blob: 154148bcfe1057c367a0ad88b9e46d9ebe356621 [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukmance07e992009-01-08 16:40:25 +000019// allocation, see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030//===----------------------------------------------------------------------===//
31
Evan Chengb1290a62008-10-02 18:29:27 +000032#define DEBUG_TYPE "regalloc"
33
Lang Hames6699fb22009-08-06 23:32:48 +000034#include "PBQP/HeuristicSolver.h"
35#include "PBQP/SimpleGraph.h"
36#include "PBQP/Heuristics/Briggs.h"
Evan Chengb1290a62008-10-02 18:29:27 +000037#include "VirtRegMap.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000038#include "VirtRegRewriter.h"
Evan Chengb1290a62008-10-02 18:29:27 +000039#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000040#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000041#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000042#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000043#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/RegAllocRegistry.h"
45#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000046#include "llvm/Support/Debug.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000047#include "llvm/Support/raw_ostream.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000048#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetMachine.h"
50#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000051#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000052#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000053#include <set>
54#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000055
56using namespace llvm;
57
58static RegisterRegAlloc
Lang Hames6699fb22009-08-06 23:32:48 +000059registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60 llvm::createPBQPRegisterAllocator);
Evan Chengb1290a62008-10-02 18:29:27 +000061
Evan Chengb1290a62008-10-02 18:29:27 +000062namespace {
63
Lang Hames6699fb22009-08-06 23:32:48 +000064 ///
65 /// PBQP based allocators solve the register allocation problem by mapping
66 /// register allocation problems to Partitioned Boolean Quadratic
67 /// Programming problems.
Evan Chengb1290a62008-10-02 18:29:27 +000068 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
69 public:
70
71 static char ID;
Lang Hames6699fb22009-08-06 23:32:48 +000072
73 /// Construct a PBQP register allocator.
Evan Chengb1290a62008-10-02 18:29:27 +000074 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
75
Lang Hames6699fb22009-08-06 23:32:48 +000076 /// Return the pass name.
Evan Chengb1290a62008-10-02 18:29:27 +000077 virtual const char* getPassName() const throw() {
78 return "PBQP Register Allocator";
79 }
80
Lang Hames6699fb22009-08-06 23:32:48 +000081 /// PBQP analysis usage.
82 virtual void getAnalysisUsage(AnalysisUsage &au) const {
83 au.addRequired<LiveIntervals>();
84 //au.addRequiredID(SplitCriticalEdgesID);
85 au.addRequired<LiveStacks>();
86 au.addPreserved<LiveStacks>();
87 au.addRequired<MachineLoopInfo>();
88 au.addPreserved<MachineLoopInfo>();
89 au.addRequired<VirtRegMap>();
90 MachineFunctionPass::getAnalysisUsage(au);
Evan Chengb1290a62008-10-02 18:29:27 +000091 }
92
Lang Hames6699fb22009-08-06 23:32:48 +000093 /// Perform register allocation
Evan Chengb1290a62008-10-02 18:29:27 +000094 virtual bool runOnMachineFunction(MachineFunction &MF);
95
96 private:
97 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
98 typedef std::vector<const LiveInterval*> Node2LIMap;
99 typedef std::vector<unsigned> AllowedSet;
100 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000101 typedef std::set<unsigned> RegSet;
102 typedef std::pair<unsigned, unsigned> RegPair;
Lang Hames6699fb22009-08-06 23:32:48 +0000103 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000104
105 typedef std::set<LiveInterval*> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000106
107 MachineFunction *mf;
108 const TargetMachine *tm;
109 const TargetRegisterInfo *tri;
110 const TargetInstrInfo *tii;
111 const MachineLoopInfo *loopInfo;
112 MachineRegisterInfo *mri;
113
Lang Hames27601ef2008-11-16 12:12:54 +0000114 LiveIntervals *lis;
115 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000116 VirtRegMap *vrm;
117
118 LI2NodeMap li2Node;
119 Node2LIMap node2LI;
120 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000121 LiveIntervalSet vregIntervalsToAlloc,
122 emptyVRegIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000123
Misha Brukman2a835f92009-01-08 15:50:22 +0000124
Lang Hames6699fb22009-08-06 23:32:48 +0000125 /// Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000126 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000127 PBQP::Vector buildCostVector(unsigned vReg,
128 const RegContainer &allowed,
129 const CoalesceMap &cealesces,
130 PBQP::PBQPNum spillCost) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000131
Lang Hames6699fb22009-08-06 23:32:48 +0000132 /// \brief Builds a PBQP interference matrix.
133 ///
134 /// @return Either a pointer to a non-zero PBQP matrix representing the
135 /// allocation option costs, or a null pointer for a zero matrix.
136 ///
137 /// Expects allowed sets for two interfering LiveIntervals. These allowed
138 /// sets should contain only allocable registers from the LiveInterval's
139 /// register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000140 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000141 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
142 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000143
Lang Hames6699fb22009-08-06 23:32:48 +0000144 ///
145 /// Expects allowed sets for two potentially coalescable LiveIntervals,
146 /// and an estimated benefit due to coalescing. The allowed sets should
147 /// contain only allocable registers from the LiveInterval's register
148 /// classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000149 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000150 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
151 const RegContainer &allowed2,
152 PBQP::PBQPNum cBenefit) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000153
Lang Hames6699fb22009-08-06 23:32:48 +0000154 /// \brief Finds coalescing opportunities and returns them as a map.
155 ///
156 /// Any entries in the map are guaranteed coalescable, even if their
157 /// corresponding live intervals overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000158 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000159
Lang Hames6699fb22009-08-06 23:32:48 +0000160 /// \brief Finds the initial set of vreg intervals to allocate.
Lang Hames27601ef2008-11-16 12:12:54 +0000161 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000162
Lang Hames6699fb22009-08-06 23:32:48 +0000163 /// \brief Constructs a PBQP problem representation of the register
164 /// allocation problem for this function.
165 ///
166 /// @return a PBQP solver object for the register allocation problem.
167 PBQP::SimpleGraph constructPBQPProblem();
Evan Chengb1290a62008-10-02 18:29:27 +0000168
Lang Hames6699fb22009-08-06 23:32:48 +0000169 /// \brief Adds a stack interval if the given live interval has been
170 /// spilled. Used to support stack slot coloring.
Evan Chengc781a242009-05-03 18:32:42 +0000171 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000172
Lang Hames6699fb22009-08-06 23:32:48 +0000173 /// \brief Given a solved PBQP problem maps this solution back to a register
174 /// assignment.
175 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
Evan Chengb1290a62008-10-02 18:29:27 +0000176
Lang Hames6699fb22009-08-06 23:32:48 +0000177 /// \brief Postprocessing before final spilling. Sets basic block "live in"
178 /// variables.
Lang Hames27601ef2008-11-16 12:12:54 +0000179 void finalizeAlloc() const;
180
Evan Chengb1290a62008-10-02 18:29:27 +0000181 };
182
183 char PBQPRegAlloc::ID = 0;
184}
185
186
Lang Hames27601ef2008-11-16 12:12:54 +0000187template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000188PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
189 const RegContainer &allowed,
190 const CoalesceMap &coalesces,
191 PBQP::PBQPNum spillCost) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000192
Lang Hames27601ef2008-11-16 12:12:54 +0000193 typedef typename RegContainer::const_iterator AllowedItr;
194
Evan Chengb1290a62008-10-02 18:29:27 +0000195 // Allocate vector. Additional element (0th) used for spill option
Lang Hames6699fb22009-08-06 23:32:48 +0000196 PBQP::Vector v(allowed.size() + 1, 0);
Evan Chengb1290a62008-10-02 18:29:27 +0000197
Lang Hames6699fb22009-08-06 23:32:48 +0000198 v[0] = spillCost;
Evan Chengb1290a62008-10-02 18:29:27 +0000199
Lang Hames27601ef2008-11-16 12:12:54 +0000200 // Iterate over the allowed registers inserting coalesce benefits if there
201 // are any.
202 unsigned ai = 0;
203 for (AllowedItr itr = allowed.begin(), end = allowed.end();
204 itr != end; ++itr, ++ai) {
205
206 unsigned pReg = *itr;
207
208 CoalesceMap::const_iterator cmItr =
209 coalesces.find(RegPair(vReg, pReg));
210
211 // No coalesce - on to the next preg.
212 if (cmItr == coalesces.end())
213 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000214
215 // We have a coalesce - insert the benefit.
Lang Hames6699fb22009-08-06 23:32:48 +0000216 v[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000217 }
218
Evan Chengb1290a62008-10-02 18:29:27 +0000219 return v;
220}
221
Lang Hames27601ef2008-11-16 12:12:54 +0000222template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000223PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000224 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000225
Lang Hames27601ef2008-11-16 12:12:54 +0000226 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000227
228 // Construct a PBQP matrix representing the cost of allocation options. The
229 // rows and columns correspond to the allocation options for the two live
230 // intervals. Elements will be infinite where corresponding registers alias,
231 // since we cannot allocate aliasing registers to interfering live intervals.
232 // All other elements (non-aliasing combinations) will have zero cost. Note
233 // that the spill option (element 0,0) has zero cost, since we can allocate
234 // both intervals to memory safely (the cost for each individual allocation
235 // to memory is accounted for by the cost vectors for each live interval).
Lang Hames6699fb22009-08-06 23:32:48 +0000236 PBQP::Matrix *m =
237 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Misha Brukman2a835f92009-01-08 15:50:22 +0000238
Evan Chengb1290a62008-10-02 18:29:27 +0000239 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
240 // between interfering live ranges with non-overlapping register sets (e.g.
241 // non-overlapping reg classes, or disjoint sets of allowed regs within the
242 // same class). The term "overlapping" is used advisedly: sets which do not
243 // intersect, but contain registers which alias, will have non-zero matrices.
244 // We optimize zero matrices away to improve solver speed.
245 bool isZeroMatrix = true;
246
247
248 // Row index. Starts at 1, since the 0th row is for the spill option, which
249 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000250 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000251
Misha Brukman2a835f92009-01-08 15:50:22 +0000252 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000253 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000254 a1Itr != a1End; ++a1Itr) {
255
256 // Column index, starts at 1 as for row index.
257 unsigned ci = 1;
258 unsigned reg1 = *a1Itr;
259
Lang Hames27601ef2008-11-16 12:12:54 +0000260 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000261 a2Itr != a2End; ++a2Itr) {
262
263 unsigned reg2 = *a2Itr;
264
265 // If the row/column regs are identical or alias insert an infinity.
266 if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
Lang Hames6699fb22009-08-06 23:32:48 +0000267 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
Evan Chengb1290a62008-10-02 18:29:27 +0000268 isZeroMatrix = false;
269 }
270
271 ++ci;
272 }
273
274 ++ri;
275 }
276
277 // If this turns out to be a zero matrix...
278 if (isZeroMatrix) {
279 // free it and return null.
280 delete m;
281 return 0;
282 }
283
284 // ...otherwise return the cost matrix.
285 return m;
286}
287
Lang Hames27601ef2008-11-16 12:12:54 +0000288template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000289PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000290 const RegContainer &allowed1, const RegContainer &allowed2,
Lang Hames6699fb22009-08-06 23:32:48 +0000291 PBQP::PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000292
Lang Hames27601ef2008-11-16 12:12:54 +0000293 typedef typename RegContainer::const_iterator RegContainerIterator;
294
295 // Construct a PBQP Matrix representing the benefits of coalescing. As with
296 // interference matrices the rows and columns represent allowed registers
297 // for the LiveIntervals which are (potentially) to be coalesced. The amount
298 // -cBenefit will be placed in any element representing the same register
299 // for both intervals.
Lang Hames6699fb22009-08-06 23:32:48 +0000300 PBQP::Matrix *m =
301 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Lang Hames27601ef2008-11-16 12:12:54 +0000302
303 // Reset costs to zero.
304 m->reset(0);
305
306 // Assume the matrix is zero till proven otherwise. Zero matrices will be
307 // optimized away as in the interference case.
308 bool isZeroMatrix = true;
309
310 // Row index. Starts at 1, since the 0th row is for the spill option, which
311 // is always zero.
312 unsigned ri = 1;
313
314 // Iterate over the allowed sets, insert coalescing benefits where
315 // appropriate.
316 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
317 a1Itr != a1End; ++a1Itr) {
318
319 // Column index, starts at 1 as for row index.
320 unsigned ci = 1;
321 unsigned reg1 = *a1Itr;
322
323 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
324 a2Itr != a2End; ++a2Itr) {
325
326 // If the row and column represent the same register insert a beneficial
327 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000328 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000329 if (reg1 == *a2Itr) {
330 (*m)[ri][ci] = -cBenefit;
331 isZeroMatrix = false;
332 }
333
334 ++ci;
335 }
336
337 ++ri;
338 }
339
340 // If this turns out to be a zero matrix...
341 if (isZeroMatrix) {
342 // ...free it and return null.
343 delete m;
344 return 0;
345 }
346
347 return m;
348}
349
350PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
351
352 typedef MachineFunction::const_iterator MFIterator;
353 typedef MachineBasicBlock::const_iterator MBBIterator;
354 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000355
Lang Hames27601ef2008-11-16 12:12:54 +0000356 CoalesceMap coalescesFound;
357
358 // To find coalesces we need to iterate over the function looking for
359 // copy instructions.
360 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000361 bbItr != bbEnd; ++bbItr) {
362
363 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000364
Lang Hames27601ef2008-11-16 12:12:54 +0000365 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
366 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000367
368 const MachineInstr *instr = &*iItr;
Evan Cheng04ee5a12009-01-20 19:12:24 +0000369 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
Evan Chengb1290a62008-10-02 18:29:27 +0000370
Lang Hames27601ef2008-11-16 12:12:54 +0000371 // If this isn't a copy then continue to the next instruction.
Evan Cheng04ee5a12009-01-20 19:12:24 +0000372 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
Lang Hames27601ef2008-11-16 12:12:54 +0000373 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000374
Lang Hames27601ef2008-11-16 12:12:54 +0000375 // If the registers are already the same our job is nice and easy.
376 if (dstReg == srcReg)
377 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000378
Lang Hames27601ef2008-11-16 12:12:54 +0000379 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
380 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
381
382 // If both registers are physical then we can't coalesce.
383 if (srcRegIsPhysical && dstRegIsPhysical)
384 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000385
Lang Hames27601ef2008-11-16 12:12:54 +0000386 // If it's a copy that includes a virtual register but the source and
387 // destination classes differ then we can't coalesce, so continue with
388 // the next instruction.
389 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
390 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
391
392 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
393 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
394
395 if (srcRegClass != dstRegClass)
396 continue;
397
398 // We also need any physical regs to be allocable, coalescing with
399 // a non-allocable register is invalid.
400 if (srcRegIsPhysical) {
401 if (std::find(srcRegClass->allocation_order_begin(*mf),
402 srcRegClass->allocation_order_end(*mf), srcReg) ==
403 srcRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000404 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000405 }
406
Lang Hames27601ef2008-11-16 12:12:54 +0000407 if (dstRegIsPhysical) {
408 if (std::find(dstRegClass->allocation_order_begin(*mf),
409 dstRegClass->allocation_order_end(*mf), dstReg) ==
410 dstRegClass->allocation_order_end(*mf))
411 continue;
412 }
413
414 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000415 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000416 const LiveInterval *srcLI = &lis->getInterval(srcReg),
417 *dstLI = &lis->getInterval(dstReg);
418
419 if (srcLI->overlaps(*dstLI)) {
420 // Even in the case of an overlap we might still be able to coalesce,
421 // but we need to make sure that no definition of either range occurs
422 // while the other range is live.
423
424 // Otherwise start by assuming we're ok.
425 bool badDef = false;
426
427 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000428 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000429 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
430 vniItr != vniEnd; ++vniItr) {
431
432 // If we find a def that kills the coalescing opportunity then
433 // record it and break from the loop.
434 if (dstLI->liveAt((*vniItr)->def)) {
435 badDef = true;
436 break;
437 }
438 }
439
440 // If we have a bad def give up, continue to the next instruction.
441 if (badDef)
442 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000443
Lang Hames27601ef2008-11-16 12:12:54 +0000444 // Otherwise test definitions of the destination range.
445 for (VNIIterator
446 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
447 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000448
Lang Hames27601ef2008-11-16 12:12:54 +0000449 // We want to make sure we skip the copy instruction itself.
450 if ((*vniItr)->copy == instr)
451 continue;
452
453 if (srcLI->liveAt((*vniItr)->def)) {
454 badDef = true;
455 break;
456 }
457 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000458
Lang Hames27601ef2008-11-16 12:12:54 +0000459 // As before a bad def we give up and continue to the next instr.
460 if (badDef)
461 continue;
462 }
463
464 // If we make it to here then either the ranges didn't overlap, or they
465 // did, but none of their definitions would prevent us from coalescing.
466 // We're good to go with the coalesce.
467
468 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000469
Lang Hames27601ef2008-11-16 12:12:54 +0000470 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
471 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000472 }
473
474 }
475
Lang Hames27601ef2008-11-16 12:12:54 +0000476 return coalescesFound;
477}
478
479void PBQPRegAlloc::findVRegIntervalsToAlloc() {
480
481 // Iterate over all live ranges.
482 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
483 itr != end; ++itr) {
484
485 // Ignore physical ones.
486 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
487 continue;
488
489 LiveInterval *li = itr->second;
490
491 // If this live interval is non-empty we will use pbqp to allocate it.
492 // Empty intervals we allocate in a simple post-processing stage in
493 // finalizeAlloc.
494 if (!li->empty()) {
495 vregIntervalsToAlloc.insert(li);
496 }
497 else {
498 emptyVRegIntervals.insert(li);
499 }
500 }
Evan Chengb1290a62008-10-02 18:29:27 +0000501}
502
Lang Hames6699fb22009-08-06 23:32:48 +0000503PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
Evan Chengb1290a62008-10-02 18:29:27 +0000504
505 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000506 typedef std::vector<unsigned> RegVector;
Lang Hames6699fb22009-08-06 23:32:48 +0000507 typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000508
Lang Hames27601ef2008-11-16 12:12:54 +0000509 // This will store the physical intervals for easy reference.
510 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000511
512 // Start by clearing the old node <-> live interval mappings & allowed sets
513 li2Node.clear();
514 node2LI.clear();
515 allowedSets.clear();
516
Lang Hames27601ef2008-11-16 12:12:54 +0000517 // Populate physIntervals, update preg use:
518 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000519 itr != end; ++itr) {
520
Evan Chengb1290a62008-10-02 18:29:27 +0000521 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
522 physIntervals.push_back(itr->second);
523 mri->setPhysRegUsed(itr->second->reg);
524 }
Evan Chengb1290a62008-10-02 18:29:27 +0000525 }
526
Lang Hames27601ef2008-11-16 12:12:54 +0000527 // Iterate over vreg intervals, construct live interval <-> node number
528 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000529 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000530 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
531 itr != end; ++itr) {
532 const LiveInterval *li = *itr;
533
534 li2Node[li] = node2LI.size();
535 node2LI.push_back(li);
536 }
537
538 // Get the set of potential coalesces.
Lang Hames6699fb22009-08-06 23:32:48 +0000539 CoalesceMap coalesces;//(findCoalesces());
Evan Chengb1290a62008-10-02 18:29:27 +0000540
541 // Construct a PBQP solver for this problem
Lang Hames6699fb22009-08-06 23:32:48 +0000542 PBQP::SimpleGraph problem;
543 NodeVector problemNodes(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000544
545 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000546 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000547
548 // Iterate over virtual register intervals to compute allowed sets...
549 for (unsigned node = 0; node < node2LI.size(); ++node) {
550
551 // Grab pointers to the interval and its register class.
552 const LiveInterval *li = node2LI[node];
553 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000554
Evan Chengb1290a62008-10-02 18:29:27 +0000555 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000556 RegVector liAllowed(liRC->allocation_order_begin(*mf),
557 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000558
Lang Hames27601ef2008-11-16 12:12:54 +0000559 // Eliminate the physical registers which overlap with this range, along
560 // with all their aliases.
561 for (LIVector::iterator pItr = physIntervals.begin(),
562 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000563
Lang Hames27601ef2008-11-16 12:12:54 +0000564 if (!li->overlaps(**pItr))
565 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000566
Lang Hames27601ef2008-11-16 12:12:54 +0000567 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000568
Lang Hames27601ef2008-11-16 12:12:54 +0000569 // If we get here then the live intervals overlap, but we're still ok
570 // if they're coalescable.
571 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
572 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000573
Lang Hames27601ef2008-11-16 12:12:54 +0000574 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000575
Lang Hames27601ef2008-11-16 12:12:54 +0000576 // Remove the overlapping reg...
577 RegVector::iterator eraseItr =
578 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000579
Lang Hames27601ef2008-11-16 12:12:54 +0000580 if (eraseItr != liAllowed.end())
581 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000582
Lang Hames27601ef2008-11-16 12:12:54 +0000583 const unsigned *aliasItr = tri->getAliasSet(pReg);
584
585 if (aliasItr != 0) {
586 // ...and its aliases.
587 for (; *aliasItr != 0; ++aliasItr) {
588 RegVector::iterator eraseItr =
589 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000590
Lang Hames27601ef2008-11-16 12:12:54 +0000591 if (eraseItr != liAllowed.end()) {
592 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000593 }
Evan Chengb1290a62008-10-02 18:29:27 +0000594 }
Evan Chengb1290a62008-10-02 18:29:27 +0000595 }
Evan Chengb1290a62008-10-02 18:29:27 +0000596 }
597
598 // Copy the allowed set into a member vector for use when constructing cost
599 // vectors & matrices, and mapping PBQP solutions back to assignments.
600 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
601
602 // Set the spill cost to the interval weight, or epsilon if the
603 // interval weight is zero
Lang Hames6699fb22009-08-06 23:32:48 +0000604 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
605 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
Evan Chengb1290a62008-10-02 18:29:27 +0000606
607 // Build a cost vector for this interval.
Lang Hames6699fb22009-08-06 23:32:48 +0000608 problemNodes[node] =
609 problem.addNode(
610 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000611
612 }
613
Lang Hames27601ef2008-11-16 12:12:54 +0000614
Evan Chengb1290a62008-10-02 18:29:27 +0000615 // Now add the cost matrices...
616 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000617 const LiveInterval *li = node2LI[node1];
618
Evan Chengb1290a62008-10-02 18:29:27 +0000619 // Test for live range overlaps and insert interference matrices.
620 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
621 const LiveInterval *li2 = node2LI[node2];
622
Lang Hames27601ef2008-11-16 12:12:54 +0000623 CoalesceMap::const_iterator cmItr =
624 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000625
Lang Hames6699fb22009-08-06 23:32:48 +0000626 PBQP::Matrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000627
Lang Hames27601ef2008-11-16 12:12:54 +0000628 if (cmItr != coalesces.end()) {
629 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
630 cmItr->second);
631 }
632 else if (li->overlaps(*li2)) {
633 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
634 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000635
Lang Hames27601ef2008-11-16 12:12:54 +0000636 if (m != 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000637 problem.addEdge(problemNodes[node1],
638 problemNodes[node2],
639 *m);
640
Lang Hames27601ef2008-11-16 12:12:54 +0000641 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000642 }
643 }
644 }
645
Lang Hames6699fb22009-08-06 23:32:48 +0000646 problem.assignNodeIDs();
647
648 assert(problem.getNumNodes() == allowedSets.size());
649 for (unsigned i = 0; i < allowedSets.size(); ++i) {
650 assert(problem.getNodeItr(i) == problemNodes[i]);
651 }
652/*
653 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
654 << problem.getNumEdges() << " edges.\n";
655
656 problem.printDot(std::cerr);
657*/
Evan Chengb1290a62008-10-02 18:29:27 +0000658 // We're done, PBQP problem constructed - return it.
Lang Hames6699fb22009-08-06 23:32:48 +0000659 return problem;
Evan Chengb1290a62008-10-02 18:29:27 +0000660}
661
Evan Chengc781a242009-05-03 18:32:42 +0000662void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
663 MachineRegisterInfo* mri) {
Lang Hames27601ef2008-11-16 12:12:54 +0000664 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000665
666 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000667 return;
668
Evan Chengc781a242009-05-03 18:32:42 +0000669 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
670 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
Lang Hames27601ef2008-11-16 12:12:54 +0000671
672 VNInfo *vni;
673 if (stackInterval.getNumValNums() != 0)
674 vni = stackInterval.getValNumInfo(0);
675 else
Lang Hames857c4e02009-06-17 21:01:20 +0000676 vni = stackInterval.getNextValue(0, 0, false, lss->getVNInfoAllocator());
Lang Hames27601ef2008-11-16 12:12:54 +0000677
678 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
679 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
680}
681
Lang Hames6699fb22009-08-06 23:32:48 +0000682bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
683
684 static unsigned round = 0;
Daniel Dunbar8a1871d2009-08-08 00:40:46 +0000685 (void) round;
Misha Brukman2a835f92009-01-08 15:50:22 +0000686
Evan Chengb1290a62008-10-02 18:29:27 +0000687 // Set to true if we have any spills
688 bool anotherRoundNeeded = false;
689
690 // Clear the existing allocation.
691 vrm->clearAllVirt();
Misha Brukman2a835f92009-01-08 15:50:22 +0000692
Evan Chengb1290a62008-10-02 18:29:27 +0000693 // Iterate over the nodes mapping the PBQP solution to a register assignment.
694 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000695 unsigned virtReg = node2LI[node]->reg,
Lang Hames6699fb22009-08-06 23:32:48 +0000696 allocSelection = solution.getSelection(node);
697
Evan Chengb1290a62008-10-02 18:29:27 +0000698
699 // If the PBQP solution is non-zero it's a physical register...
700 if (allocSelection != 0) {
701 // Get the physical reg, subtracting 1 to account for the spill option.
702 unsigned physReg = allowedSets[node][allocSelection - 1];
703
Lang Hames27601ef2008-11-16 12:12:54 +0000704 DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
705
706 assert(physReg != 0);
707
Evan Chengb1290a62008-10-02 18:29:27 +0000708 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000709 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000710 }
711 // ...Otherwise it's a spill.
712 else {
713
714 // Make sure we ignore this virtual reg on the next round
715 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000716 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000717
Evan Chengb1290a62008-10-02 18:29:27 +0000718 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000719 const LiveInterval *spillInterval = node2LI[node];
720 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000721 SmallVector<LiveInterval*, 8> spillIs;
722 std::vector<LiveInterval*> newSpills =
Evan Chengc781a242009-05-03 18:32:42 +0000723 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
724 addStackInterval(spillInterval, mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000725
726 DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
727 << oldSpillWeight << ", New vregs: ";
728
729 // Copy any newly inserted live intervals into the list of regs to
730 // allocate.
731 for (std::vector<LiveInterval*>::const_iterator
732 itr = newSpills.begin(), end = newSpills.end();
733 itr != end; ++itr) {
734
735 assert(!(*itr)->empty() && "Empty spill range.");
736
737 DOUT << (*itr)->reg << " ";
738
739 vregIntervalsToAlloc.insert(*itr);
740 }
741
742 DOUT << ")\n";
Evan Chengb1290a62008-10-02 18:29:27 +0000743
744 // We need another round if spill intervals were added.
745 anotherRoundNeeded |= !newSpills.empty();
746 }
747 }
748
749 return !anotherRoundNeeded;
750}
751
Lang Hames27601ef2008-11-16 12:12:54 +0000752void PBQPRegAlloc::finalizeAlloc() const {
753 typedef LiveIntervals::iterator LIIterator;
754 typedef LiveInterval::Ranges::const_iterator LRIterator;
755
756 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000757 for (LiveIntervalSet::const_iterator
Lang Hames6699fb22009-08-06 23:32:48 +0000758 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
Lang Hames27601ef2008-11-16 12:12:54 +0000759 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000760 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000761
Evan Cheng90f95f82009-06-14 20:22:55 +0000762 unsigned physReg = vrm->getRegAllocPref(li->reg);
Lang Hames6699fb22009-08-06 23:32:48 +0000763
Lang Hames27601ef2008-11-16 12:12:54 +0000764 if (physReg == 0) {
765 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000766 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000767 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000768
769 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000770 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000771
Lang Hames27601ef2008-11-16 12:12:54 +0000772 // Finally iterate over the basic blocks to compute and set the live-in sets.
773 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
774 MachineBasicBlock *entryMBB = &*mf->begin();
775
776 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
777 liItr != liEnd; ++liItr) {
778
779 const LiveInterval *li = liItr->second;
780 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000781
Lang Hames27601ef2008-11-16 12:12:54 +0000782 // Get the physical register for this interval
783 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
784 reg = li->reg;
785 }
786 else if (vrm->isAssignedReg(li->reg)) {
787 reg = vrm->getPhys(li->reg);
788 }
789 else {
790 // Ranges which are assigned a stack slot only are ignored.
791 continue;
792 }
793
Lang Hamesb0e519f2009-05-17 23:50:36 +0000794 if (reg == 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000795 // Filter out zero regs - they're for intervals that were spilled.
Lang Hamesb0e519f2009-05-17 23:50:36 +0000796 continue;
797 }
798
Lang Hames27601ef2008-11-16 12:12:54 +0000799 // Iterate over the ranges of the current interval...
800 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
801 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000802
Lang Hames27601ef2008-11-16 12:12:54 +0000803 // Find the set of basic blocks which this range is live into...
804 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
805 // And add the physreg for this interval to their live-in sets.
806 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
807 if (liveInMBBs[i] != entryMBB) {
808 if (!liveInMBBs[i]->isLiveIn(reg)) {
809 liveInMBBs[i]->addLiveIn(reg);
810 }
811 }
812 }
813 liveInMBBs.clear();
814 }
815 }
816 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000817
Lang Hames27601ef2008-11-16 12:12:54 +0000818}
819
Evan Chengb1290a62008-10-02 18:29:27 +0000820bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000821
Evan Chengb1290a62008-10-02 18:29:27 +0000822 mf = &MF;
823 tm = &mf->getTarget();
824 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000825 tii = tm->getInstrInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000826 mri = &mf->getRegInfo();
827
Lang Hames27601ef2008-11-16 12:12:54 +0000828 lis = &getAnalysis<LiveIntervals>();
829 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000830 loopInfo = &getAnalysis<MachineLoopInfo>();
831
Owen Anderson49c8aa02009-03-13 05:55:11 +0000832 vrm = &getAnalysis<VirtRegMap>();
Evan Chengb1290a62008-10-02 18:29:27 +0000833
Lang Hames6699fb22009-08-06 23:32:48 +0000834 DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000835
Evan Chengb1290a62008-10-02 18:29:27 +0000836 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000837 //
Evan Chengb1290a62008-10-02 18:29:27 +0000838 // * Map current regalloc problem to a PBQP problem
839 // * Solve the PBQP problem
840 // * Map the solution back to a register allocation
841 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000842 //
Evan Chengb1290a62008-10-02 18:29:27 +0000843 // This process is continued till no more spills are generated.
844
Lang Hames27601ef2008-11-16 12:12:54 +0000845 // Find the vreg intervals in need of allocation.
846 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000847
Lang Hames27601ef2008-11-16 12:12:54 +0000848 // If there aren't any then we're done here.
849 if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
850 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000851
Lang Hames27601ef2008-11-16 12:12:54 +0000852 // If there are non-empty intervals allocate them using pbqp.
853 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000854
Lang Hames27601ef2008-11-16 12:12:54 +0000855 bool pbqpAllocComplete = false;
856 unsigned round = 0;
857
858 while (!pbqpAllocComplete) {
Lang Hames6699fb22009-08-06 23:32:48 +0000859 DEBUG(errs() << " PBQP Regalloc round " << round << ":\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000860
Lang Hames6699fb22009-08-06 23:32:48 +0000861 PBQP::SimpleGraph problem = constructPBQPProblem();
862 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
863 problem.assignNodeIDs();
864 PBQP::Solution solution = solver.solve(problem);
865/*
866 std::cerr << "Solution:\n";
867 for (unsigned i = 0; i < solution.numNodes(); ++i) {
868 std::cerr << " " << i << " -> " << solution.getSelection(i) << "\n";
869 }
870*/
871 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
Lang Hames27601ef2008-11-16 12:12:54 +0000872
873 ++round;
874 }
Evan Chengb1290a62008-10-02 18:29:27 +0000875 }
876
Lang Hames27601ef2008-11-16 12:12:54 +0000877 // Finalise allocation, allocate empty ranges.
878 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000879
Lang Hames27601ef2008-11-16 12:12:54 +0000880 vregIntervalsToAlloc.clear();
881 emptyVRegIntervals.clear();
882 li2Node.clear();
883 node2LI.clear();
884 allowedSets.clear();
885
Lang Hames6699fb22009-08-06 23:32:48 +0000886 DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000887
Lang Hames87e3bca2009-05-06 02:36:21 +0000888 // Run rewriter
889 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
890
891 rewriter->runOnMachineFunction(*mf, *vrm, lis);
Lang Hames27601ef2008-11-16 12:12:54 +0000892
Misha Brukman2a835f92009-01-08 15:50:22 +0000893 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000894}
895
896FunctionPass* llvm::createPBQPRegisterAllocator() {
897 return new PBQPRegAlloc();
898}
899
900
901#undef DEBUG_TYPE