blob: 9df3a2e9fcde6af6e13b04074ec46ecd8b15769b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
Gordon Henriksen18ace102008-01-05 16:56:59 +000020#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Target/TargetLowering.h"
22#include "llvm/CodeGen/SelectionDAG.h"
Rafael Espindoladdb88da2007-08-31 15:06:30 +000023#include "llvm/CodeGen/CallingConvLower.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024
25namespace llvm {
26 namespace X86ISD {
27 // X86 Specific DAG Nodes
28 enum NodeType {
29 // Start the numbering where the builtin ops leave off.
30 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
31
Evan Cheng48679f42007-12-14 02:13:44 +000032 /// BSF - Bit scan forward.
33 /// BSR - Bit scan reverse.
34 BSF,
35 BSR,
36
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037 /// SHLD, SHRD - Double shift instructions. These correspond to
38 /// X86::SHLDxx and X86::SHRDxx instructions.
39 SHLD,
40 SHRD,
41
42 /// FAND - Bitwise logical AND of floating point values. This corresponds
43 /// to X86::ANDPS or X86::ANDPD.
44 FAND,
45
46 /// FOR - Bitwise logical OR of floating point values. This corresponds
47 /// to X86::ORPS or X86::ORPD.
48 FOR,
49
50 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
51 /// to X86::XORPS or X86::XORPD.
52 FXOR,
53
54 /// FSRL - Bitwise logical right shift of floating point values. These
55 /// corresponds to X86::PSRLDQ.
56 FSRL,
57
58 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
59 /// integer source in memory and FP reg result. This corresponds to the
60 /// X86::FILD*m instructions. It has three inputs (token chain, address,
61 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
62 /// also produces a flag).
63 FILD,
64 FILD_FLAG,
65
66 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
67 /// integer destination in memory and a FP reg source. This corresponds
68 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
69 /// has two inputs (token chain and address) and two outputs (int value
70 /// and token chain).
71 FP_TO_INT16_IN_MEM,
72 FP_TO_INT32_IN_MEM,
73 FP_TO_INT64_IN_MEM,
74
75 /// FLD - This instruction implements an extending load to FP stack slots.
76 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
77 /// operand, ptr to load from, and a ValueType node indicating the type
78 /// to load to.
79 FLD,
80
81 /// FST - This instruction implements a truncating store to FP stack
82 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
83 /// chain operand, value to store, address, and a ValueType to store it
84 /// as.
85 FST,
86
87 /// FP_GET_RESULT - This corresponds to FpGETRESULT pseudo instruction
88 /// which copies from ST(0) to the destination. It takes a chain and
89 /// writes a RFP result and a chain.
90 FP_GET_RESULT,
91
92 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instruction
93 /// which copies the source operand to ST(0). It takes a chain+value and
94 /// returns a chain and a flag.
95 FP_SET_RESULT,
96
97 /// CALL/TAILCALL - These operations represent an abstract X86 call
98 /// instruction, which includes a bunch of information. In particular the
99 /// operands of these node are:
100 ///
101 /// #0 - The incoming token chain
102 /// #1 - The callee
103 /// #2 - The number of arg bytes the caller pushes on the stack.
104 /// #3 - The number of arg bytes the callee pops off the stack.
105 /// #4 - The value to pass in AL/AX/EAX (optional)
106 /// #5 - The value to pass in DL/DX/EDX (optional)
107 ///
108 /// The result values of these nodes are:
109 ///
110 /// #0 - The outgoing token chain
111 /// #1 - The first register result value (optional)
112 /// #2 - The second register result value (optional)
113 ///
114 /// The CALL vs TAILCALL distinction boils down to whether the callee is
115 /// known not to modify the caller's stack frame, as is standard with
116 /// LLVM.
117 CALL,
118 TAILCALL,
119
120 /// RDTSC_DAG - This operation implements the lowering for
121 /// readcyclecounter
122 RDTSC_DAG,
123
124 /// X86 compare and logical compare instructions.
Evan Cheng904febe2007-09-17 17:42:53 +0000125 CMP, COMI, UCOMI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126
127 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
128 /// operand produced by a CMP instruction.
129 SETCC,
130
131 /// X86 conditional moves. Operand 1 and operand 2 are the two values
132 /// to select from (operand 1 is a R/W operand). Operand 3 is the
133 /// condition code, and operand 4 is the flag operand produced by a CMP
134 /// or TEST instruction. It also writes a flag result.
135 CMOV,
136
137 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
138 /// is the block to branch if condition is true, operand 3 is the
139 /// condition code, and operand 4 is the flag operand produced by a CMP
140 /// or TEST instruction.
141 BRCOND,
142
143 /// Return with a flag operand. Operand 1 is the chain operand, operand
144 /// 2 is the number of bytes of stack to pop.
145 RET_FLAG,
146
147 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
148 REP_STOS,
149
150 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
151 REP_MOVS,
152
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
154 /// at function entry, used for PIC code.
155 GlobalBaseReg,
156
157 /// Wrapper - A wrapper node for TargetConstantPool,
158 /// TargetExternalSymbol, and TargetGlobalAddress.
159 Wrapper,
160
161 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
162 /// relative displacements.
163 WrapperRIP,
164
165 /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not
166 /// have to match the operand type.
167 S2VEC,
168
169 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
170 /// i32, corresponds to X86::PEXTRW.
171 PEXTRW,
172
173 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
174 /// corresponds to X86::PINSRW.
175 PINSRW,
176
177 /// FMAX, FMIN - Floating point max and min.
178 ///
179 FMAX, FMIN,
180
181 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
182 /// approximation. Note that these typically require refinement
183 /// in order to obtain suitable precision.
184 FRSQRT, FRCP,
185
186 // Thread Local Storage
187 TLSADDR, THREAD_POINTER,
188
189 // Exception Handling helpers
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000190 EH_RETURN,
191
192 // tail call return
193 // oeprand #0 chain
194 // operand #1 callee (register or absolute)
195 // operand #2 stack adjustment
196 // operand #3 optional in flag
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +0000197 TC_RETURN,
198
199 // Store FP control world into i16 memory
Chris Lattner56b941f2008-01-15 21:58:22 +0000200 FNSTCW16m
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 };
202 }
203
204 /// Define some predicates that are used for node matching.
205 namespace X86 {
206 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
207 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
208 bool isPSHUFDMask(SDNode *N);
209
210 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
211 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
212 bool isPSHUFHWMask(SDNode *N);
213
214 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
215 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
216 bool isPSHUFLWMask(SDNode *N);
217
218 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
219 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
220 bool isSHUFPMask(SDNode *N);
221
222 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
223 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
224 bool isMOVHLPSMask(SDNode *N);
225
226 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
227 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
228 /// <2, 3, 2, 3>
229 bool isMOVHLPS_v_undef_Mask(SDNode *N);
230
231 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
232 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
233 bool isMOVLPMask(SDNode *N);
234
235 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
236 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
237 /// as well as MOVLHPS.
238 bool isMOVHPMask(SDNode *N);
239
240 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
241 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
242 bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);
243
244 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
245 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
246 bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);
247
248 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
249 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
250 /// <0, 0, 1, 1>
251 bool isUNPCKL_v_undef_Mask(SDNode *N);
252
253 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
254 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
255 /// <2, 2, 3, 3>
256 bool isUNPCKH_v_undef_Mask(SDNode *N);
257
258 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
259 /// specifies a shuffle of elements that is suitable for input to MOVSS,
260 /// MOVSD, and MOVD, i.e. setting the lowest element.
261 bool isMOVLMask(SDNode *N);
262
263 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
264 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
265 bool isMOVSHDUPMask(SDNode *N);
266
267 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
268 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
269 bool isMOVSLDUPMask(SDNode *N);
270
271 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
272 /// specifies a splat of a single element.
273 bool isSplatMask(SDNode *N);
274
275 /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
276 /// specifies a splat of zero element.
277 bool isSplatLoMask(SDNode *N);
278
279 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
280 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
281 /// instructions.
282 unsigned getShuffleSHUFImmediate(SDNode *N);
283
284 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
285 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
286 /// instructions.
287 unsigned getShufflePSHUFHWImmediate(SDNode *N);
288
289 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
290 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
291 /// instructions.
292 unsigned getShufflePSHUFLWImmediate(SDNode *N);
293 }
294
295 //===--------------------------------------------------------------------===//
296 // X86TargetLowering - X86 Implementation of the TargetLowering interface
297 class X86TargetLowering : public TargetLowering {
298 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
299 int RegSaveFrameIndex; // X86-64 vararg func register save area.
300 unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset.
301 unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
303 int BytesCallerReserves; // Number of arg bytes caller makes.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000304
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 public:
Dan Gohman3a78bbf2007-08-02 21:21:54 +0000306 explicit X86TargetLowering(TargetMachine &TM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307
Evan Cheng6fb06762007-11-09 01:32:10 +0000308 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
309 /// jumptable.
310 SDOperand getPICJumpTableRelocBase(SDOperand Table,
311 SelectionDAG &DAG) const;
312
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 // Return the number of bytes that a function should pop when it returns (in
314 // addition to the space used by the return address).
315 //
316 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
317
318 // Return the number of bytes that the caller reserves for arguments passed
319 // to this function.
320 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
321
322 /// getStackPtrReg - Return the stack pointer register we are using: either
323 /// ESP or RSP.
324 unsigned getStackPtrReg() const { return X86StackPtr; }
Evan Cheng5a67b812008-01-23 23:17:41 +0000325
326 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
327 /// function arguments in the caller parameter area. For X86, aggregates
328 /// that contains are placed at 16-byte boundaries while the rest are at
329 /// 4-byte boundaries.
330 virtual unsigned getByValTypeAlignment(const Type *Ty) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331
332 /// LowerOperation - Provide custom lowering hooks for some operations.
333 ///
334 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
335
Chris Lattnerdfb947d2007-11-24 07:07:01 +0000336 /// ExpandOperation - Custom lower the specified operation, splitting the
337 /// value into two pieces.
338 ///
339 virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG);
340
341
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
343
344 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
345 MachineBasicBlock *MBB);
346
347 /// getTargetNodeName - This method returns the name of a target specific
348 /// DAG node.
349 virtual const char *getTargetNodeName(unsigned Opcode) const;
350
351 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
352 /// in Mask are known to be either zero or one and return them in the
353 /// KnownZero/KnownOne bitsets.
354 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
355 uint64_t Mask,
356 uint64_t &KnownZero,
357 uint64_t &KnownOne,
358 const SelectionDAG &DAG,
359 unsigned Depth = 0) const;
360
361 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
362
363 ConstraintType getConstraintType(const std::string &Constraint) const;
364
365 std::vector<unsigned>
366 getRegClassForInlineAsmConstraint(const std::string &Constraint,
367 MVT::ValueType VT) const;
Chris Lattnera531abc2007-08-25 00:47:38 +0000368
369 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
370 /// vector. If it is invalid, don't add anything to Ops.
371 virtual void LowerAsmOperandForConstraint(SDOperand Op,
372 char ConstraintLetter,
373 std::vector<SDOperand> &Ops,
374 SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375
376 /// getRegForInlineAsmConstraint - Given a physical register constraint
377 /// (e.g. {edx}), return the register number and the register class for the
378 /// register. This should only be used for C_Register constraints. On
379 /// error, this returns a register number of 0.
380 std::pair<unsigned, const TargetRegisterClass*>
381 getRegForInlineAsmConstraint(const std::string &Constraint,
382 MVT::ValueType VT) const;
383
384 /// isLegalAddressingMode - Return true if the addressing mode represented
385 /// by AM is legal for this target, for a load/store of the specified type.
386 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
387
Evan Cheng27a820a2007-10-26 01:56:11 +0000388 /// isTruncateFree - Return true if it's free to truncate a value of
389 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
390 /// register EAX to i16 by referencing its sub-register AX.
391 virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
Evan Cheng9decb332007-10-29 19:58:20 +0000392 virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const;
Evan Cheng27a820a2007-10-26 01:56:11 +0000393
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394 /// isShuffleMaskLegal - Targets can use this to indicate that they only
395 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
396 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
397 /// values are assumed to be legal.
398 virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
399
400 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
401 /// used by Targets can use this to indicate if there is a suitable
402 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
403 /// pool entry.
404 virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
405 MVT::ValueType EVT,
406 SelectionDAG &DAG) const;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000407
408 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
409 /// for tail call optimization. Target which want to do tail call
410 /// optimization should implement this function.
411 virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
412 SDOperand Ret,
413 SelectionDAG &DAG) const;
414
Rafael Espindoladd867c72007-11-05 23:12:20 +0000415 virtual const TargetSubtarget* getSubtarget() {
416 return static_cast<const TargetSubtarget*>(Subtarget);
417 }
418
Chris Lattnerc3d7cfa2008-01-18 06:52:41 +0000419 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
420 /// computed in an SSE register, not on the X87 floating point stack.
421 bool isScalarFPTypeInSSEReg(MVT::ValueType VT) const {
422 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
423 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
424 }
425
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 private:
427 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
428 /// make the right decision when generating code for different targets.
429 const X86Subtarget *Subtarget;
430 const MRegisterInfo *RegInfo;
431
432 /// X86StackPtr - X86 physical register used as stack ptr.
433 unsigned X86StackPtr;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000434
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000435 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
436 /// floating point ops.
437 /// When SSE is available, use it for f32 operations.
438 /// When SSE2 is available, use it for f64 operations.
439 bool X86ScalarSSEf32;
440 bool X86ScalarSSEf64;
Chris Lattnerfca7f222008-01-16 06:19:45 +0000441
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 SDNode *LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode*TheCall,
443 unsigned CallingConv, SelectionDAG &DAG);
444
Rafael Espindoladdb88da2007-08-31 15:06:30 +0000445
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000446 SDOperand LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
447 const CCValAssign &VA, MachineFrameInfo *MFI,
448 SDOperand Root, unsigned i);
449
Rafael Espindoladdb88da2007-08-31 15:06:30 +0000450 SDOperand LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
451 const SDOperand &StackPtr,
452 const CCValAssign &VA, SDOperand Chain,
453 SDOperand Arg);
454
Gordon Henriksen18ace102008-01-05 16:56:59 +0000455 // Call lowering helpers.
456 bool IsCalleePop(SDOperand Op);
457 CCAssignFn *CCAssignFnForNode(SDOperand Op) const;
458 NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDOperand Op);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000459 unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000460
Chris Lattnerdfb947d2007-11-24 07:07:01 +0000461 std::pair<SDOperand,SDOperand> FP_TO_SINTHelper(SDOperand Op,
462 SelectionDAG &DAG);
463
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
465 SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
466 SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
467 SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
468 SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
469 SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
470 SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
471 SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG);
472 SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG);
473 SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG);
474 SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
475 SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
476 SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG);
477 SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG);
478 SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG);
Evan Cheng621216e2007-09-29 00:00:36 +0000479 SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480 SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG);
481 SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG);
482 SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +0000483 SDOperand LowerMEMCPYInline(SDOperand Dest, SDOperand Source,
484 SDOperand Chain, unsigned Size, unsigned Align,
485 SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486 SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
487 SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG);
488 SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG);
489 SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG);
490 SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG);
492 SDOperand LowerVACOPY(SDOperand Op, SelectionDAG &DAG);
493 SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
494 SDOperand LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG);
495 SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
496 SDOperand LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, SelectionDAG &DAG);
497 SDOperand LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000498 SDOperand LowerTRAMPOLINE(SDOperand Op, SelectionDAG &DAG);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +0000499 SDOperand LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG);
Evan Cheng48679f42007-12-14 02:13:44 +0000500 SDOperand LowerCTLZ(SDOperand Op, SelectionDAG &DAG);
501 SDOperand LowerCTTZ(SDOperand Op, SelectionDAG &DAG);
Chris Lattnerdfb947d2007-11-24 07:07:01 +0000502 SDNode *ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG);
503 SDNode *ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 };
505}
506
507#endif // X86ISELLOWERING_H