blob: 781824c01f036f091706ef486706d0b4c7d8407a [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
5.. sectionauthor:: Chris Lattner <sabre@nondot.org> and Jim Laskey <jlaskey@mac.com>
6
7.. contents::
8 :local:
9
10Introduction
11============
12
13This document is the central repository for all information pertaining to debug
14information in LLVM. It describes the :ref:`actual format that the LLVM debug
15information takes <format>`, which is useful for those interested in creating
16front-ends or dealing directly with the information. Further, this document
17provides specific examples of what debug information for C/C++ looks like.
18
19Philosophy behind LLVM debugging information
20--------------------------------------------
21
22The idea of the LLVM debugging information is to capture how the important
23pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
24Several design aspects have shaped the solution that appears here. The
25important ones are:
26
27* Debugging information should have very little impact on the rest of the
28 compiler. No transformations, analyses, or code generators should need to
29 be modified because of debugging information.
30
31* LLVM optimizations should interact in :ref:`well-defined and easily described
32 ways <intro_debugopt>` with the debugging information.
33
34* Because LLVM is designed to support arbitrary programming languages,
35 LLVM-to-LLVM tools should not need to know anything about the semantics of
36 the source-level-language.
37
38* Source-level languages are often **widely** different from one another.
39 LLVM should not put any restrictions of the flavor of the source-language,
40 and the debugging information should work with any language.
41
42* With code generator support, it should be possible to use an LLVM compiler
43 to compile a program to native machine code and standard debugging
44 formats. This allows compatibility with traditional machine-code level
45 debuggers, like GDB or DBX.
46
47The approach used by the LLVM implementation is to use a small set of
48:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
49between LLVM program objects and the source-level objects. The description of
50the source-level program is maintained in LLVM metadata in an
51:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
52currently uses working draft 7 of the `DWARF 3 standard
53<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
54
55When a program is being debugged, a debugger interacts with the user and turns
56the stored debug information into source-language specific information. As
57such, a debugger must be aware of the source-language, and is thus tied to a
58specific language or family of languages.
59
60Debug information consumers
61---------------------------
62
63The role of debug information is to provide meta information normally stripped
64away during the compilation process. This meta information provides an LLVM
65user a relationship between generated code and the original program source
66code.
67
68Currently, debug information is consumed by DwarfDebug to produce dwarf
69information used by the gdb debugger. Other targets could use the same
70information to produce stabs or other debug forms.
71
72It would also be reasonable to use debug information to feed profiling tools
73for analysis of generated code, or, tools for reconstructing the original
74source from generated code.
75
76TODO - expound a bit more.
77
78.. _intro_debugopt:
79
80Debugging optimized code
81------------------------
82
83An extremely high priority of LLVM debugging information is to make it interact
84well with optimizations and analysis. In particular, the LLVM debug
85information provides the following guarantees:
86
87* LLVM debug information **always provides information to accurately read
88 the source-level state of the program**, regardless of which LLVM
89 optimizations have been run, and without any modification to the
90 optimizations themselves. However, some optimizations may impact the
91 ability to modify the current state of the program with a debugger, such
92 as setting program variables, or calling functions that have been
93 deleted.
94
95* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
96 debugging information, allowing them to update the debugging information
97 as they perform aggressive optimizations. This means that, with effort,
98 the LLVM optimizers could optimize debug code just as well as non-debug
99 code.
100
101* LLVM debug information does not prevent optimizations from
102 happening (for example inlining, basic block reordering/merging/cleanup,
103 tail duplication, etc).
104
105* LLVM debug information is automatically optimized along with the rest of
106 the program, using existing facilities. For example, duplicate
107 information is automatically merged by the linker, and unused information
108 is automatically removed.
109
110Basically, the debug information allows you to compile a program with
111"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
112the program as it executes from a debugger. Compiling a program with
113"``-O3 -g``" gives you full debug information that is always available and
114accurate for reading (e.g., you get accurate stack traces despite tail call
115elimination and inlining), but you might lose the ability to modify the program
116and call functions where were optimized out of the program, or inlined away
117completely.
118
119:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
120optimizer's handling of debugging information. It can be run like this:
121
122.. code-block:: bash
123
124 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
125 % make TEST=dbgopt
126
127This will test impact of debugging information on optimization passes. If
128debugging information influences optimization passes then it will be reported
129as a failure. See :doc:`TestingGuide` for more information on LLVM test
130infrastructure and how to run various tests.
131
132.. _format:
133
134Debugging information format
135============================
136
137LLVM debugging information has been carefully designed to make it possible for
138the optimizer to optimize the program and debugging information without
139necessarily having to know anything about debugging information. In
140particular, the use of metadata avoids duplicated debugging information from
141the beginning, and the global dead code elimination pass automatically deletes
142debugging information for a function if it decides to delete the function.
143
144To do this, most of the debugging information (descriptors for types,
145variables, functions, source files, etc) is inserted by the language front-end
146in the form of LLVM metadata.
147
148Debug information is designed to be agnostic about the target debugger and
149debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
150pass to decode the information that represents variables, types, functions,
151namespaces, etc: this allows for arbitrary source-language semantics and
152type-systems to be used, as long as there is a module written for the target
153debugger to interpret the information.
154
155To provide basic functionality, the LLVM debugger does have to make some
156assumptions about the source-level language being debugged, though it keeps
157these to a minimum. The only common features that the LLVM debugger assumes
158exist are :ref:`source files <format_files>`, and :ref:`program objects
159<format_global_variables>`. These abstract objects are used by a debugger to
160form stack traces, show information about local variables, etc.
161
162This section of the documentation first describes the representation aspects
163common to any source-language. :ref:`ccxx_frontend` describes the data layout
164conventions used by the C and C++ front-ends.
165
166Debug information descriptors
167-----------------------------
168
169In consideration of the complexity and volume of debug information, LLVM
170provides a specification for well formed debug descriptors.
171
172Consumers of LLVM debug information expect the descriptors for program objects
173to start in a canonical format, but the descriptors can include additional
174information appended at the end that is source-language specific. All LLVM
175debugging information is versioned, allowing backwards compatibility in the
176case that the core structures need to change in some way. Also, all debugging
177information objects start with a tag to indicate what type of object it is.
178The source-language is allowed to define its own objects, by using unreserved
179tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
180(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
181
182The fields of debug descriptors used internally by LLVM are restricted to only
183the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
184``mdnode``.
185
186.. code-block:: llvm
187
188 !1 = metadata !{
189 i32, ;; A tag
190 ...
191 }
192
193<a name="LLVMDebugVersion">The first field of a descriptor is always an
194``i32`` containing a tag value identifying the content of the descriptor.
195The remaining fields are specific to the descriptor. The values of tags are
196loosely bound to the tag values of DWARF information entries. However, that
197does not restrict the use of the information supplied to DWARF targets. To
198facilitate versioning of debug information, the tag is augmented with the
199current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
200524288.)
201
202The details of the various descriptors follow.
203
204Compile unit descriptors
205^^^^^^^^^^^^^^^^^^^^^^^^
206
207.. code-block:: llvm
208
209 !0 = metadata !{
210 i32, ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
211 i32, ;; Unused field.
212 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
213 metadata, ;; Source file name
214 metadata, ;; Source file directory (includes trailing slash)
215 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
216 i1, ;; True if this is a main compile unit.
217 i1, ;; True if this is optimized.
218 metadata, ;; Flags
219 i32 ;; Runtime version
220 metadata ;; List of enums types
221 metadata ;; List of retained types
222 metadata ;; List of subprograms
223 metadata ;; List of global variables
224 }
225
226These descriptors contain a source language ID for the file (we use the DWARF
2273.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
228``DW_LANG_Cobol74``, etc), three strings describing the filename, working
229directory of the compiler, and an identifier string for the compiler that
230produced it.
231
232Compile unit descriptors provide the root context for objects declared in a
233specific compilation unit. File descriptors are defined using this context.
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000234These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
235keep track of subprograms, global variables and type information.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000236
237.. _format_files:
238
239File descriptors
240^^^^^^^^^^^^^^^^
241
242.. code-block:: llvm
243
244 !0 = metadata !{
245 i32, ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
246 metadata, ;; Source file name
247 metadata, ;; Source file directory (includes trailing slash)
248 metadata ;; Unused
249 }
250
251These descriptors contain information for a file. Global variables and top
252level functions would be defined using this context. File descriptors also
253provide context for source line correspondence.
254
255Each input file is encoded as a separate file descriptor in LLVM debugging
256information output.
257
258.. _format_global_variables:
259
260Global variable descriptors
261^^^^^^^^^^^^^^^^^^^^^^^^^^^
262
263.. code-block:: llvm
264
265 !1 = metadata !{
266 i32, ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
267 i32, ;; Unused field.
268 metadata, ;; Reference to context descriptor
269 metadata, ;; Name
270 metadata, ;; Display name (fully qualified C++ name)
271 metadata, ;; MIPS linkage name (for C++)
272 metadata, ;; Reference to file where defined
273 i32, ;; Line number where defined
274 metadata, ;; Reference to type descriptor
275 i1, ;; True if the global is local to compile unit (static)
276 i1, ;; True if the global is defined in the compile unit (not extern)
277 {}* ;; Reference to the global variable
278 }
279
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000280These descriptors provide debug information about globals variables. They
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000281provide details such as name, type and where the variable is defined. All
282global variables are collected inside the named metadata ``!llvm.dbg.cu``.
283
284.. _format_subprograms:
285
286Subprogram descriptors
287^^^^^^^^^^^^^^^^^^^^^^
288
289.. code-block:: llvm
290
291 !2 = metadata !{
292 i32, ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
293 i32, ;; Unused field.
294 metadata, ;; Reference to context descriptor
295 metadata, ;; Name
296 metadata, ;; Display name (fully qualified C++ name)
297 metadata, ;; MIPS linkage name (for C++)
298 metadata, ;; Reference to file where defined
299 i32, ;; Line number where defined
300 metadata, ;; Reference to type descriptor
301 i1, ;; True if the global is local to compile unit (static)
302 i1, ;; True if the global is defined in the compile unit (not extern)
303 i32, ;; Line number where the scope of the subprogram begins
304 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
305 i32, ;; Index into a virtual function
306 metadata, ;; indicates which base type contains the vtable pointer for the
307 ;; derived class
308 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
309 i1, ;; isOptimized
310 Function * , ;; Pointer to LLVM function
311 metadata, ;; Lists function template parameters
312 metadata, ;; Function declaration descriptor
313 metadata ;; List of function variables
314 }
315
316These descriptors provide debug information about functions, methods and
317subprograms. They provide details such as name, return types and the source
318location where the subprogram is defined.
319
320Block descriptors
321^^^^^^^^^^^^^^^^^
322
323.. code-block:: llvm
324
325 !3 = metadata !{
326 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
327 metadata,;; Reference to context descriptor
328 i32, ;; Line number
329 i32, ;; Column number
330 metadata,;; Reference to source file
331 i32 ;; Unique ID to identify blocks from a template function
332 }
333
334This descriptor provides debug information about nested blocks within a
335subprogram. The line number and column numbers are used to dinstinguish two
336lexical blocks at same depth.
337
338.. code-block:: llvm
339
340 !3 = metadata !{
341 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
342 metadata ;; Reference to the scope we're annotating with a file change
343 metadata,;; Reference to the file the scope is enclosed in.
344 }
345
346This descriptor provides a wrapper around a lexical scope to handle file
347changes in the middle of a lexical block.
348
349.. _format_basic_type:
350
351Basic type descriptors
352^^^^^^^^^^^^^^^^^^^^^^
353
354.. code-block:: llvm
355
356 !4 = metadata !{
357 i32, ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
358 metadata, ;; Reference to context
359 metadata, ;; Name (may be "" for anonymous types)
360 metadata, ;; Reference to file where defined (may be NULL)
361 i32, ;; Line number where defined (may be 0)
362 i64, ;; Size in bits
363 i64, ;; Alignment in bits
364 i64, ;; Offset in bits
365 i32, ;; Flags
366 i32 ;; DWARF type encoding
367 }
368
369These descriptors define primitive types used in the code. Example ``int``,
370``bool`` and ``float``. The context provides the scope of the type, which is
371usually the top level. Since basic types are not usually user defined the
372context and line number can be left as NULL and 0. The size, alignment and
373offset are expressed in bits and can be 64 bit values. The alignment is used
374to round the offset when embedded in a :ref:`composite type
375<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
376The offset is the bit offset if embedded in a :ref:`composite type
377<format_composite_type>`.
378
379The type encoding provides the details of the type. The values are typically
380one of the following:
381
382.. code-block:: llvm
383
384 DW_ATE_address = 1
385 DW_ATE_boolean = 2
386 DW_ATE_float = 4
387 DW_ATE_signed = 5
388 DW_ATE_signed_char = 6
389 DW_ATE_unsigned = 7
390 DW_ATE_unsigned_char = 8
391
392.. _format_derived_type:
393
394Derived type descriptors
395^^^^^^^^^^^^^^^^^^^^^^^^
396
397.. code-block:: llvm
398
399 !5 = metadata !{
400 i32, ;; Tag (see below)
401 metadata, ;; Reference to context
402 metadata, ;; Name (may be "" for anonymous types)
403 metadata, ;; Reference to file where defined (may be NULL)
404 i32, ;; Line number where defined (may be 0)
405 i64, ;; Size in bits
406 i64, ;; Alignment in bits
407 i64, ;; Offset in bits
408 i32, ;; Flags to encode attributes, e.g. private
409 metadata, ;; Reference to type derived from
410 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie92f09172013-01-07 06:02:07 +0000411 ;; Objective-C an ivar, or the type of which this
412 ;; pointer-to-member is pointing to members of.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000413 metadata, ;; (optional) Name of the Objective C property getter selector.
414 metadata, ;; (optional) Name of the Objective C property setter selector.
415 i32 ;; (optional) Objective C property attributes.
416 }
417
418These descriptors are used to define types derived from other types. The value
419of the tag varies depending on the meaning. The following are possible tag
420values:
421
422.. code-block:: llvm
423
David Blaikie92f09172013-01-07 06:02:07 +0000424 DW_TAG_formal_parameter = 5
425 DW_TAG_member = 13
426 DW_TAG_pointer_type = 15
427 DW_TAG_reference_type = 16
428 DW_TAG_typedef = 22
429 DW_TAG_ptr_to_member_type = 31
430 DW_TAG_const_type = 38
431 DW_TAG_volatile_type = 53
432 DW_TAG_restrict_type = 55
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000433
434``DW_TAG_member`` is used to define a member of a :ref:`composite type
435<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
436of the member is the :ref:`derived type <format_derived_type>`.
437``DW_TAG_formal_parameter`` is used to define a member which is a formal
438argument of a subprogram.
439
440``DW_TAG_typedef`` is used to provide a name for the derived type.
441
442``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
443``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
444:ref:`derived type <format_derived_type>`.
445
446:ref:`Derived type <format_derived_type>` location can be determined from the
447context and line number. The size, alignment and offset are expressed in bits
448and can be 64 bit values. The alignment is used to round the offset when
449embedded in a :ref:`composite type <format_composite_type>` (example to keep
450float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
451in a :ref:`composite type <format_composite_type>`.
452
453Note that the ``void *`` type is expressed as a type derived from NULL.
454
455.. _format_composite_type:
456
457Composite type descriptors
458^^^^^^^^^^^^^^^^^^^^^^^^^^
459
460.. code-block:: llvm
461
462 !6 = metadata !{
463 i32, ;; Tag (see below)
464 metadata, ;; Reference to context
465 metadata, ;; Name (may be "" for anonymous types)
466 metadata, ;; Reference to file where defined (may be NULL)
467 i32, ;; Line number where defined (may be 0)
468 i64, ;; Size in bits
469 i64, ;; Alignment in bits
470 i64, ;; Offset in bits
471 i32, ;; Flags
472 metadata, ;; Reference to type derived from
473 metadata, ;; Reference to array of member descriptors
474 i32 ;; Runtime languages
475 }
476
477These descriptors are used to define types that are composed of 0 or more
478elements. The value of the tag varies depending on the meaning. The following
479are possible tag values:
480
481.. code-block:: llvm
482
483 DW_TAG_array_type = 1
484 DW_TAG_enumeration_type = 4
485 DW_TAG_structure_type = 19
486 DW_TAG_union_type = 23
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000487 DW_TAG_subroutine_type = 21
488 DW_TAG_inheritance = 28
489
490The vector flag indicates that an array type is a native packed vector.
491
Eric Christopher9a1e0e22013-01-08 01:53:52 +0000492The members of array types (tag = ``DW_TAG_array_type``) are
493:ref:`subrange descriptors <format_subrange>`, each
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000494representing the range of subscripts at that level of indexing.
495
496The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
497:ref:`enumerator descriptors <format_enumerator>`, each representing the
498definition of enumeration value for the set. All enumeration type descriptors
499are collected inside the named metadata ``!llvm.dbg.cu``.
500
501The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
502``DW_TAG_union_type``) types are any one of the :ref:`basic
503<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
504<format_composite_type>` type descriptors, each representing a field member of
505the structure or union.
506
507For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
508information about base classes, static members and member functions. If a
509member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
510of ``DW_TAG_inheritance``, then the type represents a base class. If the member
511of is a :ref:`global variable descriptor <format_global_variables>` then it
512represents a static member. And, if the member is a :ref:`subprogram
513descriptor <format_subprograms>` then it represents a member function. For
514static members and member functions, ``getName()`` returns the members link or
515the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
516
517The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
518is the return type for the subroutine. The remaining elements are the formal
519arguments to the subroutine.
520
521:ref:`Composite type <format_composite_type>` location can be determined from
522the context and line number. The size, alignment and offset are expressed in
523bits and can be 64 bit values. The alignment is used to round the offset when
524embedded in a :ref:`composite type <format_composite_type>` (as an example, to
525keep float doubles on 64 bit boundaries). The offset is the bit offset if
526embedded in a :ref:`composite type <format_composite_type>`.
527
528.. _format_subrange:
529
530Subrange descriptors
531^^^^^^^^^^^^^^^^^^^^
532
533.. code-block:: llvm
534
535 !42 = metadata !{
536 i32, ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
537 i64, ;; Low value
538 i64 ;; High value
539 }
540
541These descriptors are used to define ranges of array subscripts for an array
542:ref:`composite type <format_composite_type>`. The low value defines the lower
543bounds typically zero for C/C++. The high value is the upper bounds. Values
544are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
545the array bounds are not included in generated debugging information.
546
547.. _format_enumerator:
548
549Enumerator descriptors
550^^^^^^^^^^^^^^^^^^^^^^
551
552.. code-block:: llvm
553
554 !6 = metadata !{
555 i32, ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
556 metadata, ;; Name
557 i64 ;; Value
558 }
559
560These descriptors are used to define members of an enumeration :ref:`composite
561type <format_composite_type>`, it associates the name to the value.
562
563Local variables
564^^^^^^^^^^^^^^^
565
566.. code-block:: llvm
567
568 !7 = metadata !{
569 i32, ;; Tag (see below)
570 metadata, ;; Context
571 metadata, ;; Name
572 metadata, ;; Reference to file where defined
573 i32, ;; 24 bit - Line number where defined
574 ;; 8 bit - Argument number. 1 indicates 1st argument.
575 metadata, ;; Type descriptor
576 i32, ;; flags
577 metadata ;; (optional) Reference to inline location
578 }
579
580These descriptors are used to define variables local to a sub program. The
581value of the tag depends on the usage of the variable:
582
583.. code-block:: llvm
584
585 DW_TAG_auto_variable = 256
586 DW_TAG_arg_variable = 257
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000587
588An auto variable is any variable declared in the body of the function. An
589argument variable is any variable that appears as a formal argument to the
Eric Christopher72a81be2013-01-08 00:16:33 +0000590function.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000591
592The context is either the subprogram or block where the variable is defined.
593Name the source variable name. Context and line indicate where the variable
594was defined. Type descriptor defines the declared type of the variable.
595
596.. _format_common_intrinsics:
597
598Debugger intrinsic functions
599^^^^^^^^^^^^^^^^^^^^^^^^^^^^
600
601LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
602provide debug information at various points in generated code.
603
604``llvm.dbg.declare``
605^^^^^^^^^^^^^^^^^^^^
606
607.. code-block:: llvm
608
609 void %llvm.dbg.declare(metadata, metadata)
610
611This intrinsic provides information about a local element (e.g., variable).
612The first argument is metadata holding the alloca for the variable. The second
613argument is metadata containing a description of the variable.
614
615``llvm.dbg.value``
616^^^^^^^^^^^^^^^^^^
617
618.. code-block:: llvm
619
620 void %llvm.dbg.value(metadata, i64, metadata)
621
622This intrinsic provides information when a user source variable is set to a new
623value. The first argument is the new value (wrapped as metadata). The second
624argument is the offset in the user source variable where the new value is
625written. The third argument is metadata containing a description of the user
626source variable.
627
628Object lifetimes and scoping
629============================
630
631In many languages, the local variables in functions can have their lifetimes or
632scopes limited to a subset of a function. In the C family of languages, for
633example, variables are only live (readable and writable) within the source
634block that they are defined in. In functional languages, values are only
635readable after they have been defined. Though this is a very obvious concept,
636it is non-trivial to model in LLVM, because it has no notion of scoping in this
637sense, and does not want to be tied to a language's scoping rules.
638
639In order to handle this, the LLVM debug format uses the metadata attached to
640llvm instructions to encode line number and scoping information. Consider the
641following C fragment, for example:
642
643.. code-block:: c
644
645 1. void foo() {
646 2. int X = 21;
647 3. int Y = 22;
648 4. {
649 5. int Z = 23;
650 6. Z = X;
651 7. }
652 8. X = Y;
653 9. }
654
655Compiled to LLVM, this function would be represented like this:
656
657.. code-block:: llvm
658
659 define void @foo() nounwind ssp {
660 entry:
661 %X = alloca i32, align 4 ; <i32*> [#uses=4]
662 %Y = alloca i32, align 4 ; <i32*> [#uses=4]
663 %Z = alloca i32, align 4 ; <i32*> [#uses=3]
664 %0 = bitcast i32* %X to {}* ; <{}*> [#uses=1]
665 call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
666 store i32 21, i32* %X, !dbg !8
667 %1 = bitcast i32* %Y to {}* ; <{}*> [#uses=1]
668 call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
669 store i32 22, i32* %Y, !dbg !11
670 %2 = bitcast i32* %Z to {}* ; <{}*> [#uses=1]
671 call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
672 store i32 23, i32* %Z, !dbg !15
673 %tmp = load i32* %X, !dbg !16 ; <i32> [#uses=1]
674 %tmp1 = load i32* %Y, !dbg !16 ; <i32> [#uses=1]
675 %add = add nsw i32 %tmp, %tmp1, !dbg !16 ; <i32> [#uses=1]
676 store i32 %add, i32* %Z, !dbg !16
677 %tmp2 = load i32* %Y, !dbg !17 ; <i32> [#uses=1]
678 store i32 %tmp2, i32* %X, !dbg !17
679 ret void, !dbg !18
680 }
681
682 declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
683
684 !0 = metadata !{i32 459008, metadata !1, metadata !"X",
685 metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
686 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
687 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
688 metadata !"foo", metadata !3, i32 1, metadata !4,
689 i1 false, i1 true}; [DW_TAG_subprogram ]
690 !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
691 metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
692 i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
693 !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
694 i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
695 !5 = metadata !{null}
696 !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
697 i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
698 !7 = metadata !{i32 2, i32 7, metadata !1, null}
699 !8 = metadata !{i32 2, i32 3, metadata !1, null}
700 !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
701 metadata !6}; [ DW_TAG_auto_variable ]
702 !10 = metadata !{i32 3, i32 7, metadata !1, null}
703 !11 = metadata !{i32 3, i32 3, metadata !1, null}
704 !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
705 metadata !6}; [ DW_TAG_auto_variable ]
706 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
707 !14 = metadata !{i32 5, i32 9, metadata !13, null}
708 !15 = metadata !{i32 5, i32 5, metadata !13, null}
709 !16 = metadata !{i32 6, i32 5, metadata !13, null}
710 !17 = metadata !{i32 8, i32 3, metadata !1, null}
711 !18 = metadata !{i32 9, i32 1, metadata !2, null}
712
713This example illustrates a few important details about LLVM debugging
714information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
715location information, which are attached to an instruction, are applied
716together to allow a debugger to analyze the relationship between statements,
717variable definitions, and the code used to implement the function.
718
719.. code-block:: llvm
720
721 call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
722
723The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
724variable ``X``. The metadata ``!dbg !7`` attached to the intrinsic provides
725scope information for the variable ``X``.
726
727.. code-block:: llvm
728
729 !7 = metadata !{i32 2, i32 7, metadata !1, null}
730 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
731 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
732 metadata !"foo", metadata !"foo", metadata !3, i32 1,
733 metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
734
735Here ``!7`` is metadata providing location information. It has four fields:
736line number, column number, scope, and original scope. The original scope
737represents inline location if this instruction is inlined inside a caller, and
738is null otherwise. In this example, scope is encoded by ``!1``. ``!1``
739represents a lexical block inside the scope ``!2``, where ``!2`` is a
740:ref:`subprogram descriptor <format_subprograms>`. This way the location
741information attached to the intrinsics indicates that the variable ``X`` is
742declared at line number 2 at a function level scope in function ``foo``.
743
744Now lets take another example.
745
746.. code-block:: llvm
747
748 call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
749
750The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
751variable ``Z``. The metadata ``!dbg !14`` attached to the intrinsic provides
752scope information for the variable ``Z``.
753
754.. code-block:: llvm
755
756 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
757 !14 = metadata !{i32 5, i32 9, metadata !13, null}
758
759Here ``!14`` indicates that ``Z`` is declared at line number 5 and
760column number 9 inside of lexical scope ``!13``. The lexical scope itself
761resides inside of lexical scope ``!1`` described above.
762
763The scope information attached with each instruction provides a straightforward
764way to find instructions covered by a scope.
765
766.. _ccxx_frontend:
767
768C/C++ front-end specific debug information
769==========================================
770
771The C and C++ front-ends represent information about the program in a format
772that is effectively identical to `DWARF 3.0
773<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
774content. This allows code generators to trivially support native debuggers by
775generating standard dwarf information, and contains enough information for
776non-dwarf targets to translate it as needed.
777
778This section describes the forms used to represent C and C++ programs. Other
779languages could pattern themselves after this (which itself is tuned to
780representing programs in the same way that DWARF 3 does), or they could choose
781to provide completely different forms if they don't fit into the DWARF model.
782As support for debugging information gets added to the various LLVM
783source-language front-ends, the information used should be documented here.
784
785The following sections provide examples of various C/C++ constructs and the
786debug information that would best describe those constructs.
787
788C/C++ source file information
789-----------------------------
790
791Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
792directory ``/Users/mine/sources``, the following code:
793
794.. code-block:: c
795
796 #include "MyHeader.h"
797
798 int main(int argc, char *argv[]) {
799 return 0;
800 }
801
802a C/C++ front-end would generate the following descriptors:
803
804.. code-block:: llvm
805
806 ...
807 ;;
808 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
809 ;;
810 !2 = metadata !{
811 i32 524305, ;; Tag
812 i32 0, ;; Unused
813 i32 4, ;; Language Id
814 metadata !"MySource.cpp",
815 metadata !"/Users/mine/sources",
816 metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
817 i1 true, ;; Main Compile Unit
818 i1 false, ;; Optimized compile unit
819 metadata !"", ;; Compiler flags
820 i32 0} ;; Runtime version
821
822 ;;
823 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
824 ;;
825 !1 = metadata !{
826 i32 524329, ;; Tag
827 metadata !"MySource.cpp",
828 metadata !"/Users/mine/sources",
829 metadata !2 ;; Compile unit
830 }
831
832 ;;
833 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
834 ;;
835 !3 = metadata !{
836 i32 524329, ;; Tag
837 metadata !"Myheader.h"
838 metadata !"/Users/mine/sources",
839 metadata !2 ;; Compile unit
840 }
841
842 ...
843
844``llvm::Instruction`` provides easy access to metadata attached with an
845instruction. One can extract line number information encoded in LLVM IR using
846``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
847
848.. code-block:: c++
849
850 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
851 DILocation Loc(N); // DILocation is in DebugInfo.h
852 unsigned Line = Loc.getLineNumber();
853 StringRef File = Loc.getFilename();
854 StringRef Dir = Loc.getDirectory();
855 }
856
857C/C++ global variable information
858---------------------------------
859
860Given an integer global variable declared as follows:
861
862.. code-block:: c
863
864 int MyGlobal = 100;
865
866a C/C++ front-end would generate the following descriptors:
867
868.. code-block:: llvm
869
870 ;;
871 ;; Define the global itself.
872 ;;
873 %MyGlobal = global int 100
874 ...
875 ;;
876 ;; List of debug info of globals
877 ;;
878 !llvm.dbg.cu = !{!0}
879
880 ;; Define the compile unit.
881 !0 = metadata !{
882 i32 786449, ;; Tag
883 i32 0, ;; Context
884 i32 4, ;; Language
885 metadata !"foo.cpp", ;; File
886 metadata !"/Volumes/Data/tmp", ;; Directory
887 metadata !"clang version 3.1 ", ;; Producer
888 i1 true, ;; Deprecated field
889 i1 false, ;; "isOptimized"?
890 metadata !"", ;; Flags
891 i32 0, ;; Runtime Version
892 metadata !1, ;; Enum Types
893 metadata !1, ;; Retained Types
894 metadata !1, ;; Subprograms
895 metadata !3 ;; Global Variables
896 } ; [ DW_TAG_compile_unit ]
897
898 ;; The Array of Global Variables
899 !3 = metadata !{
900 metadata !4
901 }
902
903 !4 = metadata !{
904 metadata !5
905 }
906
907 ;;
908 ;; Define the global variable itself.
909 ;;
910 !5 = metadata !{
911 i32 786484, ;; Tag
912 i32 0, ;; Unused
913 null, ;; Unused
914 metadata !"MyGlobal", ;; Name
915 metadata !"MyGlobal", ;; Display Name
916 metadata !"", ;; Linkage Name
917 metadata !6, ;; File
918 i32 1, ;; Line
919 metadata !7, ;; Type
920 i32 0, ;; IsLocalToUnit
921 i32 1, ;; IsDefinition
922 i32* @MyGlobal ;; LLVM-IR Value
923 } ; [ DW_TAG_variable ]
924
925 ;;
926 ;; Define the file
927 ;;
928 !6 = metadata !{
929 i32 786473, ;; Tag
930 metadata !"foo.cpp", ;; File
931 metadata !"/Volumes/Data/tmp", ;; Directory
932 null ;; Unused
933 } ; [ DW_TAG_file_type ]
934
935 ;;
936 ;; Define the type
937 ;;
938 !7 = metadata !{
939 i32 786468, ;; Tag
940 null, ;; Unused
941 metadata !"int", ;; Name
942 null, ;; Unused
943 i32 0, ;; Line
944 i64 32, ;; Size in Bits
945 i64 32, ;; Align in Bits
946 i64 0, ;; Offset
947 i32 0, ;; Flags
948 i32 5 ;; Encoding
949 } ; [ DW_TAG_base_type ]
950
951C/C++ function information
952--------------------------
953
954Given a function declared as follows:
955
956.. code-block:: c
957
958 int main(int argc, char *argv[]) {
959 return 0;
960 }
961
962a C/C++ front-end would generate the following descriptors:
963
964.. code-block:: llvm
965
966 ;;
967 ;; Define the anchor for subprograms. Note that the second field of the
968 ;; anchor is 46, which is the same as the tag for subprograms
969 ;; (46 = DW_TAG_subprogram.)
970 ;;
971 !6 = metadata !{
972 i32 524334, ;; Tag
973 i32 0, ;; Unused
974 metadata !1, ;; Context
975 metadata !"main", ;; Name
976 metadata !"main", ;; Display name
977 metadata !"main", ;; Linkage name
978 metadata !1, ;; File
979 i32 1, ;; Line number
980 metadata !4, ;; Type
981 i1 false, ;; Is local
982 i1 true, ;; Is definition
983 i32 0, ;; Virtuality attribute, e.g. pure virtual function
984 i32 0, ;; Index into virtual table for C++ methods
985 i32 0, ;; Type that holds virtual table.
986 i32 0, ;; Flags
987 i1 false, ;; True if this function is optimized
988 Function *, ;; Pointer to llvm::Function
989 null ;; Function template parameters
990 }
991 ;;
992 ;; Define the subprogram itself.
993 ;;
994 define i32 @main(i32 %argc, i8** %argv) {
995 ...
996 }
997
998C/C++ basic types
999-----------------
1000
1001The following are the basic type descriptors for C/C++ core types:
1002
1003bool
1004^^^^
1005
1006.. code-block:: llvm
1007
1008 !2 = metadata !{
1009 i32 524324, ;; Tag
1010 metadata !1, ;; Context
1011 metadata !"bool", ;; Name
1012 metadata !1, ;; File
1013 i32 0, ;; Line number
1014 i64 8, ;; Size in Bits
1015 i64 8, ;; Align in Bits
1016 i64 0, ;; Offset in Bits
1017 i32 0, ;; Flags
1018 i32 2 ;; Encoding
1019 }
1020
1021char
1022^^^^
1023
1024.. code-block:: llvm
1025
1026 !2 = metadata !{
1027 i32 524324, ;; Tag
1028 metadata !1, ;; Context
1029 metadata !"char", ;; Name
1030 metadata !1, ;; File
1031 i32 0, ;; Line number
1032 i64 8, ;; Size in Bits
1033 i64 8, ;; Align in Bits
1034 i64 0, ;; Offset in Bits
1035 i32 0, ;; Flags
1036 i32 6 ;; Encoding
1037 }
1038
1039unsigned char
1040^^^^^^^^^^^^^
1041
1042.. code-block:: llvm
1043
1044 !2 = metadata !{
1045 i32 524324, ;; Tag
1046 metadata !1, ;; Context
1047 metadata !"unsigned char",
1048 metadata !1, ;; File
1049 i32 0, ;; Line number
1050 i64 8, ;; Size in Bits
1051 i64 8, ;; Align in Bits
1052 i64 0, ;; Offset in Bits
1053 i32 0, ;; Flags
1054 i32 8 ;; Encoding
1055 }
1056
1057short
1058^^^^^
1059
1060.. code-block:: llvm
1061
1062 !2 = metadata !{
1063 i32 524324, ;; Tag
1064 metadata !1, ;; Context
1065 metadata !"short int",
1066 metadata !1, ;; File
1067 i32 0, ;; Line number
1068 i64 16, ;; Size in Bits
1069 i64 16, ;; Align in Bits
1070 i64 0, ;; Offset in Bits
1071 i32 0, ;; Flags
1072 i32 5 ;; Encoding
1073 }
1074
1075unsigned short
1076^^^^^^^^^^^^^^
1077
1078.. code-block:: llvm
1079
1080 !2 = metadata !{
1081 i32 524324, ;; Tag
1082 metadata !1, ;; Context
1083 metadata !"short unsigned int",
1084 metadata !1, ;; File
1085 i32 0, ;; Line number
1086 i64 16, ;; Size in Bits
1087 i64 16, ;; Align in Bits
1088 i64 0, ;; Offset in Bits
1089 i32 0, ;; Flags
1090 i32 7 ;; Encoding
1091 }
1092
1093int
1094^^^
1095
1096.. code-block:: llvm
1097
1098 !2 = metadata !{
1099 i32 524324, ;; Tag
1100 metadata !1, ;; Context
1101 metadata !"int", ;; Name
1102 metadata !1, ;; File
1103 i32 0, ;; Line number
1104 i64 32, ;; Size in Bits
1105 i64 32, ;; Align in Bits
1106 i64 0, ;; Offset in Bits
1107 i32 0, ;; Flags
1108 i32 5 ;; Encoding
1109 }
1110
1111unsigned int
1112^^^^^^^^^^^^
1113
1114.. code-block:: llvm
1115
1116 !2 = metadata !{
1117 i32 524324, ;; Tag
1118 metadata !1, ;; Context
1119 metadata !"unsigned int",
1120 metadata !1, ;; File
1121 i32 0, ;; Line number
1122 i64 32, ;; Size in Bits
1123 i64 32, ;; Align in Bits
1124 i64 0, ;; Offset in Bits
1125 i32 0, ;; Flags
1126 i32 7 ;; Encoding
1127 }
1128
1129long long
1130^^^^^^^^^
1131
1132.. code-block:: llvm
1133
1134 !2 = metadata !{
1135 i32 524324, ;; Tag
1136 metadata !1, ;; Context
1137 metadata !"long long int",
1138 metadata !1, ;; File
1139 i32 0, ;; Line number
1140 i64 64, ;; Size in Bits
1141 i64 64, ;; Align in Bits
1142 i64 0, ;; Offset in Bits
1143 i32 0, ;; Flags
1144 i32 5 ;; Encoding
1145 }
1146
1147unsigned long long
1148^^^^^^^^^^^^^^^^^^
1149
1150.. code-block:: llvm
1151
1152 !2 = metadata !{
1153 i32 524324, ;; Tag
1154 metadata !1, ;; Context
1155 metadata !"long long unsigned int",
1156 metadata !1, ;; File
1157 i32 0, ;; Line number
1158 i64 64, ;; Size in Bits
1159 i64 64, ;; Align in Bits
1160 i64 0, ;; Offset in Bits
1161 i32 0, ;; Flags
1162 i32 7 ;; Encoding
1163 }
1164
1165float
1166^^^^^
1167
1168.. code-block:: llvm
1169
1170 !2 = metadata !{
1171 i32 524324, ;; Tag
1172 metadata !1, ;; Context
1173 metadata !"float",
1174 metadata !1, ;; File
1175 i32 0, ;; Line number
1176 i64 32, ;; Size in Bits
1177 i64 32, ;; Align in Bits
1178 i64 0, ;; Offset in Bits
1179 i32 0, ;; Flags
1180 i32 4 ;; Encoding
1181 }
1182
1183double
1184^^^^^^
1185
1186.. code-block:: llvm
1187
1188 !2 = metadata !{
1189 i32 524324, ;; Tag
1190 metadata !1, ;; Context
1191 metadata !"double",;; Name
1192 metadata !1, ;; File
1193 i32 0, ;; Line number
1194 i64 64, ;; Size in Bits
1195 i64 64, ;; Align in Bits
1196 i64 0, ;; Offset in Bits
1197 i32 0, ;; Flags
1198 i32 4 ;; Encoding
1199 }
1200
1201C/C++ derived types
1202-------------------
1203
1204Given the following as an example of C/C++ derived type:
1205
1206.. code-block:: c
1207
1208 typedef const int *IntPtr;
1209
1210a C/C++ front-end would generate the following descriptors:
1211
1212.. code-block:: llvm
1213
1214 ;;
1215 ;; Define the typedef "IntPtr".
1216 ;;
1217 !2 = metadata !{
1218 i32 524310, ;; Tag
1219 metadata !1, ;; Context
1220 metadata !"IntPtr", ;; Name
1221 metadata !3, ;; File
1222 i32 0, ;; Line number
1223 i64 0, ;; Size in bits
1224 i64 0, ;; Align in bits
1225 i64 0, ;; Offset in bits
1226 i32 0, ;; Flags
1227 metadata !4 ;; Derived From type
1228 }
1229 ;;
1230 ;; Define the pointer type.
1231 ;;
1232 !4 = metadata !{
1233 i32 524303, ;; Tag
1234 metadata !1, ;; Context
1235 metadata !"", ;; Name
1236 metadata !1, ;; File
1237 i32 0, ;; Line number
1238 i64 64, ;; Size in bits
1239 i64 64, ;; Align in bits
1240 i64 0, ;; Offset in bits
1241 i32 0, ;; Flags
1242 metadata !5 ;; Derived From type
1243 }
1244 ;;
1245 ;; Define the const type.
1246 ;;
1247 !5 = metadata !{
1248 i32 524326, ;; Tag
1249 metadata !1, ;; Context
1250 metadata !"", ;; Name
1251 metadata !1, ;; File
1252 i32 0, ;; Line number
1253 i64 32, ;; Size in bits
1254 i64 32, ;; Align in bits
1255 i64 0, ;; Offset in bits
1256 i32 0, ;; Flags
1257 metadata !6 ;; Derived From type
1258 }
1259 ;;
1260 ;; Define the int type.
1261 ;;
1262 !6 = metadata !{
1263 i32 524324, ;; Tag
1264 metadata !1, ;; Context
1265 metadata !"int", ;; Name
1266 metadata !1, ;; File
1267 i32 0, ;; Line number
1268 i64 32, ;; Size in bits
1269 i64 32, ;; Align in bits
1270 i64 0, ;; Offset in bits
1271 i32 0, ;; Flags
1272 5 ;; Encoding
1273 }
1274
1275C/C++ struct/union types
1276------------------------
1277
1278Given the following as an example of C/C++ struct type:
1279
1280.. code-block:: c
1281
1282 struct Color {
1283 unsigned Red;
1284 unsigned Green;
1285 unsigned Blue;
1286 };
1287
1288a C/C++ front-end would generate the following descriptors:
1289
1290.. code-block:: llvm
1291
1292 ;;
1293 ;; Define basic type for unsigned int.
1294 ;;
1295 !5 = metadata !{
1296 i32 524324, ;; Tag
1297 metadata !1, ;; Context
1298 metadata !"unsigned int",
1299 metadata !1, ;; File
1300 i32 0, ;; Line number
1301 i64 32, ;; Size in Bits
1302 i64 32, ;; Align in Bits
1303 i64 0, ;; Offset in Bits
1304 i32 0, ;; Flags
1305 i32 7 ;; Encoding
1306 }
1307 ;;
1308 ;; Define composite type for struct Color.
1309 ;;
1310 !2 = metadata !{
1311 i32 524307, ;; Tag
1312 metadata !1, ;; Context
1313 metadata !"Color", ;; Name
1314 metadata !1, ;; Compile unit
1315 i32 1, ;; Line number
1316 i64 96, ;; Size in bits
1317 i64 32, ;; Align in bits
1318 i64 0, ;; Offset in bits
1319 i32 0, ;; Flags
1320 null, ;; Derived From
1321 metadata !3, ;; Elements
1322 i32 0 ;; Runtime Language
1323 }
1324
1325 ;;
1326 ;; Define the Red field.
1327 ;;
1328 !4 = metadata !{
1329 i32 524301, ;; Tag
1330 metadata !1, ;; Context
1331 metadata !"Red", ;; Name
1332 metadata !1, ;; File
1333 i32 2, ;; Line number
1334 i64 32, ;; Size in bits
1335 i64 32, ;; Align in bits
1336 i64 0, ;; Offset in bits
1337 i32 0, ;; Flags
1338 metadata !5 ;; Derived From type
1339 }
1340
1341 ;;
1342 ;; Define the Green field.
1343 ;;
1344 !6 = metadata !{
1345 i32 524301, ;; Tag
1346 metadata !1, ;; Context
1347 metadata !"Green", ;; Name
1348 metadata !1, ;; File
1349 i32 3, ;; Line number
1350 i64 32, ;; Size in bits
1351 i64 32, ;; Align in bits
1352 i64 32, ;; Offset in bits
1353 i32 0, ;; Flags
1354 metadata !5 ;; Derived From type
1355 }
1356
1357 ;;
1358 ;; Define the Blue field.
1359 ;;
1360 !7 = metadata !{
1361 i32 524301, ;; Tag
1362 metadata !1, ;; Context
1363 metadata !"Blue", ;; Name
1364 metadata !1, ;; File
1365 i32 4, ;; Line number
1366 i64 32, ;; Size in bits
1367 i64 32, ;; Align in bits
1368 i64 64, ;; Offset in bits
1369 i32 0, ;; Flags
1370 metadata !5 ;; Derived From type
1371 }
1372
1373 ;;
1374 ;; Define the array of fields used by the composite type Color.
1375 ;;
1376 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1377
1378C/C++ enumeration types
1379-----------------------
1380
1381Given the following as an example of C/C++ enumeration type:
1382
1383.. code-block:: c
1384
1385 enum Trees {
1386 Spruce = 100,
1387 Oak = 200,
1388 Maple = 300
1389 };
1390
1391a C/C++ front-end would generate the following descriptors:
1392
1393.. code-block:: llvm
1394
1395 ;;
1396 ;; Define composite type for enum Trees
1397 ;;
1398 !2 = metadata !{
1399 i32 524292, ;; Tag
1400 metadata !1, ;; Context
1401 metadata !"Trees", ;; Name
1402 metadata !1, ;; File
1403 i32 1, ;; Line number
1404 i64 32, ;; Size in bits
1405 i64 32, ;; Align in bits
1406 i64 0, ;; Offset in bits
1407 i32 0, ;; Flags
1408 null, ;; Derived From type
1409 metadata !3, ;; Elements
1410 i32 0 ;; Runtime language
1411 }
1412
1413 ;;
1414 ;; Define the array of enumerators used by composite type Trees.
1415 ;;
1416 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1417
1418 ;;
1419 ;; Define Spruce enumerator.
1420 ;;
1421 !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}
1422
1423 ;;
1424 ;; Define Oak enumerator.
1425 ;;
1426 !5 = metadata !{i32 524328, metadata !"Oak", i64 200}
1427
1428 ;;
1429 ;; Define Maple enumerator.
1430 ;;
1431 !6 = metadata !{i32 524328, metadata !"Maple", i64 300}
1432
1433Debugging information format
1434============================
1435
1436Debugging Information Extension for Objective C Properties
1437----------------------------------------------------------
1438
1439Introduction
1440^^^^^^^^^^^^
1441
1442Objective C provides a simpler way to declare and define accessor methods using
1443declared properties. The language provides features to declare a property and
1444to let compiler synthesize accessor methods.
1445
1446The debugger lets developer inspect Objective C interfaces and their instance
1447variables and class variables. However, the debugger does not know anything
1448about the properties defined in Objective C interfaces. The debugger consumes
1449information generated by compiler in DWARF format. The format does not support
1450encoding of Objective C properties. This proposal describes DWARF extensions to
1451encode Objective C properties, which the debugger can use to let developers
1452inspect Objective C properties.
1453
1454Proposal
1455^^^^^^^^
1456
1457Objective C properties exist separately from class members. A property can be
1458defined only by "setter" and "getter" selectors, and be calculated anew on each
1459access. Or a property can just be a direct access to some declared ivar.
1460Finally it can have an ivar "automatically synthesized" for it by the compiler,
1461in which case the property can be referred to in user code directly using the
1462standard C dereference syntax as well as through the property "dot" syntax, but
1463there is no entry in the ``@interface`` declaration corresponding to this ivar.
1464
1465To facilitate debugging, these properties we will add a new DWARF TAG into the
1466``DW_TAG_structure_type`` definition for the class to hold the description of a
1467given property, and a set of DWARF attributes that provide said description.
1468The property tag will also contain the name and declared type of the property.
1469
1470If there is a related ivar, there will also be a DWARF property attribute placed
1471in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1472for that property. And in the case where the compiler synthesizes the ivar
1473directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1474ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1475to access this ivar directly in code, and with the property attribute pointing
1476back to the property it is backing.
1477
1478The following examples will serve as illustration for our discussion:
1479
1480.. code-block:: objc
1481
1482 @interface I1 {
1483 int n2;
1484 }
1485
1486 @property int p1;
1487 @property int p2;
1488 @end
1489
1490 @implementation I1
1491 @synthesize p1;
1492 @synthesize p2 = n2;
1493 @end
1494
1495This produces the following DWARF (this is a "pseudo dwarfdump" output):
1496
1497.. code-block:: none
1498
1499 0x00000100: TAG_structure_type [7] *
1500 AT_APPLE_runtime_class( 0x10 )
1501 AT_name( "I1" )
1502 AT_decl_file( "Objc_Property.m" )
1503 AT_decl_line( 3 )
1504
1505 0x00000110 TAG_APPLE_property
1506 AT_name ( "p1" )
1507 AT_type ( {0x00000150} ( int ) )
1508
1509 0x00000120: TAG_APPLE_property
1510 AT_name ( "p2" )
1511 AT_type ( {0x00000150} ( int ) )
1512
1513 0x00000130: TAG_member [8]
1514 AT_name( "_p1" )
1515 AT_APPLE_property ( {0x00000110} "p1" )
1516 AT_type( {0x00000150} ( int ) )
1517 AT_artificial ( 0x1 )
1518
1519 0x00000140: TAG_member [8]
1520 AT_name( "n2" )
1521 AT_APPLE_property ( {0x00000120} "p2" )
1522 AT_type( {0x00000150} ( int ) )
1523
1524 0x00000150: AT_type( ( int ) )
1525
1526Note, the current convention is that the name of the ivar for an
1527auto-synthesized property is the name of the property from which it derives
1528with an underscore prepended, as is shown in the example. But we actually
1529don't need to know this convention, since we are given the name of the ivar
1530directly.
1531
1532Also, it is common practice in ObjC to have different property declarations in
1533the @interface and @implementation - e.g. to provide a read-only property in
1534the interface,and a read-write interface in the implementation. In that case,
1535the compiler should emit whichever property declaration will be in force in the
1536current translation unit.
1537
1538Developers can decorate a property with attributes which are encoded using
1539``DW_AT_APPLE_property_attribute``.
1540
1541.. code-block:: objc
1542
1543 @property (readonly, nonatomic) int pr;
1544
1545.. code-block:: none
1546
1547 TAG_APPLE_property [8]
1548 AT_name( "pr" )
1549 AT_type ( {0x00000147} (int) )
1550 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1551
1552The setter and getter method names are attached to the property using
1553``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1554
1555.. code-block:: objc
1556
1557 @interface I1
1558 @property (setter=myOwnP3Setter:) int p3;
1559 -(void)myOwnP3Setter:(int)a;
1560 @end
1561
1562 @implementation I1
1563 @synthesize p3;
1564 -(void)myOwnP3Setter:(int)a{ }
1565 @end
1566
1567The DWARF for this would be:
1568
1569.. code-block:: none
1570
1571 0x000003bd: TAG_structure_type [7] *
1572 AT_APPLE_runtime_class( 0x10 )
1573 AT_name( "I1" )
1574 AT_decl_file( "Objc_Property.m" )
1575 AT_decl_line( 3 )
1576
1577 0x000003cd TAG_APPLE_property
1578 AT_name ( "p3" )
1579 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1580 AT_type( {0x00000147} ( int ) )
1581
1582 0x000003f3: TAG_member [8]
1583 AT_name( "_p3" )
1584 AT_type ( {0x00000147} ( int ) )
1585 AT_APPLE_property ( {0x000003cd} )
1586 AT_artificial ( 0x1 )
1587
1588New DWARF Tags
1589^^^^^^^^^^^^^^
1590
1591+-----------------------+--------+
1592| TAG | Value |
1593+=======================+========+
1594| DW_TAG_APPLE_property | 0x4200 |
1595+-----------------------+--------+
1596
1597New DWARF Attributes
1598^^^^^^^^^^^^^^^^^^^^
1599
1600+--------------------------------+--------+-----------+
1601| Attribute | Value | Classes |
1602+================================+========+===========+
1603| DW_AT_APPLE_property | 0x3fed | Reference |
1604+--------------------------------+--------+-----------+
1605| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1606+--------------------------------+--------+-----------+
1607| DW_AT_APPLE_property_setter | 0x3fea | String |
1608+--------------------------------+--------+-----------+
1609| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1610+--------------------------------+--------+-----------+
1611
1612New DWARF Constants
1613^^^^^^^^^^^^^^^^^^^
1614
1615+--------------------------------+-------+
1616| Name | Value |
1617+================================+=======+
1618| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1619+--------------------------------+-------+
1620| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1621+--------------------------------+-------+
1622| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1623+--------------------------------+-------+
1624| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1625+--------------------------------+-------+
1626| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1627+--------------------------------+-------+
1628| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1629+--------------------------------+-------+
1630
1631Name Accelerator Tables
1632-----------------------
1633
1634Introduction
1635^^^^^^^^^^^^
1636
1637The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1638debugger needs. The "``pub``" in the section name indicates that the entries
1639in the table are publicly visible names only. This means no static or hidden
1640functions show up in the "``.debug_pubnames``". No static variables or private
1641class variables are in the "``.debug_pubtypes``". Many compilers add different
1642things to these tables, so we can't rely upon the contents between gcc, icc, or
1643clang.
1644
1645The typical query given by users tends not to match up with the contents of
1646these tables. For example, the DWARF spec states that "In the case of the name
1647of a function member or static data member of a C++ structure, class or union,
1648the name presented in the "``.debug_pubnames``" section is not the simple name
1649given by the ``DW_AT_name attribute`` of the referenced debugging information
1650entry, but rather the fully qualified name of the data or function member."
1651So the only names in these tables for complex C++ entries is a fully
1652qualified name. Debugger users tend not to enter their search strings as
1653"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1654"``a::b::c``". So the name entered in the name table must be demangled in
1655order to chop it up appropriately and additional names must be manually entered
1656into the table to make it effective as a name lookup table for debuggers to
1657se.
1658
1659All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1660its inconsistent and useless public-only name content making it a waste of
1661space in the object file. These tables, when they are written to disk, are not
1662sorted in any way, leaving every debugger to do its own parsing and sorting.
1663These tables also include an inlined copy of the string values in the table
1664itself making the tables much larger than they need to be on disk, especially
1665for large C++ programs.
1666
1667Can't we just fix the sections by adding all of the names we need to this
1668table? No, because that is not what the tables are defined to contain and we
1669won't know the difference between the old bad tables and the new good tables.
1670At best we could make our own renamed sections that contain all of the data we
1671need.
1672
1673These tables are also insufficient for what a debugger like LLDB needs. LLDB
1674uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1675often asked to look for type "``foo``" or namespace "``bar``", or list items in
1676namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1677tables. Since clang asks a lot of questions when it is parsing an expression,
1678we need to be very fast when looking up names, as it happens a lot. Having new
1679accelerator tables that are optimized for very quick lookups will benefit this
1680type of debugging experience greatly.
1681
1682We would like to generate name lookup tables that can be mapped into memory
1683from disk, and used as is, with little or no up-front parsing. We would also
1684be able to control the exact content of these different tables so they contain
1685exactly what we need. The Name Accelerator Tables were designed to fix these
1686issues. In order to solve these issues we need to:
1687
1688* Have a format that can be mapped into memory from disk and used as is
1689* Lookups should be very fast
1690* Extensible table format so these tables can be made by many producers
1691* Contain all of the names needed for typical lookups out of the box
1692* Strict rules for the contents of tables
1693
1694Table size is important and the accelerator table format should allow the reuse
1695of strings from common string tables so the strings for the names are not
1696duplicated. We also want to make sure the table is ready to be used as-is by
1697simply mapping the table into memory with minimal header parsing.
1698
1699The name lookups need to be fast and optimized for the kinds of lookups that
1700debuggers tend to do. Optimally we would like to touch as few parts of the
1701mapped table as possible when doing a name lookup and be able to quickly find
1702the name entry we are looking for, or discover there are no matches. In the
1703case of debuggers we optimized for lookups that fail most of the time.
1704
1705Each table that is defined should have strict rules on exactly what is in the
1706accelerator tables and documented so clients can rely on the content.
1707
1708Hash Tables
1709^^^^^^^^^^^
1710
1711Standard Hash Tables
1712""""""""""""""""""""
1713
1714Typical hash tables have a header, buckets, and each bucket points to the
1715bucket contents:
1716
1717.. code-block:: none
1718
1719 .------------.
1720 | HEADER |
1721 |------------|
1722 | BUCKETS |
1723 |------------|
1724 | DATA |
1725 `------------'
1726
1727The BUCKETS are an array of offsets to DATA for each hash:
1728
1729.. code-block:: none
1730
1731 .------------.
1732 | 0x00001000 | BUCKETS[0]
1733 | 0x00002000 | BUCKETS[1]
1734 | 0x00002200 | BUCKETS[2]
1735 | 0x000034f0 | BUCKETS[3]
1736 | | ...
1737 | 0xXXXXXXXX | BUCKETS[n_buckets]
1738 '------------'
1739
1740So for ``bucket[3]`` in the example above, we have an offset into the table
17410x000034f0 which points to a chain of entries for the bucket. Each bucket must
1742contain a next pointer, full 32 bit hash value, the string itself, and the data
1743for the current string value.
1744
1745.. code-block:: none
1746
1747 .------------.
1748 0x000034f0: | 0x00003500 | next pointer
1749 | 0x12345678 | 32 bit hash
1750 | "erase" | string value
1751 | data[n] | HashData for this bucket
1752 |------------|
1753 0x00003500: | 0x00003550 | next pointer
1754 | 0x29273623 | 32 bit hash
1755 | "dump" | string value
1756 | data[n] | HashData for this bucket
1757 |------------|
1758 0x00003550: | 0x00000000 | next pointer
1759 | 0x82638293 | 32 bit hash
1760 | "main" | string value
1761 | data[n] | HashData for this bucket
1762 `------------'
1763
1764The problem with this layout for debuggers is that we need to optimize for the
1765negative lookup case where the symbol we're searching for is not present. So
1766if we were to lookup "``printf``" in the table above, we would make a 32 hash
1767for "``printf``", it might match ``bucket[3]``. We would need to go to the
1768offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1769so, we need to read the next pointer, then read the hash, compare it, and skip
1770to the next bucket. Each time we are skipping many bytes in memory and
1771touching new cache pages just to do the compare on the full 32 bit hash. All
1772of these accesses then tell us that we didn't have a match.
1773
1774Name Hash Tables
1775""""""""""""""""
1776
1777To solve the issues mentioned above we have structured the hash tables a bit
1778differently: a header, buckets, an array of all unique 32 bit hash values,
1779followed by an array of hash value data offsets, one for each hash value, then
1780the data for all hash values:
1781
1782.. code-block:: none
1783
1784 .-------------.
1785 | HEADER |
1786 |-------------|
1787 | BUCKETS |
1788 |-------------|
1789 | HASHES |
1790 |-------------|
1791 | OFFSETS |
1792 |-------------|
1793 | DATA |
1794 `-------------'
1795
1796The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1797making all of the full 32 bit hash values contiguous in memory, we allow
1798ourselves to efficiently check for a match while touching as little memory as
1799possible. Most often checking the 32 bit hash values is as far as the lookup
1800goes. If it does match, it usually is a match with no collisions. So for a
1801table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1802values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1803``OFFSETS`` as:
1804
1805.. code-block:: none
1806
1807 .-------------------------.
1808 | HEADER.magic | uint32_t
1809 | HEADER.version | uint16_t
1810 | HEADER.hash_function | uint16_t
1811 | HEADER.bucket_count | uint32_t
1812 | HEADER.hashes_count | uint32_t
1813 | HEADER.header_data_len | uint32_t
1814 | HEADER_DATA | HeaderData
1815 |-------------------------|
1816 | BUCKETS | uint32_t[bucket_count] // 32 bit hash indexes
1817 |-------------------------|
1818 | HASHES | uint32_t[hashes_count] // 32 bit hash values
1819 |-------------------------|
1820 | OFFSETS | uint32_t[hashes_count] // 32 bit offsets to hash value data
1821 |-------------------------|
1822 | ALL HASH DATA |
1823 `-------------------------'
1824
1825So taking the exact same data from the standard hash example above we end up
1826with:
1827
1828.. code-block:: none
1829
1830 .------------.
1831 | HEADER |
1832 |------------|
1833 | 0 | BUCKETS[0]
1834 | 2 | BUCKETS[1]
1835 | 5 | BUCKETS[2]
1836 | 6 | BUCKETS[3]
1837 | | ...
1838 | ... | BUCKETS[n_buckets]
1839 |------------|
1840 | 0x........ | HASHES[0]
1841 | 0x........ | HASHES[1]
1842 | 0x........ | HASHES[2]
1843 | 0x........ | HASHES[3]
1844 | 0x........ | HASHES[4]
1845 | 0x........ | HASHES[5]
1846 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1847 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1848 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1849 | 0x........ | HASHES[9]
1850 | 0x........ | HASHES[10]
1851 | 0x........ | HASHES[11]
1852 | 0x........ | HASHES[12]
1853 | 0x........ | HASHES[13]
1854 | 0x........ | HASHES[n_hashes]
1855 |------------|
1856 | 0x........ | OFFSETS[0]
1857 | 0x........ | OFFSETS[1]
1858 | 0x........ | OFFSETS[2]
1859 | 0x........ | OFFSETS[3]
1860 | 0x........ | OFFSETS[4]
1861 | 0x........ | OFFSETS[5]
1862 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1863 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1864 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1865 | 0x........ | OFFSETS[9]
1866 | 0x........ | OFFSETS[10]
1867 | 0x........ | OFFSETS[11]
1868 | 0x........ | OFFSETS[12]
1869 | 0x........ | OFFSETS[13]
1870 | 0x........ | OFFSETS[n_hashes]
1871 |------------|
1872 | |
1873 | |
1874 | |
1875 | |
1876 | |
1877 |------------|
1878 0x000034f0: | 0x00001203 | .debug_str ("erase")
1879 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1880 | 0x........ | HashData[0]
1881 | 0x........ | HashData[1]
1882 | 0x........ | HashData[2]
1883 | 0x........ | HashData[3]
1884 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1885 |------------|
1886 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1887 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1888 | 0x........ | HashData[0]
1889 | 0x........ | HashData[1]
1890 | 0x00001203 | String offset into .debug_str ("dump")
1891 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1892 | 0x........ | HashData[0]
1893 | 0x........ | HashData[1]
1894 | 0x........ | HashData[2]
1895 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1896 |------------|
1897 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1898 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1899 | 0x........ | HashData[0]
1900 | 0x........ | HashData[1]
1901 | 0x........ | HashData[2]
1902 | 0x........ | HashData[3]
1903 | 0x........ | HashData[4]
1904 | 0x........ | HashData[5]
1905 | 0x........ | HashData[6]
1906 | 0x........ | HashData[7]
1907 | 0x........ | HashData[8]
1908 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1909 `------------'
1910
1911So we still have all of the same data, we just organize it more efficiently for
1912debugger lookup. If we repeat the same "``printf``" lookup from above, we
1913would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1914hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1915is the index into the ``HASHES`` table. We would then compare any consecutive
191632 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1917``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1918``n_buckets`` is still 3. In the case of a failed lookup we would access the
1919memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1920before we know that we have no match. We don't end up marching through
1921multiple words of memory and we really keep the number of processor data cache
1922lines being accessed as small as possible.
1923
1924The string hash that is used for these lookup tables is the Daniel J.
1925Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1926very good hash for all kinds of names in programs with very few hash
1927collisions.
1928
1929Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1930
1931Details
1932^^^^^^^
1933
1934These name hash tables are designed to be generic where specializations of the
1935table get to define additional data that goes into the header ("``HeaderData``"),
1936how the string value is stored ("``KeyType``") and the content of the data for each
1937hash value.
1938
1939Header Layout
1940"""""""""""""
1941
1942The header has a fixed part, and the specialized part. The exact format of the
1943header is:
1944
1945.. code-block:: c
1946
1947 struct Header
1948 {
1949 uint32_t magic; // 'HASH' magic value to allow endian detection
1950 uint16_t version; // Version number
1951 uint16_t hash_function; // The hash function enumeration that was used
1952 uint32_t bucket_count; // The number of buckets in this hash table
1953 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1954 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1955 // Specifically the length of the following HeaderData field - this does not
1956 // include the size of the preceding fields
1957 HeaderData header_data; // Implementation specific header data
1958 };
1959
1960The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1961encoded as an ASCII integer. This allows the detection of the start of the
1962hash table and also allows the table's byte order to be determined so the table
1963can be correctly extracted. The "``magic``" value is followed by a 16 bit
1964``version`` number which allows the table to be revised and modified in the
1965future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1966enumeration that specifies which hash function was used to produce this table.
1967The current values for the hash function enumerations include:
1968
1969.. code-block:: c
1970
1971 enum HashFunctionType
1972 {
1973 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1974 };
1975
1976``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1977are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1978hash values that are in the ``HASHES`` array, and is the same number of offsets
1979are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1980in bytes of the ``HeaderData`` that is filled in by specialized versions of
1981this table.
1982
1983Fixed Lookup
1984""""""""""""
1985
1986The header is followed by the buckets, hashes, offsets, and hash value data.
1987
1988.. code-block:: c
1989
1990 struct FixedTable
1991 {
1992 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1993 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1994 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1995 };
1996
1997``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
1998``hashes`` array contains all of the 32 bit hash values for all names in the
1999hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2000array that points to the data for the hash value.
2001
2002This table setup makes it very easy to repurpose these tables to contain
2003different data, while keeping the lookup mechanism the same for all tables.
2004This layout also makes it possible to save the table to disk and map it in
2005later and do very efficient name lookups with little or no parsing.
2006
2007DWARF lookup tables can be implemented in a variety of ways and can store a lot
2008of information for each name. We want to make the DWARF tables extensible and
2009able to store the data efficiently so we have used some of the DWARF features
2010that enable efficient data storage to define exactly what kind of data we store
2011for each name.
2012
2013The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2014We might want to store an offset to all of the debug information entries (DIEs)
2015for each name. To keep things extensible, we create a list of items, or
2016Atoms, that are contained in the data for each name. First comes the type of
2017the data in each atom:
2018
2019.. code-block:: c
2020
2021 enum AtomType
2022 {
2023 eAtomTypeNULL = 0u,
2024 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2025 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2026 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2027 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2028 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2029 };
2030
2031The enumeration values and their meanings are:
2032
2033.. code-block:: none
2034
2035 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2036 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2037 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2038 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2039 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2040 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2041
2042Then we allow each atom type to define the atom type and how the data for each
2043atom type data is encoded:
2044
2045.. code-block:: c
2046
2047 struct Atom
2048 {
2049 uint16_t type; // AtomType enum value
2050 uint16_t form; // DWARF DW_FORM_XXX defines
2051 };
2052
2053The ``form`` type above is from the DWARF specification and defines the exact
2054encoding of the data for the Atom type. See the DWARF specification for the
2055``DW_FORM_`` definitions.
2056
2057.. code-block:: c
2058
2059 struct HeaderData
2060 {
2061 uint32_t die_offset_base;
2062 uint32_t atom_count;
2063 Atoms atoms[atom_count0];
2064 };
2065
2066``HeaderData`` defines the base DIE offset that should be added to any atoms
2067that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2068``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2069what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2070each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2071should be interpreted.
2072
2073For the current implementations of the "``.apple_names``" (all functions +
2074globals), the "``.apple_types``" (names of all types that are defined), and
2075the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2076array to be:
2077
2078.. code-block:: c
2079
2080 HeaderData.atom_count = 1;
2081 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2082 HeaderData.atoms[0].form = DW_FORM_data4;
2083
2084This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2085 encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2086 multiple matching DIEs in a single file, which could come up with an inlined
2087 function for instance. Future tables could include more information about the
2088 DIE such as flags indicating if the DIE is a function, method, block,
2089 or inlined.
2090
2091The KeyType for the DWARF table is a 32 bit string table offset into the
2092 ".debug_str" table. The ".debug_str" is the string table for the DWARF which
2093 may already contain copies of all of the strings. This helps make sure, with
2094 help from the compiler, that we reuse the strings between all of the DWARF
2095 sections and keeps the hash table size down. Another benefit to having the
2096 compiler generate all strings as DW_FORM_strp in the debug info, is that
2097 DWARF parsing can be made much faster.
2098
2099After a lookup is made, we get an offset into the hash data. The hash data
2100 needs to be able to deal with 32 bit hash collisions, so the chunk of data
2101 at the offset in the hash data consists of a triple:
2102
2103.. code-block:: c
2104
2105 uint32_t str_offset
2106 uint32_t hash_data_count
2107 HashData[hash_data_count]
2108
2109If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2110 hash data chunks contain a single item (no 32 bit hash collision):
2111
2112.. code-block:: none
2113
2114 .------------.
2115 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2116 | 0x00000004 | uint32_t HashData count
2117 | 0x........ | uint32_t HashData[0] DIE offset
2118 | 0x........ | uint32_t HashData[1] DIE offset
2119 | 0x........ | uint32_t HashData[2] DIE offset
2120 | 0x........ | uint32_t HashData[3] DIE offset
2121 | 0x00000000 | uint32_t KeyType (end of hash chain)
2122 `------------'
2123
2124If there are collisions, you will have multiple valid string offsets:
2125
2126.. code-block:: none
2127
2128 .------------.
2129 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2130 | 0x00000004 | uint32_t HashData count
2131 | 0x........ | uint32_t HashData[0] DIE offset
2132 | 0x........ | uint32_t HashData[1] DIE offset
2133 | 0x........ | uint32_t HashData[2] DIE offset
2134 | 0x........ | uint32_t HashData[3] DIE offset
2135 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2136 | 0x00000002 | uint32_t HashData count
2137 | 0x........ | uint32_t HashData[0] DIE offset
2138 | 0x........ | uint32_t HashData[1] DIE offset
2139 | 0x00000000 | uint32_t KeyType (end of hash chain)
2140 `------------'
2141
2142Current testing with real world C++ binaries has shown that there is around 1
214332 bit hash collision per 100,000 name entries.
2144
2145Contents
2146^^^^^^^^
2147
2148As we said, we want to strictly define exactly what is included in the
2149different tables. For DWARF, we have 3 tables: "``.apple_names``",
2150"``.apple_types``", and "``.apple_namespaces``".
2151
2152"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2153``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2154``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2155``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2156``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2157static variables). All global and static variables should be included,
2158including those scoped within functions and classes. For example using the
2159following code:
2160
2161.. code-block:: c
2162
2163 static int var = 0;
2164
2165 void f ()
2166 {
2167 static int var = 0;
2168 }
2169
2170Both of the static ``var`` variables would be included in the table. All
2171functions should emit both their full names and their basenames. For C or C++,
2172the full name is the mangled name (if available) which is usually in the
2173``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2174function basename. If global or static variables have a mangled name in a
2175``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2176simple name found in the ``DW_AT_name`` attribute.
2177
2178"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2179tag is one of:
2180
2181* DW_TAG_array_type
2182* DW_TAG_class_type
2183* DW_TAG_enumeration_type
2184* DW_TAG_pointer_type
2185* DW_TAG_reference_type
2186* DW_TAG_string_type
2187* DW_TAG_structure_type
2188* DW_TAG_subroutine_type
2189* DW_TAG_typedef
2190* DW_TAG_union_type
2191* DW_TAG_ptr_to_member_type
2192* DW_TAG_set_type
2193* DW_TAG_subrange_type
2194* DW_TAG_base_type
2195* DW_TAG_const_type
2196* DW_TAG_constant
2197* DW_TAG_file_type
2198* DW_TAG_namelist
2199* DW_TAG_packed_type
2200* DW_TAG_volatile_type
2201* DW_TAG_restrict_type
2202* DW_TAG_interface_type
2203* DW_TAG_unspecified_type
2204* DW_TAG_shared_type
2205
2206Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2207not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2208value). For example, using the following code:
2209
2210.. code-block:: c
2211
2212 int main ()
2213 {
2214 int *b = 0;
2215 return *b;
2216 }
2217
2218We get a few type DIEs:
2219
2220.. code-block:: none
2221
2222 0x00000067: TAG_base_type [5]
2223 AT_encoding( DW_ATE_signed )
2224 AT_name( "int" )
2225 AT_byte_size( 0x04 )
2226
2227 0x0000006e: TAG_pointer_type [6]
2228 AT_type( {0x00000067} ( int ) )
2229 AT_byte_size( 0x08 )
2230
2231The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2232
2233"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2234If we run into a namespace that has no name this is an anonymous namespace, and
2235the name should be output as "``(anonymous namespace)``" (without the quotes).
2236Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2237standard C++ library that demangles mangled names.
2238
2239
2240Language Extensions and File Format Changes
2241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2242
2243Objective-C Extensions
2244""""""""""""""""""""""
2245
2246"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2247Objective-C class. The name used in the hash table is the name of the
2248Objective-C class itself. If the Objective-C class has a category, then an
2249entry is made for both the class name without the category, and for the class
2250name with the category. So if we have a DIE at offset 0x1234 with a name of
2251method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2252an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2253"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2254track down all Objective-C methods for an Objective-C class when doing
2255expressions. It is needed because of the dynamic nature of Objective-C where
2256anyone can add methods to a class. The DWARF for Objective-C methods is also
2257emitted differently from C++ classes where the methods are not usually
2258contained in the class definition, they are scattered about across one or more
2259compile units. Categories can also be defined in different shared libraries.
2260So we need to be able to quickly find all of the methods and class functions
2261given the Objective-C class name, or quickly find all methods and class
2262functions for a class + category name. This table does not contain any
2263selector names, it just maps Objective-C class names (or class names +
2264category) to all of the methods and class functions. The selectors are added
2265as function basenames in the "``.debug_names``" section.
2266
2267In the "``.apple_names``" section for Objective-C functions, the full name is
2268the entire function name with the brackets ("``-[NSString
2269stringWithCString:]``") and the basename is the selector only
2270("``stringWithCString:``").
2271
2272Mach-O Changes
2273""""""""""""""
2274
2275The sections names for the apple hash tables are for non mach-o files. For
2276mach-o files, the sections should be contained in the ``__DWARF`` segment with
2277names as follows:
2278
2279* "``.apple_names``" -> "``__apple_names``"
2280* "``.apple_types``" -> "``__apple_types``"
2281* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2282* "``.apple_objc``" -> "``__apple_objc``"
2283