blob: 16fa7f0b7e92c45b83677f5319188c3e6b55e26f [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
66Currently, debug information is consumed by DwarfDebug to produce dwarf
67information used by the gdb debugger. Other targets could use the same
68information to produce stabs or other debug forms.
69
70It would also be reasonable to use debug information to feed profiling tools
71for analysis of generated code, or, tools for reconstructing the original
72source from generated code.
73
74TODO - expound a bit more.
75
76.. _intro_debugopt:
77
78Debugging optimized code
79------------------------
80
81An extremely high priority of LLVM debugging information is to make it interact
82well with optimizations and analysis. In particular, the LLVM debug
83information provides the following guarantees:
84
85* LLVM debug information **always provides information to accurately read
86 the source-level state of the program**, regardless of which LLVM
87 optimizations have been run, and without any modification to the
88 optimizations themselves. However, some optimizations may impact the
89 ability to modify the current state of the program with a debugger, such
90 as setting program variables, or calling functions that have been
91 deleted.
92
93* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
94 debugging information, allowing them to update the debugging information
95 as they perform aggressive optimizations. This means that, with effort,
96 the LLVM optimizers could optimize debug code just as well as non-debug
97 code.
98
99* LLVM debug information does not prevent optimizations from
100 happening (for example inlining, basic block reordering/merging/cleanup,
101 tail duplication, etc).
102
103* LLVM debug information is automatically optimized along with the rest of
104 the program, using existing facilities. For example, duplicate
105 information is automatically merged by the linker, and unused information
106 is automatically removed.
107
108Basically, the debug information allows you to compile a program with
109"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
110the program as it executes from a debugger. Compiling a program with
111"``-O3 -g``" gives you full debug information that is always available and
112accurate for reading (e.g., you get accurate stack traces despite tail call
113elimination and inlining), but you might lose the ability to modify the program
114and call functions where were optimized out of the program, or inlined away
115completely.
116
117:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
118optimizer's handling of debugging information. It can be run like this:
119
120.. code-block:: bash
121
122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
123 % make TEST=dbgopt
124
125This will test impact of debugging information on optimization passes. If
126debugging information influences optimization passes then it will be reported
127as a failure. See :doc:`TestingGuide` for more information on LLVM test
128infrastructure and how to run various tests.
129
130.. _format:
131
132Debugging information format
133============================
134
135LLVM debugging information has been carefully designed to make it possible for
136the optimizer to optimize the program and debugging information without
137necessarily having to know anything about debugging information. In
138particular, the use of metadata avoids duplicated debugging information from
139the beginning, and the global dead code elimination pass automatically deletes
140debugging information for a function if it decides to delete the function.
141
142To do this, most of the debugging information (descriptors for types,
143variables, functions, source files, etc) is inserted by the language front-end
144in the form of LLVM metadata.
145
146Debug information is designed to be agnostic about the target debugger and
147debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
148pass to decode the information that represents variables, types, functions,
149namespaces, etc: this allows for arbitrary source-language semantics and
150type-systems to be used, as long as there is a module written for the target
151debugger to interpret the information.
152
153To provide basic functionality, the LLVM debugger does have to make some
154assumptions about the source-level language being debugged, though it keeps
155these to a minimum. The only common features that the LLVM debugger assumes
156exist are :ref:`source files <format_files>`, and :ref:`program objects
157<format_global_variables>`. These abstract objects are used by a debugger to
158form stack traces, show information about local variables, etc.
159
160This section of the documentation first describes the representation aspects
161common to any source-language. :ref:`ccxx_frontend` describes the data layout
162conventions used by the C and C++ front-ends.
163
164Debug information descriptors
165-----------------------------
166
167In consideration of the complexity and volume of debug information, LLVM
168provides a specification for well formed debug descriptors.
169
170Consumers of LLVM debug information expect the descriptors for program objects
171to start in a canonical format, but the descriptors can include additional
172information appended at the end that is source-language specific. All LLVM
173debugging information is versioned, allowing backwards compatibility in the
174case that the core structures need to change in some way. Also, all debugging
175information objects start with a tag to indicate what type of object it is.
176The source-language is allowed to define its own objects, by using unreserved
177tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
178(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
179
180The fields of debug descriptors used internally by LLVM are restricted to only
181the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
182``mdnode``.
183
184.. code-block:: llvm
185
186 !1 = metadata !{
187 i32, ;; A tag
188 ...
189 }
190
191<a name="LLVMDebugVersion">The first field of a descriptor is always an
192``i32`` containing a tag value identifying the content of the descriptor.
193The remaining fields are specific to the descriptor. The values of tags are
194loosely bound to the tag values of DWARF information entries. However, that
195does not restrict the use of the information supplied to DWARF targets. To
196facilitate versioning of debug information, the tag is augmented with the
197current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
198524288.)
199
200The details of the various descriptors follow.
201
202Compile unit descriptors
203^^^^^^^^^^^^^^^^^^^^^^^^
204
205.. code-block:: llvm
206
207 !0 = metadata !{
208 i32, ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
209 i32, ;; Unused field.
210 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
211 metadata, ;; Source file name
212 metadata, ;; Source file directory (includes trailing slash)
213 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
214 i1, ;; True if this is a main compile unit.
215 i1, ;; True if this is optimized.
216 metadata, ;; Flags
217 i32 ;; Runtime version
218 metadata ;; List of enums types
219 metadata ;; List of retained types
220 metadata ;; List of subprograms
221 metadata ;; List of global variables
222 }
223
224These descriptors contain a source language ID for the file (we use the DWARF
2253.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
226``DW_LANG_Cobol74``, etc), three strings describing the filename, working
227directory of the compiler, and an identifier string for the compiler that
228produced it.
229
230Compile unit descriptors provide the root context for objects declared in a
231specific compilation unit. File descriptors are defined using this context.
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000232These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
233keep track of subprograms, global variables and type information.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000234
235.. _format_files:
236
237File descriptors
238^^^^^^^^^^^^^^^^
239
240.. code-block:: llvm
241
242 !0 = metadata !{
243 i32, ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
244 metadata, ;; Source file name
245 metadata, ;; Source file directory (includes trailing slash)
246 metadata ;; Unused
247 }
248
249These descriptors contain information for a file. Global variables and top
250level functions would be defined using this context. File descriptors also
251provide context for source line correspondence.
252
253Each input file is encoded as a separate file descriptor in LLVM debugging
254information output.
255
256.. _format_global_variables:
257
258Global variable descriptors
259^^^^^^^^^^^^^^^^^^^^^^^^^^^
260
261.. code-block:: llvm
262
263 !1 = metadata !{
264 i32, ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
265 i32, ;; Unused field.
266 metadata, ;; Reference to context descriptor
267 metadata, ;; Name
268 metadata, ;; Display name (fully qualified C++ name)
269 metadata, ;; MIPS linkage name (for C++)
270 metadata, ;; Reference to file where defined
271 i32, ;; Line number where defined
272 metadata, ;; Reference to type descriptor
273 i1, ;; True if the global is local to compile unit (static)
274 i1, ;; True if the global is defined in the compile unit (not extern)
275 {}* ;; Reference to the global variable
276 }
277
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000278These descriptors provide debug information about globals variables. They
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000279provide details such as name, type and where the variable is defined. All
280global variables are collected inside the named metadata ``!llvm.dbg.cu``.
281
282.. _format_subprograms:
283
284Subprogram descriptors
285^^^^^^^^^^^^^^^^^^^^^^
286
287.. code-block:: llvm
288
289 !2 = metadata !{
290 i32, ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
291 i32, ;; Unused field.
292 metadata, ;; Reference to context descriptor
293 metadata, ;; Name
294 metadata, ;; Display name (fully qualified C++ name)
295 metadata, ;; MIPS linkage name (for C++)
296 metadata, ;; Reference to file where defined
297 i32, ;; Line number where defined
298 metadata, ;; Reference to type descriptor
299 i1, ;; True if the global is local to compile unit (static)
300 i1, ;; True if the global is defined in the compile unit (not extern)
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000301 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
302 i32, ;; Index into a virtual function
303 metadata, ;; indicates which base type contains the vtable pointer for the
304 ;; derived class
305 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
306 i1, ;; isOptimized
307 Function * , ;; Pointer to LLVM function
308 metadata, ;; Lists function template parameters
309 metadata, ;; Function declaration descriptor
Dmitri Gribenko49136802013-02-16 20:07:40 +0000310 metadata, ;; List of function variables
311 i32 ;; Line number where the scope of the subprogram begins
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000312 }
313
314These descriptors provide debug information about functions, methods and
315subprograms. They provide details such as name, return types and the source
316location where the subprogram is defined.
317
318Block descriptors
319^^^^^^^^^^^^^^^^^
320
321.. code-block:: llvm
322
323 !3 = metadata !{
324 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
325 metadata,;; Reference to context descriptor
326 i32, ;; Line number
327 i32, ;; Column number
328 metadata,;; Reference to source file
329 i32 ;; Unique ID to identify blocks from a template function
330 }
331
332This descriptor provides debug information about nested blocks within a
333subprogram. The line number and column numbers are used to dinstinguish two
334lexical blocks at same depth.
335
336.. code-block:: llvm
337
338 !3 = metadata !{
339 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
340 metadata ;; Reference to the scope we're annotating with a file change
341 metadata,;; Reference to the file the scope is enclosed in.
342 }
343
344This descriptor provides a wrapper around a lexical scope to handle file
345changes in the middle of a lexical block.
346
347.. _format_basic_type:
348
349Basic type descriptors
350^^^^^^^^^^^^^^^^^^^^^^
351
352.. code-block:: llvm
353
354 !4 = metadata !{
355 i32, ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
356 metadata, ;; Reference to context
357 metadata, ;; Name (may be "" for anonymous types)
358 metadata, ;; Reference to file where defined (may be NULL)
359 i32, ;; Line number where defined (may be 0)
360 i64, ;; Size in bits
361 i64, ;; Alignment in bits
362 i64, ;; Offset in bits
363 i32, ;; Flags
364 i32 ;; DWARF type encoding
365 }
366
367These descriptors define primitive types used in the code. Example ``int``,
368``bool`` and ``float``. The context provides the scope of the type, which is
369usually the top level. Since basic types are not usually user defined the
370context and line number can be left as NULL and 0. The size, alignment and
371offset are expressed in bits and can be 64 bit values. The alignment is used
372to round the offset when embedded in a :ref:`composite type
373<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
374The offset is the bit offset if embedded in a :ref:`composite type
375<format_composite_type>`.
376
377The type encoding provides the details of the type. The values are typically
378one of the following:
379
380.. code-block:: llvm
381
382 DW_ATE_address = 1
383 DW_ATE_boolean = 2
384 DW_ATE_float = 4
385 DW_ATE_signed = 5
386 DW_ATE_signed_char = 6
387 DW_ATE_unsigned = 7
388 DW_ATE_unsigned_char = 8
389
390.. _format_derived_type:
391
392Derived type descriptors
393^^^^^^^^^^^^^^^^^^^^^^^^
394
395.. code-block:: llvm
396
397 !5 = metadata !{
398 i32, ;; Tag (see below)
399 metadata, ;; Reference to context
400 metadata, ;; Name (may be "" for anonymous types)
401 metadata, ;; Reference to file where defined (may be NULL)
402 i32, ;; Line number where defined (may be 0)
403 i64, ;; Size in bits
404 i64, ;; Alignment in bits
405 i64, ;; Offset in bits
406 i32, ;; Flags to encode attributes, e.g. private
407 metadata, ;; Reference to type derived from
408 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie92f09172013-01-07 06:02:07 +0000409 ;; Objective-C an ivar, or the type of which this
410 ;; pointer-to-member is pointing to members of.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000411 metadata, ;; (optional) Name of the Objective C property getter selector.
412 metadata, ;; (optional) Name of the Objective C property setter selector.
413 i32 ;; (optional) Objective C property attributes.
414 }
415
416These descriptors are used to define types derived from other types. The value
417of the tag varies depending on the meaning. The following are possible tag
418values:
419
420.. code-block:: llvm
421
David Blaikie92f09172013-01-07 06:02:07 +0000422 DW_TAG_formal_parameter = 5
423 DW_TAG_member = 13
424 DW_TAG_pointer_type = 15
425 DW_TAG_reference_type = 16
426 DW_TAG_typedef = 22
427 DW_TAG_ptr_to_member_type = 31
428 DW_TAG_const_type = 38
429 DW_TAG_volatile_type = 53
430 DW_TAG_restrict_type = 55
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000431
432``DW_TAG_member`` is used to define a member of a :ref:`composite type
433<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
434of the member is the :ref:`derived type <format_derived_type>`.
435``DW_TAG_formal_parameter`` is used to define a member which is a formal
436argument of a subprogram.
437
438``DW_TAG_typedef`` is used to provide a name for the derived type.
439
440``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
441``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
442:ref:`derived type <format_derived_type>`.
443
444:ref:`Derived type <format_derived_type>` location can be determined from the
445context and line number. The size, alignment and offset are expressed in bits
446and can be 64 bit values. The alignment is used to round the offset when
447embedded in a :ref:`composite type <format_composite_type>` (example to keep
448float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
449in a :ref:`composite type <format_composite_type>`.
450
451Note that the ``void *`` type is expressed as a type derived from NULL.
452
453.. _format_composite_type:
454
455Composite type descriptors
456^^^^^^^^^^^^^^^^^^^^^^^^^^
457
458.. code-block:: llvm
459
460 !6 = metadata !{
461 i32, ;; Tag (see below)
462 metadata, ;; Reference to context
463 metadata, ;; Name (may be "" for anonymous types)
464 metadata, ;; Reference to file where defined (may be NULL)
465 i32, ;; Line number where defined (may be 0)
466 i64, ;; Size in bits
467 i64, ;; Alignment in bits
468 i64, ;; Offset in bits
469 i32, ;; Flags
470 metadata, ;; Reference to type derived from
471 metadata, ;; Reference to array of member descriptors
472 i32 ;; Runtime languages
473 }
474
475These descriptors are used to define types that are composed of 0 or more
476elements. The value of the tag varies depending on the meaning. The following
477are possible tag values:
478
479.. code-block:: llvm
480
481 DW_TAG_array_type = 1
482 DW_TAG_enumeration_type = 4
483 DW_TAG_structure_type = 19
484 DW_TAG_union_type = 23
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000485 DW_TAG_subroutine_type = 21
486 DW_TAG_inheritance = 28
487
488The vector flag indicates that an array type is a native packed vector.
489
Eric Christopher9a1e0e22013-01-08 01:53:52 +0000490The members of array types (tag = ``DW_TAG_array_type``) are
491:ref:`subrange descriptors <format_subrange>`, each
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000492representing the range of subscripts at that level of indexing.
493
494The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
495:ref:`enumerator descriptors <format_enumerator>`, each representing the
496definition of enumeration value for the set. All enumeration type descriptors
497are collected inside the named metadata ``!llvm.dbg.cu``.
498
499The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
500``DW_TAG_union_type``) types are any one of the :ref:`basic
501<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
502<format_composite_type>` type descriptors, each representing a field member of
503the structure or union.
504
505For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
506information about base classes, static members and member functions. If a
507member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
508of ``DW_TAG_inheritance``, then the type represents a base class. If the member
509of is a :ref:`global variable descriptor <format_global_variables>` then it
510represents a static member. And, if the member is a :ref:`subprogram
511descriptor <format_subprograms>` then it represents a member function. For
512static members and member functions, ``getName()`` returns the members link or
513the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
514
515The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
516is the return type for the subroutine. The remaining elements are the formal
517arguments to the subroutine.
518
519:ref:`Composite type <format_composite_type>` location can be determined from
520the context and line number. The size, alignment and offset are expressed in
521bits and can be 64 bit values. The alignment is used to round the offset when
522embedded in a :ref:`composite type <format_composite_type>` (as an example, to
523keep float doubles on 64 bit boundaries). The offset is the bit offset if
524embedded in a :ref:`composite type <format_composite_type>`.
525
526.. _format_subrange:
527
528Subrange descriptors
529^^^^^^^^^^^^^^^^^^^^
530
531.. code-block:: llvm
532
533 !42 = metadata !{
534 i32, ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
535 i64, ;; Low value
536 i64 ;; High value
537 }
538
539These descriptors are used to define ranges of array subscripts for an array
540:ref:`composite type <format_composite_type>`. The low value defines the lower
541bounds typically zero for C/C++. The high value is the upper bounds. Values
542are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
543the array bounds are not included in generated debugging information.
544
545.. _format_enumerator:
546
547Enumerator descriptors
548^^^^^^^^^^^^^^^^^^^^^^
549
550.. code-block:: llvm
551
552 !6 = metadata !{
553 i32, ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
554 metadata, ;; Name
555 i64 ;; Value
556 }
557
558These descriptors are used to define members of an enumeration :ref:`composite
559type <format_composite_type>`, it associates the name to the value.
560
561Local variables
562^^^^^^^^^^^^^^^
563
564.. code-block:: llvm
565
566 !7 = metadata !{
567 i32, ;; Tag (see below)
568 metadata, ;; Context
569 metadata, ;; Name
570 metadata, ;; Reference to file where defined
571 i32, ;; 24 bit - Line number where defined
572 ;; 8 bit - Argument number. 1 indicates 1st argument.
573 metadata, ;; Type descriptor
574 i32, ;; flags
575 metadata ;; (optional) Reference to inline location
576 }
577
578These descriptors are used to define variables local to a sub program. The
579value of the tag depends on the usage of the variable:
580
581.. code-block:: llvm
582
583 DW_TAG_auto_variable = 256
584 DW_TAG_arg_variable = 257
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000585
586An auto variable is any variable declared in the body of the function. An
587argument variable is any variable that appears as a formal argument to the
Eric Christopher72a81be2013-01-08 00:16:33 +0000588function.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000589
590The context is either the subprogram or block where the variable is defined.
591Name the source variable name. Context and line indicate where the variable
592was defined. Type descriptor defines the declared type of the variable.
593
594.. _format_common_intrinsics:
595
596Debugger intrinsic functions
597^^^^^^^^^^^^^^^^^^^^^^^^^^^^
598
599LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
600provide debug information at various points in generated code.
601
602``llvm.dbg.declare``
603^^^^^^^^^^^^^^^^^^^^
604
605.. code-block:: llvm
606
607 void %llvm.dbg.declare(metadata, metadata)
608
609This intrinsic provides information about a local element (e.g., variable).
610The first argument is metadata holding the alloca for the variable. The second
611argument is metadata containing a description of the variable.
612
613``llvm.dbg.value``
614^^^^^^^^^^^^^^^^^^
615
616.. code-block:: llvm
617
618 void %llvm.dbg.value(metadata, i64, metadata)
619
620This intrinsic provides information when a user source variable is set to a new
621value. The first argument is the new value (wrapped as metadata). The second
622argument is the offset in the user source variable where the new value is
623written. The third argument is metadata containing a description of the user
624source variable.
625
626Object lifetimes and scoping
627============================
628
629In many languages, the local variables in functions can have their lifetimes or
630scopes limited to a subset of a function. In the C family of languages, for
631example, variables are only live (readable and writable) within the source
632block that they are defined in. In functional languages, values are only
633readable after they have been defined. Though this is a very obvious concept,
634it is non-trivial to model in LLVM, because it has no notion of scoping in this
635sense, and does not want to be tied to a language's scoping rules.
636
637In order to handle this, the LLVM debug format uses the metadata attached to
638llvm instructions to encode line number and scoping information. Consider the
639following C fragment, for example:
640
641.. code-block:: c
642
643 1. void foo() {
644 2. int X = 21;
645 3. int Y = 22;
646 4. {
647 5. int Z = 23;
648 6. Z = X;
649 7. }
650 8. X = Y;
651 9. }
652
653Compiled to LLVM, this function would be represented like this:
654
655.. code-block:: llvm
656
657 define void @foo() nounwind ssp {
658 entry:
659 %X = alloca i32, align 4 ; <i32*> [#uses=4]
660 %Y = alloca i32, align 4 ; <i32*> [#uses=4]
661 %Z = alloca i32, align 4 ; <i32*> [#uses=3]
662 %0 = bitcast i32* %X to {}* ; <{}*> [#uses=1]
663 call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
664 store i32 21, i32* %X, !dbg !8
665 %1 = bitcast i32* %Y to {}* ; <{}*> [#uses=1]
666 call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
667 store i32 22, i32* %Y, !dbg !11
668 %2 = bitcast i32* %Z to {}* ; <{}*> [#uses=1]
669 call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
670 store i32 23, i32* %Z, !dbg !15
671 %tmp = load i32* %X, !dbg !16 ; <i32> [#uses=1]
672 %tmp1 = load i32* %Y, !dbg !16 ; <i32> [#uses=1]
673 %add = add nsw i32 %tmp, %tmp1, !dbg !16 ; <i32> [#uses=1]
674 store i32 %add, i32* %Z, !dbg !16
675 %tmp2 = load i32* %Y, !dbg !17 ; <i32> [#uses=1]
676 store i32 %tmp2, i32* %X, !dbg !17
677 ret void, !dbg !18
678 }
679
680 declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
681
682 !0 = metadata !{i32 459008, metadata !1, metadata !"X",
683 metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
684 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
685 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
686 metadata !"foo", metadata !3, i32 1, metadata !4,
687 i1 false, i1 true}; [DW_TAG_subprogram ]
688 !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
689 metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
690 i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
691 !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
692 i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
693 !5 = metadata !{null}
694 !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
695 i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
696 !7 = metadata !{i32 2, i32 7, metadata !1, null}
697 !8 = metadata !{i32 2, i32 3, metadata !1, null}
698 !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
699 metadata !6}; [ DW_TAG_auto_variable ]
700 !10 = metadata !{i32 3, i32 7, metadata !1, null}
701 !11 = metadata !{i32 3, i32 3, metadata !1, null}
702 !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
703 metadata !6}; [ DW_TAG_auto_variable ]
704 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
705 !14 = metadata !{i32 5, i32 9, metadata !13, null}
706 !15 = metadata !{i32 5, i32 5, metadata !13, null}
707 !16 = metadata !{i32 6, i32 5, metadata !13, null}
708 !17 = metadata !{i32 8, i32 3, metadata !1, null}
709 !18 = metadata !{i32 9, i32 1, metadata !2, null}
710
711This example illustrates a few important details about LLVM debugging
712information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
713location information, which are attached to an instruction, are applied
714together to allow a debugger to analyze the relationship between statements,
715variable definitions, and the code used to implement the function.
716
717.. code-block:: llvm
718
719 call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
720
721The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
722variable ``X``. The metadata ``!dbg !7`` attached to the intrinsic provides
723scope information for the variable ``X``.
724
725.. code-block:: llvm
726
727 !7 = metadata !{i32 2, i32 7, metadata !1, null}
728 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
729 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
730 metadata !"foo", metadata !"foo", metadata !3, i32 1,
731 metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
732
733Here ``!7`` is metadata providing location information. It has four fields:
734line number, column number, scope, and original scope. The original scope
735represents inline location if this instruction is inlined inside a caller, and
736is null otherwise. In this example, scope is encoded by ``!1``. ``!1``
737represents a lexical block inside the scope ``!2``, where ``!2`` is a
738:ref:`subprogram descriptor <format_subprograms>`. This way the location
739information attached to the intrinsics indicates that the variable ``X`` is
740declared at line number 2 at a function level scope in function ``foo``.
741
742Now lets take another example.
743
744.. code-block:: llvm
745
746 call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
747
748The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
749variable ``Z``. The metadata ``!dbg !14`` attached to the intrinsic provides
750scope information for the variable ``Z``.
751
752.. code-block:: llvm
753
754 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
755 !14 = metadata !{i32 5, i32 9, metadata !13, null}
756
757Here ``!14`` indicates that ``Z`` is declared at line number 5 and
758column number 9 inside of lexical scope ``!13``. The lexical scope itself
759resides inside of lexical scope ``!1`` described above.
760
761The scope information attached with each instruction provides a straightforward
762way to find instructions covered by a scope.
763
764.. _ccxx_frontend:
765
766C/C++ front-end specific debug information
767==========================================
768
769The C and C++ front-ends represent information about the program in a format
770that is effectively identical to `DWARF 3.0
771<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
772content. This allows code generators to trivially support native debuggers by
773generating standard dwarf information, and contains enough information for
774non-dwarf targets to translate it as needed.
775
776This section describes the forms used to represent C and C++ programs. Other
777languages could pattern themselves after this (which itself is tuned to
778representing programs in the same way that DWARF 3 does), or they could choose
779to provide completely different forms if they don't fit into the DWARF model.
780As support for debugging information gets added to the various LLVM
781source-language front-ends, the information used should be documented here.
782
783The following sections provide examples of various C/C++ constructs and the
784debug information that would best describe those constructs.
785
786C/C++ source file information
787-----------------------------
788
789Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
790directory ``/Users/mine/sources``, the following code:
791
792.. code-block:: c
793
794 #include "MyHeader.h"
795
796 int main(int argc, char *argv[]) {
797 return 0;
798 }
799
800a C/C++ front-end would generate the following descriptors:
801
802.. code-block:: llvm
803
804 ...
805 ;;
806 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
807 ;;
808 !2 = metadata !{
809 i32 524305, ;; Tag
810 i32 0, ;; Unused
811 i32 4, ;; Language Id
812 metadata !"MySource.cpp",
813 metadata !"/Users/mine/sources",
814 metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
815 i1 true, ;; Main Compile Unit
816 i1 false, ;; Optimized compile unit
817 metadata !"", ;; Compiler flags
818 i32 0} ;; Runtime version
819
820 ;;
821 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
822 ;;
823 !1 = metadata !{
824 i32 524329, ;; Tag
825 metadata !"MySource.cpp",
826 metadata !"/Users/mine/sources",
827 metadata !2 ;; Compile unit
828 }
829
830 ;;
831 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
832 ;;
833 !3 = metadata !{
834 i32 524329, ;; Tag
835 metadata !"Myheader.h"
836 metadata !"/Users/mine/sources",
837 metadata !2 ;; Compile unit
838 }
839
840 ...
841
842``llvm::Instruction`` provides easy access to metadata attached with an
843instruction. One can extract line number information encoded in LLVM IR using
844``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
845
846.. code-block:: c++
847
848 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
849 DILocation Loc(N); // DILocation is in DebugInfo.h
850 unsigned Line = Loc.getLineNumber();
851 StringRef File = Loc.getFilename();
852 StringRef Dir = Loc.getDirectory();
853 }
854
855C/C++ global variable information
856---------------------------------
857
858Given an integer global variable declared as follows:
859
860.. code-block:: c
861
862 int MyGlobal = 100;
863
864a C/C++ front-end would generate the following descriptors:
865
866.. code-block:: llvm
867
868 ;;
869 ;; Define the global itself.
870 ;;
871 %MyGlobal = global int 100
872 ...
873 ;;
874 ;; List of debug info of globals
875 ;;
876 !llvm.dbg.cu = !{!0}
877
878 ;; Define the compile unit.
879 !0 = metadata !{
880 i32 786449, ;; Tag
881 i32 0, ;; Context
882 i32 4, ;; Language
883 metadata !"foo.cpp", ;; File
884 metadata !"/Volumes/Data/tmp", ;; Directory
885 metadata !"clang version 3.1 ", ;; Producer
886 i1 true, ;; Deprecated field
887 i1 false, ;; "isOptimized"?
888 metadata !"", ;; Flags
889 i32 0, ;; Runtime Version
890 metadata !1, ;; Enum Types
891 metadata !1, ;; Retained Types
892 metadata !1, ;; Subprograms
893 metadata !3 ;; Global Variables
894 } ; [ DW_TAG_compile_unit ]
895
896 ;; The Array of Global Variables
897 !3 = metadata !{
898 metadata !4
899 }
900
901 !4 = metadata !{
902 metadata !5
903 }
904
905 ;;
906 ;; Define the global variable itself.
907 ;;
908 !5 = metadata !{
909 i32 786484, ;; Tag
910 i32 0, ;; Unused
911 null, ;; Unused
912 metadata !"MyGlobal", ;; Name
913 metadata !"MyGlobal", ;; Display Name
914 metadata !"", ;; Linkage Name
915 metadata !6, ;; File
916 i32 1, ;; Line
917 metadata !7, ;; Type
918 i32 0, ;; IsLocalToUnit
919 i32 1, ;; IsDefinition
920 i32* @MyGlobal ;; LLVM-IR Value
921 } ; [ DW_TAG_variable ]
922
923 ;;
924 ;; Define the file
925 ;;
926 !6 = metadata !{
927 i32 786473, ;; Tag
928 metadata !"foo.cpp", ;; File
929 metadata !"/Volumes/Data/tmp", ;; Directory
930 null ;; Unused
931 } ; [ DW_TAG_file_type ]
932
933 ;;
934 ;; Define the type
935 ;;
936 !7 = metadata !{
937 i32 786468, ;; Tag
938 null, ;; Unused
939 metadata !"int", ;; Name
940 null, ;; Unused
941 i32 0, ;; Line
942 i64 32, ;; Size in Bits
943 i64 32, ;; Align in Bits
944 i64 0, ;; Offset
945 i32 0, ;; Flags
946 i32 5 ;; Encoding
947 } ; [ DW_TAG_base_type ]
948
949C/C++ function information
950--------------------------
951
952Given a function declared as follows:
953
954.. code-block:: c
955
956 int main(int argc, char *argv[]) {
957 return 0;
958 }
959
960a C/C++ front-end would generate the following descriptors:
961
962.. code-block:: llvm
963
964 ;;
965 ;; Define the anchor for subprograms. Note that the second field of the
966 ;; anchor is 46, which is the same as the tag for subprograms
967 ;; (46 = DW_TAG_subprogram.)
968 ;;
969 !6 = metadata !{
970 i32 524334, ;; Tag
971 i32 0, ;; Unused
972 metadata !1, ;; Context
973 metadata !"main", ;; Name
974 metadata !"main", ;; Display name
975 metadata !"main", ;; Linkage name
976 metadata !1, ;; File
977 i32 1, ;; Line number
978 metadata !4, ;; Type
979 i1 false, ;; Is local
980 i1 true, ;; Is definition
981 i32 0, ;; Virtuality attribute, e.g. pure virtual function
982 i32 0, ;; Index into virtual table for C++ methods
983 i32 0, ;; Type that holds virtual table.
984 i32 0, ;; Flags
985 i1 false, ;; True if this function is optimized
986 Function *, ;; Pointer to llvm::Function
987 null ;; Function template parameters
988 }
989 ;;
990 ;; Define the subprogram itself.
991 ;;
992 define i32 @main(i32 %argc, i8** %argv) {
993 ...
994 }
995
996C/C++ basic types
997-----------------
998
999The following are the basic type descriptors for C/C++ core types:
1000
1001bool
1002^^^^
1003
1004.. code-block:: llvm
1005
1006 !2 = metadata !{
1007 i32 524324, ;; Tag
1008 metadata !1, ;; Context
1009 metadata !"bool", ;; Name
1010 metadata !1, ;; File
1011 i32 0, ;; Line number
1012 i64 8, ;; Size in Bits
1013 i64 8, ;; Align in Bits
1014 i64 0, ;; Offset in Bits
1015 i32 0, ;; Flags
1016 i32 2 ;; Encoding
1017 }
1018
1019char
1020^^^^
1021
1022.. code-block:: llvm
1023
1024 !2 = metadata !{
1025 i32 524324, ;; Tag
1026 metadata !1, ;; Context
1027 metadata !"char", ;; Name
1028 metadata !1, ;; File
1029 i32 0, ;; Line number
1030 i64 8, ;; Size in Bits
1031 i64 8, ;; Align in Bits
1032 i64 0, ;; Offset in Bits
1033 i32 0, ;; Flags
1034 i32 6 ;; Encoding
1035 }
1036
1037unsigned char
1038^^^^^^^^^^^^^
1039
1040.. code-block:: llvm
1041
1042 !2 = metadata !{
1043 i32 524324, ;; Tag
1044 metadata !1, ;; Context
1045 metadata !"unsigned char",
1046 metadata !1, ;; File
1047 i32 0, ;; Line number
1048 i64 8, ;; Size in Bits
1049 i64 8, ;; Align in Bits
1050 i64 0, ;; Offset in Bits
1051 i32 0, ;; Flags
1052 i32 8 ;; Encoding
1053 }
1054
1055short
1056^^^^^
1057
1058.. code-block:: llvm
1059
1060 !2 = metadata !{
1061 i32 524324, ;; Tag
1062 metadata !1, ;; Context
1063 metadata !"short int",
1064 metadata !1, ;; File
1065 i32 0, ;; Line number
1066 i64 16, ;; Size in Bits
1067 i64 16, ;; Align in Bits
1068 i64 0, ;; Offset in Bits
1069 i32 0, ;; Flags
1070 i32 5 ;; Encoding
1071 }
1072
1073unsigned short
1074^^^^^^^^^^^^^^
1075
1076.. code-block:: llvm
1077
1078 !2 = metadata !{
1079 i32 524324, ;; Tag
1080 metadata !1, ;; Context
1081 metadata !"short unsigned int",
1082 metadata !1, ;; File
1083 i32 0, ;; Line number
1084 i64 16, ;; Size in Bits
1085 i64 16, ;; Align in Bits
1086 i64 0, ;; Offset in Bits
1087 i32 0, ;; Flags
1088 i32 7 ;; Encoding
1089 }
1090
1091int
1092^^^
1093
1094.. code-block:: llvm
1095
1096 !2 = metadata !{
1097 i32 524324, ;; Tag
1098 metadata !1, ;; Context
1099 metadata !"int", ;; Name
1100 metadata !1, ;; File
1101 i32 0, ;; Line number
1102 i64 32, ;; Size in Bits
1103 i64 32, ;; Align in Bits
1104 i64 0, ;; Offset in Bits
1105 i32 0, ;; Flags
1106 i32 5 ;; Encoding
1107 }
1108
1109unsigned int
1110^^^^^^^^^^^^
1111
1112.. code-block:: llvm
1113
1114 !2 = metadata !{
1115 i32 524324, ;; Tag
1116 metadata !1, ;; Context
1117 metadata !"unsigned int",
1118 metadata !1, ;; File
1119 i32 0, ;; Line number
1120 i64 32, ;; Size in Bits
1121 i64 32, ;; Align in Bits
1122 i64 0, ;; Offset in Bits
1123 i32 0, ;; Flags
1124 i32 7 ;; Encoding
1125 }
1126
1127long long
1128^^^^^^^^^
1129
1130.. code-block:: llvm
1131
1132 !2 = metadata !{
1133 i32 524324, ;; Tag
1134 metadata !1, ;; Context
1135 metadata !"long long int",
1136 metadata !1, ;; File
1137 i32 0, ;; Line number
1138 i64 64, ;; Size in Bits
1139 i64 64, ;; Align in Bits
1140 i64 0, ;; Offset in Bits
1141 i32 0, ;; Flags
1142 i32 5 ;; Encoding
1143 }
1144
1145unsigned long long
1146^^^^^^^^^^^^^^^^^^
1147
1148.. code-block:: llvm
1149
1150 !2 = metadata !{
1151 i32 524324, ;; Tag
1152 metadata !1, ;; Context
1153 metadata !"long long unsigned int",
1154 metadata !1, ;; File
1155 i32 0, ;; Line number
1156 i64 64, ;; Size in Bits
1157 i64 64, ;; Align in Bits
1158 i64 0, ;; Offset in Bits
1159 i32 0, ;; Flags
1160 i32 7 ;; Encoding
1161 }
1162
1163float
1164^^^^^
1165
1166.. code-block:: llvm
1167
1168 !2 = metadata !{
1169 i32 524324, ;; Tag
1170 metadata !1, ;; Context
1171 metadata !"float",
1172 metadata !1, ;; File
1173 i32 0, ;; Line number
1174 i64 32, ;; Size in Bits
1175 i64 32, ;; Align in Bits
1176 i64 0, ;; Offset in Bits
1177 i32 0, ;; Flags
1178 i32 4 ;; Encoding
1179 }
1180
1181double
1182^^^^^^
1183
1184.. code-block:: llvm
1185
1186 !2 = metadata !{
1187 i32 524324, ;; Tag
1188 metadata !1, ;; Context
1189 metadata !"double",;; Name
1190 metadata !1, ;; File
1191 i32 0, ;; Line number
1192 i64 64, ;; Size in Bits
1193 i64 64, ;; Align in Bits
1194 i64 0, ;; Offset in Bits
1195 i32 0, ;; Flags
1196 i32 4 ;; Encoding
1197 }
1198
1199C/C++ derived types
1200-------------------
1201
1202Given the following as an example of C/C++ derived type:
1203
1204.. code-block:: c
1205
1206 typedef const int *IntPtr;
1207
1208a C/C++ front-end would generate the following descriptors:
1209
1210.. code-block:: llvm
1211
1212 ;;
1213 ;; Define the typedef "IntPtr".
1214 ;;
1215 !2 = metadata !{
1216 i32 524310, ;; Tag
1217 metadata !1, ;; Context
1218 metadata !"IntPtr", ;; Name
1219 metadata !3, ;; File
1220 i32 0, ;; Line number
1221 i64 0, ;; Size in bits
1222 i64 0, ;; Align in bits
1223 i64 0, ;; Offset in bits
1224 i32 0, ;; Flags
1225 metadata !4 ;; Derived From type
1226 }
1227 ;;
1228 ;; Define the pointer type.
1229 ;;
1230 !4 = metadata !{
1231 i32 524303, ;; Tag
1232 metadata !1, ;; Context
1233 metadata !"", ;; Name
1234 metadata !1, ;; File
1235 i32 0, ;; Line number
1236 i64 64, ;; Size in bits
1237 i64 64, ;; Align in bits
1238 i64 0, ;; Offset in bits
1239 i32 0, ;; Flags
1240 metadata !5 ;; Derived From type
1241 }
1242 ;;
1243 ;; Define the const type.
1244 ;;
1245 !5 = metadata !{
1246 i32 524326, ;; Tag
1247 metadata !1, ;; Context
1248 metadata !"", ;; Name
1249 metadata !1, ;; File
1250 i32 0, ;; Line number
1251 i64 32, ;; Size in bits
1252 i64 32, ;; Align in bits
1253 i64 0, ;; Offset in bits
1254 i32 0, ;; Flags
1255 metadata !6 ;; Derived From type
1256 }
1257 ;;
1258 ;; Define the int type.
1259 ;;
1260 !6 = metadata !{
1261 i32 524324, ;; Tag
1262 metadata !1, ;; Context
1263 metadata !"int", ;; Name
1264 metadata !1, ;; File
1265 i32 0, ;; Line number
1266 i64 32, ;; Size in bits
1267 i64 32, ;; Align in bits
1268 i64 0, ;; Offset in bits
1269 i32 0, ;; Flags
1270 5 ;; Encoding
1271 }
1272
1273C/C++ struct/union types
1274------------------------
1275
1276Given the following as an example of C/C++ struct type:
1277
1278.. code-block:: c
1279
1280 struct Color {
1281 unsigned Red;
1282 unsigned Green;
1283 unsigned Blue;
1284 };
1285
1286a C/C++ front-end would generate the following descriptors:
1287
1288.. code-block:: llvm
1289
1290 ;;
1291 ;; Define basic type for unsigned int.
1292 ;;
1293 !5 = metadata !{
1294 i32 524324, ;; Tag
1295 metadata !1, ;; Context
1296 metadata !"unsigned int",
1297 metadata !1, ;; File
1298 i32 0, ;; Line number
1299 i64 32, ;; Size in Bits
1300 i64 32, ;; Align in Bits
1301 i64 0, ;; Offset in Bits
1302 i32 0, ;; Flags
1303 i32 7 ;; Encoding
1304 }
1305 ;;
1306 ;; Define composite type for struct Color.
1307 ;;
1308 !2 = metadata !{
1309 i32 524307, ;; Tag
1310 metadata !1, ;; Context
1311 metadata !"Color", ;; Name
1312 metadata !1, ;; Compile unit
1313 i32 1, ;; Line number
1314 i64 96, ;; Size in bits
1315 i64 32, ;; Align in bits
1316 i64 0, ;; Offset in bits
1317 i32 0, ;; Flags
1318 null, ;; Derived From
1319 metadata !3, ;; Elements
1320 i32 0 ;; Runtime Language
1321 }
1322
1323 ;;
1324 ;; Define the Red field.
1325 ;;
1326 !4 = metadata !{
1327 i32 524301, ;; Tag
1328 metadata !1, ;; Context
1329 metadata !"Red", ;; Name
1330 metadata !1, ;; File
1331 i32 2, ;; Line number
1332 i64 32, ;; Size in bits
1333 i64 32, ;; Align in bits
1334 i64 0, ;; Offset in bits
1335 i32 0, ;; Flags
1336 metadata !5 ;; Derived From type
1337 }
1338
1339 ;;
1340 ;; Define the Green field.
1341 ;;
1342 !6 = metadata !{
1343 i32 524301, ;; Tag
1344 metadata !1, ;; Context
1345 metadata !"Green", ;; Name
1346 metadata !1, ;; File
1347 i32 3, ;; Line number
1348 i64 32, ;; Size in bits
1349 i64 32, ;; Align in bits
1350 i64 32, ;; Offset in bits
1351 i32 0, ;; Flags
1352 metadata !5 ;; Derived From type
1353 }
1354
1355 ;;
1356 ;; Define the Blue field.
1357 ;;
1358 !7 = metadata !{
1359 i32 524301, ;; Tag
1360 metadata !1, ;; Context
1361 metadata !"Blue", ;; Name
1362 metadata !1, ;; File
1363 i32 4, ;; Line number
1364 i64 32, ;; Size in bits
1365 i64 32, ;; Align in bits
1366 i64 64, ;; Offset in bits
1367 i32 0, ;; Flags
1368 metadata !5 ;; Derived From type
1369 }
1370
1371 ;;
1372 ;; Define the array of fields used by the composite type Color.
1373 ;;
1374 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1375
1376C/C++ enumeration types
1377-----------------------
1378
1379Given the following as an example of C/C++ enumeration type:
1380
1381.. code-block:: c
1382
1383 enum Trees {
1384 Spruce = 100,
1385 Oak = 200,
1386 Maple = 300
1387 };
1388
1389a C/C++ front-end would generate the following descriptors:
1390
1391.. code-block:: llvm
1392
1393 ;;
1394 ;; Define composite type for enum Trees
1395 ;;
1396 !2 = metadata !{
1397 i32 524292, ;; Tag
1398 metadata !1, ;; Context
1399 metadata !"Trees", ;; Name
1400 metadata !1, ;; File
1401 i32 1, ;; Line number
1402 i64 32, ;; Size in bits
1403 i64 32, ;; Align in bits
1404 i64 0, ;; Offset in bits
1405 i32 0, ;; Flags
1406 null, ;; Derived From type
1407 metadata !3, ;; Elements
1408 i32 0 ;; Runtime language
1409 }
1410
1411 ;;
1412 ;; Define the array of enumerators used by composite type Trees.
1413 ;;
1414 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1415
1416 ;;
1417 ;; Define Spruce enumerator.
1418 ;;
1419 !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}
1420
1421 ;;
1422 ;; Define Oak enumerator.
1423 ;;
1424 !5 = metadata !{i32 524328, metadata !"Oak", i64 200}
1425
1426 ;;
1427 ;; Define Maple enumerator.
1428 ;;
1429 !6 = metadata !{i32 524328, metadata !"Maple", i64 300}
1430
1431Debugging information format
1432============================
1433
1434Debugging Information Extension for Objective C Properties
1435----------------------------------------------------------
1436
1437Introduction
1438^^^^^^^^^^^^
1439
1440Objective C provides a simpler way to declare and define accessor methods using
1441declared properties. The language provides features to declare a property and
1442to let compiler synthesize accessor methods.
1443
1444The debugger lets developer inspect Objective C interfaces and their instance
1445variables and class variables. However, the debugger does not know anything
1446about the properties defined in Objective C interfaces. The debugger consumes
1447information generated by compiler in DWARF format. The format does not support
1448encoding of Objective C properties. This proposal describes DWARF extensions to
1449encode Objective C properties, which the debugger can use to let developers
1450inspect Objective C properties.
1451
1452Proposal
1453^^^^^^^^
1454
1455Objective C properties exist separately from class members. A property can be
1456defined only by "setter" and "getter" selectors, and be calculated anew on each
1457access. Or a property can just be a direct access to some declared ivar.
1458Finally it can have an ivar "automatically synthesized" for it by the compiler,
1459in which case the property can be referred to in user code directly using the
1460standard C dereference syntax as well as through the property "dot" syntax, but
1461there is no entry in the ``@interface`` declaration corresponding to this ivar.
1462
1463To facilitate debugging, these properties we will add a new DWARF TAG into the
1464``DW_TAG_structure_type`` definition for the class to hold the description of a
1465given property, and a set of DWARF attributes that provide said description.
1466The property tag will also contain the name and declared type of the property.
1467
1468If there is a related ivar, there will also be a DWARF property attribute placed
1469in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1470for that property. And in the case where the compiler synthesizes the ivar
1471directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1472ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1473to access this ivar directly in code, and with the property attribute pointing
1474back to the property it is backing.
1475
1476The following examples will serve as illustration for our discussion:
1477
1478.. code-block:: objc
1479
1480 @interface I1 {
1481 int n2;
1482 }
1483
1484 @property int p1;
1485 @property int p2;
1486 @end
1487
1488 @implementation I1
1489 @synthesize p1;
1490 @synthesize p2 = n2;
1491 @end
1492
1493This produces the following DWARF (this is a "pseudo dwarfdump" output):
1494
1495.. code-block:: none
1496
1497 0x00000100: TAG_structure_type [7] *
1498 AT_APPLE_runtime_class( 0x10 )
1499 AT_name( "I1" )
1500 AT_decl_file( "Objc_Property.m" )
1501 AT_decl_line( 3 )
1502
1503 0x00000110 TAG_APPLE_property
1504 AT_name ( "p1" )
1505 AT_type ( {0x00000150} ( int ) )
1506
1507 0x00000120: TAG_APPLE_property
1508 AT_name ( "p2" )
1509 AT_type ( {0x00000150} ( int ) )
1510
1511 0x00000130: TAG_member [8]
1512 AT_name( "_p1" )
1513 AT_APPLE_property ( {0x00000110} "p1" )
1514 AT_type( {0x00000150} ( int ) )
1515 AT_artificial ( 0x1 )
1516
1517 0x00000140: TAG_member [8]
1518 AT_name( "n2" )
1519 AT_APPLE_property ( {0x00000120} "p2" )
1520 AT_type( {0x00000150} ( int ) )
1521
1522 0x00000150: AT_type( ( int ) )
1523
1524Note, the current convention is that the name of the ivar for an
1525auto-synthesized property is the name of the property from which it derives
1526with an underscore prepended, as is shown in the example. But we actually
1527don't need to know this convention, since we are given the name of the ivar
1528directly.
1529
1530Also, it is common practice in ObjC to have different property declarations in
1531the @interface and @implementation - e.g. to provide a read-only property in
1532the interface,and a read-write interface in the implementation. In that case,
1533the compiler should emit whichever property declaration will be in force in the
1534current translation unit.
1535
1536Developers can decorate a property with attributes which are encoded using
1537``DW_AT_APPLE_property_attribute``.
1538
1539.. code-block:: objc
1540
1541 @property (readonly, nonatomic) int pr;
1542
1543.. code-block:: none
1544
1545 TAG_APPLE_property [8]
1546 AT_name( "pr" )
1547 AT_type ( {0x00000147} (int) )
1548 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1549
1550The setter and getter method names are attached to the property using
1551``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1552
1553.. code-block:: objc
1554
1555 @interface I1
1556 @property (setter=myOwnP3Setter:) int p3;
1557 -(void)myOwnP3Setter:(int)a;
1558 @end
1559
1560 @implementation I1
1561 @synthesize p3;
1562 -(void)myOwnP3Setter:(int)a{ }
1563 @end
1564
1565The DWARF for this would be:
1566
1567.. code-block:: none
1568
1569 0x000003bd: TAG_structure_type [7] *
1570 AT_APPLE_runtime_class( 0x10 )
1571 AT_name( "I1" )
1572 AT_decl_file( "Objc_Property.m" )
1573 AT_decl_line( 3 )
1574
1575 0x000003cd TAG_APPLE_property
1576 AT_name ( "p3" )
1577 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1578 AT_type( {0x00000147} ( int ) )
1579
1580 0x000003f3: TAG_member [8]
1581 AT_name( "_p3" )
1582 AT_type ( {0x00000147} ( int ) )
1583 AT_APPLE_property ( {0x000003cd} )
1584 AT_artificial ( 0x1 )
1585
1586New DWARF Tags
1587^^^^^^^^^^^^^^
1588
1589+-----------------------+--------+
1590| TAG | Value |
1591+=======================+========+
1592| DW_TAG_APPLE_property | 0x4200 |
1593+-----------------------+--------+
1594
1595New DWARF Attributes
1596^^^^^^^^^^^^^^^^^^^^
1597
1598+--------------------------------+--------+-----------+
1599| Attribute | Value | Classes |
1600+================================+========+===========+
1601| DW_AT_APPLE_property | 0x3fed | Reference |
1602+--------------------------------+--------+-----------+
1603| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1604+--------------------------------+--------+-----------+
1605| DW_AT_APPLE_property_setter | 0x3fea | String |
1606+--------------------------------+--------+-----------+
1607| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1608+--------------------------------+--------+-----------+
1609
1610New DWARF Constants
1611^^^^^^^^^^^^^^^^^^^
1612
1613+--------------------------------+-------+
1614| Name | Value |
1615+================================+=======+
1616| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1617+--------------------------------+-------+
1618| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1619+--------------------------------+-------+
1620| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1621+--------------------------------+-------+
1622| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1623+--------------------------------+-------+
1624| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1625+--------------------------------+-------+
1626| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1627+--------------------------------+-------+
1628
1629Name Accelerator Tables
1630-----------------------
1631
1632Introduction
1633^^^^^^^^^^^^
1634
1635The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1636debugger needs. The "``pub``" in the section name indicates that the entries
1637in the table are publicly visible names only. This means no static or hidden
1638functions show up in the "``.debug_pubnames``". No static variables or private
1639class variables are in the "``.debug_pubtypes``". Many compilers add different
1640things to these tables, so we can't rely upon the contents between gcc, icc, or
1641clang.
1642
1643The typical query given by users tends not to match up with the contents of
1644these tables. For example, the DWARF spec states that "In the case of the name
1645of a function member or static data member of a C++ structure, class or union,
1646the name presented in the "``.debug_pubnames``" section is not the simple name
1647given by the ``DW_AT_name attribute`` of the referenced debugging information
1648entry, but rather the fully qualified name of the data or function member."
1649So the only names in these tables for complex C++ entries is a fully
1650qualified name. Debugger users tend not to enter their search strings as
1651"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1652"``a::b::c``". So the name entered in the name table must be demangled in
1653order to chop it up appropriately and additional names must be manually entered
1654into the table to make it effective as a name lookup table for debuggers to
1655se.
1656
1657All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1658its inconsistent and useless public-only name content making it a waste of
1659space in the object file. These tables, when they are written to disk, are not
1660sorted in any way, leaving every debugger to do its own parsing and sorting.
1661These tables also include an inlined copy of the string values in the table
1662itself making the tables much larger than they need to be on disk, especially
1663for large C++ programs.
1664
1665Can't we just fix the sections by adding all of the names we need to this
1666table? No, because that is not what the tables are defined to contain and we
1667won't know the difference between the old bad tables and the new good tables.
1668At best we could make our own renamed sections that contain all of the data we
1669need.
1670
1671These tables are also insufficient for what a debugger like LLDB needs. LLDB
1672uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1673often asked to look for type "``foo``" or namespace "``bar``", or list items in
1674namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1675tables. Since clang asks a lot of questions when it is parsing an expression,
1676we need to be very fast when looking up names, as it happens a lot. Having new
1677accelerator tables that are optimized for very quick lookups will benefit this
1678type of debugging experience greatly.
1679
1680We would like to generate name lookup tables that can be mapped into memory
1681from disk, and used as is, with little or no up-front parsing. We would also
1682be able to control the exact content of these different tables so they contain
1683exactly what we need. The Name Accelerator Tables were designed to fix these
1684issues. In order to solve these issues we need to:
1685
1686* Have a format that can be mapped into memory from disk and used as is
1687* Lookups should be very fast
1688* Extensible table format so these tables can be made by many producers
1689* Contain all of the names needed for typical lookups out of the box
1690* Strict rules for the contents of tables
1691
1692Table size is important and the accelerator table format should allow the reuse
1693of strings from common string tables so the strings for the names are not
1694duplicated. We also want to make sure the table is ready to be used as-is by
1695simply mapping the table into memory with minimal header parsing.
1696
1697The name lookups need to be fast and optimized for the kinds of lookups that
1698debuggers tend to do. Optimally we would like to touch as few parts of the
1699mapped table as possible when doing a name lookup and be able to quickly find
1700the name entry we are looking for, or discover there are no matches. In the
1701case of debuggers we optimized for lookups that fail most of the time.
1702
1703Each table that is defined should have strict rules on exactly what is in the
1704accelerator tables and documented so clients can rely on the content.
1705
1706Hash Tables
1707^^^^^^^^^^^
1708
1709Standard Hash Tables
1710""""""""""""""""""""
1711
1712Typical hash tables have a header, buckets, and each bucket points to the
1713bucket contents:
1714
1715.. code-block:: none
1716
1717 .------------.
1718 | HEADER |
1719 |------------|
1720 | BUCKETS |
1721 |------------|
1722 | DATA |
1723 `------------'
1724
1725The BUCKETS are an array of offsets to DATA for each hash:
1726
1727.. code-block:: none
1728
1729 .------------.
1730 | 0x00001000 | BUCKETS[0]
1731 | 0x00002000 | BUCKETS[1]
1732 | 0x00002200 | BUCKETS[2]
1733 | 0x000034f0 | BUCKETS[3]
1734 | | ...
1735 | 0xXXXXXXXX | BUCKETS[n_buckets]
1736 '------------'
1737
1738So for ``bucket[3]`` in the example above, we have an offset into the table
17390x000034f0 which points to a chain of entries for the bucket. Each bucket must
1740contain a next pointer, full 32 bit hash value, the string itself, and the data
1741for the current string value.
1742
1743.. code-block:: none
1744
1745 .------------.
1746 0x000034f0: | 0x00003500 | next pointer
1747 | 0x12345678 | 32 bit hash
1748 | "erase" | string value
1749 | data[n] | HashData for this bucket
1750 |------------|
1751 0x00003500: | 0x00003550 | next pointer
1752 | 0x29273623 | 32 bit hash
1753 | "dump" | string value
1754 | data[n] | HashData for this bucket
1755 |------------|
1756 0x00003550: | 0x00000000 | next pointer
1757 | 0x82638293 | 32 bit hash
1758 | "main" | string value
1759 | data[n] | HashData for this bucket
1760 `------------'
1761
1762The problem with this layout for debuggers is that we need to optimize for the
1763negative lookup case where the symbol we're searching for is not present. So
1764if we were to lookup "``printf``" in the table above, we would make a 32 hash
1765for "``printf``", it might match ``bucket[3]``. We would need to go to the
1766offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1767so, we need to read the next pointer, then read the hash, compare it, and skip
1768to the next bucket. Each time we are skipping many bytes in memory and
1769touching new cache pages just to do the compare on the full 32 bit hash. All
1770of these accesses then tell us that we didn't have a match.
1771
1772Name Hash Tables
1773""""""""""""""""
1774
1775To solve the issues mentioned above we have structured the hash tables a bit
1776differently: a header, buckets, an array of all unique 32 bit hash values,
1777followed by an array of hash value data offsets, one for each hash value, then
1778the data for all hash values:
1779
1780.. code-block:: none
1781
1782 .-------------.
1783 | HEADER |
1784 |-------------|
1785 | BUCKETS |
1786 |-------------|
1787 | HASHES |
1788 |-------------|
1789 | OFFSETS |
1790 |-------------|
1791 | DATA |
1792 `-------------'
1793
1794The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1795making all of the full 32 bit hash values contiguous in memory, we allow
1796ourselves to efficiently check for a match while touching as little memory as
1797possible. Most often checking the 32 bit hash values is as far as the lookup
1798goes. If it does match, it usually is a match with no collisions. So for a
1799table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1800values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1801``OFFSETS`` as:
1802
1803.. code-block:: none
1804
1805 .-------------------------.
1806 | HEADER.magic | uint32_t
1807 | HEADER.version | uint16_t
1808 | HEADER.hash_function | uint16_t
1809 | HEADER.bucket_count | uint32_t
1810 | HEADER.hashes_count | uint32_t
1811 | HEADER.header_data_len | uint32_t
1812 | HEADER_DATA | HeaderData
1813 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001814 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001815 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001816 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001817 |-------------------------|
Eric Christopherafa288d2013-03-18 20:21:47 +00001818 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001819 |-------------------------|
1820 | ALL HASH DATA |
1821 `-------------------------'
1822
1823So taking the exact same data from the standard hash example above we end up
1824with:
1825
1826.. code-block:: none
1827
1828 .------------.
1829 | HEADER |
1830 |------------|
1831 | 0 | BUCKETS[0]
1832 | 2 | BUCKETS[1]
1833 | 5 | BUCKETS[2]
1834 | 6 | BUCKETS[3]
1835 | | ...
1836 | ... | BUCKETS[n_buckets]
1837 |------------|
1838 | 0x........ | HASHES[0]
1839 | 0x........ | HASHES[1]
1840 | 0x........ | HASHES[2]
1841 | 0x........ | HASHES[3]
1842 | 0x........ | HASHES[4]
1843 | 0x........ | HASHES[5]
1844 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1845 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1846 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1847 | 0x........ | HASHES[9]
1848 | 0x........ | HASHES[10]
1849 | 0x........ | HASHES[11]
1850 | 0x........ | HASHES[12]
1851 | 0x........ | HASHES[13]
1852 | 0x........ | HASHES[n_hashes]
1853 |------------|
1854 | 0x........ | OFFSETS[0]
1855 | 0x........ | OFFSETS[1]
1856 | 0x........ | OFFSETS[2]
1857 | 0x........ | OFFSETS[3]
1858 | 0x........ | OFFSETS[4]
1859 | 0x........ | OFFSETS[5]
1860 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1861 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1862 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1863 | 0x........ | OFFSETS[9]
1864 | 0x........ | OFFSETS[10]
1865 | 0x........ | OFFSETS[11]
1866 | 0x........ | OFFSETS[12]
1867 | 0x........ | OFFSETS[13]
1868 | 0x........ | OFFSETS[n_hashes]
1869 |------------|
1870 | |
1871 | |
1872 | |
1873 | |
1874 | |
1875 |------------|
1876 0x000034f0: | 0x00001203 | .debug_str ("erase")
1877 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1878 | 0x........ | HashData[0]
1879 | 0x........ | HashData[1]
1880 | 0x........ | HashData[2]
1881 | 0x........ | HashData[3]
1882 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1883 |------------|
1884 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1885 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1886 | 0x........ | HashData[0]
1887 | 0x........ | HashData[1]
1888 | 0x00001203 | String offset into .debug_str ("dump")
1889 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1890 | 0x........ | HashData[0]
1891 | 0x........ | HashData[1]
1892 | 0x........ | HashData[2]
1893 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1894 |------------|
1895 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1896 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1897 | 0x........ | HashData[0]
1898 | 0x........ | HashData[1]
1899 | 0x........ | HashData[2]
1900 | 0x........ | HashData[3]
1901 | 0x........ | HashData[4]
1902 | 0x........ | HashData[5]
1903 | 0x........ | HashData[6]
1904 | 0x........ | HashData[7]
1905 | 0x........ | HashData[8]
1906 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1907 `------------'
1908
1909So we still have all of the same data, we just organize it more efficiently for
1910debugger lookup. If we repeat the same "``printf``" lookup from above, we
1911would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1912hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1913is the index into the ``HASHES`` table. We would then compare any consecutive
191432 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1915``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1916``n_buckets`` is still 3. In the case of a failed lookup we would access the
1917memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1918before we know that we have no match. We don't end up marching through
1919multiple words of memory and we really keep the number of processor data cache
1920lines being accessed as small as possible.
1921
1922The string hash that is used for these lookup tables is the Daniel J.
1923Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1924very good hash for all kinds of names in programs with very few hash
1925collisions.
1926
1927Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1928
1929Details
1930^^^^^^^
1931
1932These name hash tables are designed to be generic where specializations of the
1933table get to define additional data that goes into the header ("``HeaderData``"),
1934how the string value is stored ("``KeyType``") and the content of the data for each
1935hash value.
1936
1937Header Layout
1938"""""""""""""
1939
1940The header has a fixed part, and the specialized part. The exact format of the
1941header is:
1942
1943.. code-block:: c
1944
1945 struct Header
1946 {
1947 uint32_t magic; // 'HASH' magic value to allow endian detection
1948 uint16_t version; // Version number
1949 uint16_t hash_function; // The hash function enumeration that was used
1950 uint32_t bucket_count; // The number of buckets in this hash table
1951 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1952 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1953 // Specifically the length of the following HeaderData field - this does not
1954 // include the size of the preceding fields
1955 HeaderData header_data; // Implementation specific header data
1956 };
1957
1958The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1959encoded as an ASCII integer. This allows the detection of the start of the
1960hash table and also allows the table's byte order to be determined so the table
1961can be correctly extracted. The "``magic``" value is followed by a 16 bit
1962``version`` number which allows the table to be revised and modified in the
1963future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1964enumeration that specifies which hash function was used to produce this table.
1965The current values for the hash function enumerations include:
1966
1967.. code-block:: c
1968
1969 enum HashFunctionType
1970 {
1971 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1972 };
1973
1974``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1975are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1976hash values that are in the ``HASHES`` array, and is the same number of offsets
1977are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1978in bytes of the ``HeaderData`` that is filled in by specialized versions of
1979this table.
1980
1981Fixed Lookup
1982""""""""""""
1983
1984The header is followed by the buckets, hashes, offsets, and hash value data.
1985
1986.. code-block:: c
1987
1988 struct FixedTable
1989 {
1990 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1991 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1992 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1993 };
1994
1995``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
1996``hashes`` array contains all of the 32 bit hash values for all names in the
1997hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
1998array that points to the data for the hash value.
1999
2000This table setup makes it very easy to repurpose these tables to contain
2001different data, while keeping the lookup mechanism the same for all tables.
2002This layout also makes it possible to save the table to disk and map it in
2003later and do very efficient name lookups with little or no parsing.
2004
2005DWARF lookup tables can be implemented in a variety of ways and can store a lot
2006of information for each name. We want to make the DWARF tables extensible and
2007able to store the data efficiently so we have used some of the DWARF features
2008that enable efficient data storage to define exactly what kind of data we store
2009for each name.
2010
2011The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2012We might want to store an offset to all of the debug information entries (DIEs)
2013for each name. To keep things extensible, we create a list of items, or
2014Atoms, that are contained in the data for each name. First comes the type of
2015the data in each atom:
2016
2017.. code-block:: c
2018
2019 enum AtomType
2020 {
2021 eAtomTypeNULL = 0u,
2022 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2023 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2024 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2025 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2026 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2027 };
2028
2029The enumeration values and their meanings are:
2030
2031.. code-block:: none
2032
2033 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2034 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2035 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2036 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2037 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2038 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2039
2040Then we allow each atom type to define the atom type and how the data for each
2041atom type data is encoded:
2042
2043.. code-block:: c
2044
2045 struct Atom
2046 {
2047 uint16_t type; // AtomType enum value
2048 uint16_t form; // DWARF DW_FORM_XXX defines
2049 };
2050
2051The ``form`` type above is from the DWARF specification and defines the exact
2052encoding of the data for the Atom type. See the DWARF specification for the
2053``DW_FORM_`` definitions.
2054
2055.. code-block:: c
2056
2057 struct HeaderData
2058 {
2059 uint32_t die_offset_base;
2060 uint32_t atom_count;
2061 Atoms atoms[atom_count0];
2062 };
2063
2064``HeaderData`` defines the base DIE offset that should be added to any atoms
2065that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2066``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2067what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2068each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2069should be interpreted.
2070
2071For the current implementations of the "``.apple_names``" (all functions +
2072globals), the "``.apple_types``" (names of all types that are defined), and
2073the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2074array to be:
2075
2076.. code-block:: c
2077
2078 HeaderData.atom_count = 1;
2079 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2080 HeaderData.atoms[0].form = DW_FORM_data4;
2081
2082This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2083 encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2084 multiple matching DIEs in a single file, which could come up with an inlined
2085 function for instance. Future tables could include more information about the
2086 DIE such as flags indicating if the DIE is a function, method, block,
2087 or inlined.
2088
2089The KeyType for the DWARF table is a 32 bit string table offset into the
2090 ".debug_str" table. The ".debug_str" is the string table for the DWARF which
2091 may already contain copies of all of the strings. This helps make sure, with
2092 help from the compiler, that we reuse the strings between all of the DWARF
2093 sections and keeps the hash table size down. Another benefit to having the
2094 compiler generate all strings as DW_FORM_strp in the debug info, is that
2095 DWARF parsing can be made much faster.
2096
2097After a lookup is made, we get an offset into the hash data. The hash data
2098 needs to be able to deal with 32 bit hash collisions, so the chunk of data
2099 at the offset in the hash data consists of a triple:
2100
2101.. code-block:: c
2102
2103 uint32_t str_offset
2104 uint32_t hash_data_count
2105 HashData[hash_data_count]
2106
2107If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2108 hash data chunks contain a single item (no 32 bit hash collision):
2109
2110.. code-block:: none
2111
2112 .------------.
2113 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2114 | 0x00000004 | uint32_t HashData count
2115 | 0x........ | uint32_t HashData[0] DIE offset
2116 | 0x........ | uint32_t HashData[1] DIE offset
2117 | 0x........ | uint32_t HashData[2] DIE offset
2118 | 0x........ | uint32_t HashData[3] DIE offset
2119 | 0x00000000 | uint32_t KeyType (end of hash chain)
2120 `------------'
2121
2122If there are collisions, you will have multiple valid string offsets:
2123
2124.. code-block:: none
2125
2126 .------------.
2127 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2128 | 0x00000004 | uint32_t HashData count
2129 | 0x........ | uint32_t HashData[0] DIE offset
2130 | 0x........ | uint32_t HashData[1] DIE offset
2131 | 0x........ | uint32_t HashData[2] DIE offset
2132 | 0x........ | uint32_t HashData[3] DIE offset
2133 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2134 | 0x00000002 | uint32_t HashData count
2135 | 0x........ | uint32_t HashData[0] DIE offset
2136 | 0x........ | uint32_t HashData[1] DIE offset
2137 | 0x00000000 | uint32_t KeyType (end of hash chain)
2138 `------------'
2139
2140Current testing with real world C++ binaries has shown that there is around 1
214132 bit hash collision per 100,000 name entries.
2142
2143Contents
2144^^^^^^^^
2145
2146As we said, we want to strictly define exactly what is included in the
2147different tables. For DWARF, we have 3 tables: "``.apple_names``",
2148"``.apple_types``", and "``.apple_namespaces``".
2149
2150"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2151``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2152``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2153``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2154``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2155static variables). All global and static variables should be included,
2156including those scoped within functions and classes. For example using the
2157following code:
2158
2159.. code-block:: c
2160
2161 static int var = 0;
2162
2163 void f ()
2164 {
2165 static int var = 0;
2166 }
2167
2168Both of the static ``var`` variables would be included in the table. All
2169functions should emit both their full names and their basenames. For C or C++,
2170the full name is the mangled name (if available) which is usually in the
2171``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2172function basename. If global or static variables have a mangled name in a
2173``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2174simple name found in the ``DW_AT_name`` attribute.
2175
2176"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2177tag is one of:
2178
2179* DW_TAG_array_type
2180* DW_TAG_class_type
2181* DW_TAG_enumeration_type
2182* DW_TAG_pointer_type
2183* DW_TAG_reference_type
2184* DW_TAG_string_type
2185* DW_TAG_structure_type
2186* DW_TAG_subroutine_type
2187* DW_TAG_typedef
2188* DW_TAG_union_type
2189* DW_TAG_ptr_to_member_type
2190* DW_TAG_set_type
2191* DW_TAG_subrange_type
2192* DW_TAG_base_type
2193* DW_TAG_const_type
2194* DW_TAG_constant
2195* DW_TAG_file_type
2196* DW_TAG_namelist
2197* DW_TAG_packed_type
2198* DW_TAG_volatile_type
2199* DW_TAG_restrict_type
2200* DW_TAG_interface_type
2201* DW_TAG_unspecified_type
2202* DW_TAG_shared_type
2203
2204Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2205not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2206value). For example, using the following code:
2207
2208.. code-block:: c
2209
2210 int main ()
2211 {
2212 int *b = 0;
2213 return *b;
2214 }
2215
2216We get a few type DIEs:
2217
2218.. code-block:: none
2219
2220 0x00000067: TAG_base_type [5]
2221 AT_encoding( DW_ATE_signed )
2222 AT_name( "int" )
2223 AT_byte_size( 0x04 )
2224
2225 0x0000006e: TAG_pointer_type [6]
2226 AT_type( {0x00000067} ( int ) )
2227 AT_byte_size( 0x08 )
2228
2229The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2230
2231"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2232If we run into a namespace that has no name this is an anonymous namespace, and
2233the name should be output as "``(anonymous namespace)``" (without the quotes).
2234Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2235standard C++ library that demangles mangled names.
2236
2237
2238Language Extensions and File Format Changes
2239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2240
2241Objective-C Extensions
2242""""""""""""""""""""""
2243
2244"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2245Objective-C class. The name used in the hash table is the name of the
2246Objective-C class itself. If the Objective-C class has a category, then an
2247entry is made for both the class name without the category, and for the class
2248name with the category. So if we have a DIE at offset 0x1234 with a name of
2249method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2250an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2251"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2252track down all Objective-C methods for an Objective-C class when doing
2253expressions. It is needed because of the dynamic nature of Objective-C where
2254anyone can add methods to a class. The DWARF for Objective-C methods is also
2255emitted differently from C++ classes where the methods are not usually
2256contained in the class definition, they are scattered about across one or more
2257compile units. Categories can also be defined in different shared libraries.
2258So we need to be able to quickly find all of the methods and class functions
2259given the Objective-C class name, or quickly find all methods and class
2260functions for a class + category name. This table does not contain any
2261selector names, it just maps Objective-C class names (or class names +
2262category) to all of the methods and class functions. The selectors are added
2263as function basenames in the "``.debug_names``" section.
2264
2265In the "``.apple_names``" section for Objective-C functions, the full name is
2266the entire function name with the brackets ("``-[NSString
2267stringWithCString:]``") and the basename is the selector only
2268("``stringWithCString:``").
2269
2270Mach-O Changes
2271""""""""""""""
2272
2273The sections names for the apple hash tables are for non mach-o files. For
2274mach-o files, the sections should be contained in the ``__DWARF`` segment with
2275names as follows:
2276
2277* "``.apple_names``" -> "``__apple_names``"
2278* "``.apple_types``" -> "``__apple_types``"
2279* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2280* "``.apple_objc``" -> "``__apple_objc``"
2281