blob: 4d82d2b63755c9293d1f7793b6a4f172e97422dd [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
22namespace {
23class X86MCCodeEmitter : public MCCodeEmitter {
24 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
25 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000026 const TargetMachine &TM;
27 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000028 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000029public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000030 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000031 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000032 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000033 }
34
35 ~X86MCCodeEmitter() {}
36
Chris Lattner28249d92010-02-05 01:53:19 +000037 static unsigned GetX86RegNum(const MCOperand &MO) {
38 return X86RegisterInfo::getX86RegNum(MO.getReg());
39 }
40
Chris Lattner92b1dfe2010-02-03 21:43:43 +000041 void EmitByte(unsigned char C, raw_ostream &OS) const {
42 OS << (char)C;
Chris Lattner45762472010-02-03 21:24:49 +000043 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000044
Chris Lattner28249d92010-02-05 01:53:19 +000045 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
46 // Output the constant in little endian byte order.
47 for (unsigned i = 0; i != Size; ++i) {
48 EmitByte(Val & 255, OS);
49 Val >>= 8;
50 }
51 }
Chris Lattner0e73c392010-02-05 06:16:07 +000052
53 void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
54 int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000055
56 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
57 unsigned RM) {
58 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
59 return RM | (RegOpcode << 3) | (Mod << 6);
60 }
61
62 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
63 raw_ostream &OS) const {
64 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
65 }
66
Chris Lattner0e73c392010-02-05 06:16:07 +000067 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
68 raw_ostream &OS) const {
69 // SIB byte is in the same format as the ModRMByte...
70 EmitByte(ModRMByte(SS, Index, Base), OS);
71 }
72
73
Chris Lattner1ac23b12010-02-05 02:18:40 +000074 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
75 unsigned RegOpcodeField, intptr_t PCAdj,
76 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000077
Chris Lattner92b1dfe2010-02-03 21:43:43 +000078 void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
79
Chris Lattner45762472010-02-03 21:24:49 +000080};
81
82} // end anonymous namespace
83
84
Chris Lattner00cb3fe2010-02-05 21:51:35 +000085MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
86 TargetMachine &TM) {
87 return new X86MCCodeEmitter(TM, false);
88}
89
90MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
91 TargetMachine &TM) {
92 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +000093}
94
95
Chris Lattner1ac23b12010-02-05 02:18:40 +000096/// isDisp8 - Return true if this signed displacement fits in a 8-bit
97/// sign-extended field.
98static bool isDisp8(int Value) {
99 return Value == (signed char)Value;
100}
101
Chris Lattner0e73c392010-02-05 06:16:07 +0000102void X86MCCodeEmitter::
103EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
104 int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
105 // If this is a simple integer displacement that doesn't require a relocation,
106 // emit it now.
107 if (!RelocOp) {
108 EmitConstant(DispVal, 4, OS);
109 return;
110 }
111
112 assert(0 && "Reloc not handled yet");
113#if 0
114 // Otherwise, this is something that requires a relocation. Emit it as such
115 // now.
116 unsigned RelocType = Is64BitMode ?
117 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
118 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
119 if (RelocOp->isGlobal()) {
120 // In 64-bit static small code model, we could potentially emit absolute.
121 // But it's probably not beneficial. If the MCE supports using RIP directly
122 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
123 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
124 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
125 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
126 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
127 Adj, Indirect);
128 } else if (RelocOp->isSymbol()) {
129 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
130 } else if (RelocOp->isCPI()) {
131 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
132 RelocOp->getOffset(), Adj);
133 } else {
134 assert(RelocOp->isJTI() && "Unexpected machine operand!");
135 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
136 }
137#endif
138}
139
140
Chris Lattner1ac23b12010-02-05 02:18:40 +0000141void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
142 unsigned RegOpcodeField,
143 intptr_t PCAdj,
144 raw_ostream &OS) const {
145 const MCOperand &Op3 = MI.getOperand(Op+3);
146 int DispVal = 0;
147 const MCOperand *DispForReloc = 0;
148
149 // Figure out what sort of displacement we have to handle here.
150 if (Op3.isImm()) {
151 DispVal = Op3.getImm();
152 } else {
Chris Lattnerdaa45552010-02-05 19:04:37 +0000153 assert(0 && "relocatable operand");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000154#if 0
155 if (Op3.isGlobal()) {
156 DispForReloc = &Op3;
157 } else if (Op3.isSymbol()) {
158 DispForReloc = &Op3;
159 } else if (Op3.isCPI()) {
160 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
161 DispForReloc = &Op3;
162 } else {
163 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
164 DispVal += Op3.getOffset();
165 }
166 } else {
167 assert(Op3.isJTI());
168 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
169 DispForReloc = &Op3;
170 } else {
171 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
172 }
173#endif
174 }
175
176 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000177 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000178 const MCOperand &IndexReg = MI.getOperand(Op+2);
179 unsigned BaseReg = Base.getReg();
180
Chris Lattner0e73c392010-02-05 06:16:07 +0000181 // FIXME: Eliminate!
182 bool IsPCRel = false;
183
Chris Lattner1ac23b12010-02-05 02:18:40 +0000184 // Is a SIB byte needed?
185 // If no BaseReg, issue a RIP relative instruction only if the MCE can
186 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
187 // 2-7) and absolute references.
188 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
189 IndexReg.getReg() == 0 &&
190 (BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
191 if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
192 // Emit special case [disp32] encoding
193 EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000194 EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000195 } else {
196 unsigned BaseRegNo = GetX86RegNum(Base);
197 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
198 // Emit simple indirect register encoding... [EAX] f.e.
199 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
200 } else if (!DispForReloc && isDisp8(DispVal)) {
201 // Emit the disp8 encoding... [REG+disp8]
202 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
203 EmitConstant(DispVal, 1, OS);
204 } else {
205 // Emit the most general non-SIB encoding: [REG+disp32]
206 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000207 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000208 }
209 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000210 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000211 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000212
213 // We need a SIB byte, so start by outputting the ModR/M byte first
214 assert(IndexReg.getReg() != X86::ESP &&
215 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
216
217 bool ForceDisp32 = false;
218 bool ForceDisp8 = false;
219 if (BaseReg == 0) {
220 // If there is no base register, we emit the special case SIB byte with
221 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
222 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
223 ForceDisp32 = true;
224 } else if (DispForReloc) {
225 // Emit the normal disp32 encoding.
226 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
227 ForceDisp32 = true;
228 } else if (DispVal == 0 && BaseReg != X86::EBP) {
229 // Emit no displacement ModR/M byte
230 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
231 } else if (isDisp8(DispVal)) {
232 // Emit the disp8 encoding.
233 EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
234 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
235 } else {
236 // Emit the normal disp32 encoding.
237 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
238 }
239
240 // Calculate what the SS field value should be...
241 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
242 unsigned SS = SSTable[Scale.getImm()];
243
244 if (BaseReg == 0) {
245 // Handle the SIB byte for the case where there is no base, see Intel
246 // Manual 2A, table 2-7. The displacement has already been output.
247 unsigned IndexRegNo;
248 if (IndexReg.getReg())
249 IndexRegNo = GetX86RegNum(IndexReg);
250 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
251 IndexRegNo = 4;
252 EmitSIBByte(SS, IndexRegNo, 5, OS);
253 } else {
254 unsigned IndexRegNo;
255 if (IndexReg.getReg())
256 IndexRegNo = GetX86RegNum(IndexReg);
257 else
258 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
259 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
260 }
261
262 // Do we need to output a displacement?
263 if (ForceDisp8)
264 EmitConstant(DispVal, 1, OS);
265 else if (DispVal != 0 || ForceDisp32)
266 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000267}
268
Chris Lattner39a612e2010-02-05 22:10:22 +0000269/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
270/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
271/// size, and 3) use of X86-64 extended registers.
272static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
273 const TargetInstrDesc &Desc) {
274 unsigned REX = 0;
275
276 // Pseudo instructions do not need REX prefix byte.
277 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
278 return 0;
279 if (TSFlags & X86II::REX_W)
280 REX |= 1 << 3;
281
282 if (MI.getNumOperands() == 0) return REX;
283
284 unsigned NumOps = MI.getNumOperands();
285 // FIXME: MCInst should explicitize the two-addrness.
286 bool isTwoAddr = NumOps > 1 &&
287 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
288
289 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
290 unsigned i = isTwoAddr ? 1 : 0;
291 for (; i != NumOps; ++i) {
292 const MCOperand &MO = MI.getOperand(i);
293 if (!MO.isReg()) continue;
294 unsigned Reg = MO.getReg();
295 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000296 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
297 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000298 REX |= 0x40;
299 break;
300 }
301
302 switch (TSFlags & X86II::FormMask) {
303 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
304 case X86II::MRMSrcReg:
305 if (MI.getOperand(0).isReg() &&
306 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
307 REX |= 1 << 2;
308 i = isTwoAddr ? 2 : 1;
309 for (; i != NumOps; ++i) {
310 const MCOperand &MO = MI.getOperand(i);
311 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
312 REX |= 1 << 0;
313 }
314 break;
315 case X86II::MRMSrcMem: {
316 if (MI.getOperand(0).isReg() &&
317 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
318 REX |= 1 << 2;
319 unsigned Bit = 0;
320 i = isTwoAddr ? 2 : 1;
321 for (; i != NumOps; ++i) {
322 const MCOperand &MO = MI.getOperand(i);
323 if (MO.isReg()) {
324 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
325 REX |= 1 << Bit;
326 Bit++;
327 }
328 }
329 break;
330 }
331 case X86II::MRM0m: case X86II::MRM1m:
332 case X86II::MRM2m: case X86II::MRM3m:
333 case X86II::MRM4m: case X86II::MRM5m:
334 case X86II::MRM6m: case X86II::MRM7m:
335 case X86II::MRMDestMem: {
336 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
337 i = isTwoAddr ? 1 : 0;
338 if (NumOps > e && MI.getOperand(e).isReg() &&
339 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
340 REX |= 1 << 2;
341 unsigned Bit = 0;
342 for (; i != e; ++i) {
343 const MCOperand &MO = MI.getOperand(i);
344 if (MO.isReg()) {
345 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
346 REX |= 1 << Bit;
347 Bit++;
348 }
349 }
350 break;
351 }
352 default:
353 if (MI.getOperand(0).isReg() &&
354 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
355 REX |= 1 << 0;
356 i = isTwoAddr ? 2 : 1;
357 for (unsigned e = NumOps; i != e; ++i) {
358 const MCOperand &MO = MI.getOperand(i);
359 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
360 REX |= 1 << 2;
361 }
362 break;
363 }
364 return REX;
365}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000366
367void X86MCCodeEmitter::
368EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
369 unsigned Opcode = MI.getOpcode();
370 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000371 unsigned TSFlags = Desc.TSFlags;
372
373 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
374 // in order to provide diffability.
375
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000376 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000377 if (TSFlags & X86II::LOCK)
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000378 EmitByte(0xF0, OS);
379
380 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000381 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000382 default: assert(0 && "Invalid segment!");
383 case 0: break; // No segment override!
384 case X86II::FS:
385 EmitByte(0x64, OS);
386 break;
387 case X86II::GS:
388 EmitByte(0x65, OS);
389 break;
390 }
391
Chris Lattner1e80f402010-02-03 21:57:59 +0000392 // Emit the repeat opcode prefix as needed.
393 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
394 EmitByte(0xF3, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000395
Chris Lattner1e80f402010-02-03 21:57:59 +0000396 // Emit the operand size opcode prefix as needed.
397 if (TSFlags & X86II::OpSize)
398 EmitByte(0x66, OS);
399
400 // Emit the address size opcode prefix as needed.
401 if (TSFlags & X86II::AdSize)
402 EmitByte(0x67, OS);
403
404 bool Need0FPrefix = false;
405 switch (TSFlags & X86II::Op0Mask) {
406 default: assert(0 && "Invalid prefix!");
407 case 0: break; // No prefix!
408 case X86II::REP: break; // already handled.
409 case X86II::TB: // Two-byte opcode prefix
410 case X86II::T8: // 0F 38
411 case X86II::TA: // 0F 3A
412 Need0FPrefix = true;
413 break;
414 case X86II::TF: // F2 0F 38
415 EmitByte(0xF2, OS);
416 Need0FPrefix = true;
417 break;
418 case X86II::XS: // F3 0F
419 EmitByte(0xF3, OS);
420 Need0FPrefix = true;
421 break;
422 case X86II::XD: // F2 0F
423 EmitByte(0xF2, OS);
424 Need0FPrefix = true;
425 break;
426 case X86II::D8: EmitByte(0xD8, OS); break;
427 case X86II::D9: EmitByte(0xD9, OS); break;
428 case X86II::DA: EmitByte(0xDA, OS); break;
429 case X86II::DB: EmitByte(0xDB, OS); break;
430 case X86II::DC: EmitByte(0xDC, OS); break;
431 case X86II::DD: EmitByte(0xDD, OS); break;
432 case X86II::DE: EmitByte(0xDE, OS); break;
433 case X86II::DF: EmitByte(0xDF, OS); break;
434 }
435
436 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000437 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000438 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000439 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner1e80f402010-02-03 21:57:59 +0000440 EmitByte(0x40 | REX, OS);
441 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000442
443 // 0x0F escape code must be emitted just before the opcode.
444 if (Need0FPrefix)
445 EmitByte(0x0F, OS);
446
447 // FIXME: Pull this up into previous switch if REX can be moved earlier.
448 switch (TSFlags & X86II::Op0Mask) {
449 case X86II::TF: // F2 0F 38
450 case X86II::T8: // 0F 38
451 EmitByte(0x38, OS);
452 break;
453 case X86II::TA: // 0F 3A
454 EmitByte(0x3A, OS);
455 break;
456 }
457
458 // If this is a two-address instruction, skip one of the register operands.
459 unsigned NumOps = Desc.getNumOperands();
460 unsigned CurOp = 0;
461 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
462 ++CurOp;
463 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
464 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
465 --NumOps;
466
Chris Lattner74a21512010-02-05 19:24:13 +0000467 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000468 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000469 case X86II::MRMInitReg:
470 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000471 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
472 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000473 case X86II::RawFrm: {
474 EmitByte(BaseOpcode, OS);
475
476 if (CurOp == NumOps)
477 break;
478
Chris Lattner28249d92010-02-05 01:53:19 +0000479 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000480 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000481 }
Chris Lattner28249d92010-02-05 01:53:19 +0000482
483 case X86II::AddRegFrm: {
484 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
485 if (CurOp == NumOps)
486 break;
487
488 const MCOperand &MO1 = MI.getOperand(CurOp++);
489 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000490 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner28249d92010-02-05 01:53:19 +0000491 EmitConstant(MO1.getImm(), Size, OS);
492 break;
493 }
494
495 assert(0 && "Unimpl AddRegFrm expr");
496 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000497 }
Chris Lattner28249d92010-02-05 01:53:19 +0000498
499 case X86II::MRMDestReg:
500 EmitByte(BaseOpcode, OS);
501 EmitRegModRMByte(MI.getOperand(CurOp),
502 GetX86RegNum(MI.getOperand(CurOp+1)), OS);
503 CurOp += 2;
504 if (CurOp != NumOps)
505 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000506 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000507 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000508
509 case X86II::MRMDestMem:
510 EmitByte(BaseOpcode, OS);
511 EmitMemModRMByte(MI, CurOp,
512 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
513 0, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000514 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000515 if (CurOp != NumOps)
516 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000517 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000518 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000519
520 case X86II::MRMSrcReg:
521 EmitByte(BaseOpcode, OS);
522 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
523 OS);
524 CurOp += 2;
525 if (CurOp != NumOps)
526 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000527 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000528 break;
529
530 case X86II::MRMSrcMem: {
531 EmitByte(BaseOpcode, OS);
532
533 // FIXME: Maybe lea should have its own form? This is a horrible hack.
534 int AddrOperands;
535 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
536 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
537 AddrOperands = X86AddrNumOperands - 1; // No segment register
538 else
539 AddrOperands = X86AddrNumOperands;
540
541 // FIXME: What is this actually doing?
542 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
Chris Lattner74a21512010-02-05 19:24:13 +0000543 X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000544
545 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
546 PCAdj, OS);
547 CurOp += AddrOperands + 1;
548 if (CurOp != NumOps)
549 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner74a21512010-02-05 19:24:13 +0000550 X86II::getSizeOfImm(TSFlags), OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000551 break;
552 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000553
554 case X86II::MRM0r: case X86II::MRM1r:
555 case X86II::MRM2r: case X86II::MRM3r:
556 case X86II::MRM4r: case X86II::MRM5r:
557 case X86II::MRM6r: case X86II::MRM7r: {
558 EmitByte(BaseOpcode, OS);
559
560 // Special handling of lfence, mfence, monitor, and mwait.
561 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
562 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
563 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
564 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS);
565
566 switch (Opcode) {
567 default: break;
568 case X86::MONITOR: EmitByte(0xC8, OS); break;
569 case X86::MWAIT: EmitByte(0xC9, OS); break;
570 }
571 } else {
572 EmitRegModRMByte(MI.getOperand(CurOp++),
573 (TSFlags & X86II::FormMask)-X86II::MRM0r,
574 OS);
575 }
576
577 if (CurOp == NumOps)
578 break;
579
580 const MCOperand &MO1 = MI.getOperand(CurOp++);
581 if (MO1.isImm()) {
582 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS);
583 break;
584 }
585
586 assert(0 && "relo unimpl");
587#if 0
588 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
589 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
590 if (Opcode == X86::MOV64ri32)
591 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
592 if (MO1.isGlobal()) {
593 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
594 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
595 Indirect);
596 } else if (MO1.isSymbol())
597 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
598 else if (MO1.isCPI())
599 emitConstPoolAddress(MO1.getIndex(), rt);
600 else if (MO1.isJTI())
601 emitJumpTableAddress(MO1.getIndex(), rt);
602 break;
603#endif
604 }
605 case X86II::MRM0m: case X86II::MRM1m:
606 case X86II::MRM2m: case X86II::MRM3m:
607 case X86II::MRM4m: case X86II::MRM5m:
608 case X86II::MRM6m: case X86II::MRM7m: {
609 intptr_t PCAdj = 0;
610 if (CurOp + X86AddrNumOperands != NumOps) {
611 if (MI.getOperand(CurOp+X86AddrNumOperands).isImm())
612 PCAdj = X86II::getSizeOfImm(TSFlags);
613 else
614 PCAdj = 4;
615 }
616
617 EmitByte(BaseOpcode, OS);
618 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
619 PCAdj, OS);
620 CurOp += X86AddrNumOperands;
621
622 if (CurOp == NumOps)
623 break;
624
625 const MCOperand &MO = MI.getOperand(CurOp++);
626 if (MO.isImm()) {
627 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS);
628 break;
629 }
630
631 assert(0 && "relo not handled");
632#if 0
633 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
634 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
635 if (Opcode == X86::MOV64mi32)
636 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
637 if (MO.isGlobal()) {
638 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
639 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
640 Indirect);
641 } else if (MO.isSymbol())
642 emitExternalSymbolAddress(MO.getSymbolName(), rt);
643 else if (MO.isCPI())
644 emitConstPoolAddress(MO.getIndex(), rt);
645 else if (MO.isJTI())
646 emitJumpTableAddress(MO.getIndex(), rt);
647#endif
648 break;
649 }
Chris Lattner28249d92010-02-05 01:53:19 +0000650 }
651
652#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000653 // FIXME: Verify.
654 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000655 errs() << "Cannot encode all operands of: ";
656 MI.dump();
657 errs() << '\n';
658 abort();
659 }
660#endif
Chris Lattner45762472010-02-03 21:24:49 +0000661}