require special support to
4075// insert. The specified MachineInstr is created but not inserted into any
4076// basic blocks, and the scheduler passes ownership of it to this method.
Evan Chenge637db12008-01-30 18:18:23 +00004077MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004078 MachineBasicBlock *MBB) {
4079 cerr << "If a target marks an instruction with "
4080 << "'usesCustomDAGSchedInserter', it must implement "
Evan Chenge637db12008-01-30 18:18:23 +00004081 << "TargetLowering::EmitInstrWithCustomInserter!\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004082 abort();
4083 return 0;
4084}
4085
4086void SelectionDAGLowering::visitVAStart(CallInst &I) {
4087 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4088 getValue(I.getOperand(1)),
4089 DAG.getSrcValue(I.getOperand(1))));
4090}
4091
4092void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4093 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4094 getValue(I.getOperand(0)),
4095 DAG.getSrcValue(I.getOperand(0)));
4096 setValue(&I, V);
4097 DAG.setRoot(V.getValue(1));
4098}
4099
4100void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4101 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4102 getValue(I.getOperand(1)),
4103 DAG.getSrcValue(I.getOperand(1))));
4104}
4105
4106void SelectionDAGLowering::visitVACopy(CallInst &I) {
4107 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4108 getValue(I.getOperand(1)),
4109 getValue(I.getOperand(2)),
4110 DAG.getSrcValue(I.getOperand(1)),
4111 DAG.getSrcValue(I.getOperand(2))));
4112}
4113
4114/// TargetLowering::LowerArguments - This is the default LowerArguments
4115/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
4116/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4117/// integrated into SDISel.
4118std::vector<SDOperand>
4119TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004120 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4121 std::vector<SDOperand> Ops;
4122 Ops.push_back(DAG.getRoot());
4123 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4124 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4125
4126 // Add one result value for each formal argument.
4127 std::vector<MVT::ValueType> RetVals;
4128 unsigned j = 1;
4129 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4130 I != E; ++I, ++j) {
4131 MVT::ValueType VT = getValueType(I->getType());
Duncan Sandsc93fae32008-03-21 09:14:45 +00004132 ISD::ArgFlagsTy Flags;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004133 unsigned OriginalAlignment =
4134 getTargetData()->getABITypeAlignment(I->getType());
4135
Duncan Sands637ec552007-11-28 17:07:01 +00004136 if (F.paramHasAttr(j, ParamAttr::ZExt))
Duncan Sandsc93fae32008-03-21 09:14:45 +00004137 Flags.setZExt();
Duncan Sands637ec552007-11-28 17:07:01 +00004138 if (F.paramHasAttr(j, ParamAttr::SExt))
Duncan Sandsc93fae32008-03-21 09:14:45 +00004139 Flags.setSExt();
Duncan Sands637ec552007-11-28 17:07:01 +00004140 if (F.paramHasAttr(j, ParamAttr::InReg))
Duncan Sandsc93fae32008-03-21 09:14:45 +00004141 Flags.setInReg();
Duncan Sands637ec552007-11-28 17:07:01 +00004142 if (F.paramHasAttr(j, ParamAttr::StructRet))
Duncan Sandsc93fae32008-03-21 09:14:45 +00004143 Flags.setSRet();
Duncan Sands637ec552007-11-28 17:07:01 +00004144 if (F.paramHasAttr(j, ParamAttr::ByVal)) {
Duncan Sandsc93fae32008-03-21 09:14:45 +00004145 Flags.setByVal();
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00004146 const PointerType *Ty = cast<PointerType>(I->getType());
Duncan Sands8b98c4d2008-01-13 21:19:59 +00004147 const Type *ElementTy = Ty->getElementType();
Duncan Sandsc93fae32008-03-21 09:14:45 +00004148 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
Duncan Sands8b98c4d2008-01-13 21:19:59 +00004149 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
Dale Johannesen9b398782008-02-22 17:49:45 +00004150 // For ByVal, alignment should be passed from FE. BE will guess if
4151 // this info is not there but there are cases it cannot get right.
4152 if (F.getParamAlignment(j))
Duncan Sandsc93fae32008-03-21 09:14:45 +00004153 FrameAlign = F.getParamAlignment(j);
4154 Flags.setByValAlign(FrameAlign);
4155 Flags.setByValSize(FrameSize);
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00004156 }
Duncan Sands637ec552007-11-28 17:07:01 +00004157 if (F.paramHasAttr(j, ParamAttr::Nest))
Duncan Sandsc93fae32008-03-21 09:14:45 +00004158 Flags.setNest();
4159 Flags.setOrigAlign(OriginalAlignment);
Duncan Sandse111ce82008-02-11 20:58:28 +00004160
4161 MVT::ValueType RegisterVT = getRegisterType(VT);
4162 unsigned NumRegs = getNumRegisters(VT);
4163 for (unsigned i = 0; i != NumRegs; ++i) {
4164 RetVals.push_back(RegisterVT);
Nicolas Geoffray46253dd2008-04-13 13:40:22 +00004165
4166 if (NumRegs > 1 && i == 0)
4167 Flags.setDivided();
Duncan Sandse111ce82008-02-11 20:58:28 +00004168 // if it isn't first piece, alignment must be 1
Nicolas Geoffray46253dd2008-04-13 13:40:22 +00004169 else if (i > 0)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004170 Flags.setOrigAlign(1);
4171 Ops.push_back(DAG.getArgFlags(Flags));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004172 }
4173 }
4174
4175 RetVals.push_back(MVT::Other);
4176
4177 // Create the node.
4178 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
Chris Lattner5cb5add2008-02-13 07:39:09 +00004179 DAG.getVTList(&RetVals[0], RetVals.size()),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004180 &Ops[0], Ops.size()).Val;
Chris Lattner5cb5add2008-02-13 07:39:09 +00004181
4182 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
4183 // allows exposing the loads that may be part of the argument access to the
4184 // first DAGCombiner pass.
4185 SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4186
4187 // The number of results should match up, except that the lowered one may have
4188 // an extra flag result.
4189 assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4190 (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4191 TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4192 && "Lowering produced unexpected number of results!");
4193 Result = TmpRes.Val;
4194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004195 unsigned NumArgRegs = Result->getNumValues() - 1;
4196 DAG.setRoot(SDOperand(Result, NumArgRegs));
4197
4198 // Set up the return result vector.
4199 Ops.clear();
4200 unsigned i = 0;
4201 unsigned Idx = 1;
4202 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4203 ++I, ++Idx) {
4204 MVT::ValueType VT = getValueType(I->getType());
Duncan Sandse111ce82008-02-11 20:58:28 +00004205 MVT::ValueType PartVT = getRegisterType(VT);
4206
4207 unsigned NumParts = getNumRegisters(VT);
4208 SmallVector<SDOperand, 4> Parts(NumParts);
4209 for (unsigned j = 0; j != NumParts; ++j)
4210 Parts[j] = SDOperand(Result, i++);
4211
4212 ISD::NodeType AssertOp = ISD::DELETED_NODE;
4213 if (F.paramHasAttr(Idx, ParamAttr::SExt))
4214 AssertOp = ISD::AssertSext;
4215 else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4216 AssertOp = ISD::AssertZext;
4217
4218 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
Chris Lattnera7355b62008-03-09 09:38:46 +00004219 AssertOp));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004220 }
4221 assert(i == NumArgRegs && "Argument register count mismatch!");
4222 return Ops;
4223}
4224
4225
4226/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4227/// implementation, which just inserts an ISD::CALL node, which is later custom
4228/// lowered by the target to something concrete. FIXME: When all targets are
4229/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4230std::pair<SDOperand, SDOperand>
Duncan Sandsead972e2008-02-14 17:28:50 +00004231TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4232 bool RetSExt, bool RetZExt, bool isVarArg,
4233 unsigned CallingConv, bool isTailCall,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004234 SDOperand Callee,
4235 ArgListTy &Args, SelectionDAG &DAG) {
4236 SmallVector<SDOperand, 32> Ops;
4237 Ops.push_back(Chain); // Op#0 - Chain
4238 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4239 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
4240 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
4241 Ops.push_back(Callee);
4242
4243 // Handle all of the outgoing arguments.
4244 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4245 MVT::ValueType VT = getValueType(Args[i].Ty);
4246 SDOperand Op = Args[i].Node;
Duncan Sandsc93fae32008-03-21 09:14:45 +00004247 ISD::ArgFlagsTy Flags;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004248 unsigned OriginalAlignment =
4249 getTargetData()->getABITypeAlignment(Args[i].Ty);
Duncan Sandsc93fae32008-03-21 09:14:45 +00004250
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004251 if (Args[i].isZExt)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004252 Flags.setZExt();
4253 if (Args[i].isSExt)
4254 Flags.setSExt();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004255 if (Args[i].isInReg)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004256 Flags.setInReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004257 if (Args[i].isSRet)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004258 Flags.setSRet();
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004259 if (Args[i].isByVal) {
Duncan Sandsc93fae32008-03-21 09:14:45 +00004260 Flags.setByVal();
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004261 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
Duncan Sands8b98c4d2008-01-13 21:19:59 +00004262 const Type *ElementTy = Ty->getElementType();
Duncan Sandsc93fae32008-03-21 09:14:45 +00004263 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
Duncan Sands8b98c4d2008-01-13 21:19:59 +00004264 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
Dale Johannesen9b398782008-02-22 17:49:45 +00004265 // For ByVal, alignment should come from FE. BE will guess if this
4266 // info is not there but there are cases it cannot get right.
4267 if (Args[i].Alignment)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004268 FrameAlign = Args[i].Alignment;
4269 Flags.setByValAlign(FrameAlign);
4270 Flags.setByValSize(FrameSize);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004271 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004272 if (Args[i].isNest)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004273 Flags.setNest();
4274 Flags.setOrigAlign(OriginalAlignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004275
Duncan Sandse111ce82008-02-11 20:58:28 +00004276 MVT::ValueType PartVT = getRegisterType(VT);
4277 unsigned NumParts = getNumRegisters(VT);
4278 SmallVector<SDOperand, 4> Parts(NumParts);
4279 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4280
4281 if (Args[i].isSExt)
4282 ExtendKind = ISD::SIGN_EXTEND;
4283 else if (Args[i].isZExt)
4284 ExtendKind = ISD::ZERO_EXTEND;
4285
4286 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4287
4288 for (unsigned i = 0; i != NumParts; ++i) {
4289 // if it isn't first piece, alignment must be 1
Duncan Sandsc93fae32008-03-21 09:14:45 +00004290 ISD::ArgFlagsTy MyFlags = Flags;
Nicolas Geoffray46253dd2008-04-13 13:40:22 +00004291 if (NumParts > 1 && i == 0)
4292 MyFlags.setDivided();
4293 else if (i != 0)
Duncan Sandsc93fae32008-03-21 09:14:45 +00004294 MyFlags.setOrigAlign(1);
Duncan Sandse111ce82008-02-11 20:58:28 +00004295
4296 Ops.push_back(Parts[i]);
Duncan Sandsc93fae32008-03-21 09:14:45 +00004297 Ops.push_back(DAG.getArgFlags(MyFlags));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004298 }
4299 }
4300
Dan Gohman3fdea2e2008-03-11 21:11:25 +00004301 // Figure out the result value types. We start by making a list of
4302 // the high-level LLVM return types.
4303 SmallVector<const Type *, 4> LLVMRetTys;
4304 if (const StructType *ST = dyn_cast<StructType>(RetTy))
4305 // A struct return type in the LLVM IR means we have multiple return values.
4306 LLVMRetTys.insert(LLVMRetTys.end(), ST->element_begin(), ST->element_end());
4307 else
4308 LLVMRetTys.push_back(RetTy);
4309
4310 // Then we translate that to a list of lowered codegen result types.
4311 SmallVector<MVT::ValueType, 4> LoweredRetTys;
4312 SmallVector<MVT::ValueType, 4> RetTys;
4313 for (unsigned I = 0, E = LLVMRetTys.size(); I != E; ++I) {
4314 MVT::ValueType VT = getValueType(LLVMRetTys[I]);
4315 RetTys.push_back(VT);
4316
4317 MVT::ValueType RegisterVT = getRegisterType(VT);
4318 unsigned NumRegs = getNumRegisters(VT);
4319 for (unsigned i = 0; i != NumRegs; ++i)
4320 LoweredRetTys.push_back(RegisterVT);
4321 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004322
Dan Gohman3fdea2e2008-03-11 21:11:25 +00004323 LoweredRetTys.push_back(MVT::Other); // Always has a chain.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004324
4325 // Create the CALL node.
4326 SDOperand Res = DAG.getNode(ISD::CALL,
Dan Gohman3fdea2e2008-03-11 21:11:25 +00004327 DAG.getVTList(&LoweredRetTys[0],
4328 LoweredRetTys.size()),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004329 &Ops[0], Ops.size());
Dan Gohman3fdea2e2008-03-11 21:11:25 +00004330 Chain = Res.getValue(LoweredRetTys.size() - 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004331
4332 // Gather up the call result into a single value.
4333 if (RetTy != Type::VoidTy) {
Duncan Sandsead972e2008-02-14 17:28:50 +00004334 ISD::NodeType AssertOp = ISD::DELETED_NODE;
4335
4336 if (RetSExt)
4337 AssertOp = ISD::AssertSext;
4338 else if (RetZExt)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004339 AssertOp = ISD::AssertZext;
Duncan Sandsead972e2008-02-14 17:28:50 +00004340
Dan Gohman3fdea2e2008-03-11 21:11:25 +00004341 SmallVector<SDOperand, 4> ReturnValues;
4342 unsigned RegNo = 0;
4343 for (unsigned I = 0, E = LLVMRetTys.size(); I != E; ++I) {
4344 MVT::ValueType VT = getValueType(LLVMRetTys[I]);
4345 MVT::ValueType RegisterVT = getRegisterType(VT);
4346 unsigned NumRegs = getNumRegisters(VT);
4347 unsigned RegNoEnd = NumRegs + RegNo;
4348 SmallVector<SDOperand, 4> Results;
4349 for (; RegNo != RegNoEnd; ++RegNo)
4350 Results.push_back(Res.getValue(RegNo));
4351 SDOperand ReturnValue =
4352 getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4353 AssertOp);
4354 ReturnValues.push_back(ReturnValue);
4355 }
4356 Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4357 DAG.getNode(ISD::MERGE_VALUES,
4358 DAG.getVTList(&RetTys[0], RetTys.size()),
4359 &ReturnValues[0], ReturnValues.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004360 }
4361
4362 return std::make_pair(Res, Chain);
4363}
4364
4365SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4366 assert(0 && "LowerOperation not implemented for this target!");
4367 abort();
4368 return SDOperand();
4369}
4370
4371SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4372 SelectionDAG &DAG) {
4373 assert(0 && "CustomPromoteOperation not implemented for this target!");
4374 abort();
4375 return SDOperand();
4376}
4377
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004378//===----------------------------------------------------------------------===//
4379// SelectionDAGISel code
4380//===----------------------------------------------------------------------===//
4381
4382unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
Chris Lattner1b989192007-12-31 04:13:23 +00004383 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004384}
4385
4386void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4387 AU.addRequired<AliasAnalysis>();
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004388 AU.addRequired<CollectorModuleMetadata>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004389 AU.setPreservesAll();
4390}
4391
4392
4393
4394bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004395 // Get alias analysis for load/store combining.
4396 AA = &getAnalysis<AliasAnalysis>();
4397
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004398 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004399 if (MF.getFunction()->hasCollector())
4400 GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4401 else
4402 GCI = 0;
Chris Lattner1b989192007-12-31 04:13:23 +00004403 RegInfo = &MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004404 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4405
4406 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4407
Dale Johannesen85535762008-04-02 00:25:04 +00004408 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4409 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4410 // Mark landing pad.
4411 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004412
4413 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4414 SelectBasicBlock(I, MF, FuncInfo);
4415
4416 // Add function live-ins to entry block live-in set.
4417 BasicBlock *EntryBB = &Fn.getEntryBlock();
4418 BB = FuncInfo.MBBMap[EntryBB];
Chris Lattner1b989192007-12-31 04:13:23 +00004419 if (!RegInfo->livein_empty())
4420 for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4421 E = RegInfo->livein_end(); I != E; ++I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004422 BB->addLiveIn(I->first);
4423
4424#ifndef NDEBUG
4425 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4426 "Not all catch info was assigned to a landing pad!");
4427#endif
4428
4429 return true;
4430}
4431
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004432void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4433 unsigned Reg) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004434 SDOperand Op = getValue(V);
4435 assert((Op.getOpcode() != ISD::CopyFromReg ||
4436 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4437 "Copy from a reg to the same reg!");
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004438 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004439
4440 MVT::ValueType SrcVT = Op.getValueType();
4441 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4442 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4443 SmallVector<SDOperand, 8> Regs(NumRegs);
4444 SmallVector<SDOperand, 8> Chains(NumRegs);
4445
4446 // Copy the value by legal parts into sequential virtual registers.
4447 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4448 for (unsigned i = 0; i != NumRegs; ++i)
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004449 Chains[i] = DAG.getCopyToReg(DAG.getEntryNode(), Reg + i, Regs[i]);
4450 SDOperand Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4451 PendingExports.push_back(Ch);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004452}
4453
4454void SelectionDAGISel::
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004455LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004456 // If this is the entry block, emit arguments.
4457 Function &F = *LLVMBB->getParent();
4458 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4459 SDOperand OldRoot = SDL.DAG.getRoot();
4460 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4461
4462 unsigned a = 0;
4463 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4464 AI != E; ++AI, ++a)
4465 if (!AI->use_empty()) {
4466 SDL.setValue(AI, Args[a]);
4467
4468 // If this argument is live outside of the entry block, insert a copy from
4469 // whereever we got it to the vreg that other BB's will reference it as.
4470 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4471 if (VMI != FuncInfo.ValueMap.end()) {
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004472 SDL.CopyValueToVirtualRegister(AI, VMI->second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004473 }
4474 }
4475
4476 // Finally, if the target has anything special to do, allow it to do so.
4477 // FIXME: this should insert code into the DAG!
4478 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4479}
4480
4481static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4482 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004483 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4484 if (isSelector(I)) {
4485 // Apply the catch info to DestBB.
4486 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4487#ifndef NDEBUG
Duncan Sands9b7e1482007-11-15 09:54:37 +00004488 if (!FLI.MBBMap[SrcBB]->isLandingPad())
4489 FLI.CatchInfoFound.insert(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004490#endif
4491 }
4492}
4493
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004494/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004495/// DAG and fixes their tailcall attribute operand.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004496static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4497 TargetLowering& TLI) {
4498 SDNode * Ret = NULL;
4499 SDOperand Terminator = DAG.getRoot();
4500
4501 // Find RET node.
4502 if (Terminator.getOpcode() == ISD::RET) {
4503 Ret = Terminator.Val;
4504 }
4505
4506 // Fix tail call attribute of CALL nodes.
4507 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4508 BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4509 if (BI->getOpcode() == ISD::CALL) {
4510 SDOperand OpRet(Ret, 0);
4511 SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4512 bool isMarkedTailCall =
4513 cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4514 // If CALL node has tail call attribute set to true and the call is not
4515 // eligible (no RET or the target rejects) the attribute is fixed to
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004516 // false. The TargetLowering::IsEligibleForTailCallOptimization function
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004517 // must correctly identify tail call optimizable calls.
4518 if (isMarkedTailCall &&
4519 (Ret==NULL ||
4520 !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4521 SmallVector<SDOperand, 32> Ops;
4522 unsigned idx=0;
4523 for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4524 E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4525 if (idx!=3)
4526 Ops.push_back(*I);
4527 else
4528 Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4529 }
4530 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4531 }
4532 }
4533 }
4534}
4535
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004536void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4537 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4538 FunctionLoweringInfo &FuncInfo) {
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004539 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004541 // Lower any arguments needed in this block if this is the entry block.
4542 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004543 LowerArguments(LLVMBB, SDL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004544
4545 BB = FuncInfo.MBBMap[LLVMBB];
4546 SDL.setCurrentBasicBlock(BB);
4547
4548 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4549
Dale Johannesen85535762008-04-02 00:25:04 +00004550 if (MMI && BB->isLandingPad()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004551 // Add a label to mark the beginning of the landing pad. Deletion of the
4552 // landing pad can thus be detected via the MachineModuleInfo.
4553 unsigned LabelID = MMI->addLandingPad(BB);
4554 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
Evan Cheng13d1c292008-01-31 09:59:15 +00004555 DAG.getConstant(LabelID, MVT::i32),
4556 DAG.getConstant(1, MVT::i32)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557
4558 // Mark exception register as live in.
4559 unsigned Reg = TLI.getExceptionAddressRegister();
4560 if (Reg) BB->addLiveIn(Reg);
4561
4562 // Mark exception selector register as live in.
4563 Reg = TLI.getExceptionSelectorRegister();
4564 if (Reg) BB->addLiveIn(Reg);
4565
4566 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4567 // function and list of typeids logically belong to the invoke (or, if you
4568 // like, the basic block containing the invoke), and need to be associated
4569 // with it in the dwarf exception handling tables. Currently however the
4570 // information is provided by an intrinsic (eh.selector) that can be moved
4571 // to unexpected places by the optimizers: if the unwind edge is critical,
4572 // then breaking it can result in the intrinsics being in the successor of
4573 // the landing pad, not the landing pad itself. This results in exceptions
4574 // not being caught because no typeids are associated with the invoke.
4575 // This may not be the only way things can go wrong, but it is the only way
4576 // we try to work around for the moment.
4577 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4578
4579 if (Br && Br->isUnconditional()) { // Critical edge?
4580 BasicBlock::iterator I, E;
4581 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4582 if (isSelector(I))
4583 break;
4584
4585 if (I == E)
4586 // No catch info found - try to extract some from the successor.
4587 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4588 }
4589 }
4590
4591 // Lower all of the non-terminator instructions.
4592 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4593 I != E; ++I)
4594 SDL.visit(*I);
4595
4596 // Ensure that all instructions which are used outside of their defining
4597 // blocks are available as virtual registers. Invoke is handled elsewhere.
4598 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4599 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4600 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4601 if (VMI != FuncInfo.ValueMap.end())
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004602 SDL.CopyValueToVirtualRegister(I, VMI->second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004603 }
4604
4605 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4606 // ensure constants are generated when needed. Remember the virtual registers
4607 // that need to be added to the Machine PHI nodes as input. We cannot just
4608 // directly add them, because expansion might result in multiple MBB's for one
4609 // BB. As such, the start of the BB might correspond to a different MBB than
4610 // the end.
4611 //
4612 TerminatorInst *TI = LLVMBB->getTerminator();
4613
4614 // Emit constants only once even if used by multiple PHI nodes.
4615 std::map<Constant*, unsigned> ConstantsOut;
4616
4617 // Vector bool would be better, but vector<bool> is really slow.
4618 std::vector<unsigned char> SuccsHandled;
4619 if (TI->getNumSuccessors())
4620 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4621
4622 // Check successor nodes' PHI nodes that expect a constant to be available
4623 // from this block.
4624 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4625 BasicBlock *SuccBB = TI->getSuccessor(succ);
4626 if (!isa<PHINode>(SuccBB->begin())) continue;
4627 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4628
4629 // If this terminator has multiple identical successors (common for
4630 // switches), only handle each succ once.
4631 unsigned SuccMBBNo = SuccMBB->getNumber();
4632 if (SuccsHandled[SuccMBBNo]) continue;
4633 SuccsHandled[SuccMBBNo] = true;
4634
4635 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4636 PHINode *PN;
4637
4638 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4639 // nodes and Machine PHI nodes, but the incoming operands have not been
4640 // emitted yet.
4641 for (BasicBlock::iterator I = SuccBB->begin();
4642 (PN = dyn_cast<PHINode>(I)); ++I) {
4643 // Ignore dead phi's.
4644 if (PN->use_empty()) continue;
4645
4646 unsigned Reg;
4647 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4648
4649 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4650 unsigned &RegOut = ConstantsOut[C];
4651 if (RegOut == 0) {
4652 RegOut = FuncInfo.CreateRegForValue(C);
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004653 SDL.CopyValueToVirtualRegister(C, RegOut);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004654 }
4655 Reg = RegOut;
4656 } else {
4657 Reg = FuncInfo.ValueMap[PHIOp];
4658 if (Reg == 0) {
4659 assert(isa<AllocaInst>(PHIOp) &&
4660 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4661 "Didn't codegen value into a register!??");
4662 Reg = FuncInfo.CreateRegForValue(PHIOp);
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004663 SDL.CopyValueToVirtualRegister(PHIOp, Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004664 }
4665 }
4666
4667 // Remember that this register needs to added to the machine PHI node as
4668 // the input for this MBB.
4669 MVT::ValueType VT = TLI.getValueType(PN->getType());
4670 unsigned NumRegisters = TLI.getNumRegisters(VT);
4671 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4672 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4673 }
4674 }
4675 ConstantsOut.clear();
4676
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004677 // Lower the terminator after the copies are emitted.
4678 SDL.visit(*LLVMBB->getTerminator());
4679
4680 // Copy over any CaseBlock records that may now exist due to SwitchInst
4681 // lowering, as well as any jump table information.
4682 SwitchCases.clear();
4683 SwitchCases = SDL.SwitchCases;
4684 JTCases.clear();
4685 JTCases = SDL.JTCases;
4686 BitTestCases.clear();
4687 BitTestCases = SDL.BitTestCases;
4688
4689 // Make sure the root of the DAG is up-to-date.
Dan Gohman9fe5bd62008-03-27 19:56:19 +00004690 DAG.setRoot(SDL.getControlRoot());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004691
4692 // Check whether calls in this block are real tail calls. Fix up CALL nodes
4693 // with correct tailcall attribute so that the target can rely on the tailcall
4694 // attribute indicating whether the call is really eligible for tail call
4695 // optimization.
4696 CheckDAGForTailCallsAndFixThem(DAG, TLI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004697}
4698
4699void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004700 DOUT << "Lowered selection DAG:\n";
4701 DEBUG(DAG.dump());
4702
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004703 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004704 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004705
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004706 DOUT << "Optimized lowered selection DAG:\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004707 DEBUG(DAG.dump());
4708
4709 // Second step, hack on the DAG until it only uses operations and types that
4710 // the target supports.
Chris Lattner8a258202007-10-15 06:10:22 +00004711#if 0 // Enable this some day.
4712 DAG.LegalizeTypes();
4713 // Someday even later, enable a dag combine pass here.
4714#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004715 DAG.Legalize();
4716
4717 DOUT << "Legalized selection DAG:\n";
4718 DEBUG(DAG.dump());
4719
4720 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004721 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004722
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004723 DOUT << "Optimized legalized selection DAG:\n";
4724 DEBUG(DAG.dump());
4725
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726 if (ViewISelDAGs) DAG.viewGraph();
4727
4728 // Third, instruction select all of the operations to machine code, adding the
4729 // code to the MachineBasicBlock.
4730 InstructionSelectBasicBlock(DAG);
4731
4732 DOUT << "Selected machine code:\n";
4733 DEBUG(BB->dump());
4734}
4735
4736void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4737 FunctionLoweringInfo &FuncInfo) {
4738 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4739 {
4740 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4741 CurDAG = &DAG;
4742
4743 // First step, lower LLVM code to some DAG. This DAG may use operations and
4744 // types that are not supported by the target.
4745 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4746
4747 // Second step, emit the lowered DAG as machine code.
4748 CodeGenAndEmitDAG(DAG);
4749 }
4750
4751 DOUT << "Total amount of phi nodes to update: "
4752 << PHINodesToUpdate.size() << "\n";
4753 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4754 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4755 << ", " << PHINodesToUpdate[i].second << ")\n";);
4756
4757 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4758 // PHI nodes in successors.
4759 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4760 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4761 MachineInstr *PHI = PHINodesToUpdate[i].first;
4762 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4763 "This is not a machine PHI node that we are updating!");
Chris Lattnere44906f2007-12-30 00:57:42 +00004764 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4765 false));
4766 PHI->addOperand(MachineOperand::CreateMBB(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004767 }
4768 return;
4769 }
4770
4771 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4772 // Lower header first, if it wasn't already lowered
4773 if (!BitTestCases[i].Emitted) {
4774 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4775 CurDAG = &HSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004776 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004777 // Set the current basic block to the mbb we wish to insert the code into
4778 BB = BitTestCases[i].Parent;
4779 HSDL.setCurrentBasicBlock(BB);
4780 // Emit the code
4781 HSDL.visitBitTestHeader(BitTestCases[i]);
4782 HSDAG.setRoot(HSDL.getRoot());
4783 CodeGenAndEmitDAG(HSDAG);
4784 }
4785
4786 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4787 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4788 CurDAG = &BSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004789 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004790 // Set the current basic block to the mbb we wish to insert the code into
4791 BB = BitTestCases[i].Cases[j].ThisBB;
4792 BSDL.setCurrentBasicBlock(BB);
4793 // Emit the code
4794 if (j+1 != ej)
4795 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4796 BitTestCases[i].Reg,
4797 BitTestCases[i].Cases[j]);
4798 else
4799 BSDL.visitBitTestCase(BitTestCases[i].Default,
4800 BitTestCases[i].Reg,
4801 BitTestCases[i].Cases[j]);
4802
4803
4804 BSDAG.setRoot(BSDL.getRoot());
4805 CodeGenAndEmitDAG(BSDAG);
4806 }
4807
4808 // Update PHI Nodes
4809 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4810 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4811 MachineBasicBlock *PHIBB = PHI->getParent();
4812 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4813 "This is not a machine PHI node that we are updating!");
4814 // This is "default" BB. We have two jumps to it. From "header" BB and
4815 // from last "case" BB.
4816 if (PHIBB == BitTestCases[i].Default) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004817 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4818 false));
4819 PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4820 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4821 false));
4822 PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4823 back().ThisBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004824 }
4825 // One of "cases" BB.
4826 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4827 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4828 if (cBB->succ_end() !=
4829 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004830 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4831 false));
4832 PHI->addOperand(MachineOperand::CreateMBB(cBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004833 }
4834 }
4835 }
4836 }
4837
4838 // If the JumpTable record is filled in, then we need to emit a jump table.
4839 // Updating the PHI nodes is tricky in this case, since we need to determine
4840 // whether the PHI is a successor of the range check MBB or the jump table MBB
4841 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4842 // Lower header first, if it wasn't already lowered
4843 if (!JTCases[i].first.Emitted) {
4844 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4845 CurDAG = &HSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004846 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004847 // Set the current basic block to the mbb we wish to insert the code into
4848 BB = JTCases[i].first.HeaderBB;
4849 HSDL.setCurrentBasicBlock(BB);
4850 // Emit the code
4851 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4852 HSDAG.setRoot(HSDL.getRoot());
4853 CodeGenAndEmitDAG(HSDAG);
4854 }
4855
4856 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4857 CurDAG = &JSDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004858 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004859 // Set the current basic block to the mbb we wish to insert the code into
4860 BB = JTCases[i].second.MBB;
4861 JSDL.setCurrentBasicBlock(BB);
4862 // Emit the code
4863 JSDL.visitJumpTable(JTCases[i].second);
4864 JSDAG.setRoot(JSDL.getRoot());
4865 CodeGenAndEmitDAG(JSDAG);
4866
4867 // Update PHI Nodes
4868 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4869 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4870 MachineBasicBlock *PHIBB = PHI->getParent();
4871 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4872 "This is not a machine PHI node that we are updating!");
4873 // "default" BB. We can go there only from header BB.
4874 if (PHIBB == JTCases[i].second.Default) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004875 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4876 false));
4877 PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004878 }
4879 // JT BB. Just iterate over successors here
4880 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004881 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4882 false));
4883 PHI->addOperand(MachineOperand::CreateMBB(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004884 }
4885 }
4886 }
4887
4888 // If the switch block involved a branch to one of the actual successors, we
4889 // need to update PHI nodes in that block.
4890 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4891 MachineInstr *PHI = PHINodesToUpdate[i].first;
4892 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4893 "This is not a machine PHI node that we are updating!");
4894 if (BB->isSuccessor(PHI->getParent())) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004895 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4896 false));
4897 PHI->addOperand(MachineOperand::CreateMBB(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004898 }
4899 }
4900
4901 // If we generated any switch lowering information, build and codegen any
4902 // additional DAGs necessary.
4903 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4904 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4905 CurDAG = &SDAG;
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00004906 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004907
4908 // Set the current basic block to the mbb we wish to insert the code into
4909 BB = SwitchCases[i].ThisBB;
4910 SDL.setCurrentBasicBlock(BB);
4911
4912 // Emit the code
4913 SDL.visitSwitchCase(SwitchCases[i]);
4914 SDAG.setRoot(SDL.getRoot());
4915 CodeGenAndEmitDAG(SDAG);
4916
4917 // Handle any PHI nodes in successors of this chunk, as if we were coming
4918 // from the original BB before switch expansion. Note that PHI nodes can
4919 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4920 // handle them the right number of times.
4921 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4922 for (MachineBasicBlock::iterator Phi = BB->begin();
4923 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4924 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4925 for (unsigned pn = 0; ; ++pn) {
4926 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4927 if (PHINodesToUpdate[pn].first == Phi) {
Chris Lattnere44906f2007-12-30 00:57:42 +00004928 Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
4929 second, false));
4930 Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931 break;
4932 }
4933 }
4934 }
4935
4936 // Don't process RHS if same block as LHS.
4937 if (BB == SwitchCases[i].FalseBB)
4938 SwitchCases[i].FalseBB = 0;
4939
4940 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4941 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4942 SwitchCases[i].FalseBB = 0;
4943 }
4944 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4945 }
4946}
4947
4948
4949//===----------------------------------------------------------------------===//
4950/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4951/// target node in the graph.
4952void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4953 if (ViewSchedDAGs) DAG.viewGraph();
4954
4955 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4956
4957 if (!Ctor) {
4958 Ctor = ISHeuristic;
4959 RegisterScheduler::setDefault(Ctor);
4960 }
4961
4962 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4963 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004964
4965 if (ViewSUnitDAGs) SL->viewGraph();
4966
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004967 delete SL;
4968}
4969
4970
4971HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4972 return new HazardRecognizer();
4973}
4974
4975//===----------------------------------------------------------------------===//
4976// Helper functions used by the generated instruction selector.
4977//===----------------------------------------------------------------------===//
4978// Calls to these methods are generated by tblgen.
4979
4980/// CheckAndMask - The isel is trying to match something like (and X, 255). If
4981/// the dag combiner simplified the 255, we still want to match. RHS is the
4982/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4983/// specified in the .td file (e.g. 255).
4984bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004985 int64_t DesiredMaskS) const {
Dan Gohman07961cd2008-02-25 21:11:39 +00004986 const APInt &ActualMask = RHS->getAPIntValue();
4987 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004988
4989 // If the actual mask exactly matches, success!
4990 if (ActualMask == DesiredMask)
4991 return true;
4992
4993 // If the actual AND mask is allowing unallowed bits, this doesn't match.
Dan Gohman07961cd2008-02-25 21:11:39 +00004994 if (ActualMask.intersects(~DesiredMask))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004995 return false;
4996
4997 // Otherwise, the DAG Combiner may have proven that the value coming in is
4998 // either already zero or is not demanded. Check for known zero input bits.
Dan Gohman07961cd2008-02-25 21:11:39 +00004999 APInt NeededMask = DesiredMask & ~ActualMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005000 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5001 return true;
5002
5003 // TODO: check to see if missing bits are just not demanded.
5004
5005 // Otherwise, this pattern doesn't match.
5006 return false;
5007}
5008
5009/// CheckOrMask - The isel is trying to match something like (or X, 255). If
5010/// the dag combiner simplified the 255, we still want to match. RHS is the
5011/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5012/// specified in the .td file (e.g. 255).
5013bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohman07961cd2008-02-25 21:11:39 +00005014 int64_t DesiredMaskS) const {
5015 const APInt &ActualMask = RHS->getAPIntValue();
5016 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005017
5018 // If the actual mask exactly matches, success!
5019 if (ActualMask == DesiredMask)
5020 return true;
5021
5022 // If the actual AND mask is allowing unallowed bits, this doesn't match.
Dan Gohman07961cd2008-02-25 21:11:39 +00005023 if (ActualMask.intersects(~DesiredMask))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005024 return false;
5025
5026 // Otherwise, the DAG Combiner may have proven that the value coming in is
5027 // either already zero or is not demanded. Check for known zero input bits.
Dan Gohman07961cd2008-02-25 21:11:39 +00005028 APInt NeededMask = DesiredMask & ~ActualMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005029
Dan Gohman07961cd2008-02-25 21:11:39 +00005030 APInt KnownZero, KnownOne;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005031 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5032
5033 // If all the missing bits in the or are already known to be set, match!
5034 if ((NeededMask & KnownOne) == NeededMask)
5035 return true;
5036
5037 // TODO: check to see if missing bits are just not demanded.
5038
5039 // Otherwise, this pattern doesn't match.
5040 return false;
5041}
5042
5043
5044/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5045/// by tblgen. Others should not call it.
5046void SelectionDAGISel::
5047SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5048 std::vector<SDOperand> InOps;
5049 std::swap(InOps, Ops);
5050
5051 Ops.push_back(InOps[0]); // input chain.
5052 Ops.push_back(InOps[1]); // input asm string.
5053
5054 unsigned i = 2, e = InOps.size();
5055 if (InOps[e-1].getValueType() == MVT::Flag)
5056 --e; // Don't process a flag operand if it is here.
5057
5058 while (i != e) {
5059 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5060 if ((Flags & 7) != 4 /*MEM*/) {
5061 // Just skip over this operand, copying the operands verbatim.
5062 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5063 i += (Flags >> 3) + 1;
5064 } else {
5065 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5066 // Otherwise, this is a memory operand. Ask the target to select it.
5067 std::vector<SDOperand> SelOps;
5068 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5069 cerr << "Could not match memory address. Inline asm failure!\n";
5070 exit(1);
5071 }
5072
5073 // Add this to the output node.
5074 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5075 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5076 IntPtrTy));
5077 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5078 i += 2;
5079 }
5080 }
5081
5082 // Add the flag input back if present.
5083 if (e != InOps.size())
5084 Ops.push_back(InOps.back());
5085}
5086
5087char SelectionDAGISel::ID = 0;