blob: e1e249a88e86035e66135a0461ee6cb60e61ab2c [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000012#include "llvm/Function.h"
13#include "llvm/CodeGen/MachineFrameInfo.h"
14#include "llvm/CodeGen/MachineInstrBuilder.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000016#include "llvm/Support/Compiler.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000017#include "llvm/Support/CommandLine.h"
18#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000019#include "llvm/Support/ErrorHandling.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000020#include "llvm/Support/raw_ostream.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000021#include "llvm/Target/TargetInstrInfo.h"
David Greene2d4e6d32009-07-28 16:49:24 +000022#include "llvm/Target/TargetLowering.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000023#include "llvm/ADT/DepthFirstIterator.h"
24#include "llvm/ADT/Statistic.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000025#include <algorithm>
26using namespace llvm;
27
28STATISTIC(NumDSE , "Number of dead stores elided");
29STATISTIC(NumDSS , "Number of dead spill slots removed");
30STATISTIC(NumCommutes, "Number of instructions commuted");
31STATISTIC(NumDRM , "Number of re-materializable defs elided");
32STATISTIC(NumStores , "Number of stores added");
33STATISTIC(NumPSpills , "Number of physical register spills");
34STATISTIC(NumOmitted , "Number of reloads omited");
35STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
36STATISTIC(NumCopified, "Number of available reloads turned into copies");
37STATISTIC(NumReMats , "Number of re-materialization");
38STATISTIC(NumLoads , "Number of loads added");
39STATISTIC(NumReused , "Number of values reused");
40STATISTIC(NumDCE , "Number of copies elided");
41STATISTIC(NumSUnfold , "Number of stores unfolded");
42STATISTIC(NumModRefUnfold, "Number of modref unfolded");
43
44namespace {
Lang Hamesac276402009-06-04 18:45:36 +000045 enum RewriterName { local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000046}
47
48static cl::opt<RewriterName>
49RewriterOpt("rewriter",
50 cl::desc("Rewriter to use: (default: local)"),
51 cl::Prefix,
Lang Hamesac276402009-06-04 18:45:36 +000052 cl::values(clEnumVal(local, "local rewriter"),
Lang Hamesf41538d2009-06-02 16:53:25 +000053 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000054 clEnumValEnd),
55 cl::init(local));
56
Dan Gohman7db949d2009-08-07 01:32:21 +000057static cl::opt<bool>
David Greene2d4e6d32009-07-28 16:49:24 +000058ScheduleSpills("schedule-spills",
59 cl::desc("Schedule spill code"),
60 cl::init(false));
61
Lang Hames87e3bca2009-05-06 02:36:21 +000062VirtRegRewriter::~VirtRegRewriter() {}
63
Dan Gohman7db949d2009-08-07 01:32:21 +000064namespace {
Lang Hames87e3bca2009-05-06 02:36:21 +000065
Lang Hamesf41538d2009-06-02 16:53:25 +000066/// This class is intended for use with the new spilling framework only. It
67/// rewrites vreg def/uses to use the assigned preg, but does not insert any
68/// spill code.
69struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
70
71 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
72 LiveIntervals* LIs) {
Chris Lattner6456d382009-08-23 03:20:44 +000073 DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n");
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000074 DEBUG(errs() << "********** Function: "
75 << MF.getFunction()->getName() << '\n');
Chris Lattner6456d382009-08-23 03:20:44 +000076 DEBUG(errs() << "**** Machine Instrs"
77 << "(NOTE! Does not include spills and reloads!) ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +000078 DEBUG(MF.dump());
79
Lang Hamesf41538d2009-06-02 16:53:25 +000080 MachineRegisterInfo *mri = &MF.getRegInfo();
81
82 bool changed = false;
83
84 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
85 liItr != liEnd; ++liItr) {
86
87 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
88 if (VRM.hasPhys(liItr->first)) {
89 unsigned preg = VRM.getPhys(liItr->first);
90 mri->replaceRegWith(liItr->first, preg);
91 mri->setPhysRegUsed(preg);
92 changed = true;
93 }
94 }
95 else {
96 if (!liItr->second->empty()) {
97 mri->setPhysRegUsed(liItr->first);
98 }
99 }
100 }
David Greene2d4e6d32009-07-28 16:49:24 +0000101
102
Chris Lattner6456d382009-08-23 03:20:44 +0000103 DEBUG(errs() << "**** Post Machine Instrs ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +0000104 DEBUG(MF.dump());
Lang Hamesf41538d2009-06-02 16:53:25 +0000105
106 return changed;
107 }
108
109};
110
Dan Gohman7db949d2009-08-07 01:32:21 +0000111}
112
Lang Hames87e3bca2009-05-06 02:36:21 +0000113// ************************************************************************ //
114
Dan Gohman7db949d2009-08-07 01:32:21 +0000115namespace {
116
Lang Hames87e3bca2009-05-06 02:36:21 +0000117/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
118/// from top down, keep track of which spill slots or remat are available in
119/// each register.
120///
121/// Note that not all physregs are created equal here. In particular, some
122/// physregs are reloads that we are allowed to clobber or ignore at any time.
123/// Other physregs are values that the register allocated program is using
124/// that we cannot CHANGE, but we can read if we like. We keep track of this
125/// on a per-stack-slot / remat id basis as the low bit in the value of the
126/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
127/// this bit and addAvailable sets it if.
128class VISIBILITY_HIDDEN AvailableSpills {
129 const TargetRegisterInfo *TRI;
130 const TargetInstrInfo *TII;
131
132 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
133 // or remat'ed virtual register values that are still available, due to
134 // being loaded or stored to, but not invalidated yet.
135 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
136
137 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
138 // indicating which stack slot values are currently held by a physreg. This
139 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
140 // physreg is modified.
141 std::multimap<unsigned, int> PhysRegsAvailable;
142
143 void disallowClobberPhysRegOnly(unsigned PhysReg);
144
145 void ClobberPhysRegOnly(unsigned PhysReg);
146public:
147 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
148 : TRI(tri), TII(tii) {
149 }
150
151 /// clear - Reset the state.
152 void clear() {
153 SpillSlotsOrReMatsAvailable.clear();
154 PhysRegsAvailable.clear();
155 }
156
157 const TargetRegisterInfo *getRegInfo() const { return TRI; }
158
159 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
160 /// available in a physical register, return that PhysReg, otherwise
161 /// return 0.
162 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
163 std::map<int, unsigned>::const_iterator I =
164 SpillSlotsOrReMatsAvailable.find(Slot);
165 if (I != SpillSlotsOrReMatsAvailable.end()) {
166 return I->second >> 1; // Remove the CanClobber bit.
167 }
168 return 0;
169 }
170
171 /// addAvailable - Mark that the specified stack slot / remat is available
172 /// in the specified physreg. If CanClobber is true, the physreg can be
173 /// modified at any time without changing the semantics of the program.
174 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
175 // If this stack slot is thought to be available in some other physreg,
176 // remove its record.
177 ModifyStackSlotOrReMat(SlotOrReMat);
178
179 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
180 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
181 (unsigned)CanClobber;
182
183 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +0000184 DEBUG(errs() << "Remembering RM#"
185 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +0000186 else
Chris Lattner6456d382009-08-23 03:20:44 +0000187 DEBUG(errs() << "Remembering SS#" << SlotOrReMat);
188 DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000189 }
190
191 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
192 /// the value of the specified stackslot register if it desires. The
193 /// specified stack slot must be available in a physreg for this query to
194 /// make sense.
195 bool canClobberPhysRegForSS(int SlotOrReMat) const {
196 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
197 "Value not available!");
198 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
199 }
200
201 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
202 /// physical register where values for some stack slot(s) might be
203 /// available.
204 bool canClobberPhysReg(unsigned PhysReg) const {
205 std::multimap<unsigned, int>::const_iterator I =
206 PhysRegsAvailable.lower_bound(PhysReg);
207 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
208 int SlotOrReMat = I->second;
209 I++;
210 if (!canClobberPhysRegForSS(SlotOrReMat))
211 return false;
212 }
213 return true;
214 }
215
216 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
217 /// stackslot register. The register is still available but is no longer
218 /// allowed to be modifed.
219 void disallowClobberPhysReg(unsigned PhysReg);
220
221 /// ClobberPhysReg - This is called when the specified physreg changes
222 /// value. We use this to invalidate any info about stuff that lives in
223 /// it and any of its aliases.
224 void ClobberPhysReg(unsigned PhysReg);
225
226 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
227 /// slot changes. This removes information about which register the
228 /// previous value for this slot lives in (as the previous value is dead
229 /// now).
230 void ModifyStackSlotOrReMat(int SlotOrReMat);
231
232 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
233 /// into the specified MBB. Add available physical registers as potential
234 /// live-in's. If they are reused in the MBB, they will be added to the
235 /// live-in set to make register scavenger and post-allocation scheduler.
236 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
237 std::vector<MachineOperand*> &KillOps);
238};
239
Dan Gohman7db949d2009-08-07 01:32:21 +0000240}
241
Lang Hames87e3bca2009-05-06 02:36:21 +0000242// ************************************************************************ //
243
David Greene2d4e6d32009-07-28 16:49:24 +0000244// Given a location where a reload of a spilled register or a remat of
245// a constant is to be inserted, attempt to find a safe location to
246// insert the load at an earlier point in the basic-block, to hide
247// latency of the load and to avoid address-generation interlock
248// issues.
249static MachineBasicBlock::iterator
250ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
251 MachineBasicBlock::iterator const Begin,
252 unsigned PhysReg,
253 const TargetRegisterInfo *TRI,
254 bool DoReMat,
255 int SSorRMId,
256 const TargetInstrInfo *TII,
257 const MachineFunction &MF)
258{
259 if (!ScheduleSpills)
260 return InsertLoc;
261
262 // Spill backscheduling is of primary interest to addresses, so
263 // don't do anything if the register isn't in the register class
264 // used for pointers.
265
266 const TargetLowering *TL = MF.getTarget().getTargetLowering();
267
268 if (!TL->isTypeLegal(TL->getPointerTy()))
269 // Believe it or not, this is true on PIC16.
270 return InsertLoc;
271
272 const TargetRegisterClass *ptrRegClass =
273 TL->getRegClassFor(TL->getPointerTy());
274 if (!ptrRegClass->contains(PhysReg))
275 return InsertLoc;
276
277 // Scan upwards through the preceding instructions. If an instruction doesn't
278 // reference the stack slot or the register we're loading, we can
279 // backschedule the reload up past it.
280 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
281 while (NewInsertLoc != Begin) {
282 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
283 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
284 MachineOperand &Op = Prev->getOperand(i);
285 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
286 goto stop;
287 }
288 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
289 Prev->findRegisterDefOperand(PhysReg))
290 goto stop;
291 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
292 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
293 Prev->findRegisterDefOperand(*Alias))
294 goto stop;
295 NewInsertLoc = Prev;
296 }
297stop:;
298
299 // If we made it to the beginning of the block, turn around and move back
300 // down just past any existing reloads. They're likely to be reloads/remats
301 // for instructions earlier than what our current reload/remat is for, so
302 // they should be scheduled earlier.
303 if (NewInsertLoc == Begin) {
304 int FrameIdx;
305 while (InsertLoc != NewInsertLoc &&
306 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
307 TII->isTriviallyReMaterializable(NewInsertLoc)))
308 ++NewInsertLoc;
309 }
310
311 return NewInsertLoc;
312}
Dan Gohman7db949d2009-08-07 01:32:21 +0000313
314namespace {
315
Lang Hames87e3bca2009-05-06 02:36:21 +0000316// ReusedOp - For each reused operand, we keep track of a bit of information,
317// in case we need to rollback upon processing a new operand. See comments
318// below.
319struct ReusedOp {
320 // The MachineInstr operand that reused an available value.
321 unsigned Operand;
322
323 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
324 unsigned StackSlotOrReMat;
325
326 // PhysRegReused - The physical register the value was available in.
327 unsigned PhysRegReused;
328
329 // AssignedPhysReg - The physreg that was assigned for use by the reload.
330 unsigned AssignedPhysReg;
331
332 // VirtReg - The virtual register itself.
333 unsigned VirtReg;
334
335 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
336 unsigned vreg)
337 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
338 AssignedPhysReg(apr), VirtReg(vreg) {}
339};
340
341/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
342/// is reused instead of reloaded.
343class VISIBILITY_HIDDEN ReuseInfo {
344 MachineInstr &MI;
345 std::vector<ReusedOp> Reuses;
346 BitVector PhysRegsClobbered;
347public:
348 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
349 PhysRegsClobbered.resize(tri->getNumRegs());
350 }
351
352 bool hasReuses() const {
353 return !Reuses.empty();
354 }
355
356 /// addReuse - If we choose to reuse a virtual register that is already
357 /// available instead of reloading it, remember that we did so.
358 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
359 unsigned PhysRegReused, unsigned AssignedPhysReg,
360 unsigned VirtReg) {
361 // If the reload is to the assigned register anyway, no undo will be
362 // required.
363 if (PhysRegReused == AssignedPhysReg) return;
364
365 // Otherwise, remember this.
366 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
367 AssignedPhysReg, VirtReg));
368 }
369
370 void markClobbered(unsigned PhysReg) {
371 PhysRegsClobbered.set(PhysReg);
372 }
373
374 bool isClobbered(unsigned PhysReg) const {
375 return PhysRegsClobbered.test(PhysReg);
376 }
377
378 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
379 /// is some other operand that is using the specified register, either pick
380 /// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000381 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
382 MachineFunction &MF, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000383 AvailableSpills &Spills,
384 std::vector<MachineInstr*> &MaybeDeadStores,
385 SmallSet<unsigned, 8> &Rejected,
386 BitVector &RegKills,
387 std::vector<MachineOperand*> &KillOps,
388 VirtRegMap &VRM);
389
390 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
391 /// 'Rejected' set to remember which registers have been considered and
392 /// rejected for the reload. This avoids infinite looping in case like
393 /// this:
394 /// t1 := op t2, t3
395 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
396 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
397 /// t1 <- desires r1
398 /// sees r1 is taken by t2, tries t2's reload register r0
399 /// sees r0 is taken by t3, tries t3's reload register r1
400 /// sees r1 is taken by t2, tries t2's reload register r0 ...
Evan Cheng5d885022009-07-21 09:15:00 +0000401 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000402 AvailableSpills &Spills,
403 std::vector<MachineInstr*> &MaybeDeadStores,
404 BitVector &RegKills,
405 std::vector<MachineOperand*> &KillOps,
406 VirtRegMap &VRM) {
407 SmallSet<unsigned, 8> Rejected;
Evan Cheng5d885022009-07-21 09:15:00 +0000408 MachineFunction &MF = *MI->getParent()->getParent();
409 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
410 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
411 Rejected, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +0000412 }
413};
414
Dan Gohman7db949d2009-08-07 01:32:21 +0000415}
Lang Hames87e3bca2009-05-06 02:36:21 +0000416
417// ****************** //
418// Utility Functions //
419// ****************** //
420
Lang Hames87e3bca2009-05-06 02:36:21 +0000421/// findSinglePredSuccessor - Return via reference a vector of machine basic
422/// blocks each of which is a successor of the specified BB and has no other
423/// predecessor.
424static void findSinglePredSuccessor(MachineBasicBlock *MBB,
425 SmallVectorImpl<MachineBasicBlock *> &Succs) {
426 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
427 SE = MBB->succ_end(); SI != SE; ++SI) {
428 MachineBasicBlock *SuccMBB = *SI;
429 if (SuccMBB->pred_size() == 1)
430 Succs.push_back(SuccMBB);
431 }
432}
433
Evan Cheng427a6b62009-05-15 06:48:19 +0000434/// InvalidateKill - Invalidate register kill information for a specific
435/// register. This also unsets the kills marker on the last kill operand.
436static void InvalidateKill(unsigned Reg,
437 const TargetRegisterInfo* TRI,
438 BitVector &RegKills,
439 std::vector<MachineOperand*> &KillOps) {
440 if (RegKills[Reg]) {
441 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000442 // KillOps[Reg] might be a def of a super-register.
443 unsigned KReg = KillOps[Reg]->getReg();
444 KillOps[KReg] = NULL;
445 RegKills.reset(KReg);
446 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000447 if (RegKills[*SR]) {
448 KillOps[*SR]->setIsKill(false);
449 KillOps[*SR] = NULL;
450 RegKills.reset(*SR);
451 }
452 }
453 }
454}
455
Lang Hames87e3bca2009-05-06 02:36:21 +0000456/// InvalidateKills - MI is going to be deleted. If any of its operands are
457/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000458static void InvalidateKills(MachineInstr &MI,
459 const TargetRegisterInfo* TRI,
460 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000461 std::vector<MachineOperand*> &KillOps,
462 SmallVector<unsigned, 2> *KillRegs = NULL) {
463 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000465 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000466 continue;
467 unsigned Reg = MO.getReg();
468 if (TargetRegisterInfo::isVirtualRegister(Reg))
469 continue;
470 if (KillRegs)
471 KillRegs->push_back(Reg);
472 assert(Reg < KillOps.size());
473 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000474 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000475 RegKills.reset(Reg);
476 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
477 if (RegKills[*SR]) {
478 KillOps[*SR] = NULL;
479 RegKills.reset(*SR);
480 }
481 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000482 }
483 }
484}
485
486/// InvalidateRegDef - If the def operand of the specified def MI is now dead
487/// (since it's spill instruction is removed), mark it isDead. Also checks if
488/// the def MI has other definition operands that are not dead. Returns it by
489/// reference.
490static bool InvalidateRegDef(MachineBasicBlock::iterator I,
491 MachineInstr &NewDef, unsigned Reg,
492 bool &HasLiveDef) {
493 // Due to remat, it's possible this reg isn't being reused. That is,
494 // the def of this reg (by prev MI) is now dead.
495 MachineInstr *DefMI = I;
496 MachineOperand *DefOp = NULL;
497 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
498 MachineOperand &MO = DefMI->getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000499 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
500 continue;
501 if (MO.getReg() == Reg)
502 DefOp = &MO;
503 else if (!MO.isDead())
504 HasLiveDef = true;
Lang Hames87e3bca2009-05-06 02:36:21 +0000505 }
506 if (!DefOp)
507 return false;
508
509 bool FoundUse = false, Done = false;
510 MachineBasicBlock::iterator E = &NewDef;
511 ++I; ++E;
512 for (; !Done && I != E; ++I) {
513 MachineInstr *NMI = I;
514 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
515 MachineOperand &MO = NMI->getOperand(j);
516 if (!MO.isReg() || MO.getReg() != Reg)
517 continue;
518 if (MO.isUse())
519 FoundUse = true;
520 Done = true; // Stop after scanning all the operands of this MI.
521 }
522 }
523 if (!FoundUse) {
524 // Def is dead!
525 DefOp->setIsDead();
526 return true;
527 }
528 return false;
529}
530
531/// UpdateKills - Track and update kill info. If a MI reads a register that is
532/// marked kill, then it must be due to register reuse. Transfer the kill info
533/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000534static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
535 BitVector &RegKills,
536 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000537 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
538 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000539 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000540 continue;
541 unsigned Reg = MO.getReg();
542 if (Reg == 0)
543 continue;
544
545 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
546 // That can't be right. Register is killed but not re-defined and it's
547 // being reused. Let's fix that.
548 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000549 // KillOps[Reg] might be a def of a super-register.
550 unsigned KReg = KillOps[Reg]->getReg();
551 KillOps[KReg] = NULL;
552 RegKills.reset(KReg);
553
554 // Must be a def of a super-register. Its other sub-regsters are no
555 // longer killed as well.
556 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
557 KillOps[*SR] = NULL;
558 RegKills.reset(*SR);
559 }
560
Lang Hames87e3bca2009-05-06 02:36:21 +0000561 if (!MI.isRegTiedToDefOperand(i))
562 // Unless it's a two-address operand, this is the new kill.
563 MO.setIsKill();
564 }
565 if (MO.isKill()) {
566 RegKills.set(Reg);
567 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000568 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
569 RegKills.set(*SR);
570 KillOps[*SR] = &MO;
571 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000572 }
573 }
574
575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
576 const MachineOperand &MO = MI.getOperand(i);
577 if (!MO.isReg() || !MO.isDef())
578 continue;
579 unsigned Reg = MO.getReg();
580 RegKills.reset(Reg);
581 KillOps[Reg] = NULL;
582 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000583 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
584 RegKills.reset(*SR);
585 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000586 }
587 }
588}
589
590/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
591///
592static void ReMaterialize(MachineBasicBlock &MBB,
593 MachineBasicBlock::iterator &MII,
594 unsigned DestReg, unsigned Reg,
595 const TargetInstrInfo *TII,
596 const TargetRegisterInfo *TRI,
597 VirtRegMap &VRM) {
Evan Cheng5f159922009-07-16 20:15:00 +0000598 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Daniel Dunbar24cd3c42009-07-16 22:08:25 +0000599#ifndef NDEBUG
Evan Cheng5f159922009-07-16 20:15:00 +0000600 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
Evan Chengc1b46f92009-07-17 00:32:06 +0000601 assert(TID.getNumDefs() == 1 &&
Evan Cheng5f159922009-07-16 20:15:00 +0000602 "Don't know how to remat instructions that define > 1 values!");
603#endif
604 TII->reMaterialize(MBB, MII, DestReg,
605 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000606 MachineInstr *NewMI = prior(MII);
607 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
608 MachineOperand &MO = NewMI->getOperand(i);
609 if (!MO.isReg() || MO.getReg() == 0)
610 continue;
611 unsigned VirtReg = MO.getReg();
612 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
613 continue;
614 assert(MO.isUse());
615 unsigned SubIdx = MO.getSubReg();
616 unsigned Phys = VRM.getPhys(VirtReg);
617 assert(Phys);
618 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
619 MO.setReg(RReg);
620 MO.setSubReg(0);
621 }
622 ++NumReMats;
623}
624
625/// findSuperReg - Find the SubReg's super-register of given register class
626/// where its SubIdx sub-register is SubReg.
627static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
628 unsigned SubIdx, const TargetRegisterInfo *TRI) {
629 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
630 I != E; ++I) {
631 unsigned Reg = *I;
632 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
633 return Reg;
634 }
635 return 0;
636}
637
638// ******************************** //
639// Available Spills Implementation //
640// ******************************** //
641
642/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
643/// stackslot register. The register is still available but is no longer
644/// allowed to be modifed.
645void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
646 std::multimap<unsigned, int>::iterator I =
647 PhysRegsAvailable.lower_bound(PhysReg);
648 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
649 int SlotOrReMat = I->second;
650 I++;
651 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
652 "Bidirectional map mismatch!");
653 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
Chris Lattner6456d382009-08-23 03:20:44 +0000654 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
655 << " copied, it is available for use but can no longer be modified\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000656 }
657}
658
659/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
660/// stackslot register and its aliases. The register and its aliases may
661/// still available but is no longer allowed to be modifed.
662void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
663 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
664 disallowClobberPhysRegOnly(*AS);
665 disallowClobberPhysRegOnly(PhysReg);
666}
667
668/// ClobberPhysRegOnly - This is called when the specified physreg changes
669/// value. We use this to invalidate any info about stuff we thing lives in it.
670void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
671 std::multimap<unsigned, int>::iterator I =
672 PhysRegsAvailable.lower_bound(PhysReg);
673 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
674 int SlotOrReMat = I->second;
675 PhysRegsAvailable.erase(I++);
676 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
677 "Bidirectional map mismatch!");
678 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
Chris Lattner6456d382009-08-23 03:20:44 +0000679 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
680 << " clobbered, invalidating ");
Lang Hames87e3bca2009-05-06 02:36:21 +0000681 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +0000682 DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000683 else
Chris Lattner6456d382009-08-23 03:20:44 +0000684 DEBUG(errs() << "SS#" << SlotOrReMat << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000685 }
686}
687
688/// ClobberPhysReg - This is called when the specified physreg changes
689/// value. We use this to invalidate any info about stuff we thing lives in
690/// it and any of its aliases.
691void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
692 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
693 ClobberPhysRegOnly(*AS);
694 ClobberPhysRegOnly(PhysReg);
695}
696
697/// AddAvailableRegsToLiveIn - Availability information is being kept coming
698/// into the specified MBB. Add available physical registers as potential
699/// live-in's. If they are reused in the MBB, they will be added to the
700/// live-in set to make register scavenger and post-allocation scheduler.
701void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
702 BitVector &RegKills,
703 std::vector<MachineOperand*> &KillOps) {
704 std::set<unsigned> NotAvailable;
705 for (std::multimap<unsigned, int>::iterator
706 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
707 I != E; ++I) {
708 unsigned Reg = I->first;
709 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
710 // FIXME: A temporary workaround. We can't reuse available value if it's
711 // not safe to move the def of the virtual register's class. e.g.
712 // X86::RFP* register classes. Do not add it as a live-in.
713 if (!TII->isSafeToMoveRegClassDefs(RC))
714 // This is no longer available.
715 NotAvailable.insert(Reg);
716 else {
717 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000718 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000719 }
720
721 // Skip over the same register.
722 std::multimap<unsigned, int>::iterator NI = next(I);
723 while (NI != E && NI->first == Reg) {
724 ++I;
725 ++NI;
726 }
727 }
728
729 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
730 E = NotAvailable.end(); I != E; ++I) {
731 ClobberPhysReg(*I);
732 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
733 *SubRegs; ++SubRegs)
734 ClobberPhysReg(*SubRegs);
735 }
736}
737
738/// ModifyStackSlotOrReMat - This method is called when the value in a stack
739/// slot changes. This removes information about which register the previous
740/// value for this slot lives in (as the previous value is dead now).
741void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
742 std::map<int, unsigned>::iterator It =
743 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
744 if (It == SpillSlotsOrReMatsAvailable.end()) return;
745 unsigned Reg = It->second >> 1;
746 SpillSlotsOrReMatsAvailable.erase(It);
747
748 // This register may hold the value of multiple stack slots, only remove this
749 // stack slot from the set of values the register contains.
750 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
751 for (; ; ++I) {
752 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
753 "Map inverse broken!");
754 if (I->second == SlotOrReMat) break;
755 }
756 PhysRegsAvailable.erase(I);
757}
758
759// ************************** //
760// Reuse Info Implementation //
761// ************************** //
762
763/// GetRegForReload - We are about to emit a reload into PhysReg. If there
764/// is some other operand that is using the specified register, either pick
765/// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000766unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
767 unsigned PhysReg,
768 MachineFunction &MF,
769 MachineInstr *MI, AvailableSpills &Spills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000770 std::vector<MachineInstr*> &MaybeDeadStores,
771 SmallSet<unsigned, 8> &Rejected,
772 BitVector &RegKills,
773 std::vector<MachineOperand*> &KillOps,
774 VirtRegMap &VRM) {
Evan Cheng5d885022009-07-21 09:15:00 +0000775 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
776 const TargetRegisterInfo *TRI = Spills.getRegInfo();
Lang Hames87e3bca2009-05-06 02:36:21 +0000777
778 if (Reuses.empty()) return PhysReg; // This is most often empty.
779
780 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
781 ReusedOp &Op = Reuses[ro];
782 // If we find some other reuse that was supposed to use this register
783 // exactly for its reload, we can change this reload to use ITS reload
784 // register. That is, unless its reload register has already been
785 // considered and subsequently rejected because it has also been reused
786 // by another operand.
787 if (Op.PhysRegReused == PhysReg &&
Evan Cheng5d885022009-07-21 09:15:00 +0000788 Rejected.count(Op.AssignedPhysReg) == 0 &&
789 RC->contains(Op.AssignedPhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000790 // Yup, use the reload register that we didn't use before.
791 unsigned NewReg = Op.AssignedPhysReg;
792 Rejected.insert(PhysReg);
Evan Cheng5d885022009-07-21 09:15:00 +0000793 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
Lang Hames87e3bca2009-05-06 02:36:21 +0000794 RegKills, KillOps, VRM);
795 } else {
796 // Otherwise, we might also have a problem if a previously reused
Evan Cheng5d885022009-07-21 09:15:00 +0000797 // value aliases the new register. If so, codegen the previous reload
Lang Hames87e3bca2009-05-06 02:36:21 +0000798 // and use this one.
799 unsigned PRRU = Op.PhysRegReused;
Lang Hames87e3bca2009-05-06 02:36:21 +0000800 if (TRI->areAliases(PRRU, PhysReg)) {
801 // Okay, we found out that an alias of a reused register
802 // was used. This isn't good because it means we have
803 // to undo a previous reuse.
804 MachineBasicBlock *MBB = MI->getParent();
805 const TargetRegisterClass *AliasRC =
806 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
807
808 // Copy Op out of the vector and remove it, we're going to insert an
809 // explicit load for it.
810 ReusedOp NewOp = Op;
811 Reuses.erase(Reuses.begin()+ro);
812
813 // Ok, we're going to try to reload the assigned physreg into the
814 // slot that we were supposed to in the first place. However, that
815 // register could hold a reuse. Check to see if it conflicts or
816 // would prefer us to use a different register.
Evan Cheng5d885022009-07-21 09:15:00 +0000817 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
818 MF, MI, Spills, MaybeDeadStores,
819 Rejected, RegKills, KillOps, VRM);
David Greene2d4e6d32009-07-28 16:49:24 +0000820
821 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
822 int SSorRMId = DoReMat
823 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
824
825 // Back-schedule reloads and remats.
826 MachineBasicBlock::iterator InsertLoc =
827 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
828 DoReMat, SSorRMId, TII, MF);
829
830 if (DoReMat) {
831 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
832 TRI, VRM);
833 } else {
834 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
Lang Hames87e3bca2009-05-06 02:36:21 +0000835 NewOp.StackSlotOrReMat, AliasRC);
David Greene2d4e6d32009-07-28 16:49:24 +0000836 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +0000837 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
838 // Any stores to this stack slot are not dead anymore.
839 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
840 ++NumLoads;
841 }
842 Spills.ClobberPhysReg(NewPhysReg);
843 Spills.ClobberPhysReg(NewOp.PhysRegReused);
844
845 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
846 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
847 MI->getOperand(NewOp.Operand).setReg(RReg);
848 MI->getOperand(NewOp.Operand).setSubReg(0);
849
850 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
David Greene2d4e6d32009-07-28 16:49:24 +0000851 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
Chris Lattner6456d382009-08-23 03:20:44 +0000852 DEBUG(errs() << '\t' << *prior(InsertLoc));
Lang Hames87e3bca2009-05-06 02:36:21 +0000853
Chris Lattner6456d382009-08-23 03:20:44 +0000854 DEBUG(errs() << "Reuse undone!\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000855 --NumReused;
856
857 // Finally, PhysReg is now available, go ahead and use it.
858 return PhysReg;
859 }
860 }
861 }
862 return PhysReg;
863}
864
865// ************************************************************************ //
866
867/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
868/// stack slot mod/ref. It also checks if it's possible to unfold the
869/// instruction by having it define a specified physical register instead.
870static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
871 const TargetInstrInfo *TII,
872 const TargetRegisterInfo *TRI,
873 VirtRegMap &VRM) {
874 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
875 return false;
876
877 bool Found = false;
878 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
879 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
880 unsigned VirtReg = I->second.first;
881 VirtRegMap::ModRef MR = I->second.second;
882 if (MR & VirtRegMap::isModRef)
883 if (VRM.getStackSlot(VirtReg) == SS) {
884 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
885 break;
886 }
887 }
888 if (!Found)
889 return false;
890
891 // Does the instruction uses a register that overlaps the scratch register?
892 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
893 MachineOperand &MO = MI.getOperand(i);
894 if (!MO.isReg() || MO.getReg() == 0)
895 continue;
896 unsigned Reg = MO.getReg();
897 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
898 if (!VRM.hasPhys(Reg))
899 continue;
900 Reg = VRM.getPhys(Reg);
901 }
902 if (TRI->regsOverlap(PhysReg, Reg))
903 return false;
904 }
905 return true;
906}
907
908/// FindFreeRegister - Find a free register of a given register class by looking
909/// at (at most) the last two machine instructions.
910static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
911 MachineBasicBlock &MBB,
912 const TargetRegisterClass *RC,
913 const TargetRegisterInfo *TRI,
914 BitVector &AllocatableRegs) {
915 BitVector Defs(TRI->getNumRegs());
916 BitVector Uses(TRI->getNumRegs());
917 SmallVector<unsigned, 4> LocalUses;
918 SmallVector<unsigned, 4> Kills;
919
920 // Take a look at 2 instructions at most.
921 for (unsigned Count = 0; Count < 2; ++Count) {
922 if (MII == MBB.begin())
923 break;
924 MachineInstr *PrevMI = prior(MII);
925 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
926 MachineOperand &MO = PrevMI->getOperand(i);
927 if (!MO.isReg() || MO.getReg() == 0)
928 continue;
929 unsigned Reg = MO.getReg();
930 if (MO.isDef()) {
931 Defs.set(Reg);
932 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
933 Defs.set(*AS);
934 } else {
935 LocalUses.push_back(Reg);
936 if (MO.isKill() && AllocatableRegs[Reg])
937 Kills.push_back(Reg);
938 }
939 }
940
941 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
942 unsigned Kill = Kills[i];
943 if (!Defs[Kill] && !Uses[Kill] &&
944 TRI->getPhysicalRegisterRegClass(Kill) == RC)
945 return Kill;
946 }
947 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
948 unsigned Reg = LocalUses[i];
949 Uses.set(Reg);
950 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
951 Uses.set(*AS);
952 }
953
954 MII = PrevMI;
955 }
956
957 return 0;
958}
959
960static
961void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
962 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
963 MachineOperand &MO = MI->getOperand(i);
964 if (MO.isReg() && MO.getReg() == VirtReg)
965 MO.setReg(PhysReg);
966 }
967}
968
Evan Chengeca24fb2009-05-12 23:07:00 +0000969namespace {
970 struct RefSorter {
971 bool operator()(const std::pair<MachineInstr*, int> &A,
972 const std::pair<MachineInstr*, int> &B) {
973 return A.second < B.second;
974 }
975 };
976}
Lang Hames87e3bca2009-05-06 02:36:21 +0000977
978// ***************************** //
979// Local Spiller Implementation //
980// ***************************** //
981
Dan Gohman7db949d2009-08-07 01:32:21 +0000982namespace {
983
Lang Hames87e3bca2009-05-06 02:36:21 +0000984class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
985 MachineRegisterInfo *RegInfo;
986 const TargetRegisterInfo *TRI;
987 const TargetInstrInfo *TII;
988 BitVector AllocatableRegs;
989 DenseMap<MachineInstr*, unsigned> DistanceMap;
990public:
991
992 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
993 LiveIntervals* LIs) {
994 RegInfo = &MF.getRegInfo();
995 TRI = MF.getTarget().getRegisterInfo();
996 TII = MF.getTarget().getInstrInfo();
997 AllocatableRegs = TRI->getAllocatableSet(MF);
Daniel Dunbarce63ffb2009-07-25 00:23:56 +0000998 DEBUG(errs() << "\n**** Local spiller rewriting function '"
999 << MF.getFunction()->getName() << "':\n");
Chris Lattner6456d382009-08-23 03:20:44 +00001000 DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and"
1001 " reloads!) ****\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001002 DEBUG(MF.dump());
1003
1004 // Spills - Keep track of which spilled values are available in physregs
1005 // so that we can choose to reuse the physregs instead of emitting
1006 // reloads. This is usually refreshed per basic block.
1007 AvailableSpills Spills(TRI, TII);
1008
1009 // Keep track of kill information.
1010 BitVector RegKills(TRI->getNumRegs());
1011 std::vector<MachineOperand*> KillOps;
1012 KillOps.resize(TRI->getNumRegs(), NULL);
1013
1014 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1015 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1016 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1017
1018 // Traverse the basic blocks depth first.
1019 MachineBasicBlock *Entry = MF.begin();
1020 SmallPtrSet<MachineBasicBlock*,16> Visited;
1021 for (df_ext_iterator<MachineBasicBlock*,
1022 SmallPtrSet<MachineBasicBlock*,16> >
1023 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1024 DFI != E; ++DFI) {
1025 MachineBasicBlock *MBB = *DFI;
1026 if (!EarlyVisited.count(MBB))
1027 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1028
1029 // If this MBB is the only predecessor of a successor. Keep the
1030 // availability information and visit it next.
1031 do {
1032 // Keep visiting single predecessor successor as long as possible.
1033 SinglePredSuccs.clear();
1034 findSinglePredSuccessor(MBB, SinglePredSuccs);
1035 if (SinglePredSuccs.empty())
1036 MBB = 0;
1037 else {
1038 // FIXME: More than one successors, each of which has MBB has
1039 // the only predecessor.
1040 MBB = SinglePredSuccs[0];
1041 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1042 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1043 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1044 }
1045 }
1046 } while (MBB);
1047
1048 // Clear the availability info.
1049 Spills.clear();
1050 }
1051
Chris Lattner6456d382009-08-23 03:20:44 +00001052 DEBUG(errs() << "**** Post Machine Instrs ****\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001053 DEBUG(MF.dump());
1054
1055 // Mark unused spill slots.
1056 MachineFrameInfo *MFI = MF.getFrameInfo();
1057 int SS = VRM.getLowSpillSlot();
1058 if (SS != VirtRegMap::NO_STACK_SLOT)
1059 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1060 if (!VRM.isSpillSlotUsed(SS)) {
1061 MFI->RemoveStackObject(SS);
1062 ++NumDSS;
1063 }
1064
1065 return true;
1066 }
1067
1068private:
1069
1070 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1071 /// a scratch register is available.
1072 /// xorq %r12<kill>, %r13
1073 /// addq %rax, -184(%rbp)
1074 /// addq %r13, -184(%rbp)
1075 /// ==>
1076 /// xorq %r12<kill>, %r13
1077 /// movq -184(%rbp), %r12
1078 /// addq %rax, %r12
1079 /// addq %r13, %r12
1080 /// movq %r12, -184(%rbp)
1081 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1082 MachineBasicBlock &MBB,
1083 MachineBasicBlock::iterator &MII,
1084 std::vector<MachineInstr*> &MaybeDeadStores,
1085 AvailableSpills &Spills,
1086 BitVector &RegKills,
1087 std::vector<MachineOperand*> &KillOps,
1088 VirtRegMap &VRM) {
1089
1090 MachineBasicBlock::iterator NextMII = next(MII);
1091 if (NextMII == MBB.end())
1092 return false;
1093
1094 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1095 return false;
1096
1097 // Now let's see if the last couple of instructions happens to have freed up
1098 // a register.
1099 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1100 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1101 if (!PhysReg)
1102 return false;
1103
1104 MachineFunction &MF = *MBB.getParent();
1105 TRI = MF.getTarget().getRegisterInfo();
1106 MachineInstr &MI = *MII;
1107 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1108 return false;
1109
1110 // If the next instruction also folds the same SS modref and can be unfoled,
1111 // then it's worthwhile to issue a load from SS into the free register and
1112 // then unfold these instructions.
1113 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1114 return false;
1115
David Greene2d4e6d32009-07-28 16:49:24 +00001116 // Back-schedule reloads and remats.
1117 MachineBasicBlock::iterator InsertLoc =
1118 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
1119
Lang Hames87e3bca2009-05-06 02:36:21 +00001120 // Load from SS to the spare physical register.
1121 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1122 // This invalidates Phys.
1123 Spills.ClobberPhysReg(PhysReg);
1124 // Remember it's available.
1125 Spills.addAvailable(SS, PhysReg);
1126 MaybeDeadStores[SS] = NULL;
1127
1128 // Unfold current MI.
1129 SmallVector<MachineInstr*, 4> NewMIs;
1130 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001131 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001132 assert(NewMIs.size() == 1);
1133 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1134 VRM.transferRestorePts(&MI, NewMIs[0]);
1135 MII = MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001136 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001137 VRM.RemoveMachineInstrFromMaps(&MI);
1138 MBB.erase(&MI);
1139 ++NumModRefUnfold;
1140
1141 // Unfold next instructions that fold the same SS.
1142 do {
1143 MachineInstr &NextMI = *NextMII;
1144 NextMII = next(NextMII);
1145 NewMIs.clear();
1146 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001147 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001148 assert(NewMIs.size() == 1);
1149 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1150 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1151 MBB.insert(NextMII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001152 InvalidateKills(NextMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001153 VRM.RemoveMachineInstrFromMaps(&NextMI);
1154 MBB.erase(&NextMI);
1155 ++NumModRefUnfold;
Evan Cheng2c48fe62009-06-03 09:00:27 +00001156 if (NextMII == MBB.end())
1157 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001158 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1159
1160 // Store the value back into SS.
1161 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1162 MachineInstr *StoreMI = prior(NextMII);
1163 VRM.addSpillSlotUse(SS, StoreMI);
1164 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1165
1166 return true;
1167 }
1168
1169 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1170 /// instruction. e.g.
1171 /// xorl %edi, %eax
1172 /// movl %eax, -32(%ebp)
1173 /// movl -36(%ebp), %eax
1174 /// orl %eax, -32(%ebp)
1175 /// ==>
1176 /// xorl %edi, %eax
1177 /// orl -36(%ebp), %eax
1178 /// mov %eax, -32(%ebp)
1179 /// This enables unfolding optimization for a subsequent instruction which will
1180 /// also eliminate the newly introduced store instruction.
1181 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1182 MachineBasicBlock::iterator &MII,
1183 std::vector<MachineInstr*> &MaybeDeadStores,
1184 AvailableSpills &Spills,
1185 BitVector &RegKills,
1186 std::vector<MachineOperand*> &KillOps,
1187 VirtRegMap &VRM) {
1188 MachineFunction &MF = *MBB.getParent();
1189 MachineInstr &MI = *MII;
1190 unsigned UnfoldedOpc = 0;
1191 unsigned UnfoldPR = 0;
1192 unsigned UnfoldVR = 0;
1193 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1194 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1195 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1196 // Only transform a MI that folds a single register.
1197 if (UnfoldedOpc)
1198 return false;
1199 UnfoldVR = I->second.first;
1200 VirtRegMap::ModRef MR = I->second.second;
1201 // MI2VirtMap be can updated which invalidate the iterator.
1202 // Increment the iterator first.
1203 ++I;
1204 if (VRM.isAssignedReg(UnfoldVR))
1205 continue;
1206 // If this reference is not a use, any previous store is now dead.
1207 // Otherwise, the store to this stack slot is not dead anymore.
1208 FoldedSS = VRM.getStackSlot(UnfoldVR);
1209 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1210 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1211 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1212 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1213 continue;
1214 UnfoldPR = PhysReg;
1215 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1216 false, true);
1217 }
1218 }
1219
1220 if (!UnfoldedOpc) {
1221 if (!UnfoldVR)
1222 return false;
1223
1224 // Look for other unfolding opportunities.
1225 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1226 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1227 }
1228
1229 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1230 MachineOperand &MO = MI.getOperand(i);
1231 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1232 continue;
1233 unsigned VirtReg = MO.getReg();
1234 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1235 continue;
1236 if (VRM.isAssignedReg(VirtReg)) {
1237 unsigned PhysReg = VRM.getPhys(VirtReg);
1238 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1239 return false;
1240 } else if (VRM.isReMaterialized(VirtReg))
1241 continue;
1242 int SS = VRM.getStackSlot(VirtReg);
1243 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1244 if (PhysReg) {
1245 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1246 return false;
1247 continue;
1248 }
1249 if (VRM.hasPhys(VirtReg)) {
1250 PhysReg = VRM.getPhys(VirtReg);
1251 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1252 continue;
1253 }
1254
1255 // Ok, we'll need to reload the value into a register which makes
1256 // it impossible to perform the store unfolding optimization later.
1257 // Let's see if it is possible to fold the load if the store is
1258 // unfolded. This allows us to perform the store unfolding
1259 // optimization.
1260 SmallVector<MachineInstr*, 4> NewMIs;
1261 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1262 assert(NewMIs.size() == 1);
1263 MachineInstr *NewMI = NewMIs.back();
1264 NewMIs.clear();
1265 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1266 assert(Idx != -1);
1267 SmallVector<unsigned, 1> Ops;
1268 Ops.push_back(Idx);
1269 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1270 if (FoldedMI) {
1271 VRM.addSpillSlotUse(SS, FoldedMI);
1272 if (!VRM.hasPhys(UnfoldVR))
1273 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1274 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1275 MII = MBB.insert(MII, FoldedMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001276 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001277 VRM.RemoveMachineInstrFromMaps(&MI);
1278 MBB.erase(&MI);
1279 MF.DeleteMachineInstr(NewMI);
1280 return true;
1281 }
1282 MF.DeleteMachineInstr(NewMI);
1283 }
1284 }
1285
1286 return false;
1287 }
1288
Evan Cheng261ce1d2009-07-10 19:15:51 +00001289 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1290 /// where SrcReg is r1 and it is tied to r0. Return true if after
1291 /// commuting this instruction it will be r0 = op r2, r1.
1292 static bool CommuteChangesDestination(MachineInstr *DefMI,
1293 const TargetInstrDesc &TID,
1294 unsigned SrcReg,
1295 const TargetInstrInfo *TII,
1296 unsigned &DstIdx) {
1297 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1298 return false;
1299 if (!DefMI->getOperand(1).isReg() ||
1300 DefMI->getOperand(1).getReg() != SrcReg)
1301 return false;
1302 unsigned DefIdx;
1303 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1304 return false;
1305 unsigned SrcIdx1, SrcIdx2;
1306 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1307 return false;
1308 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1309 DstIdx = 2;
1310 return true;
1311 }
1312 return false;
1313 }
1314
Lang Hames87e3bca2009-05-06 02:36:21 +00001315 /// CommuteToFoldReload -
1316 /// Look for
1317 /// r1 = load fi#1
1318 /// r1 = op r1, r2<kill>
1319 /// store r1, fi#1
1320 ///
1321 /// If op is commutable and r2 is killed, then we can xform these to
1322 /// r2 = op r2, fi#1
1323 /// store r2, fi#1
1324 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1325 MachineBasicBlock::iterator &MII,
1326 unsigned VirtReg, unsigned SrcReg, int SS,
1327 AvailableSpills &Spills,
1328 BitVector &RegKills,
1329 std::vector<MachineOperand*> &KillOps,
1330 const TargetRegisterInfo *TRI,
1331 VirtRegMap &VRM) {
1332 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1333 return false;
1334
1335 MachineFunction &MF = *MBB.getParent();
1336 MachineInstr &MI = *MII;
1337 MachineBasicBlock::iterator DefMII = prior(MII);
1338 MachineInstr *DefMI = DefMII;
1339 const TargetInstrDesc &TID = DefMI->getDesc();
1340 unsigned NewDstIdx;
1341 if (DefMII != MBB.begin() &&
1342 TID.isCommutable() &&
Evan Cheng261ce1d2009-07-10 19:15:51 +00001343 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001344 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1345 unsigned NewReg = NewDstMO.getReg();
1346 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1347 return false;
1348 MachineInstr *ReloadMI = prior(DefMII);
1349 int FrameIdx;
1350 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1351 if (DestReg != SrcReg || FrameIdx != SS)
1352 return false;
1353 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1354 if (UseIdx == -1)
1355 return false;
1356 unsigned DefIdx;
1357 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1358 return false;
1359 assert(DefMI->getOperand(DefIdx).isReg() &&
1360 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1361
1362 // Now commute def instruction.
1363 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1364 if (!CommutedMI)
1365 return false;
1366 SmallVector<unsigned, 1> Ops;
1367 Ops.push_back(NewDstIdx);
1368 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1369 // Not needed since foldMemoryOperand returns new MI.
1370 MF.DeleteMachineInstr(CommutedMI);
1371 if (!FoldedMI)
1372 return false;
1373
1374 VRM.addSpillSlotUse(SS, FoldedMI);
1375 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1376 // Insert new def MI and spill MI.
1377 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1378 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1379 MII = prior(MII);
1380 MachineInstr *StoreMI = MII;
1381 VRM.addSpillSlotUse(SS, StoreMI);
1382 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1383 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1384
1385 // Delete all 3 old instructions.
Evan Cheng427a6b62009-05-15 06:48:19 +00001386 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001387 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1388 MBB.erase(ReloadMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001389 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001390 VRM.RemoveMachineInstrFromMaps(DefMI);
1391 MBB.erase(DefMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001392 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001393 VRM.RemoveMachineInstrFromMaps(&MI);
1394 MBB.erase(&MI);
1395
1396 // If NewReg was previously holding value of some SS, it's now clobbered.
1397 // This has to be done now because it's a physical register. When this
1398 // instruction is re-visited, it's ignored.
1399 Spills.ClobberPhysReg(NewReg);
1400
1401 ++NumCommutes;
1402 return true;
1403 }
1404
1405 return false;
1406 }
1407
1408 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1409 /// the last store to the same slot is now dead. If so, remove the last store.
1410 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1411 MachineBasicBlock::iterator &MII,
1412 int Idx, unsigned PhysReg, int StackSlot,
1413 const TargetRegisterClass *RC,
1414 bool isAvailable, MachineInstr *&LastStore,
1415 AvailableSpills &Spills,
1416 SmallSet<MachineInstr*, 4> &ReMatDefs,
1417 BitVector &RegKills,
1418 std::vector<MachineOperand*> &KillOps,
1419 VirtRegMap &VRM) {
1420
1421 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1422 MachineInstr *StoreMI = next(MII);
1423 VRM.addSpillSlotUse(StackSlot, StoreMI);
Chris Lattner6456d382009-08-23 03:20:44 +00001424 DEBUG(errs() << "Store:\t" << *StoreMI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001425
1426 // If there is a dead store to this stack slot, nuke it now.
1427 if (LastStore) {
Chris Lattner6456d382009-08-23 03:20:44 +00001428 DEBUG(errs() << "Removed dead store:\t" << *LastStore);
Lang Hames87e3bca2009-05-06 02:36:21 +00001429 ++NumDSE;
1430 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00001431 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001432 MachineBasicBlock::iterator PrevMII = LastStore;
1433 bool CheckDef = PrevMII != MBB.begin();
1434 if (CheckDef)
1435 --PrevMII;
1436 VRM.RemoveMachineInstrFromMaps(LastStore);
1437 MBB.erase(LastStore);
1438 if (CheckDef) {
1439 // Look at defs of killed registers on the store. Mark the defs
1440 // as dead since the store has been deleted and they aren't
1441 // being reused.
1442 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1443 bool HasOtherDef = false;
1444 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1445 MachineInstr *DeadDef = PrevMII;
1446 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
Evan Cheng4784f1f2009-06-30 08:49:04 +00001447 // FIXME: This assumes a remat def does not have side effects.
Lang Hames87e3bca2009-05-06 02:36:21 +00001448 VRM.RemoveMachineInstrFromMaps(DeadDef);
1449 MBB.erase(DeadDef);
1450 ++NumDRM;
1451 }
1452 }
1453 }
1454 }
1455 }
1456
1457 LastStore = next(MII);
1458
1459 // If the stack slot value was previously available in some other
1460 // register, change it now. Otherwise, make the register available,
1461 // in PhysReg.
1462 Spills.ModifyStackSlotOrReMat(StackSlot);
1463 Spills.ClobberPhysReg(PhysReg);
1464 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1465 ++NumStores;
1466 }
1467
1468 /// TransferDeadness - A identity copy definition is dead and it's being
1469 /// removed. Find the last def or use and mark it as dead / kill.
1470 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1471 unsigned Reg, BitVector &RegKills,
Evan Chengeca24fb2009-05-12 23:07:00 +00001472 std::vector<MachineOperand*> &KillOps,
1473 VirtRegMap &VRM) {
1474 SmallPtrSet<MachineInstr*, 4> Seens;
1475 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001476 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1477 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1478 MachineInstr *UDMI = &*RI;
1479 if (UDMI->getParent() != MBB)
1480 continue;
1481 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1482 if (DI == DistanceMap.end() || DI->second > CurDist)
1483 continue;
Evan Chengeca24fb2009-05-12 23:07:00 +00001484 if (Seens.insert(UDMI))
1485 Refs.push_back(std::make_pair(UDMI, DI->second));
Lang Hames87e3bca2009-05-06 02:36:21 +00001486 }
1487
Evan Chengeca24fb2009-05-12 23:07:00 +00001488 if (Refs.empty())
1489 return;
1490 std::sort(Refs.begin(), Refs.end(), RefSorter());
1491
1492 while (!Refs.empty()) {
1493 MachineInstr *LastUDMI = Refs.back().first;
1494 Refs.pop_back();
1495
Lang Hames87e3bca2009-05-06 02:36:21 +00001496 MachineOperand *LastUD = NULL;
1497 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1498 MachineOperand &MO = LastUDMI->getOperand(i);
1499 if (!MO.isReg() || MO.getReg() != Reg)
1500 continue;
1501 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1502 LastUD = &MO;
1503 if (LastUDMI->isRegTiedToDefOperand(i))
Evan Chengeca24fb2009-05-12 23:07:00 +00001504 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001505 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001506 if (LastUD->isDef()) {
1507 // If the instruction has no side effect, delete it and propagate
1508 // backward further. Otherwise, mark is dead and we are done.
Evan Chengfc6ad402009-07-22 00:25:27 +00001509 if (!TII->isDeadInstruction(LastUDMI)) {
Evan Chengeca24fb2009-05-12 23:07:00 +00001510 LastUD->setIsDead();
1511 break;
1512 }
1513 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1514 MBB->erase(LastUDMI);
1515 } else {
Lang Hames87e3bca2009-05-06 02:36:21 +00001516 LastUD->setIsKill();
1517 RegKills.set(Reg);
1518 KillOps[Reg] = LastUD;
Evan Chengeca24fb2009-05-12 23:07:00 +00001519 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001520 }
1521 }
1522 }
1523
1524 /// rewriteMBB - Keep track of which spills are available even after the
1525 /// register allocator is done with them. If possible, avid reloading vregs.
1526 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1527 LiveIntervals *LIs,
1528 AvailableSpills &Spills, BitVector &RegKills,
1529 std::vector<MachineOperand*> &KillOps) {
1530
Daniel Dunbarce63ffb2009-07-25 00:23:56 +00001531 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1532 << MBB.getBasicBlock()->getName() << "':\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001533
1534 MachineFunction &MF = *MBB.getParent();
1535
1536 // MaybeDeadStores - When we need to write a value back into a stack slot,
1537 // keep track of the inserted store. If the stack slot value is never read
1538 // (because the value was used from some available register, for example), and
1539 // subsequently stored to, the original store is dead. This map keeps track
1540 // of inserted stores that are not used. If we see a subsequent store to the
1541 // same stack slot, the original store is deleted.
1542 std::vector<MachineInstr*> MaybeDeadStores;
1543 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1544
1545 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1546 SmallSet<MachineInstr*, 4> ReMatDefs;
1547
1548 // Clear kill info.
1549 SmallSet<unsigned, 2> KilledMIRegs;
1550 RegKills.reset();
1551 KillOps.clear();
1552 KillOps.resize(TRI->getNumRegs(), NULL);
1553
1554 unsigned Dist = 0;
1555 DistanceMap.clear();
1556 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1557 MII != E; ) {
1558 MachineBasicBlock::iterator NextMII = next(MII);
1559
1560 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1561 bool Erased = false;
1562 bool BackTracked = false;
1563 if (OptimizeByUnfold(MBB, MII,
1564 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1565 NextMII = next(MII);
1566
1567 MachineInstr &MI = *MII;
1568
1569 if (VRM.hasEmergencySpills(&MI)) {
1570 // Spill physical register(s) in the rare case the allocator has run out
1571 // of registers to allocate.
1572 SmallSet<int, 4> UsedSS;
1573 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1574 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1575 unsigned PhysReg = EmSpills[i];
1576 const TargetRegisterClass *RC =
1577 TRI->getPhysicalRegisterRegClass(PhysReg);
1578 assert(RC && "Unable to determine register class!");
1579 int SS = VRM.getEmergencySpillSlot(RC);
1580 if (UsedSS.count(SS))
Torok Edwinc23197a2009-07-14 16:55:14 +00001581 llvm_unreachable("Need to spill more than one physical registers!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001582 UsedSS.insert(SS);
1583 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1584 MachineInstr *StoreMI = prior(MII);
1585 VRM.addSpillSlotUse(SS, StoreMI);
David Greene2d4e6d32009-07-28 16:49:24 +00001586
1587 // Back-schedule reloads and remats.
1588 MachineBasicBlock::iterator InsertLoc =
1589 ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
1590 SS, TII, MF);
1591
1592 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1593
1594 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00001595 VRM.addSpillSlotUse(SS, LoadMI);
1596 ++NumPSpills;
Jakob Stoklund Olesen7a1e8722009-08-15 11:03:03 +00001597 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00001598 }
1599 NextMII = next(MII);
1600 }
1601
1602 // Insert restores here if asked to.
1603 if (VRM.isRestorePt(&MI)) {
1604 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1605 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1606 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1607 if (!VRM.getPreSplitReg(VirtReg))
1608 continue; // Split interval spilled again.
1609 unsigned Phys = VRM.getPhys(VirtReg);
1610 RegInfo->setPhysRegUsed(Phys);
1611
1612 // Check if the value being restored if available. If so, it must be
1613 // from a predecessor BB that fallthrough into this BB. We do not
1614 // expect:
1615 // BB1:
1616 // r1 = load fi#1
1617 // ...
1618 // = r1<kill>
1619 // ... # r1 not clobbered
1620 // ...
1621 // = load fi#1
1622 bool DoReMat = VRM.isReMaterialized(VirtReg);
1623 int SSorRMId = DoReMat
1624 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1625 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1626 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1627 if (InReg == Phys) {
1628 // If the value is already available in the expected register, save
1629 // a reload / remat.
1630 if (SSorRMId)
Chris Lattner6456d382009-08-23 03:20:44 +00001631 DEBUG(errs() << "Reusing RM#"
1632 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001633 else
Chris Lattner6456d382009-08-23 03:20:44 +00001634 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1635 DEBUG(errs() << " from physreg "
1636 << TRI->getName(InReg) << " for vreg"
1637 << VirtReg <<" instead of reloading into physreg "
1638 << TRI->getName(Phys) << '\n');
Lang Hames87e3bca2009-05-06 02:36:21 +00001639 ++NumOmitted;
1640 continue;
1641 } else if (InReg && InReg != Phys) {
1642 if (SSorRMId)
Chris Lattner6456d382009-08-23 03:20:44 +00001643 DEBUG(errs() << "Reusing RM#"
1644 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001645 else
Chris Lattner6456d382009-08-23 03:20:44 +00001646 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1647 DEBUG(errs() << " from physreg "
1648 << TRI->getName(InReg) << " for vreg"
1649 << VirtReg <<" by copying it into physreg "
1650 << TRI->getName(Phys) << '\n');
Lang Hames87e3bca2009-05-06 02:36:21 +00001651
1652 // If the reloaded / remat value is available in another register,
1653 // copy it to the desired register.
David Greene2d4e6d32009-07-28 16:49:24 +00001654
1655 // Back-schedule reloads and remats.
1656 MachineBasicBlock::iterator InsertLoc =
1657 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1658 SSorRMId, TII, MF);
1659
1660 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
Lang Hames87e3bca2009-05-06 02:36:21 +00001661
1662 // This invalidates Phys.
1663 Spills.ClobberPhysReg(Phys);
1664 // Remember it's available.
1665 Spills.addAvailable(SSorRMId, Phys);
1666
1667 // Mark is killed.
David Greene2d4e6d32009-07-28 16:49:24 +00001668 MachineInstr *CopyMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00001669 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1670 KillOpnd->setIsKill();
Evan Cheng427a6b62009-05-15 06:48:19 +00001671 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001672
Chris Lattner6456d382009-08-23 03:20:44 +00001673 DEBUG(errs() << '\t' << *CopyMI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001674 ++NumCopified;
1675 continue;
1676 }
1677
David Greene2d4e6d32009-07-28 16:49:24 +00001678 // Back-schedule reloads and remats.
1679 MachineBasicBlock::iterator InsertLoc =
1680 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1681 SSorRMId, TII, MF);
1682
Lang Hames87e3bca2009-05-06 02:36:21 +00001683 if (VRM.isReMaterialized(VirtReg)) {
David Greene2d4e6d32009-07-28 16:49:24 +00001684 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001685 } else {
1686 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
David Greene2d4e6d32009-07-28 16:49:24 +00001687 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1688 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00001689 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1690 ++NumLoads;
Jakob Stoklund Olesen7a1e8722009-08-15 11:03:03 +00001691 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00001692 }
1693
1694 // This invalidates Phys.
1695 Spills.ClobberPhysReg(Phys);
1696 // Remember it's available.
1697 Spills.addAvailable(SSorRMId, Phys);
1698
David Greene2d4e6d32009-07-28 16:49:24 +00001699 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
Chris Lattner6456d382009-08-23 03:20:44 +00001700 DEBUG(errs() << '\t' << *prior(MII));
Lang Hames87e3bca2009-05-06 02:36:21 +00001701 }
1702 }
1703
1704 // Insert spills here if asked to.
1705 if (VRM.isSpillPt(&MI)) {
1706 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1707 VRM.getSpillPtSpills(&MI);
1708 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1709 unsigned VirtReg = SpillRegs[i].first;
1710 bool isKill = SpillRegs[i].second;
1711 if (!VRM.getPreSplitReg(VirtReg))
1712 continue; // Split interval spilled again.
1713 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1714 unsigned Phys = VRM.getPhys(VirtReg);
1715 int StackSlot = VRM.getStackSlot(VirtReg);
1716 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1717 MachineInstr *StoreMI = next(MII);
1718 VRM.addSpillSlotUse(StackSlot, StoreMI);
Chris Lattner6456d382009-08-23 03:20:44 +00001719 DEBUG(errs() << "Store:\t" << *StoreMI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001720 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1721 }
1722 NextMII = next(MII);
1723 }
1724
1725 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1726 /// reuse.
1727 ReuseInfo ReusedOperands(MI, TRI);
1728 SmallVector<unsigned, 4> VirtUseOps;
1729 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1730 MachineOperand &MO = MI.getOperand(i);
1731 if (!MO.isReg() || MO.getReg() == 0)
1732 continue; // Ignore non-register operands.
1733
1734 unsigned VirtReg = MO.getReg();
1735 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1736 // Ignore physregs for spilling, but remember that it is used by this
1737 // function.
1738 RegInfo->setPhysRegUsed(VirtReg);
1739 continue;
1740 }
1741
1742 // We want to process implicit virtual register uses first.
1743 if (MO.isImplicit())
1744 // If the virtual register is implicitly defined, emit a implicit_def
1745 // before so scavenger knows it's "defined".
Evan Cheng4784f1f2009-06-30 08:49:04 +00001746 // FIXME: This is a horrible hack done the by register allocator to
1747 // remat a definition with virtual register operand.
Lang Hames87e3bca2009-05-06 02:36:21 +00001748 VirtUseOps.insert(VirtUseOps.begin(), i);
1749 else
1750 VirtUseOps.push_back(i);
1751 }
1752
1753 // Process all of the spilled uses and all non spilled reg references.
1754 SmallVector<int, 2> PotentialDeadStoreSlots;
1755 KilledMIRegs.clear();
1756 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1757 unsigned i = VirtUseOps[j];
1758 MachineOperand &MO = MI.getOperand(i);
1759 unsigned VirtReg = MO.getReg();
1760 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1761 "Not a virtual register?");
1762
1763 unsigned SubIdx = MO.getSubReg();
1764 if (VRM.isAssignedReg(VirtReg)) {
1765 // This virtual register was assigned a physreg!
1766 unsigned Phys = VRM.getPhys(VirtReg);
1767 RegInfo->setPhysRegUsed(Phys);
1768 if (MO.isDef())
1769 ReusedOperands.markClobbered(Phys);
1770 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1771 MI.getOperand(i).setReg(RReg);
1772 MI.getOperand(i).setSubReg(0);
1773 if (VRM.isImplicitlyDefined(VirtReg))
Evan Cheng4784f1f2009-06-30 08:49:04 +00001774 // FIXME: Is this needed?
Lang Hames87e3bca2009-05-06 02:36:21 +00001775 BuildMI(MBB, &MI, MI.getDebugLoc(),
1776 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1777 continue;
1778 }
1779
1780 // This virtual register is now known to be a spilled value.
1781 if (!MO.isUse())
1782 continue; // Handle defs in the loop below (handle use&def here though)
1783
Evan Cheng4784f1f2009-06-30 08:49:04 +00001784 bool AvoidReload = MO.isUndef();
1785 // Check if it is defined by an implicit def. It should not be spilled.
1786 // Note, this is for correctness reason. e.g.
1787 // 8 %reg1024<def> = IMPLICIT_DEF
1788 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1789 // The live range [12, 14) are not part of the r1024 live interval since
1790 // it's defined by an implicit def. It will not conflicts with live
1791 // interval of r1025. Now suppose both registers are spilled, you can
1792 // easily see a situation where both registers are reloaded before
1793 // the INSERT_SUBREG and both target registers that would overlap.
Lang Hames87e3bca2009-05-06 02:36:21 +00001794 bool DoReMat = VRM.isReMaterialized(VirtReg);
1795 int SSorRMId = DoReMat
1796 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1797 int ReuseSlot = SSorRMId;
1798
1799 // Check to see if this stack slot is available.
1800 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1801
1802 // If this is a sub-register use, make sure the reuse register is in the
1803 // right register class. For example, for x86 not all of the 32-bit
1804 // registers have accessible sub-registers.
1805 // Similarly so for EXTRACT_SUBREG. Consider this:
1806 // EDI = op
1807 // MOV32_mr fi#1, EDI
1808 // ...
1809 // = EXTRACT_SUBREG fi#1
1810 // fi#1 is available in EDI, but it cannot be reused because it's not in
1811 // the right register file.
1812 if (PhysReg && !AvoidReload &&
1813 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1814 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1815 if (!RC->contains(PhysReg))
1816 PhysReg = 0;
1817 }
1818
1819 if (PhysReg && !AvoidReload) {
1820 // This spilled operand might be part of a two-address operand. If this
1821 // is the case, then changing it will necessarily require changing the
1822 // def part of the instruction as well. However, in some cases, we
1823 // aren't allowed to modify the reused register. If none of these cases
1824 // apply, reuse it.
1825 bool CanReuse = true;
1826 bool isTied = MI.isRegTiedToDefOperand(i);
1827 if (isTied) {
1828 // Okay, we have a two address operand. We can reuse this physreg as
1829 // long as we are allowed to clobber the value and there isn't an
1830 // earlier def that has already clobbered the physreg.
1831 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1832 Spills.canClobberPhysReg(PhysReg);
1833 }
1834
1835 if (CanReuse) {
1836 // If this stack slot value is already available, reuse it!
1837 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +00001838 DEBUG(errs() << "Reusing RM#"
1839 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001840 else
Chris Lattner6456d382009-08-23 03:20:44 +00001841 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1842 DEBUG(errs() << " from physreg "
1843 << TRI->getName(PhysReg) << " for vreg"
1844 << VirtReg <<" instead of reloading into physreg "
1845 << TRI->getName(VRM.getPhys(VirtReg)) << '\n');
Lang Hames87e3bca2009-05-06 02:36:21 +00001846 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1847 MI.getOperand(i).setReg(RReg);
1848 MI.getOperand(i).setSubReg(0);
1849
1850 // The only technical detail we have is that we don't know that
1851 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1852 // later in the instruction. In particular, consider 'op V1, V2'.
1853 // If V1 is available in physreg R0, we would choose to reuse it
1854 // here, instead of reloading it into the register the allocator
1855 // indicated (say R1). However, V2 might have to be reloaded
1856 // later, and it might indicate that it needs to live in R0. When
1857 // this occurs, we need to have information available that
1858 // indicates it is safe to use R1 for the reload instead of R0.
1859 //
1860 // To further complicate matters, we might conflict with an alias,
1861 // or R0 and R1 might not be compatible with each other. In this
1862 // case, we actually insert a reload for V1 in R1, ensuring that
1863 // we can get at R0 or its alias.
1864 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1865 VRM.getPhys(VirtReg), VirtReg);
1866 if (isTied)
1867 // Only mark it clobbered if this is a use&def operand.
1868 ReusedOperands.markClobbered(PhysReg);
1869 ++NumReused;
1870
1871 if (MI.getOperand(i).isKill() &&
1872 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1873
1874 // The store of this spilled value is potentially dead, but we
1875 // won't know for certain until we've confirmed that the re-use
1876 // above is valid, which means waiting until the other operands
1877 // are processed. For now we just track the spill slot, we'll
1878 // remove it after the other operands are processed if valid.
1879
1880 PotentialDeadStoreSlots.push_back(ReuseSlot);
1881 }
1882
1883 // Mark is isKill if it's there no other uses of the same virtual
1884 // register and it's not a two-address operand. IsKill will be
1885 // unset if reg is reused.
1886 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1887 MI.getOperand(i).setIsKill();
1888 KilledMIRegs.insert(VirtReg);
1889 }
1890
1891 continue;
1892 } // CanReuse
1893
1894 // Otherwise we have a situation where we have a two-address instruction
1895 // whose mod/ref operand needs to be reloaded. This reload is already
1896 // available in some register "PhysReg", but if we used PhysReg as the
1897 // operand to our 2-addr instruction, the instruction would modify
1898 // PhysReg. This isn't cool if something later uses PhysReg and expects
1899 // to get its initial value.
1900 //
1901 // To avoid this problem, and to avoid doing a load right after a store,
1902 // we emit a copy from PhysReg into the designated register for this
1903 // operand.
1904 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1905 assert(DesignatedReg && "Must map virtreg to physreg!");
1906
1907 // Note that, if we reused a register for a previous operand, the
1908 // register we want to reload into might not actually be
1909 // available. If this occurs, use the register indicated by the
1910 // reuser.
1911 if (ReusedOperands.hasReuses())
Evan Cheng5d885022009-07-21 09:15:00 +00001912 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1913 DesignatedReg, &MI,
1914 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001915
1916 // If the mapped designated register is actually the physreg we have
1917 // incoming, we don't need to inserted a dead copy.
1918 if (DesignatedReg == PhysReg) {
1919 // If this stack slot value is already available, reuse it!
1920 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +00001921 DEBUG(errs() << "Reusing RM#"
1922 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001923 else
Chris Lattner6456d382009-08-23 03:20:44 +00001924 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1925 DEBUG(errs() << " from physreg " << TRI->getName(PhysReg)
1926 << " for vreg" << VirtReg
1927 << " instead of reloading into same physreg.\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001928 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1929 MI.getOperand(i).setReg(RReg);
1930 MI.getOperand(i).setSubReg(0);
1931 ReusedOperands.markClobbered(RReg);
1932 ++NumReused;
1933 continue;
1934 }
1935
1936 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1937 RegInfo->setPhysRegUsed(DesignatedReg);
1938 ReusedOperands.markClobbered(DesignatedReg);
Lang Hames87e3bca2009-05-06 02:36:21 +00001939
David Greene2d4e6d32009-07-28 16:49:24 +00001940 // Back-schedule reloads and remats.
1941 MachineBasicBlock::iterator InsertLoc =
1942 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
1943 SSorRMId, TII, MF);
1944
1945 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
1946
1947 MachineInstr *CopyMI = prior(InsertLoc);
Evan Cheng427a6b62009-05-15 06:48:19 +00001948 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001949
1950 // This invalidates DesignatedReg.
1951 Spills.ClobberPhysReg(DesignatedReg);
1952
1953 Spills.addAvailable(ReuseSlot, DesignatedReg);
1954 unsigned RReg =
1955 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1956 MI.getOperand(i).setReg(RReg);
1957 MI.getOperand(i).setSubReg(0);
Chris Lattner6456d382009-08-23 03:20:44 +00001958 DEBUG(errs() << '\t' << *prior(MII));
Lang Hames87e3bca2009-05-06 02:36:21 +00001959 ++NumReused;
1960 continue;
1961 } // if (PhysReg)
1962
1963 // Otherwise, reload it and remember that we have it.
1964 PhysReg = VRM.getPhys(VirtReg);
1965 assert(PhysReg && "Must map virtreg to physreg!");
1966
1967 // Note that, if we reused a register for a previous operand, the
1968 // register we want to reload into might not actually be
1969 // available. If this occurs, use the register indicated by the
1970 // reuser.
1971 if (ReusedOperands.hasReuses())
Evan Cheng5d885022009-07-21 09:15:00 +00001972 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1973 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001974
1975 RegInfo->setPhysRegUsed(PhysReg);
1976 ReusedOperands.markClobbered(PhysReg);
1977 if (AvoidReload)
1978 ++NumAvoided;
1979 else {
David Greene2d4e6d32009-07-28 16:49:24 +00001980 // Back-schedule reloads and remats.
1981 MachineBasicBlock::iterator InsertLoc =
1982 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
1983 SSorRMId, TII, MF);
1984
Lang Hames87e3bca2009-05-06 02:36:21 +00001985 if (DoReMat) {
David Greene2d4e6d32009-07-28 16:49:24 +00001986 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001987 } else {
1988 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
David Greene2d4e6d32009-07-28 16:49:24 +00001989 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
1990 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00001991 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1992 ++NumLoads;
Jakob Stoklund Olesen7a1e8722009-08-15 11:03:03 +00001993 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00001994 }
1995 // This invalidates PhysReg.
1996 Spills.ClobberPhysReg(PhysReg);
1997
1998 // Any stores to this stack slot are not dead anymore.
1999 if (!DoReMat)
2000 MaybeDeadStores[SSorRMId] = NULL;
2001 Spills.addAvailable(SSorRMId, PhysReg);
2002 // Assumes this is the last use. IsKill will be unset if reg is reused
2003 // unless it's a two-address operand.
2004 if (!MI.isRegTiedToDefOperand(i) &&
2005 KilledMIRegs.count(VirtReg) == 0) {
2006 MI.getOperand(i).setIsKill();
2007 KilledMIRegs.insert(VirtReg);
2008 }
2009
David Greene2d4e6d32009-07-28 16:49:24 +00002010 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
Chris Lattner6456d382009-08-23 03:20:44 +00002011 DEBUG(errs() << '\t' << *prior(InsertLoc));
Lang Hames87e3bca2009-05-06 02:36:21 +00002012 }
2013 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2014 MI.getOperand(i).setReg(RReg);
2015 MI.getOperand(i).setSubReg(0);
2016 }
2017
2018 // Ok - now we can remove stores that have been confirmed dead.
2019 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2020 // This was the last use and the spilled value is still available
2021 // for reuse. That means the spill was unnecessary!
2022 int PDSSlot = PotentialDeadStoreSlots[j];
2023 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2024 if (DeadStore) {
Chris Lattner6456d382009-08-23 03:20:44 +00002025 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002026 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002027 VRM.RemoveMachineInstrFromMaps(DeadStore);
2028 MBB.erase(DeadStore);
2029 MaybeDeadStores[PDSSlot] = NULL;
2030 ++NumDSE;
2031 }
2032 }
2033
2034
Chris Lattner6456d382009-08-23 03:20:44 +00002035 DEBUG(errs() << '\t' << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002036
2037
2038 // If we have folded references to memory operands, make sure we clear all
2039 // physical registers that may contain the value of the spilled virtual
2040 // register
2041 SmallSet<int, 2> FoldedSS;
2042 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2043 unsigned VirtReg = I->second.first;
2044 VirtRegMap::ModRef MR = I->second.second;
Chris Lattner6456d382009-08-23 03:20:44 +00002045 DEBUG(errs() << "Folded vreg: " << VirtReg << " MR: " << MR);
Lang Hames87e3bca2009-05-06 02:36:21 +00002046
2047 // MI2VirtMap be can updated which invalidate the iterator.
2048 // Increment the iterator first.
2049 ++I;
2050 int SS = VRM.getStackSlot(VirtReg);
2051 if (SS == VirtRegMap::NO_STACK_SLOT)
2052 continue;
2053 FoldedSS.insert(SS);
Chris Lattner6456d382009-08-23 03:20:44 +00002054 DEBUG(errs() << " - StackSlot: " << SS << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00002055
2056 // If this folded instruction is just a use, check to see if it's a
2057 // straight load from the virt reg slot.
2058 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2059 int FrameIdx;
2060 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2061 if (DestReg && FrameIdx == SS) {
2062 // If this spill slot is available, turn it into a copy (or nothing)
2063 // instead of leaving it as a load!
2064 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
Chris Lattner6456d382009-08-23 03:20:44 +00002065 DEBUG(errs() << "Promoted Load To Copy: " << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002066 if (DestReg != InReg) {
2067 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2068 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2069 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2070 unsigned SubIdx = DefMO->getSubReg();
2071 // Revisit the copy so we make sure to notice the effects of the
2072 // operation on the destreg (either needing to RA it if it's
2073 // virtual or needing to clobber any values if it's physical).
2074 NextMII = &MI;
2075 --NextMII; // backtrack to the copy.
2076 // Propagate the sub-register index over.
2077 if (SubIdx) {
2078 DefMO = NextMII->findRegisterDefOperand(DestReg);
2079 DefMO->setSubReg(SubIdx);
2080 }
2081
2082 // Mark is killed.
2083 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2084 KillOpnd->setIsKill();
2085
2086 BackTracked = true;
2087 } else {
Chris Lattner6456d382009-08-23 03:20:44 +00002088 DEBUG(errs() << "Removing now-noop copy: " << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002089 // Unset last kill since it's being reused.
Evan Cheng427a6b62009-05-15 06:48:19 +00002090 InvalidateKill(InReg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002091 Spills.disallowClobberPhysReg(InReg);
2092 }
2093
Evan Cheng427a6b62009-05-15 06:48:19 +00002094 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002095 VRM.RemoveMachineInstrFromMaps(&MI);
2096 MBB.erase(&MI);
2097 Erased = true;
2098 goto ProcessNextInst;
2099 }
2100 } else {
2101 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2102 SmallVector<MachineInstr*, 4> NewMIs;
2103 if (PhysReg &&
2104 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2105 MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00002106 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002107 VRM.RemoveMachineInstrFromMaps(&MI);
2108 MBB.erase(&MI);
2109 Erased = true;
2110 --NextMII; // backtrack to the unfolded instruction.
2111 BackTracked = true;
2112 goto ProcessNextInst;
2113 }
2114 }
2115 }
2116
2117 // If this reference is not a use, any previous store is now dead.
2118 // Otherwise, the store to this stack slot is not dead anymore.
2119 MachineInstr* DeadStore = MaybeDeadStores[SS];
2120 if (DeadStore) {
2121 bool isDead = !(MR & VirtRegMap::isRef);
2122 MachineInstr *NewStore = NULL;
2123 if (MR & VirtRegMap::isModRef) {
2124 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2125 SmallVector<MachineInstr*, 4> NewMIs;
2126 // We can reuse this physreg as long as we are allowed to clobber
2127 // the value and there isn't an earlier def that has already clobbered
2128 // the physreg.
2129 if (PhysReg &&
2130 !ReusedOperands.isClobbered(PhysReg) &&
2131 Spills.canClobberPhysReg(PhysReg) &&
2132 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2133 MachineOperand *KillOpnd =
2134 DeadStore->findRegisterUseOperand(PhysReg, true);
2135 // Note, if the store is storing a sub-register, it's possible the
2136 // super-register is needed below.
2137 if (KillOpnd && !KillOpnd->getSubReg() &&
2138 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2139 MBB.insert(MII, NewMIs[0]);
2140 NewStore = NewMIs[1];
2141 MBB.insert(MII, NewStore);
2142 VRM.addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002143 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002144 VRM.RemoveMachineInstrFromMaps(&MI);
2145 MBB.erase(&MI);
2146 Erased = true;
2147 --NextMII;
2148 --NextMII; // backtrack to the unfolded instruction.
2149 BackTracked = true;
2150 isDead = true;
2151 ++NumSUnfold;
2152 }
2153 }
2154 }
2155
2156 if (isDead) { // Previous store is dead.
2157 // If we get here, the store is dead, nuke it now.
Chris Lattner6456d382009-08-23 03:20:44 +00002158 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002159 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002160 VRM.RemoveMachineInstrFromMaps(DeadStore);
2161 MBB.erase(DeadStore);
2162 if (!NewStore)
2163 ++NumDSE;
2164 }
2165
2166 MaybeDeadStores[SS] = NULL;
2167 if (NewStore) {
2168 // Treat this store as a spill merged into a copy. That makes the
2169 // stack slot value available.
2170 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2171 goto ProcessNextInst;
2172 }
2173 }
2174
2175 // If the spill slot value is available, and this is a new definition of
2176 // the value, the value is not available anymore.
2177 if (MR & VirtRegMap::isMod) {
2178 // Notice that the value in this stack slot has been modified.
2179 Spills.ModifyStackSlotOrReMat(SS);
2180
2181 // If this is *just* a mod of the value, check to see if this is just a
2182 // store to the spill slot (i.e. the spill got merged into the copy). If
2183 // so, realize that the vreg is available now, and add the store to the
2184 // MaybeDeadStore info.
2185 int StackSlot;
2186 if (!(MR & VirtRegMap::isRef)) {
2187 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2188 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2189 "Src hasn't been allocated yet?");
2190
2191 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2192 Spills, RegKills, KillOps, TRI, VRM)) {
2193 NextMII = next(MII);
2194 BackTracked = true;
2195 goto ProcessNextInst;
2196 }
2197
2198 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2199 // this as a potentially dead store in case there is a subsequent
2200 // store into the stack slot without a read from it.
2201 MaybeDeadStores[StackSlot] = &MI;
2202
2203 // If the stack slot value was previously available in some other
2204 // register, change it now. Otherwise, make the register
2205 // available in PhysReg.
2206 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2207 }
2208 }
2209 }
2210 }
2211
2212 // Process all of the spilled defs.
2213 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2214 MachineOperand &MO = MI.getOperand(i);
2215 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2216 continue;
2217
2218 unsigned VirtReg = MO.getReg();
2219 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2220 // Check to see if this is a noop copy. If so, eliminate the
2221 // instruction before considering the dest reg to be changed.
Evan Cheng2578ba22009-07-01 01:59:31 +00002222 // Also check if it's copying from an "undef", if so, we can't
2223 // eliminate this or else the undef marker is lost and it will
2224 // confuses the scavenger. This is extremely rare.
Lang Hames87e3bca2009-05-06 02:36:21 +00002225 unsigned Src, Dst, SrcSR, DstSR;
Evan Cheng2578ba22009-07-01 01:59:31 +00002226 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2227 !MI.findRegisterUseOperand(Src)->isUndef()) {
Lang Hames87e3bca2009-05-06 02:36:21 +00002228 ++NumDCE;
Chris Lattner6456d382009-08-23 03:20:44 +00002229 DEBUG(errs() << "Removing now-noop copy: " << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002230 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00002231 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00002232 if (MO.isDead() && !KillRegs.empty()) {
2233 // Source register or an implicit super/sub-register use is killed.
2234 assert(KillRegs[0] == Dst ||
2235 TRI->isSubRegister(KillRegs[0], Dst) ||
2236 TRI->isSuperRegister(KillRegs[0], Dst));
2237 // Last def is now dead.
Evan Chengeca24fb2009-05-12 23:07:00 +00002238 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002239 }
2240 VRM.RemoveMachineInstrFromMaps(&MI);
2241 MBB.erase(&MI);
2242 Erased = true;
2243 Spills.disallowClobberPhysReg(VirtReg);
2244 goto ProcessNextInst;
2245 }
Evan Cheng2578ba22009-07-01 01:59:31 +00002246
Lang Hames87e3bca2009-05-06 02:36:21 +00002247 // If it's not a no-op copy, it clobbers the value in the destreg.
2248 Spills.ClobberPhysReg(VirtReg);
2249 ReusedOperands.markClobbered(VirtReg);
2250
2251 // Check to see if this instruction is a load from a stack slot into
2252 // a register. If so, this provides the stack slot value in the reg.
2253 int FrameIdx;
2254 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2255 assert(DestReg == VirtReg && "Unknown load situation!");
2256
2257 // If it is a folded reference, then it's not safe to clobber.
2258 bool Folded = FoldedSS.count(FrameIdx);
2259 // Otherwise, if it wasn't available, remember that it is now!
2260 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2261 goto ProcessNextInst;
2262 }
2263
2264 continue;
2265 }
2266
2267 unsigned SubIdx = MO.getSubReg();
2268 bool DoReMat = VRM.isReMaterialized(VirtReg);
2269 if (DoReMat)
2270 ReMatDefs.insert(&MI);
2271
2272 // The only vregs left are stack slot definitions.
2273 int StackSlot = VRM.getStackSlot(VirtReg);
2274 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2275
2276 // If this def is part of a two-address operand, make sure to execute
2277 // the store from the correct physical register.
2278 unsigned PhysReg;
2279 unsigned TiedOp;
2280 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2281 PhysReg = MI.getOperand(TiedOp).getReg();
2282 if (SubIdx) {
2283 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2284 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2285 "Can't find corresponding super-register!");
2286 PhysReg = SuperReg;
2287 }
2288 } else {
2289 PhysReg = VRM.getPhys(VirtReg);
2290 if (ReusedOperands.isClobbered(PhysReg)) {
2291 // Another def has taken the assigned physreg. It must have been a
2292 // use&def which got it due to reuse. Undo the reuse!
Evan Cheng5d885022009-07-21 09:15:00 +00002293 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2294 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002295 }
2296 }
2297
2298 assert(PhysReg && "VR not assigned a physical register?");
2299 RegInfo->setPhysRegUsed(PhysReg);
2300 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2301 ReusedOperands.markClobbered(RReg);
2302 MI.getOperand(i).setReg(RReg);
2303 MI.getOperand(i).setSubReg(0);
2304
2305 if (!MO.isDead()) {
2306 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2307 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2308 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2309 NextMII = next(MII);
2310
2311 // Check to see if this is a noop copy. If so, eliminate the
2312 // instruction before considering the dest reg to be changed.
2313 {
2314 unsigned Src, Dst, SrcSR, DstSR;
2315 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2316 ++NumDCE;
Chris Lattner6456d382009-08-23 03:20:44 +00002317 DEBUG(errs() << "Removing now-noop copy: " << MI);
Evan Cheng427a6b62009-05-15 06:48:19 +00002318 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002319 VRM.RemoveMachineInstrFromMaps(&MI);
2320 MBB.erase(&MI);
2321 Erased = true;
Evan Cheng427a6b62009-05-15 06:48:19 +00002322 UpdateKills(*LastStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002323 goto ProcessNextInst;
2324 }
2325 }
2326 }
2327 }
2328 ProcessNextInst:
Evan Cheng52484682009-07-18 02:10:10 +00002329 // Delete dead instructions without side effects.
Evan Chengfc6ad402009-07-22 00:25:27 +00002330 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
Evan Cheng52484682009-07-18 02:10:10 +00002331 InvalidateKills(MI, TRI, RegKills, KillOps);
2332 VRM.RemoveMachineInstrFromMaps(&MI);
2333 MBB.erase(&MI);
2334 Erased = true;
2335 }
2336 if (!Erased)
2337 DistanceMap.insert(std::make_pair(&MI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00002338 if (!Erased && !BackTracked) {
2339 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
Evan Cheng427a6b62009-05-15 06:48:19 +00002340 UpdateKills(*II, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002341 }
2342 MII = NextMII;
2343 }
2344
2345 }
2346
2347};
2348
Dan Gohman7db949d2009-08-07 01:32:21 +00002349}
2350
Lang Hames87e3bca2009-05-06 02:36:21 +00002351llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2352 switch (RewriterOpt) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002353 default: llvm_unreachable("Unreachable!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002354 case local:
2355 return new LocalRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002356 case trivial:
2357 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002358 }
2359}