blob: 62aed1353ca30e71466c6a2b4ad5d6ac0333f931 [file] [log] [blame]
Tony Linthicumb4b54152011-12-12 21:14:40 +00001//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the Hexagon hardware
11// loop instruction. The hardware loop can perform loop branches with a
12// zero-cycle overhead.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for hardware loops:
21// - Countable loops (w/ ind. var for a trip count)
22// - Assumes loops are normalized by IndVarSimplify
23// - Try inner-most loops first
24// - No nested hardware loops.
25// - No function calls in loops.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "hwloops"
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000030#include "llvm/ADT/SmallSet.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000031#include "llvm/ADT/Statistic.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000032#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000038#include "llvm/PassSupport.h"
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000039#include "llvm/Support/CommandLine.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000040#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000043#include "Hexagon.h"
44#include "HexagonTargetMachine.h"
45
Tony Linthicumb4b54152011-12-12 21:14:40 +000046#include <algorithm>
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000047#include <vector>
Tony Linthicumb4b54152011-12-12 21:14:40 +000048
49using namespace llvm;
50
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000051#ifndef NDEBUG
52static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
53#endif
54
Tony Linthicumb4b54152011-12-12 21:14:40 +000055STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
56
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000057namespace llvm {
58 void initializeHexagonHardwareLoopsPass(PassRegistry&);
59}
60
Tony Linthicumb4b54152011-12-12 21:14:40 +000061namespace {
62 class CountValue;
63 struct HexagonHardwareLoops : public MachineFunctionPass {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000064 MachineLoopInfo *MLI;
65 MachineRegisterInfo *MRI;
66 MachineDominatorTree *MDT;
67 const HexagonTargetMachine *TM;
68 const HexagonInstrInfo *TII;
69 const HexagonRegisterInfo *TRI;
70#ifndef NDEBUG
71 static int Counter;
72#endif
Tony Linthicumb4b54152011-12-12 21:14:40 +000073
74 public:
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000075 static char ID;
Tony Linthicumb4b54152011-12-12 21:14:40 +000076
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000077 HexagonHardwareLoops() : MachineFunctionPass(ID) {
78 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
79 }
Tony Linthicumb4b54152011-12-12 21:14:40 +000080
81 virtual bool runOnMachineFunction(MachineFunction &MF);
82
83 const char *getPassName() const { return "Hexagon Hardware Loops"; }
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Tony Linthicumb4b54152011-12-12 21:14:40 +000086 AU.addRequired<MachineDominatorTree>();
Tony Linthicumb4b54152011-12-12 21:14:40 +000087 AU.addRequired<MachineLoopInfo>();
Tony Linthicumb4b54152011-12-12 21:14:40 +000088 MachineFunctionPass::getAnalysisUsage(AU);
89 }
90
91 private:
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +000092 /// Kinds of comparisons in the compare instructions.
93 struct Comparison {
94 enum Kind {
95 EQ = 0x01,
96 NE = 0x02,
97 L = 0x04, // Less-than property.
98 G = 0x08, // Greater-than property.
99 U = 0x40, // Unsigned property.
100 LTs = L,
101 LEs = L | EQ,
102 GTs = G,
103 GEs = G | EQ,
104 LTu = L | U,
105 LEu = L | EQ | U,
106 GTu = G | U,
107 GEu = G | EQ | U
108 };
109
110 static Kind getSwappedComparison(Kind Cmp) {
111 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
112 if ((Cmp & L) || (Cmp & G))
113 return (Kind)(Cmp ^ (L|G));
114 return Cmp;
115 }
116 };
117
118 /// \brief Find the register that contains the loop controlling
Tony Linthicumb4b54152011-12-12 21:14:40 +0000119 /// induction variable.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000120 /// If successful, it will return true and set the \p Reg, \p IVBump
121 /// and \p IVOp arguments. Otherwise it will return false.
122 /// The returned induction register is the register R that follows the
123 /// following induction pattern:
124 /// loop:
125 /// R = phi ..., [ R.next, LatchBlock ]
126 /// R.next = R + #bump
127 /// if (R.next < #N) goto loop
128 /// IVBump is the immediate value added to R, and IVOp is the instruction
129 /// "R.next = R + #bump".
130 bool findInductionRegister(MachineLoop *L, unsigned &Reg,
131 int64_t &IVBump, MachineInstr *&IVOp) const;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000132
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000133 /// \brief Analyze the statements in a loop to determine if the loop
134 /// has a computable trip count and, if so, return a value that represents
135 /// the trip count expression.
136 CountValue *getLoopTripCount(MachineLoop *L,
137 SmallVector<MachineInstr*, 2> &OldInsts);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000138
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000139 /// \brief Return the expression that represents the number of times
140 /// a loop iterates. The function takes the operands that represent the
141 /// loop start value, loop end value, and induction value. Based upon
142 /// these operands, the function attempts to compute the trip count.
143 /// If the trip count is not directly available (as an immediate value,
144 /// or a register), the function will attempt to insert computation of it
145 /// to the loop's preheader.
146 CountValue *computeCount(MachineLoop *Loop,
147 const MachineOperand *Start,
148 const MachineOperand *End,
149 unsigned IVReg,
150 int64_t IVBump,
151 Comparison::Kind Cmp) const;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000152
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000153 /// \brief Return true if the instruction is not valid within a hardware
154 /// loop.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000155 bool isInvalidLoopOperation(const MachineInstr *MI) const;
156
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000157 /// \brief Return true if the loop contains an instruction that inhibits
158 /// using the hardware loop.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000159 bool containsInvalidInstruction(MachineLoop *L) const;
160
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000161 /// \brief Given a loop, check if we can convert it to a hardware loop.
162 /// If so, then perform the conversion and return true.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000163 bool convertToHardwareLoop(MachineLoop *L);
164
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000165 /// \brief Return true if the instruction is now dead.
166 bool isDead(const MachineInstr *MI,
167 SmallVector<MachineInstr*, 1> &DeadPhis) const;
168
169 /// \brief Remove the instruction if it is now dead.
170 void removeIfDead(MachineInstr *MI);
171
172 /// \brief Make sure that the "bump" instruction executes before the
173 /// compare. We need that for the IV fixup, so that the compare
174 /// instruction would not use a bumped value that has not yet been
175 /// defined. If the instructions are out of order, try to reorder them.
176 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
177
178 /// \brief Get the instruction that loads an immediate value into \p R,
179 /// or 0 if such an instruction does not exist.
180 MachineInstr *defWithImmediate(unsigned R);
181
182 /// \brief Get the immediate value referenced to by \p MO, either for
183 /// immediate operands, or for register operands, where the register
184 /// was defined with an immediate value.
185 int64_t getImmediate(MachineOperand &MO);
186
187 /// \brief Reset the given machine operand to now refer to a new immediate
188 /// value. Assumes that the operand was already referencing an immediate
189 /// value, either directly, or via a register.
190 void setImmediate(MachineOperand &MO, int64_t Val);
191
192 /// \brief Fix the data flow of the induction varible.
193 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
194 /// |
195 /// +-> back to phi
196 /// where "bump" is the increment of the induction variable:
197 /// iv = iv + #const.
198 /// Due to some prior code transformations, the actual flow may look
199 /// like this:
200 /// phi -+-> bump ---> back to phi
201 /// |
202 /// +-> comparison-in-latch (against upper_bound-bump),
203 /// i.e. the comparison that controls the loop execution may be using
204 /// the value of the induction variable from before the increment.
205 ///
206 /// Return true if the loop's flow is the desired one (i.e. it's
207 /// either been fixed, or no fixing was necessary).
208 /// Otherwise, return false. This can happen if the induction variable
209 /// couldn't be identified, or if the value in the latch's comparison
210 /// cannot be adjusted to reflect the post-bump value.
211 bool fixupInductionVariable(MachineLoop *L);
212
213 /// \brief Given a loop, if it does not have a preheader, create one.
214 /// Return the block that is the preheader.
215 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000216 };
217
218 char HexagonHardwareLoops::ID = 0;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000219#ifndef NDEBUG
220 int HexagonHardwareLoops::Counter = 0;
221#endif
Tony Linthicumb4b54152011-12-12 21:14:40 +0000222
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000223 /// \brief Abstraction for a trip count of a loop. A smaller vesrsion
224 /// of the MachineOperand class without the concerns of changing the
225 /// operand representation.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000226 class CountValue {
227 public:
228 enum CountValueType {
229 CV_Register,
230 CV_Immediate
231 };
232 private:
233 CountValueType Kind;
234 union Values {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000235 struct {
236 unsigned Reg;
237 unsigned Sub;
238 } R;
239 unsigned ImmVal;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000240 } Contents;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000241
242 public:
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000243 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
244 Kind = t;
245 if (Kind == CV_Register) {
246 Contents.R.Reg = v;
247 Contents.R.Sub = u;
248 } else {
249 Contents.ImmVal = v;
250 }
251 }
Tony Linthicumb4b54152011-12-12 21:14:40 +0000252 bool isReg() const { return Kind == CV_Register; }
253 bool isImm() const { return Kind == CV_Immediate; }
Tony Linthicumb4b54152011-12-12 21:14:40 +0000254
255 unsigned getReg() const {
256 assert(isReg() && "Wrong CountValue accessor");
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000257 return Contents.R.Reg;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000258 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000259 unsigned getSubReg() const {
260 assert(isReg() && "Wrong CountValue accessor");
261 return Contents.R.Sub;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000262 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000263 unsigned getImm() const {
Tony Linthicumb4b54152011-12-12 21:14:40 +0000264 assert(isImm() && "Wrong CountValue accessor");
Tony Linthicumb4b54152011-12-12 21:14:40 +0000265 return Contents.ImmVal;
266 }
Tony Linthicumb4b54152011-12-12 21:14:40 +0000267
268 void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000269 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
270 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
271 if (isImm()) { OS << Contents.ImmVal; }
Tony Linthicumb4b54152011-12-12 21:14:40 +0000272 }
273 };
Tony Linthicumb4b54152011-12-12 21:14:40 +0000274} // end anonymous namespace
275
276
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000277INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
278 "Hexagon Hardware Loops", false, false)
279INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
280INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
281INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
282 "Hexagon Hardware Loops", false, false)
283
284
285/// \brief Returns true if the instruction is a hardware loop instruction.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000286static bool isHardwareLoop(const MachineInstr *MI) {
287 return MI->getOpcode() == Hexagon::LOOP0_r ||
288 MI->getOpcode() == Hexagon::LOOP0_i;
289}
290
Tony Linthicumb4b54152011-12-12 21:14:40 +0000291FunctionPass *llvm::createHexagonHardwareLoops() {
292 return new HexagonHardwareLoops();
293}
294
295
296bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
297 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
298
299 bool Changed = false;
300
Tony Linthicumb4b54152011-12-12 21:14:40 +0000301 MLI = &getAnalysis<MachineLoopInfo>();
Tony Linthicumb4b54152011-12-12 21:14:40 +0000302 MRI = &MF.getRegInfo();
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000303 MDT = &getAnalysis<MachineDominatorTree>();
304 TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
305 TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo());
306 TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo());
Tony Linthicumb4b54152011-12-12 21:14:40 +0000307
308 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
309 I != E; ++I) {
310 MachineLoop *L = *I;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000311 if (!L->getParentLoop())
Tony Linthicumb4b54152011-12-12 21:14:40 +0000312 Changed |= convertToHardwareLoop(L);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000313 }
314
315 return Changed;
316}
317
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000318
319bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
320 unsigned &Reg,
321 int64_t &IVBump,
322 MachineInstr *&IVOp
323 ) const {
324 MachineBasicBlock *Header = L->getHeader();
325 MachineBasicBlock *Preheader = L->getLoopPreheader();
326 MachineBasicBlock *Latch = L->getLoopLatch();
327 if (!Header || !Preheader || !Latch)
328 return false;
329
330 // This pair represents an induction register together with an immediate
331 // value that will be added to it in each loop iteration.
332 typedef std::pair<unsigned,int64_t> RegisterBump;
333
334 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
335 // from an induction operation
336 // R.next = R + bump
337 // where bump is an immediate value.
338 typedef std::map<unsigned,RegisterBump> InductionMap;
339
340 InductionMap IndMap;
341
342 typedef MachineBasicBlock::instr_iterator instr_iterator;
343 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
344 I != E && I->isPHI(); ++I) {
345 MachineInstr *Phi = &*I;
346
347 // Have a PHI instruction. Get the operand that corresponds to the
348 // latch block, and see if is a result of an addition of form "reg+imm",
349 // where the "reg" is defined by the PHI node we are looking at.
350 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
351 if (Phi->getOperand(i+1).getMBB() != Latch)
352 continue;
353
354 unsigned PhiOpReg = Phi->getOperand(i).getReg();
355 MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
356 unsigned UpdOpc = DI->getOpcode();
357 bool isAdd = (UpdOpc == Hexagon::ADD_ri);
358
359 if (isAdd) {
360 // If the register operand to the add is the PHI we're
361 // looking at, this meets the induction pattern.
362 unsigned IndReg = DI->getOperand(1).getReg();
363 if (MRI->getVRegDef(IndReg) == Phi) {
364 unsigned UpdReg = DI->getOperand(0).getReg();
365 int64_t V = DI->getOperand(2).getImm();
366 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
367 }
368 }
369 } // for (i)
370 } // for (instr)
371
372 SmallVector<MachineOperand,2> Cond;
373 MachineBasicBlock *TB = 0, *FB = 0;
374 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
375 if (NotAnalyzed)
376 return false;
377
378 unsigned CSz = Cond.size();
379 assert (CSz == 1 || CSz == 2);
380 unsigned PredR = Cond[CSz-1].getReg();
381
382 MachineInstr *PredI = MRI->getVRegDef(PredR);
383 if (!PredI->isCompare())
384 return false;
385
386 unsigned CmpReg1 = 0, CmpReg2 = 0;
387 int CmpImm = 0, CmpMask = 0;
388 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
389 CmpMask, CmpImm);
390 // Fail if the compare was not analyzed, or it's not comparing a register
391 // with an immediate value. Not checking the mask here, since we handle
392 // the individual compare opcodes (including CMPb) later on.
393 if (!CmpAnalyzed)
394 return false;
395
396 // Exactly one of the input registers to the comparison should be among
397 // the induction registers.
398 InductionMap::iterator IndMapEnd = IndMap.end();
399 InductionMap::iterator F = IndMapEnd;
400 if (CmpReg1 != 0) {
401 InductionMap::iterator F1 = IndMap.find(CmpReg1);
402 if (F1 != IndMapEnd)
403 F = F1;
404 }
405 if (CmpReg2 != 0) {
406 InductionMap::iterator F2 = IndMap.find(CmpReg2);
407 if (F2 != IndMapEnd) {
408 if (F != IndMapEnd)
409 return false;
410 F = F2;
411 }
412 }
413 if (F == IndMapEnd)
414 return false;
415
416 Reg = F->second.first;
417 IVBump = F->second.second;
418 IVOp = MRI->getVRegDef(F->first);
419 return true;
420}
421
422
423/// \brief Analyze the statements in a loop to determine if the loop has
424/// a computable trip count and, if so, return a value that represents
425/// the trip count expression.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000426///
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000427/// This function iterates over the phi nodes in the loop to check for
428/// induction variable patterns that are used in the calculation for
429/// the number of time the loop is executed.
430CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
431 SmallVector<MachineInstr*, 2> &OldInsts) {
Tony Linthicumb4b54152011-12-12 21:14:40 +0000432 MachineBasicBlock *TopMBB = L->getTopBlock();
433 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
434 assert(PI != TopMBB->pred_end() &&
435 "Loop must have more than one incoming edge!");
436 MachineBasicBlock *Backedge = *PI++;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000437 if (PI == TopMBB->pred_end()) // dead loop?
438 return 0;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000439 MachineBasicBlock *Incoming = *PI++;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000440 if (PI != TopMBB->pred_end()) // multiple backedges?
441 return 0;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000442
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000443 // Make sure there is one incoming and one backedge and determine which
Tony Linthicumb4b54152011-12-12 21:14:40 +0000444 // is which.
445 if (L->contains(Incoming)) {
446 if (L->contains(Backedge))
447 return 0;
448 std::swap(Incoming, Backedge);
449 } else if (!L->contains(Backedge))
450 return 0;
451
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000452 // Look for the cmp instruction to determine if we can get a useful trip
453 // count. The trip count can be either a register or an immediate. The
454 // location of the value depends upon the type (reg or imm).
455 MachineBasicBlock *Latch = L->getLoopLatch();
456 if (!Latch)
457 return 0;
458
459 unsigned IVReg = 0;
460 int64_t IVBump = 0;
461 MachineInstr *IVOp;
462 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
463 if (!FoundIV)
464 return 0;
465
466 MachineBasicBlock *Preheader = L->getLoopPreheader();
467
468 MachineOperand *InitialValue = 0;
469 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
470 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
471 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
472 if (MBB == Preheader)
473 InitialValue = &IV_Phi->getOperand(i);
474 else if (MBB == Latch)
475 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
476 }
477 if (!InitialValue)
478 return 0;
479
480 SmallVector<MachineOperand,2> Cond;
481 MachineBasicBlock *TB = 0, *FB = 0;
482 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
483 if (NotAnalyzed)
484 return 0;
485
486 MachineBasicBlock *Header = L->getHeader();
487 // TB must be non-null. If FB is also non-null, one of them must be
488 // the header. Otherwise, branch to TB could be exiting the loop, and
489 // the fall through can go to the header.
490 assert (TB && "Latch block without a branch?");
491 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
492 if (!TB || (FB && TB != Header && FB != Header))
493 return 0;
494
495 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
496 // to put imm(0), followed by P in the vector Cond.
497 // If TB is not the header, it means that the "not-taken" path must lead
498 // to the header.
499 bool Negated = (Cond.size() > 1) ^ (TB != Header);
500 unsigned PredReg = Cond[Cond.size()-1].getReg();
501 MachineInstr *CondI = MRI->getVRegDef(PredReg);
502 unsigned CondOpc = CondI->getOpcode();
503
504 unsigned CmpReg1 = 0, CmpReg2 = 0;
505 int Mask = 0, ImmValue = 0;
506 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
507 Mask, ImmValue);
508 if (!AnalyzedCmp)
509 return 0;
510
511 // The comparison operator type determines how we compute the loop
512 // trip count.
513 OldInsts.push_back(CondI);
514 OldInsts.push_back(IVOp);
515
516 // Sadly, the following code gets information based on the position
517 // of the operands in the compare instruction. This has to be done
518 // this way, because the comparisons check for a specific relationship
519 // between the operands (e.g. is-less-than), rather than to find out
520 // what relationship the operands are in (as on PPC).
521 Comparison::Kind Cmp;
522 bool isSwapped = false;
523 const MachineOperand &Op1 = CondI->getOperand(1);
524 const MachineOperand &Op2 = CondI->getOperand(2);
525 const MachineOperand *EndValue = 0;
526
527 if (Op1.isReg()) {
528 if (Op2.isImm() || Op1.getReg() == IVReg)
529 EndValue = &Op2;
530 else {
531 EndValue = &Op1;
532 isSwapped = true;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000533 }
534 }
Tony Linthicumb4b54152011-12-12 21:14:40 +0000535
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000536 if (!EndValue)
537 return 0;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000538
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000539 switch (CondOpc) {
540 case Hexagon::CMPEQri:
541 case Hexagon::CMPEQrr:
542 Cmp = !Negated ? Comparison::EQ : Comparison::NE;
543 break;
544 case Hexagon::CMPLTrr:
545 Cmp = !Negated ? Comparison::LTs : Comparison::GEs;
546 break;
547 case Hexagon::CMPLTUrr:
548 Cmp = !Negated ? Comparison::LTu : Comparison::GEu;
549 break;
550 case Hexagon::CMPGTUri:
551 case Hexagon::CMPGTUrr:
552 Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
553 break;
554 case Hexagon::CMPGTri:
555 case Hexagon::CMPGTrr:
556 Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
557 break;
558 // Very limited support for byte/halfword compares.
559 case Hexagon::CMPbEQri_V4:
560 case Hexagon::CMPhEQri_V4: {
561 if (IVBump != 1)
562 return 0;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000563
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000564 int64_t InitV, EndV;
565 // Since the comparisons are "ri", the EndValue should be an
566 // immediate. Check it just in case.
567 assert(EndValue->isImm() && "Unrecognized latch comparison");
568 EndV = EndValue->getImm();
569 // Allow InitialValue to be a register defined with an immediate.
570 if (InitialValue->isReg()) {
571 if (!defWithImmediate(InitialValue->getReg()))
Tony Linthicumb4b54152011-12-12 21:14:40 +0000572 return 0;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000573 InitV = getImmediate(*InitialValue);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000574 } else {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000575 assert(InitialValue->isImm());
576 InitV = InitialValue->getImm();
Tony Linthicumb4b54152011-12-12 21:14:40 +0000577 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000578 if (InitV >= EndV)
579 return 0;
580 if (CondOpc == Hexagon::CMPbEQri_V4) {
581 if (!isInt<8>(InitV) || !isInt<8>(EndV))
582 return 0;
583 } else { // Hexagon::CMPhEQri_V4
584 if (!isInt<16>(InitV) || !isInt<16>(EndV))
585 return 0;
586 }
587 Cmp = !Negated ? Comparison::EQ : Comparison::NE;
588 break;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000589 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000590 default:
591 return 0;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000592 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000593
594 if (isSwapped)
595 Cmp = Comparison::getSwappedComparison(Cmp);
596
597 if (InitialValue->isReg()) {
598 unsigned R = InitialValue->getReg();
599 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
600 if (!MDT->properlyDominates(DefBB, Header))
601 return 0;
602 OldInsts.push_back(MRI->getVRegDef(R));
603 }
604 if (EndValue->isReg()) {
605 unsigned R = EndValue->getReg();
606 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
607 if (!MDT->properlyDominates(DefBB, Header))
608 return 0;
609 }
610
611 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000612}
613
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000614/// \brief Helper function that returns the expression that represents the
615/// number of times a loop iterates. The function takes the operands that
616/// represent the loop start value, loop end value, and induction value.
617/// Based upon these operands, the function attempts to compute the trip count.
618CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
619 const MachineOperand *Start,
620 const MachineOperand *End,
621 unsigned IVReg,
622 int64_t IVBump,
623 Comparison::Kind Cmp) const {
624 // Cannot handle comparison EQ, i.e. while (A == B).
625 if (Cmp == Comparison::EQ)
626 return 0;
627
628 // Check if either the start or end values are an assignment of an immediate.
629 // If so, use the immediate value rather than the register.
630 if (Start->isReg()) {
631 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
632 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI)
633 Start = &StartValInstr->getOperand(1);
634 }
635 if (End->isReg()) {
636 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
637 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI)
638 End = &EndValInstr->getOperand(1);
639 }
640
641 assert (Start->isReg() || Start->isImm());
642 assert (End->isReg() || End->isImm());
643
644 bool CmpLess = Cmp & Comparison::L;
645 bool CmpGreater = Cmp & Comparison::G;
646 bool CmpHasEqual = Cmp & Comparison::EQ;
647
648 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
649 // If loop executes while iv is "less" with the iv value going down, then
650 // the iv must wrap.
651 if (CmpLess && IVBump < 0)
652 return 0;
653 // If loop executes while iv is "greater" with the iv value going up, then
654 // the iv must wrap.
655 if (CmpGreater && IVBump > 0)
656 return 0;
657
658 if (Start->isImm() && End->isImm()) {
659 // Both, start and end are immediates.
660 int64_t StartV = Start->getImm();
661 int64_t EndV = End->getImm();
662 int64_t Dist = EndV - StartV;
663 if (Dist == 0)
664 return 0;
665
666 bool Exact = (Dist % IVBump) == 0;
667
668 if (Cmp == Comparison::NE) {
669 if (!Exact)
670 return 0;
671 if ((Dist < 0) ^ (IVBump < 0))
672 return 0;
673 }
674
675 // For comparisons that include the final value (i.e. include equality
676 // with the final value), we need to increase the distance by 1.
677 if (CmpHasEqual)
678 Dist = Dist > 0 ? Dist+1 : Dist-1;
679
680 // assert (CmpLess => Dist > 0);
681 assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
682 // assert (CmpGreater => Dist < 0);
683 assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
684
685 // "Normalized" distance, i.e. with the bump set to +-1.
686 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump
687 : (-Dist + (-IVBump-1)) / (-IVBump);
688 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
689
690 uint64_t Count = Dist1;
691
692 if (Count > 0xFFFFFFFFULL)
693 return 0;
694
695 return new CountValue(CountValue::CV_Immediate, Count);
696 }
697
698 // A general case: Start and End are some values, but the actual
699 // iteration count may not be available. If it is not, insert
700 // a computation of it into the preheader.
701
702 // If the induction variable bump is not a power of 2, quit.
703 // Othwerise we'd need a general integer division.
704 if (!isPowerOf2_64(abs(IVBump)))
705 return 0;
706
707 MachineBasicBlock *PH = Loop->getLoopPreheader();
708 assert (PH && "Should have a preheader by now");
709 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
710 DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
711 : DebugLoc();
712
713 // If Start is an immediate and End is a register, the trip count
714 // will be "reg - imm". Hexagon's "subtract immediate" instruction
715 // is actually "reg + -imm".
716
717 // If the loop IV is going downwards, i.e. if the bump is negative,
718 // then the iteration count (computed as End-Start) will need to be
719 // negated. To avoid the negation, just swap Start and End.
720 if (IVBump < 0) {
721 std::swap(Start, End);
722 IVBump = -IVBump;
723 }
724 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
725 // Signedness, and "including equality" are preserved.
726
727 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
728 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
729
730 int64_t StartV = 0, EndV = 0;
731 if (Start->isImm())
732 StartV = Start->getImm();
733 if (End->isImm())
734 EndV = End->getImm();
735
736 int64_t AdjV = 0;
737 // To compute the iteration count, we would need this computation:
738 // Count = (End - Start + (IVBump-1)) / IVBump
739 // or, when CmpHasEqual:
740 // Count = (End - Start + (IVBump-1)+1) / IVBump
741 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
742 // generating an instruction specifically to add it if we can adjust
743 // the immediate values for Start or End.
744
745 if (CmpHasEqual) {
746 // Need to add 1 to the total iteration count.
747 if (Start->isImm())
748 StartV--;
749 else if (End->isImm())
750 EndV++;
751 else
752 AdjV += 1;
753 }
754
755 if (Cmp != Comparison::NE) {
756 if (Start->isImm())
757 StartV -= (IVBump-1);
758 else if (End->isImm())
759 EndV += (IVBump-1);
760 else
761 AdjV += (IVBump-1);
762 }
763
764 unsigned R = 0, SR = 0;
765 if (Start->isReg()) {
766 R = Start->getReg();
767 SR = Start->getSubReg();
768 } else {
769 R = End->getReg();
770 SR = End->getSubReg();
771 }
772 const TargetRegisterClass *RC = MRI->getRegClass(R);
773 // Hardware loops cannot handle 64-bit registers. If it's a double
774 // register, it has to have a subregister.
775 if (!SR && RC == &Hexagon::DoubleRegsRegClass)
776 return 0;
777 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
778
779 // Compute DistR (register with the distance between Start and End).
780 unsigned DistR, DistSR;
781
782 // Avoid special case, where the start value is an imm(0).
783 if (Start->isImm() && StartV == 0) {
784 DistR = End->getReg();
785 DistSR = End->getSubReg();
786 } else {
787 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) :
788 (RegToImm ? TII->get(Hexagon::SUB_ri) :
789 TII->get(Hexagon::ADD_ri));
790 unsigned SubR = MRI->createVirtualRegister(IntRC);
791 MachineInstrBuilder SubIB =
792 BuildMI(*PH, InsertPos, DL, SubD, SubR);
793
794 if (RegToReg) {
795 SubIB.addReg(End->getReg(), 0, End->getSubReg())
796 .addReg(Start->getReg(), 0, Start->getSubReg());
797 } else if (RegToImm) {
798 SubIB.addImm(EndV)
799 .addReg(Start->getReg(), 0, Start->getSubReg());
800 } else { // ImmToReg
801 SubIB.addReg(End->getReg(), 0, End->getSubReg())
802 .addImm(-StartV);
803 }
804 DistR = SubR;
805 DistSR = 0;
806 }
807
808 // From DistR, compute AdjR (register with the adjusted distance).
809 unsigned AdjR, AdjSR;
810
811 if (AdjV == 0) {
812 AdjR = DistR;
813 AdjSR = DistSR;
814 } else {
815 // Generate CountR = ADD DistR, AdjVal
816 unsigned AddR = MRI->createVirtualRegister(IntRC);
817 const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri);
818 BuildMI(*PH, InsertPos, DL, AddD, AddR)
819 .addReg(DistR, 0, DistSR)
820 .addImm(AdjV);
821
822 AdjR = AddR;
823 AdjSR = 0;
824 }
825
826 // From AdjR, compute CountR (register with the final count).
827 unsigned CountR, CountSR;
828
829 if (IVBump == 1) {
830 CountR = AdjR;
831 CountSR = AdjSR;
832 } else {
833 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
834 unsigned Shift = Log2_32(IVBump);
835
836 // Generate NormR = LSR DistR, Shift.
837 unsigned LsrR = MRI->createVirtualRegister(IntRC);
838 const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri);
839 BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
840 .addReg(AdjR, 0, AdjSR)
841 .addImm(Shift);
842
843 CountR = LsrR;
844 CountSR = 0;
845 }
846
847 return new CountValue(CountValue::CV_Register, CountR, CountSR);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000848}
849
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000850
851/// \brief Return true if the operation is invalid within hardware loop.
852bool HexagonHardwareLoops::isInvalidLoopOperation(
853 const MachineInstr *MI) const {
Tony Linthicumb4b54152011-12-12 21:14:40 +0000854
855 // call is not allowed because the callee may use a hardware loop
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000856 if (MI->getDesc().isCall())
Tony Linthicumb4b54152011-12-12 21:14:40 +0000857 return true;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000858
Tony Linthicumb4b54152011-12-12 21:14:40 +0000859 // do not allow nested hardware loops
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000860 if (isHardwareLoop(MI))
Tony Linthicumb4b54152011-12-12 21:14:40 +0000861 return true;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000862
Tony Linthicumb4b54152011-12-12 21:14:40 +0000863 // check if the instruction defines a hardware loop register
864 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
865 const MachineOperand &MO = MI->getOperand(i);
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000866 if (!MO.isReg() || !MO.isDef())
867 continue;
868 unsigned R = MO.getReg();
869 if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
870 R == Hexagon::SA0 || R == Hexagon::SA1)
Tony Linthicumb4b54152011-12-12 21:14:40 +0000871 return true;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000872 }
873 return false;
874}
875
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000876
877/// \brief - Return true if the loop contains an instruction that inhibits
878/// the use of the hardware loop function.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000879bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
880 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
881 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
882 MachineBasicBlock *MBB = Blocks[i];
883 for (MachineBasicBlock::iterator
884 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
885 const MachineInstr *MI = &*MII;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000886 if (isInvalidLoopOperation(MI))
Tony Linthicumb4b54152011-12-12 21:14:40 +0000887 return true;
Tony Linthicumb4b54152011-12-12 21:14:40 +0000888 }
889 }
890 return false;
891}
892
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000893
894/// \brief Returns true if the instruction is dead. This was essentially
895/// copied from DeadMachineInstructionElim::isDead, but with special cases
896/// for inline asm, physical registers and instructions with side effects
897/// removed.
898bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
899 SmallVector<MachineInstr*, 1> &DeadPhis) const {
900 // Examine each operand.
901 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
902 const MachineOperand &MO = MI->getOperand(i);
903 if (!MO.isReg() || !MO.isDef())
904 continue;
905
906 unsigned Reg = MO.getReg();
907 if (MRI->use_nodbg_empty(Reg))
908 continue;
909
910 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
911
912 // This instruction has users, but if the only user is the phi node for the
913 // parent block, and the only use of that phi node is this instruction, then
914 // this instruction is dead: both it (and the phi node) can be removed.
915 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
916 use_nodbg_iterator End = MRI->use_nodbg_end();
917 if (llvm::next(I) != End || !I.getOperand().getParent()->isPHI())
918 return false;
919
920 MachineInstr *OnePhi = I.getOperand().getParent();
921 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
922 const MachineOperand &OPO = OnePhi->getOperand(j);
923 if (!OPO.isReg() || !OPO.isDef())
924 continue;
925
926 unsigned OPReg = OPO.getReg();
927 use_nodbg_iterator nextJ;
928 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
929 J != End; J = nextJ) {
930 nextJ = llvm::next(J);
931 MachineOperand &Use = J.getOperand();
932 MachineInstr *UseMI = Use.getParent();
933
934 // If the phi node has a user that is not MI, bail...
935 if (MI != UseMI)
936 return false;
937 }
938 }
939 DeadPhis.push_back(OnePhi);
940 }
941
942 // If there are no defs with uses, the instruction is dead.
943 return true;
944}
945
946void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
947 // This procedure was essentially copied from DeadMachineInstructionElim.
948
949 SmallVector<MachineInstr*, 1> DeadPhis;
950 if (isDead(MI, DeadPhis)) {
951 DEBUG(dbgs() << "HW looping will remove: " << *MI);
952
953 // It is possible that some DBG_VALUE instructions refer to this
954 // instruction. Examine each def operand for such references;
955 // if found, mark the DBG_VALUE as undef (but don't delete it).
956 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
957 const MachineOperand &MO = MI->getOperand(i);
958 if (!MO.isReg() || !MO.isDef())
959 continue;
960 unsigned Reg = MO.getReg();
961 MachineRegisterInfo::use_iterator nextI;
962 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
963 E = MRI->use_end(); I != E; I = nextI) {
964 nextI = llvm::next(I); // I is invalidated by the setReg
965 MachineOperand &Use = I.getOperand();
966 MachineInstr *UseMI = Use.getParent();
967 if (UseMI == MI)
968 continue;
969 if (Use.isDebug())
970 UseMI->getOperand(0).setReg(0U);
971 // This may also be a "instr -> phi -> instr" case which can
972 // be removed too.
973 }
974 }
975
976 MI->eraseFromParent();
977 for (unsigned i = 0; i < DeadPhis.size(); ++i)
978 DeadPhis[i]->eraseFromParent();
979 }
980}
981
982/// \brief Check if the loop is a candidate for converting to a hardware
983/// loop. If so, then perform the transformation.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000984///
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000985/// This function works on innermost loops first. A loop can be converted
986/// if it is a counting loop; either a register value or an immediate.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000987///
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000988/// The code makes several assumptions about the representation of the loop
989/// in llvm.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000990bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000991 // This is just for sanity.
992 assert(L->getHeader() && "Loop without a header?");
993
Tony Linthicumb4b54152011-12-12 21:14:40 +0000994 bool Changed = false;
995 // Process nested loops first.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000996 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
Tony Linthicumb4b54152011-12-12 21:14:40 +0000997 Changed |= convertToHardwareLoop(*I);
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +0000998
Tony Linthicumb4b54152011-12-12 21:14:40 +0000999 // If a nested loop has been converted, then we can't convert this loop.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001000 if (Changed)
Tony Linthicumb4b54152011-12-12 21:14:40 +00001001 return Changed;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001002
1003#ifndef NDEBUG
1004 // Stop trying after reaching the limit (if any).
1005 int Limit = HWLoopLimit;
1006 if (Limit >= 0) {
1007 if (Counter >= HWLoopLimit)
1008 return false;
1009 Counter++;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001010 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001011#endif
1012
Tony Linthicumb4b54152011-12-12 21:14:40 +00001013 // Does the loop contain any invalid instructions?
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001014 if (containsInvalidInstruction(L))
Tony Linthicumb4b54152011-12-12 21:14:40 +00001015 return false;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001016
1017 // Is the induction variable bump feeding the latch condition?
1018 if (!fixupInductionVariable(L))
Tony Linthicumb4b54152011-12-12 21:14:40 +00001019 return false;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001020
1021 MachineBasicBlock *LastMBB = L->getExitingBlock();
1022 // Don't generate hw loop if the loop has more than one exit.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001023 if (LastMBB == 0)
Tony Linthicumb4b54152011-12-12 21:14:40 +00001024 return false;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001025
Tony Linthicumb4b54152011-12-12 21:14:40 +00001026 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001027 if (LastI == LastMBB->end())
Matthew Curtisade50dc2012-12-07 21:03:15 +00001028 return false;
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001029
1030 // Ensure the loop has a preheader: the loop instruction will be
1031 // placed there.
1032 bool NewPreheader = false;
1033 MachineBasicBlock *Preheader = L->getLoopPreheader();
1034 if (!Preheader) {
1035 Preheader = createPreheaderForLoop(L);
1036 if (!Preheader)
1037 return false;
1038 NewPreheader = true;
1039 }
1040 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1041
1042 SmallVector<MachineInstr*, 2> OldInsts;
1043 // Are we able to determine the trip count for the loop?
1044 CountValue *TripCount = getLoopTripCount(L, OldInsts);
1045 if (TripCount == 0)
1046 return false;
1047
1048 // Is the trip count available in the preheader?
1049 if (TripCount->isReg()) {
1050 // There will be a use of the register inserted into the preheader,
1051 // so make sure that the register is actually defined at that point.
1052 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1053 MachineBasicBlock *BBDef = TCDef->getParent();
1054 if (!NewPreheader) {
1055 if (!MDT->dominates(BBDef, Preheader))
1056 return false;
1057 } else {
1058 // If we have just created a preheader, the dominator tree won't be
1059 // aware of it. Check if the definition of the register dominates
1060 // the header, but is not the header itself.
1061 if (!MDT->properlyDominates(BBDef, L->getHeader()))
1062 return false;
1063 }
Matthew Curtisade50dc2012-12-07 21:03:15 +00001064 }
Tony Linthicumb4b54152011-12-12 21:14:40 +00001065
1066 // Determine the loop start.
1067 MachineBasicBlock *LoopStart = L->getTopBlock();
1068 if (L->getLoopLatch() != LastMBB) {
1069 // When the exit and latch are not the same, use the latch block as the
1070 // start.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001071 // The loop start address is used only after the 1st iteration, and the
1072 // loop latch may contains instrs. that need to be executed after the
1073 // first iteration.
Tony Linthicumb4b54152011-12-12 21:14:40 +00001074 LoopStart = L->getLoopLatch();
1075 // Make sure the latch is a successor of the exit, otherwise it won't work.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001076 if (!LastMBB->isSuccessor(LoopStart))
Tony Linthicumb4b54152011-12-12 21:14:40 +00001077 return false;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001078 }
1079
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001080 // Convert the loop to a hardware loop.
Tony Linthicumb4b54152011-12-12 21:14:40 +00001081 DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001082 DebugLoc DL;
Matthew Curtisade50dc2012-12-07 21:03:15 +00001083 if (InsertPos != Preheader->end())
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001084 DL = InsertPos->getDebugLoc();
Tony Linthicumb4b54152011-12-12 21:14:40 +00001085
1086 if (TripCount->isReg()) {
1087 // Create a copy of the loop count register.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001088 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1089 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1090 .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001091 // Add the Loop instruction to the beginning of the loop.
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001092 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
1093 .addMBB(LoopStart)
1094 .addReg(CountReg);
Tony Linthicumb4b54152011-12-12 21:14:40 +00001095 } else {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001096 assert(TripCount->isImm() && "Expecting immediate value for trip count");
1097 // Add the Loop immediate instruction to the beginning of the loop,
1098 // if the immediate fits in the instructions. Otherwise, we need to
1099 // create a new virtual register.
Tony Linthicumb4b54152011-12-12 21:14:40 +00001100 int64_t CountImm = TripCount->getImm();
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001101 if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) {
1102 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1103 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg)
1104 .addImm(CountImm);
1105 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
1106 .addMBB(LoopStart).addReg(CountReg);
1107 } else
1108 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i))
1109 .addMBB(LoopStart).addImm(CountImm);
Tony Linthicumb4b54152011-12-12 21:14:40 +00001110 }
1111
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001112 // Make sure the loop start always has a reference in the CFG. We need
1113 // to create a BlockAddress operand to get this mechanism to work both the
Tony Linthicumb4b54152011-12-12 21:14:40 +00001114 // MachineBasicBlock and BasicBlock objects need the flag set.
1115 LoopStart->setHasAddressTaken();
1116 // This line is needed to set the hasAddressTaken flag on the BasicBlock
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001117 // object.
Tony Linthicumb4b54152011-12-12 21:14:40 +00001118 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1119
1120 // Replace the loop branch with an endloop instruction.
Matthew Curtisade50dc2012-12-07 21:03:15 +00001121 DebugLoc LastIDL = LastI->getDebugLoc();
1122 BuildMI(*LastMBB, LastI, LastIDL,
1123 TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
Tony Linthicumb4b54152011-12-12 21:14:40 +00001124
1125 // The loop ends with either:
1126 // - a conditional branch followed by an unconditional branch, or
1127 // - a conditional branch to the loop start.
Sirish Pandeab7955b2012-02-15 18:52:27 +00001128 if (LastI->getOpcode() == Hexagon::JMP_c ||
1129 LastI->getOpcode() == Hexagon::JMP_cNot) {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001130 // Delete one and change/add an uncond. branch to out of the loop.
Tony Linthicumb4b54152011-12-12 21:14:40 +00001131 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1132 LastI = LastMBB->erase(LastI);
1133 if (!L->contains(BranchTarget)) {
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001134 if (LastI != LastMBB->end())
1135 LastI = LastMBB->erase(LastI);
Tony Linthicumb4b54152011-12-12 21:14:40 +00001136 SmallVector<MachineOperand, 0> Cond;
Matthew Curtisade50dc2012-12-07 21:03:15 +00001137 TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL);
Tony Linthicumb4b54152011-12-12 21:14:40 +00001138 }
1139 } else {
1140 // Conditional branch to loop start; just delete it.
1141 LastMBB->erase(LastI);
1142 }
1143 delete TripCount;
1144
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001145 // The induction operation and the comparison may now be
1146 // unneeded. If these are unneeded, then remove them.
1147 for (unsigned i = 0; i < OldInsts.size(); ++i)
1148 removeIfDead(OldInsts[i]);
1149
Tony Linthicumb4b54152011-12-12 21:14:40 +00001150 ++NumHWLoops;
1151 return true;
1152}
1153
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001154
1155bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1156 MachineInstr *CmpI) {
1157 assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1158
1159 MachineBasicBlock *BB = BumpI->getParent();
1160 if (CmpI->getParent() != BB)
1161 return false;
1162
1163 typedef MachineBasicBlock::instr_iterator instr_iterator;
1164 // Check if things are in order to begin with.
1165 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
1166 if (&*I == CmpI)
1167 return true;
1168
1169 // Out of order.
1170 unsigned PredR = CmpI->getOperand(0).getReg();
1171 bool FoundBump = false;
1172 instr_iterator CmpIt = CmpI, NextIt = llvm::next(CmpIt);
1173 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1174 MachineInstr *In = &*I;
1175 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1176 MachineOperand &MO = In->getOperand(i);
1177 if (MO.isReg() && MO.isUse()) {
1178 if (MO.getReg() == PredR) // Found an intervening use of PredR.
1179 return false;
1180 }
1181 }
1182
1183 if (In == BumpI) {
1184 instr_iterator After = BumpI;
1185 instr_iterator From = CmpI;
1186 BB->splice(llvm::next(After), BB, From);
1187 FoundBump = true;
1188 break;
1189 }
1190 }
1191 assert (FoundBump && "Cannot determine instruction order");
1192 return FoundBump;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001193}
1194
Tony Linthicumb4b54152011-12-12 21:14:40 +00001195
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001196MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
1197 MachineInstr *DI = MRI->getVRegDef(R);
1198 unsigned DOpc = DI->getOpcode();
1199 switch (DOpc) {
1200 case Hexagon::TFRI:
1201 case Hexagon::TFRI64:
1202 case Hexagon::CONST32_Int_Real:
1203 case Hexagon::CONST64_Int_Real:
1204 return DI;
1205 }
1206 return 0;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001207}
1208
Tony Linthicumb4b54152011-12-12 21:14:40 +00001209
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001210int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
1211 if (MO.isImm())
1212 return MO.getImm();
1213 assert(MO.isReg());
1214 unsigned R = MO.getReg();
1215 MachineInstr *DI = defWithImmediate(R);
1216 assert(DI && "Need an immediate operand");
1217 // All currently supported "define-with-immediate" instructions have the
1218 // actual immediate value in the operand(1).
1219 int64_t v = DI->getOperand(1).getImm();
1220 return v;
1221}
Tony Linthicumb4b54152011-12-12 21:14:40 +00001222
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001223
1224void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1225 if (MO.isImm()) {
1226 MO.setImm(Val);
1227 return;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001228 }
1229
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001230 assert(MO.isReg());
1231 unsigned R = MO.getReg();
1232 MachineInstr *DI = defWithImmediate(R);
1233 if (MRI->hasOneNonDBGUse(R)) {
1234 // If R has only one use, then just change its defining instruction to
1235 // the new immediate value.
1236 DI->getOperand(1).setImm(Val);
1237 return;
1238 }
Tony Linthicumb4b54152011-12-12 21:14:40 +00001239
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001240 const TargetRegisterClass *RC = MRI->getRegClass(R);
1241 unsigned NewR = MRI->createVirtualRegister(RC);
1242 MachineBasicBlock &B = *DI->getParent();
1243 DebugLoc DL = DI->getDebugLoc();
1244 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
1245 .addImm(Val);
1246 MO.setReg(NewR);
1247}
Tony Linthicumb4b54152011-12-12 21:14:40 +00001248
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001249
1250bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1251 MachineBasicBlock *Header = L->getHeader();
1252 MachineBasicBlock *Preheader = L->getLoopPreheader();
1253 MachineBasicBlock *Latch = L->getLoopLatch();
1254
1255 if (!Header || !Preheader || !Latch)
1256 return false;
1257
1258 // These data structures follow the same concept as the corresponding
1259 // ones in findInductionRegister (where some comments are).
1260 typedef std::pair<unsigned,int64_t> RegisterBump;
1261 typedef std::pair<unsigned,RegisterBump> RegisterInduction;
1262 typedef std::set<RegisterInduction> RegisterInductionSet;
1263
1264 // Register candidates for induction variables, with their associated bumps.
1265 RegisterInductionSet IndRegs;
1266
1267 // Look for induction patterns:
1268 // vreg1 = PHI ..., [ latch, vreg2 ]
1269 // vreg2 = ADD vreg1, imm
1270 typedef MachineBasicBlock::instr_iterator instr_iterator;
1271 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1272 I != E && I->isPHI(); ++I) {
1273 MachineInstr *Phi = &*I;
1274
1275 // Have a PHI instruction.
1276 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1277 if (Phi->getOperand(i+1).getMBB() != Latch)
1278 continue;
1279
1280 unsigned PhiReg = Phi->getOperand(i).getReg();
1281 MachineInstr *DI = MRI->getVRegDef(PhiReg);
1282 unsigned UpdOpc = DI->getOpcode();
1283 bool isAdd = (UpdOpc == Hexagon::ADD_ri);
1284
1285 if (isAdd) {
1286 // If the register operand to the add/sub is the PHI we are looking
1287 // at, this meets the induction pattern.
1288 unsigned IndReg = DI->getOperand(1).getReg();
1289 if (MRI->getVRegDef(IndReg) == Phi) {
1290 unsigned UpdReg = DI->getOperand(0).getReg();
1291 int64_t V = DI->getOperand(2).getImm();
1292 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
Tony Linthicumb4b54152011-12-12 21:14:40 +00001293 }
Tony Linthicumb4b54152011-12-12 21:14:40 +00001294 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001295 } // for (i)
1296 } // for (instr)
1297
1298 if (IndRegs.empty())
1299 return false;
1300
1301 MachineBasicBlock *TB = 0, *FB = 0;
1302 SmallVector<MachineOperand,2> Cond;
1303 // AnalyzeBranch returns true if it fails to analyze branch.
1304 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
1305 if (NotAnalyzed)
1306 return false;
1307
1308 // Check if the latch branch is unconditional.
1309 if (Cond.empty())
1310 return false;
1311
1312 if (TB != Header && FB != Header)
1313 // The latch does not go back to the header. Not a latch we know and love.
1314 return false;
1315
1316 // Expecting a predicate register as a condition. It won't be a hardware
1317 // predicate register at this point yet, just a vreg.
1318 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1319 // into Cond, followed by the predicate register. For non-negated branches
1320 // it's just the register.
1321 unsigned CSz = Cond.size();
1322 if (CSz != 1 && CSz != 2)
1323 return false;
1324
1325 unsigned P = Cond[CSz-1].getReg();
1326 MachineInstr *PredDef = MRI->getVRegDef(P);
1327
1328 if (!PredDef->isCompare())
1329 return false;
1330
1331 SmallSet<unsigned,2> CmpRegs;
1332 MachineOperand *CmpImmOp = 0;
1333
1334 // Go over all operands to the compare and look for immediate and register
1335 // operands. Assume that if the compare has a single register use and a
1336 // single immediate operand, then the register is being compared with the
1337 // immediate value.
1338 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1339 MachineOperand &MO = PredDef->getOperand(i);
1340 if (MO.isReg()) {
1341 // Skip all implicit references. In one case there was:
1342 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
1343 if (MO.isImplicit())
1344 continue;
1345 if (MO.isUse()) {
1346 unsigned R = MO.getReg();
1347 if (!defWithImmediate(R)) {
1348 CmpRegs.insert(MO.getReg());
1349 continue;
1350 }
1351 // Consider the register to be the "immediate" operand.
1352 if (CmpImmOp)
1353 return false;
1354 CmpImmOp = &MO;
1355 }
1356 } else if (MO.isImm()) {
1357 if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
1358 return false;
1359 CmpImmOp = &MO;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001360 }
1361 }
1362
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001363 if (CmpRegs.empty())
1364 return false;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001365
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001366 // Check if the compared register follows the order we want. Fix if needed.
1367 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1368 I != E; ++I) {
1369 // This is a success. If the register used in the comparison is one that
1370 // we have identified as a bumped (updated) induction register, there is
1371 // nothing to do.
1372 if (CmpRegs.count(I->first))
1373 return true;
1374
1375 // Otherwise, if the register being compared comes out of a PHI node,
1376 // and has been recognized as following the induction pattern, and is
1377 // compared against an immediate, we can fix it.
1378 const RegisterBump &RB = I->second;
1379 if (CmpRegs.count(RB.first)) {
1380 if (!CmpImmOp)
1381 return false;
1382
1383 int64_t CmpImm = getImmediate(*CmpImmOp);
1384 int64_t V = RB.second;
1385 if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit).
1386 return false;
1387 if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit).
1388 return false;
1389 CmpImm += V;
1390 // Some forms of cmp-immediate allow u9 and s10. Assume the worst case
1391 // scenario, i.e. an 8-bit value.
1392 if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
1393 return false;
1394
1395 // Make sure that the compare happens after the bump. Otherwise,
1396 // after the fixup, the compare would use a yet-undefined register.
1397 MachineInstr *BumpI = MRI->getVRegDef(I->first);
1398 bool Order = orderBumpCompare(BumpI, PredDef);
1399 if (!Order)
1400 return false;
1401
1402 // Finally, fix the compare instruction.
1403 setImmediate(*CmpImmOp, CmpImm);
1404 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1405 MachineOperand &MO = PredDef->getOperand(i);
1406 if (MO.isReg() && MO.getReg() == RB.first) {
1407 MO.setReg(I->first);
1408 return true;
1409 }
1410 }
1411 }
1412 }
1413
1414 return false;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001415}
1416
Tony Linthicumb4b54152011-12-12 21:14:40 +00001417
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001418/// \brief Create a preheader for a given loop.
1419MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1420 MachineLoop *L) {
1421 if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
1422 return TmpPH;
1423
1424 MachineBasicBlock *Header = L->getHeader();
1425 MachineBasicBlock *Latch = L->getLoopLatch();
1426 MachineFunction *MF = Header->getParent();
1427 DebugLoc DL;
1428
1429 if (!Latch || Header->hasAddressTaken())
1430 return 0;
1431
1432 typedef MachineBasicBlock::instr_iterator instr_iterator;
1433 typedef MachineBasicBlock::pred_iterator pred_iterator;
1434
1435 // Verify that all existing predecessors have analyzable branches
1436 // (or no branches at all).
1437 typedef std::vector<MachineBasicBlock*> MBBVector;
1438 MBBVector Preds(Header->pred_begin(), Header->pred_end());
1439 SmallVector<MachineOperand,2> Tmp1;
1440 MachineBasicBlock *TB = 0, *FB = 0;
1441
1442 if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
1443 return 0;
1444
1445 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1446 MachineBasicBlock *PB = *I;
1447 if (PB != Latch) {
1448 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
1449 if (NotAnalyzed)
1450 return 0;
1451 }
Tony Linthicumb4b54152011-12-12 21:14:40 +00001452 }
Krzysztof Parzyszek71490fa2013-02-11 21:37:55 +00001453
1454 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1455 MF->insert(Header, NewPH);
1456
1457 if (Header->pred_size() > 2) {
1458 // Ensure that the header has only two predecessors: the preheader and
1459 // the loop latch. Any additional predecessors of the header should
1460 // join at the newly created preheader. Inspect all PHI nodes from the
1461 // header and create appropriate corresponding PHI nodes in the preheader.
1462
1463 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1464 I != E && I->isPHI(); ++I) {
1465 MachineInstr *PN = &*I;
1466
1467 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1468 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1469 NewPH->insert(NewPH->end(), NewPN);
1470
1471 unsigned PR = PN->getOperand(0).getReg();
1472 const TargetRegisterClass *RC = MRI->getRegClass(PR);
1473 unsigned NewPR = MRI->createVirtualRegister(RC);
1474 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1475
1476 // Copy all non-latch operands of a header's PHI node to the newly
1477 // created PHI node in the preheader.
1478 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1479 unsigned PredR = PN->getOperand(i).getReg();
1480 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1481 if (PredB == Latch)
1482 continue;
1483
1484 NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
1485 NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1486 }
1487
1488 // Remove copied operands from the old PHI node and add the value
1489 // coming from the preheader's PHI.
1490 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1491 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1492 if (PredB != Latch) {
1493 PN->RemoveOperand(i+1);
1494 PN->RemoveOperand(i);
1495 }
1496 }
1497 PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1498 PN->addOperand(MachineOperand::CreateMBB(NewPH));
1499 }
1500
1501 } else {
1502 assert(Header->pred_size() == 2);
1503
1504 // The header has only two predecessors, but the non-latch predecessor
1505 // is not a preheader (e.g. it has other successors, etc.)
1506 // In such a case we don't need any extra PHI nodes in the new preheader,
1507 // all we need is to adjust existing PHIs in the header to now refer to
1508 // the new preheader.
1509 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1510 I != E && I->isPHI(); ++I) {
1511 MachineInstr *PN = &*I;
1512 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1513 MachineOperand &MO = PN->getOperand(i+1);
1514 if (MO.getMBB() != Latch)
1515 MO.setMBB(NewPH);
1516 }
1517 }
1518 }
1519
1520 // "Reroute" the CFG edges to link in the new preheader.
1521 // If any of the predecessors falls through to the header, insert a branch
1522 // to the new preheader in that place.
1523 SmallVector<MachineOperand,1> Tmp2;
1524 SmallVector<MachineOperand,1> EmptyCond;
1525
1526 TB = FB = 0;
1527
1528 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1529 MachineBasicBlock *PB = *I;
1530 if (PB != Latch) {
1531 Tmp2.clear();
1532 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
1533 (void)NotAnalyzed; // supress compiler warning
1534 assert (!NotAnalyzed && "Should be analyzable!");
1535 if (TB != Header && (Tmp2.empty() || FB != Header))
1536 TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL);
1537 PB->ReplaceUsesOfBlockWith(Header, NewPH);
1538 }
1539 }
1540
1541 // It can happen that the latch block will fall through into the header.
1542 // Insert an unconditional branch to the header.
1543 TB = FB = 0;
1544 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
1545 (void)LatchNotAnalyzed; // supress compiler warning
1546 assert (!LatchNotAnalyzed && "Should be analyzable!");
1547 if (!TB && !FB)
1548 TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL);
1549
1550 // Finally, the branch from the preheader to the header.
1551 TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL);
1552 NewPH->addSuccessor(Header);
1553
1554 return NewPH;
Tony Linthicumb4b54152011-12-12 21:14:40 +00001555}