blob: e286eb0ec5bb94d6c25f19bc15c3d2bcbd0f6b85 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39 SDVTList Res = {VTs, NumVTs};
40 return Res;
41}
42
43//===----------------------------------------------------------------------===//
44// ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000051bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000052 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053}
54
Dale Johannesenbbe2b702007-08-30 00:23:21 +000055bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56 const APFloat& Val) {
57 // convert modifies in place, so make a copy.
58 APFloat Val2 = APFloat(Val);
59 switch (VT) {
60 default:
61 return false; // These can't be represented as floating point!
62
63 // FIXME rounding mode needs to be more flexible
64 case MVT::f32:
65 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67 APFloat::opOK;
68 case MVT::f64:
69 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70 &Val2.getSemantics() == &APFloat::IEEEdouble ||
71 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72 APFloat::opOK;
73 // TODO: Figure out how to test if we can use a shorter type instead!
74 case MVT::f80:
75 case MVT::f128:
76 case MVT::ppcf128:
77 return true;
78 }
79}
80
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081//===----------------------------------------------------------------------===//
82// ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88 // Look through a bit convert.
89 if (N->getOpcode() == ISD::BIT_CONVERT)
90 N = N->getOperand(0).Val;
91
92 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94 unsigned i = 0, e = N->getNumOperands();
95
96 // Skip over all of the undef values.
97 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98 ++i;
99
100 // Do not accept an all-undef vector.
101 if (i == e) return false;
102
103 // Do not accept build_vectors that aren't all constants or which have non-~0
104 // elements.
105 SDOperand NotZero = N->getOperand(i);
106 if (isa<ConstantSDNode>(NotZero)) {
107 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108 return false;
109 } else if (isa<ConstantFPSDNode>(NotZero)) {
110 MVT::ValueType VT = NotZero.getValueType();
111 if (VT== MVT::f64) {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000112 if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
113 convertToAPInt().getZExtValue())) != (uint64_t)-1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 return false;
115 } else {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000116 if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
117 getValueAPF().convertToAPInt().getZExtValue() !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000118 (uint32_t)-1)
119 return false;
120 }
121 } else
122 return false;
123
124 // Okay, we have at least one ~0 value, check to see if the rest match or are
125 // undefs.
126 for (++i; i != e; ++i)
127 if (N->getOperand(i) != NotZero &&
128 N->getOperand(i).getOpcode() != ISD::UNDEF)
129 return false;
130 return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137 // Look through a bit convert.
138 if (N->getOpcode() == ISD::BIT_CONVERT)
139 N = N->getOperand(0).Val;
140
141 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143 unsigned i = 0, e = N->getNumOperands();
144
145 // Skip over all of the undef values.
146 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147 ++i;
148
149 // Do not accept an all-undef vector.
150 if (i == e) return false;
151
152 // Do not accept build_vectors that aren't all constants or which have non-~0
153 // elements.
154 SDOperand Zero = N->getOperand(i);
155 if (isa<ConstantSDNode>(Zero)) {
156 if (!cast<ConstantSDNode>(Zero)->isNullValue())
157 return false;
158 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000159 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000160 return false;
161 } else
162 return false;
163
164 // Okay, we have at least one ~0 value, check to see if the rest match or are
165 // undefs.
166 for (++i; i != e; ++i)
167 if (N->getOperand(i) != Zero &&
168 N->getOperand(i).getOpcode() != ISD::UNDEF)
169 return false;
170 return true;
171}
172
173/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
174/// when given the operation for (X op Y).
175ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
176 // To perform this operation, we just need to swap the L and G bits of the
177 // operation.
178 unsigned OldL = (Operation >> 2) & 1;
179 unsigned OldG = (Operation >> 1) & 1;
180 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
181 (OldL << 1) | // New G bit
182 (OldG << 2)); // New L bit.
183}
184
185/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
186/// 'op' is a valid SetCC operation.
187ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
188 unsigned Operation = Op;
189 if (isInteger)
190 Operation ^= 7; // Flip L, G, E bits, but not U.
191 else
192 Operation ^= 15; // Flip all of the condition bits.
193 if (Operation > ISD::SETTRUE2)
194 Operation &= ~8; // Don't let N and U bits get set.
195 return ISD::CondCode(Operation);
196}
197
198
199/// isSignedOp - For an integer comparison, return 1 if the comparison is a
200/// signed operation and 2 if the result is an unsigned comparison. Return zero
201/// if the operation does not depend on the sign of the input (setne and seteq).
202static int isSignedOp(ISD::CondCode Opcode) {
203 switch (Opcode) {
204 default: assert(0 && "Illegal integer setcc operation!");
205 case ISD::SETEQ:
206 case ISD::SETNE: return 0;
207 case ISD::SETLT:
208 case ISD::SETLE:
209 case ISD::SETGT:
210 case ISD::SETGE: return 1;
211 case ISD::SETULT:
212 case ISD::SETULE:
213 case ISD::SETUGT:
214 case ISD::SETUGE: return 2;
215 }
216}
217
218/// getSetCCOrOperation - Return the result of a logical OR between different
219/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
220/// returns SETCC_INVALID if it is not possible to represent the resultant
221/// comparison.
222ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
223 bool isInteger) {
224 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
225 // Cannot fold a signed integer setcc with an unsigned integer setcc.
226 return ISD::SETCC_INVALID;
227
228 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
229
230 // If the N and U bits get set then the resultant comparison DOES suddenly
231 // care about orderedness, and is true when ordered.
232 if (Op > ISD::SETTRUE2)
233 Op &= ~16; // Clear the U bit if the N bit is set.
234
235 // Canonicalize illegal integer setcc's.
236 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
237 Op = ISD::SETNE;
238
239 return ISD::CondCode(Op);
240}
241
242/// getSetCCAndOperation - Return the result of a logical AND between different
243/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
244/// function returns zero if it is not possible to represent the resultant
245/// comparison.
246ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
247 bool isInteger) {
248 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
249 // Cannot fold a signed setcc with an unsigned setcc.
250 return ISD::SETCC_INVALID;
251
252 // Combine all of the condition bits.
253 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
254
255 // Canonicalize illegal integer setcc's.
256 if (isInteger) {
257 switch (Result) {
258 default: break;
259 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
260 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
261 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
262 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
263 }
264 }
265
266 return Result;
267}
268
269const TargetMachine &SelectionDAG::getTarget() const {
270 return TLI.getTargetMachine();
271}
272
273//===----------------------------------------------------------------------===//
274// SDNode Profile Support
275//===----------------------------------------------------------------------===//
276
277/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
278///
279static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
280 ID.AddInteger(OpC);
281}
282
283/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
284/// solely with their pointer.
285void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
286 ID.AddPointer(VTList.VTs);
287}
288
289/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
290///
291static void AddNodeIDOperands(FoldingSetNodeID &ID,
292 const SDOperand *Ops, unsigned NumOps) {
293 for (; NumOps; --NumOps, ++Ops) {
294 ID.AddPointer(Ops->Val);
295 ID.AddInteger(Ops->ResNo);
296 }
297}
298
299static void AddNodeIDNode(FoldingSetNodeID &ID,
300 unsigned short OpC, SDVTList VTList,
301 const SDOperand *OpList, unsigned N) {
302 AddNodeIDOpcode(ID, OpC);
303 AddNodeIDValueTypes(ID, VTList);
304 AddNodeIDOperands(ID, OpList, N);
305}
306
307/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
308/// data.
309static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
310 AddNodeIDOpcode(ID, N->getOpcode());
311 // Add the return value info.
312 AddNodeIDValueTypes(ID, N->getVTList());
313 // Add the operand info.
314 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
315
316 // Handle SDNode leafs with special info.
317 switch (N->getOpcode()) {
318 default: break; // Normal nodes don't need extra info.
319 case ISD::TargetConstant:
320 case ISD::Constant:
321 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
322 break;
323 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000324 case ISD::ConstantFP: {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000325 ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000327 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 case ISD::TargetGlobalAddress:
329 case ISD::GlobalAddress:
330 case ISD::TargetGlobalTLSAddress:
331 case ISD::GlobalTLSAddress: {
332 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
333 ID.AddPointer(GA->getGlobal());
334 ID.AddInteger(GA->getOffset());
335 break;
336 }
337 case ISD::BasicBlock:
338 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
339 break;
340 case ISD::Register:
341 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
342 break;
343 case ISD::SRCVALUE: {
344 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
345 ID.AddPointer(SV->getValue());
346 ID.AddInteger(SV->getOffset());
347 break;
348 }
349 case ISD::FrameIndex:
350 case ISD::TargetFrameIndex:
351 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
352 break;
353 case ISD::JumpTable:
354 case ISD::TargetJumpTable:
355 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
356 break;
357 case ISD::ConstantPool:
358 case ISD::TargetConstantPool: {
359 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
360 ID.AddInteger(CP->getAlignment());
361 ID.AddInteger(CP->getOffset());
362 if (CP->isMachineConstantPoolEntry())
363 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
364 else
365 ID.AddPointer(CP->getConstVal());
366 break;
367 }
368 case ISD::LOAD: {
369 LoadSDNode *LD = cast<LoadSDNode>(N);
370 ID.AddInteger(LD->getAddressingMode());
371 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000372 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 ID.AddPointer(LD->getSrcValue());
374 ID.AddInteger(LD->getSrcValueOffset());
375 ID.AddInteger(LD->getAlignment());
376 ID.AddInteger(LD->isVolatile());
377 break;
378 }
379 case ISD::STORE: {
380 StoreSDNode *ST = cast<StoreSDNode>(N);
381 ID.AddInteger(ST->getAddressingMode());
382 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000383 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 ID.AddPointer(ST->getSrcValue());
385 ID.AddInteger(ST->getSrcValueOffset());
386 ID.AddInteger(ST->getAlignment());
387 ID.AddInteger(ST->isVolatile());
388 break;
389 }
390 }
391}
392
393//===----------------------------------------------------------------------===//
394// SelectionDAG Class
395//===----------------------------------------------------------------------===//
396
397/// RemoveDeadNodes - This method deletes all unreachable nodes in the
398/// SelectionDAG.
399void SelectionDAG::RemoveDeadNodes() {
400 // Create a dummy node (which is not added to allnodes), that adds a reference
401 // to the root node, preventing it from being deleted.
402 HandleSDNode Dummy(getRoot());
403
404 SmallVector<SDNode*, 128> DeadNodes;
405
406 // Add all obviously-dead nodes to the DeadNodes worklist.
407 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
408 if (I->use_empty())
409 DeadNodes.push_back(I);
410
411 // Process the worklist, deleting the nodes and adding their uses to the
412 // worklist.
413 while (!DeadNodes.empty()) {
414 SDNode *N = DeadNodes.back();
415 DeadNodes.pop_back();
416
417 // Take the node out of the appropriate CSE map.
418 RemoveNodeFromCSEMaps(N);
419
420 // Next, brutally remove the operand list. This is safe to do, as there are
421 // no cycles in the graph.
422 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
423 SDNode *Operand = I->Val;
424 Operand->removeUser(N);
425
426 // Now that we removed this operand, see if there are no uses of it left.
427 if (Operand->use_empty())
428 DeadNodes.push_back(Operand);
429 }
430 if (N->OperandsNeedDelete)
431 delete[] N->OperandList;
432 N->OperandList = 0;
433 N->NumOperands = 0;
434
435 // Finally, remove N itself.
436 AllNodes.erase(N);
437 }
438
439 // If the root changed (e.g. it was a dead load, update the root).
440 setRoot(Dummy.getValue());
441}
442
443void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
444 SmallVector<SDNode*, 16> DeadNodes;
445 DeadNodes.push_back(N);
446
447 // Process the worklist, deleting the nodes and adding their uses to the
448 // worklist.
449 while (!DeadNodes.empty()) {
450 SDNode *N = DeadNodes.back();
451 DeadNodes.pop_back();
452
453 // Take the node out of the appropriate CSE map.
454 RemoveNodeFromCSEMaps(N);
455
456 // Next, brutally remove the operand list. This is safe to do, as there are
457 // no cycles in the graph.
458 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
459 SDNode *Operand = I->Val;
460 Operand->removeUser(N);
461
462 // Now that we removed this operand, see if there are no uses of it left.
463 if (Operand->use_empty())
464 DeadNodes.push_back(Operand);
465 }
466 if (N->OperandsNeedDelete)
467 delete[] N->OperandList;
468 N->OperandList = 0;
469 N->NumOperands = 0;
470
471 // Finally, remove N itself.
472 Deleted.push_back(N);
473 AllNodes.erase(N);
474 }
475}
476
477void SelectionDAG::DeleteNode(SDNode *N) {
478 assert(N->use_empty() && "Cannot delete a node that is not dead!");
479
480 // First take this out of the appropriate CSE map.
481 RemoveNodeFromCSEMaps(N);
482
483 // Finally, remove uses due to operands of this node, remove from the
484 // AllNodes list, and delete the node.
485 DeleteNodeNotInCSEMaps(N);
486}
487
488void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
489
490 // Remove it from the AllNodes list.
491 AllNodes.remove(N);
492
493 // Drop all of the operands and decrement used nodes use counts.
494 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
495 I->Val->removeUser(N);
496 if (N->OperandsNeedDelete)
497 delete[] N->OperandList;
498 N->OperandList = 0;
499 N->NumOperands = 0;
500
501 delete N;
502}
503
504/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
505/// correspond to it. This is useful when we're about to delete or repurpose
506/// the node. We don't want future request for structurally identical nodes
507/// to return N anymore.
508void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
509 bool Erased = false;
510 switch (N->getOpcode()) {
511 case ISD::HANDLENODE: return; // noop.
512 case ISD::STRING:
513 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
514 break;
515 case ISD::CONDCODE:
516 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
517 "Cond code doesn't exist!");
518 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
519 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
520 break;
521 case ISD::ExternalSymbol:
522 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
523 break;
524 case ISD::TargetExternalSymbol:
525 Erased =
526 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
527 break;
528 case ISD::VALUETYPE:
529 Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
530 ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
531 break;
532 default:
533 // Remove it from the CSE Map.
534 Erased = CSEMap.RemoveNode(N);
535 break;
536 }
537#ifndef NDEBUG
538 // Verify that the node was actually in one of the CSE maps, unless it has a
539 // flag result (which cannot be CSE'd) or is one of the special cases that are
540 // not subject to CSE.
541 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
542 !N->isTargetOpcode()) {
543 N->dump(this);
544 cerr << "\n";
545 assert(0 && "Node is not in map!");
546 }
547#endif
548}
549
550/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
551/// has been taken out and modified in some way. If the specified node already
552/// exists in the CSE maps, do not modify the maps, but return the existing node
553/// instead. If it doesn't exist, add it and return null.
554///
555SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
556 assert(N->getNumOperands() && "This is a leaf node!");
557 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
558 return 0; // Never add these nodes.
559
560 // Check that remaining values produced are not flags.
561 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
562 if (N->getValueType(i) == MVT::Flag)
563 return 0; // Never CSE anything that produces a flag.
564
565 SDNode *New = CSEMap.GetOrInsertNode(N);
566 if (New != N) return New; // Node already existed.
567 return 0;
568}
569
570/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
571/// were replaced with those specified. If this node is never memoized,
572/// return null, otherwise return a pointer to the slot it would take. If a
573/// node already exists with these operands, the slot will be non-null.
574SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
575 void *&InsertPos) {
576 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
577 return 0; // Never add these nodes.
578
579 // Check that remaining values produced are not flags.
580 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
581 if (N->getValueType(i) == MVT::Flag)
582 return 0; // Never CSE anything that produces a flag.
583
584 SDOperand Ops[] = { Op };
585 FoldingSetNodeID ID;
586 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
587 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
588}
589
590/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
591/// were replaced with those specified. If this node is never memoized,
592/// return null, otherwise return a pointer to the slot it would take. If a
593/// node already exists with these operands, the slot will be non-null.
594SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
595 SDOperand Op1, SDOperand Op2,
596 void *&InsertPos) {
597 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
598 return 0; // Never add these nodes.
599
600 // Check that remaining values produced are not flags.
601 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
602 if (N->getValueType(i) == MVT::Flag)
603 return 0; // Never CSE anything that produces a flag.
604
605 SDOperand Ops[] = { Op1, Op2 };
606 FoldingSetNodeID ID;
607 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
608 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
609}
610
611
612/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
613/// were replaced with those specified. If this node is never memoized,
614/// return null, otherwise return a pointer to the slot it would take. If a
615/// node already exists with these operands, the slot will be non-null.
616SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
617 const SDOperand *Ops,unsigned NumOps,
618 void *&InsertPos) {
619 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
620 return 0; // Never add these nodes.
621
622 // Check that remaining values produced are not flags.
623 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
624 if (N->getValueType(i) == MVT::Flag)
625 return 0; // Never CSE anything that produces a flag.
626
627 FoldingSetNodeID ID;
628 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
629
630 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
631 ID.AddInteger(LD->getAddressingMode());
632 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000633 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000634 ID.AddPointer(LD->getSrcValue());
635 ID.AddInteger(LD->getSrcValueOffset());
636 ID.AddInteger(LD->getAlignment());
637 ID.AddInteger(LD->isVolatile());
638 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
639 ID.AddInteger(ST->getAddressingMode());
640 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000641 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 ID.AddPointer(ST->getSrcValue());
643 ID.AddInteger(ST->getSrcValueOffset());
644 ID.AddInteger(ST->getAlignment());
645 ID.AddInteger(ST->isVolatile());
646 }
647
648 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653 while (!AllNodes.empty()) {
654 SDNode *N = AllNodes.begin();
655 N->SetNextInBucket(0);
656 if (N->OperandsNeedDelete)
657 delete [] N->OperandList;
658 N->OperandList = 0;
659 N->NumOperands = 0;
660 AllNodes.pop_front();
661 }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665 if (Op.getValueType() == VT) return Op;
666 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667 return getNode(ISD::AND, Op.getValueType(), Op,
668 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672 StringSDNode *&N = StringNodes[Val];
673 if (!N) {
674 N = new StringSDNode(Val);
675 AllNodes.push_back(N);
676 }
677 return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682 assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
683
684 // Mask out any bits that are not valid for this constant.
685 Val &= MVT::getIntVTBitMask(VT);
686
687 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
688 FoldingSetNodeID ID;
689 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
690 ID.AddInteger(Val);
691 void *IP = 0;
692 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
693 return SDOperand(E, 0);
694 SDNode *N = new ConstantSDNode(isT, Val, VT);
695 CSEMap.InsertNode(N, IP);
696 AllNodes.push_back(N);
697 return SDOperand(N, 0);
698}
699
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000700SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 bool isTarget) {
702 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000703
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 MVT::ValueType EltVT =
705 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706
707 // Do the map lookup using the actual bit pattern for the floating point
708 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
709 // we don't have issues with SNANs.
710 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
711 FoldingSetNodeID ID;
712 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000713 ID.AddAPFloat(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 void *IP = 0;
715 SDNode *N = NULL;
716 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
717 if (!MVT::isVector(VT))
718 return SDOperand(N, 0);
719 if (!N) {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000720 N = new ConstantFPSDNode(isTarget, V, EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 CSEMap.InsertNode(N, IP);
722 AllNodes.push_back(N);
723 }
724
725 SDOperand Result(N, 0);
726 if (MVT::isVector(VT)) {
727 SmallVector<SDOperand, 8> Ops;
728 Ops.assign(MVT::getVectorNumElements(VT), Result);
729 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
730 }
731 return Result;
732}
733
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000734SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
735 bool isTarget) {
736 MVT::ValueType EltVT =
737 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
738 if (EltVT==MVT::f32)
739 return getConstantFP(APFloat((float)Val), VT, isTarget);
740 else
741 return getConstantFP(APFloat(Val), VT, isTarget);
742}
743
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
745 MVT::ValueType VT, int Offset,
746 bool isTargetGA) {
747 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
748 unsigned Opc;
749 if (GVar && GVar->isThreadLocal())
750 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
751 else
752 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
753 FoldingSetNodeID ID;
754 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
755 ID.AddPointer(GV);
756 ID.AddInteger(Offset);
757 void *IP = 0;
758 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
759 return SDOperand(E, 0);
760 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
761 CSEMap.InsertNode(N, IP);
762 AllNodes.push_back(N);
763 return SDOperand(N, 0);
764}
765
766SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
767 bool isTarget) {
768 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
769 FoldingSetNodeID ID;
770 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
771 ID.AddInteger(FI);
772 void *IP = 0;
773 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
774 return SDOperand(E, 0);
775 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
776 CSEMap.InsertNode(N, IP);
777 AllNodes.push_back(N);
778 return SDOperand(N, 0);
779}
780
781SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
782 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
783 FoldingSetNodeID ID;
784 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
785 ID.AddInteger(JTI);
786 void *IP = 0;
787 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
788 return SDOperand(E, 0);
789 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
790 CSEMap.InsertNode(N, IP);
791 AllNodes.push_back(N);
792 return SDOperand(N, 0);
793}
794
795SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
796 unsigned Alignment, int Offset,
797 bool isTarget) {
798 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
799 FoldingSetNodeID ID;
800 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
801 ID.AddInteger(Alignment);
802 ID.AddInteger(Offset);
803 ID.AddPointer(C);
804 void *IP = 0;
805 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806 return SDOperand(E, 0);
807 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
808 CSEMap.InsertNode(N, IP);
809 AllNodes.push_back(N);
810 return SDOperand(N, 0);
811}
812
813
814SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
815 MVT::ValueType VT,
816 unsigned Alignment, int Offset,
817 bool isTarget) {
818 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
819 FoldingSetNodeID ID;
820 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
821 ID.AddInteger(Alignment);
822 ID.AddInteger(Offset);
823 C->AddSelectionDAGCSEId(ID);
824 void *IP = 0;
825 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
826 return SDOperand(E, 0);
827 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
828 CSEMap.InsertNode(N, IP);
829 AllNodes.push_back(N);
830 return SDOperand(N, 0);
831}
832
833
834SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
835 FoldingSetNodeID ID;
836 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
837 ID.AddPointer(MBB);
838 void *IP = 0;
839 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
840 return SDOperand(E, 0);
841 SDNode *N = new BasicBlockSDNode(MBB);
842 CSEMap.InsertNode(N, IP);
843 AllNodes.push_back(N);
844 return SDOperand(N, 0);
845}
846
847SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
848 if ((unsigned)VT >= ValueTypeNodes.size())
849 ValueTypeNodes.resize(VT+1);
850 if (ValueTypeNodes[VT] == 0) {
851 ValueTypeNodes[VT] = new VTSDNode(VT);
852 AllNodes.push_back(ValueTypeNodes[VT]);
853 }
854
855 return SDOperand(ValueTypeNodes[VT], 0);
856}
857
858SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
859 SDNode *&N = ExternalSymbols[Sym];
860 if (N) return SDOperand(N, 0);
861 N = new ExternalSymbolSDNode(false, Sym, VT);
862 AllNodes.push_back(N);
863 return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
867 MVT::ValueType VT) {
868 SDNode *&N = TargetExternalSymbols[Sym];
869 if (N) return SDOperand(N, 0);
870 N = new ExternalSymbolSDNode(true, Sym, VT);
871 AllNodes.push_back(N);
872 return SDOperand(N, 0);
873}
874
875SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
876 if ((unsigned)Cond >= CondCodeNodes.size())
877 CondCodeNodes.resize(Cond+1);
878
879 if (CondCodeNodes[Cond] == 0) {
880 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
881 AllNodes.push_back(CondCodeNodes[Cond]);
882 }
883 return SDOperand(CondCodeNodes[Cond], 0);
884}
885
886SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
887 FoldingSetNodeID ID;
888 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
889 ID.AddInteger(RegNo);
890 void *IP = 0;
891 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
892 return SDOperand(E, 0);
893 SDNode *N = new RegisterSDNode(RegNo, VT);
894 CSEMap.InsertNode(N, IP);
895 AllNodes.push_back(N);
896 return SDOperand(N, 0);
897}
898
899SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
900 assert((!V || isa<PointerType>(V->getType())) &&
901 "SrcValue is not a pointer?");
902
903 FoldingSetNodeID ID;
904 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
905 ID.AddPointer(V);
906 ID.AddInteger(Offset);
907 void *IP = 0;
908 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
909 return SDOperand(E, 0);
910 SDNode *N = new SrcValueSDNode(V, Offset);
911 CSEMap.InsertNode(N, IP);
912 AllNodes.push_back(N);
913 return SDOperand(N, 0);
914}
915
916SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
917 SDOperand N2, ISD::CondCode Cond) {
918 // These setcc operations always fold.
919 switch (Cond) {
920 default: break;
921 case ISD::SETFALSE:
922 case ISD::SETFALSE2: return getConstant(0, VT);
923 case ISD::SETTRUE:
924 case ISD::SETTRUE2: return getConstant(1, VT);
925
926 case ISD::SETOEQ:
927 case ISD::SETOGT:
928 case ISD::SETOGE:
929 case ISD::SETOLT:
930 case ISD::SETOLE:
931 case ISD::SETONE:
932 case ISD::SETO:
933 case ISD::SETUO:
934 case ISD::SETUEQ:
935 case ISD::SETUNE:
936 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
937 break;
938 }
939
940 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
941 uint64_t C2 = N2C->getValue();
942 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
943 uint64_t C1 = N1C->getValue();
944
945 // Sign extend the operands if required
946 if (ISD::isSignedIntSetCC(Cond)) {
947 C1 = N1C->getSignExtended();
948 C2 = N2C->getSignExtended();
949 }
950
951 switch (Cond) {
952 default: assert(0 && "Unknown integer setcc!");
953 case ISD::SETEQ: return getConstant(C1 == C2, VT);
954 case ISD::SETNE: return getConstant(C1 != C2, VT);
955 case ISD::SETULT: return getConstant(C1 < C2, VT);
956 case ISD::SETUGT: return getConstant(C1 > C2, VT);
957 case ISD::SETULE: return getConstant(C1 <= C2, VT);
958 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
959 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
960 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
961 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
962 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
963 }
964 }
965 }
966 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
967 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000968
969 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000970 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000971 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +0000972 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
973 return getNode(ISD::UNDEF, VT);
974 // fall through
975 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
976 case ISD::SETNE: if (R==APFloat::cmpUnordered)
977 return getNode(ISD::UNDEF, VT);
978 // fall through
979 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000980 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +0000981 case ISD::SETLT: if (R==APFloat::cmpUnordered)
982 return getNode(ISD::UNDEF, VT);
983 // fall through
984 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
985 case ISD::SETGT: if (R==APFloat::cmpUnordered)
986 return getNode(ISD::UNDEF, VT);
987 // fall through
988 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
989 case ISD::SETLE: if (R==APFloat::cmpUnordered)
990 return getNode(ISD::UNDEF, VT);
991 // fall through
992 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000993 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +0000994 case ISD::SETGE: if (R==APFloat::cmpUnordered)
995 return getNode(ISD::UNDEF, VT);
996 // fall through
997 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000998 R==APFloat::cmpEqual, VT);
999 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1000 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1001 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1002 R==APFloat::cmpEqual, VT);
1003 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1004 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1005 R==APFloat::cmpLessThan, VT);
1006 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1007 R==APFloat::cmpUnordered, VT);
1008 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1009 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010 }
1011 } else {
1012 // Ensure that the constant occurs on the RHS.
1013 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1014 }
1015
1016 // Could not fold it.
1017 return SDOperand();
1018}
1019
1020/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1021/// this predicate to simplify operations downstream. Mask is known to be zero
1022/// for bits that V cannot have.
1023bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1024 unsigned Depth) const {
1025 // The masks are not wide enough to represent this type! Should use APInt.
1026 if (Op.getValueType() == MVT::i128)
1027 return false;
1028
1029 uint64_t KnownZero, KnownOne;
1030 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1031 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1032 return (KnownZero & Mask) == Mask;
1033}
1034
1035/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1036/// known to be either zero or one and return them in the KnownZero/KnownOne
1037/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1038/// processing.
1039void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1040 uint64_t &KnownZero, uint64_t &KnownOne,
1041 unsigned Depth) const {
1042 KnownZero = KnownOne = 0; // Don't know anything.
1043 if (Depth == 6 || Mask == 0)
1044 return; // Limit search depth.
1045
1046 // The masks are not wide enough to represent this type! Should use APInt.
1047 if (Op.getValueType() == MVT::i128)
1048 return;
1049
1050 uint64_t KnownZero2, KnownOne2;
1051
1052 switch (Op.getOpcode()) {
1053 case ISD::Constant:
1054 // We know all of the bits for a constant!
1055 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1056 KnownZero = ~KnownOne & Mask;
1057 return;
1058 case ISD::AND:
1059 // If either the LHS or the RHS are Zero, the result is zero.
1060 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1061 Mask &= ~KnownZero;
1062 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1063 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1064 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1065
1066 // Output known-1 bits are only known if set in both the LHS & RHS.
1067 KnownOne &= KnownOne2;
1068 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1069 KnownZero |= KnownZero2;
1070 return;
1071 case ISD::OR:
1072 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1073 Mask &= ~KnownOne;
1074 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1075 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1076 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1077
1078 // Output known-0 bits are only known if clear in both the LHS & RHS.
1079 KnownZero &= KnownZero2;
1080 // Output known-1 are known to be set if set in either the LHS | RHS.
1081 KnownOne |= KnownOne2;
1082 return;
1083 case ISD::XOR: {
1084 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1085 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1086 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1088
1089 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1090 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1091 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1092 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1093 KnownZero = KnownZeroOut;
1094 return;
1095 }
1096 case ISD::SELECT:
1097 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1098 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1099 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1100 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1101
1102 // Only known if known in both the LHS and RHS.
1103 KnownOne &= KnownOne2;
1104 KnownZero &= KnownZero2;
1105 return;
1106 case ISD::SELECT_CC:
1107 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1108 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1109 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1111
1112 // Only known if known in both the LHS and RHS.
1113 KnownOne &= KnownOne2;
1114 KnownZero &= KnownZero2;
1115 return;
1116 case ISD::SETCC:
1117 // If we know the result of a setcc has the top bits zero, use this info.
1118 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1119 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1120 return;
1121 case ISD::SHL:
1122 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1123 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1124 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1125 KnownZero, KnownOne, Depth+1);
1126 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1127 KnownZero <<= SA->getValue();
1128 KnownOne <<= SA->getValue();
1129 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1130 }
1131 return;
1132 case ISD::SRL:
1133 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1134 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1135 MVT::ValueType VT = Op.getValueType();
1136 unsigned ShAmt = SA->getValue();
1137
1138 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1139 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1140 KnownZero, KnownOne, Depth+1);
1141 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1142 KnownZero &= TypeMask;
1143 KnownOne &= TypeMask;
1144 KnownZero >>= ShAmt;
1145 KnownOne >>= ShAmt;
1146
1147 uint64_t HighBits = (1ULL << ShAmt)-1;
1148 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1149 KnownZero |= HighBits; // High bits known zero.
1150 }
1151 return;
1152 case ISD::SRA:
1153 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154 MVT::ValueType VT = Op.getValueType();
1155 unsigned ShAmt = SA->getValue();
1156
1157 // Compute the new bits that are at the top now.
1158 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1159
1160 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1161 // If any of the demanded bits are produced by the sign extension, we also
1162 // demand the input sign bit.
1163 uint64_t HighBits = (1ULL << ShAmt)-1;
1164 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1165 if (HighBits & Mask)
1166 InDemandedMask |= MVT::getIntVTSignBit(VT);
1167
1168 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1169 Depth+1);
1170 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171 KnownZero &= TypeMask;
1172 KnownOne &= TypeMask;
1173 KnownZero >>= ShAmt;
1174 KnownOne >>= ShAmt;
1175
1176 // Handle the sign bits.
1177 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1178 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1179
1180 if (KnownZero & SignBit) {
1181 KnownZero |= HighBits; // New bits are known zero.
1182 } else if (KnownOne & SignBit) {
1183 KnownOne |= HighBits; // New bits are known one.
1184 }
1185 }
1186 return;
1187 case ISD::SIGN_EXTEND_INREG: {
1188 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1189
1190 // Sign extension. Compute the demanded bits in the result that are not
1191 // present in the input.
1192 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1193
1194 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1195 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1196
1197 // If the sign extended bits are demanded, we know that the sign
1198 // bit is demanded.
1199 if (NewBits)
1200 InputDemandedBits |= InSignBit;
1201
1202 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1203 KnownZero, KnownOne, Depth+1);
1204 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205
1206 // If the sign bit of the input is known set or clear, then we know the
1207 // top bits of the result.
1208 if (KnownZero & InSignBit) { // Input sign bit known clear
1209 KnownZero |= NewBits;
1210 KnownOne &= ~NewBits;
1211 } else if (KnownOne & InSignBit) { // Input sign bit known set
1212 KnownOne |= NewBits;
1213 KnownZero &= ~NewBits;
1214 } else { // Input sign bit unknown
1215 KnownZero &= ~NewBits;
1216 KnownOne &= ~NewBits;
1217 }
1218 return;
1219 }
1220 case ISD::CTTZ:
1221 case ISD::CTLZ:
1222 case ISD::CTPOP: {
1223 MVT::ValueType VT = Op.getValueType();
1224 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1225 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1226 KnownOne = 0;
1227 return;
1228 }
1229 case ISD::LOAD: {
1230 if (ISD::isZEXTLoad(Op.Val)) {
1231 LoadSDNode *LD = cast<LoadSDNode>(Op);
1232 MVT::ValueType VT = LD->getLoadedVT();
1233 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1234 }
1235 return;
1236 }
1237 case ISD::ZERO_EXTEND: {
1238 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1239 uint64_t NewBits = (~InMask) & Mask;
1240 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1241 KnownOne, Depth+1);
1242 KnownZero |= NewBits & Mask;
1243 KnownOne &= ~NewBits;
1244 return;
1245 }
1246 case ISD::SIGN_EXTEND: {
1247 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1248 unsigned InBits = MVT::getSizeInBits(InVT);
1249 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1250 uint64_t InSignBit = 1ULL << (InBits-1);
1251 uint64_t NewBits = (~InMask) & Mask;
1252 uint64_t InDemandedBits = Mask & InMask;
1253
1254 // If any of the sign extended bits are demanded, we know that the sign
1255 // bit is demanded.
1256 if (NewBits & Mask)
1257 InDemandedBits |= InSignBit;
1258
1259 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1260 KnownOne, Depth+1);
1261 // If the sign bit is known zero or one, the top bits match.
1262 if (KnownZero & InSignBit) {
1263 KnownZero |= NewBits;
1264 KnownOne &= ~NewBits;
1265 } else if (KnownOne & InSignBit) {
1266 KnownOne |= NewBits;
1267 KnownZero &= ~NewBits;
1268 } else { // Otherwise, top bits aren't known.
1269 KnownOne &= ~NewBits;
1270 KnownZero &= ~NewBits;
1271 }
1272 return;
1273 }
1274 case ISD::ANY_EXTEND: {
1275 MVT::ValueType VT = Op.getOperand(0).getValueType();
1276 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1277 KnownZero, KnownOne, Depth+1);
1278 return;
1279 }
1280 case ISD::TRUNCATE: {
1281 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1282 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1283 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1284 KnownZero &= OutMask;
1285 KnownOne &= OutMask;
1286 break;
1287 }
1288 case ISD::AssertZext: {
1289 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1290 uint64_t InMask = MVT::getIntVTBitMask(VT);
1291 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1292 KnownOne, Depth+1);
1293 KnownZero |= (~InMask) & Mask;
1294 return;
1295 }
1296 case ISD::ADD: {
1297 // If either the LHS or the RHS are Zero, the result is zero.
1298 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1299 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1300 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1301 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1302
1303 // Output known-0 bits are known if clear or set in both the low clear bits
1304 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1305 // low 3 bits clear.
1306 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1307 CountTrailingZeros_64(~KnownZero2));
1308
1309 KnownZero = (1ULL << KnownZeroOut) - 1;
1310 KnownOne = 0;
1311 return;
1312 }
1313 case ISD::SUB: {
1314 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1315 if (!CLHS) return;
1316
1317 // We know that the top bits of C-X are clear if X contains less bits
1318 // than C (i.e. no wrap-around can happen). For example, 20-X is
1319 // positive if we can prove that X is >= 0 and < 16.
1320 MVT::ValueType VT = CLHS->getValueType(0);
1321 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1322 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1323 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1324 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1325 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1326
1327 // If all of the MaskV bits are known to be zero, then we know the output
1328 // top bits are zero, because we now know that the output is from [0-C].
1329 if ((KnownZero & MaskV) == MaskV) {
1330 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1331 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1332 KnownOne = 0; // No one bits known.
1333 } else {
1334 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1335 }
1336 }
1337 return;
1338 }
1339 default:
1340 // Allow the target to implement this method for its nodes.
1341 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1342 case ISD::INTRINSIC_WO_CHAIN:
1343 case ISD::INTRINSIC_W_CHAIN:
1344 case ISD::INTRINSIC_VOID:
1345 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1346 }
1347 return;
1348 }
1349}
1350
1351/// ComputeNumSignBits - Return the number of times the sign bit of the
1352/// register is replicated into the other bits. We know that at least 1 bit
1353/// is always equal to the sign bit (itself), but other cases can give us
1354/// information. For example, immediately after an "SRA X, 2", we know that
1355/// the top 3 bits are all equal to each other, so we return 3.
1356unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1357 MVT::ValueType VT = Op.getValueType();
1358 assert(MVT::isInteger(VT) && "Invalid VT!");
1359 unsigned VTBits = MVT::getSizeInBits(VT);
1360 unsigned Tmp, Tmp2;
1361
1362 if (Depth == 6)
1363 return 1; // Limit search depth.
1364
1365 switch (Op.getOpcode()) {
1366 default: break;
1367 case ISD::AssertSext:
1368 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1369 return VTBits-Tmp+1;
1370 case ISD::AssertZext:
1371 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1372 return VTBits-Tmp;
1373
1374 case ISD::Constant: {
1375 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1376 // If negative, invert the bits, then look at it.
1377 if (Val & MVT::getIntVTSignBit(VT))
1378 Val = ~Val;
1379
1380 // Shift the bits so they are the leading bits in the int64_t.
1381 Val <<= 64-VTBits;
1382
1383 // Return # leading zeros. We use 'min' here in case Val was zero before
1384 // shifting. We don't want to return '64' as for an i32 "0".
1385 return std::min(VTBits, CountLeadingZeros_64(Val));
1386 }
1387
1388 case ISD::SIGN_EXTEND:
1389 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1390 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1391
1392 case ISD::SIGN_EXTEND_INREG:
1393 // Max of the input and what this extends.
1394 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1395 Tmp = VTBits-Tmp+1;
1396
1397 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1398 return std::max(Tmp, Tmp2);
1399
1400 case ISD::SRA:
1401 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1402 // SRA X, C -> adds C sign bits.
1403 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1404 Tmp += C->getValue();
1405 if (Tmp > VTBits) Tmp = VTBits;
1406 }
1407 return Tmp;
1408 case ISD::SHL:
1409 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1410 // shl destroys sign bits.
1411 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1412 if (C->getValue() >= VTBits || // Bad shift.
1413 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1414 return Tmp - C->getValue();
1415 }
1416 break;
1417 case ISD::AND:
1418 case ISD::OR:
1419 case ISD::XOR: // NOT is handled here.
1420 // Logical binary ops preserve the number of sign bits.
1421 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1422 if (Tmp == 1) return 1; // Early out.
1423 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1424 return std::min(Tmp, Tmp2);
1425
1426 case ISD::SELECT:
1427 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1428 if (Tmp == 1) return 1; // Early out.
1429 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1430 return std::min(Tmp, Tmp2);
1431
1432 case ISD::SETCC:
1433 // If setcc returns 0/-1, all bits are sign bits.
1434 if (TLI.getSetCCResultContents() ==
1435 TargetLowering::ZeroOrNegativeOneSetCCResult)
1436 return VTBits;
1437 break;
1438 case ISD::ROTL:
1439 case ISD::ROTR:
1440 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1441 unsigned RotAmt = C->getValue() & (VTBits-1);
1442
1443 // Handle rotate right by N like a rotate left by 32-N.
1444 if (Op.getOpcode() == ISD::ROTR)
1445 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1446
1447 // If we aren't rotating out all of the known-in sign bits, return the
1448 // number that are left. This handles rotl(sext(x), 1) for example.
1449 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1450 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1451 }
1452 break;
1453 case ISD::ADD:
1454 // Add can have at most one carry bit. Thus we know that the output
1455 // is, at worst, one more bit than the inputs.
1456 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1457 if (Tmp == 1) return 1; // Early out.
1458
1459 // Special case decrementing a value (ADD X, -1):
1460 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1461 if (CRHS->isAllOnesValue()) {
1462 uint64_t KnownZero, KnownOne;
1463 uint64_t Mask = MVT::getIntVTBitMask(VT);
1464 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1465
1466 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1467 // sign bits set.
1468 if ((KnownZero|1) == Mask)
1469 return VTBits;
1470
1471 // If we are subtracting one from a positive number, there is no carry
1472 // out of the result.
1473 if (KnownZero & MVT::getIntVTSignBit(VT))
1474 return Tmp;
1475 }
1476
1477 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1478 if (Tmp2 == 1) return 1;
1479 return std::min(Tmp, Tmp2)-1;
1480 break;
1481
1482 case ISD::SUB:
1483 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1484 if (Tmp2 == 1) return 1;
1485
1486 // Handle NEG.
1487 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1488 if (CLHS->getValue() == 0) {
1489 uint64_t KnownZero, KnownOne;
1490 uint64_t Mask = MVT::getIntVTBitMask(VT);
1491 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1492 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1493 // sign bits set.
1494 if ((KnownZero|1) == Mask)
1495 return VTBits;
1496
1497 // If the input is known to be positive (the sign bit is known clear),
1498 // the output of the NEG has the same number of sign bits as the input.
1499 if (KnownZero & MVT::getIntVTSignBit(VT))
1500 return Tmp2;
1501
1502 // Otherwise, we treat this like a SUB.
1503 }
1504
1505 // Sub can have at most one carry bit. Thus we know that the output
1506 // is, at worst, one more bit than the inputs.
1507 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1508 if (Tmp == 1) return 1; // Early out.
1509 return std::min(Tmp, Tmp2)-1;
1510 break;
1511 case ISD::TRUNCATE:
1512 // FIXME: it's tricky to do anything useful for this, but it is an important
1513 // case for targets like X86.
1514 break;
1515 }
1516
1517 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1518 if (Op.getOpcode() == ISD::LOAD) {
1519 LoadSDNode *LD = cast<LoadSDNode>(Op);
1520 unsigned ExtType = LD->getExtensionType();
1521 switch (ExtType) {
1522 default: break;
1523 case ISD::SEXTLOAD: // '17' bits known
1524 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1525 return VTBits-Tmp+1;
1526 case ISD::ZEXTLOAD: // '16' bits known
1527 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1528 return VTBits-Tmp;
1529 }
1530 }
1531
1532 // Allow the target to implement this method for its nodes.
1533 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1534 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1535 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1536 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1537 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1538 if (NumBits > 1) return NumBits;
1539 }
1540
1541 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1542 // use this information.
1543 uint64_t KnownZero, KnownOne;
1544 uint64_t Mask = MVT::getIntVTBitMask(VT);
1545 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1546
1547 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1548 if (KnownZero & SignBit) { // SignBit is 0
1549 Mask = KnownZero;
1550 } else if (KnownOne & SignBit) { // SignBit is 1;
1551 Mask = KnownOne;
1552 } else {
1553 // Nothing known.
1554 return 1;
1555 }
1556
1557 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1558 // the number of identical bits in the top of the input value.
1559 Mask ^= ~0ULL;
1560 Mask <<= 64-VTBits;
1561 // Return # leading zeros. We use 'min' here in case Val was zero before
1562 // shifting. We don't want to return '64' as for an i32 "0".
1563 return std::min(VTBits, CountLeadingZeros_64(Mask));
1564}
1565
1566
1567/// getNode - Gets or creates the specified node.
1568///
1569SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1570 FoldingSetNodeID ID;
1571 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1572 void *IP = 0;
1573 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1574 return SDOperand(E, 0);
1575 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1576 CSEMap.InsertNode(N, IP);
1577
1578 AllNodes.push_back(N);
1579 return SDOperand(N, 0);
1580}
1581
1582SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1583 SDOperand Operand) {
1584 unsigned Tmp1;
1585 // Constant fold unary operations with an integer constant operand.
1586 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1587 uint64_t Val = C->getValue();
1588 switch (Opcode) {
1589 default: break;
1590 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1591 case ISD::ANY_EXTEND:
1592 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1593 case ISD::TRUNCATE: return getConstant(Val, VT);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001594 case ISD::UINT_TO_FP:
1595 case ISD::SINT_TO_FP: {
1596 const uint64_t zero[] = {0, 0};
1597 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
Dale Johannesena6f79742007-09-21 22:09:37 +00001598 (void)apf.convertFromInteger(&Val,
1599 MVT::getSizeInBits(Operand.getValueType()),
1600 Opcode==ISD::SINT_TO_FP,
Dale Johannesen87fa68f2007-09-30 18:19:03 +00001601 APFloat::rmNearestTiesToEven);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001602 return getConstantFP(apf, VT);
1603 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604 case ISD::BIT_CONVERT:
1605 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1606 return getConstantFP(BitsToFloat(Val), VT);
1607 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1608 return getConstantFP(BitsToDouble(Val), VT);
1609 break;
1610 case ISD::BSWAP:
1611 switch(VT) {
1612 default: assert(0 && "Invalid bswap!"); break;
1613 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1614 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1615 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1616 }
1617 break;
1618 case ISD::CTPOP:
1619 switch(VT) {
1620 default: assert(0 && "Invalid ctpop!"); break;
1621 case MVT::i1: return getConstant(Val != 0, VT);
1622 case MVT::i8:
1623 Tmp1 = (unsigned)Val & 0xFF;
1624 return getConstant(CountPopulation_32(Tmp1), VT);
1625 case MVT::i16:
1626 Tmp1 = (unsigned)Val & 0xFFFF;
1627 return getConstant(CountPopulation_32(Tmp1), VT);
1628 case MVT::i32:
1629 return getConstant(CountPopulation_32((unsigned)Val), VT);
1630 case MVT::i64:
1631 return getConstant(CountPopulation_64(Val), VT);
1632 }
1633 case ISD::CTLZ:
1634 switch(VT) {
1635 default: assert(0 && "Invalid ctlz!"); break;
1636 case MVT::i1: return getConstant(Val == 0, VT);
1637 case MVT::i8:
1638 Tmp1 = (unsigned)Val & 0xFF;
1639 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1640 case MVT::i16:
1641 Tmp1 = (unsigned)Val & 0xFFFF;
1642 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1643 case MVT::i32:
1644 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1645 case MVT::i64:
1646 return getConstant(CountLeadingZeros_64(Val), VT);
1647 }
1648 case ISD::CTTZ:
1649 switch(VT) {
1650 default: assert(0 && "Invalid cttz!"); break;
1651 case MVT::i1: return getConstant(Val == 0, VT);
1652 case MVT::i8:
1653 Tmp1 = (unsigned)Val | 0x100;
1654 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1655 case MVT::i16:
1656 Tmp1 = (unsigned)Val | 0x10000;
1657 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1658 case MVT::i32:
1659 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1660 case MVT::i64:
1661 return getConstant(CountTrailingZeros_64(Val), VT);
1662 }
1663 }
1664 }
1665
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001666 // Constant fold unary operations with a floating point constant operand.
1667 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1668 APFloat V = C->getValueAPF(); // make copy
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669 switch (Opcode) {
1670 case ISD::FNEG:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001671 V.changeSign();
1672 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 case ISD::FABS:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001674 V.clearSign();
1675 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001676 case ISD::FP_ROUND:
1677 case ISD::FP_EXTEND:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001678 // This can return overflow, underflow, or inexact; we don't care.
1679 // FIXME need to be more flexible about rounding mode.
Dale Johannesen958b08b2007-09-19 23:55:34 +00001680 // FIXME need to be more flexible about rounding mode.
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001681 (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
Dale Johannesen958b08b2007-09-19 23:55:34 +00001682 VT==MVT::f64 ? APFloat::IEEEdouble :
1683 VT==MVT::f80 ? APFloat::x87DoubleExtended :
1684 VT==MVT::f128 ? APFloat::IEEEquad :
1685 APFloat::Bogus,
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001686 APFloat::rmNearestTiesToEven);
1687 return getConstantFP(V, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001688 case ISD::FP_TO_SINT:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001689 case ISD::FP_TO_UINT: {
1690 integerPart x;
1691 assert(integerPartWidth >= 64);
1692 // FIXME need to be more flexible about rounding mode.
1693 APFloat::opStatus s = V.convertToInteger(&x, 64U,
1694 Opcode==ISD::FP_TO_SINT,
1695 APFloat::rmTowardZero);
1696 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
1697 break;
1698 return getConstant(x, VT);
1699 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001700 case ISD::BIT_CONVERT:
1701 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001702 return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001703 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001704 return getConstant(V.convertToAPInt().getZExtValue(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705 break;
1706 }
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001707 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001708
1709 unsigned OpOpcode = Operand.Val->getOpcode();
1710 switch (Opcode) {
1711 case ISD::TokenFactor:
1712 return Operand; // Factor of one node? No factor.
1713 case ISD::FP_ROUND:
1714 case ISD::FP_EXTEND:
1715 assert(MVT::isFloatingPoint(VT) &&
1716 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1717 break;
1718 case ISD::SIGN_EXTEND:
1719 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1720 "Invalid SIGN_EXTEND!");
1721 if (Operand.getValueType() == VT) return Operand; // noop extension
1722 assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1723 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1724 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1725 break;
1726 case ISD::ZERO_EXTEND:
1727 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1728 "Invalid ZERO_EXTEND!");
1729 if (Operand.getValueType() == VT) return Operand; // noop extension
1730 assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1731 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1732 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1733 break;
1734 case ISD::ANY_EXTEND:
1735 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1736 "Invalid ANY_EXTEND!");
1737 if (Operand.getValueType() == VT) return Operand; // noop extension
1738 assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1739 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1740 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1741 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1742 break;
1743 case ISD::TRUNCATE:
1744 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1745 "Invalid TRUNCATE!");
1746 if (Operand.getValueType() == VT) return Operand; // noop truncate
1747 assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1748 if (OpOpcode == ISD::TRUNCATE)
1749 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1750 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1751 OpOpcode == ISD::ANY_EXTEND) {
1752 // If the source is smaller than the dest, we still need an extend.
1753 if (Operand.Val->getOperand(0).getValueType() < VT)
1754 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1755 else if (Operand.Val->getOperand(0).getValueType() > VT)
1756 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1757 else
1758 return Operand.Val->getOperand(0);
1759 }
1760 break;
1761 case ISD::BIT_CONVERT:
1762 // Basic sanity checking.
1763 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1764 && "Cannot BIT_CONVERT between types of different sizes!");
1765 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1766 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1767 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1768 if (OpOpcode == ISD::UNDEF)
1769 return getNode(ISD::UNDEF, VT);
1770 break;
1771 case ISD::SCALAR_TO_VECTOR:
1772 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1773 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1774 "Illegal SCALAR_TO_VECTOR node!");
1775 break;
1776 case ISD::FNEG:
1777 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1778 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1779 Operand.Val->getOperand(0));
1780 if (OpOpcode == ISD::FNEG) // --X -> X
1781 return Operand.Val->getOperand(0);
1782 break;
1783 case ISD::FABS:
1784 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1785 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1786 break;
1787 }
1788
1789 SDNode *N;
1790 SDVTList VTs = getVTList(VT);
1791 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1792 FoldingSetNodeID ID;
1793 SDOperand Ops[1] = { Operand };
1794 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1795 void *IP = 0;
1796 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1797 return SDOperand(E, 0);
1798 N = new UnarySDNode(Opcode, VTs, Operand);
1799 CSEMap.InsertNode(N, IP);
1800 } else {
1801 N = new UnarySDNode(Opcode, VTs, Operand);
1802 }
1803 AllNodes.push_back(N);
1804 return SDOperand(N, 0);
1805}
1806
1807
1808
1809SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1810 SDOperand N1, SDOperand N2) {
1811#ifndef NDEBUG
1812 switch (Opcode) {
1813 case ISD::TokenFactor:
1814 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1815 N2.getValueType() == MVT::Other && "Invalid token factor!");
1816 break;
1817 case ISD::AND:
1818 case ISD::OR:
1819 case ISD::XOR:
1820 case ISD::UDIV:
1821 case ISD::UREM:
1822 case ISD::MULHU:
1823 case ISD::MULHS:
1824 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1825 // fall through
1826 case ISD::ADD:
1827 case ISD::SUB:
1828 case ISD::MUL:
1829 case ISD::SDIV:
1830 case ISD::SREM:
1831 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1832 // fall through.
1833 case ISD::FADD:
1834 case ISD::FSUB:
1835 case ISD::FMUL:
1836 case ISD::FDIV:
1837 case ISD::FREM:
1838 assert(N1.getValueType() == N2.getValueType() &&
1839 N1.getValueType() == VT && "Binary operator types must match!");
1840 break;
1841 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1842 assert(N1.getValueType() == VT &&
1843 MVT::isFloatingPoint(N1.getValueType()) &&
1844 MVT::isFloatingPoint(N2.getValueType()) &&
1845 "Invalid FCOPYSIGN!");
1846 break;
1847 case ISD::SHL:
1848 case ISD::SRA:
1849 case ISD::SRL:
1850 case ISD::ROTL:
1851 case ISD::ROTR:
1852 assert(VT == N1.getValueType() &&
1853 "Shift operators return type must be the same as their first arg");
1854 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1855 VT != MVT::i1 && "Shifts only work on integers");
1856 break;
1857 case ISD::FP_ROUND_INREG: {
1858 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1859 assert(VT == N1.getValueType() && "Not an inreg round!");
1860 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1861 "Cannot FP_ROUND_INREG integer types");
1862 assert(EVT <= VT && "Not rounding down!");
1863 break;
1864 }
1865 case ISD::AssertSext:
1866 case ISD::AssertZext:
1867 case ISD::SIGN_EXTEND_INREG: {
1868 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1869 assert(VT == N1.getValueType() && "Not an inreg extend!");
1870 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1871 "Cannot *_EXTEND_INREG FP types");
1872 assert(EVT <= VT && "Not extending!");
1873 }
1874
1875 default: break;
1876 }
1877#endif
1878
1879 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1880 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1881 if (N1C) {
1882 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1883 int64_t Val = N1C->getValue();
1884 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1885 Val <<= 64-FromBits;
1886 Val >>= 64-FromBits;
1887 return getConstant(Val, VT);
1888 }
1889
1890 if (N2C) {
1891 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1892 switch (Opcode) {
1893 case ISD::ADD: return getConstant(C1 + C2, VT);
1894 case ISD::SUB: return getConstant(C1 - C2, VT);
1895 case ISD::MUL: return getConstant(C1 * C2, VT);
1896 case ISD::UDIV:
1897 if (C2) return getConstant(C1 / C2, VT);
1898 break;
1899 case ISD::UREM :
1900 if (C2) return getConstant(C1 % C2, VT);
1901 break;
1902 case ISD::SDIV :
1903 if (C2) return getConstant(N1C->getSignExtended() /
1904 N2C->getSignExtended(), VT);
1905 break;
1906 case ISD::SREM :
1907 if (C2) return getConstant(N1C->getSignExtended() %
1908 N2C->getSignExtended(), VT);
1909 break;
1910 case ISD::AND : return getConstant(C1 & C2, VT);
1911 case ISD::OR : return getConstant(C1 | C2, VT);
1912 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1913 case ISD::SHL : return getConstant(C1 << C2, VT);
1914 case ISD::SRL : return getConstant(C1 >> C2, VT);
1915 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1916 case ISD::ROTL :
1917 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1918 VT);
1919 case ISD::ROTR :
1920 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1921 VT);
1922 default: break;
1923 }
1924 } else { // Cannonicalize constant to RHS if commutative
1925 if (isCommutativeBinOp(Opcode)) {
1926 std::swap(N1C, N2C);
1927 std::swap(N1, N2);
1928 }
1929 }
1930 }
1931
1932 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1933 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1934 if (N1CFP) {
1935 if (N2CFP) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001936 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1937 APFloat::opStatus s;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938 switch (Opcode) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001939 case ISD::FADD:
1940 s = V1.add(V2, APFloat::rmNearestTiesToEven);
1941 if (s!=APFloat::opInvalidOp)
1942 return getConstantFP(V1, VT);
1943 break;
1944 case ISD::FSUB:
1945 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1946 if (s!=APFloat::opInvalidOp)
1947 return getConstantFP(V1, VT);
1948 break;
1949 case ISD::FMUL:
1950 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1951 if (s!=APFloat::opInvalidOp)
1952 return getConstantFP(V1, VT);
1953 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954 case ISD::FDIV:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001955 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1956 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1957 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001958 break;
1959 case ISD::FREM :
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001960 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1961 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1962 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001963 break;
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001964 case ISD::FCOPYSIGN:
1965 V1.copySign(V2);
1966 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001967 default: break;
1968 }
1969 } else { // Cannonicalize constant to RHS if commutative
1970 if (isCommutativeBinOp(Opcode)) {
1971 std::swap(N1CFP, N2CFP);
1972 std::swap(N1, N2);
1973 }
1974 }
1975 }
1976
1977 // Canonicalize an UNDEF to the RHS, even over a constant.
1978 if (N1.getOpcode() == ISD::UNDEF) {
1979 if (isCommutativeBinOp(Opcode)) {
1980 std::swap(N1, N2);
1981 } else {
1982 switch (Opcode) {
1983 case ISD::FP_ROUND_INREG:
1984 case ISD::SIGN_EXTEND_INREG:
1985 case ISD::SUB:
1986 case ISD::FSUB:
1987 case ISD::FDIV:
1988 case ISD::FREM:
1989 case ISD::SRA:
1990 return N1; // fold op(undef, arg2) -> undef
1991 case ISD::UDIV:
1992 case ISD::SDIV:
1993 case ISD::UREM:
1994 case ISD::SREM:
1995 case ISD::SRL:
1996 case ISD::SHL:
1997 if (!MVT::isVector(VT))
1998 return getConstant(0, VT); // fold op(undef, arg2) -> 0
1999 // For vectors, we can't easily build an all zero vector, just return
2000 // the LHS.
2001 return N2;
2002 }
2003 }
2004 }
2005
2006 // Fold a bunch of operators when the RHS is undef.
2007 if (N2.getOpcode() == ISD::UNDEF) {
2008 switch (Opcode) {
2009 case ISD::ADD:
2010 case ISD::ADDC:
2011 case ISD::ADDE:
2012 case ISD::SUB:
2013 case ISD::FADD:
2014 case ISD::FSUB:
2015 case ISD::FMUL:
2016 case ISD::FDIV:
2017 case ISD::FREM:
2018 case ISD::UDIV:
2019 case ISD::SDIV:
2020 case ISD::UREM:
2021 case ISD::SREM:
2022 case ISD::XOR:
2023 return N2; // fold op(arg1, undef) -> undef
2024 case ISD::MUL:
2025 case ISD::AND:
2026 case ISD::SRL:
2027 case ISD::SHL:
2028 if (!MVT::isVector(VT))
2029 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2030 // For vectors, we can't easily build an all zero vector, just return
2031 // the LHS.
2032 return N1;
2033 case ISD::OR:
2034 if (!MVT::isVector(VT))
2035 return getConstant(MVT::getIntVTBitMask(VT), VT);
2036 // For vectors, we can't easily build an all one vector, just return
2037 // the LHS.
2038 return N1;
2039 case ISD::SRA:
2040 return N1;
2041 }
2042 }
2043
2044 // Fold operations.
2045 switch (Opcode) {
2046 case ISD::TokenFactor:
2047 // Fold trivial token factors.
2048 if (N1.getOpcode() == ISD::EntryToken) return N2;
2049 if (N2.getOpcode() == ISD::EntryToken) return N1;
2050 break;
2051
2052 case ISD::AND:
2053 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2054 // worth handling here.
2055 if (N2C && N2C->getValue() == 0)
2056 return N2;
2057 break;
2058 case ISD::OR:
2059 case ISD::XOR:
2060 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
2061 // worth handling here.
2062 if (N2C && N2C->getValue() == 0)
2063 return N1;
2064 break;
2065 case ISD::FP_ROUND_INREG:
2066 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2067 break;
2068 case ISD::SIGN_EXTEND_INREG: {
2069 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2070 if (EVT == VT) return N1; // Not actually extending
2071 break;
2072 }
2073 case ISD::EXTRACT_VECTOR_ELT:
2074 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2075
2076 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2077 // expanding copies of large vectors from registers.
2078 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2079 N1.getNumOperands() > 0) {
2080 unsigned Factor =
2081 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2082 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2083 N1.getOperand(N2C->getValue() / Factor),
2084 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2085 }
2086
2087 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2088 // expanding large vector constants.
2089 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2090 return N1.getOperand(N2C->getValue());
2091
2092 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2093 // operations are lowered to scalars.
2094 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2095 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2096 if (IEC == N2C)
2097 return N1.getOperand(1);
2098 else
2099 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2100 }
2101 break;
2102 case ISD::EXTRACT_ELEMENT:
2103 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2104
2105 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2106 // 64-bit integers into 32-bit parts. Instead of building the extract of
2107 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2108 if (N1.getOpcode() == ISD::BUILD_PAIR)
2109 return N1.getOperand(N2C->getValue());
2110
2111 // EXTRACT_ELEMENT of a constant int is also very common.
2112 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2113 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2114 return getConstant(C->getValue() >> Shift, VT);
2115 }
2116 break;
2117
2118 // FIXME: figure out how to safely handle things like
2119 // int foo(int x) { return 1 << (x & 255); }
2120 // int bar() { return foo(256); }
2121#if 0
2122 case ISD::SHL:
2123 case ISD::SRL:
2124 case ISD::SRA:
2125 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2126 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2127 return getNode(Opcode, VT, N1, N2.getOperand(0));
2128 else if (N2.getOpcode() == ISD::AND)
2129 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2130 // If the and is only masking out bits that cannot effect the shift,
2131 // eliminate the and.
2132 unsigned NumBits = MVT::getSizeInBits(VT);
2133 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2134 return getNode(Opcode, VT, N1, N2.getOperand(0));
2135 }
2136 break;
2137#endif
2138 }
2139
2140 // Memoize this node if possible.
2141 SDNode *N;
2142 SDVTList VTs = getVTList(VT);
2143 if (VT != MVT::Flag) {
2144 SDOperand Ops[] = { N1, N2 };
2145 FoldingSetNodeID ID;
2146 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2147 void *IP = 0;
2148 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2149 return SDOperand(E, 0);
2150 N = new BinarySDNode(Opcode, VTs, N1, N2);
2151 CSEMap.InsertNode(N, IP);
2152 } else {
2153 N = new BinarySDNode(Opcode, VTs, N1, N2);
2154 }
2155
2156 AllNodes.push_back(N);
2157 return SDOperand(N, 0);
2158}
2159
2160SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2161 SDOperand N1, SDOperand N2, SDOperand N3) {
2162 // Perform various simplifications.
2163 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2164 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2165 switch (Opcode) {
2166 case ISD::SETCC: {
2167 // Use FoldSetCC to simplify SETCC's.
2168 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2169 if (Simp.Val) return Simp;
2170 break;
2171 }
2172 case ISD::SELECT:
2173 if (N1C)
2174 if (N1C->getValue())
2175 return N2; // select true, X, Y -> X
2176 else
2177 return N3; // select false, X, Y -> Y
2178
2179 if (N2 == N3) return N2; // select C, X, X -> X
2180 break;
2181 case ISD::BRCOND:
2182 if (N2C)
2183 if (N2C->getValue()) // Unconditional branch
2184 return getNode(ISD::BR, MVT::Other, N1, N3);
2185 else
2186 return N1; // Never-taken branch
2187 break;
2188 case ISD::VECTOR_SHUFFLE:
2189 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2190 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2191 N3.getOpcode() == ISD::BUILD_VECTOR &&
2192 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2193 "Illegal VECTOR_SHUFFLE node!");
2194 break;
2195 case ISD::BIT_CONVERT:
2196 // Fold bit_convert nodes from a type to themselves.
2197 if (N1.getValueType() == VT)
2198 return N1;
2199 break;
2200 }
2201
2202 // Memoize node if it doesn't produce a flag.
2203 SDNode *N;
2204 SDVTList VTs = getVTList(VT);
2205 if (VT != MVT::Flag) {
2206 SDOperand Ops[] = { N1, N2, N3 };
2207 FoldingSetNodeID ID;
2208 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2209 void *IP = 0;
2210 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2211 return SDOperand(E, 0);
2212 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2213 CSEMap.InsertNode(N, IP);
2214 } else {
2215 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2216 }
2217 AllNodes.push_back(N);
2218 return SDOperand(N, 0);
2219}
2220
2221SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2222 SDOperand N1, SDOperand N2, SDOperand N3,
2223 SDOperand N4) {
2224 SDOperand Ops[] = { N1, N2, N3, N4 };
2225 return getNode(Opcode, VT, Ops, 4);
2226}
2227
2228SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2229 SDOperand N1, SDOperand N2, SDOperand N3,
2230 SDOperand N4, SDOperand N5) {
2231 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2232 return getNode(Opcode, VT, Ops, 5);
2233}
2234
2235SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2236 SDOperand Chain, SDOperand Ptr,
2237 const Value *SV, int SVOffset,
2238 bool isVolatile, unsigned Alignment) {
2239 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2240 const Type *Ty = 0;
2241 if (VT != MVT::iPTR) {
2242 Ty = MVT::getTypeForValueType(VT);
2243 } else if (SV) {
2244 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2245 assert(PT && "Value for load must be a pointer");
2246 Ty = PT->getElementType();
2247 }
2248 assert(Ty && "Could not get type information for load");
2249 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2250 }
2251 SDVTList VTs = getVTList(VT, MVT::Other);
2252 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2253 SDOperand Ops[] = { Chain, Ptr, Undef };
2254 FoldingSetNodeID ID;
2255 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2256 ID.AddInteger(ISD::UNINDEXED);
2257 ID.AddInteger(ISD::NON_EXTLOAD);
Chris Lattner4a22a672007-09-13 06:09:48 +00002258 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002259 ID.AddPointer(SV);
2260 ID.AddInteger(SVOffset);
2261 ID.AddInteger(Alignment);
2262 ID.AddInteger(isVolatile);
2263 void *IP = 0;
2264 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2265 return SDOperand(E, 0);
2266 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2267 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2268 isVolatile);
2269 CSEMap.InsertNode(N, IP);
2270 AllNodes.push_back(N);
2271 return SDOperand(N, 0);
2272}
2273
2274SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2275 SDOperand Chain, SDOperand Ptr,
2276 const Value *SV,
2277 int SVOffset, MVT::ValueType EVT,
2278 bool isVolatile, unsigned Alignment) {
2279 // If they are asking for an extending load from/to the same thing, return a
2280 // normal load.
2281 if (VT == EVT)
2282 ExtType = ISD::NON_EXTLOAD;
2283
2284 if (MVT::isVector(VT))
2285 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2286 else
2287 assert(EVT < VT && "Should only be an extending load, not truncating!");
2288 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2289 "Cannot sign/zero extend a FP/Vector load!");
2290 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2291 "Cannot convert from FP to Int or Int -> FP!");
2292
2293 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2294 const Type *Ty = 0;
2295 if (VT != MVT::iPTR) {
2296 Ty = MVT::getTypeForValueType(VT);
2297 } else if (SV) {
2298 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2299 assert(PT && "Value for load must be a pointer");
2300 Ty = PT->getElementType();
2301 }
2302 assert(Ty && "Could not get type information for load");
2303 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2304 }
2305 SDVTList VTs = getVTList(VT, MVT::Other);
2306 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2307 SDOperand Ops[] = { Chain, Ptr, Undef };
2308 FoldingSetNodeID ID;
2309 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2310 ID.AddInteger(ISD::UNINDEXED);
2311 ID.AddInteger(ExtType);
Chris Lattner4a22a672007-09-13 06:09:48 +00002312 ID.AddInteger((unsigned int)EVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002313 ID.AddPointer(SV);
2314 ID.AddInteger(SVOffset);
2315 ID.AddInteger(Alignment);
2316 ID.AddInteger(isVolatile);
2317 void *IP = 0;
2318 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2319 return SDOperand(E, 0);
2320 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2321 SV, SVOffset, Alignment, isVolatile);
2322 CSEMap.InsertNode(N, IP);
2323 AllNodes.push_back(N);
2324 return SDOperand(N, 0);
2325}
2326
2327SDOperand
2328SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2329 SDOperand Offset, ISD::MemIndexedMode AM) {
2330 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2331 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2332 "Load is already a indexed load!");
2333 MVT::ValueType VT = OrigLoad.getValueType();
2334 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2335 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2336 FoldingSetNodeID ID;
2337 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2338 ID.AddInteger(AM);
2339 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +00002340 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341 ID.AddPointer(LD->getSrcValue());
2342 ID.AddInteger(LD->getSrcValueOffset());
2343 ID.AddInteger(LD->getAlignment());
2344 ID.AddInteger(LD->isVolatile());
2345 void *IP = 0;
2346 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2347 return SDOperand(E, 0);
2348 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2349 LD->getExtensionType(), LD->getLoadedVT(),
2350 LD->getSrcValue(), LD->getSrcValueOffset(),
2351 LD->getAlignment(), LD->isVolatile());
2352 CSEMap.InsertNode(N, IP);
2353 AllNodes.push_back(N);
2354 return SDOperand(N, 0);
2355}
2356
2357SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2358 SDOperand Ptr, const Value *SV, int SVOffset,
2359 bool isVolatile, unsigned Alignment) {
2360 MVT::ValueType VT = Val.getValueType();
2361
2362 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2363 const Type *Ty = 0;
2364 if (VT != MVT::iPTR) {
2365 Ty = MVT::getTypeForValueType(VT);
2366 } else if (SV) {
2367 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2368 assert(PT && "Value for store must be a pointer");
2369 Ty = PT->getElementType();
2370 }
2371 assert(Ty && "Could not get type information for store");
2372 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2373 }
2374 SDVTList VTs = getVTList(MVT::Other);
2375 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2376 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2377 FoldingSetNodeID ID;
2378 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2379 ID.AddInteger(ISD::UNINDEXED);
2380 ID.AddInteger(false);
Chris Lattner4a22a672007-09-13 06:09:48 +00002381 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002382 ID.AddPointer(SV);
2383 ID.AddInteger(SVOffset);
2384 ID.AddInteger(Alignment);
2385 ID.AddInteger(isVolatile);
2386 void *IP = 0;
2387 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2388 return SDOperand(E, 0);
2389 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2390 VT, SV, SVOffset, Alignment, isVolatile);
2391 CSEMap.InsertNode(N, IP);
2392 AllNodes.push_back(N);
2393 return SDOperand(N, 0);
2394}
2395
2396SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2397 SDOperand Ptr, const Value *SV,
2398 int SVOffset, MVT::ValueType SVT,
2399 bool isVolatile, unsigned Alignment) {
2400 MVT::ValueType VT = Val.getValueType();
2401 bool isTrunc = VT != SVT;
2402
2403 assert(VT > SVT && "Not a truncation?");
2404 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2405 "Can't do FP-INT conversion!");
2406
2407 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2408 const Type *Ty = 0;
2409 if (VT != MVT::iPTR) {
2410 Ty = MVT::getTypeForValueType(VT);
2411 } else if (SV) {
2412 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2413 assert(PT && "Value for store must be a pointer");
2414 Ty = PT->getElementType();
2415 }
2416 assert(Ty && "Could not get type information for store");
2417 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2418 }
2419 SDVTList VTs = getVTList(MVT::Other);
2420 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2421 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2422 FoldingSetNodeID ID;
2423 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2424 ID.AddInteger(ISD::UNINDEXED);
2425 ID.AddInteger(isTrunc);
Chris Lattner4a22a672007-09-13 06:09:48 +00002426 ID.AddInteger((unsigned int)SVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 ID.AddPointer(SV);
2428 ID.AddInteger(SVOffset);
2429 ID.AddInteger(Alignment);
2430 ID.AddInteger(isVolatile);
2431 void *IP = 0;
2432 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2433 return SDOperand(E, 0);
2434 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2435 SVT, SV, SVOffset, Alignment, isVolatile);
2436 CSEMap.InsertNode(N, IP);
2437 AllNodes.push_back(N);
2438 return SDOperand(N, 0);
2439}
2440
2441SDOperand
2442SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2443 SDOperand Offset, ISD::MemIndexedMode AM) {
2444 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2445 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2446 "Store is already a indexed store!");
2447 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2448 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2449 FoldingSetNodeID ID;
2450 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2451 ID.AddInteger(AM);
2452 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +00002453 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454 ID.AddPointer(ST->getSrcValue());
2455 ID.AddInteger(ST->getSrcValueOffset());
2456 ID.AddInteger(ST->getAlignment());
2457 ID.AddInteger(ST->isVolatile());
2458 void *IP = 0;
2459 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2460 return SDOperand(E, 0);
2461 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2462 ST->isTruncatingStore(), ST->getStoredVT(),
2463 ST->getSrcValue(), ST->getSrcValueOffset(),
2464 ST->getAlignment(), ST->isVolatile());
2465 CSEMap.InsertNode(N, IP);
2466 AllNodes.push_back(N);
2467 return SDOperand(N, 0);
2468}
2469
2470SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2471 SDOperand Chain, SDOperand Ptr,
2472 SDOperand SV) {
2473 SDOperand Ops[] = { Chain, Ptr, SV };
2474 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2475}
2476
2477SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2478 const SDOperand *Ops, unsigned NumOps) {
2479 switch (NumOps) {
2480 case 0: return getNode(Opcode, VT);
2481 case 1: return getNode(Opcode, VT, Ops[0]);
2482 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2483 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2484 default: break;
2485 }
2486
2487 switch (Opcode) {
2488 default: break;
2489 case ISD::SELECT_CC: {
2490 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2491 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2492 "LHS and RHS of condition must have same type!");
2493 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2494 "True and False arms of SelectCC must have same type!");
2495 assert(Ops[2].getValueType() == VT &&
2496 "select_cc node must be of same type as true and false value!");
2497 break;
2498 }
2499 case ISD::BR_CC: {
2500 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2501 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2502 "LHS/RHS of comparison should match types!");
2503 break;
2504 }
2505 }
2506
2507 // Memoize nodes.
2508 SDNode *N;
2509 SDVTList VTs = getVTList(VT);
2510 if (VT != MVT::Flag) {
2511 FoldingSetNodeID ID;
2512 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2513 void *IP = 0;
2514 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2515 return SDOperand(E, 0);
2516 N = new SDNode(Opcode, VTs, Ops, NumOps);
2517 CSEMap.InsertNode(N, IP);
2518 } else {
2519 N = new SDNode(Opcode, VTs, Ops, NumOps);
2520 }
2521 AllNodes.push_back(N);
2522 return SDOperand(N, 0);
2523}
2524
2525SDOperand SelectionDAG::getNode(unsigned Opcode,
2526 std::vector<MVT::ValueType> &ResultTys,
2527 const SDOperand *Ops, unsigned NumOps) {
2528 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2529 Ops, NumOps);
2530}
2531
2532SDOperand SelectionDAG::getNode(unsigned Opcode,
2533 const MVT::ValueType *VTs, unsigned NumVTs,
2534 const SDOperand *Ops, unsigned NumOps) {
2535 if (NumVTs == 1)
2536 return getNode(Opcode, VTs[0], Ops, NumOps);
2537 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2538}
2539
2540SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2541 const SDOperand *Ops, unsigned NumOps) {
2542 if (VTList.NumVTs == 1)
2543 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2544
2545 switch (Opcode) {
2546 // FIXME: figure out how to safely handle things like
2547 // int foo(int x) { return 1 << (x & 255); }
2548 // int bar() { return foo(256); }
2549#if 0
2550 case ISD::SRA_PARTS:
2551 case ISD::SRL_PARTS:
2552 case ISD::SHL_PARTS:
2553 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2554 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2555 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2556 else if (N3.getOpcode() == ISD::AND)
2557 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2558 // If the and is only masking out bits that cannot effect the shift,
2559 // eliminate the and.
2560 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2561 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2562 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2563 }
2564 break;
2565#endif
2566 }
2567
2568 // Memoize the node unless it returns a flag.
2569 SDNode *N;
2570 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2571 FoldingSetNodeID ID;
2572 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2573 void *IP = 0;
2574 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2575 return SDOperand(E, 0);
2576 if (NumOps == 1)
2577 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2578 else if (NumOps == 2)
2579 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2580 else if (NumOps == 3)
2581 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2582 else
2583 N = new SDNode(Opcode, VTList, Ops, NumOps);
2584 CSEMap.InsertNode(N, IP);
2585 } else {
2586 if (NumOps == 1)
2587 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2588 else if (NumOps == 2)
2589 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2590 else if (NumOps == 3)
2591 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2592 else
2593 N = new SDNode(Opcode, VTList, Ops, NumOps);
2594 }
2595 AllNodes.push_back(N);
2596 return SDOperand(N, 0);
2597}
2598
2599SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2600 if (!MVT::isExtendedVT(VT))
2601 return makeVTList(SDNode::getValueTypeList(VT), 1);
2602
2603 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2604 E = VTList.end(); I != E; ++I) {
2605 if (I->size() == 1 && (*I)[0] == VT)
2606 return makeVTList(&(*I)[0], 1);
2607 }
2608 std::vector<MVT::ValueType> V;
2609 V.push_back(VT);
2610 VTList.push_front(V);
2611 return makeVTList(&(*VTList.begin())[0], 1);
2612}
2613
2614SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2615 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2616 E = VTList.end(); I != E; ++I) {
2617 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2618 return makeVTList(&(*I)[0], 2);
2619 }
2620 std::vector<MVT::ValueType> V;
2621 V.push_back(VT1);
2622 V.push_back(VT2);
2623 VTList.push_front(V);
2624 return makeVTList(&(*VTList.begin())[0], 2);
2625}
2626SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2627 MVT::ValueType VT3) {
2628 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2629 E = VTList.end(); I != E; ++I) {
2630 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2631 (*I)[2] == VT3)
2632 return makeVTList(&(*I)[0], 3);
2633 }
2634 std::vector<MVT::ValueType> V;
2635 V.push_back(VT1);
2636 V.push_back(VT2);
2637 V.push_back(VT3);
2638 VTList.push_front(V);
2639 return makeVTList(&(*VTList.begin())[0], 3);
2640}
2641
2642SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2643 switch (NumVTs) {
2644 case 0: assert(0 && "Cannot have nodes without results!");
2645 case 1: return getVTList(VTs[0]);
2646 case 2: return getVTList(VTs[0], VTs[1]);
2647 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2648 default: break;
2649 }
2650
2651 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2652 E = VTList.end(); I != E; ++I) {
2653 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2654
2655 bool NoMatch = false;
2656 for (unsigned i = 2; i != NumVTs; ++i)
2657 if (VTs[i] != (*I)[i]) {
2658 NoMatch = true;
2659 break;
2660 }
2661 if (!NoMatch)
2662 return makeVTList(&*I->begin(), NumVTs);
2663 }
2664
2665 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2666 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2667}
2668
2669
2670/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2671/// specified operands. If the resultant node already exists in the DAG,
2672/// this does not modify the specified node, instead it returns the node that
2673/// already exists. If the resultant node does not exist in the DAG, the
2674/// input node is returned. As a degenerate case, if you specify the same
2675/// input operands as the node already has, the input node is returned.
2676SDOperand SelectionDAG::
2677UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2678 SDNode *N = InN.Val;
2679 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2680
2681 // Check to see if there is no change.
2682 if (Op == N->getOperand(0)) return InN;
2683
2684 // See if the modified node already exists.
2685 void *InsertPos = 0;
2686 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2687 return SDOperand(Existing, InN.ResNo);
2688
2689 // Nope it doesn't. Remove the node from it's current place in the maps.
2690 if (InsertPos)
2691 RemoveNodeFromCSEMaps(N);
2692
2693 // Now we update the operands.
2694 N->OperandList[0].Val->removeUser(N);
2695 Op.Val->addUser(N);
2696 N->OperandList[0] = Op;
2697
2698 // If this gets put into a CSE map, add it.
2699 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2700 return InN;
2701}
2702
2703SDOperand SelectionDAG::
2704UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2705 SDNode *N = InN.Val;
2706 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2707
2708 // Check to see if there is no change.
2709 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2710 return InN; // No operands changed, just return the input node.
2711
2712 // See if the modified node already exists.
2713 void *InsertPos = 0;
2714 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2715 return SDOperand(Existing, InN.ResNo);
2716
2717 // Nope it doesn't. Remove the node from it's current place in the maps.
2718 if (InsertPos)
2719 RemoveNodeFromCSEMaps(N);
2720
2721 // Now we update the operands.
2722 if (N->OperandList[0] != Op1) {
2723 N->OperandList[0].Val->removeUser(N);
2724 Op1.Val->addUser(N);
2725 N->OperandList[0] = Op1;
2726 }
2727 if (N->OperandList[1] != Op2) {
2728 N->OperandList[1].Val->removeUser(N);
2729 Op2.Val->addUser(N);
2730 N->OperandList[1] = Op2;
2731 }
2732
2733 // If this gets put into a CSE map, add it.
2734 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2735 return InN;
2736}
2737
2738SDOperand SelectionDAG::
2739UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2740 SDOperand Ops[] = { Op1, Op2, Op3 };
2741 return UpdateNodeOperands(N, Ops, 3);
2742}
2743
2744SDOperand SelectionDAG::
2745UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2746 SDOperand Op3, SDOperand Op4) {
2747 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2748 return UpdateNodeOperands(N, Ops, 4);
2749}
2750
2751SDOperand SelectionDAG::
2752UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2753 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2754 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2755 return UpdateNodeOperands(N, Ops, 5);
2756}
2757
2758
2759SDOperand SelectionDAG::
2760UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2761 SDNode *N = InN.Val;
2762 assert(N->getNumOperands() == NumOps &&
2763 "Update with wrong number of operands");
2764
2765 // Check to see if there is no change.
2766 bool AnyChange = false;
2767 for (unsigned i = 0; i != NumOps; ++i) {
2768 if (Ops[i] != N->getOperand(i)) {
2769 AnyChange = true;
2770 break;
2771 }
2772 }
2773
2774 // No operands changed, just return the input node.
2775 if (!AnyChange) return InN;
2776
2777 // See if the modified node already exists.
2778 void *InsertPos = 0;
2779 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2780 return SDOperand(Existing, InN.ResNo);
2781
2782 // Nope it doesn't. Remove the node from it's current place in the maps.
2783 if (InsertPos)
2784 RemoveNodeFromCSEMaps(N);
2785
2786 // Now we update the operands.
2787 for (unsigned i = 0; i != NumOps; ++i) {
2788 if (N->OperandList[i] != Ops[i]) {
2789 N->OperandList[i].Val->removeUser(N);
2790 Ops[i].Val->addUser(N);
2791 N->OperandList[i] = Ops[i];
2792 }
2793 }
2794
2795 // If this gets put into a CSE map, add it.
2796 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2797 return InN;
2798}
2799
2800
2801/// MorphNodeTo - This frees the operands of the current node, resets the
2802/// opcode, types, and operands to the specified value. This should only be
2803/// used by the SelectionDAG class.
2804void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2805 const SDOperand *Ops, unsigned NumOps) {
2806 NodeType = Opc;
2807 ValueList = L.VTs;
2808 NumValues = L.NumVTs;
2809
2810 // Clear the operands list, updating used nodes to remove this from their
2811 // use list.
2812 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2813 I->Val->removeUser(this);
2814
2815 // If NumOps is larger than the # of operands we currently have, reallocate
2816 // the operand list.
2817 if (NumOps > NumOperands) {
2818 if (OperandsNeedDelete)
2819 delete [] OperandList;
2820 OperandList = new SDOperand[NumOps];
2821 OperandsNeedDelete = true;
2822 }
2823
2824 // Assign the new operands.
2825 NumOperands = NumOps;
2826
2827 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2828 OperandList[i] = Ops[i];
2829 SDNode *N = OperandList[i].Val;
2830 N->Uses.push_back(this);
2831 }
2832}
2833
2834/// SelectNodeTo - These are used for target selectors to *mutate* the
2835/// specified node to have the specified return type, Target opcode, and
2836/// operands. Note that target opcodes are stored as
2837/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2838///
2839/// Note that SelectNodeTo returns the resultant node. If there is already a
2840/// node of the specified opcode and operands, it returns that node instead of
2841/// the current one.
2842SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2843 MVT::ValueType VT) {
2844 SDVTList VTs = getVTList(VT);
2845 FoldingSetNodeID ID;
2846 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2847 void *IP = 0;
2848 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2849 return ON;
2850
2851 RemoveNodeFromCSEMaps(N);
2852
2853 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2854
2855 CSEMap.InsertNode(N, IP);
2856 return N;
2857}
2858
2859SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2860 MVT::ValueType VT, SDOperand Op1) {
2861 // If an identical node already exists, use it.
2862 SDVTList VTs = getVTList(VT);
2863 SDOperand Ops[] = { Op1 };
2864
2865 FoldingSetNodeID ID;
2866 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2867 void *IP = 0;
2868 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2869 return ON;
2870
2871 RemoveNodeFromCSEMaps(N);
2872 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2873 CSEMap.InsertNode(N, IP);
2874 return N;
2875}
2876
2877SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2878 MVT::ValueType VT, SDOperand Op1,
2879 SDOperand Op2) {
2880 // If an identical node already exists, use it.
2881 SDVTList VTs = getVTList(VT);
2882 SDOperand Ops[] = { Op1, Op2 };
2883
2884 FoldingSetNodeID ID;
2885 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2886 void *IP = 0;
2887 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2888 return ON;
2889
2890 RemoveNodeFromCSEMaps(N);
2891
2892 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2893
2894 CSEMap.InsertNode(N, IP); // Memoize the new node.
2895 return N;
2896}
2897
2898SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2899 MVT::ValueType VT, SDOperand Op1,
2900 SDOperand Op2, SDOperand Op3) {
2901 // If an identical node already exists, use it.
2902 SDVTList VTs = getVTList(VT);
2903 SDOperand Ops[] = { Op1, Op2, Op3 };
2904 FoldingSetNodeID ID;
2905 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2906 void *IP = 0;
2907 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2908 return ON;
2909
2910 RemoveNodeFromCSEMaps(N);
2911
2912 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2913
2914 CSEMap.InsertNode(N, IP); // Memoize the new node.
2915 return N;
2916}
2917
2918SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2919 MVT::ValueType VT, const SDOperand *Ops,
2920 unsigned NumOps) {
2921 // If an identical node already exists, use it.
2922 SDVTList VTs = getVTList(VT);
2923 FoldingSetNodeID ID;
2924 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2925 void *IP = 0;
2926 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2927 return ON;
2928
2929 RemoveNodeFromCSEMaps(N);
2930 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2931
2932 CSEMap.InsertNode(N, IP); // Memoize the new node.
2933 return N;
2934}
2935
2936SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2937 MVT::ValueType VT1, MVT::ValueType VT2,
2938 SDOperand Op1, SDOperand Op2) {
2939 SDVTList VTs = getVTList(VT1, VT2);
2940 FoldingSetNodeID ID;
2941 SDOperand Ops[] = { Op1, Op2 };
2942 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2943 void *IP = 0;
2944 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2945 return ON;
2946
2947 RemoveNodeFromCSEMaps(N);
2948 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2949 CSEMap.InsertNode(N, IP); // Memoize the new node.
2950 return N;
2951}
2952
2953SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2954 MVT::ValueType VT1, MVT::ValueType VT2,
2955 SDOperand Op1, SDOperand Op2,
2956 SDOperand Op3) {
2957 // If an identical node already exists, use it.
2958 SDVTList VTs = getVTList(VT1, VT2);
2959 SDOperand Ops[] = { Op1, Op2, Op3 };
2960 FoldingSetNodeID ID;
2961 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2962 void *IP = 0;
2963 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2964 return ON;
2965
2966 RemoveNodeFromCSEMaps(N);
2967
2968 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2969 CSEMap.InsertNode(N, IP); // Memoize the new node.
2970 return N;
2971}
2972
2973
2974/// getTargetNode - These are used for target selectors to create a new node
2975/// with specified return type(s), target opcode, and operands.
2976///
2977/// Note that getTargetNode returns the resultant node. If there is already a
2978/// node of the specified opcode and operands, it returns that node instead of
2979/// the current one.
2980SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2981 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2982}
2983SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2984 SDOperand Op1) {
2985 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2986}
2987SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2988 SDOperand Op1, SDOperand Op2) {
2989 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2990}
2991SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2992 SDOperand Op1, SDOperand Op2,
2993 SDOperand Op3) {
2994 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2995}
2996SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2997 const SDOperand *Ops, unsigned NumOps) {
2998 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2999}
3000SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3001 MVT::ValueType VT2, SDOperand Op1) {
3002 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3003 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3004}
3005SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3006 MVT::ValueType VT2, SDOperand Op1,
3007 SDOperand Op2) {
3008 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3009 SDOperand Ops[] = { Op1, Op2 };
3010 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3011}
3012SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3013 MVT::ValueType VT2, SDOperand Op1,
3014 SDOperand Op2, SDOperand Op3) {
3015 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3016 SDOperand Ops[] = { Op1, Op2, Op3 };
3017 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3018}
3019SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3020 MVT::ValueType VT2,
3021 const SDOperand *Ops, unsigned NumOps) {
3022 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3023 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3024}
3025SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3026 MVT::ValueType VT2, MVT::ValueType VT3,
3027 SDOperand Op1, SDOperand Op2) {
3028 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3029 SDOperand Ops[] = { Op1, Op2 };
3030 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3031}
3032SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3033 MVT::ValueType VT2, MVT::ValueType VT3,
3034 SDOperand Op1, SDOperand Op2,
3035 SDOperand Op3) {
3036 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3037 SDOperand Ops[] = { Op1, Op2, Op3 };
3038 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3039}
3040SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3041 MVT::ValueType VT2, MVT::ValueType VT3,
3042 const SDOperand *Ops, unsigned NumOps) {
3043 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3044 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3045}
Evan Chenge1d067e2007-09-12 23:39:49 +00003046SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3047 MVT::ValueType VT2, MVT::ValueType VT3,
3048 MVT::ValueType VT4,
3049 const SDOperand *Ops, unsigned NumOps) {
3050 std::vector<MVT::ValueType> VTList;
3051 VTList.push_back(VT1);
3052 VTList.push_back(VT2);
3053 VTList.push_back(VT3);
3054 VTList.push_back(VT4);
3055 const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3056 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3057}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003058
3059/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3060/// This can cause recursive merging of nodes in the DAG.
3061///
3062/// This version assumes From/To have a single result value.
3063///
3064void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3065 std::vector<SDNode*> *Deleted) {
3066 SDNode *From = FromN.Val, *To = ToN.Val;
3067 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3068 "Cannot replace with this method!");
3069 assert(From != To && "Cannot replace uses of with self");
3070
3071 while (!From->use_empty()) {
3072 // Process users until they are all gone.
3073 SDNode *U = *From->use_begin();
3074
3075 // This node is about to morph, remove its old self from the CSE maps.
3076 RemoveNodeFromCSEMaps(U);
3077
3078 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3079 I != E; ++I)
3080 if (I->Val == From) {
3081 From->removeUser(U);
3082 I->Val = To;
3083 To->addUser(U);
3084 }
3085
3086 // Now that we have modified U, add it back to the CSE maps. If it already
3087 // exists there, recursively merge the results together.
3088 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3089 ReplaceAllUsesWith(U, Existing, Deleted);
3090 // U is now dead.
3091 if (Deleted) Deleted->push_back(U);
3092 DeleteNodeNotInCSEMaps(U);
3093 }
3094 }
3095}
3096
3097/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3098/// This can cause recursive merging of nodes in the DAG.
3099///
3100/// This version assumes From/To have matching types and numbers of result
3101/// values.
3102///
3103void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3104 std::vector<SDNode*> *Deleted) {
3105 assert(From != To && "Cannot replace uses of with self");
3106 assert(From->getNumValues() == To->getNumValues() &&
3107 "Cannot use this version of ReplaceAllUsesWith!");
3108 if (From->getNumValues() == 1) { // If possible, use the faster version.
3109 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3110 return;
3111 }
3112
3113 while (!From->use_empty()) {
3114 // Process users until they are all gone.
3115 SDNode *U = *From->use_begin();
3116
3117 // This node is about to morph, remove its old self from the CSE maps.
3118 RemoveNodeFromCSEMaps(U);
3119
3120 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3121 I != E; ++I)
3122 if (I->Val == From) {
3123 From->removeUser(U);
3124 I->Val = To;
3125 To->addUser(U);
3126 }
3127
3128 // Now that we have modified U, add it back to the CSE maps. If it already
3129 // exists there, recursively merge the results together.
3130 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3131 ReplaceAllUsesWith(U, Existing, Deleted);
3132 // U is now dead.
3133 if (Deleted) Deleted->push_back(U);
3134 DeleteNodeNotInCSEMaps(U);
3135 }
3136 }
3137}
3138
3139/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3140/// This can cause recursive merging of nodes in the DAG.
3141///
3142/// This version can replace From with any result values. To must match the
3143/// number and types of values returned by From.
3144void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3145 const SDOperand *To,
3146 std::vector<SDNode*> *Deleted) {
3147 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3148 // Degenerate case handled above.
3149 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3150 return;
3151 }
3152
3153 while (!From->use_empty()) {
3154 // Process users until they are all gone.
3155 SDNode *U = *From->use_begin();
3156
3157 // This node is about to morph, remove its old self from the CSE maps.
3158 RemoveNodeFromCSEMaps(U);
3159
3160 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3161 I != E; ++I)
3162 if (I->Val == From) {
3163 const SDOperand &ToOp = To[I->ResNo];
3164 From->removeUser(U);
3165 *I = ToOp;
3166 ToOp.Val->addUser(U);
3167 }
3168
3169 // Now that we have modified U, add it back to the CSE maps. If it already
3170 // exists there, recursively merge the results together.
3171 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3172 ReplaceAllUsesWith(U, Existing, Deleted);
3173 // U is now dead.
3174 if (Deleted) Deleted->push_back(U);
3175 DeleteNodeNotInCSEMaps(U);
3176 }
3177 }
3178}
3179
3180/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3181/// uses of other values produced by From.Val alone. The Deleted vector is
3182/// handled the same was as for ReplaceAllUsesWith.
3183void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3184 std::vector<SDNode*> &Deleted) {
3185 assert(From != To && "Cannot replace a value with itself");
3186 // Handle the simple, trivial, case efficiently.
3187 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3188 ReplaceAllUsesWith(From, To, &Deleted);
3189 return;
3190 }
3191
3192 // Get all of the users of From.Val. We want these in a nice,
3193 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3194 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3195
3196 while (!Users.empty()) {
3197 // We know that this user uses some value of From. If it is the right
3198 // value, update it.
3199 SDNode *User = Users.back();
3200 Users.pop_back();
3201
3202 for (SDOperand *Op = User->OperandList,
3203 *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3204 if (*Op == From) {
3205 // Okay, we know this user needs to be updated. Remove its old self
3206 // from the CSE maps.
3207 RemoveNodeFromCSEMaps(User);
3208
3209 // Update all operands that match "From".
3210 for (; Op != E; ++Op) {
3211 if (*Op == From) {
3212 From.Val->removeUser(User);
3213 *Op = To;
3214 To.Val->addUser(User);
3215 }
3216 }
3217
3218 // Now that we have modified User, add it back to the CSE maps. If it
3219 // already exists there, recursively merge the results together.
3220 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3221 unsigned NumDeleted = Deleted.size();
3222 ReplaceAllUsesWith(User, Existing, &Deleted);
3223
3224 // User is now dead.
3225 Deleted.push_back(User);
3226 DeleteNodeNotInCSEMaps(User);
3227
3228 // We have to be careful here, because ReplaceAllUsesWith could have
3229 // deleted a user of From, which means there may be dangling pointers
3230 // in the "Users" setvector. Scan over the deleted node pointers and
3231 // remove them from the setvector.
3232 for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3233 Users.remove(Deleted[i]);
3234 }
3235 break; // Exit the operand scanning loop.
3236 }
3237 }
3238 }
3239}
3240
3241
3242/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3243/// their allnodes order. It returns the maximum id.
3244unsigned SelectionDAG::AssignNodeIds() {
3245 unsigned Id = 0;
3246 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3247 SDNode *N = I;
3248 N->setNodeId(Id++);
3249 }
3250 return Id;
3251}
3252
3253/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3254/// based on their topological order. It returns the maximum id and a vector
3255/// of the SDNodes* in assigned order by reference.
3256unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3257 unsigned DAGSize = AllNodes.size();
3258 std::vector<unsigned> InDegree(DAGSize);
3259 std::vector<SDNode*> Sources;
3260
3261 // Use a two pass approach to avoid using a std::map which is slow.
3262 unsigned Id = 0;
3263 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3264 SDNode *N = I;
3265 N->setNodeId(Id++);
3266 unsigned Degree = N->use_size();
3267 InDegree[N->getNodeId()] = Degree;
3268 if (Degree == 0)
3269 Sources.push_back(N);
3270 }
3271
3272 TopOrder.clear();
3273 while (!Sources.empty()) {
3274 SDNode *N = Sources.back();
3275 Sources.pop_back();
3276 TopOrder.push_back(N);
3277 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3278 SDNode *P = I->Val;
3279 unsigned Degree = --InDegree[P->getNodeId()];
3280 if (Degree == 0)
3281 Sources.push_back(P);
3282 }
3283 }
3284
3285 // Second pass, assign the actual topological order as node ids.
3286 Id = 0;
3287 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3288 TI != TE; ++TI)
3289 (*TI)->setNodeId(Id++);
3290
3291 return Id;
3292}
3293
3294
3295
3296//===----------------------------------------------------------------------===//
3297// SDNode Class
3298//===----------------------------------------------------------------------===//
3299
3300// Out-of-line virtual method to give class a home.
3301void SDNode::ANCHOR() {}
3302void UnarySDNode::ANCHOR() {}
3303void BinarySDNode::ANCHOR() {}
3304void TernarySDNode::ANCHOR() {}
3305void HandleSDNode::ANCHOR() {}
3306void StringSDNode::ANCHOR() {}
3307void ConstantSDNode::ANCHOR() {}
3308void ConstantFPSDNode::ANCHOR() {}
3309void GlobalAddressSDNode::ANCHOR() {}
3310void FrameIndexSDNode::ANCHOR() {}
3311void JumpTableSDNode::ANCHOR() {}
3312void ConstantPoolSDNode::ANCHOR() {}
3313void BasicBlockSDNode::ANCHOR() {}
3314void SrcValueSDNode::ANCHOR() {}
3315void RegisterSDNode::ANCHOR() {}
3316void ExternalSymbolSDNode::ANCHOR() {}
3317void CondCodeSDNode::ANCHOR() {}
3318void VTSDNode::ANCHOR() {}
3319void LoadSDNode::ANCHOR() {}
3320void StoreSDNode::ANCHOR() {}
3321
3322HandleSDNode::~HandleSDNode() {
3323 SDVTList VTs = { 0, 0 };
3324 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3325}
3326
3327GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3328 MVT::ValueType VT, int o)
3329 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003330 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003331 // Thread Local
3332 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3333 // Non Thread Local
3334 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3335 getSDVTList(VT)), Offset(o) {
3336 TheGlobal = const_cast<GlobalValue*>(GA);
3337}
3338
3339/// Profile - Gather unique data for the node.
3340///
3341void SDNode::Profile(FoldingSetNodeID &ID) {
3342 AddNodeIDNode(ID, this);
3343}
3344
3345/// getValueTypeList - Return a pointer to the specified value type.
3346///
3347MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3348 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3349 VTs[VT] = VT;
3350 return &VTs[VT];
3351}
3352
3353/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3354/// indicated value. This method ignores uses of other values defined by this
3355/// operation.
3356bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3357 assert(Value < getNumValues() && "Bad value!");
3358
3359 // If there is only one value, this is easy.
3360 if (getNumValues() == 1)
3361 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003362 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003363
3364 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3365
3366 SmallPtrSet<SDNode*, 32> UsersHandled;
3367
3368 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3369 SDNode *User = *UI;
3370 if (User->getNumOperands() == 1 ||
3371 UsersHandled.insert(User)) // First time we've seen this?
3372 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3373 if (User->getOperand(i) == TheValue) {
3374 if (NUses == 0)
3375 return false; // too many uses
3376 --NUses;
3377 }
3378 }
3379
3380 // Found exactly the right number of uses?
3381 return NUses == 0;
3382}
3383
3384
Evan Cheng0af04f72007-08-02 05:29:38 +00003385/// hasAnyUseOfValue - Return true if there are any use of the indicated
3386/// value. This method ignores uses of other values defined by this operation.
3387bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3388 assert(Value < getNumValues() && "Bad value!");
3389
3390 if (use_size() == 0) return false;
3391
3392 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3393
3394 SmallPtrSet<SDNode*, 32> UsersHandled;
3395
3396 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3397 SDNode *User = *UI;
3398 if (User->getNumOperands() == 1 ||
3399 UsersHandled.insert(User)) // First time we've seen this?
3400 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3401 if (User->getOperand(i) == TheValue) {
3402 return true;
3403 }
3404 }
3405
3406 return false;
3407}
3408
3409
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003410/// isOnlyUse - Return true if this node is the only use of N.
3411///
3412bool SDNode::isOnlyUse(SDNode *N) const {
3413 bool Seen = false;
3414 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3415 SDNode *User = *I;
3416 if (User == this)
3417 Seen = true;
3418 else
3419 return false;
3420 }
3421
3422 return Seen;
3423}
3424
3425/// isOperand - Return true if this node is an operand of N.
3426///
3427bool SDOperand::isOperand(SDNode *N) const {
3428 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3429 if (*this == N->getOperand(i))
3430 return true;
3431 return false;
3432}
3433
3434bool SDNode::isOperand(SDNode *N) const {
3435 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3436 if (this == N->OperandList[i].Val)
3437 return true;
3438 return false;
3439}
3440
3441static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3442 SmallPtrSet<SDNode *, 32> &Visited) {
3443 if (found || !Visited.insert(N))
3444 return;
3445
3446 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3447 SDNode *Op = N->getOperand(i).Val;
3448 if (Op == P) {
3449 found = true;
3450 return;
3451 }
3452 findPredecessor(Op, P, found, Visited);
3453 }
3454}
3455
3456/// isPredecessor - Return true if this node is a predecessor of N. This node
3457/// is either an operand of N or it can be reached by recursively traversing
3458/// up the operands.
3459/// NOTE: this is an expensive method. Use it carefully.
3460bool SDNode::isPredecessor(SDNode *N) const {
3461 SmallPtrSet<SDNode *, 32> Visited;
3462 bool found = false;
3463 findPredecessor(N, this, found, Visited);
3464 return found;
3465}
3466
3467uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3468 assert(Num < NumOperands && "Invalid child # of SDNode!");
3469 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3470}
3471
3472std::string SDNode::getOperationName(const SelectionDAG *G) const {
3473 switch (getOpcode()) {
3474 default:
3475 if (getOpcode() < ISD::BUILTIN_OP_END)
3476 return "<<Unknown DAG Node>>";
3477 else {
3478 if (G) {
3479 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3480 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3481 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3482
3483 TargetLowering &TLI = G->getTargetLoweringInfo();
3484 const char *Name =
3485 TLI.getTargetNodeName(getOpcode());
3486 if (Name) return Name;
3487 }
3488
3489 return "<<Unknown Target Node>>";
3490 }
3491
3492 case ISD::PCMARKER: return "PCMarker";
3493 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3494 case ISD::SRCVALUE: return "SrcValue";
3495 case ISD::EntryToken: return "EntryToken";
3496 case ISD::TokenFactor: return "TokenFactor";
3497 case ISD::AssertSext: return "AssertSext";
3498 case ISD::AssertZext: return "AssertZext";
3499
3500 case ISD::STRING: return "String";
3501 case ISD::BasicBlock: return "BasicBlock";
3502 case ISD::VALUETYPE: return "ValueType";
3503 case ISD::Register: return "Register";
3504
3505 case ISD::Constant: return "Constant";
3506 case ISD::ConstantFP: return "ConstantFP";
3507 case ISD::GlobalAddress: return "GlobalAddress";
3508 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3509 case ISD::FrameIndex: return "FrameIndex";
3510 case ISD::JumpTable: return "JumpTable";
3511 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3512 case ISD::RETURNADDR: return "RETURNADDR";
3513 case ISD::FRAMEADDR: return "FRAMEADDR";
3514 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3515 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3516 case ISD::EHSELECTION: return "EHSELECTION";
3517 case ISD::EH_RETURN: return "EH_RETURN";
3518 case ISD::ConstantPool: return "ConstantPool";
3519 case ISD::ExternalSymbol: return "ExternalSymbol";
3520 case ISD::INTRINSIC_WO_CHAIN: {
3521 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3522 return Intrinsic::getName((Intrinsic::ID)IID);
3523 }
3524 case ISD::INTRINSIC_VOID:
3525 case ISD::INTRINSIC_W_CHAIN: {
3526 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3527 return Intrinsic::getName((Intrinsic::ID)IID);
3528 }
3529
3530 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3531 case ISD::TargetConstant: return "TargetConstant";
3532 case ISD::TargetConstantFP:return "TargetConstantFP";
3533 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3534 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3535 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3536 case ISD::TargetJumpTable: return "TargetJumpTable";
3537 case ISD::TargetConstantPool: return "TargetConstantPool";
3538 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3539
3540 case ISD::CopyToReg: return "CopyToReg";
3541 case ISD::CopyFromReg: return "CopyFromReg";
3542 case ISD::UNDEF: return "undef";
3543 case ISD::MERGE_VALUES: return "merge_values";
3544 case ISD::INLINEASM: return "inlineasm";
3545 case ISD::LABEL: return "label";
3546 case ISD::HANDLENODE: return "handlenode";
3547 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3548 case ISD::CALL: return "call";
3549
3550 // Unary operators
3551 case ISD::FABS: return "fabs";
3552 case ISD::FNEG: return "fneg";
3553 case ISD::FSQRT: return "fsqrt";
3554 case ISD::FSIN: return "fsin";
3555 case ISD::FCOS: return "fcos";
3556 case ISD::FPOWI: return "fpowi";
3557
3558 // Binary operators
3559 case ISD::ADD: return "add";
3560 case ISD::SUB: return "sub";
3561 case ISD::MUL: return "mul";
3562 case ISD::MULHU: return "mulhu";
3563 case ISD::MULHS: return "mulhs";
3564 case ISD::SDIV: return "sdiv";
3565 case ISD::UDIV: return "udiv";
3566 case ISD::SREM: return "srem";
3567 case ISD::UREM: return "urem";
3568 case ISD::AND: return "and";
3569 case ISD::OR: return "or";
3570 case ISD::XOR: return "xor";
3571 case ISD::SHL: return "shl";
3572 case ISD::SRA: return "sra";
3573 case ISD::SRL: return "srl";
3574 case ISD::ROTL: return "rotl";
3575 case ISD::ROTR: return "rotr";
3576 case ISD::FADD: return "fadd";
3577 case ISD::FSUB: return "fsub";
3578 case ISD::FMUL: return "fmul";
3579 case ISD::FDIV: return "fdiv";
3580 case ISD::FREM: return "frem";
3581 case ISD::FCOPYSIGN: return "fcopysign";
3582
3583 case ISD::SETCC: return "setcc";
3584 case ISD::SELECT: return "select";
3585 case ISD::SELECT_CC: return "select_cc";
3586 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3587 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3588 case ISD::CONCAT_VECTORS: return "concat_vectors";
3589 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3590 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3591 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3592 case ISD::CARRY_FALSE: return "carry_false";
3593 case ISD::ADDC: return "addc";
3594 case ISD::ADDE: return "adde";
3595 case ISD::SUBC: return "subc";
3596 case ISD::SUBE: return "sube";
3597 case ISD::SHL_PARTS: return "shl_parts";
3598 case ISD::SRA_PARTS: return "sra_parts";
3599 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003600
3601 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3602 case ISD::INSERT_SUBREG: return "insert_subreg";
3603
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604 // Conversion operators.
3605 case ISD::SIGN_EXTEND: return "sign_extend";
3606 case ISD::ZERO_EXTEND: return "zero_extend";
3607 case ISD::ANY_EXTEND: return "any_extend";
3608 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3609 case ISD::TRUNCATE: return "truncate";
3610 case ISD::FP_ROUND: return "fp_round";
3611 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3612 case ISD::FP_EXTEND: return "fp_extend";
3613
3614 case ISD::SINT_TO_FP: return "sint_to_fp";
3615 case ISD::UINT_TO_FP: return "uint_to_fp";
3616 case ISD::FP_TO_SINT: return "fp_to_sint";
3617 case ISD::FP_TO_UINT: return "fp_to_uint";
3618 case ISD::BIT_CONVERT: return "bit_convert";
3619
3620 // Control flow instructions
3621 case ISD::BR: return "br";
3622 case ISD::BRIND: return "brind";
3623 case ISD::BR_JT: return "br_jt";
3624 case ISD::BRCOND: return "brcond";
3625 case ISD::BR_CC: return "br_cc";
3626 case ISD::RET: return "ret";
3627 case ISD::CALLSEQ_START: return "callseq_start";
3628 case ISD::CALLSEQ_END: return "callseq_end";
3629
3630 // Other operators
3631 case ISD::LOAD: return "load";
3632 case ISD::STORE: return "store";
3633 case ISD::VAARG: return "vaarg";
3634 case ISD::VACOPY: return "vacopy";
3635 case ISD::VAEND: return "vaend";
3636 case ISD::VASTART: return "vastart";
3637 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3638 case ISD::EXTRACT_ELEMENT: return "extract_element";
3639 case ISD::BUILD_PAIR: return "build_pair";
3640 case ISD::STACKSAVE: return "stacksave";
3641 case ISD::STACKRESTORE: return "stackrestore";
3642
3643 // Block memory operations.
3644 case ISD::MEMSET: return "memset";
3645 case ISD::MEMCPY: return "memcpy";
3646 case ISD::MEMMOVE: return "memmove";
3647
3648 // Bit manipulation
3649 case ISD::BSWAP: return "bswap";
3650 case ISD::CTPOP: return "ctpop";
3651 case ISD::CTTZ: return "cttz";
3652 case ISD::CTLZ: return "ctlz";
3653
3654 // Debug info
3655 case ISD::LOCATION: return "location";
3656 case ISD::DEBUG_LOC: return "debug_loc";
3657
Duncan Sands38947cd2007-07-27 12:58:54 +00003658 // Trampolines
Duncan Sands7407a9f2007-09-11 14:10:23 +00003659 case ISD::TRAMPOLINE: return "trampoline";
Duncan Sands38947cd2007-07-27 12:58:54 +00003660
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003661 case ISD::CONDCODE:
3662 switch (cast<CondCodeSDNode>(this)->get()) {
3663 default: assert(0 && "Unknown setcc condition!");
3664 case ISD::SETOEQ: return "setoeq";
3665 case ISD::SETOGT: return "setogt";
3666 case ISD::SETOGE: return "setoge";
3667 case ISD::SETOLT: return "setolt";
3668 case ISD::SETOLE: return "setole";
3669 case ISD::SETONE: return "setone";
3670
3671 case ISD::SETO: return "seto";
3672 case ISD::SETUO: return "setuo";
3673 case ISD::SETUEQ: return "setue";
3674 case ISD::SETUGT: return "setugt";
3675 case ISD::SETUGE: return "setuge";
3676 case ISD::SETULT: return "setult";
3677 case ISD::SETULE: return "setule";
3678 case ISD::SETUNE: return "setune";
3679
3680 case ISD::SETEQ: return "seteq";
3681 case ISD::SETGT: return "setgt";
3682 case ISD::SETGE: return "setge";
3683 case ISD::SETLT: return "setlt";
3684 case ISD::SETLE: return "setle";
3685 case ISD::SETNE: return "setne";
3686 }
3687 }
3688}
3689
3690const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3691 switch (AM) {
3692 default:
3693 return "";
3694 case ISD::PRE_INC:
3695 return "<pre-inc>";
3696 case ISD::PRE_DEC:
3697 return "<pre-dec>";
3698 case ISD::POST_INC:
3699 return "<post-inc>";
3700 case ISD::POST_DEC:
3701 return "<post-dec>";
3702 }
3703}
3704
3705void SDNode::dump() const { dump(0); }
3706void SDNode::dump(const SelectionDAG *G) const {
3707 cerr << (void*)this << ": ";
3708
3709 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3710 if (i) cerr << ",";
3711 if (getValueType(i) == MVT::Other)
3712 cerr << "ch";
3713 else
3714 cerr << MVT::getValueTypeString(getValueType(i));
3715 }
3716 cerr << " = " << getOperationName(G);
3717
3718 cerr << " ";
3719 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3720 if (i) cerr << ", ";
3721 cerr << (void*)getOperand(i).Val;
3722 if (unsigned RN = getOperand(i).ResNo)
3723 cerr << ":" << RN;
3724 }
3725
3726 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3727 cerr << "<" << CSDN->getValue() << ">";
3728 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00003729 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3730 cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3731 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3732 cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3733 else {
3734 cerr << "<APFloat(";
3735 CSDN->getValueAPF().convertToAPInt().dump();
3736 cerr << ")>";
3737 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003738 } else if (const GlobalAddressSDNode *GADN =
3739 dyn_cast<GlobalAddressSDNode>(this)) {
3740 int offset = GADN->getOffset();
3741 cerr << "<";
3742 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3743 if (offset > 0)
3744 cerr << " + " << offset;
3745 else
3746 cerr << " " << offset;
3747 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3748 cerr << "<" << FIDN->getIndex() << ">";
3749 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3750 cerr << "<" << JTDN->getIndex() << ">";
3751 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3752 int offset = CP->getOffset();
3753 if (CP->isMachineConstantPoolEntry())
3754 cerr << "<" << *CP->getMachineCPVal() << ">";
3755 else
3756 cerr << "<" << *CP->getConstVal() << ">";
3757 if (offset > 0)
3758 cerr << " + " << offset;
3759 else
3760 cerr << " " << offset;
3761 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3762 cerr << "<";
3763 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3764 if (LBB)
3765 cerr << LBB->getName() << " ";
3766 cerr << (const void*)BBDN->getBasicBlock() << ">";
3767 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3768 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3769 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3770 } else {
3771 cerr << " #" << R->getReg();
3772 }
3773 } else if (const ExternalSymbolSDNode *ES =
3774 dyn_cast<ExternalSymbolSDNode>(this)) {
3775 cerr << "'" << ES->getSymbol() << "'";
3776 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3777 if (M->getValue())
3778 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3779 else
3780 cerr << "<null:" << M->getOffset() << ">";
3781 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3782 cerr << ":" << MVT::getValueTypeString(N->getVT());
3783 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3784 bool doExt = true;
3785 switch (LD->getExtensionType()) {
3786 default: doExt = false; break;
3787 case ISD::EXTLOAD:
3788 cerr << " <anyext ";
3789 break;
3790 case ISD::SEXTLOAD:
3791 cerr << " <sext ";
3792 break;
3793 case ISD::ZEXTLOAD:
3794 cerr << " <zext ";
3795 break;
3796 }
3797 if (doExt)
3798 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3799
3800 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003801 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003802 cerr << " " << AM;
3803 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3804 if (ST->isTruncatingStore())
3805 cerr << " <trunc "
3806 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3807
3808 const char *AM = getIndexedModeName(ST->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003809 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003810 cerr << " " << AM;
3811 }
3812}
3813
3814static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3815 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3816 if (N->getOperand(i).Val->hasOneUse())
3817 DumpNodes(N->getOperand(i).Val, indent+2, G);
3818 else
3819 cerr << "\n" << std::string(indent+2, ' ')
3820 << (void*)N->getOperand(i).Val << ": <multiple use>";
3821
3822
3823 cerr << "\n" << std::string(indent, ' ');
3824 N->dump(G);
3825}
3826
3827void SelectionDAG::dump() const {
3828 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3829 std::vector<const SDNode*> Nodes;
3830 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3831 I != E; ++I)
3832 Nodes.push_back(I);
3833
3834 std::sort(Nodes.begin(), Nodes.end());
3835
3836 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3837 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3838 DumpNodes(Nodes[i], 2, this);
3839 }
3840
3841 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3842
3843 cerr << "\n\n";
3844}
3845
3846const Type *ConstantPoolSDNode::getType() const {
3847 if (isMachineConstantPoolEntry())
3848 return Val.MachineCPVal->getType();
3849 return Val.ConstVal->getType();
3850}