Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1 | //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass identifies loops where we can generate the Hexagon hardware |
| 11 | // loop instruction. The hardware loop can perform loop branches with a |
| 12 | // zero-cycle overhead. |
| 13 | // |
| 14 | // The pattern that defines the induction variable can changed depending on |
| 15 | // prior optimizations. For example, the IndVarSimplify phase run by 'opt' |
| 16 | // normalizes induction variables, and the Loop Strength Reduction pass |
| 17 | // run by 'llc' may also make changes to the induction variable. |
| 18 | // The pattern detected by this phase is due to running Strength Reduction. |
| 19 | // |
| 20 | // Criteria for hardware loops: |
| 21 | // - Countable loops (w/ ind. var for a trip count) |
| 22 | // - Assumes loops are normalized by IndVarSimplify |
| 23 | // - Try inner-most loops first |
| 24 | // - No nested hardware loops. |
| 25 | // - No function calls in loops. |
| 26 | // |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | #define DEBUG_TYPE "hwloops" |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 30 | #include "llvm/ADT/SmallSet.h" |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 31 | #include "llvm/ADT/Statistic.h" |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 32 | #include "llvm/CodeGen/MachineDominators.h" |
| 33 | #include "llvm/CodeGen/MachineFunction.h" |
| 34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 35 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 36 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 37 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
Chandler Carruth | d04a8d4 | 2012-12-03 16:50:05 +0000 | [diff] [blame] | 38 | #include "llvm/PassSupport.h" |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 39 | #include "llvm/Support/CommandLine.h" |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 40 | #include "llvm/Support/Debug.h" |
| 41 | #include "llvm/Support/raw_ostream.h" |
| 42 | #include "llvm/Target/TargetInstrInfo.h" |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 43 | #include "Hexagon.h" |
| 44 | #include "HexagonTargetMachine.h" |
| 45 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 46 | #include <algorithm> |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 47 | #include <vector> |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 48 | |
| 49 | using namespace llvm; |
| 50 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 51 | #ifndef NDEBUG |
| 52 | static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); |
| 53 | #endif |
| 54 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 55 | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); |
| 56 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 57 | namespace llvm { |
| 58 | void initializeHexagonHardwareLoopsPass(PassRegistry&); |
| 59 | } |
| 60 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 61 | namespace { |
| 62 | class CountValue; |
| 63 | struct HexagonHardwareLoops : public MachineFunctionPass { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 64 | MachineLoopInfo *MLI; |
| 65 | MachineRegisterInfo *MRI; |
| 66 | MachineDominatorTree *MDT; |
| 67 | const HexagonTargetMachine *TM; |
| 68 | const HexagonInstrInfo *TII; |
| 69 | const HexagonRegisterInfo *TRI; |
| 70 | #ifndef NDEBUG |
| 71 | static int Counter; |
| 72 | #endif |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 73 | |
| 74 | public: |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 75 | static char ID; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 76 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 77 | HexagonHardwareLoops() : MachineFunctionPass(ID) { |
| 78 | initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); |
| 79 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 80 | |
| 81 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 82 | |
| 83 | const char *getPassName() const { return "Hexagon Hardware Loops"; } |
| 84 | |
| 85 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 86 | AU.addRequired<MachineDominatorTree>(); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 87 | AU.addRequired<MachineLoopInfo>(); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 88 | MachineFunctionPass::getAnalysisUsage(AU); |
| 89 | } |
| 90 | |
| 91 | private: |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 92 | /// Kinds of comparisons in the compare instructions. |
| 93 | struct Comparison { |
| 94 | enum Kind { |
| 95 | EQ = 0x01, |
| 96 | NE = 0x02, |
| 97 | L = 0x04, // Less-than property. |
| 98 | G = 0x08, // Greater-than property. |
| 99 | U = 0x40, // Unsigned property. |
| 100 | LTs = L, |
| 101 | LEs = L | EQ, |
| 102 | GTs = G, |
| 103 | GEs = G | EQ, |
| 104 | LTu = L | U, |
| 105 | LEu = L | EQ | U, |
| 106 | GTu = G | U, |
| 107 | GEu = G | EQ | U |
| 108 | }; |
| 109 | |
| 110 | static Kind getSwappedComparison(Kind Cmp) { |
| 111 | assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); |
| 112 | if ((Cmp & L) || (Cmp & G)) |
| 113 | return (Kind)(Cmp ^ (L|G)); |
| 114 | return Cmp; |
| 115 | } |
| 116 | }; |
| 117 | |
| 118 | /// \brief Find the register that contains the loop controlling |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 119 | /// induction variable. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 120 | /// If successful, it will return true and set the \p Reg, \p IVBump |
| 121 | /// and \p IVOp arguments. Otherwise it will return false. |
| 122 | /// The returned induction register is the register R that follows the |
| 123 | /// following induction pattern: |
| 124 | /// loop: |
| 125 | /// R = phi ..., [ R.next, LatchBlock ] |
| 126 | /// R.next = R + #bump |
| 127 | /// if (R.next < #N) goto loop |
| 128 | /// IVBump is the immediate value added to R, and IVOp is the instruction |
| 129 | /// "R.next = R + #bump". |
| 130 | bool findInductionRegister(MachineLoop *L, unsigned &Reg, |
| 131 | int64_t &IVBump, MachineInstr *&IVOp) const; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 132 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 133 | /// \brief Analyze the statements in a loop to determine if the loop |
| 134 | /// has a computable trip count and, if so, return a value that represents |
| 135 | /// the trip count expression. |
| 136 | CountValue *getLoopTripCount(MachineLoop *L, |
| 137 | SmallVector<MachineInstr*, 2> &OldInsts); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 138 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 139 | /// \brief Return the expression that represents the number of times |
| 140 | /// a loop iterates. The function takes the operands that represent the |
| 141 | /// loop start value, loop end value, and induction value. Based upon |
| 142 | /// these operands, the function attempts to compute the trip count. |
| 143 | /// If the trip count is not directly available (as an immediate value, |
| 144 | /// or a register), the function will attempt to insert computation of it |
| 145 | /// to the loop's preheader. |
| 146 | CountValue *computeCount(MachineLoop *Loop, |
| 147 | const MachineOperand *Start, |
| 148 | const MachineOperand *End, |
| 149 | unsigned IVReg, |
| 150 | int64_t IVBump, |
| 151 | Comparison::Kind Cmp) const; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 152 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 153 | /// \brief Return true if the instruction is not valid within a hardware |
| 154 | /// loop. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 155 | bool isInvalidLoopOperation(const MachineInstr *MI) const; |
| 156 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 157 | /// \brief Return true if the loop contains an instruction that inhibits |
| 158 | /// using the hardware loop. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 159 | bool containsInvalidInstruction(MachineLoop *L) const; |
| 160 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 161 | /// \brief Given a loop, check if we can convert it to a hardware loop. |
| 162 | /// If so, then perform the conversion and return true. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 163 | bool convertToHardwareLoop(MachineLoop *L); |
| 164 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 165 | /// \brief Return true if the instruction is now dead. |
| 166 | bool isDead(const MachineInstr *MI, |
| 167 | SmallVector<MachineInstr*, 1> &DeadPhis) const; |
| 168 | |
| 169 | /// \brief Remove the instruction if it is now dead. |
| 170 | void removeIfDead(MachineInstr *MI); |
| 171 | |
| 172 | /// \brief Make sure that the "bump" instruction executes before the |
| 173 | /// compare. We need that for the IV fixup, so that the compare |
| 174 | /// instruction would not use a bumped value that has not yet been |
| 175 | /// defined. If the instructions are out of order, try to reorder them. |
| 176 | bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); |
| 177 | |
| 178 | /// \brief Get the instruction that loads an immediate value into \p R, |
| 179 | /// or 0 if such an instruction does not exist. |
| 180 | MachineInstr *defWithImmediate(unsigned R); |
| 181 | |
| 182 | /// \brief Get the immediate value referenced to by \p MO, either for |
| 183 | /// immediate operands, or for register operands, where the register |
| 184 | /// was defined with an immediate value. |
| 185 | int64_t getImmediate(MachineOperand &MO); |
| 186 | |
| 187 | /// \brief Reset the given machine operand to now refer to a new immediate |
| 188 | /// value. Assumes that the operand was already referencing an immediate |
| 189 | /// value, either directly, or via a register. |
| 190 | void setImmediate(MachineOperand &MO, int64_t Val); |
| 191 | |
| 192 | /// \brief Fix the data flow of the induction varible. |
| 193 | /// The desired flow is: phi ---> bump -+-> comparison-in-latch. |
| 194 | /// | |
| 195 | /// +-> back to phi |
| 196 | /// where "bump" is the increment of the induction variable: |
| 197 | /// iv = iv + #const. |
| 198 | /// Due to some prior code transformations, the actual flow may look |
| 199 | /// like this: |
| 200 | /// phi -+-> bump ---> back to phi |
| 201 | /// | |
| 202 | /// +-> comparison-in-latch (against upper_bound-bump), |
| 203 | /// i.e. the comparison that controls the loop execution may be using |
| 204 | /// the value of the induction variable from before the increment. |
| 205 | /// |
| 206 | /// Return true if the loop's flow is the desired one (i.e. it's |
| 207 | /// either been fixed, or no fixing was necessary). |
| 208 | /// Otherwise, return false. This can happen if the induction variable |
| 209 | /// couldn't be identified, or if the value in the latch's comparison |
| 210 | /// cannot be adjusted to reflect the post-bump value. |
| 211 | bool fixupInductionVariable(MachineLoop *L); |
| 212 | |
| 213 | /// \brief Given a loop, if it does not have a preheader, create one. |
| 214 | /// Return the block that is the preheader. |
| 215 | MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 216 | }; |
| 217 | |
| 218 | char HexagonHardwareLoops::ID = 0; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 219 | #ifndef NDEBUG |
| 220 | int HexagonHardwareLoops::Counter = 0; |
| 221 | #endif |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 222 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 223 | /// \brief Abstraction for a trip count of a loop. A smaller vesrsion |
| 224 | /// of the MachineOperand class without the concerns of changing the |
| 225 | /// operand representation. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 226 | class CountValue { |
| 227 | public: |
| 228 | enum CountValueType { |
| 229 | CV_Register, |
| 230 | CV_Immediate |
| 231 | }; |
| 232 | private: |
| 233 | CountValueType Kind; |
| 234 | union Values { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 235 | struct { |
| 236 | unsigned Reg; |
| 237 | unsigned Sub; |
| 238 | } R; |
| 239 | unsigned ImmVal; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 240 | } Contents; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 241 | |
| 242 | public: |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 243 | explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { |
| 244 | Kind = t; |
| 245 | if (Kind == CV_Register) { |
| 246 | Contents.R.Reg = v; |
| 247 | Contents.R.Sub = u; |
| 248 | } else { |
| 249 | Contents.ImmVal = v; |
| 250 | } |
| 251 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 252 | bool isReg() const { return Kind == CV_Register; } |
| 253 | bool isImm() const { return Kind == CV_Immediate; } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 254 | |
| 255 | unsigned getReg() const { |
| 256 | assert(isReg() && "Wrong CountValue accessor"); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 257 | return Contents.R.Reg; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 258 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 259 | unsigned getSubReg() const { |
| 260 | assert(isReg() && "Wrong CountValue accessor"); |
| 261 | return Contents.R.Sub; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 262 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 263 | unsigned getImm() const { |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 264 | assert(isImm() && "Wrong CountValue accessor"); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 265 | return Contents.ImmVal; |
| 266 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 267 | |
| 268 | void print(raw_ostream &OS, const TargetMachine *TM = 0) const { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 269 | const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; |
| 270 | if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } |
| 271 | if (isImm()) { OS << Contents.ImmVal; } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 272 | } |
| 273 | }; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 274 | } // end anonymous namespace |
| 275 | |
| 276 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 277 | INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", |
| 278 | "Hexagon Hardware Loops", false, false) |
| 279 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| 280 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| 281 | INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", |
| 282 | "Hexagon Hardware Loops", false, false) |
| 283 | |
| 284 | |
| 285 | /// \brief Returns true if the instruction is a hardware loop instruction. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 286 | static bool isHardwareLoop(const MachineInstr *MI) { |
| 287 | return MI->getOpcode() == Hexagon::LOOP0_r || |
| 288 | MI->getOpcode() == Hexagon::LOOP0_i; |
| 289 | } |
| 290 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 291 | FunctionPass *llvm::createHexagonHardwareLoops() { |
| 292 | return new HexagonHardwareLoops(); |
| 293 | } |
| 294 | |
| 295 | |
| 296 | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { |
| 297 | DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); |
| 298 | |
| 299 | bool Changed = false; |
| 300 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 301 | MLI = &getAnalysis<MachineLoopInfo>(); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 302 | MRI = &MF.getRegInfo(); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 303 | MDT = &getAnalysis<MachineDominatorTree>(); |
| 304 | TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget()); |
| 305 | TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo()); |
| 306 | TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo()); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 307 | |
| 308 | for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); |
| 309 | I != E; ++I) { |
| 310 | MachineLoop *L = *I; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 311 | if (!L->getParentLoop()) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 312 | Changed |= convertToHardwareLoop(L); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 313 | } |
| 314 | |
| 315 | return Changed; |
| 316 | } |
| 317 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 318 | |
| 319 | bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, |
| 320 | unsigned &Reg, |
| 321 | int64_t &IVBump, |
| 322 | MachineInstr *&IVOp |
| 323 | ) const { |
| 324 | MachineBasicBlock *Header = L->getHeader(); |
| 325 | MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| 326 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 327 | if (!Header || !Preheader || !Latch) |
| 328 | return false; |
| 329 | |
| 330 | // This pair represents an induction register together with an immediate |
| 331 | // value that will be added to it in each loop iteration. |
| 332 | typedef std::pair<unsigned,int64_t> RegisterBump; |
| 333 | |
| 334 | // Mapping: R.next -> (R, bump), where R, R.next and bump are derived |
| 335 | // from an induction operation |
| 336 | // R.next = R + bump |
| 337 | // where bump is an immediate value. |
| 338 | typedef std::map<unsigned,RegisterBump> InductionMap; |
| 339 | |
| 340 | InductionMap IndMap; |
| 341 | |
| 342 | typedef MachineBasicBlock::instr_iterator instr_iterator; |
| 343 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 344 | I != E && I->isPHI(); ++I) { |
| 345 | MachineInstr *Phi = &*I; |
| 346 | |
| 347 | // Have a PHI instruction. Get the operand that corresponds to the |
| 348 | // latch block, and see if is a result of an addition of form "reg+imm", |
| 349 | // where the "reg" is defined by the PHI node we are looking at. |
| 350 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
| 351 | if (Phi->getOperand(i+1).getMBB() != Latch) |
| 352 | continue; |
| 353 | |
| 354 | unsigned PhiOpReg = Phi->getOperand(i).getReg(); |
| 355 | MachineInstr *DI = MRI->getVRegDef(PhiOpReg); |
| 356 | unsigned UpdOpc = DI->getOpcode(); |
| 357 | bool isAdd = (UpdOpc == Hexagon::ADD_ri); |
| 358 | |
| 359 | if (isAdd) { |
| 360 | // If the register operand to the add is the PHI we're |
| 361 | // looking at, this meets the induction pattern. |
| 362 | unsigned IndReg = DI->getOperand(1).getReg(); |
| 363 | if (MRI->getVRegDef(IndReg) == Phi) { |
| 364 | unsigned UpdReg = DI->getOperand(0).getReg(); |
| 365 | int64_t V = DI->getOperand(2).getImm(); |
| 366 | IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); |
| 367 | } |
| 368 | } |
| 369 | } // for (i) |
| 370 | } // for (instr) |
| 371 | |
| 372 | SmallVector<MachineOperand,2> Cond; |
| 373 | MachineBasicBlock *TB = 0, *FB = 0; |
| 374 | bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); |
| 375 | if (NotAnalyzed) |
| 376 | return false; |
| 377 | |
| 378 | unsigned CSz = Cond.size(); |
| 379 | assert (CSz == 1 || CSz == 2); |
| 380 | unsigned PredR = Cond[CSz-1].getReg(); |
| 381 | |
| 382 | MachineInstr *PredI = MRI->getVRegDef(PredR); |
| 383 | if (!PredI->isCompare()) |
| 384 | return false; |
| 385 | |
| 386 | unsigned CmpReg1 = 0, CmpReg2 = 0; |
| 387 | int CmpImm = 0, CmpMask = 0; |
| 388 | bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, |
| 389 | CmpMask, CmpImm); |
| 390 | // Fail if the compare was not analyzed, or it's not comparing a register |
| 391 | // with an immediate value. Not checking the mask here, since we handle |
| 392 | // the individual compare opcodes (including CMPb) later on. |
| 393 | if (!CmpAnalyzed) |
| 394 | return false; |
| 395 | |
| 396 | // Exactly one of the input registers to the comparison should be among |
| 397 | // the induction registers. |
| 398 | InductionMap::iterator IndMapEnd = IndMap.end(); |
| 399 | InductionMap::iterator F = IndMapEnd; |
| 400 | if (CmpReg1 != 0) { |
| 401 | InductionMap::iterator F1 = IndMap.find(CmpReg1); |
| 402 | if (F1 != IndMapEnd) |
| 403 | F = F1; |
| 404 | } |
| 405 | if (CmpReg2 != 0) { |
| 406 | InductionMap::iterator F2 = IndMap.find(CmpReg2); |
| 407 | if (F2 != IndMapEnd) { |
| 408 | if (F != IndMapEnd) |
| 409 | return false; |
| 410 | F = F2; |
| 411 | } |
| 412 | } |
| 413 | if (F == IndMapEnd) |
| 414 | return false; |
| 415 | |
| 416 | Reg = F->second.first; |
| 417 | IVBump = F->second.second; |
| 418 | IVOp = MRI->getVRegDef(F->first); |
| 419 | return true; |
| 420 | } |
| 421 | |
| 422 | |
| 423 | /// \brief Analyze the statements in a loop to determine if the loop has |
| 424 | /// a computable trip count and, if so, return a value that represents |
| 425 | /// the trip count expression. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 426 | /// |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 427 | /// This function iterates over the phi nodes in the loop to check for |
| 428 | /// induction variable patterns that are used in the calculation for |
| 429 | /// the number of time the loop is executed. |
| 430 | CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, |
| 431 | SmallVector<MachineInstr*, 2> &OldInsts) { |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 432 | MachineBasicBlock *TopMBB = L->getTopBlock(); |
| 433 | MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); |
| 434 | assert(PI != TopMBB->pred_end() && |
| 435 | "Loop must have more than one incoming edge!"); |
| 436 | MachineBasicBlock *Backedge = *PI++; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 437 | if (PI == TopMBB->pred_end()) // dead loop? |
| 438 | return 0; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 439 | MachineBasicBlock *Incoming = *PI++; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 440 | if (PI != TopMBB->pred_end()) // multiple backedges? |
| 441 | return 0; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 442 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 443 | // Make sure there is one incoming and one backedge and determine which |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 444 | // is which. |
| 445 | if (L->contains(Incoming)) { |
| 446 | if (L->contains(Backedge)) |
| 447 | return 0; |
| 448 | std::swap(Incoming, Backedge); |
| 449 | } else if (!L->contains(Backedge)) |
| 450 | return 0; |
| 451 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 452 | // Look for the cmp instruction to determine if we can get a useful trip |
| 453 | // count. The trip count can be either a register or an immediate. The |
| 454 | // location of the value depends upon the type (reg or imm). |
| 455 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 456 | if (!Latch) |
| 457 | return 0; |
| 458 | |
| 459 | unsigned IVReg = 0; |
| 460 | int64_t IVBump = 0; |
| 461 | MachineInstr *IVOp; |
| 462 | bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); |
| 463 | if (!FoundIV) |
| 464 | return 0; |
| 465 | |
| 466 | MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| 467 | |
| 468 | MachineOperand *InitialValue = 0; |
| 469 | MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); |
| 470 | for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { |
| 471 | MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); |
| 472 | if (MBB == Preheader) |
| 473 | InitialValue = &IV_Phi->getOperand(i); |
| 474 | else if (MBB == Latch) |
| 475 | IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. |
| 476 | } |
| 477 | if (!InitialValue) |
| 478 | return 0; |
| 479 | |
| 480 | SmallVector<MachineOperand,2> Cond; |
| 481 | MachineBasicBlock *TB = 0, *FB = 0; |
| 482 | bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); |
| 483 | if (NotAnalyzed) |
| 484 | return 0; |
| 485 | |
| 486 | MachineBasicBlock *Header = L->getHeader(); |
| 487 | // TB must be non-null. If FB is also non-null, one of them must be |
| 488 | // the header. Otherwise, branch to TB could be exiting the loop, and |
| 489 | // the fall through can go to the header. |
| 490 | assert (TB && "Latch block without a branch?"); |
| 491 | assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); |
| 492 | if (!TB || (FB && TB != Header && FB != Header)) |
| 493 | return 0; |
| 494 | |
| 495 | // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch |
| 496 | // to put imm(0), followed by P in the vector Cond. |
| 497 | // If TB is not the header, it means that the "not-taken" path must lead |
| 498 | // to the header. |
| 499 | bool Negated = (Cond.size() > 1) ^ (TB != Header); |
| 500 | unsigned PredReg = Cond[Cond.size()-1].getReg(); |
| 501 | MachineInstr *CondI = MRI->getVRegDef(PredReg); |
| 502 | unsigned CondOpc = CondI->getOpcode(); |
| 503 | |
| 504 | unsigned CmpReg1 = 0, CmpReg2 = 0; |
| 505 | int Mask = 0, ImmValue = 0; |
| 506 | bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, |
| 507 | Mask, ImmValue); |
| 508 | if (!AnalyzedCmp) |
| 509 | return 0; |
| 510 | |
| 511 | // The comparison operator type determines how we compute the loop |
| 512 | // trip count. |
| 513 | OldInsts.push_back(CondI); |
| 514 | OldInsts.push_back(IVOp); |
| 515 | |
| 516 | // Sadly, the following code gets information based on the position |
| 517 | // of the operands in the compare instruction. This has to be done |
| 518 | // this way, because the comparisons check for a specific relationship |
| 519 | // between the operands (e.g. is-less-than), rather than to find out |
| 520 | // what relationship the operands are in (as on PPC). |
| 521 | Comparison::Kind Cmp; |
| 522 | bool isSwapped = false; |
| 523 | const MachineOperand &Op1 = CondI->getOperand(1); |
| 524 | const MachineOperand &Op2 = CondI->getOperand(2); |
| 525 | const MachineOperand *EndValue = 0; |
| 526 | |
| 527 | if (Op1.isReg()) { |
| 528 | if (Op2.isImm() || Op1.getReg() == IVReg) |
| 529 | EndValue = &Op2; |
| 530 | else { |
| 531 | EndValue = &Op1; |
| 532 | isSwapped = true; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 533 | } |
| 534 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 535 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 536 | if (!EndValue) |
| 537 | return 0; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 538 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 539 | switch (CondOpc) { |
| 540 | case Hexagon::CMPEQri: |
| 541 | case Hexagon::CMPEQrr: |
| 542 | Cmp = !Negated ? Comparison::EQ : Comparison::NE; |
| 543 | break; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 544 | case Hexagon::CMPGTUri: |
| 545 | case Hexagon::CMPGTUrr: |
| 546 | Cmp = !Negated ? Comparison::GTu : Comparison::LEu; |
| 547 | break; |
| 548 | case Hexagon::CMPGTri: |
| 549 | case Hexagon::CMPGTrr: |
| 550 | Cmp = !Negated ? Comparison::GTs : Comparison::LEs; |
| 551 | break; |
| 552 | // Very limited support for byte/halfword compares. |
| 553 | case Hexagon::CMPbEQri_V4: |
| 554 | case Hexagon::CMPhEQri_V4: { |
| 555 | if (IVBump != 1) |
| 556 | return 0; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 557 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 558 | int64_t InitV, EndV; |
| 559 | // Since the comparisons are "ri", the EndValue should be an |
| 560 | // immediate. Check it just in case. |
| 561 | assert(EndValue->isImm() && "Unrecognized latch comparison"); |
| 562 | EndV = EndValue->getImm(); |
| 563 | // Allow InitialValue to be a register defined with an immediate. |
| 564 | if (InitialValue->isReg()) { |
| 565 | if (!defWithImmediate(InitialValue->getReg())) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 566 | return 0; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 567 | InitV = getImmediate(*InitialValue); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 568 | } else { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 569 | assert(InitialValue->isImm()); |
| 570 | InitV = InitialValue->getImm(); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 571 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 572 | if (InitV >= EndV) |
| 573 | return 0; |
| 574 | if (CondOpc == Hexagon::CMPbEQri_V4) { |
| 575 | if (!isInt<8>(InitV) || !isInt<8>(EndV)) |
| 576 | return 0; |
| 577 | } else { // Hexagon::CMPhEQri_V4 |
| 578 | if (!isInt<16>(InitV) || !isInt<16>(EndV)) |
| 579 | return 0; |
| 580 | } |
| 581 | Cmp = !Negated ? Comparison::EQ : Comparison::NE; |
| 582 | break; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 583 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 584 | default: |
| 585 | return 0; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 586 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 587 | |
| 588 | if (isSwapped) |
| 589 | Cmp = Comparison::getSwappedComparison(Cmp); |
| 590 | |
| 591 | if (InitialValue->isReg()) { |
| 592 | unsigned R = InitialValue->getReg(); |
| 593 | MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); |
| 594 | if (!MDT->properlyDominates(DefBB, Header)) |
| 595 | return 0; |
| 596 | OldInsts.push_back(MRI->getVRegDef(R)); |
| 597 | } |
| 598 | if (EndValue->isReg()) { |
| 599 | unsigned R = EndValue->getReg(); |
| 600 | MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); |
| 601 | if (!MDT->properlyDominates(DefBB, Header)) |
| 602 | return 0; |
| 603 | } |
| 604 | |
| 605 | return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 606 | } |
| 607 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 608 | /// \brief Helper function that returns the expression that represents the |
| 609 | /// number of times a loop iterates. The function takes the operands that |
| 610 | /// represent the loop start value, loop end value, and induction value. |
| 611 | /// Based upon these operands, the function attempts to compute the trip count. |
| 612 | CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, |
| 613 | const MachineOperand *Start, |
| 614 | const MachineOperand *End, |
| 615 | unsigned IVReg, |
| 616 | int64_t IVBump, |
| 617 | Comparison::Kind Cmp) const { |
| 618 | // Cannot handle comparison EQ, i.e. while (A == B). |
| 619 | if (Cmp == Comparison::EQ) |
| 620 | return 0; |
| 621 | |
| 622 | // Check if either the start or end values are an assignment of an immediate. |
| 623 | // If so, use the immediate value rather than the register. |
| 624 | if (Start->isReg()) { |
| 625 | const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); |
| 626 | if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI) |
| 627 | Start = &StartValInstr->getOperand(1); |
| 628 | } |
| 629 | if (End->isReg()) { |
| 630 | const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); |
| 631 | if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI) |
| 632 | End = &EndValInstr->getOperand(1); |
| 633 | } |
| 634 | |
| 635 | assert (Start->isReg() || Start->isImm()); |
| 636 | assert (End->isReg() || End->isImm()); |
| 637 | |
| 638 | bool CmpLess = Cmp & Comparison::L; |
| 639 | bool CmpGreater = Cmp & Comparison::G; |
| 640 | bool CmpHasEqual = Cmp & Comparison::EQ; |
| 641 | |
| 642 | // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. |
| 643 | // If loop executes while iv is "less" with the iv value going down, then |
| 644 | // the iv must wrap. |
| 645 | if (CmpLess && IVBump < 0) |
| 646 | return 0; |
| 647 | // If loop executes while iv is "greater" with the iv value going up, then |
| 648 | // the iv must wrap. |
| 649 | if (CmpGreater && IVBump > 0) |
| 650 | return 0; |
| 651 | |
| 652 | if (Start->isImm() && End->isImm()) { |
| 653 | // Both, start and end are immediates. |
| 654 | int64_t StartV = Start->getImm(); |
| 655 | int64_t EndV = End->getImm(); |
| 656 | int64_t Dist = EndV - StartV; |
| 657 | if (Dist == 0) |
| 658 | return 0; |
| 659 | |
| 660 | bool Exact = (Dist % IVBump) == 0; |
| 661 | |
| 662 | if (Cmp == Comparison::NE) { |
| 663 | if (!Exact) |
| 664 | return 0; |
| 665 | if ((Dist < 0) ^ (IVBump < 0)) |
| 666 | return 0; |
| 667 | } |
| 668 | |
| 669 | // For comparisons that include the final value (i.e. include equality |
| 670 | // with the final value), we need to increase the distance by 1. |
| 671 | if (CmpHasEqual) |
| 672 | Dist = Dist > 0 ? Dist+1 : Dist-1; |
| 673 | |
| 674 | // assert (CmpLess => Dist > 0); |
| 675 | assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); |
| 676 | // assert (CmpGreater => Dist < 0); |
| 677 | assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); |
| 678 | |
| 679 | // "Normalized" distance, i.e. with the bump set to +-1. |
| 680 | int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump |
| 681 | : (-Dist + (-IVBump-1)) / (-IVBump); |
| 682 | assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); |
| 683 | |
| 684 | uint64_t Count = Dist1; |
| 685 | |
| 686 | if (Count > 0xFFFFFFFFULL) |
| 687 | return 0; |
| 688 | |
| 689 | return new CountValue(CountValue::CV_Immediate, Count); |
| 690 | } |
| 691 | |
| 692 | // A general case: Start and End are some values, but the actual |
| 693 | // iteration count may not be available. If it is not, insert |
| 694 | // a computation of it into the preheader. |
| 695 | |
| 696 | // If the induction variable bump is not a power of 2, quit. |
| 697 | // Othwerise we'd need a general integer division. |
Tim Northover | fe37e62 | 2013-03-27 13:15:08 +0000 | [diff] [blame] | 698 | if (!isPowerOf2_64(abs64(IVBump))) |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 699 | return 0; |
| 700 | |
| 701 | MachineBasicBlock *PH = Loop->getLoopPreheader(); |
| 702 | assert (PH && "Should have a preheader by now"); |
| 703 | MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); |
| 704 | DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() |
| 705 | : DebugLoc(); |
| 706 | |
| 707 | // If Start is an immediate and End is a register, the trip count |
| 708 | // will be "reg - imm". Hexagon's "subtract immediate" instruction |
| 709 | // is actually "reg + -imm". |
| 710 | |
| 711 | // If the loop IV is going downwards, i.e. if the bump is negative, |
| 712 | // then the iteration count (computed as End-Start) will need to be |
| 713 | // negated. To avoid the negation, just swap Start and End. |
| 714 | if (IVBump < 0) { |
| 715 | std::swap(Start, End); |
| 716 | IVBump = -IVBump; |
| 717 | } |
| 718 | // Cmp may now have a wrong direction, e.g. LEs may now be GEs. |
| 719 | // Signedness, and "including equality" are preserved. |
| 720 | |
| 721 | bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) |
| 722 | bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) |
| 723 | |
| 724 | int64_t StartV = 0, EndV = 0; |
| 725 | if (Start->isImm()) |
| 726 | StartV = Start->getImm(); |
| 727 | if (End->isImm()) |
| 728 | EndV = End->getImm(); |
| 729 | |
| 730 | int64_t AdjV = 0; |
| 731 | // To compute the iteration count, we would need this computation: |
| 732 | // Count = (End - Start + (IVBump-1)) / IVBump |
| 733 | // or, when CmpHasEqual: |
| 734 | // Count = (End - Start + (IVBump-1)+1) / IVBump |
| 735 | // The "IVBump-1" part is the adjustment (AdjV). We can avoid |
| 736 | // generating an instruction specifically to add it if we can adjust |
| 737 | // the immediate values for Start or End. |
| 738 | |
| 739 | if (CmpHasEqual) { |
| 740 | // Need to add 1 to the total iteration count. |
| 741 | if (Start->isImm()) |
| 742 | StartV--; |
| 743 | else if (End->isImm()) |
| 744 | EndV++; |
| 745 | else |
| 746 | AdjV += 1; |
| 747 | } |
| 748 | |
| 749 | if (Cmp != Comparison::NE) { |
| 750 | if (Start->isImm()) |
| 751 | StartV -= (IVBump-1); |
| 752 | else if (End->isImm()) |
| 753 | EndV += (IVBump-1); |
| 754 | else |
| 755 | AdjV += (IVBump-1); |
| 756 | } |
| 757 | |
| 758 | unsigned R = 0, SR = 0; |
| 759 | if (Start->isReg()) { |
| 760 | R = Start->getReg(); |
| 761 | SR = Start->getSubReg(); |
| 762 | } else { |
| 763 | R = End->getReg(); |
| 764 | SR = End->getSubReg(); |
| 765 | } |
| 766 | const TargetRegisterClass *RC = MRI->getRegClass(R); |
| 767 | // Hardware loops cannot handle 64-bit registers. If it's a double |
| 768 | // register, it has to have a subregister. |
| 769 | if (!SR && RC == &Hexagon::DoubleRegsRegClass) |
| 770 | return 0; |
| 771 | const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; |
| 772 | |
| 773 | // Compute DistR (register with the distance between Start and End). |
| 774 | unsigned DistR, DistSR; |
| 775 | |
| 776 | // Avoid special case, where the start value is an imm(0). |
| 777 | if (Start->isImm() && StartV == 0) { |
| 778 | DistR = End->getReg(); |
| 779 | DistSR = End->getSubReg(); |
| 780 | } else { |
| 781 | const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) : |
| 782 | (RegToImm ? TII->get(Hexagon::SUB_ri) : |
| 783 | TII->get(Hexagon::ADD_ri)); |
| 784 | unsigned SubR = MRI->createVirtualRegister(IntRC); |
| 785 | MachineInstrBuilder SubIB = |
| 786 | BuildMI(*PH, InsertPos, DL, SubD, SubR); |
| 787 | |
| 788 | if (RegToReg) { |
| 789 | SubIB.addReg(End->getReg(), 0, End->getSubReg()) |
| 790 | .addReg(Start->getReg(), 0, Start->getSubReg()); |
| 791 | } else if (RegToImm) { |
| 792 | SubIB.addImm(EndV) |
| 793 | .addReg(Start->getReg(), 0, Start->getSubReg()); |
| 794 | } else { // ImmToReg |
| 795 | SubIB.addReg(End->getReg(), 0, End->getSubReg()) |
| 796 | .addImm(-StartV); |
| 797 | } |
| 798 | DistR = SubR; |
| 799 | DistSR = 0; |
| 800 | } |
| 801 | |
| 802 | // From DistR, compute AdjR (register with the adjusted distance). |
| 803 | unsigned AdjR, AdjSR; |
| 804 | |
| 805 | if (AdjV == 0) { |
| 806 | AdjR = DistR; |
| 807 | AdjSR = DistSR; |
| 808 | } else { |
| 809 | // Generate CountR = ADD DistR, AdjVal |
| 810 | unsigned AddR = MRI->createVirtualRegister(IntRC); |
| 811 | const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri); |
| 812 | BuildMI(*PH, InsertPos, DL, AddD, AddR) |
| 813 | .addReg(DistR, 0, DistSR) |
| 814 | .addImm(AdjV); |
| 815 | |
| 816 | AdjR = AddR; |
| 817 | AdjSR = 0; |
| 818 | } |
| 819 | |
| 820 | // From AdjR, compute CountR (register with the final count). |
| 821 | unsigned CountR, CountSR; |
| 822 | |
| 823 | if (IVBump == 1) { |
| 824 | CountR = AdjR; |
| 825 | CountSR = AdjSR; |
| 826 | } else { |
| 827 | // The IV bump is a power of two. Log_2(IV bump) is the shift amount. |
| 828 | unsigned Shift = Log2_32(IVBump); |
| 829 | |
| 830 | // Generate NormR = LSR DistR, Shift. |
| 831 | unsigned LsrR = MRI->createVirtualRegister(IntRC); |
| 832 | const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri); |
| 833 | BuildMI(*PH, InsertPos, DL, LsrD, LsrR) |
| 834 | .addReg(AdjR, 0, AdjSR) |
| 835 | .addImm(Shift); |
| 836 | |
| 837 | CountR = LsrR; |
| 838 | CountSR = 0; |
| 839 | } |
| 840 | |
| 841 | return new CountValue(CountValue::CV_Register, CountR, CountSR); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 842 | } |
| 843 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 844 | |
| 845 | /// \brief Return true if the operation is invalid within hardware loop. |
| 846 | bool HexagonHardwareLoops::isInvalidLoopOperation( |
| 847 | const MachineInstr *MI) const { |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 848 | |
| 849 | // call is not allowed because the callee may use a hardware loop |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 850 | if (MI->getDesc().isCall()) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 851 | return true; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 852 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 853 | // do not allow nested hardware loops |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 854 | if (isHardwareLoop(MI)) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 855 | return true; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 856 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 857 | // check if the instruction defines a hardware loop register |
| 858 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 859 | const MachineOperand &MO = MI->getOperand(i); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 860 | if (!MO.isReg() || !MO.isDef()) |
| 861 | continue; |
| 862 | unsigned R = MO.getReg(); |
| 863 | if (R == Hexagon::LC0 || R == Hexagon::LC1 || |
| 864 | R == Hexagon::SA0 || R == Hexagon::SA1) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 865 | return true; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 866 | } |
| 867 | return false; |
| 868 | } |
| 869 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 870 | |
| 871 | /// \brief - Return true if the loop contains an instruction that inhibits |
| 872 | /// the use of the hardware loop function. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 873 | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { |
| 874 | const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); |
| 875 | for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| 876 | MachineBasicBlock *MBB = Blocks[i]; |
| 877 | for (MachineBasicBlock::iterator |
| 878 | MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { |
| 879 | const MachineInstr *MI = &*MII; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 880 | if (isInvalidLoopOperation(MI)) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 881 | return true; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 882 | } |
| 883 | } |
| 884 | return false; |
| 885 | } |
| 886 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 887 | |
| 888 | /// \brief Returns true if the instruction is dead. This was essentially |
| 889 | /// copied from DeadMachineInstructionElim::isDead, but with special cases |
| 890 | /// for inline asm, physical registers and instructions with side effects |
| 891 | /// removed. |
| 892 | bool HexagonHardwareLoops::isDead(const MachineInstr *MI, |
| 893 | SmallVector<MachineInstr*, 1> &DeadPhis) const { |
| 894 | // Examine each operand. |
| 895 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 896 | const MachineOperand &MO = MI->getOperand(i); |
| 897 | if (!MO.isReg() || !MO.isDef()) |
| 898 | continue; |
| 899 | |
| 900 | unsigned Reg = MO.getReg(); |
| 901 | if (MRI->use_nodbg_empty(Reg)) |
| 902 | continue; |
| 903 | |
| 904 | typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; |
| 905 | |
| 906 | // This instruction has users, but if the only user is the phi node for the |
| 907 | // parent block, and the only use of that phi node is this instruction, then |
| 908 | // this instruction is dead: both it (and the phi node) can be removed. |
| 909 | use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); |
| 910 | use_nodbg_iterator End = MRI->use_nodbg_end(); |
| 911 | if (llvm::next(I) != End || !I.getOperand().getParent()->isPHI()) |
| 912 | return false; |
| 913 | |
| 914 | MachineInstr *OnePhi = I.getOperand().getParent(); |
| 915 | for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { |
| 916 | const MachineOperand &OPO = OnePhi->getOperand(j); |
| 917 | if (!OPO.isReg() || !OPO.isDef()) |
| 918 | continue; |
| 919 | |
| 920 | unsigned OPReg = OPO.getReg(); |
| 921 | use_nodbg_iterator nextJ; |
| 922 | for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); |
| 923 | J != End; J = nextJ) { |
| 924 | nextJ = llvm::next(J); |
| 925 | MachineOperand &Use = J.getOperand(); |
| 926 | MachineInstr *UseMI = Use.getParent(); |
| 927 | |
| 928 | // If the phi node has a user that is not MI, bail... |
| 929 | if (MI != UseMI) |
| 930 | return false; |
| 931 | } |
| 932 | } |
| 933 | DeadPhis.push_back(OnePhi); |
| 934 | } |
| 935 | |
| 936 | // If there are no defs with uses, the instruction is dead. |
| 937 | return true; |
| 938 | } |
| 939 | |
| 940 | void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { |
| 941 | // This procedure was essentially copied from DeadMachineInstructionElim. |
| 942 | |
| 943 | SmallVector<MachineInstr*, 1> DeadPhis; |
| 944 | if (isDead(MI, DeadPhis)) { |
| 945 | DEBUG(dbgs() << "HW looping will remove: " << *MI); |
| 946 | |
| 947 | // It is possible that some DBG_VALUE instructions refer to this |
| 948 | // instruction. Examine each def operand for such references; |
| 949 | // if found, mark the DBG_VALUE as undef (but don't delete it). |
| 950 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 951 | const MachineOperand &MO = MI->getOperand(i); |
| 952 | if (!MO.isReg() || !MO.isDef()) |
| 953 | continue; |
| 954 | unsigned Reg = MO.getReg(); |
| 955 | MachineRegisterInfo::use_iterator nextI; |
| 956 | for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), |
| 957 | E = MRI->use_end(); I != E; I = nextI) { |
| 958 | nextI = llvm::next(I); // I is invalidated by the setReg |
| 959 | MachineOperand &Use = I.getOperand(); |
| 960 | MachineInstr *UseMI = Use.getParent(); |
| 961 | if (UseMI == MI) |
| 962 | continue; |
| 963 | if (Use.isDebug()) |
| 964 | UseMI->getOperand(0).setReg(0U); |
| 965 | // This may also be a "instr -> phi -> instr" case which can |
| 966 | // be removed too. |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | MI->eraseFromParent(); |
| 971 | for (unsigned i = 0; i < DeadPhis.size(); ++i) |
| 972 | DeadPhis[i]->eraseFromParent(); |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | /// \brief Check if the loop is a candidate for converting to a hardware |
| 977 | /// loop. If so, then perform the transformation. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 978 | /// |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 979 | /// This function works on innermost loops first. A loop can be converted |
| 980 | /// if it is a counting loop; either a register value or an immediate. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 981 | /// |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 982 | /// The code makes several assumptions about the representation of the loop |
| 983 | /// in llvm. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 984 | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 985 | // This is just for sanity. |
| 986 | assert(L->getHeader() && "Loop without a header?"); |
| 987 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 988 | bool Changed = false; |
| 989 | // Process nested loops first. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 990 | for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 991 | Changed |= convertToHardwareLoop(*I); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 992 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 993 | // If a nested loop has been converted, then we can't convert this loop. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 994 | if (Changed) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 995 | return Changed; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 996 | |
| 997 | #ifndef NDEBUG |
| 998 | // Stop trying after reaching the limit (if any). |
| 999 | int Limit = HWLoopLimit; |
| 1000 | if (Limit >= 0) { |
| 1001 | if (Counter >= HWLoopLimit) |
| 1002 | return false; |
| 1003 | Counter++; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1004 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1005 | #endif |
| 1006 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1007 | // Does the loop contain any invalid instructions? |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1008 | if (containsInvalidInstruction(L)) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1009 | return false; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1010 | |
| 1011 | // Is the induction variable bump feeding the latch condition? |
| 1012 | if (!fixupInductionVariable(L)) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1013 | return false; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1014 | |
| 1015 | MachineBasicBlock *LastMBB = L->getExitingBlock(); |
| 1016 | // Don't generate hw loop if the loop has more than one exit. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1017 | if (LastMBB == 0) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1018 | return false; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1019 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1020 | MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1021 | if (LastI == LastMBB->end()) |
Matthew Curtis | ade50dc | 2012-12-07 21:03:15 +0000 | [diff] [blame] | 1022 | return false; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1023 | |
| 1024 | // Ensure the loop has a preheader: the loop instruction will be |
| 1025 | // placed there. |
| 1026 | bool NewPreheader = false; |
| 1027 | MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| 1028 | if (!Preheader) { |
| 1029 | Preheader = createPreheaderForLoop(L); |
| 1030 | if (!Preheader) |
| 1031 | return false; |
| 1032 | NewPreheader = true; |
| 1033 | } |
| 1034 | MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); |
| 1035 | |
| 1036 | SmallVector<MachineInstr*, 2> OldInsts; |
| 1037 | // Are we able to determine the trip count for the loop? |
| 1038 | CountValue *TripCount = getLoopTripCount(L, OldInsts); |
| 1039 | if (TripCount == 0) |
| 1040 | return false; |
| 1041 | |
| 1042 | // Is the trip count available in the preheader? |
| 1043 | if (TripCount->isReg()) { |
| 1044 | // There will be a use of the register inserted into the preheader, |
| 1045 | // so make sure that the register is actually defined at that point. |
| 1046 | MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); |
| 1047 | MachineBasicBlock *BBDef = TCDef->getParent(); |
| 1048 | if (!NewPreheader) { |
| 1049 | if (!MDT->dominates(BBDef, Preheader)) |
| 1050 | return false; |
| 1051 | } else { |
| 1052 | // If we have just created a preheader, the dominator tree won't be |
| 1053 | // aware of it. Check if the definition of the register dominates |
| 1054 | // the header, but is not the header itself. |
| 1055 | if (!MDT->properlyDominates(BBDef, L->getHeader())) |
| 1056 | return false; |
| 1057 | } |
Matthew Curtis | ade50dc | 2012-12-07 21:03:15 +0000 | [diff] [blame] | 1058 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1059 | |
| 1060 | // Determine the loop start. |
| 1061 | MachineBasicBlock *LoopStart = L->getTopBlock(); |
| 1062 | if (L->getLoopLatch() != LastMBB) { |
| 1063 | // When the exit and latch are not the same, use the latch block as the |
| 1064 | // start. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1065 | // The loop start address is used only after the 1st iteration, and the |
| 1066 | // loop latch may contains instrs. that need to be executed after the |
| 1067 | // first iteration. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1068 | LoopStart = L->getLoopLatch(); |
| 1069 | // Make sure the latch is a successor of the exit, otherwise it won't work. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1070 | if (!LastMBB->isSuccessor(LoopStart)) |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1071 | return false; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1072 | } |
| 1073 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1074 | // Convert the loop to a hardware loop. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1075 | DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1076 | DebugLoc DL; |
Matthew Curtis | ade50dc | 2012-12-07 21:03:15 +0000 | [diff] [blame] | 1077 | if (InsertPos != Preheader->end()) |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1078 | DL = InsertPos->getDebugLoc(); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1079 | |
| 1080 | if (TripCount->isReg()) { |
| 1081 | // Create a copy of the loop count register. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1082 | unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); |
| 1083 | BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) |
| 1084 | .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); |
Benjamin Kramer | d9b0b02 | 2012-06-02 10:20:22 +0000 | [diff] [blame] | 1085 | // Add the Loop instruction to the beginning of the loop. |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1086 | BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) |
| 1087 | .addMBB(LoopStart) |
| 1088 | .addReg(CountReg); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1089 | } else { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1090 | assert(TripCount->isImm() && "Expecting immediate value for trip count"); |
| 1091 | // Add the Loop immediate instruction to the beginning of the loop, |
| 1092 | // if the immediate fits in the instructions. Otherwise, we need to |
| 1093 | // create a new virtual register. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1094 | int64_t CountImm = TripCount->getImm(); |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1095 | if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) { |
| 1096 | unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); |
| 1097 | BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg) |
| 1098 | .addImm(CountImm); |
| 1099 | BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) |
| 1100 | .addMBB(LoopStart).addReg(CountReg); |
| 1101 | } else |
| 1102 | BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i)) |
| 1103 | .addMBB(LoopStart).addImm(CountImm); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1104 | } |
| 1105 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1106 | // Make sure the loop start always has a reference in the CFG. We need |
| 1107 | // to create a BlockAddress operand to get this mechanism to work both the |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1108 | // MachineBasicBlock and BasicBlock objects need the flag set. |
| 1109 | LoopStart->setHasAddressTaken(); |
| 1110 | // This line is needed to set the hasAddressTaken flag on the BasicBlock |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1111 | // object. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1112 | BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); |
| 1113 | |
| 1114 | // Replace the loop branch with an endloop instruction. |
Matthew Curtis | ade50dc | 2012-12-07 21:03:15 +0000 | [diff] [blame] | 1115 | DebugLoc LastIDL = LastI->getDebugLoc(); |
| 1116 | BuildMI(*LastMBB, LastI, LastIDL, |
| 1117 | TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1118 | |
| 1119 | // The loop ends with either: |
| 1120 | // - a conditional branch followed by an unconditional branch, or |
| 1121 | // - a conditional branch to the loop start. |
Sirish Pande | ab7955b | 2012-02-15 18:52:27 +0000 | [diff] [blame] | 1122 | if (LastI->getOpcode() == Hexagon::JMP_c || |
| 1123 | LastI->getOpcode() == Hexagon::JMP_cNot) { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1124 | // Delete one and change/add an uncond. branch to out of the loop. |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1125 | MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); |
| 1126 | LastI = LastMBB->erase(LastI); |
| 1127 | if (!L->contains(BranchTarget)) { |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1128 | if (LastI != LastMBB->end()) |
| 1129 | LastI = LastMBB->erase(LastI); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1130 | SmallVector<MachineOperand, 0> Cond; |
Matthew Curtis | ade50dc | 2012-12-07 21:03:15 +0000 | [diff] [blame] | 1131 | TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1132 | } |
| 1133 | } else { |
| 1134 | // Conditional branch to loop start; just delete it. |
| 1135 | LastMBB->erase(LastI); |
| 1136 | } |
| 1137 | delete TripCount; |
| 1138 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1139 | // The induction operation and the comparison may now be |
| 1140 | // unneeded. If these are unneeded, then remove them. |
| 1141 | for (unsigned i = 0; i < OldInsts.size(); ++i) |
| 1142 | removeIfDead(OldInsts[i]); |
| 1143 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1144 | ++NumHWLoops; |
| 1145 | return true; |
| 1146 | } |
| 1147 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1148 | |
| 1149 | bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, |
| 1150 | MachineInstr *CmpI) { |
| 1151 | assert (BumpI != CmpI && "Bump and compare in the same instruction?"); |
| 1152 | |
| 1153 | MachineBasicBlock *BB = BumpI->getParent(); |
| 1154 | if (CmpI->getParent() != BB) |
| 1155 | return false; |
| 1156 | |
| 1157 | typedef MachineBasicBlock::instr_iterator instr_iterator; |
| 1158 | // Check if things are in order to begin with. |
| 1159 | for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) |
| 1160 | if (&*I == CmpI) |
| 1161 | return true; |
| 1162 | |
| 1163 | // Out of order. |
| 1164 | unsigned PredR = CmpI->getOperand(0).getReg(); |
| 1165 | bool FoundBump = false; |
| 1166 | instr_iterator CmpIt = CmpI, NextIt = llvm::next(CmpIt); |
| 1167 | for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { |
| 1168 | MachineInstr *In = &*I; |
| 1169 | for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { |
| 1170 | MachineOperand &MO = In->getOperand(i); |
| 1171 | if (MO.isReg() && MO.isUse()) { |
| 1172 | if (MO.getReg() == PredR) // Found an intervening use of PredR. |
| 1173 | return false; |
| 1174 | } |
| 1175 | } |
| 1176 | |
| 1177 | if (In == BumpI) { |
| 1178 | instr_iterator After = BumpI; |
| 1179 | instr_iterator From = CmpI; |
| 1180 | BB->splice(llvm::next(After), BB, From); |
| 1181 | FoundBump = true; |
| 1182 | break; |
| 1183 | } |
| 1184 | } |
| 1185 | assert (FoundBump && "Cannot determine instruction order"); |
| 1186 | return FoundBump; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1187 | } |
| 1188 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1189 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1190 | MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { |
| 1191 | MachineInstr *DI = MRI->getVRegDef(R); |
| 1192 | unsigned DOpc = DI->getOpcode(); |
| 1193 | switch (DOpc) { |
| 1194 | case Hexagon::TFRI: |
| 1195 | case Hexagon::TFRI64: |
| 1196 | case Hexagon::CONST32_Int_Real: |
| 1197 | case Hexagon::CONST64_Int_Real: |
| 1198 | return DI; |
| 1199 | } |
| 1200 | return 0; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1201 | } |
| 1202 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1203 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1204 | int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { |
| 1205 | if (MO.isImm()) |
| 1206 | return MO.getImm(); |
| 1207 | assert(MO.isReg()); |
| 1208 | unsigned R = MO.getReg(); |
| 1209 | MachineInstr *DI = defWithImmediate(R); |
| 1210 | assert(DI && "Need an immediate operand"); |
| 1211 | // All currently supported "define-with-immediate" instructions have the |
| 1212 | // actual immediate value in the operand(1). |
| 1213 | int64_t v = DI->getOperand(1).getImm(); |
| 1214 | return v; |
| 1215 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1216 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1217 | |
| 1218 | void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { |
| 1219 | if (MO.isImm()) { |
| 1220 | MO.setImm(Val); |
| 1221 | return; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1222 | } |
| 1223 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1224 | assert(MO.isReg()); |
| 1225 | unsigned R = MO.getReg(); |
| 1226 | MachineInstr *DI = defWithImmediate(R); |
| 1227 | if (MRI->hasOneNonDBGUse(R)) { |
| 1228 | // If R has only one use, then just change its defining instruction to |
| 1229 | // the new immediate value. |
| 1230 | DI->getOperand(1).setImm(Val); |
| 1231 | return; |
| 1232 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1233 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1234 | const TargetRegisterClass *RC = MRI->getRegClass(R); |
| 1235 | unsigned NewR = MRI->createVirtualRegister(RC); |
| 1236 | MachineBasicBlock &B = *DI->getParent(); |
| 1237 | DebugLoc DL = DI->getDebugLoc(); |
| 1238 | BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) |
| 1239 | .addImm(Val); |
| 1240 | MO.setReg(NewR); |
| 1241 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1242 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1243 | |
| 1244 | bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { |
| 1245 | MachineBasicBlock *Header = L->getHeader(); |
| 1246 | MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| 1247 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 1248 | |
| 1249 | if (!Header || !Preheader || !Latch) |
| 1250 | return false; |
| 1251 | |
| 1252 | // These data structures follow the same concept as the corresponding |
| 1253 | // ones in findInductionRegister (where some comments are). |
| 1254 | typedef std::pair<unsigned,int64_t> RegisterBump; |
| 1255 | typedef std::pair<unsigned,RegisterBump> RegisterInduction; |
| 1256 | typedef std::set<RegisterInduction> RegisterInductionSet; |
| 1257 | |
| 1258 | // Register candidates for induction variables, with their associated bumps. |
| 1259 | RegisterInductionSet IndRegs; |
| 1260 | |
| 1261 | // Look for induction patterns: |
| 1262 | // vreg1 = PHI ..., [ latch, vreg2 ] |
| 1263 | // vreg2 = ADD vreg1, imm |
| 1264 | typedef MachineBasicBlock::instr_iterator instr_iterator; |
| 1265 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 1266 | I != E && I->isPHI(); ++I) { |
| 1267 | MachineInstr *Phi = &*I; |
| 1268 | |
| 1269 | // Have a PHI instruction. |
| 1270 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
| 1271 | if (Phi->getOperand(i+1).getMBB() != Latch) |
| 1272 | continue; |
| 1273 | |
| 1274 | unsigned PhiReg = Phi->getOperand(i).getReg(); |
| 1275 | MachineInstr *DI = MRI->getVRegDef(PhiReg); |
| 1276 | unsigned UpdOpc = DI->getOpcode(); |
| 1277 | bool isAdd = (UpdOpc == Hexagon::ADD_ri); |
| 1278 | |
| 1279 | if (isAdd) { |
| 1280 | // If the register operand to the add/sub is the PHI we are looking |
| 1281 | // at, this meets the induction pattern. |
| 1282 | unsigned IndReg = DI->getOperand(1).getReg(); |
| 1283 | if (MRI->getVRegDef(IndReg) == Phi) { |
| 1284 | unsigned UpdReg = DI->getOperand(0).getReg(); |
| 1285 | int64_t V = DI->getOperand(2).getImm(); |
| 1286 | IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1287 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1288 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1289 | } // for (i) |
| 1290 | } // for (instr) |
| 1291 | |
| 1292 | if (IndRegs.empty()) |
| 1293 | return false; |
| 1294 | |
| 1295 | MachineBasicBlock *TB = 0, *FB = 0; |
| 1296 | SmallVector<MachineOperand,2> Cond; |
| 1297 | // AnalyzeBranch returns true if it fails to analyze branch. |
| 1298 | bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); |
| 1299 | if (NotAnalyzed) |
| 1300 | return false; |
| 1301 | |
| 1302 | // Check if the latch branch is unconditional. |
| 1303 | if (Cond.empty()) |
| 1304 | return false; |
| 1305 | |
| 1306 | if (TB != Header && FB != Header) |
| 1307 | // The latch does not go back to the header. Not a latch we know and love. |
| 1308 | return false; |
| 1309 | |
| 1310 | // Expecting a predicate register as a condition. It won't be a hardware |
| 1311 | // predicate register at this point yet, just a vreg. |
| 1312 | // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) |
| 1313 | // into Cond, followed by the predicate register. For non-negated branches |
| 1314 | // it's just the register. |
| 1315 | unsigned CSz = Cond.size(); |
| 1316 | if (CSz != 1 && CSz != 2) |
| 1317 | return false; |
| 1318 | |
| 1319 | unsigned P = Cond[CSz-1].getReg(); |
| 1320 | MachineInstr *PredDef = MRI->getVRegDef(P); |
| 1321 | |
| 1322 | if (!PredDef->isCompare()) |
| 1323 | return false; |
| 1324 | |
| 1325 | SmallSet<unsigned,2> CmpRegs; |
| 1326 | MachineOperand *CmpImmOp = 0; |
| 1327 | |
| 1328 | // Go over all operands to the compare and look for immediate and register |
| 1329 | // operands. Assume that if the compare has a single register use and a |
| 1330 | // single immediate operand, then the register is being compared with the |
| 1331 | // immediate value. |
| 1332 | for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { |
| 1333 | MachineOperand &MO = PredDef->getOperand(i); |
| 1334 | if (MO.isReg()) { |
| 1335 | // Skip all implicit references. In one case there was: |
| 1336 | // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> |
| 1337 | if (MO.isImplicit()) |
| 1338 | continue; |
| 1339 | if (MO.isUse()) { |
| 1340 | unsigned R = MO.getReg(); |
| 1341 | if (!defWithImmediate(R)) { |
| 1342 | CmpRegs.insert(MO.getReg()); |
| 1343 | continue; |
| 1344 | } |
| 1345 | // Consider the register to be the "immediate" operand. |
| 1346 | if (CmpImmOp) |
| 1347 | return false; |
| 1348 | CmpImmOp = &MO; |
| 1349 | } |
| 1350 | } else if (MO.isImm()) { |
| 1351 | if (CmpImmOp) // A second immediate argument? Confusing. Bail out. |
| 1352 | return false; |
| 1353 | CmpImmOp = &MO; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1354 | } |
| 1355 | } |
| 1356 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1357 | if (CmpRegs.empty()) |
| 1358 | return false; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1359 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1360 | // Check if the compared register follows the order we want. Fix if needed. |
| 1361 | for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); |
| 1362 | I != E; ++I) { |
| 1363 | // This is a success. If the register used in the comparison is one that |
| 1364 | // we have identified as a bumped (updated) induction register, there is |
| 1365 | // nothing to do. |
| 1366 | if (CmpRegs.count(I->first)) |
| 1367 | return true; |
| 1368 | |
| 1369 | // Otherwise, if the register being compared comes out of a PHI node, |
| 1370 | // and has been recognized as following the induction pattern, and is |
| 1371 | // compared against an immediate, we can fix it. |
| 1372 | const RegisterBump &RB = I->second; |
| 1373 | if (CmpRegs.count(RB.first)) { |
| 1374 | if (!CmpImmOp) |
| 1375 | return false; |
| 1376 | |
| 1377 | int64_t CmpImm = getImmediate(*CmpImmOp); |
| 1378 | int64_t V = RB.second; |
| 1379 | if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). |
| 1380 | return false; |
| 1381 | if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). |
| 1382 | return false; |
| 1383 | CmpImm += V; |
| 1384 | // Some forms of cmp-immediate allow u9 and s10. Assume the worst case |
| 1385 | // scenario, i.e. an 8-bit value. |
| 1386 | if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) |
| 1387 | return false; |
| 1388 | |
| 1389 | // Make sure that the compare happens after the bump. Otherwise, |
| 1390 | // after the fixup, the compare would use a yet-undefined register. |
| 1391 | MachineInstr *BumpI = MRI->getVRegDef(I->first); |
| 1392 | bool Order = orderBumpCompare(BumpI, PredDef); |
| 1393 | if (!Order) |
| 1394 | return false; |
| 1395 | |
| 1396 | // Finally, fix the compare instruction. |
| 1397 | setImmediate(*CmpImmOp, CmpImm); |
| 1398 | for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { |
| 1399 | MachineOperand &MO = PredDef->getOperand(i); |
| 1400 | if (MO.isReg() && MO.getReg() == RB.first) { |
| 1401 | MO.setReg(I->first); |
| 1402 | return true; |
| 1403 | } |
| 1404 | } |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | return false; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1409 | } |
| 1410 | |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1411 | |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1412 | /// \brief Create a preheader for a given loop. |
| 1413 | MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( |
| 1414 | MachineLoop *L) { |
| 1415 | if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) |
| 1416 | return TmpPH; |
| 1417 | |
| 1418 | MachineBasicBlock *Header = L->getHeader(); |
| 1419 | MachineBasicBlock *Latch = L->getLoopLatch(); |
| 1420 | MachineFunction *MF = Header->getParent(); |
| 1421 | DebugLoc DL; |
| 1422 | |
| 1423 | if (!Latch || Header->hasAddressTaken()) |
| 1424 | return 0; |
| 1425 | |
| 1426 | typedef MachineBasicBlock::instr_iterator instr_iterator; |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1427 | |
| 1428 | // Verify that all existing predecessors have analyzable branches |
| 1429 | // (or no branches at all). |
| 1430 | typedef std::vector<MachineBasicBlock*> MBBVector; |
| 1431 | MBBVector Preds(Header->pred_begin(), Header->pred_end()); |
| 1432 | SmallVector<MachineOperand,2> Tmp1; |
| 1433 | MachineBasicBlock *TB = 0, *FB = 0; |
| 1434 | |
| 1435 | if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) |
| 1436 | return 0; |
| 1437 | |
| 1438 | for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { |
| 1439 | MachineBasicBlock *PB = *I; |
| 1440 | if (PB != Latch) { |
| 1441 | bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); |
| 1442 | if (NotAnalyzed) |
| 1443 | return 0; |
| 1444 | } |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1445 | } |
Krzysztof Parzyszek | 71490fa | 2013-02-11 21:37:55 +0000 | [diff] [blame] | 1446 | |
| 1447 | MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); |
| 1448 | MF->insert(Header, NewPH); |
| 1449 | |
| 1450 | if (Header->pred_size() > 2) { |
| 1451 | // Ensure that the header has only two predecessors: the preheader and |
| 1452 | // the loop latch. Any additional predecessors of the header should |
| 1453 | // join at the newly created preheader. Inspect all PHI nodes from the |
| 1454 | // header and create appropriate corresponding PHI nodes in the preheader. |
| 1455 | |
| 1456 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 1457 | I != E && I->isPHI(); ++I) { |
| 1458 | MachineInstr *PN = &*I; |
| 1459 | |
| 1460 | const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); |
| 1461 | MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); |
| 1462 | NewPH->insert(NewPH->end(), NewPN); |
| 1463 | |
| 1464 | unsigned PR = PN->getOperand(0).getReg(); |
| 1465 | const TargetRegisterClass *RC = MRI->getRegClass(PR); |
| 1466 | unsigned NewPR = MRI->createVirtualRegister(RC); |
| 1467 | NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); |
| 1468 | |
| 1469 | // Copy all non-latch operands of a header's PHI node to the newly |
| 1470 | // created PHI node in the preheader. |
| 1471 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
| 1472 | unsigned PredR = PN->getOperand(i).getReg(); |
| 1473 | MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); |
| 1474 | if (PredB == Latch) |
| 1475 | continue; |
| 1476 | |
| 1477 | NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); |
| 1478 | NewPN->addOperand(MachineOperand::CreateMBB(PredB)); |
| 1479 | } |
| 1480 | |
| 1481 | // Remove copied operands from the old PHI node and add the value |
| 1482 | // coming from the preheader's PHI. |
| 1483 | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { |
| 1484 | MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); |
| 1485 | if (PredB != Latch) { |
| 1486 | PN->RemoveOperand(i+1); |
| 1487 | PN->RemoveOperand(i); |
| 1488 | } |
| 1489 | } |
| 1490 | PN->addOperand(MachineOperand::CreateReg(NewPR, false)); |
| 1491 | PN->addOperand(MachineOperand::CreateMBB(NewPH)); |
| 1492 | } |
| 1493 | |
| 1494 | } else { |
| 1495 | assert(Header->pred_size() == 2); |
| 1496 | |
| 1497 | // The header has only two predecessors, but the non-latch predecessor |
| 1498 | // is not a preheader (e.g. it has other successors, etc.) |
| 1499 | // In such a case we don't need any extra PHI nodes in the new preheader, |
| 1500 | // all we need is to adjust existing PHIs in the header to now refer to |
| 1501 | // the new preheader. |
| 1502 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| 1503 | I != E && I->isPHI(); ++I) { |
| 1504 | MachineInstr *PN = &*I; |
| 1505 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
| 1506 | MachineOperand &MO = PN->getOperand(i+1); |
| 1507 | if (MO.getMBB() != Latch) |
| 1508 | MO.setMBB(NewPH); |
| 1509 | } |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | // "Reroute" the CFG edges to link in the new preheader. |
| 1514 | // If any of the predecessors falls through to the header, insert a branch |
| 1515 | // to the new preheader in that place. |
| 1516 | SmallVector<MachineOperand,1> Tmp2; |
| 1517 | SmallVector<MachineOperand,1> EmptyCond; |
| 1518 | |
| 1519 | TB = FB = 0; |
| 1520 | |
| 1521 | for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { |
| 1522 | MachineBasicBlock *PB = *I; |
| 1523 | if (PB != Latch) { |
| 1524 | Tmp2.clear(); |
| 1525 | bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); |
| 1526 | (void)NotAnalyzed; // supress compiler warning |
| 1527 | assert (!NotAnalyzed && "Should be analyzable!"); |
| 1528 | if (TB != Header && (Tmp2.empty() || FB != Header)) |
| 1529 | TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL); |
| 1530 | PB->ReplaceUsesOfBlockWith(Header, NewPH); |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | // It can happen that the latch block will fall through into the header. |
| 1535 | // Insert an unconditional branch to the header. |
| 1536 | TB = FB = 0; |
| 1537 | bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); |
| 1538 | (void)LatchNotAnalyzed; // supress compiler warning |
| 1539 | assert (!LatchNotAnalyzed && "Should be analyzable!"); |
| 1540 | if (!TB && !FB) |
| 1541 | TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL); |
| 1542 | |
| 1543 | // Finally, the branch from the preheader to the header. |
| 1544 | TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL); |
| 1545 | NewPH->addSuccessor(Header); |
| 1546 | |
| 1547 | return NewPH; |
Tony Linthicum | b4b5415 | 2011-12-12 21:14:40 +0000 | [diff] [blame] | 1548 | } |