blob: 7e9130b0a16bf40c2a99dfb4065ecfb7b73ada31 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
22namespace {
23class X86MCCodeEmitter : public MCCodeEmitter {
24 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
25 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000026 const TargetMachine &TM;
27 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000028 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000029public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000030 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000031 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000032 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000033 }
34
35 ~X86MCCodeEmitter() {}
36
Chris Lattner28249d92010-02-05 01:53:19 +000037 static unsigned GetX86RegNum(const MCOperand &MO) {
38 return X86RegisterInfo::getX86RegNum(MO.getReg());
39 }
40
Chris Lattner92b1dfe2010-02-03 21:43:43 +000041 void EmitByte(unsigned char C, raw_ostream &OS) const {
42 OS << (char)C;
Chris Lattner45762472010-02-03 21:24:49 +000043 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000044
Chris Lattner28249d92010-02-05 01:53:19 +000045 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
46 // Output the constant in little endian byte order.
47 for (unsigned i = 0; i != Size; ++i) {
48 EmitByte(Val & 255, OS);
49 Val >>= 8;
50 }
51 }
Chris Lattner0e73c392010-02-05 06:16:07 +000052
53 void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
54 int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000055
56 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
57 unsigned RM) {
58 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
59 return RM | (RegOpcode << 3) | (Mod << 6);
60 }
61
62 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
63 raw_ostream &OS) const {
64 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
65 }
66
Chris Lattner0e73c392010-02-05 06:16:07 +000067 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
68 raw_ostream &OS) const {
69 // SIB byte is in the same format as the ModRMByte...
70 EmitByte(ModRMByte(SS, Index, Base), OS);
71 }
72
73
Chris Lattner1ac23b12010-02-05 02:18:40 +000074 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
75 unsigned RegOpcodeField, intptr_t PCAdj,
76 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000077
Chris Lattner92b1dfe2010-02-03 21:43:43 +000078 void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
79
Chris Lattner45762472010-02-03 21:24:49 +000080};
81
82} // end anonymous namespace
83
84
Chris Lattner00cb3fe2010-02-05 21:51:35 +000085MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
86 TargetMachine &TM) {
87 return new X86MCCodeEmitter(TM, false);
88}
89
90MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
91 TargetMachine &TM) {
92 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +000093}
94
95
Chris Lattner1ac23b12010-02-05 02:18:40 +000096/// isDisp8 - Return true if this signed displacement fits in a 8-bit
97/// sign-extended field.
98static bool isDisp8(int Value) {
99 return Value == (signed char)Value;
100}
101
Chris Lattner0e73c392010-02-05 06:16:07 +0000102void X86MCCodeEmitter::
103EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
104 int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
105 // If this is a simple integer displacement that doesn't require a relocation,
106 // emit it now.
107 if (!RelocOp) {
108 EmitConstant(DispVal, 4, OS);
109 return;
110 }
111
112 assert(0 && "Reloc not handled yet");
113#if 0
114 // Otherwise, this is something that requires a relocation. Emit it as such
115 // now.
116 unsigned RelocType = Is64BitMode ?
117 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
118 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
119 if (RelocOp->isGlobal()) {
120 // In 64-bit static small code model, we could potentially emit absolute.
121 // But it's probably not beneficial. If the MCE supports using RIP directly
122 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
123 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
124 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
125 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
126 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
127 Adj, Indirect);
128 } else if (RelocOp->isSymbol()) {
129 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
130 } else if (RelocOp->isCPI()) {
131 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
132 RelocOp->getOffset(), Adj);
133 } else {
134 assert(RelocOp->isJTI() && "Unexpected machine operand!");
135 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
136 }
137#endif
138}
139
140
Chris Lattner1ac23b12010-02-05 02:18:40 +0000141void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
142 unsigned RegOpcodeField,
143 intptr_t PCAdj,
144 raw_ostream &OS) const {
145 const MCOperand &Op3 = MI.getOperand(Op+3);
146 int DispVal = 0;
147 const MCOperand *DispForReloc = 0;
148
149 // Figure out what sort of displacement we have to handle here.
150 if (Op3.isImm()) {
151 DispVal = Op3.getImm();
152 } else {
Chris Lattnerdaa45552010-02-05 19:04:37 +0000153 assert(0 && "relocatable operand");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000154#if 0
155 if (Op3.isGlobal()) {
156 DispForReloc = &Op3;
157 } else if (Op3.isSymbol()) {
158 DispForReloc = &Op3;
159 } else if (Op3.isCPI()) {
160 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
161 DispForReloc = &Op3;
162 } else {
163 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
164 DispVal += Op3.getOffset();
165 }
166 } else {
167 assert(Op3.isJTI());
168 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
169 DispForReloc = &Op3;
170 } else {
171 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
172 }
173#endif
174 }
175
176 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000177 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000178 const MCOperand &IndexReg = MI.getOperand(Op+2);
179 unsigned BaseReg = Base.getReg();
180
Chris Lattner0e73c392010-02-05 06:16:07 +0000181 // FIXME: Eliminate!
182 bool IsPCRel = false;
Chris Lattnera8168ec2010-02-09 21:57:34 +0000183
184 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000185 // If no BaseReg, issue a RIP relative instruction only if the MCE can
186 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
187 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000188 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000189 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000190 // The SIB byte must be used if the base is ESP/RSP.
191 BaseReg != X86::ESP && BaseReg != X86::RSP &&
192 // If there is no base register and we're in 64-bit mode, we need a SIB
193 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
194 (!Is64BitMode || BaseReg != 0)) {
195
196 if (BaseReg == 0 || // [disp32] in X86-32 mode
197 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner1ac23b12010-02-05 02:18:40 +0000198 EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000199 EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000200 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000201 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000202
203 unsigned BaseRegNo = GetX86RegNum(Base);
204
205 // If the base is not EBP/ESP and there is no displacement, use simple
206 // indirect register encoding, this handles addresses like [EAX]. The
207 // encoding for [EBP] with no displacement means [disp32] so we handle it
208 // by emitting a displacement of 0 below.
209 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
210 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
211 return;
212 }
213
214 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
215 if (!DispForReloc && isDisp8(DispVal)) {
216 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
217 EmitConstant(DispVal, 1, OS);
218 return;
219 }
220
221 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
222 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
223 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000224 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000225 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000226
227 // We need a SIB byte, so start by outputting the ModR/M byte first
228 assert(IndexReg.getReg() != X86::ESP &&
229 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
230
231 bool ForceDisp32 = false;
232 bool ForceDisp8 = false;
233 if (BaseReg == 0) {
234 // If there is no base register, we emit the special case SIB byte with
235 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
236 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
237 ForceDisp32 = true;
238 } else if (DispForReloc) {
239 // Emit the normal disp32 encoding.
240 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
241 ForceDisp32 = true;
242 } else if (DispVal == 0 && BaseReg != X86::EBP) {
243 // Emit no displacement ModR/M byte
244 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
245 } else if (isDisp8(DispVal)) {
246 // Emit the disp8 encoding.
247 EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
248 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
249 } else {
250 // Emit the normal disp32 encoding.
251 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
252 }
253
254 // Calculate what the SS field value should be...
255 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
256 unsigned SS = SSTable[Scale.getImm()];
257
258 if (BaseReg == 0) {
259 // Handle the SIB byte for the case where there is no base, see Intel
260 // Manual 2A, table 2-7. The displacement has already been output.
261 unsigned IndexRegNo;
262 if (IndexReg.getReg())
263 IndexRegNo = GetX86RegNum(IndexReg);
264 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
265 IndexRegNo = 4;
266 EmitSIBByte(SS, IndexRegNo, 5, OS);
267 } else {
268 unsigned IndexRegNo;
269 if (IndexReg.getReg())
270 IndexRegNo = GetX86RegNum(IndexReg);
271 else
272 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
273 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
274 }
275
276 // Do we need to output a displacement?
277 if (ForceDisp8)
278 EmitConstant(DispVal, 1, OS);
279 else if (DispVal != 0 || ForceDisp32)
280 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000281}
282
Chris Lattner39a612e2010-02-05 22:10:22 +0000283/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
284/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
285/// size, and 3) use of X86-64 extended registers.
286static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
287 const TargetInstrDesc &Desc) {
288 unsigned REX = 0;
289
290 // Pseudo instructions do not need REX prefix byte.
291 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
292 return 0;
293 if (TSFlags & X86II::REX_W)
294 REX |= 1 << 3;
295
296 if (MI.getNumOperands() == 0) return REX;
297
298 unsigned NumOps = MI.getNumOperands();
299 // FIXME: MCInst should explicitize the two-addrness.
300 bool isTwoAddr = NumOps > 1 &&
301 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
302
303 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
304 unsigned i = isTwoAddr ? 1 : 0;
305 for (; i != NumOps; ++i) {
306 const MCOperand &MO = MI.getOperand(i);
307 if (!MO.isReg()) continue;
308 unsigned Reg = MO.getReg();
309 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000310 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
311 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000312 REX |= 0x40;
313 break;
314 }
315
316 switch (TSFlags & X86II::FormMask) {
317 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
318 case X86II::MRMSrcReg:
319 if (MI.getOperand(0).isReg() &&
320 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
321 REX |= 1 << 2;
322 i = isTwoAddr ? 2 : 1;
323 for (; i != NumOps; ++i) {
324 const MCOperand &MO = MI.getOperand(i);
325 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
326 REX |= 1 << 0;
327 }
328 break;
329 case X86II::MRMSrcMem: {
330 if (MI.getOperand(0).isReg() &&
331 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
332 REX |= 1 << 2;
333 unsigned Bit = 0;
334 i = isTwoAddr ? 2 : 1;
335 for (; i != NumOps; ++i) {
336 const MCOperand &MO = MI.getOperand(i);
337 if (MO.isReg()) {
338 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
339 REX |= 1 << Bit;
340 Bit++;
341 }
342 }
343 break;
344 }
345 case X86II::MRM0m: case X86II::MRM1m:
346 case X86II::MRM2m: case X86II::MRM3m:
347 case X86II::MRM4m: case X86II::MRM5m:
348 case X86II::MRM6m: case X86II::MRM7m:
349 case X86II::MRMDestMem: {
350 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
351 i = isTwoAddr ? 1 : 0;
352 if (NumOps > e && MI.getOperand(e).isReg() &&
353 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
354 REX |= 1 << 2;
355 unsigned Bit = 0;
356 for (; i != e; ++i) {
357 const MCOperand &MO = MI.getOperand(i);
358 if (MO.isReg()) {
359 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
360 REX |= 1 << Bit;
361 Bit++;
362 }
363 }
364 break;
365 }
366 default:
367 if (MI.getOperand(0).isReg() &&
368 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
369 REX |= 1 << 0;
370 i = isTwoAddr ? 2 : 1;
371 for (unsigned e = NumOps; i != e; ++i) {
372 const MCOperand &MO = MI.getOperand(i);
373 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
374 REX |= 1 << 2;
375 }
376 break;
377 }
378 return REX;
379}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000380
381void X86MCCodeEmitter::
382EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
383 unsigned Opcode = MI.getOpcode();
384 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000385 unsigned TSFlags = Desc.TSFlags;
386
387 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
388 // in order to provide diffability.
389
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000390 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000391 if (TSFlags & X86II::LOCK)
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000392 EmitByte(0xF0, OS);
393
394 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000395 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000396 default: assert(0 && "Invalid segment!");
397 case 0: break; // No segment override!
398 case X86II::FS:
399 EmitByte(0x64, OS);
400 break;
401 case X86II::GS:
402 EmitByte(0x65, OS);
403 break;
404 }
405
Chris Lattner1e80f402010-02-03 21:57:59 +0000406 // Emit the repeat opcode prefix as needed.
407 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
408 EmitByte(0xF3, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000409
Chris Lattner1e80f402010-02-03 21:57:59 +0000410 // Emit the operand size opcode prefix as needed.
411 if (TSFlags & X86II::OpSize)
412 EmitByte(0x66, OS);
413
414 // Emit the address size opcode prefix as needed.
415 if (TSFlags & X86II::AdSize)
416 EmitByte(0x67, OS);
417
418 bool Need0FPrefix = false;
419 switch (TSFlags & X86II::Op0Mask) {
420 default: assert(0 && "Invalid prefix!");
421 case 0: break; // No prefix!
422 case X86II::REP: break; // already handled.
423 case X86II::TB: // Two-byte opcode prefix
424 case X86II::T8: // 0F 38
425 case X86II::TA: // 0F 3A
426 Need0FPrefix = true;
427 break;
428 case X86II::TF: // F2 0F 38
429 EmitByte(0xF2, OS);
430 Need0FPrefix = true;
431 break;
432 case X86II::XS: // F3 0F
433 EmitByte(0xF3, OS);
434 Need0FPrefix = true;
435 break;
436 case X86II::XD: // F2 0F
437 EmitByte(0xF2, OS);
438 Need0FPrefix = true;
439 break;
440 case X86II::D8: EmitByte(0xD8, OS); break;
441 case X86II::D9: EmitByte(0xD9, OS); break;
442 case X86II::DA: EmitByte(0xDA, OS); break;
443 case X86II::DB: EmitByte(0xDB, OS); break;
444 case X86II::DC: EmitByte(0xDC, OS); break;
445 case X86II::DD: EmitByte(0xDD, OS); break;
446 case X86II::DE: EmitByte(0xDE, OS); break;
447 case X86II::DF: EmitByte(0xDF, OS); break;
448 }
449
450 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000451 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000452 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000453 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner1e80f402010-02-03 21:57:59 +0000454 EmitByte(0x40 | REX, OS);
455 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000456
457 // 0x0F escape code must be emitted just before the opcode.
458 if (Need0FPrefix)
459 EmitByte(0x0F, OS);
460
461 // FIXME: Pull this up into previous switch if REX can be moved earlier.
462 switch (TSFlags & X86II::Op0Mask) {
463 case X86II::TF: // F2 0F 38
464 case X86II::T8: // 0F 38
465 EmitByte(0x38, OS);
466 break;
467 case X86II::TA: // 0F 3A
468 EmitByte(0x3A, OS);
469 break;
470 }
471
472 // If this is a two-address instruction, skip one of the register operands.
473 unsigned NumOps = Desc.getNumOperands();
474 unsigned CurOp = 0;
475 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
476 ++CurOp;
477 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
478 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
479 --NumOps;
480
Chris Lattner74a21512010-02-05 19:24:13 +0000481 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000482 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000483 case X86II::MRMInitReg:
484 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000485 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
486 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000487 case X86II::RawFrm: {
488 EmitByte(BaseOpcode, OS);
489
490 if (CurOp == NumOps)
491 break;
492
Chris Lattner28249d92010-02-05 01:53:19 +0000493 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000494 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000495 }
Chris Lattner28249d92010-02-05 01:53:19 +0000496
497 case X86II::AddRegFrm: {
498 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
499 if (CurOp == NumOps)
500 break;
501
502 const MCOperand &MO1 = MI.getOperand(CurOp++);
503 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000504 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner28249d92010-02-05 01:53:19 +0000505 EmitConstant(MO1.getImm(), Size, OS);
506 break;
507 }
508
509 assert(0 && "Unimpl AddRegFrm expr");
510 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000511 }
Chris Lattner28249d92010-02-05 01:53:19 +0000512
513 case X86II::MRMDestReg:
514 EmitByte(BaseOpcode, OS);
515 EmitRegModRMByte(MI.getOperand(CurOp),
516 GetX86RegNum(MI.getOperand(CurOp+1)), OS);
517 CurOp += 2;
518 if (CurOp != NumOps)
519 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000520 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000521 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000522
523 case X86II::MRMDestMem:
524 EmitByte(BaseOpcode, OS);
525 EmitMemModRMByte(MI, CurOp,
526 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
527 0, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000528 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000529 if (CurOp != NumOps)
530 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000531 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000532 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000533
534 case X86II::MRMSrcReg:
535 EmitByte(BaseOpcode, OS);
536 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
537 OS);
538 CurOp += 2;
539 if (CurOp != NumOps)
540 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000541 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000542 break;
543
544 case X86II::MRMSrcMem: {
545 EmitByte(BaseOpcode, OS);
546
547 // FIXME: Maybe lea should have its own form? This is a horrible hack.
548 int AddrOperands;
549 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
550 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
551 AddrOperands = X86AddrNumOperands - 1; // No segment register
552 else
553 AddrOperands = X86AddrNumOperands;
554
555 // FIXME: What is this actually doing?
556 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
Chris Lattner74a21512010-02-05 19:24:13 +0000557 X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000558
559 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
560 PCAdj, OS);
561 CurOp += AddrOperands + 1;
562 if (CurOp != NumOps)
563 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000564 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000565 break;
566 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000567
568 case X86II::MRM0r: case X86II::MRM1r:
569 case X86II::MRM2r: case X86II::MRM3r:
570 case X86II::MRM4r: case X86II::MRM5r:
571 case X86II::MRM6r: case X86II::MRM7r: {
572 EmitByte(BaseOpcode, OS);
573
574 // Special handling of lfence, mfence, monitor, and mwait.
575 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
576 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
577 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
578 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS);
579
580 switch (Opcode) {
581 default: break;
582 case X86::MONITOR: EmitByte(0xC8, OS); break;
583 case X86::MWAIT: EmitByte(0xC9, OS); break;
584 }
585 } else {
586 EmitRegModRMByte(MI.getOperand(CurOp++),
587 (TSFlags & X86II::FormMask)-X86II::MRM0r,
588 OS);
589 }
590
591 if (CurOp == NumOps)
592 break;
593
594 const MCOperand &MO1 = MI.getOperand(CurOp++);
595 if (MO1.isImm()) {
596 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS);
597 break;
598 }
599
600 assert(0 && "relo unimpl");
601#if 0
602 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
603 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
604 if (Opcode == X86::MOV64ri32)
605 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
606 if (MO1.isGlobal()) {
607 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
608 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
609 Indirect);
610 } else if (MO1.isSymbol())
611 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
612 else if (MO1.isCPI())
613 emitConstPoolAddress(MO1.getIndex(), rt);
614 else if (MO1.isJTI())
615 emitJumpTableAddress(MO1.getIndex(), rt);
616 break;
617#endif
618 }
619 case X86II::MRM0m: case X86II::MRM1m:
620 case X86II::MRM2m: case X86II::MRM3m:
621 case X86II::MRM4m: case X86II::MRM5m:
622 case X86II::MRM6m: case X86II::MRM7m: {
623 intptr_t PCAdj = 0;
624 if (CurOp + X86AddrNumOperands != NumOps) {
625 if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
626 PCAdj = X86II::getSizeOfImm(TSFlags);
627 else
628 PCAdj = 4;
629 }
630
631 EmitByte(BaseOpcode, OS);
632 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
633 PCAdj, OS);
634 CurOp += X86AddrNumOperands;
635
636 if (CurOp == NumOps)
637 break;
638
639 const MCOperand &MO = MI.getOperand(CurOp++);
640 if (MO.isImm()) {
641 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS);
642 break;
643 }
644
645 assert(0 && "relo not handled");
646#if 0
647 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
648 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
649 if (Opcode == X86::MOV64mi32)
650 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
651 if (MO.isGlobal()) {
652 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
653 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
654 Indirect);
655 } else if (MO.isSymbol())
656 emitExternalSymbolAddress(MO.getSymbolName(), rt);
657 else if (MO.isCPI())
658 emitConstPoolAddress(MO.getIndex(), rt);
659 else if (MO.isJTI())
660 emitJumpTableAddress(MO.getIndex(), rt);
661#endif
662 break;
663 }
Chris Lattner28249d92010-02-05 01:53:19 +0000664 }
665
666#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000667 // FIXME: Verify.
668 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000669 errs() << "Cannot encode all operands of: ";
670 MI.dump();
671 errs() << '\n';
672 abort();
673 }
674#endif
Chris Lattner45762472010-02-03 21:24:49 +0000675}