blob: c479f651ade79eb4329a6e14b62c0b5358bce5cc [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
Shih-wei Liao7abe37e2010-04-28 01:47:00 -070016#include "SDNodeDbgValue.h"
Shih-wei Liaoe264f622010-02-10 11:10:31 -080017#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58 SDVTList Res = {VTs, NumVTs};
59 return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63 switch (VT.getSimpleVT().SimpleTy) {
64 default: llvm_unreachable("Unknown FP format");
65 case MVT::f32: return &APFloat::IEEEsingle;
66 case MVT::f64: return &APFloat::IEEEdouble;
67 case MVT::f80: return &APFloat::x87DoubleExtended;
68 case MVT::f128: return &APFloat::IEEEquad;
69 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70 }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76// ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84 return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88 const APFloat& Val) {
89 assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91 // PPC long double cannot be converted to any other type.
92 if (VT == MVT::ppcf128 ||
93 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94 return false;
95
96 // convert modifies in place, so make a copy.
97 APFloat Val2 = APFloat(Val);
98 bool losesInfo;
99 (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100 &losesInfo);
101 return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105// ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111 // Look through a bit convert.
112 if (N->getOpcode() == ISD::BIT_CONVERT)
113 N = N->getOperand(0).getNode();
114
115 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117 unsigned i = 0, e = N->getNumOperands();
118
119 // Skip over all of the undef values.
120 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121 ++i;
122
123 // Do not accept an all-undef vector.
124 if (i == e) return false;
125
126 // Do not accept build_vectors that aren't all constants or which have non-~0
127 // elements.
128 SDValue NotZero = N->getOperand(i);
129 if (isa<ConstantSDNode>(NotZero)) {
130 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131 return false;
132 } else if (isa<ConstantFPSDNode>(NotZero)) {
133 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134 bitcastToAPInt().isAllOnesValue())
135 return false;
136 } else
137 return false;
138
139 // Okay, we have at least one ~0 value, check to see if the rest match or are
140 // undefs.
141 for (++i; i != e; ++i)
142 if (N->getOperand(i) != NotZero &&
143 N->getOperand(i).getOpcode() != ISD::UNDEF)
144 return false;
145 return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152 // Look through a bit convert.
153 if (N->getOpcode() == ISD::BIT_CONVERT)
154 N = N->getOperand(0).getNode();
155
156 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158 unsigned i = 0, e = N->getNumOperands();
159
160 // Skip over all of the undef values.
161 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162 ++i;
163
164 // Do not accept an all-undef vector.
165 if (i == e) return false;
166
167 // Do not accept build_vectors that aren't all constants or which have non-0
168 // elements.
169 SDValue Zero = N->getOperand(i);
170 if (isa<ConstantSDNode>(Zero)) {
171 if (!cast<ConstantSDNode>(Zero)->isNullValue())
172 return false;
173 } else if (isa<ConstantFPSDNode>(Zero)) {
174 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175 return false;
176 } else
177 return false;
178
179 // Okay, we have at least one 0 value, check to see if the rest match or are
180 // undefs.
181 for (++i; i != e; ++i)
182 if (N->getOperand(i) != Zero &&
183 N->getOperand(i).getOpcode() != ISD::UNDEF)
184 return false;
185 return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193 return true;
194
195 if (N->getOpcode() != ISD::BUILD_VECTOR)
196 return false;
197 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198 return false;
199 unsigned NumElems = N->getNumOperands();
200 for (unsigned i = 1; i < NumElems; ++i) {
201 SDValue V = N->getOperand(i);
202 if (V.getOpcode() != ISD::UNDEF)
203 return false;
204 }
205 return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211 // To perform this operation, we just need to swap the L and G bits of the
212 // operation.
213 unsigned OldL = (Operation >> 2) & 1;
214 unsigned OldG = (Operation >> 1) & 1;
215 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
216 (OldL << 1) | // New G bit
217 (OldG << 2)); // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223 unsigned Operation = Op;
224 if (isInteger)
225 Operation ^= 7; // Flip L, G, E bits, but not U.
226 else
227 Operation ^= 15; // Flip all of the condition bits.
228
229 if (Operation > ISD::SETTRUE2)
230 Operation &= ~8; // Don't let N and U bits get set.
231
232 return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison. Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240 switch (Opcode) {
241 default: llvm_unreachable("Illegal integer setcc operation!");
242 case ISD::SETEQ:
243 case ISD::SETNE: return 0;
244 case ISD::SETLT:
245 case ISD::SETLE:
246 case ISD::SETGT:
247 case ISD::SETGE: return 1;
248 case ISD::SETULT:
249 case ISD::SETULE:
250 case ISD::SETUGT:
251 case ISD::SETUGE: return 2;
252 }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260 bool isInteger) {
261 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262 // Cannot fold a signed integer setcc with an unsigned integer setcc.
263 return ISD::SETCC_INVALID;
264
265 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
266
267 // If the N and U bits get set then the resultant comparison DOES suddenly
268 // care about orderedness, and is true when ordered.
269 if (Op > ISD::SETTRUE2)
270 Op &= ~16; // Clear the U bit if the N bit is set.
271
272 // Canonicalize illegal integer setcc's.
273 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
274 Op = ISD::SETNE;
275
276 return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284 bool isInteger) {
285 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286 // Cannot fold a signed setcc with an unsigned setcc.
287 return ISD::SETCC_INVALID;
288
289 // Combine all of the condition bits.
290 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292 // Canonicalize illegal integer setcc's.
293 if (isInteger) {
294 switch (Result) {
295 default: break;
296 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
297 case ISD::SETOEQ: // SETEQ & SETU[LG]E
298 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
299 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
300 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
301 }
302 }
303
304 return Result;
305}
306
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800307//===----------------------------------------------------------------------===//
308// SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
314 ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320 ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326 const SDValue *Ops, unsigned NumOps) {
327 for (; NumOps; --NumOps, ++Ops) {
328 ID.AddPointer(Ops->getNode());
329 ID.AddInteger(Ops->getResNo());
330 }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336 const SDUse *Ops, unsigned NumOps) {
337 for (; NumOps; --NumOps, ++Ops) {
338 ID.AddPointer(Ops->getNode());
339 ID.AddInteger(Ops->getResNo());
340 }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344 unsigned short OpC, SDVTList VTList,
345 const SDValue *OpList, unsigned N) {
346 AddNodeIDOpcode(ID, OpC);
347 AddNodeIDValueTypes(ID, VTList);
348 AddNodeIDOperands(ID, OpList, N);
349}
350
351/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
352/// the NodeID data.
353static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
354 switch (N->getOpcode()) {
355 case ISD::TargetExternalSymbol:
356 case ISD::ExternalSymbol:
357 llvm_unreachable("Should only be used on nodes with operands");
358 default: break; // Normal nodes don't need extra info.
359 case ISD::TargetConstant:
360 case ISD::Constant:
361 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
362 break;
363 case ISD::TargetConstantFP:
364 case ISD::ConstantFP: {
365 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
366 break;
367 }
368 case ISD::TargetGlobalAddress:
369 case ISD::GlobalAddress:
370 case ISD::TargetGlobalTLSAddress:
371 case ISD::GlobalTLSAddress: {
372 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373 ID.AddPointer(GA->getGlobal());
374 ID.AddInteger(GA->getOffset());
375 ID.AddInteger(GA->getTargetFlags());
376 break;
377 }
378 case ISD::BasicBlock:
379 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380 break;
381 case ISD::Register:
382 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383 break;
384
385 case ISD::SRCVALUE:
386 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387 break;
388 case ISD::FrameIndex:
389 case ISD::TargetFrameIndex:
390 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
391 break;
392 case ISD::JumpTable:
393 case ISD::TargetJumpTable:
394 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
395 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
396 break;
397 case ISD::ConstantPool:
398 case ISD::TargetConstantPool: {
399 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
400 ID.AddInteger(CP->getAlignment());
401 ID.AddInteger(CP->getOffset());
402 if (CP->isMachineConstantPoolEntry())
403 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
404 else
405 ID.AddPointer(CP->getConstVal());
406 ID.AddInteger(CP->getTargetFlags());
407 break;
408 }
409 case ISD::LOAD: {
410 const LoadSDNode *LD = cast<LoadSDNode>(N);
411 ID.AddInteger(LD->getMemoryVT().getRawBits());
412 ID.AddInteger(LD->getRawSubclassData());
413 break;
414 }
415 case ISD::STORE: {
416 const StoreSDNode *ST = cast<StoreSDNode>(N);
417 ID.AddInteger(ST->getMemoryVT().getRawBits());
418 ID.AddInteger(ST->getRawSubclassData());
419 break;
420 }
421 case ISD::ATOMIC_CMP_SWAP:
422 case ISD::ATOMIC_SWAP:
423 case ISD::ATOMIC_LOAD_ADD:
424 case ISD::ATOMIC_LOAD_SUB:
425 case ISD::ATOMIC_LOAD_AND:
426 case ISD::ATOMIC_LOAD_OR:
427 case ISD::ATOMIC_LOAD_XOR:
428 case ISD::ATOMIC_LOAD_NAND:
429 case ISD::ATOMIC_LOAD_MIN:
430 case ISD::ATOMIC_LOAD_MAX:
431 case ISD::ATOMIC_LOAD_UMIN:
432 case ISD::ATOMIC_LOAD_UMAX: {
433 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
434 ID.AddInteger(AT->getMemoryVT().getRawBits());
435 ID.AddInteger(AT->getRawSubclassData());
436 break;
437 }
438 case ISD::VECTOR_SHUFFLE: {
439 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
440 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
441 i != e; ++i)
442 ID.AddInteger(SVN->getMaskElt(i));
443 break;
444 }
445 case ISD::TargetBlockAddress:
446 case ISD::BlockAddress: {
447 ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
448 ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
449 break;
450 }
451 } // end switch (N->getOpcode())
452}
453
454/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
455/// data.
456static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
457 AddNodeIDOpcode(ID, N->getOpcode());
458 // Add the return value info.
459 AddNodeIDValueTypes(ID, N->getVTList());
460 // Add the operand info.
461 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
462
463 // Handle SDNode leafs with special info.
464 AddNodeIDCustom(ID, N);
465}
466
467/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700468/// the CSE map that carries volatility, temporalness, indexing mode, and
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800469/// extension/truncation information.
470///
471static inline unsigned
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700472encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
473 bool isNonTemporal) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800474 assert((ConvType & 3) == ConvType &&
475 "ConvType may not require more than 2 bits!");
476 assert((AM & 7) == AM &&
477 "AM may not require more than 3 bits!");
478 return ConvType |
479 (AM << 2) |
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700480 (isVolatile << 5) |
481 (isNonTemporal << 6);
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800482}
483
484//===----------------------------------------------------------------------===//
485// SelectionDAG Class
486//===----------------------------------------------------------------------===//
487
488/// doNotCSE - Return true if CSE should not be performed for this node.
489static bool doNotCSE(SDNode *N) {
490 if (N->getValueType(0) == MVT::Flag)
491 return true; // Never CSE anything that produces a flag.
492
493 switch (N->getOpcode()) {
494 default: break;
495 case ISD::HANDLENODE:
496 case ISD::EH_LABEL:
497 return true; // Never CSE these nodes.
498 }
499
500 // Check that remaining values produced are not flags.
501 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
502 if (N->getValueType(i) == MVT::Flag)
503 return true; // Never CSE anything that produces a flag.
504
505 return false;
506}
507
508/// RemoveDeadNodes - This method deletes all unreachable nodes in the
509/// SelectionDAG.
510void SelectionDAG::RemoveDeadNodes() {
511 // Create a dummy node (which is not added to allnodes), that adds a reference
512 // to the root node, preventing it from being deleted.
513 HandleSDNode Dummy(getRoot());
514
515 SmallVector<SDNode*, 128> DeadNodes;
516
517 // Add all obviously-dead nodes to the DeadNodes worklist.
518 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
519 if (I->use_empty())
520 DeadNodes.push_back(I);
521
522 RemoveDeadNodes(DeadNodes);
523
524 // If the root changed (e.g. it was a dead load, update the root).
525 setRoot(Dummy.getValue());
526}
527
528/// RemoveDeadNodes - This method deletes the unreachable nodes in the
529/// given list, and any nodes that become unreachable as a result.
530void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
531 DAGUpdateListener *UpdateListener) {
532
533 // Process the worklist, deleting the nodes and adding their uses to the
534 // worklist.
535 while (!DeadNodes.empty()) {
536 SDNode *N = DeadNodes.pop_back_val();
537
538 if (UpdateListener)
539 UpdateListener->NodeDeleted(N, 0);
540
541 // Take the node out of the appropriate CSE map.
542 RemoveNodeFromCSEMaps(N);
543
544 // Next, brutally remove the operand list. This is safe to do, as there are
545 // no cycles in the graph.
546 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
547 SDUse &Use = *I++;
548 SDNode *Operand = Use.getNode();
549 Use.set(SDValue());
550
551 // Now that we removed this operand, see if there are no uses of it left.
552 if (Operand->use_empty())
553 DeadNodes.push_back(Operand);
554 }
555
556 DeallocateNode(N);
557 }
558}
559
560void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
561 SmallVector<SDNode*, 16> DeadNodes(1, N);
562 RemoveDeadNodes(DeadNodes, UpdateListener);
563}
564
565void SelectionDAG::DeleteNode(SDNode *N) {
566 // First take this out of the appropriate CSE map.
567 RemoveNodeFromCSEMaps(N);
568
569 // Finally, remove uses due to operands of this node, remove from the
570 // AllNodes list, and delete the node.
571 DeleteNodeNotInCSEMaps(N);
572}
573
574void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
575 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
576 assert(N->use_empty() && "Cannot delete a node that is not dead!");
577
578 // Drop all of the operands and decrement used node's use counts.
579 N->DropOperands();
580
581 DeallocateNode(N);
582}
583
584void SelectionDAG::DeallocateNode(SDNode *N) {
585 if (N->OperandsNeedDelete)
586 delete[] N->OperandList;
587
588 // Set the opcode to DELETED_NODE to help catch bugs when node
589 // memory is reallocated.
590 N->NodeType = ISD::DELETED_NODE;
591
592 NodeAllocator.Deallocate(AllNodes.remove(N));
593
594 // Remove the ordering of this node.
595 Ordering->remove(N);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700596
597 // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
598 SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
599 for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
600 DbgVals[i]->setIsInvalidated();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800601}
602
603/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
604/// correspond to it. This is useful when we're about to delete or repurpose
605/// the node. We don't want future request for structurally identical nodes
606/// to return N anymore.
607bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
608 bool Erased = false;
609 switch (N->getOpcode()) {
610 case ISD::EntryToken:
611 llvm_unreachable("EntryToken should not be in CSEMaps!");
612 return false;
613 case ISD::HANDLENODE: return false; // noop.
614 case ISD::CONDCODE:
615 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616 "Cond code doesn't exist!");
617 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619 break;
620 case ISD::ExternalSymbol:
621 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622 break;
623 case ISD::TargetExternalSymbol: {
624 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625 Erased = TargetExternalSymbols.erase(
626 std::pair<std::string,unsigned char>(ESN->getSymbol(),
627 ESN->getTargetFlags()));
628 break;
629 }
630 case ISD::VALUETYPE: {
631 EVT VT = cast<VTSDNode>(N)->getVT();
632 if (VT.isExtended()) {
633 Erased = ExtendedValueTypeNodes.erase(VT);
634 } else {
635 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637 }
638 break;
639 }
640 default:
641 // Remove it from the CSE Map.
642 Erased = CSEMap.RemoveNode(N);
643 break;
644 }
645#ifndef NDEBUG
646 // Verify that the node was actually in one of the CSE maps, unless it has a
647 // flag result (which cannot be CSE'd) or is one of the special cases that are
648 // not subject to CSE.
649 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650 !N->isMachineOpcode() && !doNotCSE(N)) {
651 N->dump(this);
652 dbgs() << "\n";
653 llvm_unreachable("Node is not in map!");
654 }
655#endif
656 return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666 DAGUpdateListener *UpdateListener) {
667 // For node types that aren't CSE'd, just act as if no identical node
668 // already exists.
669 if (!doNotCSE(N)) {
670 SDNode *Existing = CSEMap.GetOrInsertNode(N);
671 if (Existing != N) {
672 // If there was already an existing matching node, use ReplaceAllUsesWith
673 // to replace the dead one with the existing one. This can cause
674 // recursive merging of other unrelated nodes down the line.
675 ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677 // N is now dead. Inform the listener if it exists and delete it.
678 if (UpdateListener)
679 UpdateListener->NodeDeleted(N, Existing);
680 DeleteNodeNotInCSEMaps(N);
681 return;
682 }
683 }
684
685 // If the node doesn't already exist, we updated it. Inform a listener if
686 // it exists.
687 if (UpdateListener)
688 UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified. If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take. If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696 void *&InsertPos) {
697 if (doNotCSE(N))
698 return 0;
699
700 SDValue Ops[] = { Op };
701 FoldingSetNodeID ID;
702 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703 AddNodeIDCustom(ID, N);
704 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705 return Node;
706}
707
708/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
709/// were replaced with those specified. If this node is never memoized,
710/// return null, otherwise return a pointer to the slot it would take. If a
711/// node already exists with these operands, the slot will be non-null.
712SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
713 SDValue Op1, SDValue Op2,
714 void *&InsertPos) {
715 if (doNotCSE(N))
716 return 0;
717
718 SDValue Ops[] = { Op1, Op2 };
719 FoldingSetNodeID ID;
720 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
721 AddNodeIDCustom(ID, N);
722 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
723 return Node;
724}
725
726
727/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
728/// were replaced with those specified. If this node is never memoized,
729/// return null, otherwise return a pointer to the slot it would take. If a
730/// node already exists with these operands, the slot will be non-null.
731SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
732 const SDValue *Ops,unsigned NumOps,
733 void *&InsertPos) {
734 if (doNotCSE(N))
735 return 0;
736
737 FoldingSetNodeID ID;
738 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
739 AddNodeIDCustom(ID, N);
740 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741 return Node;
742}
743
744/// VerifyNode - Sanity check the given node. Aborts if it is invalid.
745void SelectionDAG::VerifyNode(SDNode *N) {
746 switch (N->getOpcode()) {
747 default:
748 break;
749 case ISD::BUILD_PAIR: {
750 EVT VT = N->getValueType(0);
751 assert(N->getNumValues() == 1 && "Too many results!");
752 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
753 "Wrong return type!");
754 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
755 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
756 "Mismatched operand types!");
757 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
758 "Wrong operand type!");
759 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
760 "Wrong return type size");
761 break;
762 }
763 case ISD::BUILD_VECTOR: {
764 assert(N->getNumValues() == 1 && "Too many results!");
765 assert(N->getValueType(0).isVector() && "Wrong return type!");
766 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
767 "Wrong number of operands!");
768 EVT EltVT = N->getValueType(0).getVectorElementType();
769 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
770 assert((I->getValueType() == EltVT ||
771 (EltVT.isInteger() && I->getValueType().isInteger() &&
772 EltVT.bitsLE(I->getValueType()))) &&
773 "Wrong operand type!");
774 break;
775 }
776 }
777}
778
779/// getEVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
783 const Type *Ty = VT == MVT::iPTR ?
784 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
785 VT.getTypeForEVT(*getContext());
786
787 return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700791SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
792 : TM(tm), TLI(*tm.getTargetLowering()), FLI(fli),
793 EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800794 Root(getEntryNode()), Ordering(0) {
795 AllNodes.push_back(&EntryNode);
796 Ordering = new SDNodeOrdering();
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700797 DbgInfo = new SDDbgInfo();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800798}
799
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700800void SelectionDAG::init(MachineFunction &mf) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800801 MF = &mf;
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800802 Context = &mf.getFunction()->getContext();
803}
804
805SelectionDAG::~SelectionDAG() {
806 allnodes_clear();
807 delete Ordering;
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700808 DbgInfo->clear();
809 delete DbgInfo;
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800810}
811
812void SelectionDAG::allnodes_clear() {
813 assert(&*AllNodes.begin() == &EntryNode);
814 AllNodes.remove(AllNodes.begin());
815 while (!AllNodes.empty())
816 DeallocateNode(AllNodes.begin());
817}
818
819void SelectionDAG::clear() {
820 allnodes_clear();
821 OperandAllocator.Reset();
822 CSEMap.clear();
823
824 ExtendedValueTypeNodes.clear();
825 ExternalSymbols.clear();
826 TargetExternalSymbols.clear();
827 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
828 static_cast<CondCodeSDNode*>(0));
829 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
830 static_cast<SDNode*>(0));
831
832 EntryNode.UseList = 0;
833 AllNodes.push_back(&EntryNode);
834 Root = getEntryNode();
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700835 delete Ordering;
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800836 Ordering = new SDNodeOrdering();
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700837 DbgInfo->clear();
838 delete DbgInfo;
839 DbgInfo = new SDDbgInfo();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800840}
841
842SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843 return VT.bitsGT(Op.getValueType()) ?
844 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
845 getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
849 return VT.bitsGT(Op.getValueType()) ?
850 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
851 getNode(ISD::TRUNCATE, DL, VT, Op);
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
855 assert(!VT.isVector() &&
856 "getZeroExtendInReg should use the vector element type instead of "
857 "the vector type!");
858 if (Op.getValueType() == VT) return Op;
859 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
860 APInt Imm = APInt::getLowBitsSet(BitWidth,
861 VT.getSizeInBits());
862 return getNode(ISD::AND, DL, Op.getValueType(), Op,
863 getConstant(Imm, Op.getValueType()));
864}
865
866/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
867///
868SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700869 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800870 SDValue NegOne =
871 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
872 return getNode(ISD::XOR, DL, VT, Val, NegOne);
873}
874
875SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700876 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800877 assert((EltVT.getSizeInBits() >= 64 ||
878 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
879 "getConstant with a uint64_t value that doesn't fit in the type!");
880 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
884 return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
888 assert(VT.isInteger() && "Cannot create FP integer constant!");
889
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700890 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800891 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
892 "APInt size does not match type size!");
893
894 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
895 FoldingSetNodeID ID;
896 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897 ID.AddPointer(&Val);
898 void *IP = 0;
899 SDNode *N = NULL;
900 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901 if (!VT.isVector())
902 return SDValue(N, 0);
903
904 if (!N) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700905 N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800906 CSEMap.InsertNode(N, IP);
907 AllNodes.push_back(N);
908 }
909
910 SDValue Result(N, 0);
911 if (VT.isVector()) {
912 SmallVector<SDValue, 8> Ops;
913 Ops.assign(VT.getVectorNumElements(), Result);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700914 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800915 }
916 return Result;
917}
918
919SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
920 return getConstant(Val, TLI.getPointerTy(), isTarget);
921}
922
923
924SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
925 return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
926}
927
928SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
929 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
930
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700931 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800932
933 // Do the map lookup using the actual bit pattern for the floating point
934 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
935 // we don't have issues with SNANs.
936 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
937 FoldingSetNodeID ID;
938 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
939 ID.AddPointer(&V);
940 void *IP = 0;
941 SDNode *N = NULL;
942 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
943 if (!VT.isVector())
944 return SDValue(N, 0);
945
946 if (!N) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700947 N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800948 CSEMap.InsertNode(N, IP);
949 AllNodes.push_back(N);
950 }
951
952 SDValue Result(N, 0);
953 if (VT.isVector()) {
954 SmallVector<SDValue, 8> Ops;
955 Ops.assign(VT.getVectorNumElements(), Result);
956 // FIXME DebugLoc info might be appropriate here
Shih-wei Liao7abe37e2010-04-28 01:47:00 -0700957 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800958 }
959 return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700963 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800964 if (EltVT==MVT::f32)
965 return getConstantFP(APFloat((float)Val), VT, isTarget);
966 else
967 return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971 EVT VT, int64_t Offset,
972 bool isTargetGA,
973 unsigned char TargetFlags) {
974 assert((TargetFlags == 0 || isTargetGA) &&
975 "Cannot set target flags on target-independent globals");
976
977 // Truncate (with sign-extension) the offset value to the pointer size.
978 EVT PTy = TLI.getPointerTy();
979 unsigned BitWidth = PTy.getSizeInBits();
980 if (BitWidth < 64)
981 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984 if (!GVar) {
985 // If GV is an alias then use the aliasee for determining thread-localness.
986 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988 }
989
990 unsigned Opc;
991 if (GVar && GVar->isThreadLocal())
992 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993 else
994 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996 FoldingSetNodeID ID;
997 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998 ID.AddPointer(GV);
999 ID.AddInteger(Offset);
1000 ID.AddInteger(TargetFlags);
1001 void *IP = 0;
1002 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003 return SDValue(E, 0);
1004
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001005 SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1006 Offset, TargetFlags);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001007 CSEMap.InsertNode(N, IP);
1008 AllNodes.push_back(N);
1009 return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1013 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1014 FoldingSetNodeID ID;
1015 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016 ID.AddInteger(FI);
1017 void *IP = 0;
1018 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019 return SDValue(E, 0);
1020
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001021 SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001022 CSEMap.InsertNode(N, IP);
1023 AllNodes.push_back(N);
1024 return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1028 unsigned char TargetFlags) {
1029 assert((TargetFlags == 0 || isTarget) &&
1030 "Cannot set target flags on target-independent jump tables");
1031 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1032 FoldingSetNodeID ID;
1033 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034 ID.AddInteger(JTI);
1035 ID.AddInteger(TargetFlags);
1036 void *IP = 0;
1037 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1038 return SDValue(E, 0);
1039
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001040 SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1041 TargetFlags);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001042 CSEMap.InsertNode(N, IP);
1043 AllNodes.push_back(N);
1044 return SDValue(N, 0);
1045}
1046
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001047SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001048 unsigned Alignment, int Offset,
1049 bool isTarget,
1050 unsigned char TargetFlags) {
1051 assert((TargetFlags == 0 || isTarget) &&
1052 "Cannot set target flags on target-independent globals");
1053 if (Alignment == 0)
1054 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1055 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056 FoldingSetNodeID ID;
1057 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058 ID.AddInteger(Alignment);
1059 ID.AddInteger(Offset);
1060 ID.AddPointer(C);
1061 ID.AddInteger(TargetFlags);
1062 void *IP = 0;
1063 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064 return SDValue(E, 0);
1065
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001066 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1067 Alignment, TargetFlags);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001068 CSEMap.InsertNode(N, IP);
1069 AllNodes.push_back(N);
1070 return SDValue(N, 0);
1071}
1072
1073
1074SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1075 unsigned Alignment, int Offset,
1076 bool isTarget,
1077 unsigned char TargetFlags) {
1078 assert((TargetFlags == 0 || isTarget) &&
1079 "Cannot set target flags on target-independent globals");
1080 if (Alignment == 0)
1081 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1082 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1083 FoldingSetNodeID ID;
1084 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1085 ID.AddInteger(Alignment);
1086 ID.AddInteger(Offset);
1087 C->AddSelectionDAGCSEId(ID);
1088 ID.AddInteger(TargetFlags);
1089 void *IP = 0;
1090 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091 return SDValue(E, 0);
1092
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001093 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1094 Alignment, TargetFlags);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001095 CSEMap.InsertNode(N, IP);
1096 AllNodes.push_back(N);
1097 return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1101 FoldingSetNodeID ID;
1102 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1103 ID.AddPointer(MBB);
1104 void *IP = 0;
1105 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106 return SDValue(E, 0);
1107
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001108 SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001109 CSEMap.InsertNode(N, IP);
1110 AllNodes.push_back(N);
1111 return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getValueType(EVT VT) {
1115 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1116 ValueTypeNodes.size())
1117 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1118
1119 SDNode *&N = VT.isExtended() ?
1120 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1121
1122 if (N) return SDValue(N, 0);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001123 N = new (NodeAllocator) VTSDNode(VT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001124 AllNodes.push_back(N);
1125 return SDValue(N, 0);
1126}
1127
1128SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1129 SDNode *&N = ExternalSymbols[Sym];
1130 if (N) return SDValue(N, 0);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001131 N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001132 AllNodes.push_back(N);
1133 return SDValue(N, 0);
1134}
1135
1136SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1137 unsigned char TargetFlags) {
1138 SDNode *&N =
1139 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1140 TargetFlags)];
1141 if (N) return SDValue(N, 0);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001142 N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001143 AllNodes.push_back(N);
1144 return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1148 if ((unsigned)Cond >= CondCodeNodes.size())
1149 CondCodeNodes.resize(Cond+1);
1150
1151 if (CondCodeNodes[Cond] == 0) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001152 CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001153 CondCodeNodes[Cond] = N;
1154 AllNodes.push_back(N);
1155 }
1156
1157 return SDValue(CondCodeNodes[Cond], 0);
1158}
1159
1160// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1161// the shuffle mask M that point at N1 to point at N2, and indices that point
1162// N2 to point at N1.
1163static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1164 std::swap(N1, N2);
1165 int NElts = M.size();
1166 for (int i = 0; i != NElts; ++i) {
1167 if (M[i] >= NElts)
1168 M[i] -= NElts;
1169 else if (M[i] >= 0)
1170 M[i] += NElts;
1171 }
1172}
1173
1174SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1175 SDValue N2, const int *Mask) {
1176 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1177 assert(VT.isVector() && N1.getValueType().isVector() &&
1178 "Vector Shuffle VTs must be a vectors");
1179 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1180 && "Vector Shuffle VTs must have same element type");
1181
1182 // Canonicalize shuffle undef, undef -> undef
1183 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1184 return getUNDEF(VT);
1185
1186 // Validate that all indices in Mask are within the range of the elements
1187 // input to the shuffle.
1188 unsigned NElts = VT.getVectorNumElements();
1189 SmallVector<int, 8> MaskVec;
1190 for (unsigned i = 0; i != NElts; ++i) {
1191 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1192 MaskVec.push_back(Mask[i]);
1193 }
1194
1195 // Canonicalize shuffle v, v -> v, undef
1196 if (N1 == N2) {
1197 N2 = getUNDEF(VT);
1198 for (unsigned i = 0; i != NElts; ++i)
1199 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1200 }
1201
1202 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1203 if (N1.getOpcode() == ISD::UNDEF)
1204 commuteShuffle(N1, N2, MaskVec);
1205
1206 // Canonicalize all index into lhs, -> shuffle lhs, undef
1207 // Canonicalize all index into rhs, -> shuffle rhs, undef
1208 bool AllLHS = true, AllRHS = true;
1209 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1210 for (unsigned i = 0; i != NElts; ++i) {
1211 if (MaskVec[i] >= (int)NElts) {
1212 if (N2Undef)
1213 MaskVec[i] = -1;
1214 else
1215 AllLHS = false;
1216 } else if (MaskVec[i] >= 0) {
1217 AllRHS = false;
1218 }
1219 }
1220 if (AllLHS && AllRHS)
1221 return getUNDEF(VT);
1222 if (AllLHS && !N2Undef)
1223 N2 = getUNDEF(VT);
1224 if (AllRHS) {
1225 N1 = getUNDEF(VT);
1226 commuteShuffle(N1, N2, MaskVec);
1227 }
1228
1229 // If Identity shuffle, or all shuffle in to undef, return that node.
1230 bool AllUndef = true;
1231 bool Identity = true;
1232 for (unsigned i = 0; i != NElts; ++i) {
1233 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1234 if (MaskVec[i] >= 0) AllUndef = false;
1235 }
1236 if (Identity && NElts == N1.getValueType().getVectorNumElements())
1237 return N1;
1238 if (AllUndef)
1239 return getUNDEF(VT);
1240
1241 FoldingSetNodeID ID;
1242 SDValue Ops[2] = { N1, N2 };
1243 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1244 for (unsigned i = 0; i != NElts; ++i)
1245 ID.AddInteger(MaskVec[i]);
1246
1247 void* IP = 0;
1248 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1249 return SDValue(E, 0);
1250
1251 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1252 // SDNode doesn't have access to it. This memory will be "leaked" when
1253 // the node is deallocated, but recovered when the NodeAllocator is released.
1254 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1255 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1256
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001257 ShuffleVectorSDNode *N =
1258 new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001259 CSEMap.InsertNode(N, IP);
1260 AllNodes.push_back(N);
1261 return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1265 SDValue Val, SDValue DTy,
1266 SDValue STy, SDValue Rnd, SDValue Sat,
1267 ISD::CvtCode Code) {
1268 // If the src and dest types are the same and the conversion is between
1269 // integer types of the same sign or two floats, no conversion is necessary.
1270 if (DTy == STy &&
1271 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1272 return Val;
1273
1274 FoldingSetNodeID ID;
1275 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1276 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1277 void* IP = 0;
1278 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1279 return SDValue(E, 0);
1280
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001281 CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1282 Code);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001283 CSEMap.InsertNode(N, IP);
1284 AllNodes.push_back(N);
1285 return SDValue(N, 0);
1286}
1287
1288SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1289 FoldingSetNodeID ID;
1290 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1291 ID.AddInteger(RegNo);
1292 void *IP = 0;
1293 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1294 return SDValue(E, 0);
1295
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001296 SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001297 CSEMap.InsertNode(N, IP);
1298 AllNodes.push_back(N);
1299 return SDValue(N, 0);
1300}
1301
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001302SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001303 FoldingSetNodeID ID;
1304 SDValue Ops[] = { Root };
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001305 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1306 ID.AddPointer(Label);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001307 void *IP = 0;
1308 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1309 return SDValue(E, 0);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001310
1311 SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001312 CSEMap.InsertNode(N, IP);
1313 AllNodes.push_back(N);
1314 return SDValue(N, 0);
1315}
1316
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001317
1318SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001319 bool isTarget,
1320 unsigned char TargetFlags) {
1321 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1322
1323 FoldingSetNodeID ID;
1324 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1325 ID.AddPointer(BA);
1326 ID.AddInteger(TargetFlags);
1327 void *IP = 0;
1328 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1329 return SDValue(E, 0);
1330
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001331 SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001332 CSEMap.InsertNode(N, IP);
1333 AllNodes.push_back(N);
1334 return SDValue(N, 0);
1335}
1336
1337SDValue SelectionDAG::getSrcValue(const Value *V) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07001338 assert((!V || V->getType()->isPointerTy()) &&
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001339 "SrcValue is not a pointer?");
1340
1341 FoldingSetNodeID ID;
1342 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1343 ID.AddPointer(V);
1344
1345 void *IP = 0;
1346 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1347 return SDValue(E, 0);
1348
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001349 SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001350 CSEMap.InsertNode(N, IP);
1351 AllNodes.push_back(N);
1352 return SDValue(N, 0);
1353}
1354
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001355/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1356SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1357 FoldingSetNodeID ID;
1358 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1359 ID.AddPointer(MD);
1360
1361 void *IP = 0;
1362 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1363 return SDValue(E, 0);
1364
1365 SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1366 CSEMap.InsertNode(N, IP);
1367 AllNodes.push_back(N);
1368 return SDValue(N, 0);
1369}
1370
1371
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001372/// getShiftAmountOperand - Return the specified value casted to
1373/// the target's desired shift amount type.
1374SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1375 EVT OpTy = Op.getValueType();
1376 MVT ShTy = TLI.getShiftAmountTy();
1377 if (OpTy == ShTy || OpTy.isVector()) return Op;
1378
1379 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1380 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1381}
1382
1383/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1384/// specified value type.
1385SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1386 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1387 unsigned ByteSize = VT.getStoreSize();
1388 const Type *Ty = VT.getTypeForEVT(*getContext());
1389 unsigned StackAlign =
1390 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1391
1392 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1393 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1394}
1395
1396/// CreateStackTemporary - Create a stack temporary suitable for holding
1397/// either of the specified value types.
1398SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1399 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1400 VT2.getStoreSizeInBits())/8;
1401 const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1402 const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1403 const TargetData *TD = TLI.getTargetData();
1404 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1405 TD->getPrefTypeAlignment(Ty2));
1406
1407 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1408 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1409 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1410}
1411
1412SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1413 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1414 // These setcc operations always fold.
1415 switch (Cond) {
1416 default: break;
1417 case ISD::SETFALSE:
1418 case ISD::SETFALSE2: return getConstant(0, VT);
1419 case ISD::SETTRUE:
1420 case ISD::SETTRUE2: return getConstant(1, VT);
1421
1422 case ISD::SETOEQ:
1423 case ISD::SETOGT:
1424 case ISD::SETOGE:
1425 case ISD::SETOLT:
1426 case ISD::SETOLE:
1427 case ISD::SETONE:
1428 case ISD::SETO:
1429 case ISD::SETUO:
1430 case ISD::SETUEQ:
1431 case ISD::SETUNE:
1432 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1433 break;
1434 }
1435
1436 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1437 const APInt &C2 = N2C->getAPIntValue();
1438 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1439 const APInt &C1 = N1C->getAPIntValue();
1440
1441 switch (Cond) {
1442 default: llvm_unreachable("Unknown integer setcc!");
1443 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1444 case ISD::SETNE: return getConstant(C1 != C2, VT);
1445 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1446 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1447 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1448 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1449 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1450 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1451 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1452 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1453 }
1454 }
1455 }
1456 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1457 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1458 // No compile time operations on this type yet.
1459 if (N1C->getValueType(0) == MVT::ppcf128)
1460 return SDValue();
1461
1462 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1463 switch (Cond) {
1464 default: break;
1465 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1466 return getUNDEF(VT);
1467 // fall through
1468 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1469 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1470 return getUNDEF(VT);
1471 // fall through
1472 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1473 R==APFloat::cmpLessThan, VT);
1474 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1475 return getUNDEF(VT);
1476 // fall through
1477 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1478 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1479 return getUNDEF(VT);
1480 // fall through
1481 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1482 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1483 return getUNDEF(VT);
1484 // fall through
1485 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1486 R==APFloat::cmpEqual, VT);
1487 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1488 return getUNDEF(VT);
1489 // fall through
1490 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1491 R==APFloat::cmpEqual, VT);
1492 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1493 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1494 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1495 R==APFloat::cmpEqual, VT);
1496 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1497 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1498 R==APFloat::cmpLessThan, VT);
1499 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1500 R==APFloat::cmpUnordered, VT);
1501 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1502 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1503 }
1504 } else {
1505 // Ensure that the constant occurs on the RHS.
1506 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1507 }
1508 }
1509
1510 // Could not fold it.
1511 return SDValue();
1512}
1513
1514/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1515/// use this predicate to simplify operations downstream.
1516bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1517 // This predicate is not safe for vector operations.
1518 if (Op.getValueType().isVector())
1519 return false;
1520
1521 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1522 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1523}
1524
1525/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1526/// this predicate to simplify operations downstream. Mask is known to be zero
1527/// for bits that V cannot have.
1528bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1529 unsigned Depth) const {
1530 APInt KnownZero, KnownOne;
1531 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1532 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533 return (KnownZero & Mask) == Mask;
1534}
1535
1536/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1537/// known to be either zero or one and return them in the KnownZero/KnownOne
1538/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1539/// processing.
1540void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1541 APInt &KnownZero, APInt &KnownOne,
1542 unsigned Depth) const {
1543 unsigned BitWidth = Mask.getBitWidth();
1544 assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1545 "Mask size mismatches value type size!");
1546
1547 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1548 if (Depth == 6 || Mask == 0)
1549 return; // Limit search depth.
1550
1551 APInt KnownZero2, KnownOne2;
1552
1553 switch (Op.getOpcode()) {
1554 case ISD::Constant:
1555 // We know all of the bits for a constant!
1556 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1557 KnownZero = ~KnownOne & Mask;
1558 return;
1559 case ISD::AND:
1560 // If either the LHS or the RHS are Zero, the result is zero.
1561 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1562 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1563 KnownZero2, KnownOne2, Depth+1);
1564 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1565 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566
1567 // Output known-1 bits are only known if set in both the LHS & RHS.
1568 KnownOne &= KnownOne2;
1569 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1570 KnownZero |= KnownZero2;
1571 return;
1572 case ISD::OR:
1573 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1575 KnownZero2, KnownOne2, Depth+1);
1576 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579 // Output known-0 bits are only known if clear in both the LHS & RHS.
1580 KnownZero &= KnownZero2;
1581 // Output known-1 are known to be set if set in either the LHS | RHS.
1582 KnownOne |= KnownOne2;
1583 return;
1584 case ISD::XOR: {
1585 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1586 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1587 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1588 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1589
1590 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1591 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1592 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1593 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1594 KnownZero = KnownZeroOut;
1595 return;
1596 }
1597 case ISD::MUL: {
1598 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1599 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1600 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1601 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1602 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1603
1604 // If low bits are zero in either operand, output low known-0 bits.
1605 // Also compute a conserative estimate for high known-0 bits.
1606 // More trickiness is possible, but this is sufficient for the
1607 // interesting case of alignment computation.
1608 KnownOne.clear();
1609 unsigned TrailZ = KnownZero.countTrailingOnes() +
1610 KnownZero2.countTrailingOnes();
1611 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1612 KnownZero2.countLeadingOnes(),
1613 BitWidth) - BitWidth;
1614
1615 TrailZ = std::min(TrailZ, BitWidth);
1616 LeadZ = std::min(LeadZ, BitWidth);
1617 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1618 APInt::getHighBitsSet(BitWidth, LeadZ);
1619 KnownZero &= Mask;
1620 return;
1621 }
1622 case ISD::UDIV: {
1623 // For the purposes of computing leading zeros we can conservatively
1624 // treat a udiv as a logical right shift by the power of 2 known to
1625 // be less than the denominator.
1626 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1627 ComputeMaskedBits(Op.getOperand(0),
1628 AllOnes, KnownZero2, KnownOne2, Depth+1);
1629 unsigned LeadZ = KnownZero2.countLeadingOnes();
1630
1631 KnownOne2.clear();
1632 KnownZero2.clear();
1633 ComputeMaskedBits(Op.getOperand(1),
1634 AllOnes, KnownZero2, KnownOne2, Depth+1);
1635 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1636 if (RHSUnknownLeadingOnes != BitWidth)
1637 LeadZ = std::min(BitWidth,
1638 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1639
1640 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1641 return;
1642 }
1643 case ISD::SELECT:
1644 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1645 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1646 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648
1649 // Only known if known in both the LHS and RHS.
1650 KnownOne &= KnownOne2;
1651 KnownZero &= KnownZero2;
1652 return;
1653 case ISD::SELECT_CC:
1654 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1655 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1656 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1658
1659 // Only known if known in both the LHS and RHS.
1660 KnownOne &= KnownOne2;
1661 KnownZero &= KnownZero2;
1662 return;
1663 case ISD::SADDO:
1664 case ISD::UADDO:
1665 case ISD::SSUBO:
1666 case ISD::USUBO:
1667 case ISD::SMULO:
1668 case ISD::UMULO:
1669 if (Op.getResNo() != 1)
1670 return;
1671 // The boolean result conforms to getBooleanContents. Fall through.
1672 case ISD::SETCC:
1673 // If we know the result of a setcc has the top bits zero, use this info.
1674 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1675 BitWidth > 1)
1676 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1677 return;
1678 case ISD::SHL:
1679 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1680 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1681 unsigned ShAmt = SA->getZExtValue();
1682
1683 // If the shift count is an invalid immediate, don't do anything.
1684 if (ShAmt >= BitWidth)
1685 return;
1686
1687 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1688 KnownZero, KnownOne, Depth+1);
1689 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1690 KnownZero <<= ShAmt;
1691 KnownOne <<= ShAmt;
1692 // low bits known zero.
1693 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1694 }
1695 return;
1696 case ISD::SRL:
1697 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1698 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1699 unsigned ShAmt = SA->getZExtValue();
1700
1701 // If the shift count is an invalid immediate, don't do anything.
1702 if (ShAmt >= BitWidth)
1703 return;
1704
1705 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1706 KnownZero, KnownOne, Depth+1);
1707 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1708 KnownZero = KnownZero.lshr(ShAmt);
1709 KnownOne = KnownOne.lshr(ShAmt);
1710
1711 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1712 KnownZero |= HighBits; // High bits known zero.
1713 }
1714 return;
1715 case ISD::SRA:
1716 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1717 unsigned ShAmt = SA->getZExtValue();
1718
1719 // If the shift count is an invalid immediate, don't do anything.
1720 if (ShAmt >= BitWidth)
1721 return;
1722
1723 APInt InDemandedMask = (Mask << ShAmt);
1724 // If any of the demanded bits are produced by the sign extension, we also
1725 // demand the input sign bit.
1726 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1727 if (HighBits.getBoolValue())
1728 InDemandedMask |= APInt::getSignBit(BitWidth);
1729
1730 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1731 Depth+1);
1732 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1733 KnownZero = KnownZero.lshr(ShAmt);
1734 KnownOne = KnownOne.lshr(ShAmt);
1735
1736 // Handle the sign bits.
1737 APInt SignBit = APInt::getSignBit(BitWidth);
1738 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1739
1740 if (KnownZero.intersects(SignBit)) {
1741 KnownZero |= HighBits; // New bits are known zero.
1742 } else if (KnownOne.intersects(SignBit)) {
1743 KnownOne |= HighBits; // New bits are known one.
1744 }
1745 }
1746 return;
1747 case ISD::SIGN_EXTEND_INREG: {
1748 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1749 unsigned EBits = EVT.getScalarType().getSizeInBits();
1750
1751 // Sign extension. Compute the demanded bits in the result that are not
1752 // present in the input.
1753 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1754
1755 APInt InSignBit = APInt::getSignBit(EBits);
1756 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1757
1758 // If the sign extended bits are demanded, we know that the sign
1759 // bit is demanded.
1760 InSignBit.zext(BitWidth);
1761 if (NewBits.getBoolValue())
1762 InputDemandedBits |= InSignBit;
1763
1764 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1765 KnownZero, KnownOne, Depth+1);
1766 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1767
1768 // If the sign bit of the input is known set or clear, then we know the
1769 // top bits of the result.
1770 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1771 KnownZero |= NewBits;
1772 KnownOne &= ~NewBits;
1773 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1774 KnownOne |= NewBits;
1775 KnownZero &= ~NewBits;
1776 } else { // Input sign bit unknown
1777 KnownZero &= ~NewBits;
1778 KnownOne &= ~NewBits;
1779 }
1780 return;
1781 }
1782 case ISD::CTTZ:
1783 case ISD::CTLZ:
1784 case ISD::CTPOP: {
1785 unsigned LowBits = Log2_32(BitWidth)+1;
1786 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1787 KnownOne.clear();
1788 return;
1789 }
1790 case ISD::LOAD: {
1791 if (ISD::isZEXTLoad(Op.getNode())) {
1792 LoadSDNode *LD = cast<LoadSDNode>(Op);
1793 EVT VT = LD->getMemoryVT();
1794 unsigned MemBits = VT.getScalarType().getSizeInBits();
1795 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1796 }
1797 return;
1798 }
1799 case ISD::ZERO_EXTEND: {
1800 EVT InVT = Op.getOperand(0).getValueType();
1801 unsigned InBits = InVT.getScalarType().getSizeInBits();
1802 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1803 APInt InMask = Mask;
1804 InMask.trunc(InBits);
1805 KnownZero.trunc(InBits);
1806 KnownOne.trunc(InBits);
1807 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1808 KnownZero.zext(BitWidth);
1809 KnownOne.zext(BitWidth);
1810 KnownZero |= NewBits;
1811 return;
1812 }
1813 case ISD::SIGN_EXTEND: {
1814 EVT InVT = Op.getOperand(0).getValueType();
1815 unsigned InBits = InVT.getScalarType().getSizeInBits();
1816 APInt InSignBit = APInt::getSignBit(InBits);
1817 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1818 APInt InMask = Mask;
1819 InMask.trunc(InBits);
1820
1821 // If any of the sign extended bits are demanded, we know that the sign
1822 // bit is demanded. Temporarily set this bit in the mask for our callee.
1823 if (NewBits.getBoolValue())
1824 InMask |= InSignBit;
1825
1826 KnownZero.trunc(InBits);
1827 KnownOne.trunc(InBits);
1828 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829
1830 // Note if the sign bit is known to be zero or one.
1831 bool SignBitKnownZero = KnownZero.isNegative();
1832 bool SignBitKnownOne = KnownOne.isNegative();
1833 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1834 "Sign bit can't be known to be both zero and one!");
1835
1836 // If the sign bit wasn't actually demanded by our caller, we don't
1837 // want it set in the KnownZero and KnownOne result values. Reset the
1838 // mask and reapply it to the result values.
1839 InMask = Mask;
1840 InMask.trunc(InBits);
1841 KnownZero &= InMask;
1842 KnownOne &= InMask;
1843
1844 KnownZero.zext(BitWidth);
1845 KnownOne.zext(BitWidth);
1846
1847 // If the sign bit is known zero or one, the top bits match.
1848 if (SignBitKnownZero)
1849 KnownZero |= NewBits;
1850 else if (SignBitKnownOne)
1851 KnownOne |= NewBits;
1852 return;
1853 }
1854 case ISD::ANY_EXTEND: {
1855 EVT InVT = Op.getOperand(0).getValueType();
1856 unsigned InBits = InVT.getScalarType().getSizeInBits();
1857 APInt InMask = Mask;
1858 InMask.trunc(InBits);
1859 KnownZero.trunc(InBits);
1860 KnownOne.trunc(InBits);
1861 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1862 KnownZero.zext(BitWidth);
1863 KnownOne.zext(BitWidth);
1864 return;
1865 }
1866 case ISD::TRUNCATE: {
1867 EVT InVT = Op.getOperand(0).getValueType();
1868 unsigned InBits = InVT.getScalarType().getSizeInBits();
1869 APInt InMask = Mask;
1870 InMask.zext(InBits);
1871 KnownZero.zext(InBits);
1872 KnownOne.zext(InBits);
1873 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1875 KnownZero.trunc(BitWidth);
1876 KnownOne.trunc(BitWidth);
1877 break;
1878 }
1879 case ISD::AssertZext: {
1880 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1881 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1882 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1883 KnownOne, Depth+1);
1884 KnownZero |= (~InMask) & Mask;
1885 return;
1886 }
1887 case ISD::FGETSIGN:
1888 // All bits are zero except the low bit.
1889 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1890 return;
1891
1892 case ISD::SUB: {
1893 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1894 // We know that the top bits of C-X are clear if X contains less bits
1895 // than C (i.e. no wrap-around can happen). For example, 20-X is
1896 // positive if we can prove that X is >= 0 and < 16.
1897 if (CLHS->getAPIntValue().isNonNegative()) {
1898 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1899 // NLZ can't be BitWidth with no sign bit
1900 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1901 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1902 Depth+1);
1903
1904 // If all of the MaskV bits are known to be zero, then we know the
1905 // output top bits are zero, because we now know that the output is
1906 // from [0-C].
1907 if ((KnownZero2 & MaskV) == MaskV) {
1908 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1909 // Top bits known zero.
1910 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1911 }
1912 }
1913 }
1914 }
1915 // fall through
1916 case ISD::ADD: {
1917 // Output known-0 bits are known if clear or set in both the low clear bits
1918 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1919 // low 3 bits clear.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07001920 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1921 BitWidth - Mask.countLeadingZeros());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001922 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1923 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1924 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1925
1926 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1927 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1928 KnownZeroOut = std::min(KnownZeroOut,
1929 KnownZero2.countTrailingOnes());
1930
1931 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1932 return;
1933 }
1934 case ISD::SREM:
1935 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1936 const APInt &RA = Rem->getAPIntValue().abs();
1937 if (RA.isPowerOf2()) {
1938 APInt LowBits = RA - 1;
1939 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1940 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1941
1942 // The low bits of the first operand are unchanged by the srem.
1943 KnownZero = KnownZero2 & LowBits;
1944 KnownOne = KnownOne2 & LowBits;
1945
1946 // If the first operand is non-negative or has all low bits zero, then
1947 // the upper bits are all zero.
1948 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1949 KnownZero |= ~LowBits;
1950
1951 // If the first operand is negative and not all low bits are zero, then
1952 // the upper bits are all one.
1953 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1954 KnownOne |= ~LowBits;
1955
1956 KnownZero &= Mask;
1957 KnownOne &= Mask;
1958
1959 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1960 }
1961 }
1962 return;
1963 case ISD::UREM: {
1964 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1965 const APInt &RA = Rem->getAPIntValue();
1966 if (RA.isPowerOf2()) {
1967 APInt LowBits = (RA - 1);
1968 APInt Mask2 = LowBits & Mask;
1969 KnownZero |= ~LowBits & Mask;
1970 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1971 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1972 break;
1973 }
1974 }
1975
1976 // Since the result is less than or equal to either operand, any leading
1977 // zero bits in either operand must also exist in the result.
1978 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1979 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1980 Depth+1);
1981 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1982 Depth+1);
1983
1984 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1985 KnownZero2.countLeadingOnes());
1986 KnownOne.clear();
1987 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1988 return;
1989 }
1990 default:
1991 // Allow the target to implement this method for its nodes.
1992 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1993 case ISD::INTRINSIC_WO_CHAIN:
1994 case ISD::INTRINSIC_W_CHAIN:
1995 case ISD::INTRINSIC_VOID:
1996 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1997 Depth);
1998 }
1999 return;
2000 }
2001}
2002
2003/// ComputeNumSignBits - Return the number of times the sign bit of the
2004/// register is replicated into the other bits. We know that at least 1 bit
2005/// is always equal to the sign bit (itself), but other cases can give us
2006/// information. For example, immediately after an "SRA X, 2", we know that
2007/// the top 3 bits are all equal to each other, so we return 3.
2008unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2009 EVT VT = Op.getValueType();
2010 assert(VT.isInteger() && "Invalid VT!");
2011 unsigned VTBits = VT.getScalarType().getSizeInBits();
2012 unsigned Tmp, Tmp2;
2013 unsigned FirstAnswer = 1;
2014
2015 if (Depth == 6)
2016 return 1; // Limit search depth.
2017
2018 switch (Op.getOpcode()) {
2019 default: break;
2020 case ISD::AssertSext:
2021 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2022 return VTBits-Tmp+1;
2023 case ISD::AssertZext:
2024 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2025 return VTBits-Tmp;
2026
2027 case ISD::Constant: {
2028 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2029 // If negative, return # leading ones.
2030 if (Val.isNegative())
2031 return Val.countLeadingOnes();
2032
2033 // Return # leading zeros.
2034 return Val.countLeadingZeros();
2035 }
2036
2037 case ISD::SIGN_EXTEND:
2038 Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2039 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2040
2041 case ISD::SIGN_EXTEND_INREG:
2042 // Max of the input and what this extends.
2043 Tmp =
2044 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2045 Tmp = VTBits-Tmp+1;
2046
2047 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048 return std::max(Tmp, Tmp2);
2049
2050 case ISD::SRA:
2051 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2052 // SRA X, C -> adds C sign bits.
2053 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2054 Tmp += C->getZExtValue();
2055 if (Tmp > VTBits) Tmp = VTBits;
2056 }
2057 return Tmp;
2058 case ISD::SHL:
2059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060 // shl destroys sign bits.
2061 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2062 if (C->getZExtValue() >= VTBits || // Bad shift.
2063 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2064 return Tmp - C->getZExtValue();
2065 }
2066 break;
2067 case ISD::AND:
2068 case ISD::OR:
2069 case ISD::XOR: // NOT is handled here.
2070 // Logical binary ops preserve the number of sign bits at the worst.
2071 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2072 if (Tmp != 1) {
2073 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2074 FirstAnswer = std::min(Tmp, Tmp2);
2075 // We computed what we know about the sign bits as our first
2076 // answer. Now proceed to the generic code that uses
2077 // ComputeMaskedBits, and pick whichever answer is better.
2078 }
2079 break;
2080
2081 case ISD::SELECT:
2082 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2083 if (Tmp == 1) return 1; // Early out.
2084 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2085 return std::min(Tmp, Tmp2);
2086
2087 case ISD::SADDO:
2088 case ISD::UADDO:
2089 case ISD::SSUBO:
2090 case ISD::USUBO:
2091 case ISD::SMULO:
2092 case ISD::UMULO:
2093 if (Op.getResNo() != 1)
2094 break;
2095 // The boolean result conforms to getBooleanContents. Fall through.
2096 case ISD::SETCC:
2097 // If setcc returns 0/-1, all bits are sign bits.
2098 if (TLI.getBooleanContents() ==
2099 TargetLowering::ZeroOrNegativeOneBooleanContent)
2100 return VTBits;
2101 break;
2102 case ISD::ROTL:
2103 case ISD::ROTR:
2104 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2105 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2106
2107 // Handle rotate right by N like a rotate left by 32-N.
2108 if (Op.getOpcode() == ISD::ROTR)
2109 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2110
2111 // If we aren't rotating out all of the known-in sign bits, return the
2112 // number that are left. This handles rotl(sext(x), 1) for example.
2113 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2115 }
2116 break;
2117 case ISD::ADD:
2118 // Add can have at most one carry bit. Thus we know that the output
2119 // is, at worst, one more bit than the inputs.
2120 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2121 if (Tmp == 1) return 1; // Early out.
2122
2123 // Special case decrementing a value (ADD X, -1):
2124 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2125 if (CRHS->isAllOnesValue()) {
2126 APInt KnownZero, KnownOne;
2127 APInt Mask = APInt::getAllOnesValue(VTBits);
2128 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2129
2130 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2131 // sign bits set.
2132 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2133 return VTBits;
2134
2135 // If we are subtracting one from a positive number, there is no carry
2136 // out of the result.
2137 if (KnownZero.isNegative())
2138 return Tmp;
2139 }
2140
2141 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2142 if (Tmp2 == 1) return 1;
2143 return std::min(Tmp, Tmp2)-1;
2144 break;
2145
2146 case ISD::SUB:
2147 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2148 if (Tmp2 == 1) return 1;
2149
2150 // Handle NEG.
2151 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2152 if (CLHS->isNullValue()) {
2153 APInt KnownZero, KnownOne;
2154 APInt Mask = APInt::getAllOnesValue(VTBits);
2155 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2156 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2157 // sign bits set.
2158 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2159 return VTBits;
2160
2161 // If the input is known to be positive (the sign bit is known clear),
2162 // the output of the NEG has the same number of sign bits as the input.
2163 if (KnownZero.isNegative())
2164 return Tmp2;
2165
2166 // Otherwise, we treat this like a SUB.
2167 }
2168
2169 // Sub can have at most one carry bit. Thus we know that the output
2170 // is, at worst, one more bit than the inputs.
2171 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172 if (Tmp == 1) return 1; // Early out.
2173 return std::min(Tmp, Tmp2)-1;
2174 break;
2175 case ISD::TRUNCATE:
2176 // FIXME: it's tricky to do anything useful for this, but it is an important
2177 // case for targets like X86.
2178 break;
2179 }
2180
2181 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2182 if (Op.getOpcode() == ISD::LOAD) {
2183 LoadSDNode *LD = cast<LoadSDNode>(Op);
2184 unsigned ExtType = LD->getExtensionType();
2185 switch (ExtType) {
2186 default: break;
2187 case ISD::SEXTLOAD: // '17' bits known
2188 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2189 return VTBits-Tmp+1;
2190 case ISD::ZEXTLOAD: // '16' bits known
2191 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2192 return VTBits-Tmp;
2193 }
2194 }
2195
2196 // Allow the target to implement this method for its nodes.
2197 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2198 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2199 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2200 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2201 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2202 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2203 }
2204
2205 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2206 // use this information.
2207 APInt KnownZero, KnownOne;
2208 APInt Mask = APInt::getAllOnesValue(VTBits);
2209 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2210
2211 if (KnownZero.isNegative()) { // sign bit is 0
2212 Mask = KnownZero;
2213 } else if (KnownOne.isNegative()) { // sign bit is 1;
2214 Mask = KnownOne;
2215 } else {
2216 // Nothing known.
2217 return FirstAnswer;
2218 }
2219
2220 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2221 // the number of identical bits in the top of the input value.
2222 Mask = ~Mask;
2223 Mask <<= Mask.getBitWidth()-VTBits;
2224 // Return # leading zeros. We use 'min' here in case Val was zero before
2225 // shifting. We don't want to return '64' as for an i32 "0".
2226 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2227}
2228
2229bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2230 // If we're told that NaNs won't happen, assume they won't.
2231 if (FiniteOnlyFPMath())
2232 return true;
2233
2234 // If the value is a constant, we can obviously see if it is a NaN or not.
2235 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2236 return !C->getValueAPF().isNaN();
2237
2238 // TODO: Recognize more cases here.
2239
2240 return false;
2241}
2242
Shih-wei Liaoe4454322010-04-07 12:21:42 -07002243bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2244 // If the value is a constant, we can obviously see if it is a zero or not.
2245 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2246 return !C->isZero();
2247
2248 // TODO: Recognize more cases here.
2249
2250 return false;
2251}
2252
2253bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2254 // Check the obvious case.
2255 if (A == B) return true;
2256
2257 // For for negative and positive zero.
2258 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2259 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2260 if (CA->isZero() && CB->isZero()) return true;
2261
2262 // Otherwise they may not be equal.
2263 return false;
2264}
2265
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002266bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2267 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2268 if (!GA) return false;
2269 if (GA->getOffset() != 0) return false;
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002270 const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002271 if (!GV) return false;
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002272 return MF->getMMI().hasDebugInfo();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002273}
2274
2275
2276/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2277/// element of the result of the vector shuffle.
2278SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2279 unsigned i) {
2280 EVT VT = N->getValueType(0);
2281 DebugLoc dl = N->getDebugLoc();
2282 if (N->getMaskElt(i) < 0)
2283 return getUNDEF(VT.getVectorElementType());
2284 unsigned Index = N->getMaskElt(i);
2285 unsigned NumElems = VT.getVectorNumElements();
2286 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2287 Index %= NumElems;
2288
2289 if (V.getOpcode() == ISD::BIT_CONVERT) {
2290 V = V.getOperand(0);
2291 EVT VVT = V.getValueType();
2292 if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2293 return SDValue();
2294 }
2295 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2296 return (Index == 0) ? V.getOperand(0)
2297 : getUNDEF(VT.getVectorElementType());
2298 if (V.getOpcode() == ISD::BUILD_VECTOR)
2299 return V.getOperand(Index);
2300 if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2301 return getShuffleScalarElt(SVN, Index);
2302 return SDValue();
2303}
2304
2305
2306/// getNode - Gets or creates the specified node.
2307///
2308SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2309 FoldingSetNodeID ID;
2310 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2311 void *IP = 0;
2312 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2313 return SDValue(E, 0);
2314
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002315 SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002316 CSEMap.InsertNode(N, IP);
2317
2318 AllNodes.push_back(N);
2319#ifndef NDEBUG
2320 VerifyNode(N);
2321#endif
2322 return SDValue(N, 0);
2323}
2324
2325SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2326 EVT VT, SDValue Operand) {
2327 // Constant fold unary operations with an integer constant operand.
2328 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2329 const APInt &Val = C->getAPIntValue();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002330 switch (Opcode) {
2331 default: break;
2332 case ISD::SIGN_EXTEND:
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002333 return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002334 case ISD::ANY_EXTEND:
2335 case ISD::ZERO_EXTEND:
2336 case ISD::TRUNCATE:
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002337 return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002338 case ISD::UINT_TO_FP:
2339 case ISD::SINT_TO_FP: {
2340 const uint64_t zero[] = {0, 0};
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002341 // No compile time operations on ppcf128.
2342 if (VT == MVT::ppcf128) break;
2343 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002344 (void)apf.convertFromAPInt(Val,
2345 Opcode==ISD::SINT_TO_FP,
2346 APFloat::rmNearestTiesToEven);
2347 return getConstantFP(apf, VT);
2348 }
2349 case ISD::BIT_CONVERT:
2350 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2351 return getConstantFP(Val.bitsToFloat(), VT);
2352 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2353 return getConstantFP(Val.bitsToDouble(), VT);
2354 break;
2355 case ISD::BSWAP:
2356 return getConstant(Val.byteSwap(), VT);
2357 case ISD::CTPOP:
2358 return getConstant(Val.countPopulation(), VT);
2359 case ISD::CTLZ:
2360 return getConstant(Val.countLeadingZeros(), VT);
2361 case ISD::CTTZ:
2362 return getConstant(Val.countTrailingZeros(), VT);
2363 }
2364 }
2365
2366 // Constant fold unary operations with a floating point constant operand.
2367 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2368 APFloat V = C->getValueAPF(); // make copy
2369 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2370 switch (Opcode) {
2371 case ISD::FNEG:
2372 V.changeSign();
2373 return getConstantFP(V, VT);
2374 case ISD::FABS:
2375 V.clearSign();
2376 return getConstantFP(V, VT);
2377 case ISD::FP_ROUND:
2378 case ISD::FP_EXTEND: {
2379 bool ignored;
2380 // This can return overflow, underflow, or inexact; we don't care.
2381 // FIXME need to be more flexible about rounding mode.
2382 (void)V.convert(*EVTToAPFloatSemantics(VT),
2383 APFloat::rmNearestTiesToEven, &ignored);
2384 return getConstantFP(V, VT);
2385 }
2386 case ISD::FP_TO_SINT:
2387 case ISD::FP_TO_UINT: {
2388 integerPart x[2];
2389 bool ignored;
2390 assert(integerPartWidth >= 64);
2391 // FIXME need to be more flexible about rounding mode.
2392 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2393 Opcode==ISD::FP_TO_SINT,
2394 APFloat::rmTowardZero, &ignored);
2395 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2396 break;
2397 APInt api(VT.getSizeInBits(), 2, x);
2398 return getConstant(api, VT);
2399 }
2400 case ISD::BIT_CONVERT:
2401 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2402 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2403 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2404 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2405 break;
2406 }
2407 }
2408 }
2409
2410 unsigned OpOpcode = Operand.getNode()->getOpcode();
2411 switch (Opcode) {
2412 case ISD::TokenFactor:
2413 case ISD::MERGE_VALUES:
2414 case ISD::CONCAT_VECTORS:
2415 return Operand; // Factor, merge or concat of one node? No need.
2416 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2417 case ISD::FP_EXTEND:
2418 assert(VT.isFloatingPoint() &&
2419 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2420 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2421 assert((!VT.isVector() ||
2422 VT.getVectorNumElements() ==
2423 Operand.getValueType().getVectorNumElements()) &&
2424 "Vector element count mismatch!");
2425 if (Operand.getOpcode() == ISD::UNDEF)
2426 return getUNDEF(VT);
2427 break;
2428 case ISD::SIGN_EXTEND:
2429 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2430 "Invalid SIGN_EXTEND!");
2431 if (Operand.getValueType() == VT) return Operand; // noop extension
2432 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2433 "Invalid sext node, dst < src!");
2434 assert((!VT.isVector() ||
2435 VT.getVectorNumElements() ==
2436 Operand.getValueType().getVectorNumElements()) &&
2437 "Vector element count mismatch!");
2438 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2439 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2440 break;
2441 case ISD::ZERO_EXTEND:
2442 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443 "Invalid ZERO_EXTEND!");
2444 if (Operand.getValueType() == VT) return Operand; // noop extension
2445 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446 "Invalid zext node, dst < src!");
2447 assert((!VT.isVector() ||
2448 VT.getVectorNumElements() ==
2449 Operand.getValueType().getVectorNumElements()) &&
2450 "Vector element count mismatch!");
2451 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2452 return getNode(ISD::ZERO_EXTEND, DL, VT,
2453 Operand.getNode()->getOperand(0));
2454 break;
2455 case ISD::ANY_EXTEND:
2456 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2457 "Invalid ANY_EXTEND!");
2458 if (Operand.getValueType() == VT) return Operand; // noop extension
2459 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2460 "Invalid anyext node, dst < src!");
2461 assert((!VT.isVector() ||
2462 VT.getVectorNumElements() ==
2463 Operand.getValueType().getVectorNumElements()) &&
2464 "Vector element count mismatch!");
2465 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2466 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2467 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2468 break;
2469 case ISD::TRUNCATE:
2470 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2471 "Invalid TRUNCATE!");
2472 if (Operand.getValueType() == VT) return Operand; // noop truncate
2473 assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2474 "Invalid truncate node, src < dst!");
2475 assert((!VT.isVector() ||
2476 VT.getVectorNumElements() ==
2477 Operand.getValueType().getVectorNumElements()) &&
2478 "Vector element count mismatch!");
2479 if (OpOpcode == ISD::TRUNCATE)
2480 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2481 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2482 OpOpcode == ISD::ANY_EXTEND) {
2483 // If the source is smaller than the dest, we still need an extend.
2484 if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2485 .bitsLT(VT.getScalarType()))
2486 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2487 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2488 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2489 else
2490 return Operand.getNode()->getOperand(0);
2491 }
2492 break;
2493 case ISD::BIT_CONVERT:
2494 // Basic sanity checking.
2495 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2496 && "Cannot BIT_CONVERT between types of different sizes!");
2497 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2498 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2499 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2500 if (OpOpcode == ISD::UNDEF)
2501 return getUNDEF(VT);
2502 break;
2503 case ISD::SCALAR_TO_VECTOR:
2504 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2505 (VT.getVectorElementType() == Operand.getValueType() ||
2506 (VT.getVectorElementType().isInteger() &&
2507 Operand.getValueType().isInteger() &&
2508 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2509 "Illegal SCALAR_TO_VECTOR node!");
2510 if (OpOpcode == ISD::UNDEF)
2511 return getUNDEF(VT);
2512 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2513 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2514 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2515 Operand.getConstantOperandVal(1) == 0 &&
2516 Operand.getOperand(0).getValueType() == VT)
2517 return Operand.getOperand(0);
2518 break;
2519 case ISD::FNEG:
2520 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2521 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2522 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2523 Operand.getNode()->getOperand(0));
2524 if (OpOpcode == ISD::FNEG) // --X -> X
2525 return Operand.getNode()->getOperand(0);
2526 break;
2527 case ISD::FABS:
2528 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2529 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2530 break;
2531 }
2532
2533 SDNode *N;
2534 SDVTList VTs = getVTList(VT);
2535 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2536 FoldingSetNodeID ID;
2537 SDValue Ops[1] = { Operand };
2538 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2539 void *IP = 0;
2540 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2541 return SDValue(E, 0);
2542
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002543 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002544 CSEMap.InsertNode(N, IP);
2545 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002546 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002547 }
2548
2549 AllNodes.push_back(N);
2550#ifndef NDEBUG
2551 VerifyNode(N);
2552#endif
2553 return SDValue(N, 0);
2554}
2555
2556SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2557 EVT VT,
2558 ConstantSDNode *Cst1,
2559 ConstantSDNode *Cst2) {
2560 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2561
2562 switch (Opcode) {
2563 case ISD::ADD: return getConstant(C1 + C2, VT);
2564 case ISD::SUB: return getConstant(C1 - C2, VT);
2565 case ISD::MUL: return getConstant(C1 * C2, VT);
2566 case ISD::UDIV:
2567 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2568 break;
2569 case ISD::UREM:
2570 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2571 break;
2572 case ISD::SDIV:
2573 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2574 break;
2575 case ISD::SREM:
2576 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2577 break;
2578 case ISD::AND: return getConstant(C1 & C2, VT);
2579 case ISD::OR: return getConstant(C1 | C2, VT);
2580 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2581 case ISD::SHL: return getConstant(C1 << C2, VT);
2582 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2583 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2584 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2585 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2586 default: break;
2587 }
2588
2589 return SDValue();
2590}
2591
2592SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2593 SDValue N1, SDValue N2) {
2594 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2595 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2596 switch (Opcode) {
2597 default: break;
2598 case ISD::TokenFactor:
2599 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2600 N2.getValueType() == MVT::Other && "Invalid token factor!");
2601 // Fold trivial token factors.
2602 if (N1.getOpcode() == ISD::EntryToken) return N2;
2603 if (N2.getOpcode() == ISD::EntryToken) return N1;
2604 if (N1 == N2) return N1;
2605 break;
2606 case ISD::CONCAT_VECTORS:
2607 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2608 // one big BUILD_VECTOR.
2609 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2610 N2.getOpcode() == ISD::BUILD_VECTOR) {
2611 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2612 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2613 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2614 }
2615 break;
2616 case ISD::AND:
2617 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2618 N1.getValueType() == VT && "Binary operator types must match!");
2619 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2620 // worth handling here.
2621 if (N2C && N2C->isNullValue())
2622 return N2;
2623 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2624 return N1;
2625 break;
2626 case ISD::OR:
2627 case ISD::XOR:
2628 case ISD::ADD:
2629 case ISD::SUB:
2630 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2631 N1.getValueType() == VT && "Binary operator types must match!");
2632 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2633 // it's worth handling here.
2634 if (N2C && N2C->isNullValue())
2635 return N1;
2636 break;
2637 case ISD::UDIV:
2638 case ISD::UREM:
2639 case ISD::MULHU:
2640 case ISD::MULHS:
2641 case ISD::MUL:
2642 case ISD::SDIV:
2643 case ISD::SREM:
2644 assert(VT.isInteger() && "This operator does not apply to FP types!");
2645 // fall through
2646 case ISD::FADD:
2647 case ISD::FSUB:
2648 case ISD::FMUL:
2649 case ISD::FDIV:
2650 case ISD::FREM:
2651 if (UnsafeFPMath) {
2652 if (Opcode == ISD::FADD) {
2653 // 0+x --> x
2654 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2655 if (CFP->getValueAPF().isZero())
2656 return N2;
2657 // x+0 --> x
2658 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2659 if (CFP->getValueAPF().isZero())
2660 return N1;
2661 } else if (Opcode == ISD::FSUB) {
2662 // x-0 --> x
2663 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2664 if (CFP->getValueAPF().isZero())
2665 return N1;
2666 }
2667 }
2668 assert(N1.getValueType() == N2.getValueType() &&
2669 N1.getValueType() == VT && "Binary operator types must match!");
2670 break;
2671 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2672 assert(N1.getValueType() == VT &&
2673 N1.getValueType().isFloatingPoint() &&
2674 N2.getValueType().isFloatingPoint() &&
2675 "Invalid FCOPYSIGN!");
2676 break;
2677 case ISD::SHL:
2678 case ISD::SRA:
2679 case ISD::SRL:
2680 case ISD::ROTL:
2681 case ISD::ROTR:
2682 assert(VT == N1.getValueType() &&
2683 "Shift operators return type must be the same as their first arg");
2684 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2685 "Shifts only work on integers");
2686
2687 // Always fold shifts of i1 values so the code generator doesn't need to
2688 // handle them. Since we know the size of the shift has to be less than the
2689 // size of the value, the shift/rotate count is guaranteed to be zero.
2690 if (VT == MVT::i1)
2691 return N1;
2692 if (N2C && N2C->isNullValue())
2693 return N1;
2694 break;
2695 case ISD::FP_ROUND_INREG: {
2696 EVT EVT = cast<VTSDNode>(N2)->getVT();
2697 assert(VT == N1.getValueType() && "Not an inreg round!");
2698 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2699 "Cannot FP_ROUND_INREG integer types");
2700 assert(EVT.isVector() == VT.isVector() &&
2701 "FP_ROUND_INREG type should be vector iff the operand "
2702 "type is vector!");
2703 assert((!EVT.isVector() ||
2704 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2705 "Vector element counts must match in FP_ROUND_INREG");
2706 assert(EVT.bitsLE(VT) && "Not rounding down!");
2707 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2708 break;
2709 }
2710 case ISD::FP_ROUND:
2711 assert(VT.isFloatingPoint() &&
2712 N1.getValueType().isFloatingPoint() &&
2713 VT.bitsLE(N1.getValueType()) &&
2714 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2715 if (N1.getValueType() == VT) return N1; // noop conversion.
2716 break;
2717 case ISD::AssertSext:
2718 case ISD::AssertZext: {
2719 EVT EVT = cast<VTSDNode>(N2)->getVT();
2720 assert(VT == N1.getValueType() && "Not an inreg extend!");
2721 assert(VT.isInteger() && EVT.isInteger() &&
2722 "Cannot *_EXTEND_INREG FP types");
2723 assert(!EVT.isVector() &&
2724 "AssertSExt/AssertZExt type should be the vector element type "
2725 "rather than the vector type!");
2726 assert(EVT.bitsLE(VT) && "Not extending!");
2727 if (VT == EVT) return N1; // noop assertion.
2728 break;
2729 }
2730 case ISD::SIGN_EXTEND_INREG: {
2731 EVT EVT = cast<VTSDNode>(N2)->getVT();
2732 assert(VT == N1.getValueType() && "Not an inreg extend!");
2733 assert(VT.isInteger() && EVT.isInteger() &&
2734 "Cannot *_EXTEND_INREG FP types");
2735 assert(EVT.isVector() == VT.isVector() &&
2736 "SIGN_EXTEND_INREG type should be vector iff the operand "
2737 "type is vector!");
2738 assert((!EVT.isVector() ||
2739 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2740 "Vector element counts must match in SIGN_EXTEND_INREG");
2741 assert(EVT.bitsLE(VT) && "Not extending!");
2742 if (EVT == VT) return N1; // Not actually extending
2743
2744 if (N1C) {
2745 APInt Val = N1C->getAPIntValue();
2746 unsigned FromBits = EVT.getScalarType().getSizeInBits();
2747 Val <<= Val.getBitWidth()-FromBits;
2748 Val = Val.ashr(Val.getBitWidth()-FromBits);
2749 return getConstant(Val, VT);
2750 }
2751 break;
2752 }
2753 case ISD::EXTRACT_VECTOR_ELT:
2754 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2755 if (N1.getOpcode() == ISD::UNDEF)
2756 return getUNDEF(VT);
2757
2758 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2759 // expanding copies of large vectors from registers.
2760 if (N2C &&
2761 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2762 N1.getNumOperands() > 0) {
2763 unsigned Factor =
2764 N1.getOperand(0).getValueType().getVectorNumElements();
2765 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2766 N1.getOperand(N2C->getZExtValue() / Factor),
2767 getConstant(N2C->getZExtValue() % Factor,
2768 N2.getValueType()));
2769 }
2770
2771 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2772 // expanding large vector constants.
2773 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2774 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2775 EVT VEltTy = N1.getValueType().getVectorElementType();
2776 if (Elt.getValueType() != VEltTy) {
2777 // If the vector element type is not legal, the BUILD_VECTOR operands
2778 // are promoted and implicitly truncated. Make that explicit here.
2779 Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2780 }
2781 if (VT != VEltTy) {
2782 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2783 // result is implicitly extended.
2784 Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2785 }
2786 return Elt;
2787 }
2788
2789 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2790 // operations are lowered to scalars.
2791 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2792 // If the indices are the same, return the inserted element else
2793 // if the indices are known different, extract the element from
2794 // the original vector.
2795 if (N1.getOperand(2) == N2) {
2796 if (VT == N1.getOperand(1).getValueType())
2797 return N1.getOperand(1);
2798 else
2799 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2800 } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2801 isa<ConstantSDNode>(N2))
2802 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2803 }
2804 break;
2805 case ISD::EXTRACT_ELEMENT:
2806 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2807 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2808 (N1.getValueType().isInteger() == VT.isInteger()) &&
2809 "Wrong types for EXTRACT_ELEMENT!");
2810
2811 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2812 // 64-bit integers into 32-bit parts. Instead of building the extract of
2813 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2814 if (N1.getOpcode() == ISD::BUILD_PAIR)
2815 return N1.getOperand(N2C->getZExtValue());
2816
2817 // EXTRACT_ELEMENT of a constant int is also very common.
2818 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2819 unsigned ElementSize = VT.getSizeInBits();
2820 unsigned Shift = ElementSize * N2C->getZExtValue();
2821 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2822 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2823 }
2824 break;
2825 case ISD::EXTRACT_SUBVECTOR:
2826 if (N1.getValueType() == VT) // Trivial extraction.
2827 return N1;
2828 break;
2829 }
2830
2831 if (N1C) {
2832 if (N2C) {
2833 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2834 if (SV.getNode()) return SV;
2835 } else { // Cannonicalize constant to RHS if commutative
2836 if (isCommutativeBinOp(Opcode)) {
2837 std::swap(N1C, N2C);
2838 std::swap(N1, N2);
2839 }
2840 }
2841 }
2842
2843 // Constant fold FP operations.
2844 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2845 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2846 if (N1CFP) {
2847 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2848 // Cannonicalize constant to RHS if commutative
2849 std::swap(N1CFP, N2CFP);
2850 std::swap(N1, N2);
2851 } else if (N2CFP && VT != MVT::ppcf128) {
2852 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2853 APFloat::opStatus s;
2854 switch (Opcode) {
2855 case ISD::FADD:
2856 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2857 if (s != APFloat::opInvalidOp)
2858 return getConstantFP(V1, VT);
2859 break;
2860 case ISD::FSUB:
2861 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2862 if (s!=APFloat::opInvalidOp)
2863 return getConstantFP(V1, VT);
2864 break;
2865 case ISD::FMUL:
2866 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2867 if (s!=APFloat::opInvalidOp)
2868 return getConstantFP(V1, VT);
2869 break;
2870 case ISD::FDIV:
2871 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2872 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2873 return getConstantFP(V1, VT);
2874 break;
2875 case ISD::FREM :
2876 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2877 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2878 return getConstantFP(V1, VT);
2879 break;
2880 case ISD::FCOPYSIGN:
2881 V1.copySign(V2);
2882 return getConstantFP(V1, VT);
2883 default: break;
2884 }
2885 }
2886 }
2887
2888 // Canonicalize an UNDEF to the RHS, even over a constant.
2889 if (N1.getOpcode() == ISD::UNDEF) {
2890 if (isCommutativeBinOp(Opcode)) {
2891 std::swap(N1, N2);
2892 } else {
2893 switch (Opcode) {
2894 case ISD::FP_ROUND_INREG:
2895 case ISD::SIGN_EXTEND_INREG:
2896 case ISD::SUB:
2897 case ISD::FSUB:
2898 case ISD::FDIV:
2899 case ISD::FREM:
2900 case ISD::SRA:
2901 return N1; // fold op(undef, arg2) -> undef
2902 case ISD::UDIV:
2903 case ISD::SDIV:
2904 case ISD::UREM:
2905 case ISD::SREM:
2906 case ISD::SRL:
2907 case ISD::SHL:
2908 if (!VT.isVector())
2909 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2910 // For vectors, we can't easily build an all zero vector, just return
2911 // the LHS.
2912 return N2;
2913 }
2914 }
2915 }
2916
2917 // Fold a bunch of operators when the RHS is undef.
2918 if (N2.getOpcode() == ISD::UNDEF) {
2919 switch (Opcode) {
2920 case ISD::XOR:
2921 if (N1.getOpcode() == ISD::UNDEF)
2922 // Handle undef ^ undef -> 0 special case. This is a common
2923 // idiom (misuse).
2924 return getConstant(0, VT);
2925 // fallthrough
2926 case ISD::ADD:
2927 case ISD::ADDC:
2928 case ISD::ADDE:
2929 case ISD::SUB:
2930 case ISD::UDIV:
2931 case ISD::SDIV:
2932 case ISD::UREM:
2933 case ISD::SREM:
2934 return N2; // fold op(arg1, undef) -> undef
2935 case ISD::FADD:
2936 case ISD::FSUB:
2937 case ISD::FMUL:
2938 case ISD::FDIV:
2939 case ISD::FREM:
2940 if (UnsafeFPMath)
2941 return N2;
2942 break;
2943 case ISD::MUL:
2944 case ISD::AND:
2945 case ISD::SRL:
2946 case ISD::SHL:
2947 if (!VT.isVector())
2948 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2949 // For vectors, we can't easily build an all zero vector, just return
2950 // the LHS.
2951 return N1;
2952 case ISD::OR:
2953 if (!VT.isVector())
2954 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2955 // For vectors, we can't easily build an all one vector, just return
2956 // the LHS.
2957 return N1;
2958 case ISD::SRA:
2959 return N1;
2960 }
2961 }
2962
2963 // Memoize this node if possible.
2964 SDNode *N;
2965 SDVTList VTs = getVTList(VT);
2966 if (VT != MVT::Flag) {
2967 SDValue Ops[] = { N1, N2 };
2968 FoldingSetNodeID ID;
2969 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2970 void *IP = 0;
2971 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2972 return SDValue(E, 0);
2973
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002974 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002975 CSEMap.InsertNode(N, IP);
2976 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07002977 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002978 }
2979
2980 AllNodes.push_back(N);
2981#ifndef NDEBUG
2982 VerifyNode(N);
2983#endif
2984 return SDValue(N, 0);
2985}
2986
2987SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2988 SDValue N1, SDValue N2, SDValue N3) {
2989 // Perform various simplifications.
2990 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2991 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2992 switch (Opcode) {
2993 case ISD::CONCAT_VECTORS:
2994 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2995 // one big BUILD_VECTOR.
2996 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2997 N2.getOpcode() == ISD::BUILD_VECTOR &&
2998 N3.getOpcode() == ISD::BUILD_VECTOR) {
2999 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3000 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3001 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3002 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3003 }
3004 break;
3005 case ISD::SETCC: {
3006 // Use FoldSetCC to simplify SETCC's.
3007 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3008 if (Simp.getNode()) return Simp;
3009 break;
3010 }
3011 case ISD::SELECT:
3012 if (N1C) {
3013 if (N1C->getZExtValue())
3014 return N2; // select true, X, Y -> X
3015 else
3016 return N3; // select false, X, Y -> Y
3017 }
3018
3019 if (N2 == N3) return N2; // select C, X, X -> X
3020 break;
3021 case ISD::BRCOND:
3022 if (N2C) {
3023 if (N2C->getZExtValue()) // Unconditional branch
3024 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3025 else
3026 return N1; // Never-taken branch
3027 }
3028 break;
3029 case ISD::VECTOR_SHUFFLE:
3030 llvm_unreachable("should use getVectorShuffle constructor!");
3031 break;
3032 case ISD::BIT_CONVERT:
3033 // Fold bit_convert nodes from a type to themselves.
3034 if (N1.getValueType() == VT)
3035 return N1;
3036 break;
3037 }
3038
3039 // Memoize node if it doesn't produce a flag.
3040 SDNode *N;
3041 SDVTList VTs = getVTList(VT);
3042 if (VT != MVT::Flag) {
3043 SDValue Ops[] = { N1, N2, N3 };
3044 FoldingSetNodeID ID;
3045 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3046 void *IP = 0;
3047 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3048 return SDValue(E, 0);
3049
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003050 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003051 CSEMap.InsertNode(N, IP);
3052 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003053 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003054 }
3055
3056 AllNodes.push_back(N);
3057#ifndef NDEBUG
3058 VerifyNode(N);
3059#endif
3060 return SDValue(N, 0);
3061}
3062
3063SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3064 SDValue N1, SDValue N2, SDValue N3,
3065 SDValue N4) {
3066 SDValue Ops[] = { N1, N2, N3, N4 };
3067 return getNode(Opcode, DL, VT, Ops, 4);
3068}
3069
3070SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3071 SDValue N1, SDValue N2, SDValue N3,
3072 SDValue N4, SDValue N5) {
3073 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3074 return getNode(Opcode, DL, VT, Ops, 5);
3075}
3076
3077/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3078/// the incoming stack arguments to be loaded from the stack.
3079SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3080 SmallVector<SDValue, 8> ArgChains;
3081
3082 // Include the original chain at the beginning of the list. When this is
3083 // used by target LowerCall hooks, this helps legalize find the
3084 // CALLSEQ_BEGIN node.
3085 ArgChains.push_back(Chain);
3086
3087 // Add a chain value for each stack argument.
3088 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3089 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3090 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3091 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3092 if (FI->getIndex() < 0)
3093 ArgChains.push_back(SDValue(L, 1));
3094
3095 // Build a tokenfactor for all the chains.
3096 return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3097 &ArgChains[0], ArgChains.size());
3098}
3099
3100/// getMemsetValue - Vectorized representation of the memset value
3101/// operand.
3102static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3103 DebugLoc dl) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003104 assert(Value.getOpcode() != ISD::UNDEF);
3105
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003106 unsigned NumBits = VT.getScalarType().getSizeInBits();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003107 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3108 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3109 unsigned Shift = 8;
3110 for (unsigned i = NumBits; i > 8; i >>= 1) {
3111 Val = (Val << Shift) | Val;
3112 Shift <<= 1;
3113 }
3114 if (VT.isInteger())
3115 return DAG.getConstant(Val, VT);
3116 return DAG.getConstantFP(APFloat(Val), VT);
3117 }
3118
3119 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3120 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3121 unsigned Shift = 8;
3122 for (unsigned i = NumBits; i > 8; i >>= 1) {
3123 Value = DAG.getNode(ISD::OR, dl, VT,
3124 DAG.getNode(ISD::SHL, dl, VT, Value,
3125 DAG.getConstant(Shift,
3126 TLI.getShiftAmountTy())),
3127 Value);
3128 Shift <<= 1;
3129 }
3130
3131 return Value;
3132}
3133
3134/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3135/// used when a memcpy is turned into a memset when the source is a constant
3136/// string ptr.
3137static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3138 const TargetLowering &TLI,
3139 std::string &Str, unsigned Offset) {
3140 // Handle vector with all elements zero.
3141 if (Str.empty()) {
3142 if (VT.isInteger())
3143 return DAG.getConstant(0, VT);
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003144 else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3145 VT.getSimpleVT().SimpleTy == MVT::f64)
3146 return DAG.getConstantFP(0.0, VT);
3147 else if (VT.isVector()) {
3148 unsigned NumElts = VT.getVectorNumElements();
3149 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3150 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3151 DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3152 EltVT, NumElts)));
3153 } else
3154 llvm_unreachable("Expected type!");
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003155 }
3156
3157 assert(!VT.isVector() && "Can't handle vector type here!");
3158 unsigned NumBits = VT.getSizeInBits();
3159 unsigned MSB = NumBits / 8;
3160 uint64_t Val = 0;
3161 if (TLI.isLittleEndian())
3162 Offset = Offset + MSB - 1;
3163 for (unsigned i = 0; i != MSB; ++i) {
3164 Val = (Val << 8) | (unsigned char)Str[Offset];
3165 Offset += TLI.isLittleEndian() ? -1 : 1;
3166 }
3167 return DAG.getConstant(Val, VT);
3168}
3169
3170/// getMemBasePlusOffset - Returns base and offset node for the
3171///
3172static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3173 SelectionDAG &DAG) {
3174 EVT VT = Base.getValueType();
3175 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3176 VT, Base, DAG.getConstant(Offset, VT));
3177}
3178
3179/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3180///
3181static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3182 unsigned SrcDelta = 0;
3183 GlobalAddressSDNode *G = NULL;
3184 if (Src.getOpcode() == ISD::GlobalAddress)
3185 G = cast<GlobalAddressSDNode>(Src);
3186 else if (Src.getOpcode() == ISD::ADD &&
3187 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3188 Src.getOperand(1).getOpcode() == ISD::Constant) {
3189 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3190 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3191 }
3192 if (!G)
3193 return false;
3194
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003195 const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003196 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3197 return true;
3198
3199 return false;
3200}
3201
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003202/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3203/// to replace the memset / memcpy. Return true if the number of memory ops
3204/// is below the threshold. It returns the types of the sequence of
3205/// memory ops to perform memset / memcpy by reference.
3206static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3207 unsigned Limit, uint64_t Size,
3208 unsigned DstAlign, unsigned SrcAlign,
3209 bool NonScalarIntSafe,
3210 bool MemcpyStrSrc,
3211 SelectionDAG &DAG,
3212 const TargetLowering &TLI) {
3213 assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3214 "Expecting memcpy / memset source to meet alignment requirement!");
3215 // If 'SrcAlign' is zero, that means the memory operation does not need load
3216 // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3217 // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3218 // specified alignment of the memory operation. If it is zero, that means
3219 // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3220 // indicates whether the memcpy source is constant so it does not need to be
3221 // loaded.
3222 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3223 NonScalarIntSafe, MemcpyStrSrc,
3224 DAG.getMachineFunction());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003225
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003226 if (VT == MVT::Other) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003227 if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3228 TLI.allowsUnalignedMemoryAccesses(VT)) {
3229 VT = TLI.getPointerTy();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003230 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003231 switch (DstAlign & 7) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003232 case 0: VT = MVT::i64; break;
3233 case 4: VT = MVT::i32; break;
3234 case 2: VT = MVT::i16; break;
3235 default: VT = MVT::i8; break;
3236 }
3237 }
3238
3239 MVT LVT = MVT::i64;
3240 while (!TLI.isTypeLegal(LVT))
3241 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3242 assert(LVT.isInteger());
3243
3244 if (VT.bitsGT(LVT))
3245 VT = LVT;
3246 }
3247
3248 unsigned NumMemOps = 0;
3249 while (Size != 0) {
3250 unsigned VTSize = VT.getSizeInBits() / 8;
3251 while (VTSize > Size) {
3252 // For now, only use non-vector load / store's for the left-over pieces.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003253 if (VT.isVector() || VT.isFloatingPoint()) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003254 VT = MVT::i64;
3255 while (!TLI.isTypeLegal(VT))
3256 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3257 VTSize = VT.getSizeInBits() / 8;
3258 } else {
3259 // This can result in a type that is not legal on the target, e.g.
3260 // 1 or 2 bytes on PPC.
3261 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3262 VTSize >>= 1;
3263 }
3264 }
3265
3266 if (++NumMemOps > Limit)
3267 return false;
3268 MemOps.push_back(VT);
3269 Size -= VTSize;
3270 }
3271
3272 return true;
3273}
3274
3275static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003276 SDValue Chain, SDValue Dst,
3277 SDValue Src, uint64_t Size,
3278 unsigned Align, bool isVol,
3279 bool AlwaysInline,
3280 const Value *DstSV, uint64_t DstSVOff,
3281 const Value *SrcSV, uint64_t SrcSVOff) {
3282 // Turn a memcpy of undef to nop.
3283 if (Src.getOpcode() == ISD::UNDEF)
3284 return Chain;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003285
3286 // Expand memcpy to a series of load and store ops if the size operand falls
3287 // below a certain threshold.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003288 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003289 std::vector<EVT> MemOps;
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003290 bool DstAlignCanChange = false;
3291 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3292 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3293 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3294 DstAlignCanChange = true;
3295 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3296 if (Align > SrcAlign)
3297 SrcAlign = Align;
3298 std::string Str;
3299 bool CopyFromStr = isMemSrcFromString(Src, Str);
3300 bool isZeroStr = CopyFromStr && Str.empty();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003301 uint64_t Limit = -1ULL;
3302 if (!AlwaysInline)
3303 Limit = TLI.getMaxStoresPerMemcpy();
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003304 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3305 (DstAlignCanChange ? 0 : Align),
3306 (isZeroStr ? 0 : SrcAlign),
3307 true, CopyFromStr, DAG, TLI))
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003308 return SDValue();
3309
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003310 if (DstAlignCanChange) {
3311 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3312 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3313 if (NewAlign > Align) {
3314 // Give the stack frame object a larger alignment if needed.
3315 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3316 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3317 Align = NewAlign;
3318 }
3319 }
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003320
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003321 SmallVector<SDValue, 8> OutChains;
3322 unsigned NumMemOps = MemOps.size();
3323 uint64_t SrcOff = 0, DstOff = 0;
3324 for (unsigned i = 0; i != NumMemOps; ++i) {
3325 EVT VT = MemOps[i];
3326 unsigned VTSize = VT.getSizeInBits() / 8;
3327 SDValue Value, Store;
3328
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003329 if (CopyFromStr &&
3330 (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003331 // It's unlikely a store of a vector immediate can be done in a single
3332 // instruction. It would require a load from a constantpool first.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003333 // We only handle zero vectors here.
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003334 // FIXME: Handle other cases where store of vector immediate is done in
3335 // a single instruction.
3336 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3337 Store = DAG.getStore(Chain, dl, Value,
3338 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003339 DstSV, DstSVOff + DstOff, isVol, false, Align);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003340 } else {
3341 // The type might not be legal for the target. This should only happen
3342 // if the type is smaller than a legal type, as on PPC, so the right
3343 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3344 // to Load/Store if NVT==VT.
3345 // FIXME does the case above also need this?
3346 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3347 assert(NVT.bitsGE(VT));
3348 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3349 getMemBasePlusOffset(Src, SrcOff, DAG),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003350 SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3351 MinAlign(SrcAlign, SrcOff));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003352 Store = DAG.getTruncStore(Chain, dl, Value,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003353 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003354 DstSV, DstSVOff + DstOff, VT, isVol, false,
3355 Align);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003356 }
3357 OutChains.push_back(Store);
3358 SrcOff += VTSize;
3359 DstOff += VTSize;
3360 }
3361
3362 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3363 &OutChains[0], OutChains.size());
3364}
3365
3366static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003367 SDValue Chain, SDValue Dst,
3368 SDValue Src, uint64_t Size,
3369 unsigned Align, bool isVol,
3370 bool AlwaysInline,
3371 const Value *DstSV, uint64_t DstSVOff,
3372 const Value *SrcSV, uint64_t SrcSVOff) {
3373 // Turn a memmove of undef to nop.
3374 if (Src.getOpcode() == ISD::UNDEF)
3375 return Chain;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003376
3377 // Expand memmove to a series of load and store ops if the size operand falls
3378 // below a certain threshold.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003379 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003380 std::vector<EVT> MemOps;
3381 uint64_t Limit = -1ULL;
3382 if (!AlwaysInline)
3383 Limit = TLI.getMaxStoresPerMemmove();
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003384 bool DstAlignCanChange = false;
3385 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3386 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3387 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3388 DstAlignCanChange = true;
3389 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3390 if (Align > SrcAlign)
3391 SrcAlign = Align;
3392
3393 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3394 (DstAlignCanChange ? 0 : Align),
3395 SrcAlign, true, false, DAG, TLI))
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003396 return SDValue();
3397
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003398 if (DstAlignCanChange) {
3399 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3400 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3401 if (NewAlign > Align) {
3402 // Give the stack frame object a larger alignment if needed.
3403 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3404 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3405 Align = NewAlign;
3406 }
3407 }
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003408
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003409 uint64_t SrcOff = 0, DstOff = 0;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003410 SmallVector<SDValue, 8> LoadValues;
3411 SmallVector<SDValue, 8> LoadChains;
3412 SmallVector<SDValue, 8> OutChains;
3413 unsigned NumMemOps = MemOps.size();
3414 for (unsigned i = 0; i < NumMemOps; i++) {
3415 EVT VT = MemOps[i];
3416 unsigned VTSize = VT.getSizeInBits() / 8;
3417 SDValue Value, Store;
3418
3419 Value = DAG.getLoad(VT, dl, Chain,
3420 getMemBasePlusOffset(Src, SrcOff, DAG),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003421 SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003422 LoadValues.push_back(Value);
3423 LoadChains.push_back(Value.getValue(1));
3424 SrcOff += VTSize;
3425 }
3426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3427 &LoadChains[0], LoadChains.size());
3428 OutChains.clear();
3429 for (unsigned i = 0; i < NumMemOps; i++) {
3430 EVT VT = MemOps[i];
3431 unsigned VTSize = VT.getSizeInBits() / 8;
3432 SDValue Value, Store;
3433
3434 Store = DAG.getStore(Chain, dl, LoadValues[i],
3435 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003436 DstSV, DstSVOff + DstOff, isVol, false, Align);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003437 OutChains.push_back(Store);
3438 DstOff += VTSize;
3439 }
3440
3441 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3442 &OutChains[0], OutChains.size());
3443}
3444
3445static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003446 SDValue Chain, SDValue Dst,
3447 SDValue Src, uint64_t Size,
3448 unsigned Align, bool isVol,
3449 const Value *DstSV, uint64_t DstSVOff) {
3450 // Turn a memset of undef to nop.
3451 if (Src.getOpcode() == ISD::UNDEF)
3452 return Chain;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003453
3454 // Expand memset to a series of load/store ops if the size operand
3455 // falls below a certain threshold.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003456 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003457 std::vector<EVT> MemOps;
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003458 bool DstAlignCanChange = false;
3459 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3460 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3461 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3462 DstAlignCanChange = true;
3463 bool NonScalarIntSafe =
3464 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3465 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3466 Size, (DstAlignCanChange ? 0 : Align), 0,
3467 NonScalarIntSafe, false, DAG, TLI))
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003468 return SDValue();
3469
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003470 if (DstAlignCanChange) {
3471 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3472 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3473 if (NewAlign > Align) {
3474 // Give the stack frame object a larger alignment if needed.
3475 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3476 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3477 Align = NewAlign;
3478 }
3479 }
3480
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003481 SmallVector<SDValue, 8> OutChains;
3482 uint64_t DstOff = 0;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003483 unsigned NumMemOps = MemOps.size();
3484 for (unsigned i = 0; i < NumMemOps; i++) {
3485 EVT VT = MemOps[i];
3486 unsigned VTSize = VT.getSizeInBits() / 8;
3487 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3488 SDValue Store = DAG.getStore(Chain, dl, Value,
3489 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003490 DstSV, DstSVOff + DstOff, isVol, false, 0);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003491 OutChains.push_back(Store);
3492 DstOff += VTSize;
3493 }
3494
3495 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3496 &OutChains[0], OutChains.size());
3497}
3498
3499SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3500 SDValue Src, SDValue Size,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003501 unsigned Align, bool isVol, bool AlwaysInline,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003502 const Value *DstSV, uint64_t DstSVOff,
3503 const Value *SrcSV, uint64_t SrcSVOff) {
3504
3505 // Check to see if we should lower the memcpy to loads and stores first.
3506 // For cases within the target-specified limits, this is the best choice.
3507 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3508 if (ConstantSize) {
3509 // Memcpy with size zero? Just return the original chain.
3510 if (ConstantSize->isNullValue())
3511 return Chain;
3512
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003513 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3514 ConstantSize->getZExtValue(),Align,
3515 isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003516 if (Result.getNode())
3517 return Result;
3518 }
3519
3520 // Then check to see if we should lower the memcpy with target-specific
3521 // code. If the target chooses to do this, this is the next best.
3522 SDValue Result =
3523 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003524 isVol, AlwaysInline,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003525 DstSV, DstSVOff, SrcSV, SrcSVOff);
3526 if (Result.getNode())
3527 return Result;
3528
3529 // If we really need inline code and the target declined to provide it,
3530 // use a (potentially long) sequence of loads and stores.
3531 if (AlwaysInline) {
3532 assert(ConstantSize && "AlwaysInline requires a constant size!");
3533 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003534 ConstantSize->getZExtValue(), Align, isVol,
3535 true, DstSV, DstSVOff, SrcSV, SrcSVOff);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003536 }
3537
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003538 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3539 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3540 // respect volatile, so they may do things like read or write memory
3541 // beyond the given memory regions. But fixing this isn't easy, and most
3542 // people don't care.
3543
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003544 // Emit a library call.
3545 TargetLowering::ArgListTy Args;
3546 TargetLowering::ArgListEntry Entry;
3547 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3548 Entry.Node = Dst; Args.push_back(Entry);
3549 Entry.Node = Src; Args.push_back(Entry);
3550 Entry.Node = Size; Args.push_back(Entry);
3551 // FIXME: pass in DebugLoc
3552 std::pair<SDValue,SDValue> CallResult =
3553 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3554 false, false, false, false, 0,
3555 TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3556 /*isReturnValueUsed=*/false,
3557 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3558 TLI.getPointerTy()),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003559 Args, *this, dl);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003560 return CallResult.second;
3561}
3562
3563SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3564 SDValue Src, SDValue Size,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003565 unsigned Align, bool isVol,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003566 const Value *DstSV, uint64_t DstSVOff,
3567 const Value *SrcSV, uint64_t SrcSVOff) {
3568
3569 // Check to see if we should lower the memmove to loads and stores first.
3570 // For cases within the target-specified limits, this is the best choice.
3571 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3572 if (ConstantSize) {
3573 // Memmove with size zero? Just return the original chain.
3574 if (ConstantSize->isNullValue())
3575 return Chain;
3576
3577 SDValue Result =
3578 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003579 ConstantSize->getZExtValue(), Align, isVol,
3580 false, DstSV, DstSVOff, SrcSV, SrcSVOff);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003581 if (Result.getNode())
3582 return Result;
3583 }
3584
3585 // Then check to see if we should lower the memmove with target-specific
3586 // code. If the target chooses to do this, this is the next best.
3587 SDValue Result =
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003588 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003589 DstSV, DstSVOff, SrcSV, SrcSVOff);
3590 if (Result.getNode())
3591 return Result;
3592
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003593 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3594 // not be safe. See memcpy above for more details.
3595
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003596 // Emit a library call.
3597 TargetLowering::ArgListTy Args;
3598 TargetLowering::ArgListEntry Entry;
3599 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3600 Entry.Node = Dst; Args.push_back(Entry);
3601 Entry.Node = Src; Args.push_back(Entry);
3602 Entry.Node = Size; Args.push_back(Entry);
3603 // FIXME: pass in DebugLoc
3604 std::pair<SDValue,SDValue> CallResult =
3605 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3606 false, false, false, false, 0,
3607 TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3608 /*isReturnValueUsed=*/false,
3609 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3610 TLI.getPointerTy()),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003611 Args, *this, dl);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003612 return CallResult.second;
3613}
3614
3615SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3616 SDValue Src, SDValue Size,
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003617 unsigned Align, bool isVol,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003618 const Value *DstSV, uint64_t DstSVOff) {
3619
3620 // Check to see if we should lower the memset to stores first.
3621 // For cases within the target-specified limits, this is the best choice.
3622 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3623 if (ConstantSize) {
3624 // Memset with size zero? Just return the original chain.
3625 if (ConstantSize->isNullValue())
3626 return Chain;
3627
3628 SDValue Result =
3629 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003630 Align, isVol, DstSV, DstSVOff);
3631
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003632 if (Result.getNode())
3633 return Result;
3634 }
3635
3636 // Then check to see if we should lower the memset with target-specific
3637 // code. If the target chooses to do this, this is the next best.
3638 SDValue Result =
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003639 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003640 DstSV, DstSVOff);
3641 if (Result.getNode())
3642 return Result;
3643
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003644 // Emit a library call.
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003645 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3646 TargetLowering::ArgListTy Args;
3647 TargetLowering::ArgListEntry Entry;
3648 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3649 Args.push_back(Entry);
3650 // Extend or truncate the argument to be an i32 value for the call.
3651 if (Src.getValueType().bitsGT(MVT::i32))
3652 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3653 else
3654 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3655 Entry.Node = Src;
3656 Entry.Ty = Type::getInt32Ty(*getContext());
3657 Entry.isSExt = true;
3658 Args.push_back(Entry);
3659 Entry.Node = Size;
3660 Entry.Ty = IntPtrTy;
3661 Entry.isSExt = false;
3662 Args.push_back(Entry);
3663 // FIXME: pass in DebugLoc
3664 std::pair<SDValue,SDValue> CallResult =
3665 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3666 false, false, false, false, 0,
3667 TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3668 /*isReturnValueUsed=*/false,
3669 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3670 TLI.getPointerTy()),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003671 Args, *this, dl);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003672 return CallResult.second;
3673}
3674
3675SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3676 SDValue Chain,
3677 SDValue Ptr, SDValue Cmp,
3678 SDValue Swp, const Value* PtrVal,
3679 unsigned Alignment) {
3680 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3681 Alignment = getEVTAlignment(MemVT);
3682
3683 // Check if the memory reference references a frame index
3684 if (!PtrVal)
3685 if (const FrameIndexSDNode *FI =
3686 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3687 PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3688
3689 MachineFunction &MF = getMachineFunction();
3690 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3691
3692 // For now, atomics are considered to be volatile always.
3693 Flags |= MachineMemOperand::MOVolatile;
3694
3695 MachineMemOperand *MMO =
3696 MF.getMachineMemOperand(PtrVal, Flags, 0,
3697 MemVT.getStoreSize(), Alignment);
3698
3699 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3700}
3701
3702SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3703 SDValue Chain,
3704 SDValue Ptr, SDValue Cmp,
3705 SDValue Swp, MachineMemOperand *MMO) {
3706 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3707 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3708
3709 EVT VT = Cmp.getValueType();
3710
3711 SDVTList VTs = getVTList(VT, MVT::Other);
3712 FoldingSetNodeID ID;
3713 ID.AddInteger(MemVT.getRawBits());
3714 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3715 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3716 void* IP = 0;
3717 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3718 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3719 return SDValue(E, 0);
3720 }
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003721 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3722 Ptr, Cmp, Swp, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003723 CSEMap.InsertNode(N, IP);
3724 AllNodes.push_back(N);
3725 return SDValue(N, 0);
3726}
3727
3728SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3729 SDValue Chain,
3730 SDValue Ptr, SDValue Val,
3731 const Value* PtrVal,
3732 unsigned Alignment) {
3733 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3734 Alignment = getEVTAlignment(MemVT);
3735
3736 // Check if the memory reference references a frame index
3737 if (!PtrVal)
3738 if (const FrameIndexSDNode *FI =
3739 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3740 PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3741
3742 MachineFunction &MF = getMachineFunction();
3743 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3744
3745 // For now, atomics are considered to be volatile always.
3746 Flags |= MachineMemOperand::MOVolatile;
3747
3748 MachineMemOperand *MMO =
3749 MF.getMachineMemOperand(PtrVal, Flags, 0,
3750 MemVT.getStoreSize(), Alignment);
3751
3752 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3753}
3754
3755SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3756 SDValue Chain,
3757 SDValue Ptr, SDValue Val,
3758 MachineMemOperand *MMO) {
3759 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3760 Opcode == ISD::ATOMIC_LOAD_SUB ||
3761 Opcode == ISD::ATOMIC_LOAD_AND ||
3762 Opcode == ISD::ATOMIC_LOAD_OR ||
3763 Opcode == ISD::ATOMIC_LOAD_XOR ||
3764 Opcode == ISD::ATOMIC_LOAD_NAND ||
3765 Opcode == ISD::ATOMIC_LOAD_MIN ||
3766 Opcode == ISD::ATOMIC_LOAD_MAX ||
3767 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3768 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3769 Opcode == ISD::ATOMIC_SWAP) &&
3770 "Invalid Atomic Op");
3771
3772 EVT VT = Val.getValueType();
3773
3774 SDVTList VTs = getVTList(VT, MVT::Other);
3775 FoldingSetNodeID ID;
3776 ID.AddInteger(MemVT.getRawBits());
3777 SDValue Ops[] = {Chain, Ptr, Val};
3778 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3779 void* IP = 0;
3780 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3781 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3782 return SDValue(E, 0);
3783 }
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003784 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3785 Ptr, Val, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003786 CSEMap.InsertNode(N, IP);
3787 AllNodes.push_back(N);
3788 return SDValue(N, 0);
3789}
3790
3791/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3792/// Allowed to return something different (and simpler) if Simplify is true.
3793SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3794 DebugLoc dl) {
3795 if (NumOps == 1)
3796 return Ops[0];
3797
3798 SmallVector<EVT, 4> VTs;
3799 VTs.reserve(NumOps);
3800 for (unsigned i = 0; i < NumOps; ++i)
3801 VTs.push_back(Ops[i].getValueType());
3802 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3803 Ops, NumOps);
3804}
3805
3806SDValue
3807SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3808 const EVT *VTs, unsigned NumVTs,
3809 const SDValue *Ops, unsigned NumOps,
3810 EVT MemVT, const Value *srcValue, int SVOff,
3811 unsigned Align, bool Vol,
3812 bool ReadMem, bool WriteMem) {
3813 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3814 MemVT, srcValue, SVOff, Align, Vol,
3815 ReadMem, WriteMem);
3816}
3817
3818SDValue
3819SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3820 const SDValue *Ops, unsigned NumOps,
3821 EVT MemVT, const Value *srcValue, int SVOff,
3822 unsigned Align, bool Vol,
3823 bool ReadMem, bool WriteMem) {
3824 if (Align == 0) // Ensure that codegen never sees alignment 0
3825 Align = getEVTAlignment(MemVT);
3826
3827 MachineFunction &MF = getMachineFunction();
3828 unsigned Flags = 0;
3829 if (WriteMem)
3830 Flags |= MachineMemOperand::MOStore;
3831 if (ReadMem)
3832 Flags |= MachineMemOperand::MOLoad;
3833 if (Vol)
3834 Flags |= MachineMemOperand::MOVolatile;
3835 MachineMemOperand *MMO =
3836 MF.getMachineMemOperand(srcValue, Flags, SVOff,
3837 MemVT.getStoreSize(), Align);
3838
3839 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3840}
3841
3842SDValue
3843SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3844 const SDValue *Ops, unsigned NumOps,
3845 EVT MemVT, MachineMemOperand *MMO) {
3846 assert((Opcode == ISD::INTRINSIC_VOID ||
3847 Opcode == ISD::INTRINSIC_W_CHAIN ||
3848 (Opcode <= INT_MAX &&
3849 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3850 "Opcode is not a memory-accessing opcode!");
3851
3852 // Memoize the node unless it returns a flag.
3853 MemIntrinsicSDNode *N;
3854 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3855 FoldingSetNodeID ID;
3856 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3857 void *IP = 0;
3858 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3859 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3860 return SDValue(E, 0);
3861 }
3862
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003863 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3864 MemVT, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003865 CSEMap.InsertNode(N, IP);
3866 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003867 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3868 MemVT, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003869 }
3870 AllNodes.push_back(N);
3871 return SDValue(N, 0);
3872}
3873
3874SDValue
3875SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3876 ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3877 SDValue Ptr, SDValue Offset,
3878 const Value *SV, int SVOffset, EVT MemVT,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003879 bool isVolatile, bool isNonTemporal,
3880 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003881 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3882 Alignment = getEVTAlignment(VT);
3883
3884 // Check if the memory reference references a frame index
3885 if (!SV)
3886 if (const FrameIndexSDNode *FI =
3887 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3888 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3889
3890 MachineFunction &MF = getMachineFunction();
3891 unsigned Flags = MachineMemOperand::MOLoad;
3892 if (isVolatile)
3893 Flags |= MachineMemOperand::MOVolatile;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003894 if (isNonTemporal)
3895 Flags |= MachineMemOperand::MONonTemporal;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003896 MachineMemOperand *MMO =
3897 MF.getMachineMemOperand(SV, Flags, SVOffset,
3898 MemVT.getStoreSize(), Alignment);
3899 return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3900}
3901
3902SDValue
3903SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3904 ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3905 SDValue Ptr, SDValue Offset, EVT MemVT,
3906 MachineMemOperand *MMO) {
3907 if (VT == MemVT) {
3908 ExtType = ISD::NON_EXTLOAD;
3909 } else if (ExtType == ISD::NON_EXTLOAD) {
3910 assert(VT == MemVT && "Non-extending load from different memory type!");
3911 } else {
3912 // Extending load.
3913 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3914 "Should only be an extending load, not truncating!");
3915 assert(VT.isInteger() == MemVT.isInteger() &&
3916 "Cannot convert from FP to Int or Int -> FP!");
3917 assert(VT.isVector() == MemVT.isVector() &&
3918 "Cannot use trunc store to convert to or from a vector!");
3919 assert((!VT.isVector() ||
3920 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3921 "Cannot use trunc store to change the number of vector elements!");
3922 }
3923
3924 bool Indexed = AM != ISD::UNINDEXED;
3925 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3926 "Unindexed load with an offset!");
3927
3928 SDVTList VTs = Indexed ?
3929 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3930 SDValue Ops[] = { Chain, Ptr, Offset };
3931 FoldingSetNodeID ID;
3932 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3933 ID.AddInteger(MemVT.getRawBits());
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003934 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3935 MMO->isNonTemporal()));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003936 void *IP = 0;
3937 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3938 cast<LoadSDNode>(E)->refineAlignment(MMO);
3939 return SDValue(E, 0);
3940 }
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07003941 SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3942 MemVT, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003943 CSEMap.InsertNode(N, IP);
3944 AllNodes.push_back(N);
3945 return SDValue(N, 0);
3946}
3947
3948SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3949 SDValue Chain, SDValue Ptr,
3950 const Value *SV, int SVOffset,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003951 bool isVolatile, bool isNonTemporal,
3952 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003953 SDValue Undef = getUNDEF(Ptr.getValueType());
3954 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003955 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003956}
3957
3958SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3959 SDValue Chain, SDValue Ptr,
3960 const Value *SV,
3961 int SVOffset, EVT MemVT,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003962 bool isVolatile, bool isNonTemporal,
3963 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003964 SDValue Undef = getUNDEF(Ptr.getValueType());
3965 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003966 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003967}
3968
3969SDValue
3970SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3971 SDValue Offset, ISD::MemIndexedMode AM) {
3972 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3973 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3974 "Load is already a indexed load!");
3975 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3976 LD->getChain(), Base, Offset, LD->getSrcValue(),
3977 LD->getSrcValueOffset(), LD->getMemoryVT(),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003978 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003979}
3980
3981SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3982 SDValue Ptr, const Value *SV, int SVOffset,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003983 bool isVolatile, bool isNonTemporal,
3984 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003985 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3986 Alignment = getEVTAlignment(Val.getValueType());
3987
3988 // Check if the memory reference references a frame index
3989 if (!SV)
3990 if (const FrameIndexSDNode *FI =
3991 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3992 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3993
3994 MachineFunction &MF = getMachineFunction();
3995 unsigned Flags = MachineMemOperand::MOStore;
3996 if (isVolatile)
3997 Flags |= MachineMemOperand::MOVolatile;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003998 if (isNonTemporal)
3999 Flags |= MachineMemOperand::MONonTemporal;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004000 MachineMemOperand *MMO =
4001 MF.getMachineMemOperand(SV, Flags, SVOffset,
4002 Val.getValueType().getStoreSize(), Alignment);
4003
4004 return getStore(Chain, dl, Val, Ptr, MMO);
4005}
4006
4007SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4008 SDValue Ptr, MachineMemOperand *MMO) {
4009 EVT VT = Val.getValueType();
4010 SDVTList VTs = getVTList(MVT::Other);
4011 SDValue Undef = getUNDEF(Ptr.getValueType());
4012 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4013 FoldingSetNodeID ID;
4014 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4015 ID.AddInteger(VT.getRawBits());
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004016 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4017 MMO->isNonTemporal()));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004018 void *IP = 0;
4019 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4020 cast<StoreSDNode>(E)->refineAlignment(MMO);
4021 return SDValue(E, 0);
4022 }
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004023 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4024 false, VT, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004025 CSEMap.InsertNode(N, IP);
4026 AllNodes.push_back(N);
4027 return SDValue(N, 0);
4028}
4029
4030SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4031 SDValue Ptr, const Value *SV,
4032 int SVOffset, EVT SVT,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004033 bool isVolatile, bool isNonTemporal,
4034 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004035 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4036 Alignment = getEVTAlignment(SVT);
4037
4038 // Check if the memory reference references a frame index
4039 if (!SV)
4040 if (const FrameIndexSDNode *FI =
4041 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4042 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4043
4044 MachineFunction &MF = getMachineFunction();
4045 unsigned Flags = MachineMemOperand::MOStore;
4046 if (isVolatile)
4047 Flags |= MachineMemOperand::MOVolatile;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004048 if (isNonTemporal)
4049 Flags |= MachineMemOperand::MONonTemporal;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004050 MachineMemOperand *MMO =
4051 MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4052
4053 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4054}
4055
4056SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4057 SDValue Ptr, EVT SVT,
4058 MachineMemOperand *MMO) {
4059 EVT VT = Val.getValueType();
4060
4061 if (VT == SVT)
4062 return getStore(Chain, dl, Val, Ptr, MMO);
4063
4064 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4065 "Should only be a truncating store, not extending!");
4066 assert(VT.isInteger() == SVT.isInteger() &&
4067 "Can't do FP-INT conversion!");
4068 assert(VT.isVector() == SVT.isVector() &&
4069 "Cannot use trunc store to convert to or from a vector!");
4070 assert((!VT.isVector() ||
4071 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4072 "Cannot use trunc store to change the number of vector elements!");
4073
4074 SDVTList VTs = getVTList(MVT::Other);
4075 SDValue Undef = getUNDEF(Ptr.getValueType());
4076 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4077 FoldingSetNodeID ID;
4078 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4079 ID.AddInteger(SVT.getRawBits());
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004080 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4081 MMO->isNonTemporal()));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004082 void *IP = 0;
4083 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4084 cast<StoreSDNode>(E)->refineAlignment(MMO);
4085 return SDValue(E, 0);
4086 }
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004087 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4088 true, SVT, MMO);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004089 CSEMap.InsertNode(N, IP);
4090 AllNodes.push_back(N);
4091 return SDValue(N, 0);
4092}
4093
4094SDValue
4095SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4096 SDValue Offset, ISD::MemIndexedMode AM) {
4097 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4098 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4099 "Store is already a indexed store!");
4100 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4101 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4102 FoldingSetNodeID ID;
4103 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4104 ID.AddInteger(ST->getMemoryVT().getRawBits());
4105 ID.AddInteger(ST->getRawSubclassData());
4106 void *IP = 0;
4107 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4108 return SDValue(E, 0);
4109
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004110 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4111 ST->isTruncatingStore(),
4112 ST->getMemoryVT(),
4113 ST->getMemOperand());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004114 CSEMap.InsertNode(N, IP);
4115 AllNodes.push_back(N);
4116 return SDValue(N, 0);
4117}
4118
4119SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4120 SDValue Chain, SDValue Ptr,
4121 SDValue SV) {
4122 SDValue Ops[] = { Chain, Ptr, SV };
4123 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4124}
4125
4126SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4127 const SDUse *Ops, unsigned NumOps) {
4128 switch (NumOps) {
4129 case 0: return getNode(Opcode, DL, VT);
4130 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4131 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4132 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4133 default: break;
4134 }
4135
4136 // Copy from an SDUse array into an SDValue array for use with
4137 // the regular getNode logic.
4138 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4139 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4143 const SDValue *Ops, unsigned NumOps) {
4144 switch (NumOps) {
4145 case 0: return getNode(Opcode, DL, VT);
4146 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4147 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4148 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4149 default: break;
4150 }
4151
4152 switch (Opcode) {
4153 default: break;
4154 case ISD::SELECT_CC: {
4155 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4156 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4157 "LHS and RHS of condition must have same type!");
4158 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4159 "True and False arms of SelectCC must have same type!");
4160 assert(Ops[2].getValueType() == VT &&
4161 "select_cc node must be of same type as true and false value!");
4162 break;
4163 }
4164 case ISD::BR_CC: {
4165 assert(NumOps == 5 && "BR_CC takes 5 operands!");
4166 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4167 "LHS/RHS of comparison should match types!");
4168 break;
4169 }
4170 }
4171
4172 // Memoize nodes.
4173 SDNode *N;
4174 SDVTList VTs = getVTList(VT);
4175
4176 if (VT != MVT::Flag) {
4177 FoldingSetNodeID ID;
4178 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4179 void *IP = 0;
4180
4181 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4182 return SDValue(E, 0);
4183
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004184 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004185 CSEMap.InsertNode(N, IP);
4186 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004187 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004188 }
4189
4190 AllNodes.push_back(N);
4191#ifndef NDEBUG
4192 VerifyNode(N);
4193#endif
4194 return SDValue(N, 0);
4195}
4196
4197SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4198 const std::vector<EVT> &ResultTys,
4199 const SDValue *Ops, unsigned NumOps) {
4200 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4201 Ops, NumOps);
4202}
4203
4204SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4205 const EVT *VTs, unsigned NumVTs,
4206 const SDValue *Ops, unsigned NumOps) {
4207 if (NumVTs == 1)
4208 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4209 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4210}
4211
4212SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4213 const SDValue *Ops, unsigned NumOps) {
4214 if (VTList.NumVTs == 1)
4215 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4216
4217#if 0
4218 switch (Opcode) {
4219 // FIXME: figure out how to safely handle things like
4220 // int foo(int x) { return 1 << (x & 255); }
4221 // int bar() { return foo(256); }
4222 case ISD::SRA_PARTS:
4223 case ISD::SRL_PARTS:
4224 case ISD::SHL_PARTS:
4225 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4226 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4227 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4228 else if (N3.getOpcode() == ISD::AND)
4229 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4230 // If the and is only masking out bits that cannot effect the shift,
4231 // eliminate the and.
4232 unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4233 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4234 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4235 }
4236 break;
4237 }
4238#endif
4239
4240 // Memoize the node unless it returns a flag.
4241 SDNode *N;
4242 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4243 FoldingSetNodeID ID;
4244 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4245 void *IP = 0;
4246 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4247 return SDValue(E, 0);
4248
4249 if (NumOps == 1) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004250 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004251 } else if (NumOps == 2) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004252 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004253 } else if (NumOps == 3) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004254 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4255 Ops[2]);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004256 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004257 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004258 }
4259 CSEMap.InsertNode(N, IP);
4260 } else {
4261 if (NumOps == 1) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004262 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004263 } else if (NumOps == 2) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004264 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004265 } else if (NumOps == 3) {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004266 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4267 Ops[2]);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004268 } else {
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004269 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004270 }
4271 }
4272 AllNodes.push_back(N);
4273#ifndef NDEBUG
4274 VerifyNode(N);
4275#endif
4276 return SDValue(N, 0);
4277}
4278
4279SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4280 return getNode(Opcode, DL, VTList, 0, 0);
4281}
4282
4283SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4284 SDValue N1) {
4285 SDValue Ops[] = { N1 };
4286 return getNode(Opcode, DL, VTList, Ops, 1);
4287}
4288
4289SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4290 SDValue N1, SDValue N2) {
4291 SDValue Ops[] = { N1, N2 };
4292 return getNode(Opcode, DL, VTList, Ops, 2);
4293}
4294
4295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4296 SDValue N1, SDValue N2, SDValue N3) {
4297 SDValue Ops[] = { N1, N2, N3 };
4298 return getNode(Opcode, DL, VTList, Ops, 3);
4299}
4300
4301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4302 SDValue N1, SDValue N2, SDValue N3,
4303 SDValue N4) {
4304 SDValue Ops[] = { N1, N2, N3, N4 };
4305 return getNode(Opcode, DL, VTList, Ops, 4);
4306}
4307
4308SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4309 SDValue N1, SDValue N2, SDValue N3,
4310 SDValue N4, SDValue N5) {
4311 SDValue Ops[] = { N1, N2, N3, N4, N5 };
4312 return getNode(Opcode, DL, VTList, Ops, 5);
4313}
4314
4315SDVTList SelectionDAG::getVTList(EVT VT) {
4316 return makeVTList(SDNode::getValueTypeList(VT), 1);
4317}
4318
4319SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4320 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4321 E = VTList.rend(); I != E; ++I)
4322 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4323 return *I;
4324
4325 EVT *Array = Allocator.Allocate<EVT>(2);
4326 Array[0] = VT1;
4327 Array[1] = VT2;
4328 SDVTList Result = makeVTList(Array, 2);
4329 VTList.push_back(Result);
4330 return Result;
4331}
4332
4333SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4334 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4335 E = VTList.rend(); I != E; ++I)
4336 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4337 I->VTs[2] == VT3)
4338 return *I;
4339
4340 EVT *Array = Allocator.Allocate<EVT>(3);
4341 Array[0] = VT1;
4342 Array[1] = VT2;
4343 Array[2] = VT3;
4344 SDVTList Result = makeVTList(Array, 3);
4345 VTList.push_back(Result);
4346 return Result;
4347}
4348
4349SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4350 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4351 E = VTList.rend(); I != E; ++I)
4352 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4353 I->VTs[2] == VT3 && I->VTs[3] == VT4)
4354 return *I;
4355
4356 EVT *Array = Allocator.Allocate<EVT>(4);
4357 Array[0] = VT1;
4358 Array[1] = VT2;
4359 Array[2] = VT3;
4360 Array[3] = VT4;
4361 SDVTList Result = makeVTList(Array, 4);
4362 VTList.push_back(Result);
4363 return Result;
4364}
4365
4366SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4367 switch (NumVTs) {
4368 case 0: llvm_unreachable("Cannot have nodes without results!");
4369 case 1: return getVTList(VTs[0]);
4370 case 2: return getVTList(VTs[0], VTs[1]);
4371 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4372 case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4373 default: break;
4374 }
4375
4376 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4377 E = VTList.rend(); I != E; ++I) {
4378 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4379 continue;
4380
4381 bool NoMatch = false;
4382 for (unsigned i = 2; i != NumVTs; ++i)
4383 if (VTs[i] != I->VTs[i]) {
4384 NoMatch = true;
4385 break;
4386 }
4387 if (!NoMatch)
4388 return *I;
4389 }
4390
4391 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4392 std::copy(VTs, VTs+NumVTs, Array);
4393 SDVTList Result = makeVTList(Array, NumVTs);
4394 VTList.push_back(Result);
4395 return Result;
4396}
4397
4398
4399/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4400/// specified operands. If the resultant node already exists in the DAG,
4401/// this does not modify the specified node, instead it returns the node that
4402/// already exists. If the resultant node does not exist in the DAG, the
4403/// input node is returned. As a degenerate case, if you specify the same
4404/// input operands as the node already has, the input node is returned.
4405SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4406 SDNode *N = InN.getNode();
4407 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4408
4409 // Check to see if there is no change.
4410 if (Op == N->getOperand(0)) return InN;
4411
4412 // See if the modified node already exists.
4413 void *InsertPos = 0;
4414 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4415 return SDValue(Existing, InN.getResNo());
4416
4417 // Nope it doesn't. Remove the node from its current place in the maps.
4418 if (InsertPos)
4419 if (!RemoveNodeFromCSEMaps(N))
4420 InsertPos = 0;
4421
4422 // Now we update the operands.
4423 N->OperandList[0].set(Op);
4424
4425 // If this gets put into a CSE map, add it.
4426 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4427 return InN;
4428}
4429
4430SDValue SelectionDAG::
4431UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4432 SDNode *N = InN.getNode();
4433 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4434
4435 // Check to see if there is no change.
4436 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4437 return InN; // No operands changed, just return the input node.
4438
4439 // See if the modified node already exists.
4440 void *InsertPos = 0;
4441 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4442 return SDValue(Existing, InN.getResNo());
4443
4444 // Nope it doesn't. Remove the node from its current place in the maps.
4445 if (InsertPos)
4446 if (!RemoveNodeFromCSEMaps(N))
4447 InsertPos = 0;
4448
4449 // Now we update the operands.
4450 if (N->OperandList[0] != Op1)
4451 N->OperandList[0].set(Op1);
4452 if (N->OperandList[1] != Op2)
4453 N->OperandList[1].set(Op2);
4454
4455 // If this gets put into a CSE map, add it.
4456 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4457 return InN;
4458}
4459
4460SDValue SelectionDAG::
4461UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4462 SDValue Ops[] = { Op1, Op2, Op3 };
4463 return UpdateNodeOperands(N, Ops, 3);
4464}
4465
4466SDValue SelectionDAG::
4467UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4468 SDValue Op3, SDValue Op4) {
4469 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4470 return UpdateNodeOperands(N, Ops, 4);
4471}
4472
4473SDValue SelectionDAG::
4474UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4475 SDValue Op3, SDValue Op4, SDValue Op5) {
4476 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4477 return UpdateNodeOperands(N, Ops, 5);
4478}
4479
4480SDValue SelectionDAG::
4481UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4482 SDNode *N = InN.getNode();
4483 assert(N->getNumOperands() == NumOps &&
4484 "Update with wrong number of operands");
4485
4486 // Check to see if there is no change.
4487 bool AnyChange = false;
4488 for (unsigned i = 0; i != NumOps; ++i) {
4489 if (Ops[i] != N->getOperand(i)) {
4490 AnyChange = true;
4491 break;
4492 }
4493 }
4494
4495 // No operands changed, just return the input node.
4496 if (!AnyChange) return InN;
4497
4498 // See if the modified node already exists.
4499 void *InsertPos = 0;
4500 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4501 return SDValue(Existing, InN.getResNo());
4502
4503 // Nope it doesn't. Remove the node from its current place in the maps.
4504 if (InsertPos)
4505 if (!RemoveNodeFromCSEMaps(N))
4506 InsertPos = 0;
4507
4508 // Now we update the operands.
4509 for (unsigned i = 0; i != NumOps; ++i)
4510 if (N->OperandList[i] != Ops[i])
4511 N->OperandList[i].set(Ops[i]);
4512
4513 // If this gets put into a CSE map, add it.
4514 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4515 return InN;
4516}
4517
4518/// DropOperands - Release the operands and set this node to have
4519/// zero operands.
4520void SDNode::DropOperands() {
4521 // Unlike the code in MorphNodeTo that does this, we don't need to
4522 // watch for dead nodes here.
4523 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4524 SDUse &Use = *I++;
4525 Use.set(SDValue());
4526 }
4527}
4528
4529/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4530/// machine opcode.
4531///
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533 EVT VT) {
4534 SDVTList VTs = getVTList(VT);
4535 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4536}
4537
4538SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4539 EVT VT, SDValue Op1) {
4540 SDVTList VTs = getVTList(VT);
4541 SDValue Ops[] = { Op1 };
4542 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4543}
4544
4545SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4546 EVT VT, SDValue Op1,
4547 SDValue Op2) {
4548 SDVTList VTs = getVTList(VT);
4549 SDValue Ops[] = { Op1, Op2 };
4550 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4551}
4552
4553SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4554 EVT VT, SDValue Op1,
4555 SDValue Op2, SDValue Op3) {
4556 SDVTList VTs = getVTList(VT);
4557 SDValue Ops[] = { Op1, Op2, Op3 };
4558 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4559}
4560
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562 EVT VT, const SDValue *Ops,
4563 unsigned NumOps) {
4564 SDVTList VTs = getVTList(VT);
4565 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4566}
4567
4568SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569 EVT VT1, EVT VT2, const SDValue *Ops,
4570 unsigned NumOps) {
4571 SDVTList VTs = getVTList(VT1, VT2);
4572 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4573}
4574
4575SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576 EVT VT1, EVT VT2) {
4577 SDVTList VTs = getVTList(VT1, VT2);
4578 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582 EVT VT1, EVT VT2, EVT VT3,
4583 const SDValue *Ops, unsigned NumOps) {
4584 SDVTList VTs = getVTList(VT1, VT2, VT3);
4585 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4586}
4587
4588SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589 EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4590 const SDValue *Ops, unsigned NumOps) {
4591 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4592 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4593}
4594
4595SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596 EVT VT1, EVT VT2,
4597 SDValue Op1) {
4598 SDVTList VTs = getVTList(VT1, VT2);
4599 SDValue Ops[] = { Op1 };
4600 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4601}
4602
4603SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4604 EVT VT1, EVT VT2,
4605 SDValue Op1, SDValue Op2) {
4606 SDVTList VTs = getVTList(VT1, VT2);
4607 SDValue Ops[] = { Op1, Op2 };
4608 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612 EVT VT1, EVT VT2,
4613 SDValue Op1, SDValue Op2,
4614 SDValue Op3) {
4615 SDVTList VTs = getVTList(VT1, VT2);
4616 SDValue Ops[] = { Op1, Op2, Op3 };
4617 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4618}
4619
4620SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4621 EVT VT1, EVT VT2, EVT VT3,
4622 SDValue Op1, SDValue Op2,
4623 SDValue Op3) {
4624 SDVTList VTs = getVTList(VT1, VT2, VT3);
4625 SDValue Ops[] = { Op1, Op2, Op3 };
4626 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4627}
4628
4629SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4630 SDVTList VTs, const SDValue *Ops,
4631 unsigned NumOps) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004632 N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4633 // Reset the NodeID to -1.
4634 N->setNodeId(-1);
4635 return N;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004636}
4637
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004638/// MorphNodeTo - This *mutates* the specified node to have the specified
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004639/// return type, opcode, and operands.
4640///
4641/// Note that MorphNodeTo returns the resultant node. If there is already a
4642/// node of the specified opcode and operands, it returns that node instead of
4643/// the current one. Note that the DebugLoc need not be the same.
4644///
4645/// Using MorphNodeTo is faster than creating a new node and swapping it in
4646/// with ReplaceAllUsesWith both because it often avoids allocating a new
4647/// node, and because it doesn't require CSE recalculation for any of
4648/// the node's users.
4649///
4650SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4651 SDVTList VTs, const SDValue *Ops,
4652 unsigned NumOps) {
4653 // If an identical node already exists, use it.
4654 void *IP = 0;
4655 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4656 FoldingSetNodeID ID;
4657 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4658 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4659 return ON;
4660 }
4661
4662 if (!RemoveNodeFromCSEMaps(N))
4663 IP = 0;
4664
4665 // Start the morphing.
4666 N->NodeType = Opc;
4667 N->ValueList = VTs.VTs;
4668 N->NumValues = VTs.NumVTs;
4669
4670 // Clear the operands list, updating used nodes to remove this from their
4671 // use list. Keep track of any operands that become dead as a result.
4672 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4673 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4674 SDUse &Use = *I++;
4675 SDNode *Used = Use.getNode();
4676 Use.set(SDValue());
4677 if (Used->use_empty())
4678 DeadNodeSet.insert(Used);
4679 }
4680
4681 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4682 // Initialize the memory references information.
4683 MN->setMemRefs(0, 0);
4684 // If NumOps is larger than the # of operands we can have in a
4685 // MachineSDNode, reallocate the operand list.
4686 if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4687 if (MN->OperandsNeedDelete)
4688 delete[] MN->OperandList;
4689 if (NumOps > array_lengthof(MN->LocalOperands))
4690 // We're creating a final node that will live unmorphed for the
4691 // remainder of the current SelectionDAG iteration, so we can allocate
4692 // the operands directly out of a pool with no recycling metadata.
4693 MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004694 Ops, NumOps);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004695 else
4696 MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4697 MN->OperandsNeedDelete = false;
4698 } else
4699 MN->InitOperands(MN->OperandList, Ops, NumOps);
4700 } else {
4701 // If NumOps is larger than the # of operands we currently have, reallocate
4702 // the operand list.
4703 if (NumOps > N->NumOperands) {
4704 if (N->OperandsNeedDelete)
4705 delete[] N->OperandList;
4706 N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4707 N->OperandsNeedDelete = true;
4708 } else
4709 N->InitOperands(N->OperandList, Ops, NumOps);
4710 }
4711
4712 // Delete any nodes that are still dead after adding the uses for the
4713 // new operands.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004714 if (!DeadNodeSet.empty()) {
4715 SmallVector<SDNode *, 16> DeadNodes;
4716 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4717 E = DeadNodeSet.end(); I != E; ++I)
4718 if ((*I)->use_empty())
4719 DeadNodes.push_back(*I);
4720 RemoveDeadNodes(DeadNodes);
4721 }
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004722
4723 if (IP)
4724 CSEMap.InsertNode(N, IP); // Memoize the new node.
4725 return N;
4726}
4727
4728
4729/// getMachineNode - These are used for target selectors to create a new node
4730/// with specified return type(s), MachineInstr opcode, and operands.
4731///
4732/// Note that getMachineNode returns the resultant node. If there is already a
4733/// node of the specified opcode and operands, it returns that node instead of
4734/// the current one.
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4737 SDVTList VTs = getVTList(VT);
4738 return getMachineNode(Opcode, dl, VTs, 0, 0);
4739}
4740
4741MachineSDNode *
4742SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4743 SDVTList VTs = getVTList(VT);
4744 SDValue Ops[] = { Op1 };
4745 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4746}
4747
4748MachineSDNode *
4749SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4750 SDValue Op1, SDValue Op2) {
4751 SDVTList VTs = getVTList(VT);
4752 SDValue Ops[] = { Op1, Op2 };
4753 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4754}
4755
4756MachineSDNode *
4757SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4758 SDValue Op1, SDValue Op2, SDValue Op3) {
4759 SDVTList VTs = getVTList(VT);
4760 SDValue Ops[] = { Op1, Op2, Op3 };
4761 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4762}
4763
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4766 const SDValue *Ops, unsigned NumOps) {
4767 SDVTList VTs = getVTList(VT);
4768 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4773 SDVTList VTs = getVTList(VT1, VT2);
4774 return getMachineNode(Opcode, dl, VTs, 0, 0);
4775}
4776
4777MachineSDNode *
4778SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4779 EVT VT1, EVT VT2, SDValue Op1) {
4780 SDVTList VTs = getVTList(VT1, VT2);
4781 SDValue Ops[] = { Op1 };
4782 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4783}
4784
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4787 EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4788 SDVTList VTs = getVTList(VT1, VT2);
4789 SDValue Ops[] = { Op1, Op2 };
4790 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4795 EVT VT1, EVT VT2, SDValue Op1,
4796 SDValue Op2, SDValue Op3) {
4797 SDVTList VTs = getVTList(VT1, VT2);
4798 SDValue Ops[] = { Op1, Op2, Op3 };
4799 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4800}
4801
4802MachineSDNode *
4803SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4804 EVT VT1, EVT VT2,
4805 const SDValue *Ops, unsigned NumOps) {
4806 SDVTList VTs = getVTList(VT1, VT2);
4807 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4808}
4809
4810MachineSDNode *
4811SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4812 EVT VT1, EVT VT2, EVT VT3,
4813 SDValue Op1, SDValue Op2) {
4814 SDVTList VTs = getVTList(VT1, VT2, VT3);
4815 SDValue Ops[] = { Op1, Op2 };
4816 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4817}
4818
4819MachineSDNode *
4820SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4821 EVT VT1, EVT VT2, EVT VT3,
4822 SDValue Op1, SDValue Op2, SDValue Op3) {
4823 SDVTList VTs = getVTList(VT1, VT2, VT3);
4824 SDValue Ops[] = { Op1, Op2, Op3 };
4825 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4830 EVT VT1, EVT VT2, EVT VT3,
4831 const SDValue *Ops, unsigned NumOps) {
4832 SDVTList VTs = getVTList(VT1, VT2, VT3);
4833 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4834}
4835
4836MachineSDNode *
4837SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4838 EVT VT2, EVT VT3, EVT VT4,
4839 const SDValue *Ops, unsigned NumOps) {
4840 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4841 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4842}
4843
4844MachineSDNode *
4845SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4846 const std::vector<EVT> &ResultTys,
4847 const SDValue *Ops, unsigned NumOps) {
4848 SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4849 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4850}
4851
4852MachineSDNode *
4853SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4854 const SDValue *Ops, unsigned NumOps) {
4855 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4856 MachineSDNode *N;
4857 void *IP;
4858
4859 if (DoCSE) {
4860 FoldingSetNodeID ID;
4861 AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4862 IP = 0;
4863 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4864 return cast<MachineSDNode>(E);
4865 }
4866
4867 // Allocate a new MachineSDNode.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004868 N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004869
4870 // Initialize the operands list.
4871 if (NumOps > array_lengthof(N->LocalOperands))
4872 // We're creating a final node that will live unmorphed for the
4873 // remainder of the current SelectionDAG iteration, so we can allocate
4874 // the operands directly out of a pool with no recycling metadata.
4875 N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4876 Ops, NumOps);
4877 else
4878 N->InitOperands(N->LocalOperands, Ops, NumOps);
4879 N->OperandsNeedDelete = false;
4880
4881 if (DoCSE)
4882 CSEMap.InsertNode(N, IP);
4883
4884 AllNodes.push_back(N);
4885#ifndef NDEBUG
4886 VerifyNode(N);
4887#endif
4888 return N;
4889}
4890
4891/// getTargetExtractSubreg - A convenience function for creating
4892/// TargetOpcode::EXTRACT_SUBREG nodes.
4893SDValue
4894SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4895 SDValue Operand) {
4896 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4897 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4898 VT, Operand, SRIdxVal);
4899 return SDValue(Subreg, 0);
4900}
4901
4902/// getTargetInsertSubreg - A convenience function for creating
4903/// TargetOpcode::INSERT_SUBREG nodes.
4904SDValue
4905SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4906 SDValue Operand, SDValue Subreg) {
4907 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4908 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4909 VT, Operand, Subreg, SRIdxVal);
4910 return SDValue(Result, 0);
4911}
4912
4913/// getNodeIfExists - Get the specified node if it's already available, or
4914/// else return NULL.
4915SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4916 const SDValue *Ops, unsigned NumOps) {
4917 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4918 FoldingSetNodeID ID;
4919 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4920 void *IP = 0;
4921 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4922 return E;
4923 }
4924 return NULL;
4925}
4926
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07004927/// getDbgValue - Creates a SDDbgValue node.
4928///
4929SDDbgValue *
4930SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4931 DebugLoc DL, unsigned O) {
4932 return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4933}
4934
4935SDDbgValue *
4936SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4937 DebugLoc DL, unsigned O) {
4938 return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4939}
4940
4941SDDbgValue *
4942SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4943 DebugLoc DL, unsigned O) {
4944 return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4945}
4946
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004947namespace {
4948
4949/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4950/// pointed to by a use iterator is deleted, increment the use iterator
4951/// so that it doesn't dangle.
4952///
4953/// This class also manages a "downlink" DAGUpdateListener, to forward
4954/// messages to ReplaceAllUsesWith's callers.
4955///
4956class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4957 SelectionDAG::DAGUpdateListener *DownLink;
4958 SDNode::use_iterator &UI;
4959 SDNode::use_iterator &UE;
4960
4961 virtual void NodeDeleted(SDNode *N, SDNode *E) {
4962 // Increment the iterator as needed.
4963 while (UI != UE && N == *UI)
4964 ++UI;
4965
4966 // Then forward the message.
4967 if (DownLink) DownLink->NodeDeleted(N, E);
4968 }
4969
4970 virtual void NodeUpdated(SDNode *N) {
4971 // Just forward the message.
4972 if (DownLink) DownLink->NodeUpdated(N);
4973 }
4974
4975public:
4976 RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4977 SDNode::use_iterator &ui,
4978 SDNode::use_iterator &ue)
4979 : DownLink(dl), UI(ui), UE(ue) {}
4980};
4981
4982}
4983
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004984/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4985/// This can cause recursive merging of nodes in the DAG.
4986///
4987/// This version assumes From has a single result value.
4988///
4989void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4990 DAGUpdateListener *UpdateListener) {
4991 SDNode *From = FromN.getNode();
4992 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4993 "Cannot replace with this method!");
4994 assert(From != To.getNode() && "Cannot replace uses of with self");
4995
4996 // Iterate over all the existing uses of From. New uses will be added
4997 // to the beginning of the use list, which we avoid visiting.
4998 // This specifically avoids visiting uses of From that arise while the
4999 // replacement is happening, because any such uses would be the result
5000 // of CSE: If an existing node looks like From after one of its operands
5001 // is replaced by To, we don't want to replace of all its users with To
5002 // too. See PR3018 for more info.
5003 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005004 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005005 while (UI != UE) {
5006 SDNode *User = *UI;
5007
5008 // This node is about to morph, remove its old self from the CSE maps.
5009 RemoveNodeFromCSEMaps(User);
5010
5011 // A user can appear in a use list multiple times, and when this
5012 // happens the uses are usually next to each other in the list.
5013 // To help reduce the number of CSE recomputations, process all
5014 // the uses of this user that we can find this way.
5015 do {
5016 SDUse &Use = UI.getUse();
5017 ++UI;
5018 Use.set(To);
5019 } while (UI != UE && *UI == User);
5020
5021 // Now that we have modified User, add it back to the CSE maps. If it
5022 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005023 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005024 }
5025}
5026
5027/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5028/// This can cause recursive merging of nodes in the DAG.
5029///
5030/// This version assumes that for each value of From, there is a
5031/// corresponding value in To in the same position with the same type.
5032///
5033void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5034 DAGUpdateListener *UpdateListener) {
5035#ifndef NDEBUG
5036 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5037 assert((!From->hasAnyUseOfValue(i) ||
5038 From->getValueType(i) == To->getValueType(i)) &&
5039 "Cannot use this version of ReplaceAllUsesWith!");
5040#endif
5041
5042 // Handle the trivial case.
5043 if (From == To)
5044 return;
5045
5046 // Iterate over just the existing users of From. See the comments in
5047 // the ReplaceAllUsesWith above.
5048 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005049 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005050 while (UI != UE) {
5051 SDNode *User = *UI;
5052
5053 // This node is about to morph, remove its old self from the CSE maps.
5054 RemoveNodeFromCSEMaps(User);
5055
5056 // A user can appear in a use list multiple times, and when this
5057 // happens the uses are usually next to each other in the list.
5058 // To help reduce the number of CSE recomputations, process all
5059 // the uses of this user that we can find this way.
5060 do {
5061 SDUse &Use = UI.getUse();
5062 ++UI;
5063 Use.setNode(To);
5064 } while (UI != UE && *UI == User);
5065
5066 // Now that we have modified User, add it back to the CSE maps. If it
5067 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005068 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005069 }
5070}
5071
5072/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5073/// This can cause recursive merging of nodes in the DAG.
5074///
5075/// This version can replace From with any result values. To must match the
5076/// number and types of values returned by From.
5077void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5078 const SDValue *To,
5079 DAGUpdateListener *UpdateListener) {
5080 if (From->getNumValues() == 1) // Handle the simple case efficiently.
5081 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5082
5083 // Iterate over just the existing users of From. See the comments in
5084 // the ReplaceAllUsesWith above.
5085 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005086 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005087 while (UI != UE) {
5088 SDNode *User = *UI;
5089
5090 // This node is about to morph, remove its old self from the CSE maps.
5091 RemoveNodeFromCSEMaps(User);
5092
5093 // A user can appear in a use list multiple times, and when this
5094 // happens the uses are usually next to each other in the list.
5095 // To help reduce the number of CSE recomputations, process all
5096 // the uses of this user that we can find this way.
5097 do {
5098 SDUse &Use = UI.getUse();
5099 const SDValue &ToOp = To[Use.getResNo()];
5100 ++UI;
5101 Use.set(ToOp);
5102 } while (UI != UE && *UI == User);
5103
5104 // Now that we have modified User, add it back to the CSE maps. If it
5105 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005106 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005107 }
5108}
5109
5110/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5111/// uses of other values produced by From.getNode() alone. The Deleted
5112/// vector is handled the same way as for ReplaceAllUsesWith.
5113void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5114 DAGUpdateListener *UpdateListener){
5115 // Handle the really simple, really trivial case efficiently.
5116 if (From == To) return;
5117
5118 // Handle the simple, trivial, case efficiently.
5119 if (From.getNode()->getNumValues() == 1) {
5120 ReplaceAllUsesWith(From, To, UpdateListener);
5121 return;
5122 }
5123
5124 // Iterate over just the existing users of From. See the comments in
5125 // the ReplaceAllUsesWith above.
5126 SDNode::use_iterator UI = From.getNode()->use_begin(),
5127 UE = From.getNode()->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005128 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005129 while (UI != UE) {
5130 SDNode *User = *UI;
5131 bool UserRemovedFromCSEMaps = false;
5132
5133 // A user can appear in a use list multiple times, and when this
5134 // happens the uses are usually next to each other in the list.
5135 // To help reduce the number of CSE recomputations, process all
5136 // the uses of this user that we can find this way.
5137 do {
5138 SDUse &Use = UI.getUse();
5139
5140 // Skip uses of different values from the same node.
5141 if (Use.getResNo() != From.getResNo()) {
5142 ++UI;
5143 continue;
5144 }
5145
5146 // If this node hasn't been modified yet, it's still in the CSE maps,
5147 // so remove its old self from the CSE maps.
5148 if (!UserRemovedFromCSEMaps) {
5149 RemoveNodeFromCSEMaps(User);
5150 UserRemovedFromCSEMaps = true;
5151 }
5152
5153 ++UI;
5154 Use.set(To);
5155 } while (UI != UE && *UI == User);
5156
5157 // We are iterating over all uses of the From node, so if a use
5158 // doesn't use the specific value, no changes are made.
5159 if (!UserRemovedFromCSEMaps)
5160 continue;
5161
5162 // Now that we have modified User, add it back to the CSE maps. If it
5163 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005164 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005165 }
5166}
5167
5168namespace {
5169 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5170 /// to record information about a use.
5171 struct UseMemo {
5172 SDNode *User;
5173 unsigned Index;
5174 SDUse *Use;
5175 };
5176
5177 /// operator< - Sort Memos by User.
5178 bool operator<(const UseMemo &L, const UseMemo &R) {
5179 return (intptr_t)L.User < (intptr_t)R.User;
5180 }
5181}
5182
5183/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5184/// uses of other values produced by From.getNode() alone. The same value
5185/// may appear in both the From and To list. The Deleted vector is
5186/// handled the same way as for ReplaceAllUsesWith.
5187void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5188 const SDValue *To,
5189 unsigned Num,
5190 DAGUpdateListener *UpdateListener){
5191 // Handle the simple, trivial case efficiently.
5192 if (Num == 1)
5193 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5194
5195 // Read up all the uses and make records of them. This helps
5196 // processing new uses that are introduced during the
5197 // replacement process.
5198 SmallVector<UseMemo, 4> Uses;
5199 for (unsigned i = 0; i != Num; ++i) {
5200 unsigned FromResNo = From[i].getResNo();
5201 SDNode *FromNode = From[i].getNode();
5202 for (SDNode::use_iterator UI = FromNode->use_begin(),
5203 E = FromNode->use_end(); UI != E; ++UI) {
5204 SDUse &Use = UI.getUse();
5205 if (Use.getResNo() == FromResNo) {
5206 UseMemo Memo = { *UI, i, &Use };
5207 Uses.push_back(Memo);
5208 }
5209 }
5210 }
5211
5212 // Sort the uses, so that all the uses from a given User are together.
5213 std::sort(Uses.begin(), Uses.end());
5214
5215 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5216 UseIndex != UseIndexEnd; ) {
5217 // We know that this user uses some value of From. If it is the right
5218 // value, update it.
5219 SDNode *User = Uses[UseIndex].User;
5220
5221 // This node is about to morph, remove its old self from the CSE maps.
5222 RemoveNodeFromCSEMaps(User);
5223
5224 // The Uses array is sorted, so all the uses for a given User
5225 // are next to each other in the list.
5226 // To help reduce the number of CSE recomputations, process all
5227 // the uses of this user that we can find this way.
5228 do {
5229 unsigned i = Uses[UseIndex].Index;
5230 SDUse &Use = *Uses[UseIndex].Use;
5231 ++UseIndex;
5232
5233 Use.set(To[i]);
5234 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5235
5236 // Now that we have modified User, add it back to the CSE maps. If it
5237 // already exists there, recursively merge the results together.
5238 AddModifiedNodeToCSEMaps(User, UpdateListener);
5239 }
5240}
5241
5242/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5243/// based on their topological order. It returns the maximum id and a vector
5244/// of the SDNodes* in assigned order by reference.
5245unsigned SelectionDAG::AssignTopologicalOrder() {
5246
5247 unsigned DAGSize = 0;
5248
5249 // SortedPos tracks the progress of the algorithm. Nodes before it are
5250 // sorted, nodes after it are unsorted. When the algorithm completes
5251 // it is at the end of the list.
5252 allnodes_iterator SortedPos = allnodes_begin();
5253
5254 // Visit all the nodes. Move nodes with no operands to the front of
5255 // the list immediately. Annotate nodes that do have operands with their
5256 // operand count. Before we do this, the Node Id fields of the nodes
5257 // may contain arbitrary values. After, the Node Id fields for nodes
5258 // before SortedPos will contain the topological sort index, and the
5259 // Node Id fields for nodes At SortedPos and after will contain the
5260 // count of outstanding operands.
5261 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5262 SDNode *N = I++;
5263 checkForCycles(N);
5264 unsigned Degree = N->getNumOperands();
5265 if (Degree == 0) {
5266 // A node with no uses, add it to the result array immediately.
5267 N->setNodeId(DAGSize++);
5268 allnodes_iterator Q = N;
5269 if (Q != SortedPos)
5270 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5271 assert(SortedPos != AllNodes.end() && "Overran node list");
5272 ++SortedPos;
5273 } else {
5274 // Temporarily use the Node Id as scratch space for the degree count.
5275 N->setNodeId(Degree);
5276 }
5277 }
5278
5279 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5280 // such that by the time the end is reached all nodes will be sorted.
5281 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5282 SDNode *N = I;
5283 checkForCycles(N);
5284 // N is in sorted position, so all its uses have one less operand
5285 // that needs to be sorted.
5286 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5287 UI != UE; ++UI) {
5288 SDNode *P = *UI;
5289 unsigned Degree = P->getNodeId();
5290 assert(Degree != 0 && "Invalid node degree");
5291 --Degree;
5292 if (Degree == 0) {
5293 // All of P's operands are sorted, so P may sorted now.
5294 P->setNodeId(DAGSize++);
5295 if (P != SortedPos)
5296 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5297 assert(SortedPos != AllNodes.end() && "Overran node list");
5298 ++SortedPos;
5299 } else {
5300 // Update P's outstanding operand count.
5301 P->setNodeId(Degree);
5302 }
5303 }
5304 if (I == SortedPos) {
5305#ifndef NDEBUG
5306 SDNode *S = ++I;
5307 dbgs() << "Overran sorted position:\n";
5308 S->dumprFull();
5309#endif
5310 llvm_unreachable(0);
5311 }
5312 }
5313
5314 assert(SortedPos == AllNodes.end() &&
5315 "Topological sort incomplete!");
5316 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5317 "First node in topological sort is not the entry token!");
5318 assert(AllNodes.front().getNodeId() == 0 &&
5319 "First node in topological sort has non-zero id!");
5320 assert(AllNodes.front().getNumOperands() == 0 &&
5321 "First node in topological sort has operands!");
5322 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5323 "Last node in topologic sort has unexpected id!");
5324 assert(AllNodes.back().use_empty() &&
5325 "Last node in topologic sort has users!");
5326 assert(DAGSize == allnodes_size() && "Node count mismatch!");
5327 return DAGSize;
5328}
5329
5330/// AssignOrdering - Assign an order to the SDNode.
5331void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5332 assert(SD && "Trying to assign an order to a null node!");
5333 Ordering->add(SD, Order);
5334}
5335
5336/// GetOrdering - Get the order for the SDNode.
5337unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5338 assert(SD && "Trying to get the order of a null node!");
5339 return Ordering->getOrder(SD);
5340}
5341
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07005342/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5343/// value is produced by SD.
5344void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5345 DbgInfo->add(DB, SD, isParameter);
5346 if (SD)
5347 SD->setHasDebugValue(true);
5348}
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005349
5350//===----------------------------------------------------------------------===//
5351// SDNode Class
5352//===----------------------------------------------------------------------===//
5353
5354HandleSDNode::~HandleSDNode() {
5355 DropOperands();
5356}
5357
5358GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5359 EVT VT, int64_t o, unsigned char TF)
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07005360 : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5361 TheGlobal = GA;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005362}
5363
5364MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5365 MachineMemOperand *mmo)
5366 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005367 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5368 MMO->isNonTemporal());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005369 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005370 assert(isNonTemporal() == MMO->isNonTemporal() &&
5371 "Non-temporal encoding error!");
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005372 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5373}
5374
5375MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5376 const SDValue *Ops, unsigned NumOps, EVT memvt,
5377 MachineMemOperand *mmo)
5378 : SDNode(Opc, dl, VTs, Ops, NumOps),
5379 MemoryVT(memvt), MMO(mmo) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005380 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5381 MMO->isNonTemporal());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005382 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5383 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5384}
5385
5386/// Profile - Gather unique data for the node.
5387///
5388void SDNode::Profile(FoldingSetNodeID &ID) const {
5389 AddNodeIDNode(ID, this);
5390}
5391
5392namespace {
5393 struct EVTArray {
5394 std::vector<EVT> VTs;
5395
5396 EVTArray() {
5397 VTs.reserve(MVT::LAST_VALUETYPE);
5398 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5399 VTs.push_back(MVT((MVT::SimpleValueType)i));
5400 }
5401 };
5402}
5403
5404static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5405static ManagedStatic<EVTArray> SimpleVTArray;
5406static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5407
5408/// getValueTypeList - Return a pointer to the specified value type.
5409///
5410const EVT *SDNode::getValueTypeList(EVT VT) {
5411 if (VT.isExtended()) {
5412 sys::SmartScopedLock<true> Lock(*VTMutex);
5413 return &(*EVTs->insert(VT).first);
5414 } else {
5415 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5416 }
5417}
5418
5419/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5420/// indicated value. This method ignores uses of other values defined by this
5421/// operation.
5422bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5423 assert(Value < getNumValues() && "Bad value!");
5424
5425 // TODO: Only iterate over uses of a given value of the node
5426 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5427 if (UI.getUse().getResNo() == Value) {
5428 if (NUses == 0)
5429 return false;
5430 --NUses;
5431 }
5432 }
5433
5434 // Found exactly the right number of uses?
5435 return NUses == 0;
5436}
5437
5438
5439/// hasAnyUseOfValue - Return true if there are any use of the indicated
5440/// value. This method ignores uses of other values defined by this operation.
5441bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5442 assert(Value < getNumValues() && "Bad value!");
5443
5444 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5445 if (UI.getUse().getResNo() == Value)
5446 return true;
5447
5448 return false;
5449}
5450
5451
5452/// isOnlyUserOf - Return true if this node is the only use of N.
5453///
5454bool SDNode::isOnlyUserOf(SDNode *N) const {
5455 bool Seen = false;
5456 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5457 SDNode *User = *I;
5458 if (User == this)
5459 Seen = true;
5460 else
5461 return false;
5462 }
5463
5464 return Seen;
5465}
5466
5467/// isOperand - Return true if this node is an operand of N.
5468///
5469bool SDValue::isOperandOf(SDNode *N) const {
5470 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5471 if (*this == N->getOperand(i))
5472 return true;
5473 return false;
5474}
5475
5476bool SDNode::isOperandOf(SDNode *N) const {
5477 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5478 if (this == N->OperandList[i].getNode())
5479 return true;
5480 return false;
5481}
5482
5483/// reachesChainWithoutSideEffects - Return true if this operand (which must
5484/// be a chain) reaches the specified operand without crossing any
5485/// side-effecting instructions. In practice, this looks through token
5486/// factors and non-volatile loads. In order to remain efficient, this only
5487/// looks a couple of nodes in, it does not do an exhaustive search.
5488bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5489 unsigned Depth) const {
5490 if (*this == Dest) return true;
5491
5492 // Don't search too deeply, we just want to be able to see through
5493 // TokenFactor's etc.
5494 if (Depth == 0) return false;
5495
5496 // If this is a token factor, all inputs to the TF happen in parallel. If any
5497 // of the operands of the TF reach dest, then we can do the xform.
5498 if (getOpcode() == ISD::TokenFactor) {
5499 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5500 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5501 return true;
5502 return false;
5503 }
5504
5505 // Loads don't have side effects, look through them.
5506 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5507 if (!Ld->isVolatile())
5508 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5509 }
5510 return false;
5511}
5512
5513/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5514/// is either an operand of N or it can be reached by traversing up the operands.
5515/// NOTE: this is an expensive method. Use it carefully.
5516bool SDNode::isPredecessorOf(SDNode *N) const {
5517 SmallPtrSet<SDNode *, 32> Visited;
5518 SmallVector<SDNode *, 16> Worklist;
5519 Worklist.push_back(N);
5520
5521 do {
5522 N = Worklist.pop_back_val();
5523 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5524 SDNode *Op = N->getOperand(i).getNode();
5525 if (Op == this)
5526 return true;
5527 if (Visited.insert(Op))
5528 Worklist.push_back(Op);
5529 }
5530 } while (!Worklist.empty());
5531
5532 return false;
5533}
5534
5535uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5536 assert(Num < NumOperands && "Invalid child # of SDNode!");
5537 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5538}
5539
5540std::string SDNode::getOperationName(const SelectionDAG *G) const {
5541 switch (getOpcode()) {
5542 default:
5543 if (getOpcode() < ISD::BUILTIN_OP_END)
5544 return "<<Unknown DAG Node>>";
5545 if (isMachineOpcode()) {
5546 if (G)
5547 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5548 if (getMachineOpcode() < TII->getNumOpcodes())
5549 return TII->get(getMachineOpcode()).getName();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005550 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005551 }
5552 if (G) {
5553 const TargetLowering &TLI = G->getTargetLoweringInfo();
5554 const char *Name = TLI.getTargetNodeName(getOpcode());
5555 if (Name) return Name;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005556 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005557 }
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005558 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005559
5560#ifndef NDEBUG
5561 case ISD::DELETED_NODE:
5562 return "<<Deleted Node!>>";
5563#endif
5564 case ISD::PREFETCH: return "Prefetch";
5565 case ISD::MEMBARRIER: return "MemBarrier";
5566 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5567 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5568 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5569 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5570 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5571 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5572 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5573 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5574 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5575 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5576 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5577 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5578 case ISD::PCMARKER: return "PCMarker";
5579 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5580 case ISD::SRCVALUE: return "SrcValue";
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07005581 case ISD::MDNODE_SDNODE: return "MDNode";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005582 case ISD::EntryToken: return "EntryToken";
5583 case ISD::TokenFactor: return "TokenFactor";
5584 case ISD::AssertSext: return "AssertSext";
5585 case ISD::AssertZext: return "AssertZext";
5586
5587 case ISD::BasicBlock: return "BasicBlock";
5588 case ISD::VALUETYPE: return "ValueType";
5589 case ISD::Register: return "Register";
5590
5591 case ISD::Constant: return "Constant";
5592 case ISD::ConstantFP: return "ConstantFP";
5593 case ISD::GlobalAddress: return "GlobalAddress";
5594 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5595 case ISD::FrameIndex: return "FrameIndex";
5596 case ISD::JumpTable: return "JumpTable";
5597 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5598 case ISD::RETURNADDR: return "RETURNADDR";
5599 case ISD::FRAMEADDR: return "FRAMEADDR";
5600 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5601 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5602 case ISD::LSDAADDR: return "LSDAADDR";
5603 case ISD::EHSELECTION: return "EHSELECTION";
5604 case ISD::EH_RETURN: return "EH_RETURN";
5605 case ISD::ConstantPool: return "ConstantPool";
5606 case ISD::ExternalSymbol: return "ExternalSymbol";
5607 case ISD::BlockAddress: return "BlockAddress";
5608 case ISD::INTRINSIC_WO_CHAIN:
5609 case ISD::INTRINSIC_VOID:
5610 case ISD::INTRINSIC_W_CHAIN: {
5611 unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5612 unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5613 if (IID < Intrinsic::num_intrinsics)
5614 return Intrinsic::getName((Intrinsic::ID)IID);
5615 else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5616 return TII->getName(IID);
5617 llvm_unreachable("Invalid intrinsic ID");
5618 }
5619
5620 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5621 case ISD::TargetConstant: return "TargetConstant";
5622 case ISD::TargetConstantFP:return "TargetConstantFP";
5623 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5624 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5625 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5626 case ISD::TargetJumpTable: return "TargetJumpTable";
5627 case ISD::TargetConstantPool: return "TargetConstantPool";
5628 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5629 case ISD::TargetBlockAddress: return "TargetBlockAddress";
5630
5631 case ISD::CopyToReg: return "CopyToReg";
5632 case ISD::CopyFromReg: return "CopyFromReg";
5633 case ISD::UNDEF: return "undef";
5634 case ISD::MERGE_VALUES: return "merge_values";
5635 case ISD::INLINEASM: return "inlineasm";
5636 case ISD::EH_LABEL: return "eh_label";
5637 case ISD::HANDLENODE: return "handlenode";
5638
5639 // Unary operators
5640 case ISD::FABS: return "fabs";
5641 case ISD::FNEG: return "fneg";
5642 case ISD::FSQRT: return "fsqrt";
5643 case ISD::FSIN: return "fsin";
5644 case ISD::FCOS: return "fcos";
5645 case ISD::FPOWI: return "fpowi";
5646 case ISD::FPOW: return "fpow";
5647 case ISD::FTRUNC: return "ftrunc";
5648 case ISD::FFLOOR: return "ffloor";
5649 case ISD::FCEIL: return "fceil";
5650 case ISD::FRINT: return "frint";
5651 case ISD::FNEARBYINT: return "fnearbyint";
5652
5653 // Binary operators
5654 case ISD::ADD: return "add";
5655 case ISD::SUB: return "sub";
5656 case ISD::MUL: return "mul";
5657 case ISD::MULHU: return "mulhu";
5658 case ISD::MULHS: return "mulhs";
5659 case ISD::SDIV: return "sdiv";
5660 case ISD::UDIV: return "udiv";
5661 case ISD::SREM: return "srem";
5662 case ISD::UREM: return "urem";
5663 case ISD::SMUL_LOHI: return "smul_lohi";
5664 case ISD::UMUL_LOHI: return "umul_lohi";
5665 case ISD::SDIVREM: return "sdivrem";
5666 case ISD::UDIVREM: return "udivrem";
5667 case ISD::AND: return "and";
5668 case ISD::OR: return "or";
5669 case ISD::XOR: return "xor";
5670 case ISD::SHL: return "shl";
5671 case ISD::SRA: return "sra";
5672 case ISD::SRL: return "srl";
5673 case ISD::ROTL: return "rotl";
5674 case ISD::ROTR: return "rotr";
5675 case ISD::FADD: return "fadd";
5676 case ISD::FSUB: return "fsub";
5677 case ISD::FMUL: return "fmul";
5678 case ISD::FDIV: return "fdiv";
5679 case ISD::FREM: return "frem";
5680 case ISD::FCOPYSIGN: return "fcopysign";
5681 case ISD::FGETSIGN: return "fgetsign";
5682
5683 case ISD::SETCC: return "setcc";
5684 case ISD::VSETCC: return "vsetcc";
5685 case ISD::SELECT: return "select";
5686 case ISD::SELECT_CC: return "select_cc";
5687 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5688 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5689 case ISD::CONCAT_VECTORS: return "concat_vectors";
5690 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5691 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5692 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5693 case ISD::CARRY_FALSE: return "carry_false";
5694 case ISD::ADDC: return "addc";
5695 case ISD::ADDE: return "adde";
5696 case ISD::SADDO: return "saddo";
5697 case ISD::UADDO: return "uaddo";
5698 case ISD::SSUBO: return "ssubo";
5699 case ISD::USUBO: return "usubo";
5700 case ISD::SMULO: return "smulo";
5701 case ISD::UMULO: return "umulo";
5702 case ISD::SUBC: return "subc";
5703 case ISD::SUBE: return "sube";
5704 case ISD::SHL_PARTS: return "shl_parts";
5705 case ISD::SRA_PARTS: return "sra_parts";
5706 case ISD::SRL_PARTS: return "srl_parts";
5707
5708 // Conversion operators.
5709 case ISD::SIGN_EXTEND: return "sign_extend";
5710 case ISD::ZERO_EXTEND: return "zero_extend";
5711 case ISD::ANY_EXTEND: return "any_extend";
5712 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5713 case ISD::TRUNCATE: return "truncate";
5714 case ISD::FP_ROUND: return "fp_round";
5715 case ISD::FLT_ROUNDS_: return "flt_rounds";
5716 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5717 case ISD::FP_EXTEND: return "fp_extend";
5718
5719 case ISD::SINT_TO_FP: return "sint_to_fp";
5720 case ISD::UINT_TO_FP: return "uint_to_fp";
5721 case ISD::FP_TO_SINT: return "fp_to_sint";
5722 case ISD::FP_TO_UINT: return "fp_to_uint";
5723 case ISD::BIT_CONVERT: return "bit_convert";
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07005724 case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5725 case ISD::FP32_TO_FP16: return "fp32_to_fp16";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005726
5727 case ISD::CONVERT_RNDSAT: {
5728 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5729 default: llvm_unreachable("Unknown cvt code!");
5730 case ISD::CVT_FF: return "cvt_ff";
5731 case ISD::CVT_FS: return "cvt_fs";
5732 case ISD::CVT_FU: return "cvt_fu";
5733 case ISD::CVT_SF: return "cvt_sf";
5734 case ISD::CVT_UF: return "cvt_uf";
5735 case ISD::CVT_SS: return "cvt_ss";
5736 case ISD::CVT_SU: return "cvt_su";
5737 case ISD::CVT_US: return "cvt_us";
5738 case ISD::CVT_UU: return "cvt_uu";
5739 }
5740 }
5741
5742 // Control flow instructions
5743 case ISD::BR: return "br";
5744 case ISD::BRIND: return "brind";
5745 case ISD::BR_JT: return "br_jt";
5746 case ISD::BRCOND: return "brcond";
5747 case ISD::BR_CC: return "br_cc";
5748 case ISD::CALLSEQ_START: return "callseq_start";
5749 case ISD::CALLSEQ_END: return "callseq_end";
5750
5751 // Other operators
5752 case ISD::LOAD: return "load";
5753 case ISD::STORE: return "store";
5754 case ISD::VAARG: return "vaarg";
5755 case ISD::VACOPY: return "vacopy";
5756 case ISD::VAEND: return "vaend";
5757 case ISD::VASTART: return "vastart";
5758 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5759 case ISD::EXTRACT_ELEMENT: return "extract_element";
5760 case ISD::BUILD_PAIR: return "build_pair";
5761 case ISD::STACKSAVE: return "stacksave";
5762 case ISD::STACKRESTORE: return "stackrestore";
5763 case ISD::TRAP: return "trap";
5764
5765 // Bit manipulation
5766 case ISD::BSWAP: return "bswap";
5767 case ISD::CTPOP: return "ctpop";
5768 case ISD::CTTZ: return "cttz";
5769 case ISD::CTLZ: return "ctlz";
5770
5771 // Trampolines
5772 case ISD::TRAMPOLINE: return "trampoline";
5773
5774 case ISD::CONDCODE:
5775 switch (cast<CondCodeSDNode>(this)->get()) {
5776 default: llvm_unreachable("Unknown setcc condition!");
5777 case ISD::SETOEQ: return "setoeq";
5778 case ISD::SETOGT: return "setogt";
5779 case ISD::SETOGE: return "setoge";
5780 case ISD::SETOLT: return "setolt";
5781 case ISD::SETOLE: return "setole";
5782 case ISD::SETONE: return "setone";
5783
5784 case ISD::SETO: return "seto";
5785 case ISD::SETUO: return "setuo";
5786 case ISD::SETUEQ: return "setue";
5787 case ISD::SETUGT: return "setugt";
5788 case ISD::SETUGE: return "setuge";
5789 case ISD::SETULT: return "setult";
5790 case ISD::SETULE: return "setule";
5791 case ISD::SETUNE: return "setune";
5792
5793 case ISD::SETEQ: return "seteq";
5794 case ISD::SETGT: return "setgt";
5795 case ISD::SETGE: return "setge";
5796 case ISD::SETLT: return "setlt";
5797 case ISD::SETLE: return "setle";
5798 case ISD::SETNE: return "setne";
5799 }
5800 }
5801}
5802
5803const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5804 switch (AM) {
5805 default:
5806 return "";
5807 case ISD::PRE_INC:
5808 return "<pre-inc>";
5809 case ISD::PRE_DEC:
5810 return "<pre-dec>";
5811 case ISD::POST_INC:
5812 return "<post-inc>";
5813 case ISD::POST_DEC:
5814 return "<post-dec>";
5815 }
5816}
5817
5818std::string ISD::ArgFlagsTy::getArgFlagsString() {
5819 std::string S = "< ";
5820
5821 if (isZExt())
5822 S += "zext ";
5823 if (isSExt())
5824 S += "sext ";
5825 if (isInReg())
5826 S += "inreg ";
5827 if (isSRet())
5828 S += "sret ";
5829 if (isByVal())
5830 S += "byval ";
5831 if (isNest())
5832 S += "nest ";
5833 if (getByValAlign())
5834 S += "byval-align:" + utostr(getByValAlign()) + " ";
5835 if (getOrigAlign())
5836 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5837 if (getByValSize())
5838 S += "byval-size:" + utostr(getByValSize()) + " ";
5839 return S + ">";
5840}
5841
5842void SDNode::dump() const { dump(0); }
5843void SDNode::dump(const SelectionDAG *G) const {
5844 print(dbgs(), G);
5845}
5846
5847void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5848 OS << (void*)this << ": ";
5849
5850 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5851 if (i) OS << ",";
5852 if (getValueType(i) == MVT::Other)
5853 OS << "ch";
5854 else
5855 OS << getValueType(i).getEVTString();
5856 }
5857 OS << " = " << getOperationName(G);
5858}
5859
5860void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5861 if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5862 if (!MN->memoperands_empty()) {
5863 OS << "<";
5864 OS << "Mem:";
5865 for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5866 e = MN->memoperands_end(); i != e; ++i) {
5867 OS << **i;
5868 if (next(i) != e)
5869 OS << " ";
5870 }
5871 OS << ">";
5872 }
5873 } else if (const ShuffleVectorSDNode *SVN =
5874 dyn_cast<ShuffleVectorSDNode>(this)) {
5875 OS << "<";
5876 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5877 int Idx = SVN->getMaskElt(i);
5878 if (i) OS << ",";
5879 if (Idx < 0)
5880 OS << "u";
5881 else
5882 OS << Idx;
5883 }
5884 OS << ">";
5885 } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5886 OS << '<' << CSDN->getAPIntValue() << '>';
5887 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5888 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5889 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5890 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5891 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5892 else {
5893 OS << "<APFloat(";
5894 CSDN->getValueAPF().bitcastToAPInt().dump();
5895 OS << ")>";
5896 }
5897 } else if (const GlobalAddressSDNode *GADN =
5898 dyn_cast<GlobalAddressSDNode>(this)) {
5899 int64_t offset = GADN->getOffset();
5900 OS << '<';
5901 WriteAsOperand(OS, GADN->getGlobal());
5902 OS << '>';
5903 if (offset > 0)
5904 OS << " + " << offset;
5905 else
5906 OS << " " << offset;
5907 if (unsigned int TF = GADN->getTargetFlags())
5908 OS << " [TF=" << TF << ']';
5909 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5910 OS << "<" << FIDN->getIndex() << ">";
5911 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5912 OS << "<" << JTDN->getIndex() << ">";
5913 if (unsigned int TF = JTDN->getTargetFlags())
5914 OS << " [TF=" << TF << ']';
5915 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5916 int offset = CP->getOffset();
5917 if (CP->isMachineConstantPoolEntry())
5918 OS << "<" << *CP->getMachineCPVal() << ">";
5919 else
5920 OS << "<" << *CP->getConstVal() << ">";
5921 if (offset > 0)
5922 OS << " + " << offset;
5923 else
5924 OS << " " << offset;
5925 if (unsigned int TF = CP->getTargetFlags())
5926 OS << " [TF=" << TF << ']';
5927 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5928 OS << "<";
5929 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5930 if (LBB)
5931 OS << LBB->getName() << " ";
5932 OS << (const void*)BBDN->getBasicBlock() << ">";
5933 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5934 if (G && R->getReg() &&
5935 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5936 OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5937 } else {
5938 OS << " %reg" << R->getReg();
5939 }
5940 } else if (const ExternalSymbolSDNode *ES =
5941 dyn_cast<ExternalSymbolSDNode>(this)) {
5942 OS << "'" << ES->getSymbol() << "'";
5943 if (unsigned int TF = ES->getTargetFlags())
5944 OS << " [TF=" << TF << ']';
5945 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5946 if (M->getValue())
5947 OS << "<" << M->getValue() << ">";
5948 else
5949 OS << "<null>";
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07005950 } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5951 if (MD->getMD())
5952 OS << "<" << MD->getMD() << ">";
5953 else
5954 OS << "<null>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005955 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5956 OS << ":" << N->getVT().getEVTString();
5957 }
5958 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5959 OS << "<" << *LD->getMemOperand();
5960
5961 bool doExt = true;
5962 switch (LD->getExtensionType()) {
5963 default: doExt = false; break;
5964 case ISD::EXTLOAD: OS << ", anyext"; break;
5965 case ISD::SEXTLOAD: OS << ", sext"; break;
5966 case ISD::ZEXTLOAD: OS << ", zext"; break;
5967 }
5968 if (doExt)
5969 OS << " from " << LD->getMemoryVT().getEVTString();
5970
5971 const char *AM = getIndexedModeName(LD->getAddressingMode());
5972 if (*AM)
5973 OS << ", " << AM;
5974
5975 OS << ">";
5976 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5977 OS << "<" << *ST->getMemOperand();
5978
5979 if (ST->isTruncatingStore())
5980 OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5981
5982 const char *AM = getIndexedModeName(ST->getAddressingMode());
5983 if (*AM)
5984 OS << ", " << AM;
5985
5986 OS << ">";
5987 } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5988 OS << "<" << *M->getMemOperand() << ">";
5989 } else if (const BlockAddressSDNode *BA =
5990 dyn_cast<BlockAddressSDNode>(this)) {
5991 OS << "<";
5992 WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5993 OS << ", ";
5994 WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5995 OS << ">";
5996 if (unsigned int TF = BA->getTargetFlags())
5997 OS << " [TF=" << TF << ']';
5998 }
5999
6000 if (G)
6001 if (unsigned Order = G->GetOrdering(this))
6002 OS << " [ORD=" << Order << ']';
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07006003
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006004 if (getNodeId() != -1)
6005 OS << " [ID=" << getNodeId() << ']';
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006006}
6007
6008void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6009 print_types(OS, G);
6010 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6011 if (i) OS << ", "; else OS << " ";
6012 OS << (void*)getOperand(i).getNode();
6013 if (unsigned RN = getOperand(i).getResNo())
6014 OS << ":" << RN;
6015 }
6016 print_details(OS, G);
6017}
6018
6019static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6020 const SelectionDAG *G, unsigned depth,
6021 unsigned indent)
6022{
6023 if (depth == 0)
6024 return;
6025
6026 OS.indent(indent);
6027
6028 N->print(OS, G);
6029
6030 if (depth < 1)
6031 return;
6032
6033 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6034 OS << '\n';
6035 printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6036 }
6037}
6038
6039void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6040 unsigned depth) const {
6041 printrWithDepthHelper(OS, this, G, depth, 0);
6042}
6043
6044void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6045 // Don't print impossibly deep things.
6046 printrWithDepth(OS, G, 100);
6047}
6048
6049void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6050 printrWithDepth(dbgs(), G, depth);
6051}
6052
6053void SDNode::dumprFull(const SelectionDAG *G) const {
6054 // Don't print impossibly deep things.
6055 dumprWithDepth(G, 100);
6056}
6057
6058static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6059 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6060 if (N->getOperand(i).getNode()->hasOneUse())
6061 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6062 else
6063 dbgs() << "\n" << std::string(indent+2, ' ')
6064 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6065
6066
6067 dbgs() << "\n";
6068 dbgs().indent(indent);
6069 N->dump(G);
6070}
6071
6072SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6073 assert(N->getNumValues() == 1 &&
6074 "Can't unroll a vector with multiple results!");
6075
6076 EVT VT = N->getValueType(0);
6077 unsigned NE = VT.getVectorNumElements();
6078 EVT EltVT = VT.getVectorElementType();
6079 DebugLoc dl = N->getDebugLoc();
6080
6081 SmallVector<SDValue, 8> Scalars;
6082 SmallVector<SDValue, 4> Operands(N->getNumOperands());
6083
6084 // If ResNE is 0, fully unroll the vector op.
6085 if (ResNE == 0)
6086 ResNE = NE;
6087 else if (NE > ResNE)
6088 NE = ResNE;
6089
6090 unsigned i;
6091 for (i= 0; i != NE; ++i) {
6092 for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6093 SDValue Operand = N->getOperand(j);
6094 EVT OperandVT = Operand.getValueType();
6095 if (OperandVT.isVector()) {
6096 // A vector operand; extract a single element.
6097 EVT OperandEltVT = OperandVT.getVectorElementType();
6098 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6099 OperandEltVT,
6100 Operand,
6101 getConstant(i, MVT::i32));
6102 } else {
6103 // A scalar operand; just use it as is.
6104 Operands[j] = Operand;
6105 }
6106 }
6107
6108 switch (N->getOpcode()) {
6109 default:
6110 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6111 &Operands[0], Operands.size()));
6112 break;
6113 case ISD::SHL:
6114 case ISD::SRA:
6115 case ISD::SRL:
6116 case ISD::ROTL:
6117 case ISD::ROTR:
6118 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6119 getShiftAmountOperand(Operands[1])));
6120 break;
6121 case ISD::SIGN_EXTEND_INREG:
6122 case ISD::FP_ROUND_INREG: {
6123 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6124 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6125 Operands[0],
6126 getValueType(ExtVT)));
6127 }
6128 }
6129 }
6130
6131 for (; i < ResNE; ++i)
6132 Scalars.push_back(getUNDEF(EltVT));
6133
6134 return getNode(ISD::BUILD_VECTOR, dl,
6135 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6136 &Scalars[0], Scalars.size());
6137}
6138
6139
6140/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6141/// location that is 'Dist' units away from the location that the 'Base' load
6142/// is loading from.
6143bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6144 unsigned Bytes, int Dist) const {
6145 if (LD->getChain() != Base->getChain())
6146 return false;
6147 EVT VT = LD->getValueType(0);
6148 if (VT.getSizeInBits() / 8 != Bytes)
6149 return false;
6150
6151 SDValue Loc = LD->getOperand(1);
6152 SDValue BaseLoc = Base->getOperand(1);
6153 if (Loc.getOpcode() == ISD::FrameIndex) {
6154 if (BaseLoc.getOpcode() != ISD::FrameIndex)
6155 return false;
6156 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6157 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
6158 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6159 int FS = MFI->getObjectSize(FI);
6160 int BFS = MFI->getObjectSize(BFI);
6161 if (FS != BFS || FS != (int)Bytes) return false;
6162 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6163 }
6164 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6165 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6166 if (V && (V->getSExtValue() == Dist*Bytes))
6167 return true;
6168 }
6169
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07006170 const GlobalValue *GV1 = NULL;
6171 const GlobalValue *GV2 = NULL;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006172 int64_t Offset1 = 0;
6173 int64_t Offset2 = 0;
6174 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6175 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6176 if (isGA1 && isGA2 && GV1 == GV2)
6177 return Offset1 == (Offset2 + Dist*Bytes);
6178 return false;
6179}
6180
6181
6182/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6183/// it cannot be inferred.
6184unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6185 // If this is a GlobalAddress + cst, return the alignment.
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07006186 const GlobalValue *GV;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006187 int64_t GVOffset = 0;
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07006188 if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6189 // If GV has specified alignment, then use it. Otherwise, use the preferred
6190 // alignment.
6191 unsigned Align = GV->getAlignment();
6192 if (!Align) {
6193 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6194 if (GVar->hasInitializer()) {
6195 const TargetData *TD = TLI.getTargetData();
6196 Align = TD->getPreferredAlignment(GVar);
6197 }
6198 }
6199 }
6200 return MinAlign(Align, GVOffset);
6201 }
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006202
6203 // If this is a direct reference to a stack slot, use information about the
6204 // stack slot's alignment.
6205 int FrameIdx = 1 << 31;
6206 int64_t FrameOffset = 0;
6207 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6208 FrameIdx = FI->getIndex();
6209 } else if (Ptr.getOpcode() == ISD::ADD &&
6210 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6211 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6212 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6213 FrameOffset = Ptr.getConstantOperandVal(1);
6214 }
6215
6216 if (FrameIdx != (1 << 31)) {
6217 // FIXME: Handle FI+CST.
6218 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6219 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6220 FrameOffset);
6221 if (MFI.isFixedObjectIndex(FrameIdx)) {
6222 int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6223
6224 // The alignment of the frame index can be determined from its offset from
6225 // the incoming frame position. If the frame object is at offset 32 and
6226 // the stack is guaranteed to be 16-byte aligned, then we know that the
6227 // object is 16-byte aligned.
6228 unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6229 unsigned Align = MinAlign(ObjectOffset, StackAlign);
6230
6231 // Finally, the frame object itself may have a known alignment. Factor
6232 // the alignment + offset into a new alignment. For example, if we know
6233 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6234 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
6235 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6236 return std::max(Align, FIInfoAlign);
6237 }
6238 return FIInfoAlign;
6239 }
6240
6241 return 0;
6242}
6243
6244void SelectionDAG::dump() const {
6245 dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6246
6247 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6248 I != E; ++I) {
6249 const SDNode *N = I;
6250 if (!N->hasOneUse() && N != getRoot().getNode())
6251 DumpNodes(N, 2, this);
6252 }
6253
6254 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6255
6256 dbgs() << "\n\n";
6257}
6258
6259void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6260 print_types(OS, G);
6261 print_details(OS, G);
6262}
6263
6264typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6265static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6266 const SelectionDAG *G, VisitedSDNodeSet &once) {
6267 if (!once.insert(N)) // If we've been here before, return now.
6268 return;
6269
6270 // Dump the current SDNode, but don't end the line yet.
6271 OS << std::string(indent, ' ');
6272 N->printr(OS, G);
6273
6274 // Having printed this SDNode, walk the children:
6275 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6276 const SDNode *child = N->getOperand(i).getNode();
6277
6278 if (i) OS << ",";
6279 OS << " ";
6280
6281 if (child->getNumOperands() == 0) {
6282 // This child has no grandchildren; print it inline right here.
6283 child->printr(OS, G);
6284 once.insert(child);
6285 } else { // Just the address. FIXME: also print the child's opcode.
6286 OS << (void*)child;
6287 if (unsigned RN = N->getOperand(i).getResNo())
6288 OS << ":" << RN;
6289 }
6290 }
6291
6292 OS << "\n";
6293
6294 // Dump children that have grandchildren on their own line(s).
6295 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6296 const SDNode *child = N->getOperand(i).getNode();
6297 DumpNodesr(OS, child, indent+2, G, once);
6298 }
6299}
6300
6301void SDNode::dumpr() const {
6302 VisitedSDNodeSet once;
6303 DumpNodesr(dbgs(), this, 0, 0, once);
6304}
6305
6306void SDNode::dumpr(const SelectionDAG *G) const {
6307 VisitedSDNodeSet once;
6308 DumpNodesr(dbgs(), this, 0, G, once);
6309}
6310
6311
6312// getAddressSpace - Return the address space this GlobalAddress belongs to.
6313unsigned GlobalAddressSDNode::getAddressSpace() const {
6314 return getGlobal()->getType()->getAddressSpace();
6315}
6316
6317
6318const Type *ConstantPoolSDNode::getType() const {
6319 if (isMachineConstantPoolEntry())
6320 return Val.MachineCPVal->getType();
6321 return Val.ConstVal->getType();
6322}
6323
6324bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6325 APInt &SplatUndef,
6326 unsigned &SplatBitSize,
6327 bool &HasAnyUndefs,
6328 unsigned MinSplatBits,
6329 bool isBigEndian) {
6330 EVT VT = getValueType(0);
6331 assert(VT.isVector() && "Expected a vector type");
6332 unsigned sz = VT.getSizeInBits();
6333 if (MinSplatBits > sz)
6334 return false;
6335
6336 SplatValue = APInt(sz, 0);
6337 SplatUndef = APInt(sz, 0);
6338
6339 // Get the bits. Bits with undefined values (when the corresponding element
6340 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6341 // in SplatValue. If any of the values are not constant, give up and return
6342 // false.
6343 unsigned int nOps = getNumOperands();
6344 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6345 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6346
6347 for (unsigned j = 0; j < nOps; ++j) {
6348 unsigned i = isBigEndian ? nOps-1-j : j;
6349 SDValue OpVal = getOperand(i);
6350 unsigned BitPos = j * EltBitSize;
6351
6352 if (OpVal.getOpcode() == ISD::UNDEF)
6353 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6354 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
Shih-wei Liao7abe37e2010-04-28 01:47:00 -07006355 SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6356 zextOrTrunc(sz) << BitPos;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006357 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6358 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6359 else
6360 return false;
6361 }
6362
6363 // The build_vector is all constants or undefs. Find the smallest element
6364 // size that splats the vector.
6365
6366 HasAnyUndefs = (SplatUndef != 0);
6367 while (sz > 8) {
6368
6369 unsigned HalfSize = sz / 2;
6370 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6371 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6372 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6373 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6374
6375 // If the two halves do not match (ignoring undef bits), stop here.
6376 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6377 MinSplatBits > HalfSize)
6378 break;
6379
6380 SplatValue = HighValue | LowValue;
6381 SplatUndef = HighUndef & LowUndef;
6382
6383 sz = HalfSize;
6384 }
6385
6386 SplatBitSize = sz;
6387 return true;
6388}
6389
6390bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6391 // Find the first non-undef value in the shuffle mask.
6392 unsigned i, e;
6393 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6394 /* search */;
6395
6396 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6397
6398 // Make sure all remaining elements are either undef or the same as the first
6399 // non-undef value.
6400 for (int Idx = Mask[i]; i != e; ++i)
6401 if (Mask[i] >= 0 && Mask[i] != Idx)
6402 return false;
6403 return true;
6404}
6405
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006406#ifdef XDEBUG
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006407static void checkForCyclesHelper(const SDNode *N,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006408 SmallPtrSet<const SDNode*, 32> &Visited,
6409 SmallPtrSet<const SDNode*, 32> &Checked) {
6410 // If this node has already been checked, don't check it again.
6411 if (Checked.count(N))
6412 return;
6413
6414 // If a node has already been visited on this depth-first walk, reject it as
6415 // a cycle.
6416 if (!Visited.insert(N)) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006417 dbgs() << "Offending node:\n";
6418 N->dumprFull();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006419 errs() << "Detected cycle in SelectionDAG\n";
6420 abort();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006421 }
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006422
6423 for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6424 checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6425
6426 Checked.insert(N);
6427 Visited.erase(N);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006428}
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006429#endif
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006430
6431void llvm::checkForCycles(const llvm::SDNode *N) {
6432#ifdef XDEBUG
6433 assert(N && "Checking nonexistant SDNode");
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006434 SmallPtrSet<const SDNode*, 32> visited;
6435 SmallPtrSet<const SDNode*, 32> checked;
6436 checkForCyclesHelper(N, visited, checked);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006437#endif
6438}
6439
6440void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6441 checkForCycles(DAG->getRoot().getNode());
6442}