blob: e2b4a46d0cf1f8a52cf4acdbd6c51244dc00c8a7 [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file contains a peephole optimizer for the X86.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner61b08f12004-02-10 21:18:55 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattner45370762003-12-01 05:15:28 +000018#include "Support/Statistic.h"
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000019#include "Support/STLExtras.h"
20
Chris Lattnere1cc79f2003-11-30 06:13:25 +000021using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000022
Chris Lattnera960d952003-01-13 01:01:59 +000023namespace {
Chris Lattner45370762003-12-01 05:15:28 +000024 Statistic<> NumPHOpts("x86-peephole",
25 "Number of peephole optimization performed");
Chris Lattnera960d952003-01-13 01:01:59 +000026 struct PH : public MachineFunctionPass {
27 virtual bool runOnMachineFunction(MachineFunction &MF);
28
29 bool PeepholeOptimize(MachineBasicBlock &MBB,
30 MachineBasicBlock::iterator &I);
31
32 virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
33 };
34}
35
Chris Lattnere1cc79f2003-11-30 06:13:25 +000036FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
Chris Lattnera960d952003-01-13 01:01:59 +000037
38bool PH::runOnMachineFunction(MachineFunction &MF) {
39 bool Changed = false;
40
41 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
Chris Lattneree3e4352003-01-16 18:07:13 +000042 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
Chris Lattner45370762003-12-01 05:15:28 +000043 if (PeepholeOptimize(*BI, I)) {
Chris Lattnera960d952003-01-13 01:01:59 +000044 Changed = true;
Chris Lattner45370762003-12-01 05:15:28 +000045 ++NumPHOpts;
46 } else
Chris Lattnera960d952003-01-13 01:01:59 +000047 ++I;
48
49 return Changed;
50}
51
52
53bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
54 MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000055 assert(I != MBB.end());
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000056 MachineBasicBlock::iterator NextI = next(I);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000057
58 MachineInstr *MI = I;
59 MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
Chris Lattnera960d952003-01-13 01:01:59 +000060 unsigned Size = 0;
61 switch (MI->getOpcode()) {
62 case X86::MOVrr8:
63 case X86::MOVrr16:
64 case X86::MOVrr32: // Destroy X = X copies...
65 if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
66 I = MBB.erase(I);
Chris Lattnera960d952003-01-13 01:01:59 +000067 return true;
68 }
69 return false;
70
Chris Lattner43a5ff82003-10-20 05:53:31 +000071 // A large number of X86 instructions have forms which take an 8-bit
72 // immediate despite the fact that the operands are 16 or 32 bits. Because
73 // this can save three bytes of code size (and icache space), we want to
74 // shrink them if possible.
Chris Lattner55b54812004-02-17 04:26:43 +000075 case X86::IMULrri16: case X86::IMULrri32:
Chris Lattner43a5ff82003-10-20 05:53:31 +000076 assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
77 if (MI->getOperand(2).isImmediate()) {
78 int Val = MI->getOperand(2).getImmedValue();
79 // If the value is the same when signed extended from 8 bits...
80 if (Val == (signed int)(signed char)Val) {
81 unsigned Opcode;
82 switch (MI->getOpcode()) {
83 default: assert(0 && "Unknown opcode value!");
Chris Lattner55b54812004-02-17 04:26:43 +000084 case X86::IMULrri16: Opcode = X86::IMULrri16b; break;
85 case X86::IMULrri32: Opcode = X86::IMULrri32b; break;
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000086 }
87 unsigned R0 = MI->getOperand(0).getReg();
88 unsigned R1 = MI->getOperand(1).getReg();
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000089 I = MBB.insert(MBB.erase(I),
90 BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000091 return true;
92 }
93 }
94 return false;
95
Chris Lattner55b54812004-02-17 04:26:43 +000096 case X86::IMULrmi16: case X86::IMULrmi32:
97 assert(MI->getNumOperands() == 6 && "These should all have 6 operands!");
98 if (MI->getOperand(5).isImmediate()) {
99 int Val = MI->getOperand(5).getImmedValue();
100 // If the value is the same when signed extended from 8 bits...
101 if (Val == (signed int)(signed char)Val) {
102 unsigned Opcode;
103 switch (MI->getOpcode()) {
104 default: assert(0 && "Unknown opcode value!");
105 case X86::IMULrmi16: Opcode = X86::IMULrmi16b; break;
106 case X86::IMULrmi32: Opcode = X86::IMULrmi32b; break;
107 }
108 unsigned R0 = MI->getOperand(0).getReg();
109 unsigned R1 = MI->getOperand(1).getReg();
110 unsigned Scale = MI->getOperand(2).getImmedValue();
111 unsigned R2 = MI->getOperand(3).getReg();
Chris Lattner4ff78762004-02-17 05:25:50 +0000112 unsigned Offset = MI->getOperand(4).getImmedValue();
Chris Lattner55b54812004-02-17 04:26:43 +0000113 I = MBB.insert(MBB.erase(I),
Chris Lattner4ff78762004-02-17 05:25:50 +0000114 BuildMI(Opcode, 5, R0).addReg(R1).addZImm(Scale).
Chris Lattner55b54812004-02-17 04:26:43 +0000115 addReg(R2).addSImm(Offset).addZImm((char)Val));
116 return true;
117 }
118 }
119 return false;
120
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000121 case X86::ADDri16: case X86::ADDri32:
Alkis Evlogimenos31bbb512004-02-16 23:50:18 +0000122 case X86::ADDmi16: case X86::ADDmi32:
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000123 case X86::SUBri16: case X86::SUBri32:
124 case X86::ANDri16: case X86::ANDri32:
125 case X86::ORri16: case X86::ORri32:
126 case X86::XORri16: case X86::XORri32:
127 assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
128 if (MI->getOperand(1).isImmediate()) {
129 int Val = MI->getOperand(1).getImmedValue();
130 // If the value is the same when signed extended from 8 bits...
131 if (Val == (signed int)(signed char)Val) {
132 unsigned Opcode;
133 switch (MI->getOpcode()) {
134 default: assert(0 && "Unknown opcode value!");
Chris Lattner43a5ff82003-10-20 05:53:31 +0000135 case X86::ADDri16: Opcode = X86::ADDri16b; break;
136 case X86::ADDri32: Opcode = X86::ADDri32b; break;
Alkis Evlogimenos31bbb512004-02-16 23:50:18 +0000137 case X86::ADDmi16: Opcode = X86::ADDmi16b; break;
138 case X86::ADDmi32: Opcode = X86::ADDmi32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000139 case X86::SUBri16: Opcode = X86::SUBri16b; break;
140 case X86::SUBri32: Opcode = X86::SUBri32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000141 case X86::ANDri16: Opcode = X86::ANDri16b; break;
142 case X86::ANDri32: Opcode = X86::ANDri32b; break;
143 case X86::ORri16: Opcode = X86::ORri16b; break;
144 case X86::ORri32: Opcode = X86::ORri32b; break;
145 case X86::XORri16: Opcode = X86::XORri16b; break;
146 case X86::XORri32: Opcode = X86::XORri32b; break;
147 }
148 unsigned R0 = MI->getOperand(0).getReg();
Chris Lattner4ff78762004-02-17 05:25:50 +0000149 I = MBB.insert(MBB.erase(I),
Chris Lattner90c38c82004-02-17 06:02:15 +0000150 BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val));
Chris Lattner4ff78762004-02-17 05:25:50 +0000151 return true;
152 }
153 }
154 return false;
155
156
157 case X86::ANDmi16: case X86::ANDmi32:
158 assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
159 if (MI->getOperand(4).isImmediate()) {
160 int Val = MI->getOperand(4).getImmedValue();
161 // If the value is the same when signed extended from 8 bits...
162 if (Val == (signed int)(signed char)Val) {
163 unsigned Opcode;
164 switch (MI->getOpcode()) {
165 default: assert(0 && "Unknown opcode value!");
166 case X86::ANDmi16: Opcode = X86::ANDmi16b; break;
167 case X86::ANDmi32: Opcode = X86::ANDmi32b; break;
168 }
169 unsigned R0 = MI->getOperand(0).getReg();
Chris Lattner90c38c82004-02-17 06:02:15 +0000170 unsigned Scale = MI->getOperand(1).getImmedValue();
171 unsigned R1 = MI->getOperand(2).getReg();
172 unsigned Offset = MI->getOperand(3).getImmedValue();
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000173 I = MBB.insert(MBB.erase(I),
Chris Lattner90c38c82004-02-17 06:02:15 +0000174 BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
175 addReg(R1).addSImm(Offset).addZImm((char)Val));
Chris Lattner43a5ff82003-10-20 05:53:31 +0000176 return true;
177 }
178 }
179 return false;
180
Chris Lattnera960d952003-01-13 01:01:59 +0000181#if 0
182 case X86::MOVir32: Size++;
183 case X86::MOVir16: Size++;
184 case X86::MOVir8:
185 // FIXME: We can only do this transformation if we know that flags are not
186 // used here, because XOR clobbers the flags!
187 if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
188 int Val = MI->getOperand(1).getImmedValue();
189 if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
190 static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
191 unsigned Reg = MI->getOperand(0).getReg();
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000192 I = MBB.insert(MBB.erase(I),
193 BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg));
Chris Lattnera960d952003-01-13 01:01:59 +0000194 return true;
195 } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
196 // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
197 }
198 }
199 return false;
200#endif
201 case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing
202 if (Next->getOpcode() == X86::BSWAPr32 &&
203 MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
204 I = MBB.erase(MBB.erase(I));
Chris Lattnera960d952003-01-13 01:01:59 +0000205 return true;
206 }
207 return false;
208 default:
209 return false;
210 }
211}
Brian Gaeked0fde302003-11-11 22:41:34 +0000212
Chris Lattner45370762003-12-01 05:15:28 +0000213namespace {
214 class UseDefChains : public MachineFunctionPass {
215 std::vector<MachineInstr*> DefiningInst;
216 public:
217 // getDefinition - Return the machine instruction that defines the specified
218 // SSA virtual register.
219 MachineInstr *getDefinition(unsigned Reg) {
Alkis Evlogimenos859a18b2004-02-15 21:37:17 +0000220 assert(MRegisterInfo::isVirtualRegister(Reg) &&
Chris Lattner45370762003-12-01 05:15:28 +0000221 "use-def chains only exist for SSA registers!");
222 assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
223 "Unknown register number!");
224 assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
225 "Unknown register number!");
226 return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
227 }
228
229 // setDefinition - Update the use-def chains to indicate that MI defines
230 // register Reg.
231 void setDefinition(unsigned Reg, MachineInstr *MI) {
232 if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
233 DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
234 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
235 }
236
237 // removeDefinition - Update the use-def chains to forget about Reg
238 // entirely.
239 void removeDefinition(unsigned Reg) {
240 assert(getDefinition(Reg)); // Check validity
241 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
242 }
243
244 virtual bool runOnMachineFunction(MachineFunction &MF) {
245 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
246 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000247 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
248 MachineOperand &MO = I->getOperand(i);
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000249 if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
250 MRegisterInfo::isVirtualRegister(MO.getReg()))
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000251 setDefinition(MO.getReg(), I);
Chris Lattner45370762003-12-01 05:15:28 +0000252 }
253 }
254 return false;
255 }
256
257 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
258 AU.setPreservesAll();
259 MachineFunctionPass::getAnalysisUsage(AU);
260 }
261
262 virtual void releaseMemory() {
263 std::vector<MachineInstr*>().swap(DefiningInst);
264 }
265 };
266
267 RegisterAnalysis<UseDefChains> X("use-def-chains",
268 "use-def chain construction for machine code");
269}
270
271
272namespace {
273 Statistic<> NumSSAPHOpts("x86-ssa-peephole",
274 "Number of SSA peephole optimization performed");
275
276 /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
277 /// pass is really a bad idea: a better instruction selector should completely
278 /// supersume it. However, that will take some time to develop, and the
279 /// simple things this can do are important now.
280 class SSAPH : public MachineFunctionPass {
281 UseDefChains *UDC;
282 public:
283 virtual bool runOnMachineFunction(MachineFunction &MF);
284
285 bool PeepholeOptimize(MachineBasicBlock &MBB,
286 MachineBasicBlock::iterator &I);
287
288 virtual const char *getPassName() const {
289 return "X86 SSA-based Peephole Optimizer";
290 }
291
292 /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
293 /// opcode of the instruction, then return true.
294 bool Propagate(MachineInstr *MI, unsigned DestOpNo,
295 MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
296 MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
297 if (NewOpcode) MI->setOpcode(NewOpcode);
298 return true;
299 }
300
301 /// OptimizeAddress - If we can fold the addressing arithmetic for this
302 /// memory instruction into the instruction itself, do so and return true.
303 bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
304
305 /// getDefininingInst - If the specified operand is a read of an SSA
306 /// register, return the machine instruction defining it, otherwise, return
307 /// null.
308 MachineInstr *getDefiningInst(MachineOperand &MO) {
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000309 if (MO.isDef() || !MO.isRegister() ||
310 !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
Chris Lattner45370762003-12-01 05:15:28 +0000311 return UDC->getDefinition(MO.getReg());
312 }
313
314 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
315 AU.addRequired<UseDefChains>();
316 AU.addPreserved<UseDefChains>();
317 MachineFunctionPass::getAnalysisUsage(AU);
318 }
319 };
320}
321
322FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
323
324bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
325 bool Changed = false;
326 bool LocalChanged;
327
328 UDC = &getAnalysis<UseDefChains>();
329
330 do {
331 LocalChanged = false;
332
333 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
334 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
335 if (PeepholeOptimize(*BI, I)) {
336 LocalChanged = true;
337 ++NumSSAPHOpts;
338 } else
339 ++I;
340 Changed |= LocalChanged;
341 } while (LocalChanged);
342
343 return Changed;
344}
345
346static bool isValidScaleAmount(unsigned Scale) {
347 return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
348}
349
350/// OptimizeAddress - If we can fold the addressing arithmetic for this
351/// memory instruction into the instruction itself, do so and return true.
352bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
353 MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
354 MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
355 MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
356 MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
357
358 unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
359 unsigned Scale = ScaleOp.getImmedValue();
360 unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
361
362 bool Changed = false;
363
364 // If the base register is unset, and the index register is set with a scale
365 // of 1, move it to be the base register.
366 if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
367 Scale == 1 && IndexReg != 0) {
368 BaseRegOp.setReg(IndexReg);
369 IndexRegOp.setReg(0);
370 return true;
371 }
372
373 // Attempt to fold instructions used by the base register into the instruction
374 if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
375 switch (DefInst->getOpcode()) {
376 case X86::MOVir32:
377 // If there is no displacement set for this instruction set one now.
378 // FIXME: If we can fold two immediates together, we should do so!
379 if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
380 if (DefInst->getOperand(1).isImmediate()) {
381 BaseRegOp.setReg(0);
382 return Propagate(MI, OpNo+3, DefInst, 1);
383 }
384 }
385 break;
386
387 case X86::ADDrr32:
388 // If the source is a register-register add, and we do not yet have an
389 // index register, fold the add into the memory address.
390 if (IndexReg == 0) {
391 BaseRegOp = DefInst->getOperand(1);
392 IndexRegOp = DefInst->getOperand(2);
393 ScaleOp.setImmedValue(1);
394 return true;
395 }
396 break;
397
398 case X86::SHLir32:
399 // If this shift could be folded into the index portion of the address if
400 // it were the index register, move it to the index register operand now,
401 // so it will be folded in below.
402 if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
403 DefInst->getOperand(2).getImmedValue() < 4) {
404 std::swap(BaseRegOp, IndexRegOp);
405 ScaleOp.setImmedValue(1); Scale = 1;
406 std::swap(IndexReg, BaseReg);
407 Changed = true;
408 break;
409 }
410 }
411 }
412
413 // Attempt to fold instructions used by the index into the instruction
414 if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
415 switch (DefInst->getOpcode()) {
416 case X86::SHLir32: {
417 // Figure out what the resulting scale would be if we folded this shift.
418 unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
419 if (isValidScaleAmount(ResScale)) {
420 IndexRegOp = DefInst->getOperand(1);
421 ScaleOp.setImmedValue(ResScale);
422 return true;
423 }
424 break;
425 }
426 }
427 }
428
429 return Changed;
430}
431
432bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
433 MachineBasicBlock::iterator &I) {
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000434 MachineBasicBlock::iterator NextI = next(I);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000435
436 MachineInstr *MI = I;
437 MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
Chris Lattner45370762003-12-01 05:15:28 +0000438
439 bool Changed = false;
440
441 // Scan the operands of this instruction. If any operands are
442 // register-register copies, replace the operand with the source.
443 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
444 // Is this an SSA register use?
445 if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i)))
446 // If the operand is a vreg-vreg copy, it is always safe to replace the
447 // source value with the input operand.
448 if (DefInst->getOpcode() == X86::MOVrr8 ||
449 DefInst->getOpcode() == X86::MOVrr16 ||
450 DefInst->getOpcode() == X86::MOVrr32) {
451 // Don't propagate physical registers into PHI nodes...
452 if (MI->getOpcode() != X86::PHI ||
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000453 (DefInst->getOperand(1).isRegister() &&
454 MRegisterInfo::isVirtualRegister(DefInst->getOperand(1).getReg())))
Chris Lattner45370762003-12-01 05:15:28 +0000455 Changed = Propagate(MI, i, DefInst, 1);
456 }
457
458
459 // Perform instruction specific optimizations.
460 switch (MI->getOpcode()) {
461
462 // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
463 case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8:
464 case X86::MOVim32: case X86::MOVim16: case X86::MOVim8:
465 // Check to see if we can fold the source instruction into this one...
466 if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
467 switch (SrcInst->getOpcode()) {
468 // Fold the immediate value into the store, if possible.
469 case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8);
470 case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16);
471 case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32);
472 default: break;
473 }
474 }
475
476 // If we can optimize the addressing expression, do so now.
477 if (OptimizeAddress(MI, 0))
478 return true;
479 break;
480
481 case X86::MOVmr32:
482 case X86::MOVmr16:
483 case X86::MOVmr8:
484 // If we can optimize the addressing expression, do so now.
485 if (OptimizeAddress(MI, 1))
486 return true;
487 break;
488
489 default: break;
490 }
491
492 return Changed;
493}