blob: 40f7570646b8bf8da472833aa2fb22f2efefe9d6 [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukmance07e992009-01-08 16:40:25 +000019// allocation, see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030//===----------------------------------------------------------------------===//
31
Evan Chengb1290a62008-10-02 18:29:27 +000032#define DEBUG_TYPE "regalloc"
33
34#include "PBQP.h"
35#include "VirtRegMap.h"
Evan Chengb1290a62008-10-02 18:29:27 +000036#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000037#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000038#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000039#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000040#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/RegAllocRegistry.h"
42#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000043#include "llvm/Support/Debug.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000044#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetMachine.h"
46#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000047#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000048#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000049#include <set>
50#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000051
52using namespace llvm;
53
54static RegisterRegAlloc
Dan Gohmanb8cab922008-10-14 20:25:08 +000055registerPBQPRepAlloc("pbqp", "PBQP register allocator",
Evan Chengb1290a62008-10-02 18:29:27 +000056 createPBQPRegisterAllocator);
57
Evan Chengb1290a62008-10-02 18:29:27 +000058namespace {
59
60 //!
61 //! PBQP based allocators solve the register allocation problem by mapping
62 //! register allocation problems to Partitioned Boolean Quadratic
63 //! Programming problems.
64 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
65 public:
66
67 static char ID;
Misha Brukman2a835f92009-01-08 15:50:22 +000068
Evan Chengb1290a62008-10-02 18:29:27 +000069 //! Construct a PBQP register allocator.
70 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
71
72 //! Return the pass name.
73 virtual const char* getPassName() const throw() {
74 return "PBQP Register Allocator";
75 }
76
77 //! PBQP analysis usage.
78 virtual void getAnalysisUsage(AnalysisUsage &au) const {
79 au.addRequired<LiveIntervals>();
Lang Hames27601ef2008-11-16 12:12:54 +000080 au.addRequiredTransitive<RegisterCoalescer>();
81 au.addRequired<LiveStacks>();
82 au.addPreserved<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +000083 au.addRequired<MachineLoopInfo>();
Lang Hames27601ef2008-11-16 12:12:54 +000084 au.addPreserved<MachineLoopInfo>();
Evan Chengb1290a62008-10-02 18:29:27 +000085 MachineFunctionPass::getAnalysisUsage(au);
86 }
87
88 //! Perform register allocation
89 virtual bool runOnMachineFunction(MachineFunction &MF);
90
91 private:
92 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
93 typedef std::vector<const LiveInterval*> Node2LIMap;
94 typedef std::vector<unsigned> AllowedSet;
95 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +000096 typedef std::set<unsigned> RegSet;
97 typedef std::pair<unsigned, unsigned> RegPair;
98 typedef std::map<RegPair, PBQPNum> CoalesceMap;
99
100 typedef std::set<LiveInterval*> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000101
102 MachineFunction *mf;
103 const TargetMachine *tm;
104 const TargetRegisterInfo *tri;
105 const TargetInstrInfo *tii;
106 const MachineLoopInfo *loopInfo;
107 MachineRegisterInfo *mri;
108
Lang Hames27601ef2008-11-16 12:12:54 +0000109 LiveIntervals *lis;
110 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000111 VirtRegMap *vrm;
112
113 LI2NodeMap li2Node;
114 Node2LIMap node2LI;
115 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000116 LiveIntervalSet vregIntervalsToAlloc,
117 emptyVRegIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000118
Misha Brukman2a835f92009-01-08 15:50:22 +0000119
Evan Chengb1290a62008-10-02 18:29:27 +0000120 //! Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000121 template <typename RegContainer>
122 PBQPVector* buildCostVector(unsigned vReg,
123 const RegContainer &allowed,
124 const CoalesceMap &cealesces,
Evan Chengb1290a62008-10-02 18:29:27 +0000125 PBQPNum spillCost) const;
126
Evan Cheng17a82ea2008-10-03 17:11:58 +0000127 //! \brief Builds a PBQP interference matrix.
Evan Chengb1290a62008-10-02 18:29:27 +0000128 //!
129 //! @return Either a pointer to a non-zero PBQP matrix representing the
130 //! allocation option costs, or a null pointer for a zero matrix.
131 //!
132 //! Expects allowed sets for two interfering LiveIntervals. These allowed
133 //! sets should contain only allocable registers from the LiveInterval's
134 //! register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000135 template <typename RegContainer>
136 PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
137 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000138
139 //!
140 //! Expects allowed sets for two potentially coalescable LiveIntervals,
141 //! and an estimated benefit due to coalescing. The allowed sets should
142 //! contain only allocable registers from the LiveInterval's register
143 //! classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000144 template <typename RegContainer>
145 PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
146 const RegContainer &allowed2,
Evan Chengb1290a62008-10-02 18:29:27 +0000147 PBQPNum cBenefit) const;
148
Lang Hames27601ef2008-11-16 12:12:54 +0000149 //! \brief Finds coalescing opportunities and returns them as a map.
Evan Chengb1290a62008-10-02 18:29:27 +0000150 //!
Lang Hames27601ef2008-11-16 12:12:54 +0000151 //! Any entries in the map are guaranteed coalescable, even if their
152 //! corresponding live intervals overlap.
153 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000154
Lang Hames27601ef2008-11-16 12:12:54 +0000155 //! \brief Finds the initial set of vreg intervals to allocate.
156 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000157
158 //! \brief Constructs a PBQP problem representation of the register
159 //! allocation problem for this function.
160 //!
161 //! @return a PBQP solver object for the register allocation problem.
162 pbqp* constructPBQPProblem();
163
Lang Hames27601ef2008-11-16 12:12:54 +0000164 //! \brief Adds a stack interval if the given live interval has been
165 //! spilled. Used to support stack slot coloring.
166 void addStackInterval(const LiveInterval *spilled, float &weight);
167
Evan Chengb1290a62008-10-02 18:29:27 +0000168 //! \brief Given a solved PBQP problem maps this solution back to a register
169 //! assignment.
Misha Brukman2a835f92009-01-08 15:50:22 +0000170 bool mapPBQPToRegAlloc(pbqp *problem);
Evan Chengb1290a62008-10-02 18:29:27 +0000171
Lang Hames27601ef2008-11-16 12:12:54 +0000172 //! \brief Postprocessing before final spilling. Sets basic block "live in"
173 //! variables.
174 void finalizeAlloc() const;
175
Evan Chengb1290a62008-10-02 18:29:27 +0000176 };
177
178 char PBQPRegAlloc::ID = 0;
179}
180
181
Lang Hames27601ef2008-11-16 12:12:54 +0000182template <typename RegContainer>
183PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
184 const RegContainer &allowed,
185 const CoalesceMap &coalesces,
Evan Chengb1290a62008-10-02 18:29:27 +0000186 PBQPNum spillCost) const {
187
Lang Hames27601ef2008-11-16 12:12:54 +0000188 typedef typename RegContainer::const_iterator AllowedItr;
189
Evan Chengb1290a62008-10-02 18:29:27 +0000190 // Allocate vector. Additional element (0th) used for spill option
191 PBQPVector *v = new PBQPVector(allowed.size() + 1);
192
193 (*v)[0] = spillCost;
194
Lang Hames27601ef2008-11-16 12:12:54 +0000195 // Iterate over the allowed registers inserting coalesce benefits if there
196 // are any.
197 unsigned ai = 0;
198 for (AllowedItr itr = allowed.begin(), end = allowed.end();
199 itr != end; ++itr, ++ai) {
200
201 unsigned pReg = *itr;
202
203 CoalesceMap::const_iterator cmItr =
204 coalesces.find(RegPair(vReg, pReg));
205
206 // No coalesce - on to the next preg.
207 if (cmItr == coalesces.end())
208 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000209
210 // We have a coalesce - insert the benefit.
211 (*v)[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000212 }
213
Evan Chengb1290a62008-10-02 18:29:27 +0000214 return v;
215}
216
Lang Hames27601ef2008-11-16 12:12:54 +0000217template <typename RegContainer>
Evan Chengb1290a62008-10-02 18:29:27 +0000218PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000219 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000220
Lang Hames27601ef2008-11-16 12:12:54 +0000221 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000222
223 // Construct a PBQP matrix representing the cost of allocation options. The
224 // rows and columns correspond to the allocation options for the two live
225 // intervals. Elements will be infinite where corresponding registers alias,
226 // since we cannot allocate aliasing registers to interfering live intervals.
227 // All other elements (non-aliasing combinations) will have zero cost. Note
228 // that the spill option (element 0,0) has zero cost, since we can allocate
229 // both intervals to memory safely (the cost for each individual allocation
230 // to memory is accounted for by the cost vectors for each live interval).
231 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
Misha Brukman2a835f92009-01-08 15:50:22 +0000232
Evan Chengb1290a62008-10-02 18:29:27 +0000233 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
234 // between interfering live ranges with non-overlapping register sets (e.g.
235 // non-overlapping reg classes, or disjoint sets of allowed regs within the
236 // same class). The term "overlapping" is used advisedly: sets which do not
237 // intersect, but contain registers which alias, will have non-zero matrices.
238 // We optimize zero matrices away to improve solver speed.
239 bool isZeroMatrix = true;
240
241
242 // Row index. Starts at 1, since the 0th row is for the spill option, which
243 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000244 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000245
Misha Brukman2a835f92009-01-08 15:50:22 +0000246 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000247 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000248 a1Itr != a1End; ++a1Itr) {
249
250 // Column index, starts at 1 as for row index.
251 unsigned ci = 1;
252 unsigned reg1 = *a1Itr;
253
Lang Hames27601ef2008-11-16 12:12:54 +0000254 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000255 a2Itr != a2End; ++a2Itr) {
256
257 unsigned reg2 = *a2Itr;
258
259 // If the row/column regs are identical or alias insert an infinity.
260 if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
261 (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
262 isZeroMatrix = false;
263 }
264
265 ++ci;
266 }
267
268 ++ri;
269 }
270
271 // If this turns out to be a zero matrix...
272 if (isZeroMatrix) {
273 // free it and return null.
274 delete m;
275 return 0;
276 }
277
278 // ...otherwise return the cost matrix.
279 return m;
280}
281
Lang Hames27601ef2008-11-16 12:12:54 +0000282template <typename RegContainer>
283PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
284 const RegContainer &allowed1, const RegContainer &allowed2,
285 PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000286
Lang Hames27601ef2008-11-16 12:12:54 +0000287 typedef typename RegContainer::const_iterator RegContainerIterator;
288
289 // Construct a PBQP Matrix representing the benefits of coalescing. As with
290 // interference matrices the rows and columns represent allowed registers
291 // for the LiveIntervals which are (potentially) to be coalesced. The amount
292 // -cBenefit will be placed in any element representing the same register
293 // for both intervals.
294 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
295
296 // Reset costs to zero.
297 m->reset(0);
298
299 // Assume the matrix is zero till proven otherwise. Zero matrices will be
300 // optimized away as in the interference case.
301 bool isZeroMatrix = true;
302
303 // Row index. Starts at 1, since the 0th row is for the spill option, which
304 // is always zero.
305 unsigned ri = 1;
306
307 // Iterate over the allowed sets, insert coalescing benefits where
308 // appropriate.
309 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
310 a1Itr != a1End; ++a1Itr) {
311
312 // Column index, starts at 1 as for row index.
313 unsigned ci = 1;
314 unsigned reg1 = *a1Itr;
315
316 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
317 a2Itr != a2End; ++a2Itr) {
318
319 // If the row and column represent the same register insert a beneficial
320 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000321 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000322 if (reg1 == *a2Itr) {
323 (*m)[ri][ci] = -cBenefit;
324 isZeroMatrix = false;
325 }
326
327 ++ci;
328 }
329
330 ++ri;
331 }
332
333 // If this turns out to be a zero matrix...
334 if (isZeroMatrix) {
335 // ...free it and return null.
336 delete m;
337 return 0;
338 }
339
340 return m;
341}
342
343PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
344
345 typedef MachineFunction::const_iterator MFIterator;
346 typedef MachineBasicBlock::const_iterator MBBIterator;
347 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000348
Lang Hames27601ef2008-11-16 12:12:54 +0000349 CoalesceMap coalescesFound;
350
351 // To find coalesces we need to iterate over the function looking for
352 // copy instructions.
353 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000354 bbItr != bbEnd; ++bbItr) {
355
356 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000357
Lang Hames27601ef2008-11-16 12:12:54 +0000358 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
359 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000360
361 const MachineInstr *instr = &*iItr;
Lang Hames27601ef2008-11-16 12:12:54 +0000362 unsigned srcReg, dstReg;
Evan Chengb1290a62008-10-02 18:29:27 +0000363
Lang Hames27601ef2008-11-16 12:12:54 +0000364 // If this isn't a copy then continue to the next instruction.
365 if (!tii->isMoveInstr(*instr, srcReg, dstReg))
366 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000367
Lang Hames27601ef2008-11-16 12:12:54 +0000368 // If the registers are already the same our job is nice and easy.
369 if (dstReg == srcReg)
370 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000371
Lang Hames27601ef2008-11-16 12:12:54 +0000372 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
373 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
374
375 // If both registers are physical then we can't coalesce.
376 if (srcRegIsPhysical && dstRegIsPhysical)
377 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000378
Lang Hames27601ef2008-11-16 12:12:54 +0000379 // If it's a copy that includes a virtual register but the source and
380 // destination classes differ then we can't coalesce, so continue with
381 // the next instruction.
382 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
383 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
384
385 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
386 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
387
388 if (srcRegClass != dstRegClass)
389 continue;
390
391 // We also need any physical regs to be allocable, coalescing with
392 // a non-allocable register is invalid.
393 if (srcRegIsPhysical) {
394 if (std::find(srcRegClass->allocation_order_begin(*mf),
395 srcRegClass->allocation_order_end(*mf), srcReg) ==
396 srcRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000397 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000398 }
399
Lang Hames27601ef2008-11-16 12:12:54 +0000400 if (dstRegIsPhysical) {
401 if (std::find(dstRegClass->allocation_order_begin(*mf),
402 dstRegClass->allocation_order_end(*mf), dstReg) ==
403 dstRegClass->allocation_order_end(*mf))
404 continue;
405 }
406
407 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000408 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000409 const LiveInterval *srcLI = &lis->getInterval(srcReg),
410 *dstLI = &lis->getInterval(dstReg);
411
412 if (srcLI->overlaps(*dstLI)) {
413 // Even in the case of an overlap we might still be able to coalesce,
414 // but we need to make sure that no definition of either range occurs
415 // while the other range is live.
416
417 // Otherwise start by assuming we're ok.
418 bool badDef = false;
419
420 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000421 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000422 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
423 vniItr != vniEnd; ++vniItr) {
424
425 // If we find a def that kills the coalescing opportunity then
426 // record it and break from the loop.
427 if (dstLI->liveAt((*vniItr)->def)) {
428 badDef = true;
429 break;
430 }
431 }
432
433 // If we have a bad def give up, continue to the next instruction.
434 if (badDef)
435 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000436
Lang Hames27601ef2008-11-16 12:12:54 +0000437 // Otherwise test definitions of the destination range.
438 for (VNIIterator
439 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
440 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000441
Lang Hames27601ef2008-11-16 12:12:54 +0000442 // We want to make sure we skip the copy instruction itself.
443 if ((*vniItr)->copy == instr)
444 continue;
445
446 if (srcLI->liveAt((*vniItr)->def)) {
447 badDef = true;
448 break;
449 }
450 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000451
Lang Hames27601ef2008-11-16 12:12:54 +0000452 // As before a bad def we give up and continue to the next instr.
453 if (badDef)
454 continue;
455 }
456
457 // If we make it to here then either the ranges didn't overlap, or they
458 // did, but none of their definitions would prevent us from coalescing.
459 // We're good to go with the coalesce.
460
461 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000462
Lang Hames27601ef2008-11-16 12:12:54 +0000463 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
464 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000465 }
466
467 }
468
Lang Hames27601ef2008-11-16 12:12:54 +0000469 return coalescesFound;
470}
471
472void PBQPRegAlloc::findVRegIntervalsToAlloc() {
473
474 // Iterate over all live ranges.
475 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
476 itr != end; ++itr) {
477
478 // Ignore physical ones.
479 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
480 continue;
481
482 LiveInterval *li = itr->second;
483
484 // If this live interval is non-empty we will use pbqp to allocate it.
485 // Empty intervals we allocate in a simple post-processing stage in
486 // finalizeAlloc.
487 if (!li->empty()) {
488 vregIntervalsToAlloc.insert(li);
489 }
490 else {
491 emptyVRegIntervals.insert(li);
492 }
493 }
Evan Chengb1290a62008-10-02 18:29:27 +0000494}
495
496pbqp* PBQPRegAlloc::constructPBQPProblem() {
497
498 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000499 typedef std::vector<unsigned> RegVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000500
Lang Hames27601ef2008-11-16 12:12:54 +0000501 // This will store the physical intervals for easy reference.
502 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000503
504 // Start by clearing the old node <-> live interval mappings & allowed sets
505 li2Node.clear();
506 node2LI.clear();
507 allowedSets.clear();
508
Lang Hames27601ef2008-11-16 12:12:54 +0000509 // Populate physIntervals, update preg use:
510 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000511 itr != end; ++itr) {
512
Evan Chengb1290a62008-10-02 18:29:27 +0000513 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
514 physIntervals.push_back(itr->second);
515 mri->setPhysRegUsed(itr->second->reg);
516 }
Evan Chengb1290a62008-10-02 18:29:27 +0000517 }
518
Lang Hames27601ef2008-11-16 12:12:54 +0000519 // Iterate over vreg intervals, construct live interval <-> node number
520 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000521 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000522 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
523 itr != end; ++itr) {
524 const LiveInterval *li = *itr;
525
526 li2Node[li] = node2LI.size();
527 node2LI.push_back(li);
528 }
529
530 // Get the set of potential coalesces.
531 CoalesceMap coalesces(findCoalesces());
Evan Chengb1290a62008-10-02 18:29:27 +0000532
533 // Construct a PBQP solver for this problem
Lang Hames27601ef2008-11-16 12:12:54 +0000534 pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000535
536 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000537 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000538
539 // Iterate over virtual register intervals to compute allowed sets...
540 for (unsigned node = 0; node < node2LI.size(); ++node) {
541
542 // Grab pointers to the interval and its register class.
543 const LiveInterval *li = node2LI[node];
544 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000545
Evan Chengb1290a62008-10-02 18:29:27 +0000546 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000547 RegVector liAllowed(liRC->allocation_order_begin(*mf),
548 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000549
Lang Hames27601ef2008-11-16 12:12:54 +0000550 // Eliminate the physical registers which overlap with this range, along
551 // with all their aliases.
552 for (LIVector::iterator pItr = physIntervals.begin(),
553 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000554
Lang Hames27601ef2008-11-16 12:12:54 +0000555 if (!li->overlaps(**pItr))
556 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000557
Lang Hames27601ef2008-11-16 12:12:54 +0000558 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000559
Lang Hames27601ef2008-11-16 12:12:54 +0000560 // If we get here then the live intervals overlap, but we're still ok
561 // if they're coalescable.
562 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
563 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000564
Lang Hames27601ef2008-11-16 12:12:54 +0000565 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000566
Lang Hames27601ef2008-11-16 12:12:54 +0000567 // Remove the overlapping reg...
568 RegVector::iterator eraseItr =
569 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000570
Lang Hames27601ef2008-11-16 12:12:54 +0000571 if (eraseItr != liAllowed.end())
572 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000573
Lang Hames27601ef2008-11-16 12:12:54 +0000574 const unsigned *aliasItr = tri->getAliasSet(pReg);
575
576 if (aliasItr != 0) {
577 // ...and its aliases.
578 for (; *aliasItr != 0; ++aliasItr) {
579 RegVector::iterator eraseItr =
580 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000581
Lang Hames27601ef2008-11-16 12:12:54 +0000582 if (eraseItr != liAllowed.end()) {
583 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000584 }
Evan Chengb1290a62008-10-02 18:29:27 +0000585 }
Evan Chengb1290a62008-10-02 18:29:27 +0000586 }
Evan Chengb1290a62008-10-02 18:29:27 +0000587 }
588
589 // Copy the allowed set into a member vector for use when constructing cost
590 // vectors & matrices, and mapping PBQP solutions back to assignments.
591 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
592
593 // Set the spill cost to the interval weight, or epsilon if the
594 // interval weight is zero
Misha Brukman2a835f92009-01-08 15:50:22 +0000595 PBQPNum spillCost = (li->weight != 0.0) ?
Evan Chengb1290a62008-10-02 18:29:27 +0000596 li->weight : std::numeric_limits<PBQPNum>::min();
597
598 // Build a cost vector for this interval.
599 add_pbqp_nodecosts(solver, node,
Lang Hames27601ef2008-11-16 12:12:54 +0000600 buildCostVector(li->reg, allowedSets[node], coalesces,
601 spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000602
603 }
604
Lang Hames27601ef2008-11-16 12:12:54 +0000605
Evan Chengb1290a62008-10-02 18:29:27 +0000606 // Now add the cost matrices...
607 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000608 const LiveInterval *li = node2LI[node1];
609
Evan Chengb1290a62008-10-02 18:29:27 +0000610 // Test for live range overlaps and insert interference matrices.
611 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
612 const LiveInterval *li2 = node2LI[node2];
613
Lang Hames27601ef2008-11-16 12:12:54 +0000614 CoalesceMap::const_iterator cmItr =
615 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000616
Lang Hames27601ef2008-11-16 12:12:54 +0000617 PBQPMatrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000618
Lang Hames27601ef2008-11-16 12:12:54 +0000619 if (cmItr != coalesces.end()) {
620 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
621 cmItr->second);
622 }
623 else if (li->overlaps(*li2)) {
624 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
625 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000626
Lang Hames27601ef2008-11-16 12:12:54 +0000627 if (m != 0) {
628 add_pbqp_edgecosts(solver, node1, node2, m);
629 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000630 }
631 }
632 }
633
634 // We're done, PBQP problem constructed - return it.
Misha Brukman2a835f92009-01-08 15:50:22 +0000635 return solver;
Evan Chengb1290a62008-10-02 18:29:27 +0000636}
637
Lang Hames27601ef2008-11-16 12:12:54 +0000638void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) {
639 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000640
641 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000642 return;
643
644 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot);
645 stackInterval.weight += weight;
646
647 VNInfo *vni;
648 if (stackInterval.getNumValNums() != 0)
649 vni = stackInterval.getValNumInfo(0);
650 else
651 vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator());
652
653 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
654 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
655}
656
Evan Chengb1290a62008-10-02 18:29:27 +0000657bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000658
Evan Chengb1290a62008-10-02 18:29:27 +0000659 // Set to true if we have any spills
660 bool anotherRoundNeeded = false;
661
662 // Clear the existing allocation.
663 vrm->clearAllVirt();
Misha Brukman2a835f92009-01-08 15:50:22 +0000664
Evan Chengb1290a62008-10-02 18:29:27 +0000665 // Iterate over the nodes mapping the PBQP solution to a register assignment.
666 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000667 unsigned virtReg = node2LI[node]->reg,
Evan Chengb1290a62008-10-02 18:29:27 +0000668 allocSelection = get_pbqp_solution(problem, node);
669
670 // If the PBQP solution is non-zero it's a physical register...
671 if (allocSelection != 0) {
672 // Get the physical reg, subtracting 1 to account for the spill option.
673 unsigned physReg = allowedSets[node][allocSelection - 1];
674
Lang Hames27601ef2008-11-16 12:12:54 +0000675 DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
676
677 assert(physReg != 0);
678
Evan Chengb1290a62008-10-02 18:29:27 +0000679 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000680 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000681 }
682 // ...Otherwise it's a spill.
683 else {
684
685 // Make sure we ignore this virtual reg on the next round
686 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000687 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000688
Lang Hames27601ef2008-11-16 12:12:54 +0000689 float ssWeight;
Evan Chengb1290a62008-10-02 18:29:27 +0000690
691 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000692 const LiveInterval *spillInterval = node2LI[node];
693 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000694 SmallVector<LiveInterval*, 8> spillIs;
695 std::vector<LiveInterval*> newSpills =
Lang Hames27601ef2008-11-16 12:12:54 +0000696 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm,
697 ssWeight);
698 addStackInterval(spillInterval, ssWeight);
699
700 DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
701 << oldSpillWeight << ", New vregs: ";
702
703 // Copy any newly inserted live intervals into the list of regs to
704 // allocate.
705 for (std::vector<LiveInterval*>::const_iterator
706 itr = newSpills.begin(), end = newSpills.end();
707 itr != end; ++itr) {
708
709 assert(!(*itr)->empty() && "Empty spill range.");
710
711 DOUT << (*itr)->reg << " ";
712
713 vregIntervalsToAlloc.insert(*itr);
714 }
715
716 DOUT << ")\n";
Evan Chengb1290a62008-10-02 18:29:27 +0000717
718 // We need another round if spill intervals were added.
719 anotherRoundNeeded |= !newSpills.empty();
720 }
721 }
722
723 return !anotherRoundNeeded;
724}
725
Lang Hames27601ef2008-11-16 12:12:54 +0000726void PBQPRegAlloc::finalizeAlloc() const {
727 typedef LiveIntervals::iterator LIIterator;
728 typedef LiveInterval::Ranges::const_iterator LRIterator;
729
730 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000731 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000732 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
733 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000734 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000735
736 unsigned physReg = li->preference;
737
738 if (physReg == 0) {
739 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000740 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000741 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000742
743 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000744 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000745
Lang Hames27601ef2008-11-16 12:12:54 +0000746 // Finally iterate over the basic blocks to compute and set the live-in sets.
747 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
748 MachineBasicBlock *entryMBB = &*mf->begin();
749
750 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
751 liItr != liEnd; ++liItr) {
752
753 const LiveInterval *li = liItr->second;
754 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000755
Lang Hames27601ef2008-11-16 12:12:54 +0000756 // Get the physical register for this interval
757 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
758 reg = li->reg;
759 }
760 else if (vrm->isAssignedReg(li->reg)) {
761 reg = vrm->getPhys(li->reg);
762 }
763 else {
764 // Ranges which are assigned a stack slot only are ignored.
765 continue;
766 }
767
768 // Iterate over the ranges of the current interval...
769 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
770 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000771
Lang Hames27601ef2008-11-16 12:12:54 +0000772 // Find the set of basic blocks which this range is live into...
773 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
774 // And add the physreg for this interval to their live-in sets.
775 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
776 if (liveInMBBs[i] != entryMBB) {
777 if (!liveInMBBs[i]->isLiveIn(reg)) {
778 liveInMBBs[i]->addLiveIn(reg);
779 }
780 }
781 }
782 liveInMBBs.clear();
783 }
784 }
785 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000786
Lang Hames27601ef2008-11-16 12:12:54 +0000787}
788
Evan Chengb1290a62008-10-02 18:29:27 +0000789bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000790
Evan Chengb1290a62008-10-02 18:29:27 +0000791 mf = &MF;
792 tm = &mf->getTarget();
793 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000794 tii = tm->getInstrInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000795 mri = &mf->getRegInfo();
796
Lang Hames27601ef2008-11-16 12:12:54 +0000797 lis = &getAnalysis<LiveIntervals>();
798 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000799 loopInfo = &getAnalysis<MachineLoopInfo>();
800
801 std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
802 vrm = vrmAutoPtr.get();
803
Lang Hames27601ef2008-11-16 12:12:54 +0000804 DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
805
Evan Chengb1290a62008-10-02 18:29:27 +0000806 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000807 //
Evan Chengb1290a62008-10-02 18:29:27 +0000808 // * Map current regalloc problem to a PBQP problem
809 // * Solve the PBQP problem
810 // * Map the solution back to a register allocation
811 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000812 //
Evan Chengb1290a62008-10-02 18:29:27 +0000813 // This process is continued till no more spills are generated.
814
Lang Hames27601ef2008-11-16 12:12:54 +0000815 // Find the vreg intervals in need of allocation.
816 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000817
Lang Hames27601ef2008-11-16 12:12:54 +0000818 // If there aren't any then we're done here.
819 if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
820 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000821
Lang Hames27601ef2008-11-16 12:12:54 +0000822 // If there are non-empty intervals allocate them using pbqp.
823 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000824
Lang Hames27601ef2008-11-16 12:12:54 +0000825 bool pbqpAllocComplete = false;
826 unsigned round = 0;
827
828 while (!pbqpAllocComplete) {
829 DOUT << " PBQP Regalloc round " << round << ":\n";
830
831 pbqp *problem = constructPBQPProblem();
Misha Brukman2a835f92009-01-08 15:50:22 +0000832
Lang Hames27601ef2008-11-16 12:12:54 +0000833 solve_pbqp(problem);
Misha Brukman2a835f92009-01-08 15:50:22 +0000834
Lang Hames27601ef2008-11-16 12:12:54 +0000835 pbqpAllocComplete = mapPBQPToRegAlloc(problem);
836
Misha Brukman2a835f92009-01-08 15:50:22 +0000837 free_pbqp(problem);
Lang Hames27601ef2008-11-16 12:12:54 +0000838
839 ++round;
840 }
Evan Chengb1290a62008-10-02 18:29:27 +0000841 }
842
Lang Hames27601ef2008-11-16 12:12:54 +0000843 // Finalise allocation, allocate empty ranges.
844 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000845
Lang Hames27601ef2008-11-16 12:12:54 +0000846 vregIntervalsToAlloc.clear();
847 emptyVRegIntervals.clear();
848 li2Node.clear();
849 node2LI.clear();
850 allowedSets.clear();
851
852 DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
853
854 // Run spiller
Evan Chengb1290a62008-10-02 18:29:27 +0000855 std::auto_ptr<Spiller> spiller(createSpiller());
Evan Chengb1290a62008-10-02 18:29:27 +0000856 spiller->runOnMachineFunction(*mf, *vrm);
Lang Hames27601ef2008-11-16 12:12:54 +0000857
Misha Brukman2a835f92009-01-08 15:50:22 +0000858 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000859}
860
861FunctionPass* llvm::createPBQPRegisterAllocator() {
862 return new PBQPRegAlloc();
863}
864
865
866#undef DEBUG_TYPE