blob: 1af271a93eff08bf9f96fd0ef81bb1a9d785cf73 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9adc0ab2009-07-14 23:09:55 +0000191 return getConstant(
Owen Andersoneed707b2009-07-24 23:12:02 +0000192 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf9e64722010-03-18 01:17:13 +0000250 assert(NumOperands > 1 && "This plus expr shouldn't exist!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251 const char *OpStr = getOperationStr();
252 OS << "(" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000253 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000254 OS << OpStr << *Operands[i];
255 OS << ")";
256}
257
Dan Gohmanecb403a2009-05-07 14:00:19 +0000258bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000259 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
260 if (!getOperand(i)->dominates(BB, DT))
261 return false;
262 }
263 return true;
264}
265
Dan Gohman6e70e312009-09-27 15:26:03 +0000266bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
267 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
268 if (!getOperand(i)->properlyDominates(BB, DT))
269 return false;
270 }
271 return true;
272}
273
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000274bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
275 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
276}
277
Dan Gohman6e70e312009-09-27 15:26:03 +0000278bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
279 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
280}
281
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000282void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000283 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000284}
285
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000286const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000287 // In most cases the types of LHS and RHS will be the same, but in some
288 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
289 // depend on the type for correctness, but handling types carefully can
290 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
291 // a pointer type than the RHS, so use the RHS' type here.
292 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
294
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000296 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000297 if (!QueryLoop)
298 return false;
299
300 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000301 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000302 return false;
303
304 // This recurrence is variant w.r.t. QueryLoop if any of its operands
305 // are variant.
306 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307 if (!getOperand(i)->isLoopInvariant(QueryLoop))
308 return false;
309
310 // Otherwise it's loop-invariant.
311 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000312}
313
Dan Gohman39125d82010-02-13 00:19:39 +0000314bool
315SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
316 return DT->dominates(L->getHeader(), BB) &&
317 SCEVNAryExpr::dominates(BB, DT);
318}
319
320bool
321SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
322 // This uses a "dominates" query instead of "properly dominates" query because
323 // the instruction which produces the addrec's value is a PHI, and a PHI
324 // effectively properly dominates its entire containing block.
325 return DT->dominates(L->getHeader(), BB) &&
326 SCEVNAryExpr::properlyDominates(BB, DT);
327}
328
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000329void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000331 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000333 OS << "}<";
334 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
335 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336}
Chris Lattner53e677a2004-04-02 20:23:17 +0000337
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
339 // All non-instruction values are loop invariant. All instructions are loop
340 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000341 // Instructions are never considered invariant in the function body
342 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000343 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000344 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 return true;
346}
Chris Lattner53e677a2004-04-02 20:23:17 +0000347
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000348bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
349 if (Instruction *I = dyn_cast<Instruction>(getValue()))
350 return DT->dominates(I->getParent(), BB);
351 return true;
352}
353
Dan Gohman6e70e312009-09-27 15:26:03 +0000354bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
355 if (Instruction *I = dyn_cast<Instruction>(getValue()))
356 return DT->properlyDominates(I->getParent(), BB);
357 return true;
358}
359
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000360const Type *SCEVUnknown::getType() const {
361 return V->getType();
362}
Chris Lattner53e677a2004-04-02 20:23:17 +0000363
Dan Gohman0f5efe52010-01-28 02:15:55 +0000364bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
365 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
366 if (VCE->getOpcode() == Instruction::PtrToInt)
367 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000368 if (CE->getOpcode() == Instruction::GetElementPtr &&
369 CE->getOperand(0)->isNullValue() &&
370 CE->getNumOperands() == 2)
371 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
372 if (CI->isOne()) {
373 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
374 ->getElementType();
375 return true;
376 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000377
378 return false;
379}
380
381bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
383 if (VCE->getOpcode() == Instruction::PtrToInt)
384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000385 if (CE->getOpcode() == Instruction::GetElementPtr &&
386 CE->getOperand(0)->isNullValue()) {
387 const Type *Ty =
388 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
389 if (const StructType *STy = dyn_cast<StructType>(Ty))
390 if (!STy->isPacked() &&
391 CE->getNumOperands() == 3 &&
392 CE->getOperand(1)->isNullValue()) {
393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
394 if (CI->isOne() &&
395 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000396 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000397 AllocTy = STy->getElementType(1);
398 return true;
399 }
400 }
401 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000402
403 return false;
404}
405
Dan Gohman4f8eea82010-02-01 18:27:38 +0000406bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(0)->isNullValue() &&
413 CE->getOperand(1)->isNullValue()) {
414 const Type *Ty =
415 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
416 // Ignore vector types here so that ScalarEvolutionExpander doesn't
417 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000418 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000419 CTy = Ty;
420 FieldNo = CE->getOperand(2);
421 return true;
422 }
423 }
424
425 return false;
426}
427
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000428void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000429 const Type *AllocTy;
430 if (isSizeOf(AllocTy)) {
431 OS << "sizeof(" << *AllocTy << ")";
432 return;
433 }
434 if (isAlignOf(AllocTy)) {
435 OS << "alignof(" << *AllocTy << ")";
436 return;
437 }
438
Dan Gohman4f8eea82010-02-01 18:27:38 +0000439 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000440 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 if (isOffsetOf(CTy, FieldNo)) {
442 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000443 WriteAsOperand(OS, FieldNo, false);
444 OS << ")";
445 return;
446 }
447
448 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000449 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000450}
451
Chris Lattner8d741b82004-06-20 06:23:15 +0000452//===----------------------------------------------------------------------===//
453// SCEV Utilities
454//===----------------------------------------------------------------------===//
455
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000456static bool CompareTypes(const Type *A, const Type *B) {
457 if (A->getTypeID() != B->getTypeID())
458 return A->getTypeID() < B->getTypeID();
459 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
460 const IntegerType *BI = cast<IntegerType>(B);
461 return AI->getBitWidth() < BI->getBitWidth();
462 }
463 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
464 const PointerType *BI = cast<PointerType>(B);
465 return CompareTypes(AI->getElementType(), BI->getElementType());
466 }
467 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
468 const ArrayType *BI = cast<ArrayType>(B);
469 if (AI->getNumElements() != BI->getNumElements())
470 return AI->getNumElements() < BI->getNumElements();
471 return CompareTypes(AI->getElementType(), BI->getElementType());
472 }
473 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
474 const VectorType *BI = cast<VectorType>(B);
475 if (AI->getNumElements() != BI->getNumElements())
476 return AI->getNumElements() < BI->getNumElements();
477 return CompareTypes(AI->getElementType(), BI->getElementType());
478 }
479 if (const StructType *AI = dyn_cast<StructType>(A)) {
480 const StructType *BI = cast<StructType>(B);
481 if (AI->getNumElements() != BI->getNumElements())
482 return AI->getNumElements() < BI->getNumElements();
483 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
484 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
485 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
486 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
487 }
488 return false;
489}
490
Chris Lattner8d741b82004-06-20 06:23:15 +0000491namespace {
492 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
493 /// than the complexity of the RHS. This comparator is used to canonicalize
494 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000495 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000496 LoopInfo *LI;
497 public:
498 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
499
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000500 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000501 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
502 if (LHS == RHS)
503 return false;
504
Dan Gohman72861302009-05-07 14:39:04 +0000505 // Primarily, sort the SCEVs by their getSCEVType().
506 if (LHS->getSCEVType() != RHS->getSCEVType())
507 return LHS->getSCEVType() < RHS->getSCEVType();
508
509 // Aside from the getSCEVType() ordering, the particular ordering
510 // isn't very important except that it's beneficial to be consistent,
511 // so that (a + b) and (b + a) don't end up as different expressions.
512
513 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
514 // not as complete as it could be.
515 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
516 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
517
Dan Gohman5be18e82009-05-19 02:15:55 +0000518 // Order pointer values after integer values. This helps SCEVExpander
519 // form GEPs.
Duncan Sands1df98592010-02-16 11:11:14 +0000520 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000521 return false;
Duncan Sands1df98592010-02-16 11:11:14 +0000522 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
Dan Gohman5be18e82009-05-19 02:15:55 +0000523 return true;
524
Dan Gohman72861302009-05-07 14:39:04 +0000525 // Compare getValueID values.
526 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
527 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
528
529 // Sort arguments by their position.
530 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
531 const Argument *RA = cast<Argument>(RU->getValue());
532 return LA->getArgNo() < RA->getArgNo();
533 }
534
535 // For instructions, compare their loop depth, and their opcode.
536 // This is pretty loose.
537 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
538 Instruction *RV = cast<Instruction>(RU->getValue());
539
540 // Compare loop depths.
541 if (LI->getLoopDepth(LV->getParent()) !=
542 LI->getLoopDepth(RV->getParent()))
543 return LI->getLoopDepth(LV->getParent()) <
544 LI->getLoopDepth(RV->getParent());
545
546 // Compare opcodes.
547 if (LV->getOpcode() != RV->getOpcode())
548 return LV->getOpcode() < RV->getOpcode();
549
550 // Compare the number of operands.
551 if (LV->getNumOperands() != RV->getNumOperands())
552 return LV->getNumOperands() < RV->getNumOperands();
553 }
554
555 return false;
556 }
557
Dan Gohman4dfad292009-06-14 22:51:25 +0000558 // Compare constant values.
559 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
560 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000561 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
562 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000563 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
564 }
565
566 // Compare addrec loop depths.
567 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
568 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
569 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
570 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
571 }
Dan Gohman72861302009-05-07 14:39:04 +0000572
573 // Lexicographically compare n-ary expressions.
574 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
575 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
576 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
577 if (i >= RC->getNumOperands())
578 return false;
579 if (operator()(LC->getOperand(i), RC->getOperand(i)))
580 return true;
581 if (operator()(RC->getOperand(i), LC->getOperand(i)))
582 return false;
583 }
584 return LC->getNumOperands() < RC->getNumOperands();
585 }
586
Dan Gohmana6b35e22009-05-07 19:23:21 +0000587 // Lexicographically compare udiv expressions.
588 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
589 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
590 if (operator()(LC->getLHS(), RC->getLHS()))
591 return true;
592 if (operator()(RC->getLHS(), LC->getLHS()))
593 return false;
594 if (operator()(LC->getRHS(), RC->getRHS()))
595 return true;
596 if (operator()(RC->getRHS(), LC->getRHS()))
597 return false;
598 return false;
599 }
600
Dan Gohman72861302009-05-07 14:39:04 +0000601 // Compare cast expressions by operand.
602 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
603 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
604 return operator()(LC->getOperand(), RC->getOperand());
605 }
606
Torok Edwinc23197a2009-07-14 16:55:14 +0000607 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000608 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000609 }
610 };
611}
612
613/// GroupByComplexity - Given a list of SCEV objects, order them by their
614/// complexity, and group objects of the same complexity together by value.
615/// When this routine is finished, we know that any duplicates in the vector are
616/// consecutive and that complexity is monotonically increasing.
617///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000618/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000619/// results from this routine. In other words, we don't want the results of
620/// this to depend on where the addresses of various SCEV objects happened to
621/// land in memory.
622///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000623static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000624 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000625 if (Ops.size() < 2) return; // Noop
626 if (Ops.size() == 2) {
627 // This is the common case, which also happens to be trivially simple.
628 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000629 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 std::swap(Ops[0], Ops[1]);
631 return;
632 }
633
634 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000635 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000636
637 // Now that we are sorted by complexity, group elements of the same
638 // complexity. Note that this is, at worst, N^2, but the vector is likely to
639 // be extremely short in practice. Note that we take this approach because we
640 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000641 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000642 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000643 unsigned Complexity = S->getSCEVType();
644
645 // If there are any objects of the same complexity and same value as this
646 // one, group them.
647 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
648 if (Ops[j] == S) { // Found a duplicate.
649 // Move it to immediately after i'th element.
650 std::swap(Ops[i+1], Ops[j]);
651 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000652 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000653 }
654 }
655 }
656}
657
Chris Lattner53e677a2004-04-02 20:23:17 +0000658
Chris Lattner53e677a2004-04-02 20:23:17 +0000659
660//===----------------------------------------------------------------------===//
661// Simple SCEV method implementations
662//===----------------------------------------------------------------------===//
663
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000665/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000666static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000667 ScalarEvolution &SE,
668 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // Handle the simplest case efficiently.
670 if (K == 1)
671 return SE.getTruncateOrZeroExtend(It, ResultTy);
672
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 // We are using the following formula for BC(It, K):
674 //
675 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
676 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677 // Suppose, W is the bitwidth of the return value. We must be prepared for
678 // overflow. Hence, we must assure that the result of our computation is
679 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
680 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000681 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000682 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000683 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
685 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000686 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000687 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // This formula is trivially equivalent to the previous formula. However,
690 // this formula can be implemented much more efficiently. The trick is that
691 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
692 // arithmetic. To do exact division in modular arithmetic, all we have
693 // to do is multiply by the inverse. Therefore, this step can be done at
694 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000695 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000696 // The next issue is how to safely do the division by 2^T. The way this
697 // is done is by doing the multiplication step at a width of at least W + T
698 // bits. This way, the bottom W+T bits of the product are accurate. Then,
699 // when we perform the division by 2^T (which is equivalent to a right shift
700 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
701 // truncated out after the division by 2^T.
702 //
703 // In comparison to just directly using the first formula, this technique
704 // is much more efficient; using the first formula requires W * K bits,
705 // but this formula less than W + K bits. Also, the first formula requires
706 // a division step, whereas this formula only requires multiplies and shifts.
707 //
708 // It doesn't matter whether the subtraction step is done in the calculation
709 // width or the input iteration count's width; if the subtraction overflows,
710 // the result must be zero anyway. We prefer here to do it in the width of
711 // the induction variable because it helps a lot for certain cases; CodeGen
712 // isn't smart enough to ignore the overflow, which leads to much less
713 // efficient code if the width of the subtraction is wider than the native
714 // register width.
715 //
716 // (It's possible to not widen at all by pulling out factors of 2 before
717 // the multiplication; for example, K=2 can be calculated as
718 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
719 // extra arithmetic, so it's not an obvious win, and it gets
720 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000721
Eli Friedmanb42a6262008-08-04 23:49:06 +0000722 // Protection from insane SCEVs; this bound is conservative,
723 // but it probably doesn't matter.
724 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000725 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000726
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000727 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729 // Calculate K! / 2^T and T; we divide out the factors of two before
730 // multiplying for calculating K! / 2^T to avoid overflow.
731 // Other overflow doesn't matter because we only care about the bottom
732 // W bits of the result.
733 APInt OddFactorial(W, 1);
734 unsigned T = 1;
735 for (unsigned i = 3; i <= K; ++i) {
736 APInt Mult(W, i);
737 unsigned TwoFactors = Mult.countTrailingZeros();
738 T += TwoFactors;
739 Mult = Mult.lshr(TwoFactors);
740 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000741 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000744 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000746 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
748
749 // Calculate the multiplicative inverse of K! / 2^T;
750 // this multiplication factor will perform the exact division by
751 // K! / 2^T.
752 APInt Mod = APInt::getSignedMinValue(W+1);
753 APInt MultiplyFactor = OddFactorial.zext(W+1);
754 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
755 MultiplyFactor = MultiplyFactor.trunc(W);
756
757 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000758 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
759 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000760 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000761 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 Dividend = SE.getMulExpr(Dividend,
764 SE.getTruncateOrZeroExtend(S, CalculationTy));
765 }
766
767 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000768 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769
770 // Truncate the result, and divide by K! / 2^T.
771
772 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
773 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000774}
775
Chris Lattner53e677a2004-04-02 20:23:17 +0000776/// evaluateAtIteration - Return the value of this chain of recurrences at
777/// the specified iteration number. We can evaluate this recurrence by
778/// multiplying each element in the chain by the binomial coefficient
779/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
780///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000781/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000786 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000788 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789 // The computation is correct in the face of overflow provided that the
790 // multiplication is performed _after_ the evaluation of the binomial
791 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000793 if (isa<SCEVCouldNotCompute>(Coeff))
794 return Coeff;
795
796 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000797 }
798 return Result;
799}
800
Chris Lattner53e677a2004-04-02 20:23:17 +0000801//===----------------------------------------------------------------------===//
802// SCEV Expression folder implementations
803//===----------------------------------------------------------------------===//
804
Dan Gohman0bba49c2009-07-07 17:06:11 +0000805const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000806 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000807 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000808 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000809 assert(isSCEVable(Ty) &&
810 "This is not a conversion to a SCEVable type!");
811 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000812
Dan Gohmanc050fd92009-07-13 20:50:19 +0000813 FoldingSetNodeID ID;
814 ID.AddInteger(scTruncate);
815 ID.AddPointer(Op);
816 ID.AddPointer(Ty);
817 void *IP = 0;
818 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
819
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000820 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000821 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000822 return getConstant(
823 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000824
Dan Gohman20900ca2009-04-22 16:20:48 +0000825 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000826 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000827 return getTruncateExpr(ST->getOperand(), Ty);
828
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000829 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000830 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 return getTruncateOrSignExtend(SS->getOperand(), Ty);
832
833 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000834 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
836
Dan Gohman6864db62009-06-18 16:24:47 +0000837 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000839 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000840 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000841 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
842 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000843 }
844
Dan Gohmanc050fd92009-07-13 20:50:19 +0000845 // The cast wasn't folded; create an explicit cast node.
846 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000847 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000848 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
849 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000850 UniqueSCEVs.InsertNode(S, IP);
851 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000852}
853
Dan Gohman0bba49c2009-07-07 17:06:11 +0000854const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000855 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000856 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000857 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000858 assert(isSCEVable(Ty) &&
859 "This is not a conversion to a SCEVable type!");
860 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000861
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000862 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000863 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000864 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000865 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
866 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000867 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000868 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000869
Dan Gohman20900ca2009-04-22 16:20:48 +0000870 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000871 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000872 return getZeroExtendExpr(SZ->getOperand(), Ty);
873
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000874 // Before doing any expensive analysis, check to see if we've already
875 // computed a SCEV for this Op and Ty.
876 FoldingSetNodeID ID;
877 ID.AddInteger(scZeroExtend);
878 ID.AddPointer(Op);
879 ID.AddPointer(Ty);
880 void *IP = 0;
881 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
882
Dan Gohman01ecca22009-04-27 20:16:15 +0000883 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000885 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000886 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000888 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000889 const SCEV *Start = AR->getStart();
890 const SCEV *Step = AR->getStepRecurrence(*this);
891 unsigned BitWidth = getTypeSizeInBits(AR->getType());
892 const Loop *L = AR->getLoop();
893
Dan Gohmaneb490a72009-07-25 01:22:26 +0000894 // If we have special knowledge that this addrec won't overflow,
895 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000896 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000897 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
898 getZeroExtendExpr(Step, Ty),
899 L);
900
Dan Gohman01ecca22009-04-27 20:16:15 +0000901 // Check whether the backedge-taken count is SCEVCouldNotCompute.
902 // Note that this serves two purposes: It filters out loops that are
903 // simply not analyzable, and it covers the case where this code is
904 // being called from within backedge-taken count analysis, such that
905 // attempting to ask for the backedge-taken count would likely result
906 // in infinite recursion. In the later case, the analysis code will
907 // cope with a conservative value, and it will take care to purge
908 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000909 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000910 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000911 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000912 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000913
914 // Check whether the backedge-taken count can be losslessly casted to
915 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000916 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000917 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000919 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
920 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000921 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000922 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000923 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000924 const SCEV *Add = getAddExpr(Start, ZMul);
925 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000926 getAddExpr(getZeroExtendExpr(Start, WideTy),
927 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
928 getZeroExtendExpr(Step, WideTy)));
929 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // Return the expression with the addrec on the outside.
931 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
932 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000933 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000934
935 // Similar to above, only this time treat the step value as signed.
936 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000937 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000938 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000939 OperandExtendedAdd =
940 getAddExpr(getZeroExtendExpr(Start, WideTy),
941 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
942 getSignExtendExpr(Step, WideTy)));
943 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000944 // Return the expression with the addrec on the outside.
945 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
946 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000947 L);
948 }
949
950 // If the backedge is guarded by a comparison with the pre-inc value
951 // the addrec is safe. Also, if the entry is guarded by a comparison
952 // with the start value and the backedge is guarded by a comparison
953 // with the post-inc value, the addrec is safe.
954 if (isKnownPositive(Step)) {
955 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
956 getUnsignedRange(Step).getUnsignedMax());
957 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
958 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
959 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
960 AR->getPostIncExpr(*this), N)))
961 // Return the expression with the addrec on the outside.
962 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
963 getZeroExtendExpr(Step, Ty),
964 L);
965 } else if (isKnownNegative(Step)) {
966 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
967 getSignedRange(Step).getSignedMin());
968 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
969 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
970 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
971 AR->getPostIncExpr(*this), N)))
972 // Return the expression with the addrec on the outside.
973 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
974 getSignExtendExpr(Step, Ty),
975 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000976 }
977 }
978 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000979
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000980 // The cast wasn't folded; create an explicit cast node.
981 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000982 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000983 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
984 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000985 UniqueSCEVs.InsertNode(S, IP);
986 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000987}
988
Dan Gohman0bba49c2009-07-07 17:06:11 +0000989const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000990 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000991 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000992 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000993 assert(isSCEVable(Ty) &&
994 "This is not a conversion to a SCEVable type!");
995 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000996
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000997 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000998 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000999 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001000 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1001 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001002 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +00001003 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001004
Dan Gohman20900ca2009-04-22 16:20:48 +00001005 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001006 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001007 return getSignExtendExpr(SS->getOperand(), Ty);
1008
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001009 // Before doing any expensive analysis, check to see if we've already
1010 // computed a SCEV for this Op and Ty.
1011 FoldingSetNodeID ID;
1012 ID.AddInteger(scSignExtend);
1013 ID.AddPointer(Op);
1014 ID.AddPointer(Ty);
1015 void *IP = 0;
1016 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1017
Dan Gohman01ecca22009-04-27 20:16:15 +00001018 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001019 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001021 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001022 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001023 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001024 const SCEV *Start = AR->getStart();
1025 const SCEV *Step = AR->getStepRecurrence(*this);
1026 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1027 const Loop *L = AR->getLoop();
1028
Dan Gohmaneb490a72009-07-25 01:22:26 +00001029 // If we have special knowledge that this addrec won't overflow,
1030 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001031 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001032 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1033 getSignExtendExpr(Step, Ty),
1034 L);
1035
Dan Gohman01ecca22009-04-27 20:16:15 +00001036 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1037 // Note that this serves two purposes: It filters out loops that are
1038 // simply not analyzable, and it covers the case where this code is
1039 // being called from within backedge-taken count analysis, such that
1040 // attempting to ask for the backedge-taken count would likely result
1041 // in infinite recursion. In the later case, the analysis code will
1042 // cope with a conservative value, and it will take care to purge
1043 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001044 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001045 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001046 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001047 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001048
1049 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001050 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001051 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001052 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001053 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001054 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1055 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001056 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001057 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001058 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059 const SCEV *Add = getAddExpr(Start, SMul);
1060 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001061 getAddExpr(getSignExtendExpr(Start, WideTy),
1062 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1063 getSignExtendExpr(Step, WideTy)));
1064 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001065 // Return the expression with the addrec on the outside.
1066 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1067 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001068 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001069
1070 // Similar to above, only this time treat the step value as unsigned.
1071 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001072 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001073 Add = getAddExpr(Start, UMul);
1074 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001075 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001076 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1077 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001078 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001079 // Return the expression with the addrec on the outside.
1080 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1081 getZeroExtendExpr(Step, Ty),
1082 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001083 }
1084
1085 // If the backedge is guarded by a comparison with the pre-inc value
1086 // the addrec is safe. Also, if the entry is guarded by a comparison
1087 // with the start value and the backedge is guarded by a comparison
1088 // with the post-inc value, the addrec is safe.
1089 if (isKnownPositive(Step)) {
1090 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1091 getSignedRange(Step).getSignedMax());
1092 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1093 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1094 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1095 AR->getPostIncExpr(*this), N)))
1096 // Return the expression with the addrec on the outside.
1097 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1098 getSignExtendExpr(Step, Ty),
1099 L);
1100 } else if (isKnownNegative(Step)) {
1101 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1102 getSignedRange(Step).getSignedMin());
1103 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1104 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1105 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1106 AR->getPostIncExpr(*this), N)))
1107 // Return the expression with the addrec on the outside.
1108 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1109 getSignExtendExpr(Step, Ty),
1110 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001111 }
1112 }
1113 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001114
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001115 // The cast wasn't folded; create an explicit cast node.
1116 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001117 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001118 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1119 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001120 UniqueSCEVs.InsertNode(S, IP);
1121 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001122}
1123
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001124/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1125/// unspecified bits out to the given type.
1126///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001127const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001128 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001129 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1130 "This is not an extending conversion!");
1131 assert(isSCEVable(Ty) &&
1132 "This is not a conversion to a SCEVable type!");
1133 Ty = getEffectiveSCEVType(Ty);
1134
1135 // Sign-extend negative constants.
1136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1137 if (SC->getValue()->getValue().isNegative())
1138 return getSignExtendExpr(Op, Ty);
1139
1140 // Peel off a truncate cast.
1141 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001143 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1144 return getAnyExtendExpr(NewOp, Ty);
1145 return getTruncateOrNoop(NewOp, Ty);
1146 }
1147
1148 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001149 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001150 if (!isa<SCEVZeroExtendExpr>(ZExt))
1151 return ZExt;
1152
1153 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001154 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001155 if (!isa<SCEVSignExtendExpr>(SExt))
1156 return SExt;
1157
Dan Gohmana10756e2010-01-21 02:09:26 +00001158 // Force the cast to be folded into the operands of an addrec.
1159 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1160 SmallVector<const SCEV *, 4> Ops;
1161 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1162 I != E; ++I)
1163 Ops.push_back(getAnyExtendExpr(*I, Ty));
1164 return getAddRecExpr(Ops, AR->getLoop());
1165 }
1166
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001167 // If the expression is obviously signed, use the sext cast value.
1168 if (isa<SCEVSMaxExpr>(Op))
1169 return SExt;
1170
1171 // Absent any other information, use the zext cast value.
1172 return ZExt;
1173}
1174
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001175/// CollectAddOperandsWithScales - Process the given Ops list, which is
1176/// a list of operands to be added under the given scale, update the given
1177/// map. This is a helper function for getAddRecExpr. As an example of
1178/// what it does, given a sequence of operands that would form an add
1179/// expression like this:
1180///
1181/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1182///
1183/// where A and B are constants, update the map with these values:
1184///
1185/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1186///
1187/// and add 13 + A*B*29 to AccumulatedConstant.
1188/// This will allow getAddRecExpr to produce this:
1189///
1190/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1191///
1192/// This form often exposes folding opportunities that are hidden in
1193/// the original operand list.
1194///
1195/// Return true iff it appears that any interesting folding opportunities
1196/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1197/// the common case where no interesting opportunities are present, and
1198/// is also used as a check to avoid infinite recursion.
1199///
1200static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001201CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1202 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001203 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001204 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001205 const APInt &Scale,
1206 ScalarEvolution &SE) {
1207 bool Interesting = false;
1208
1209 // Iterate over the add operands.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001210 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001211 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1212 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1213 APInt NewScale =
1214 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1215 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1216 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001217 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001218 Interesting |=
1219 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001220 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001221 NewScale, SE);
1222 } else {
1223 // A multiplication of a constant with some other value. Update
1224 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1226 const SCEV *Key = SE.getMulExpr(MulOps);
1227 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001228 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001229 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001230 NewOps.push_back(Pair.first->first);
1231 } else {
1232 Pair.first->second += NewScale;
1233 // The map already had an entry for this value, which may indicate
1234 // a folding opportunity.
1235 Interesting = true;
1236 }
1237 }
1238 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1239 // Pull a buried constant out to the outside.
1240 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1241 Interesting = true;
1242 AccumulatedConstant += Scale * C->getValue()->getValue();
1243 } else {
1244 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001245 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001246 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001247 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 NewOps.push_back(Pair.first->first);
1249 } else {
1250 Pair.first->second += Scale;
1251 // The map already had an entry for this value, which may indicate
1252 // a folding opportunity.
1253 Interesting = true;
1254 }
1255 }
1256 }
1257
1258 return Interesting;
1259}
1260
1261namespace {
1262 struct APIntCompare {
1263 bool operator()(const APInt &LHS, const APInt &RHS) const {
1264 return LHS.ult(RHS);
1265 }
1266 };
1267}
1268
Dan Gohman6c0866c2009-05-24 23:45:28 +00001269/// getAddExpr - Get a canonical add expression, or something simpler if
1270/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001271const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1272 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001273 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001274 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001275#ifndef NDEBUG
1276 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1277 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1278 getEffectiveSCEVType(Ops[0]->getType()) &&
1279 "SCEVAddExpr operand types don't match!");
1280#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001281
Dan Gohmana10756e2010-01-21 02:09:26 +00001282 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1283 if (!HasNUW && HasNSW) {
1284 bool All = true;
1285 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1286 if (!isKnownNonNegative(Ops[i])) {
1287 All = false;
1288 break;
1289 }
1290 if (All) HasNUW = true;
1291 }
1292
Chris Lattner53e677a2004-04-02 20:23:17 +00001293 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001294 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001295
1296 // If there are any constants, fold them together.
1297 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001298 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001299 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001300 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001301 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001302 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001303 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1304 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001305 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001306 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001307 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001308 }
1309
1310 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001311 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001312 Ops.erase(Ops.begin());
1313 --Idx;
1314 }
1315 }
1316
Chris Lattner627018b2004-04-07 16:16:11 +00001317 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001318
Chris Lattner53e677a2004-04-02 20:23:17 +00001319 // Okay, check to see if the same value occurs in the operand list twice. If
1320 // so, merge them together into an multiply expression. Since we sorted the
1321 // list, these values are required to be adjacent.
1322 const Type *Ty = Ops[0]->getType();
1323 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1324 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1325 // Found a match, merge the two values into a multiply, and add any
1326 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001327 const SCEV *Two = getIntegerSCEV(2, Ty);
1328 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001329 if (Ops.size() == 2)
1330 return Mul;
1331 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1332 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001333 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001334 }
1335
Dan Gohman728c7f32009-05-08 21:03:19 +00001336 // Check for truncates. If all the operands are truncated from the same
1337 // type, see if factoring out the truncate would permit the result to be
1338 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1339 // if the contents of the resulting outer trunc fold to something simple.
1340 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1341 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1342 const Type *DstType = Trunc->getType();
1343 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001344 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001345 bool Ok = true;
1346 // Check all the operands to see if they can be represented in the
1347 // source type of the truncate.
1348 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1349 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1350 if (T->getOperand()->getType() != SrcType) {
1351 Ok = false;
1352 break;
1353 }
1354 LargeOps.push_back(T->getOperand());
1355 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1356 // This could be either sign or zero extension, but sign extension
1357 // is much more likely to be foldable here.
1358 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1359 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001361 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362 if (const SCEVTruncateExpr *T =
1363 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364 if (T->getOperand()->getType() != SrcType) {
1365 Ok = false;
1366 break;
1367 }
1368 LargeMulOps.push_back(T->getOperand());
1369 } else if (const SCEVConstant *C =
1370 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1371 // This could be either sign or zero extension, but sign extension
1372 // is much more likely to be foldable here.
1373 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1374 } else {
1375 Ok = false;
1376 break;
1377 }
1378 }
1379 if (Ok)
1380 LargeOps.push_back(getMulExpr(LargeMulOps));
1381 } else {
1382 Ok = false;
1383 break;
1384 }
1385 }
1386 if (Ok) {
1387 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001388 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001389 // If it folds to something simple, use it. Otherwise, don't.
1390 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1391 return getTruncateExpr(Fold, DstType);
1392 }
1393 }
1394
1395 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001396 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1397 ++Idx;
1398
1399 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001400 if (Idx < Ops.size()) {
1401 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001402 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 // If we have an add, expand the add operands onto the end of the operands
1404 // list.
1405 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1406 Ops.erase(Ops.begin()+Idx);
1407 DeletedAdd = true;
1408 }
1409
1410 // If we deleted at least one add, we added operands to the end of the list,
1411 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001412 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001414 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001415 }
1416
1417 // Skip over the add expression until we get to a multiply.
1418 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1419 ++Idx;
1420
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001421 // Check to see if there are any folding opportunities present with
1422 // operands multiplied by constant values.
1423 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1424 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001425 DenseMap<const SCEV *, APInt> M;
1426 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001427 APInt AccumulatedConstant(BitWidth, 0);
1428 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001429 Ops.data(), Ops.size(),
1430 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001431 // Some interesting folding opportunity is present, so its worthwhile to
1432 // re-generate the operands list. Group the operands by constant scale,
1433 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001434 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1435 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 E = NewOps.end(); I != E; ++I)
1437 MulOpLists[M.find(*I)->second].push_back(*I);
1438 // Re-generate the operands list.
1439 Ops.clear();
1440 if (AccumulatedConstant != 0)
1441 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001442 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1443 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001444 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001445 Ops.push_back(getMulExpr(getConstant(I->first),
1446 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001447 if (Ops.empty())
1448 return getIntegerSCEV(0, Ty);
1449 if (Ops.size() == 1)
1450 return Ops[0];
1451 return getAddExpr(Ops);
1452 }
1453 }
1454
Chris Lattner53e677a2004-04-02 20:23:17 +00001455 // If we are adding something to a multiply expression, make sure the
1456 // something is not already an operand of the multiply. If so, merge it into
1457 // the multiply.
1458 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001459 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001461 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001463 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001465 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001466 if (Mul->getNumOperands() != 2) {
1467 // If the multiply has more than two operands, we must get the
1468 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001469 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001470 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001471 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001473 const SCEV *One = getIntegerSCEV(1, Ty);
1474 const SCEV *AddOne = getAddExpr(InnerMul, One);
1475 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 if (Ops.size() == 2) return OuterMul;
1477 if (AddOp < Idx) {
1478 Ops.erase(Ops.begin()+AddOp);
1479 Ops.erase(Ops.begin()+Idx-1);
1480 } else {
1481 Ops.erase(Ops.begin()+Idx);
1482 Ops.erase(Ops.begin()+AddOp-1);
1483 }
1484 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001485 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Chris Lattner53e677a2004-04-02 20:23:17 +00001488 // Check this multiply against other multiplies being added together.
1489 for (unsigned OtherMulIdx = Idx+1;
1490 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1491 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001492 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 // If MulOp occurs in OtherMul, we can fold the two multiplies
1494 // together.
1495 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1496 OMulOp != e; ++OMulOp)
1497 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1498 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001499 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001500 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001501 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1502 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001504 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001506 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001508 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1509 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001511 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001513 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1514 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (Ops.size() == 2) return OuterMul;
1516 Ops.erase(Ops.begin()+Idx);
1517 Ops.erase(Ops.begin()+OtherMulIdx-1);
1518 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001519 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
1521 }
1522 }
1523 }
1524
1525 // If there are any add recurrences in the operands list, see if any other
1526 // added values are loop invariant. If so, we can fold them into the
1527 // recurrence.
1528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1529 ++Idx;
1530
1531 // Scan over all recurrences, trying to fold loop invariants into them.
1532 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1533 // Scan all of the other operands to this add and add them to the vector if
1534 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001535 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001536 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1538 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1539 LIOps.push_back(Ops[i]);
1540 Ops.erase(Ops.begin()+i);
1541 --i; --e;
1542 }
1543
1544 // If we found some loop invariants, fold them into the recurrence.
1545 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001546 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 LIOps.push_back(AddRec->getStart());
1548
Dan Gohman0bba49c2009-07-07 17:06:11 +00001549 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001550 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001551 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001552
Dan Gohman355b4f32009-12-19 01:46:34 +00001553 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001554 // is not associative so this isn't necessarily safe.
Dan Gohman3a5d4092009-12-18 03:57:04 +00001555 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohman59de33e2009-12-18 18:45:31 +00001556
Chris Lattner53e677a2004-04-02 20:23:17 +00001557 // If all of the other operands were loop invariant, we are done.
1558 if (Ops.size() == 1) return NewRec;
1559
1560 // Otherwise, add the folded AddRec by the non-liv parts.
1561 for (unsigned i = 0;; ++i)
1562 if (Ops[i] == AddRec) {
1563 Ops[i] = NewRec;
1564 break;
1565 }
Dan Gohman246b2562007-10-22 18:31:58 +00001566 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567 }
1568
1569 // Okay, if there weren't any loop invariants to be folded, check to see if
1570 // there are multiple AddRec's with the same loop induction variable being
1571 // added together. If so, we can fold them.
1572 for (unsigned OtherIdx = Idx+1;
1573 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1574 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001575 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1577 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001578 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1579 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001580 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1581 if (i >= NewOps.size()) {
1582 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1583 OtherAddRec->op_end());
1584 break;
1585 }
Dan Gohman246b2562007-10-22 18:31:58 +00001586 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001588 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001589
1590 if (Ops.size() == 2) return NewAddRec;
1591
1592 Ops.erase(Ops.begin()+Idx);
1593 Ops.erase(Ops.begin()+OtherIdx-1);
1594 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001595 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 }
1597 }
1598
1599 // Otherwise couldn't fold anything into this recurrence. Move onto the
1600 // next one.
1601 }
1602
1603 // Okay, it looks like we really DO need an add expr. Check to see if we
1604 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001605 FoldingSetNodeID ID;
1606 ID.AddInteger(scAddExpr);
1607 ID.AddInteger(Ops.size());
1608 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1609 ID.AddPointer(Ops[i]);
1610 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001611 SCEVAddExpr *S =
1612 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1613 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001614 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1615 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001616 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1617 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001618 UniqueSCEVs.InsertNode(S, IP);
1619 }
Dan Gohman3645b012009-10-09 00:10:36 +00001620 if (HasNUW) S->setHasNoUnsignedWrap(true);
1621 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001622 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001623}
1624
Dan Gohman6c0866c2009-05-24 23:45:28 +00001625/// getMulExpr - Get a canonical multiply expression, or something simpler if
1626/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001627const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1628 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001629 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001630 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001631#ifndef NDEBUG
1632 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1633 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1634 getEffectiveSCEVType(Ops[0]->getType()) &&
1635 "SCEVMulExpr operand types don't match!");
1636#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001637
Dan Gohmana10756e2010-01-21 02:09:26 +00001638 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1639 if (!HasNUW && HasNSW) {
1640 bool All = true;
1641 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1642 if (!isKnownNonNegative(Ops[i])) {
1643 All = false;
1644 break;
1645 }
1646 if (All) HasNUW = true;
1647 }
1648
Chris Lattner53e677a2004-04-02 20:23:17 +00001649 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001650 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651
1652 // If there are any constants, fold them together.
1653 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001654 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001655
1656 // C1*(C2+V) -> C1*C2 + C1*V
1657 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001658 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 if (Add->getNumOperands() == 2 &&
1660 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001661 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1662 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001663
Chris Lattner53e677a2004-04-02 20:23:17 +00001664 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001665 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001667 ConstantInt *Fold = ConstantInt::get(getContext(),
1668 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001669 RHSC->getValue()->getValue());
1670 Ops[0] = getConstant(Fold);
1671 Ops.erase(Ops.begin()+1); // Erase the folded element
1672 if (Ops.size() == 1) return Ops[0];
1673 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 }
1675
1676 // If we are left with a constant one being multiplied, strip it off.
1677 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1678 Ops.erase(Ops.begin());
1679 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001680 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 // If we have a multiply of zero, it will always be zero.
1682 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001683 } else if (Ops[0]->isAllOnesValue()) {
1684 // If we have a mul by -1 of an add, try distributing the -1 among the
1685 // add operands.
1686 if (Ops.size() == 2)
1687 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1688 SmallVector<const SCEV *, 4> NewOps;
1689 bool AnyFolded = false;
1690 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1691 I != E; ++I) {
1692 const SCEV *Mul = getMulExpr(Ops[0], *I);
1693 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1694 NewOps.push_back(Mul);
1695 }
1696 if (AnyFolded)
1697 return getAddExpr(NewOps);
1698 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 }
1700 }
1701
1702 // Skip over the add expression until we get to a multiply.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1704 ++Idx;
1705
1706 if (Ops.size() == 1)
1707 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001708
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 // If there are mul operands inline them all into this expression.
1710 if (Idx < Ops.size()) {
1711 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001712 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 // If we have an mul, expand the mul operands onto the end of the operands
1714 // list.
1715 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1716 Ops.erase(Ops.begin()+Idx);
1717 DeletedMul = true;
1718 }
1719
1720 // If we deleted at least one mul, we added operands to the end of the list,
1721 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001722 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001724 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this mul and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1740 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1741 LIOps.push_back(Ops[i]);
1742 Ops.erase(Ops.begin()+i);
1743 --i; --e;
1744 }
1745
1746 // If we found some loop invariants, fold them into the recurrence.
1747 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001748 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 NewOps.reserve(AddRec->getNumOperands());
1751 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001752 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001754 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 } else {
1756 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001757 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001758 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001759 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001760 }
1761 }
1762
Dan Gohman355b4f32009-12-19 01:46:34 +00001763 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001764 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001765 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1766 HasNUW && AddRec->hasNoUnsignedWrap(),
1767 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001768
1769 // If all of the other operands were loop invariant, we are done.
1770 if (Ops.size() == 1) return NewRec;
1771
1772 // Otherwise, multiply the folded AddRec by the non-liv parts.
1773 for (unsigned i = 0;; ++i)
1774 if (Ops[i] == AddRec) {
1775 Ops[i] = NewRec;
1776 break;
1777 }
Dan Gohman246b2562007-10-22 18:31:58 +00001778 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 }
1780
1781 // Okay, if there weren't any loop invariants to be folded, check to see if
1782 // there are multiple AddRec's with the same loop induction variable being
1783 // multiplied together. If so, we can fold them.
1784 for (unsigned OtherIdx = Idx+1;
1785 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1786 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001787 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1789 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001790 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001791 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001793 const SCEV *B = F->getStepRecurrence(*this);
1794 const SCEV *D = G->getStepRecurrence(*this);
1795 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001796 getMulExpr(G, B),
1797 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001798 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001799 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 if (Ops.size() == 2) return NewAddRec;
1801
1802 Ops.erase(Ops.begin()+Idx);
1803 Ops.erase(Ops.begin()+OtherIdx-1);
1804 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001805 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001806 }
1807 }
1808
1809 // Otherwise couldn't fold anything into this recurrence. Move onto the
1810 // next one.
1811 }
1812
1813 // Okay, it looks like we really DO need an mul expr. Check to see if we
1814 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001815 FoldingSetNodeID ID;
1816 ID.AddInteger(scMulExpr);
1817 ID.AddInteger(Ops.size());
1818 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1819 ID.AddPointer(Ops[i]);
1820 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 SCEVMulExpr *S =
1822 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1823 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001824 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1825 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001826 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1827 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001828 UniqueSCEVs.InsertNode(S, IP);
1829 }
Dan Gohman3645b012009-10-09 00:10:36 +00001830 if (HasNUW) S->setHasNoUnsignedWrap(true);
1831 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001832 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001833}
1834
Andreas Bolka8a11c982009-08-07 22:55:26 +00001835/// getUDivExpr - Get a canonical unsigned division expression, or something
1836/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001837const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1838 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001839 assert(getEffectiveSCEVType(LHS->getType()) ==
1840 getEffectiveSCEVType(RHS->getType()) &&
1841 "SCEVUDivExpr operand types don't match!");
1842
Dan Gohman622ed672009-05-04 22:02:23 +00001843 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001844 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001845 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001846 if (RHSC->isZero())
1847 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001848
Dan Gohman185cf032009-05-08 20:18:49 +00001849 // Determine if the division can be folded into the operands of
1850 // its operands.
1851 // TODO: Generalize this to non-constants by using known-bits information.
1852 const Type *Ty = LHS->getType();
1853 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1854 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1855 // For non-power-of-two values, effectively round the value up to the
1856 // nearest power of two.
1857 if (!RHSC->getValue()->getValue().isPowerOf2())
1858 ++MaxShiftAmt;
1859 const IntegerType *ExtTy =
Owen Anderson1d0be152009-08-13 21:58:54 +00001860 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohman185cf032009-05-08 20:18:49 +00001861 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1863 if (const SCEVConstant *Step =
1864 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1865 if (!Step->getValue()->getValue()
1866 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001867 getZeroExtendExpr(AR, ExtTy) ==
1868 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1869 getZeroExtendExpr(Step, ExtTy),
1870 AR->getLoop())) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001871 SmallVector<const SCEV *, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001872 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1873 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1874 return getAddRecExpr(Operands, AR->getLoop());
1875 }
1876 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001877 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001878 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001879 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1880 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1881 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001882 // Find an operand that's safely divisible.
1883 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001884 const SCEV *Op = M->getOperand(i);
1885 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohman185cf032009-05-08 20:18:49 +00001886 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001887 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), M->op_end());
Dan Gohman185cf032009-05-08 20:18:49 +00001888 Operands[i] = Div;
1889 return getMulExpr(Operands);
1890 }
1891 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001892 }
Dan Gohman185cf032009-05-08 20:18:49 +00001893 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001894 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001895 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001896 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1897 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1898 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1899 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001900 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001901 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohman185cf032009-05-08 20:18:49 +00001902 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1903 break;
1904 Operands.push_back(Op);
1905 }
1906 if (Operands.size() == A->getNumOperands())
1907 return getAddExpr(Operands);
1908 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001909 }
Dan Gohman185cf032009-05-08 20:18:49 +00001910
1911 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001912 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 Constant *LHSCV = LHSC->getValue();
1914 Constant *RHSCV = RHSC->getValue();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001915 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001916 RHSCV)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918 }
1919
Dan Gohman1c343752009-06-27 21:21:31 +00001920 FoldingSetNodeID ID;
1921 ID.AddInteger(scUDivExpr);
1922 ID.AddPointer(LHS);
1923 ID.AddPointer(RHS);
1924 void *IP = 0;
1925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001926 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1927 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001928 UniqueSCEVs.InsertNode(S, IP);
1929 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001930}
1931
1932
Dan Gohman6c0866c2009-05-24 23:45:28 +00001933/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1934/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001935const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001936 const SCEV *Step, const Loop *L,
1937 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001938 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001939 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001940 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001941 if (StepChrec->getLoop() == L) {
1942 Operands.insert(Operands.end(), StepChrec->op_begin(),
1943 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001944 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 }
1946
1947 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001948 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001949}
1950
Dan Gohman6c0866c2009-05-24 23:45:28 +00001951/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1952/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001953const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001954ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001955 const Loop *L,
1956 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001958#ifndef NDEBUG
1959 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1960 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1961 getEffectiveSCEVType(Operands[0]->getType()) &&
1962 "SCEVAddRecExpr operand types don't match!");
1963#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001964
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001965 if (Operands.back()->isZero()) {
1966 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001967 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001968 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001969
Dan Gohmanbc028532010-02-19 18:49:22 +00001970 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1971 // use that information to infer NUW and NSW flags. However, computing a
1972 // BE count requires calling getAddRecExpr, so we may not yet have a
1973 // meaningful BE count at this point (and if we don't, we'd be stuck
1974 // with a SCEVCouldNotCompute as the cached BE count).
1975
Dan Gohmana10756e2010-01-21 02:09:26 +00001976 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1977 if (!HasNUW && HasNSW) {
1978 bool All = true;
1979 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1980 if (!isKnownNonNegative(Operands[i])) {
1981 All = false;
1982 break;
1983 }
1984 if (All) HasNUW = true;
1985 }
1986
Dan Gohmand9cc7492008-08-08 18:33:12 +00001987 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001988 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001989 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001990 if (L->contains(NestedLoop->getHeader()) ?
1991 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1992 (!NestedLoop->contains(L->getHeader()) &&
1993 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001994 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001995 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001996 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001997 // AddRecs require their operands be loop-invariant with respect to their
1998 // loops. Don't perform this transformation if it would break this
1999 // requirement.
2000 bool AllInvariant = true;
2001 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2002 if (!Operands[i]->isLoopInvariant(L)) {
2003 AllInvariant = false;
2004 break;
2005 }
2006 if (AllInvariant) {
2007 NestedOperands[0] = getAddRecExpr(Operands, L);
2008 AllInvariant = true;
2009 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2010 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2011 AllInvariant = false;
2012 break;
2013 }
2014 if (AllInvariant)
2015 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002016 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002017 }
2018 // Reset Operands to its original state.
2019 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002020 }
2021 }
2022
Dan Gohman67847532010-01-19 22:27:22 +00002023 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2024 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002025 FoldingSetNodeID ID;
2026 ID.AddInteger(scAddRecExpr);
2027 ID.AddInteger(Operands.size());
2028 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2029 ID.AddPointer(Operands[i]);
2030 ID.AddPointer(L);
2031 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002032 SCEVAddRecExpr *S =
2033 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2034 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002035 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2036 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002037 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2038 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002039 UniqueSCEVs.InsertNode(S, IP);
2040 }
Dan Gohman3645b012009-10-09 00:10:36 +00002041 if (HasNUW) S->setHasNoUnsignedWrap(true);
2042 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002043 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002044}
2045
Dan Gohman9311ef62009-06-24 14:49:00 +00002046const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2047 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002048 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002049 Ops.push_back(LHS);
2050 Ops.push_back(RHS);
2051 return getSMaxExpr(Ops);
2052}
2053
Dan Gohman0bba49c2009-07-07 17:06:11 +00002054const SCEV *
2055ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002056 assert(!Ops.empty() && "Cannot get empty smax!");
2057 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002058#ifndef NDEBUG
2059 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2060 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2061 getEffectiveSCEVType(Ops[0]->getType()) &&
2062 "SCEVSMaxExpr operand types don't match!");
2063#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002064
2065 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002066 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002067
2068 // If there are any constants, fold them together.
2069 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002071 ++Idx;
2072 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002074 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002075 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002076 APIntOps::smax(LHSC->getValue()->getValue(),
2077 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002078 Ops[0] = getConstant(Fold);
2079 Ops.erase(Ops.begin()+1); // Erase the folded element
2080 if (Ops.size() == 1) return Ops[0];
2081 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002082 }
2083
Dan Gohmane5aceed2009-06-24 14:46:22 +00002084 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002085 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2086 Ops.erase(Ops.begin());
2087 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002088 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2089 // If we have an smax with a constant maximum-int, it will always be
2090 // maximum-int.
2091 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002092 }
2093 }
2094
2095 if (Ops.size() == 1) return Ops[0];
2096
2097 // Find the first SMax
2098 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2099 ++Idx;
2100
2101 // Check to see if one of the operands is an SMax. If so, expand its operands
2102 // onto our operand list, and recurse to simplify.
2103 if (Idx < Ops.size()) {
2104 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002105 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002106 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2107 Ops.erase(Ops.begin()+Idx);
2108 DeletedSMax = true;
2109 }
2110
2111 if (DeletedSMax)
2112 return getSMaxExpr(Ops);
2113 }
2114
2115 // Okay, check to see if the same value occurs in the operand list twice. If
2116 // so, delete one. Since we sorted the list, these values are required to
2117 // be adjacent.
2118 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2119 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
2120 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2121 --i; --e;
2122 }
2123
2124 if (Ops.size() == 1) return Ops[0];
2125
2126 assert(!Ops.empty() && "Reduced smax down to nothing!");
2127
Nick Lewycky3e630762008-02-20 06:48:22 +00002128 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002130 FoldingSetNodeID ID;
2131 ID.AddInteger(scSMaxExpr);
2132 ID.AddInteger(Ops.size());
2133 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2134 ID.AddPointer(Ops[i]);
2135 void *IP = 0;
2136 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002137 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2138 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002139 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2140 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002141 UniqueSCEVs.InsertNode(S, IP);
2142 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002143}
2144
Dan Gohman9311ef62009-06-24 14:49:00 +00002145const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2146 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002147 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002148 Ops.push_back(LHS);
2149 Ops.push_back(RHS);
2150 return getUMaxExpr(Ops);
2151}
2152
Dan Gohman0bba49c2009-07-07 17:06:11 +00002153const SCEV *
2154ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002155 assert(!Ops.empty() && "Cannot get empty umax!");
2156 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002157#ifndef NDEBUG
2158 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2159 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2160 getEffectiveSCEVType(Ops[0]->getType()) &&
2161 "SCEVUMaxExpr operand types don't match!");
2162#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002163
2164 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002165 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002166
2167 // If there are any constants, fold them together.
2168 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002169 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002170 ++Idx;
2171 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002172 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002173 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002174 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002175 APIntOps::umax(LHSC->getValue()->getValue(),
2176 RHSC->getValue()->getValue()));
2177 Ops[0] = getConstant(Fold);
2178 Ops.erase(Ops.begin()+1); // Erase the folded element
2179 if (Ops.size() == 1) return Ops[0];
2180 LHSC = cast<SCEVConstant>(Ops[0]);
2181 }
2182
Dan Gohmane5aceed2009-06-24 14:46:22 +00002183 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2185 Ops.erase(Ops.begin());
2186 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002187 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2188 // If we have an umax with a constant maximum-int, it will always be
2189 // maximum-int.
2190 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002191 }
2192 }
2193
2194 if (Ops.size() == 1) return Ops[0];
2195
2196 // Find the first UMax
2197 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2198 ++Idx;
2199
2200 // Check to see if one of the operands is a UMax. If so, expand its operands
2201 // onto our operand list, and recurse to simplify.
2202 if (Idx < Ops.size()) {
2203 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002204 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002205 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2206 Ops.erase(Ops.begin()+Idx);
2207 DeletedUMax = true;
2208 }
2209
2210 if (DeletedUMax)
2211 return getUMaxExpr(Ops);
2212 }
2213
2214 // Okay, check to see if the same value occurs in the operand list twice. If
2215 // so, delete one. Since we sorted the list, these values are required to
2216 // be adjacent.
2217 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2218 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2219 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2220 --i; --e;
2221 }
2222
2223 if (Ops.size() == 1) return Ops[0];
2224
2225 assert(!Ops.empty() && "Reduced umax down to nothing!");
2226
2227 // Okay, it looks like we really DO need a umax expr. Check to see if we
2228 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002229 FoldingSetNodeID ID;
2230 ID.AddInteger(scUMaxExpr);
2231 ID.AddInteger(Ops.size());
2232 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2233 ID.AddPointer(Ops[i]);
2234 void *IP = 0;
2235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002236 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2237 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002238 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2239 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002240 UniqueSCEVs.InsertNode(S, IP);
2241 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002242}
2243
Dan Gohman9311ef62009-06-24 14:49:00 +00002244const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2245 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002246 // ~smax(~x, ~y) == smin(x, y).
2247 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2248}
2249
Dan Gohman9311ef62009-06-24 14:49:00 +00002250const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2251 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002252 // ~umax(~x, ~y) == umin(x, y)
2253 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2254}
2255
Dan Gohman4f8eea82010-02-01 18:27:38 +00002256const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2257 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2258 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2259 C = ConstantFoldConstantExpression(CE, TD);
2260 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2261 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2262}
2263
2264const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2265 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2266 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2267 C = ConstantFoldConstantExpression(CE, TD);
2268 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2269 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2270}
2271
2272const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2273 unsigned FieldNo) {
Dan Gohman0f5efe52010-01-28 02:15:55 +00002274 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2275 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2276 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002277 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002278 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002279}
2280
Dan Gohman4f8eea82010-02-01 18:27:38 +00002281const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2282 Constant *FieldNo) {
2283 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002284 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2285 C = ConstantFoldConstantExpression(CE, TD);
Dan Gohman4f8eea82010-02-01 18:27:38 +00002286 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002287 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002288}
2289
Dan Gohman0bba49c2009-07-07 17:06:11 +00002290const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002291 // Don't attempt to do anything other than create a SCEVUnknown object
2292 // here. createSCEV only calls getUnknown after checking for all other
2293 // interesting possibilities, and any other code that calls getUnknown
2294 // is doing so in order to hide a value from SCEV canonicalization.
2295
Dan Gohman1c343752009-06-27 21:21:31 +00002296 FoldingSetNodeID ID;
2297 ID.AddInteger(scUnknown);
2298 ID.AddPointer(V);
2299 void *IP = 0;
2300 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002301 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002302 UniqueSCEVs.InsertNode(S, IP);
2303 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002304}
2305
Chris Lattner53e677a2004-04-02 20:23:17 +00002306//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002307// Basic SCEV Analysis and PHI Idiom Recognition Code
2308//
2309
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002310/// isSCEVable - Test if values of the given type are analyzable within
2311/// the SCEV framework. This primarily includes integer types, and it
2312/// can optionally include pointer types if the ScalarEvolution class
2313/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002314bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002315 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002316 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002317}
2318
2319/// getTypeSizeInBits - Return the size in bits of the specified type,
2320/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002321uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002322 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2323
2324 // If we have a TargetData, use it!
2325 if (TD)
2326 return TD->getTypeSizeInBits(Ty);
2327
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002328 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002329 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002330 return Ty->getPrimitiveSizeInBits();
2331
2332 // The only other support type is pointer. Without TargetData, conservatively
2333 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002334 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002335 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002336}
2337
2338/// getEffectiveSCEVType - Return a type with the same bitwidth as
2339/// the given type and which represents how SCEV will treat the given
2340/// type, for which isSCEVable must return true. For pointer types,
2341/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002342const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002343 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2344
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002345 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002346 return Ty;
2347
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002348 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002349 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002350 if (TD) return TD->getIntPtrType(getContext());
2351
2352 // Without TargetData, conservatively assume pointers are 64-bit.
2353 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002354}
Chris Lattner53e677a2004-04-02 20:23:17 +00002355
Dan Gohman0bba49c2009-07-07 17:06:11 +00002356const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002357 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002358}
2359
Chris Lattner53e677a2004-04-02 20:23:17 +00002360/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2361/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002362const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002363 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002364
Dan Gohman0bba49c2009-07-07 17:06:11 +00002365 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002366 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002367 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002368 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002369 return S;
2370}
2371
Dan Gohman6bbcba12009-06-24 00:54:57 +00002372/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002373/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002374const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002375 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002376 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002377}
2378
2379/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2380///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002382 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002383 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002384 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002385
2386 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002387 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002388 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002389 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002390}
2391
2392/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002393const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002394 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002395 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002396 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002397
2398 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002399 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002400 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002401 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002402 return getMinusSCEV(AllOnes, V);
2403}
2404
2405/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2406///
Dan Gohman9311ef62009-06-24 14:49:00 +00002407const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2408 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002409 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002410 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002411}
2412
2413/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2414/// input value to the specified type. If the type must be extended, it is zero
2415/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002416const SCEV *
2417ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002418 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002419 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002420 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2421 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002422 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002423 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002424 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002425 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002426 return getTruncateExpr(V, Ty);
2427 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002428}
2429
2430/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2431/// input value to the specified type. If the type must be extended, it is sign
2432/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002433const SCEV *
2434ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002435 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002436 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002437 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2438 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002439 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002440 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002441 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002442 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002443 return getTruncateExpr(V, Ty);
2444 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002445}
2446
Dan Gohman467c4302009-05-13 03:46:30 +00002447/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2448/// input value to the specified type. If the type must be extended, it is zero
2449/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002450const SCEV *
2451ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002452 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002453 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2454 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002455 "Cannot noop or zero extend with non-integer arguments!");
2456 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2457 "getNoopOrZeroExtend cannot truncate!");
2458 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2459 return V; // No conversion
2460 return getZeroExtendExpr(V, Ty);
2461}
2462
2463/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2464/// input value to the specified type. If the type must be extended, it is sign
2465/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002466const SCEV *
2467ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002468 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002469 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2470 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002471 "Cannot noop or sign extend with non-integer arguments!");
2472 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2473 "getNoopOrSignExtend cannot truncate!");
2474 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2475 return V; // No conversion
2476 return getSignExtendExpr(V, Ty);
2477}
2478
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002479/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2480/// the input value to the specified type. If the type must be extended,
2481/// it is extended with unspecified bits. The conversion must not be
2482/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483const SCEV *
2484ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002485 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002486 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2487 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002488 "Cannot noop or any extend with non-integer arguments!");
2489 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2490 "getNoopOrAnyExtend cannot truncate!");
2491 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2492 return V; // No conversion
2493 return getAnyExtendExpr(V, Ty);
2494}
2495
Dan Gohman467c4302009-05-13 03:46:30 +00002496/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2497/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002498const SCEV *
2499ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002500 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002501 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2502 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002503 "Cannot truncate or noop with non-integer arguments!");
2504 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2505 "getTruncateOrNoop cannot extend!");
2506 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2507 return V; // No conversion
2508 return getTruncateExpr(V, Ty);
2509}
2510
Dan Gohmana334aa72009-06-22 00:31:57 +00002511/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2512/// the types using zero-extension, and then perform a umax operation
2513/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002514const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2515 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002516 const SCEV *PromotedLHS = LHS;
2517 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002518
2519 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2520 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2521 else
2522 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2523
2524 return getUMaxExpr(PromotedLHS, PromotedRHS);
2525}
2526
Dan Gohmanc9759e82009-06-22 15:03:27 +00002527/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2528/// the types using zero-extension, and then perform a umin operation
2529/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002530const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2531 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002532 const SCEV *PromotedLHS = LHS;
2533 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002534
2535 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2536 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2537 else
2538 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2539
2540 return getUMinExpr(PromotedLHS, PromotedRHS);
2541}
2542
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002543/// PushDefUseChildren - Push users of the given Instruction
2544/// onto the given Worklist.
2545static void
2546PushDefUseChildren(Instruction *I,
2547 SmallVectorImpl<Instruction *> &Worklist) {
2548 // Push the def-use children onto the Worklist stack.
2549 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2550 UI != UE; ++UI)
2551 Worklist.push_back(cast<Instruction>(UI));
2552}
2553
2554/// ForgetSymbolicValue - This looks up computed SCEV values for all
2555/// instructions that depend on the given instruction and removes them from
2556/// the Scalars map if they reference SymName. This is used during PHI
2557/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002558void
Dan Gohman85669632010-02-25 06:57:05 +00002559ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002560 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002561 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002562
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002563 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002564 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002565 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002566 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002567 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002568
Dan Gohman5d984912009-12-18 01:14:11 +00002569 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002570 Scalars.find(static_cast<Value *>(I));
2571 if (It != Scalars.end()) {
2572 // Short-circuit the def-use traversal if the symbolic name
2573 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002574 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002575 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002576
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002577 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002578 // structure, it's a PHI that's in the progress of being computed
2579 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2580 // additional loop trip count information isn't going to change anything.
2581 // In the second case, createNodeForPHI will perform the necessary
2582 // updates on its own when it gets to that point. In the third, we do
2583 // want to forget the SCEVUnknown.
2584 if (!isa<PHINode>(I) ||
2585 !isa<SCEVUnknown>(It->second) ||
2586 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002587 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002588 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002589 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002590 }
2591
2592 PushDefUseChildren(I, Worklist);
2593 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002594}
Chris Lattner53e677a2004-04-02 20:23:17 +00002595
2596/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2597/// a loop header, making it a potential recurrence, or it doesn't.
2598///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002599const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002600 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002601 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002602 if (L->getHeader() == PN->getParent()) {
2603 // If it lives in the loop header, it has two incoming values, one
2604 // from outside the loop, and one from inside.
2605 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2606 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002607
Chris Lattner53e677a2004-04-02 20:23:17 +00002608 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002609 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002610 assert(Scalars.find(PN) == Scalars.end() &&
2611 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002612 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002613
2614 // Using this symbolic name for the PHI, analyze the value coming around
2615 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002616 Value *BEValueV = PN->getIncomingValue(BackEdge);
2617 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002618
2619 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2620 // has a special value for the first iteration of the loop.
2621
2622 // If the value coming around the backedge is an add with the symbolic
2623 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002624 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002625 // If there is a single occurrence of the symbolic value, replace it
2626 // with a recurrence.
2627 unsigned FoundIndex = Add->getNumOperands();
2628 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2629 if (Add->getOperand(i) == SymbolicName)
2630 if (FoundIndex == e) {
2631 FoundIndex = i;
2632 break;
2633 }
2634
2635 if (FoundIndex != Add->getNumOperands()) {
2636 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002637 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002638 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2639 if (i != FoundIndex)
2640 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002641 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002642
2643 // This is not a valid addrec if the step amount is varying each
2644 // loop iteration, but is not itself an addrec in this loop.
2645 if (Accum->isLoopInvariant(L) ||
2646 (isa<SCEVAddRecExpr>(Accum) &&
2647 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002648 bool HasNUW = false;
2649 bool HasNSW = false;
2650
2651 // If the increment doesn't overflow, then neither the addrec nor
2652 // the post-increment will overflow.
2653 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2654 if (OBO->hasNoUnsignedWrap())
2655 HasNUW = true;
2656 if (OBO->hasNoSignedWrap())
2657 HasNSW = true;
2658 }
2659
Dan Gohman64a845e2009-06-24 04:48:43 +00002660 const SCEV *StartVal =
2661 getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmana10756e2010-01-21 02:09:26 +00002662 const SCEV *PHISCEV =
2663 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002664
Dan Gohmana10756e2010-01-21 02:09:26 +00002665 // Since the no-wrap flags are on the increment, they apply to the
2666 // post-incremented value as well.
2667 if (Accum->isLoopInvariant(L))
2668 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2669 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002670
2671 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002672 // to be symbolic. We now need to go back and purge all of the
2673 // entries for the scalars that use the symbolic expression.
2674 ForgetSymbolicName(PN, SymbolicName);
2675 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002676 return PHISCEV;
2677 }
2678 }
Dan Gohman622ed672009-05-04 22:02:23 +00002679 } else if (const SCEVAddRecExpr *AddRec =
2680 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002681 // Otherwise, this could be a loop like this:
2682 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2683 // In this case, j = {1,+,1} and BEValue is j.
2684 // Because the other in-value of i (0) fits the evolution of BEValue
2685 // i really is an addrec evolution.
2686 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002687 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Chris Lattner97156e72006-04-26 18:34:07 +00002688
2689 // If StartVal = j.start - j.stride, we can use StartVal as the
2690 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002691 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00002692 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002693 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002694 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002695
2696 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002697 // to be symbolic. We now need to go back and purge all of the
2698 // entries for the scalars that use the symbolic expression.
2699 ForgetSymbolicName(PN, SymbolicName);
2700 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002701 return PHISCEV;
2702 }
2703 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002704 }
2705
2706 return SymbolicName;
2707 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002708
Dan Gohman85669632010-02-25 06:57:05 +00002709 // If the PHI has a single incoming value, follow that value, unless the
2710 // PHI's incoming blocks are in a different loop, in which case doing so
2711 // risks breaking LCSSA form. Instcombine would normally zap these, but
2712 // it doesn't have DominatorTree information, so it may miss cases.
2713 if (Value *V = PN->hasConstantValue(DT)) {
2714 bool AllSameLoop = true;
2715 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2716 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2717 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2718 AllSameLoop = false;
2719 break;
2720 }
2721 if (AllSameLoop)
2722 return getSCEV(V);
2723 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002724
Chris Lattner53e677a2004-04-02 20:23:17 +00002725 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002726 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002727}
2728
Dan Gohman26466c02009-05-08 20:26:55 +00002729/// createNodeForGEP - Expand GEP instructions into add and multiply
2730/// operations. This allows them to be analyzed by regular SCEV code.
2731///
Dan Gohmand281ed22009-12-18 02:09:29 +00002732const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002733
Dan Gohmand281ed22009-12-18 02:09:29 +00002734 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002735 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002736 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002737 // Don't attempt to analyze GEPs over unsized objects.
2738 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2739 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002740 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002741 gep_type_iterator GTI = gep_type_begin(GEP);
2742 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2743 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002744 I != E; ++I) {
2745 Value *Index = *I;
2746 // Compute the (potentially symbolic) offset in bytes for this index.
2747 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2748 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002749 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002750 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002751 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002752 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002753 } else {
2754 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002755 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002756 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002757 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002758 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002759 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002760 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2761 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2762 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002763 }
2764 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002765 return getAddExpr(getSCEV(Base), TotalOffset,
2766 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002767}
2768
Nick Lewycky83bb0052007-11-22 07:59:40 +00002769/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2770/// guaranteed to end in (at every loop iteration). It is, at the same time,
2771/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2772/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002773uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002774ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002776 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002777
Dan Gohman622ed672009-05-04 22:02:23 +00002778 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002779 return std::min(GetMinTrailingZeros(T->getOperand()),
2780 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002781
Dan Gohman622ed672009-05-04 22:02:23 +00002782 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002783 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2784 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2785 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002786 }
2787
Dan Gohman622ed672009-05-04 22:02:23 +00002788 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2791 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002792 }
2793
Dan Gohman622ed672009-05-04 22:02:23 +00002794 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002795 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002796 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002797 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002799 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002800 }
2801
Dan Gohman622ed672009-05-04 22:02:23 +00002802 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002803 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002804 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2805 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002806 for (unsigned i = 1, e = M->getNumOperands();
2807 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002808 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002809 BitWidth);
2810 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002811 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002812
Dan Gohman622ed672009-05-04 22:02:23 +00002813 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002814 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002815 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002816 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002817 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002818 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002819 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002820
Dan Gohman622ed672009-05-04 22:02:23 +00002821 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002822 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002823 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002824 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002825 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002826 return MinOpRes;
2827 }
2828
Dan Gohman622ed672009-05-04 22:02:23 +00002829 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002830 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002831 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002832 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002833 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002834 return MinOpRes;
2835 }
2836
Dan Gohman2c364ad2009-06-19 23:29:04 +00002837 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2838 // For a SCEVUnknown, ask ValueTracking.
2839 unsigned BitWidth = getTypeSizeInBits(U->getType());
2840 APInt Mask = APInt::getAllOnesValue(BitWidth);
2841 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2842 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2843 return Zeros.countTrailingOnes();
2844 }
2845
2846 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002847 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002848}
Chris Lattner53e677a2004-04-02 20:23:17 +00002849
Dan Gohman85b05a22009-07-13 21:35:55 +00002850/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2851///
2852ConstantRange
2853ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002854
2855 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002856 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002857
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002858 unsigned BitWidth = getTypeSizeInBits(S->getType());
2859 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2860
2861 // If the value has known zeros, the maximum unsigned value will have those
2862 // known zeros as well.
2863 uint32_t TZ = GetMinTrailingZeros(S);
2864 if (TZ != 0)
2865 ConservativeResult =
2866 ConstantRange(APInt::getMinValue(BitWidth),
2867 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2868
Dan Gohman85b05a22009-07-13 21:35:55 +00002869 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2870 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2871 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2872 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002873 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002874 }
2875
2876 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2877 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2878 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2879 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002880 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002881 }
2882
2883 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2884 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2885 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2886 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002887 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002888 }
2889
2890 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2891 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2892 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2893 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002894 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002895 }
2896
2897 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2898 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2899 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002900 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002901 }
2902
2903 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2904 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002905 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002906 }
2907
2908 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2909 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002910 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002911 }
2912
2913 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2914 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002915 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002916 }
2917
Dan Gohman85b05a22009-07-13 21:35:55 +00002918 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002919 // If there's no unsigned wrap, the value will never be less than its
2920 // initial value.
2921 if (AddRec->hasNoUnsignedWrap())
2922 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2923 ConservativeResult =
2924 ConstantRange(C->getValue()->getValue(),
2925 APInt(getTypeSizeInBits(C->getType()), 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002926
2927 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002928 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002929 const Type *Ty = AddRec->getType();
2930 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002931 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2932 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002933 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2934
2935 const SCEV *Start = AddRec->getStart();
2936 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2937
2938 // Check for overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00002939 if (!AddRec->hasNoUnsignedWrap())
2940 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00002941
2942 ConstantRange StartRange = getUnsignedRange(Start);
2943 ConstantRange EndRange = getUnsignedRange(End);
2944 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2945 EndRange.getUnsignedMin());
2946 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2947 EndRange.getUnsignedMax());
2948 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002949 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002950 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002951 }
2952 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002953
2954 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002955 }
2956
2957 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2958 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002959 APInt Mask = APInt::getAllOnesValue(BitWidth);
2960 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2961 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002962 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002963 return ConservativeResult;
2964 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002965 }
2966
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002967 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002968}
2969
Dan Gohman85b05a22009-07-13 21:35:55 +00002970/// getSignedRange - Determine the signed range for a particular SCEV.
2971///
2972ConstantRange
2973ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002974
Dan Gohman85b05a22009-07-13 21:35:55 +00002975 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2976 return ConstantRange(C->getValue()->getValue());
2977
Dan Gohman52fddd32010-01-26 04:40:18 +00002978 unsigned BitWidth = getTypeSizeInBits(S->getType());
2979 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2980
2981 // If the value has known zeros, the maximum signed value will have those
2982 // known zeros as well.
2983 uint32_t TZ = GetMinTrailingZeros(S);
2984 if (TZ != 0)
2985 ConservativeResult =
2986 ConstantRange(APInt::getSignedMinValue(BitWidth),
2987 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
2988
Dan Gohman85b05a22009-07-13 21:35:55 +00002989 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2990 ConstantRange X = getSignedRange(Add->getOperand(0));
2991 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2992 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002993 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002994 }
2995
Dan Gohman85b05a22009-07-13 21:35:55 +00002996 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2997 ConstantRange X = getSignedRange(Mul->getOperand(0));
2998 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2999 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003000 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003001 }
3002
Dan Gohman85b05a22009-07-13 21:35:55 +00003003 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3004 ConstantRange X = getSignedRange(SMax->getOperand(0));
3005 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3006 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003007 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003008 }
Dan Gohman62849c02009-06-24 01:05:09 +00003009
Dan Gohman85b05a22009-07-13 21:35:55 +00003010 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3011 ConstantRange X = getSignedRange(UMax->getOperand(0));
3012 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3013 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003014 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003015 }
Dan Gohman62849c02009-06-24 01:05:09 +00003016
Dan Gohman85b05a22009-07-13 21:35:55 +00003017 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3018 ConstantRange X = getSignedRange(UDiv->getLHS());
3019 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003020 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003021 }
Dan Gohman62849c02009-06-24 01:05:09 +00003022
Dan Gohman85b05a22009-07-13 21:35:55 +00003023 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3024 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003025 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003026 }
3027
3028 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3029 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003030 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003031 }
3032
3033 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3034 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003035 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003036 }
3037
Dan Gohman85b05a22009-07-13 21:35:55 +00003038 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003039 // If there's no signed wrap, and all the operands have the same sign or
3040 // zero, the value won't ever change sign.
3041 if (AddRec->hasNoSignedWrap()) {
3042 bool AllNonNeg = true;
3043 bool AllNonPos = true;
3044 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3045 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3046 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3047 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003048 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003049 ConservativeResult = ConservativeResult.intersectWith(
3050 ConstantRange(APInt(BitWidth, 0),
3051 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003052 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003053 ConservativeResult = ConservativeResult.intersectWith(
3054 ConstantRange(APInt::getSignedMinValue(BitWidth),
3055 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003056 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003057
3058 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003059 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 const Type *Ty = AddRec->getType();
3061 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003062 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3063 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3065
3066 const SCEV *Start = AddRec->getStart();
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
3068
3069 // Check for overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00003070 if (!AddRec->hasNoSignedWrap())
3071 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003072
3073 ConstantRange StartRange = getSignedRange(Start);
3074 ConstantRange EndRange = getSignedRange(End);
3075 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3076 EndRange.getSignedMin());
3077 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3078 EndRange.getSignedMax());
3079 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003080 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003081 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003082 }
Dan Gohman62849c02009-06-24 01:05:09 +00003083 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003084
3085 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003086 }
3087
Dan Gohman2c364ad2009-06-19 23:29:04 +00003088 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3089 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003090 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003091 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003092 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3093 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003094 return ConservativeResult;
3095 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003096 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003097 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003098 }
3099
Dan Gohman52fddd32010-01-26 04:40:18 +00003100 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003101}
3102
Chris Lattner53e677a2004-04-02 20:23:17 +00003103/// createSCEV - We know that there is no SCEV for the specified value.
3104/// Analyze the expression.
3105///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003106const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003107 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003108 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003109
Dan Gohman6c459a22008-06-22 19:56:46 +00003110 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003111 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003112 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003113
3114 // Don't attempt to analyze instructions in blocks that aren't
3115 // reachable. Such instructions don't matter, and they aren't required
3116 // to obey basic rules for definitions dominating uses which this
3117 // analysis depends on.
3118 if (!DT->isReachableFromEntry(I->getParent()))
3119 return getUnknown(V);
3120 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003121 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003122 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3123 return getConstant(CI);
3124 else if (isa<ConstantPointerNull>(V))
3125 return getIntegerSCEV(0, V->getType());
3126 else if (isa<UndefValue>(V))
3127 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00003128 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3129 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003130 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003131 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003132
Dan Gohmanca178902009-07-17 20:47:02 +00003133 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003134 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003135 case Instruction::Add:
3136 // Don't transfer the NSW and NUW bits from the Add instruction to the
3137 // Add expression, because the Instruction may be guarded by control
3138 // flow and the no-overflow bits may not be valid for the expression in
3139 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003140 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003141 getSCEV(U->getOperand(1)));
3142 case Instruction::Mul:
3143 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3144 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003145 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003146 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003147 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003148 return getUDivExpr(getSCEV(U->getOperand(0)),
3149 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003150 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003151 return getMinusSCEV(getSCEV(U->getOperand(0)),
3152 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003153 case Instruction::And:
3154 // For an expression like x&255 that merely masks off the high bits,
3155 // use zext(trunc(x)) as the SCEV expression.
3156 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003157 if (CI->isNullValue())
3158 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003159 if (CI->isAllOnesValue())
3160 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003161 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003162
3163 // Instcombine's ShrinkDemandedConstant may strip bits out of
3164 // constants, obscuring what would otherwise be a low-bits mask.
3165 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3166 // knew about to reconstruct a low-bits mask value.
3167 unsigned LZ = A.countLeadingZeros();
3168 unsigned BitWidth = A.getBitWidth();
3169 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3170 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3171 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3172
3173 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3174
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003175 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003176 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003177 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003178 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003179 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003180 }
3181 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003182
Dan Gohman6c459a22008-06-22 19:56:46 +00003183 case Instruction::Or:
3184 // If the RHS of the Or is a constant, we may have something like:
3185 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3186 // optimizations will transparently handle this case.
3187 //
3188 // In order for this transformation to be safe, the LHS must be of the
3189 // form X*(2^n) and the Or constant must be less than 2^n.
3190 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003191 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003192 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003193 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003194 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3195 // Build a plain add SCEV.
3196 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3197 // If the LHS of the add was an addrec and it has no-wrap flags,
3198 // transfer the no-wrap flags, since an or won't introduce a wrap.
3199 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3200 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3201 if (OldAR->hasNoUnsignedWrap())
3202 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3203 if (OldAR->hasNoSignedWrap())
3204 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3205 }
3206 return S;
3207 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003208 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003209 break;
3210 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003211 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003212 // If the RHS of the xor is a signbit, then this is just an add.
3213 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003214 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003215 return getAddExpr(getSCEV(U->getOperand(0)),
3216 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003217
3218 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003219 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003220 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003221
3222 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3223 // This is a variant of the check for xor with -1, and it handles
3224 // the case where instcombine has trimmed non-demanded bits out
3225 // of an xor with -1.
3226 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3227 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3228 if (BO->getOpcode() == Instruction::And &&
3229 LCI->getValue() == CI->getValue())
3230 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003231 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003232 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003233 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003234 const Type *Z0Ty = Z0->getType();
3235 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3236
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003237 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003238 // mask off the high bits. Complement the operand and
3239 // re-apply the zext.
3240 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3241 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3242
3243 // If C is a single bit, it may be in the sign-bit position
3244 // before the zero-extend. In this case, represent the xor
3245 // using an add, which is equivalent, and re-apply the zext.
3246 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3247 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3248 Trunc.isSignBit())
3249 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3250 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003251 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003252 }
3253 break;
3254
3255 case Instruction::Shl:
3256 // Turn shift left of a constant amount into a multiply.
3257 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003258 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003259 Constant *X = ConstantInt::get(getContext(),
Dan Gohman6c459a22008-06-22 19:56:46 +00003260 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003261 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003262 }
3263 break;
3264
Nick Lewycky01eaf802008-07-07 06:15:49 +00003265 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003266 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003267 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003268 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003269 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky01eaf802008-07-07 06:15:49 +00003270 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003271 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003272 }
3273 break;
3274
Dan Gohman4ee29af2009-04-21 02:26:00 +00003275 case Instruction::AShr:
3276 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3277 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3278 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3279 if (L->getOpcode() == Instruction::Shl &&
3280 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003281 unsigned BitWidth = getTypeSizeInBits(U->getType());
3282 uint64_t Amt = BitWidth - CI->getZExtValue();
3283 if (Amt == BitWidth)
3284 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3285 if (Amt > BitWidth)
3286 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00003287 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003288 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003289 IntegerType::get(getContext(), Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00003290 U->getType());
3291 }
3292 break;
3293
Dan Gohman6c459a22008-06-22 19:56:46 +00003294 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003295 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003296
3297 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003298 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003299
3300 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003301 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003302
3303 case Instruction::BitCast:
3304 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003305 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003306 return getSCEV(U->getOperand(0));
3307 break;
3308
Dan Gohman4f8eea82010-02-01 18:27:38 +00003309 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3310 // lead to pointer expressions which cannot safely be expanded to GEPs,
3311 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3312 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003313
Dan Gohman26466c02009-05-08 20:26:55 +00003314 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003315 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003316
Dan Gohman6c459a22008-06-22 19:56:46 +00003317 case Instruction::PHI:
3318 return createNodeForPHI(cast<PHINode>(U));
3319
3320 case Instruction::Select:
3321 // This could be a smax or umax that was lowered earlier.
3322 // Try to recover it.
3323 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3324 Value *LHS = ICI->getOperand(0);
3325 Value *RHS = ICI->getOperand(1);
3326 switch (ICI->getPredicate()) {
3327 case ICmpInst::ICMP_SLT:
3328 case ICmpInst::ICMP_SLE:
3329 std::swap(LHS, RHS);
3330 // fall through
3331 case ICmpInst::ICMP_SGT:
3332 case ICmpInst::ICMP_SGE:
3333 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003334 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003335 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003336 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003337 break;
3338 case ICmpInst::ICMP_ULT:
3339 case ICmpInst::ICMP_ULE:
3340 std::swap(LHS, RHS);
3341 // fall through
3342 case ICmpInst::ICMP_UGT:
3343 case ICmpInst::ICMP_UGE:
3344 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003345 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003346 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003347 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003348 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003349 case ICmpInst::ICMP_NE:
3350 // n != 0 ? n : 1 -> umax(n, 1)
3351 if (LHS == U->getOperand(1) &&
3352 isa<ConstantInt>(U->getOperand(2)) &&
3353 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3354 isa<ConstantInt>(RHS) &&
3355 cast<ConstantInt>(RHS)->isZero())
3356 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3357 break;
3358 case ICmpInst::ICMP_EQ:
3359 // n == 0 ? 1 : n -> umax(n, 1)
3360 if (LHS == U->getOperand(2) &&
3361 isa<ConstantInt>(U->getOperand(1)) &&
3362 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3363 isa<ConstantInt>(RHS) &&
3364 cast<ConstantInt>(RHS)->isZero())
3365 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3366 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003367 default:
3368 break;
3369 }
3370 }
3371
3372 default: // We cannot analyze this expression.
3373 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003374 }
3375
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003376 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003377}
3378
3379
3380
3381//===----------------------------------------------------------------------===//
3382// Iteration Count Computation Code
3383//
3384
Dan Gohman46bdfb02009-02-24 18:55:53 +00003385/// getBackedgeTakenCount - If the specified loop has a predictable
3386/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3387/// object. The backedge-taken count is the number of times the loop header
3388/// will be branched to from within the loop. This is one less than the
3389/// trip count of the loop, since it doesn't count the first iteration,
3390/// when the header is branched to from outside the loop.
3391///
3392/// Note that it is not valid to call this method on a loop without a
3393/// loop-invariant backedge-taken count (see
3394/// hasLoopInvariantBackedgeTakenCount).
3395///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003396const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003397 return getBackedgeTakenInfo(L).Exact;
3398}
3399
3400/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3401/// return the least SCEV value that is known never to be less than the
3402/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003403const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003404 return getBackedgeTakenInfo(L).Max;
3405}
3406
Dan Gohman59ae6b92009-07-08 19:23:34 +00003407/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3408/// onto the given Worklist.
3409static void
3410PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3411 BasicBlock *Header = L->getHeader();
3412
3413 // Push all Loop-header PHIs onto the Worklist stack.
3414 for (BasicBlock::iterator I = Header->begin();
3415 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3416 Worklist.push_back(PN);
3417}
3418
Dan Gohmana1af7572009-04-30 20:47:05 +00003419const ScalarEvolution::BackedgeTakenInfo &
3420ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003421 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003422 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003423 // update the value. The temporary CouldNotCompute value tells SCEV
3424 // code elsewhere that it shouldn't attempt to request a new
3425 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003426 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003427 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3428 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003429 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3430 if (BECount.Exact != getCouldNotCompute()) {
3431 assert(BECount.Exact->isLoopInvariant(L) &&
3432 BECount.Max->isLoopInvariant(L) &&
3433 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003434 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003435
Dan Gohman01ecca22009-04-27 20:16:15 +00003436 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003437 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003438 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003439 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003440 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003441 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003442 if (isa<PHINode>(L->getHeader()->begin()))
3443 // Only count loops that have phi nodes as not being computable.
3444 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003445 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003446
3447 // Now that we know more about the trip count for this loop, forget any
3448 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003449 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003450 // information. This is similar to the code in forgetLoop, except that
3451 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003452 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003453 SmallVector<Instruction *, 16> Worklist;
3454 PushLoopPHIs(L, Worklist);
3455
3456 SmallPtrSet<Instruction *, 8> Visited;
3457 while (!Worklist.empty()) {
3458 Instruction *I = Worklist.pop_back_val();
3459 if (!Visited.insert(I)) continue;
3460
Dan Gohman5d984912009-12-18 01:14:11 +00003461 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003462 Scalars.find(static_cast<Value *>(I));
3463 if (It != Scalars.end()) {
3464 // SCEVUnknown for a PHI either means that it has an unrecognized
3465 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003466 // by createNodeForPHI. In the former case, additional loop trip
3467 // count information isn't going to change anything. In the later
3468 // case, createNodeForPHI will perform the necessary updates on its
3469 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003470 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3471 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003472 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003473 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003474 if (PHINode *PN = dyn_cast<PHINode>(I))
3475 ConstantEvolutionLoopExitValue.erase(PN);
3476 }
3477
3478 PushDefUseChildren(I, Worklist);
3479 }
3480 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003481 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003482 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003483}
3484
Dan Gohman4c7279a2009-10-31 15:04:55 +00003485/// forgetLoop - This method should be called by the client when it has
3486/// changed a loop in a way that may effect ScalarEvolution's ability to
3487/// compute a trip count, or if the loop is deleted.
3488void ScalarEvolution::forgetLoop(const Loop *L) {
3489 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003490 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003491
Dan Gohman4c7279a2009-10-31 15:04:55 +00003492 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003493 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003494 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003495
Dan Gohman59ae6b92009-07-08 19:23:34 +00003496 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003497 while (!Worklist.empty()) {
3498 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003499 if (!Visited.insert(I)) continue;
3500
Dan Gohman5d984912009-12-18 01:14:11 +00003501 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003502 Scalars.find(static_cast<Value *>(I));
3503 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003504 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003505 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003506 if (PHINode *PN = dyn_cast<PHINode>(I))
3507 ConstantEvolutionLoopExitValue.erase(PN);
3508 }
3509
3510 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003511 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003512}
3513
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003514/// forgetValue - This method should be called by the client when it has
3515/// changed a value in a way that may effect its value, or which may
3516/// disconnect it from a def-use chain linking it to a loop.
3517void ScalarEvolution::forgetValue(Value *V) {
3518 Instruction *I = dyn_cast<Instruction>(V);
3519 if (!I) return;
3520
3521 // Drop information about expressions based on loop-header PHIs.
3522 SmallVector<Instruction *, 16> Worklist;
3523 Worklist.push_back(I);
3524
3525 SmallPtrSet<Instruction *, 8> Visited;
3526 while (!Worklist.empty()) {
3527 I = Worklist.pop_back_val();
3528 if (!Visited.insert(I)) continue;
3529
3530 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3531 Scalars.find(static_cast<Value *>(I));
3532 if (It != Scalars.end()) {
3533 ValuesAtScopes.erase(It->second);
3534 Scalars.erase(It);
3535 if (PHINode *PN = dyn_cast<PHINode>(I))
3536 ConstantEvolutionLoopExitValue.erase(PN);
3537 }
3538
3539 PushDefUseChildren(I, Worklist);
3540 }
3541}
3542
Dan Gohman46bdfb02009-02-24 18:55:53 +00003543/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3544/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003545ScalarEvolution::BackedgeTakenInfo
3546ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003547 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003548 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003549
Dan Gohmana334aa72009-06-22 00:31:57 +00003550 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003551 const SCEV *BECount = getCouldNotCompute();
3552 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003553 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003554 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3555 BackedgeTakenInfo NewBTI =
3556 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003557
Dan Gohman1c343752009-06-27 21:21:31 +00003558 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003559 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003560 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003561 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003562 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003563 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003564 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003565 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003566 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003567 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003568 }
Dan Gohman1c343752009-06-27 21:21:31 +00003569 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003570 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003571 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003572 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003573 }
3574
3575 return BackedgeTakenInfo(BECount, MaxBECount);
3576}
3577
3578/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3579/// of the specified loop will execute if it exits via the specified block.
3580ScalarEvolution::BackedgeTakenInfo
3581ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3582 BasicBlock *ExitingBlock) {
3583
3584 // Okay, we've chosen an exiting block. See what condition causes us to
3585 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003586 //
3587 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003588 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003589 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003590 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003591
Chris Lattner8b0e3602007-01-07 02:24:26 +00003592 // At this point, we know we have a conditional branch that determines whether
3593 // the loop is exited. However, we don't know if the branch is executed each
3594 // time through the loop. If not, then the execution count of the branch will
3595 // not be equal to the trip count of the loop.
3596 //
3597 // Currently we check for this by checking to see if the Exit branch goes to
3598 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003599 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003600 // loop header. This is common for un-rotated loops.
3601 //
3602 // If both of those tests fail, walk up the unique predecessor chain to the
3603 // header, stopping if there is an edge that doesn't exit the loop. If the
3604 // header is reached, the execution count of the branch will be equal to the
3605 // trip count of the loop.
3606 //
3607 // More extensive analysis could be done to handle more cases here.
3608 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003609 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003610 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003611 ExitBr->getParent() != L->getHeader()) {
3612 // The simple checks failed, try climbing the unique predecessor chain
3613 // up to the header.
3614 bool Ok = false;
3615 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3616 BasicBlock *Pred = BB->getUniquePredecessor();
3617 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003618 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003619 TerminatorInst *PredTerm = Pred->getTerminator();
3620 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3621 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3622 if (PredSucc == BB)
3623 continue;
3624 // If the predecessor has a successor that isn't BB and isn't
3625 // outside the loop, assume the worst.
3626 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003627 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003628 }
3629 if (Pred == L->getHeader()) {
3630 Ok = true;
3631 break;
3632 }
3633 BB = Pred;
3634 }
3635 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003636 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003637 }
3638
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003639 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003640 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3641 ExitBr->getSuccessor(0),
3642 ExitBr->getSuccessor(1));
3643}
3644
3645/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3646/// backedge of the specified loop will execute if its exit condition
3647/// were a conditional branch of ExitCond, TBB, and FBB.
3648ScalarEvolution::BackedgeTakenInfo
3649ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3650 Value *ExitCond,
3651 BasicBlock *TBB,
3652 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003653 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003654 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3655 if (BO->getOpcode() == Instruction::And) {
3656 // Recurse on the operands of the and.
3657 BackedgeTakenInfo BTI0 =
3658 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3659 BackedgeTakenInfo BTI1 =
3660 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003661 const SCEV *BECount = getCouldNotCompute();
3662 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003663 if (L->contains(TBB)) {
3664 // Both conditions must be true for the loop to continue executing.
3665 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003666 if (BTI0.Exact == getCouldNotCompute() ||
3667 BTI1.Exact == getCouldNotCompute())
3668 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003669 else
3670 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003671 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003672 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003673 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003674 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003675 else
3676 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003677 } else {
3678 // Both conditions must be true for the loop to exit.
3679 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003680 if (BTI0.Exact != getCouldNotCompute() &&
3681 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003682 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003683 if (BTI0.Max != getCouldNotCompute() &&
3684 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003685 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3686 }
3687
3688 return BackedgeTakenInfo(BECount, MaxBECount);
3689 }
3690 if (BO->getOpcode() == Instruction::Or) {
3691 // Recurse on the operands of the or.
3692 BackedgeTakenInfo BTI0 =
3693 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3694 BackedgeTakenInfo BTI1 =
3695 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003696 const SCEV *BECount = getCouldNotCompute();
3697 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003698 if (L->contains(FBB)) {
3699 // Both conditions must be false for the loop to continue executing.
3700 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003701 if (BTI0.Exact == getCouldNotCompute() ||
3702 BTI1.Exact == getCouldNotCompute())
3703 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003704 else
3705 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003706 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003707 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003708 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003709 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003710 else
3711 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003712 } else {
3713 // Both conditions must be false for the loop to exit.
3714 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003715 if (BTI0.Exact != getCouldNotCompute() &&
3716 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003717 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003718 if (BTI0.Max != getCouldNotCompute() &&
3719 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003720 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3721 }
3722
3723 return BackedgeTakenInfo(BECount, MaxBECount);
3724 }
3725 }
3726
3727 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003728 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003729 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3730 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003731
Dan Gohman00cb5b72010-02-19 18:12:07 +00003732 // Check for a constant condition. These are normally stripped out by
3733 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3734 // preserve the CFG and is temporarily leaving constant conditions
3735 // in place.
3736 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3737 if (L->contains(FBB) == !CI->getZExtValue())
3738 // The backedge is always taken.
3739 return getCouldNotCompute();
3740 else
3741 // The backedge is never taken.
3742 return getIntegerSCEV(0, CI->getType());
3743 }
3744
Eli Friedman361e54d2009-05-09 12:32:42 +00003745 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3747}
3748
3749/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3750/// backedge of the specified loop will execute if its exit condition
3751/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3752ScalarEvolution::BackedgeTakenInfo
3753ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3754 ICmpInst *ExitCond,
3755 BasicBlock *TBB,
3756 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003757
Reid Spencere4d87aa2006-12-23 06:05:41 +00003758 // If the condition was exit on true, convert the condition to exit on false
3759 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003761 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003762 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003763 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003764
3765 // Handle common loops like: for (X = "string"; *X; ++X)
3766 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3767 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003768 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003769 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003770 if (ItCnt.hasAnyInfo())
3771 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003772 }
3773
Dan Gohman0bba49c2009-07-07 17:06:11 +00003774 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3775 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003776
3777 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003778 LHS = getSCEVAtScope(LHS, L);
3779 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003780
Dan Gohman64a845e2009-06-24 04:48:43 +00003781 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003782 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003783 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3784 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003785 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003786 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003787 }
3788
Chris Lattner53e677a2004-04-02 20:23:17 +00003789 // If we have a comparison of a chrec against a constant, try to use value
3790 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003791 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3792 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003793 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003794 // Form the constant range.
3795 ConstantRange CompRange(
3796 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003797
Dan Gohman0bba49c2009-07-07 17:06:11 +00003798 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003799 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003800 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003801
Chris Lattner53e677a2004-04-02 20:23:17 +00003802 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003803 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003804 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003805 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3806 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003807 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003808 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003809 case ICmpInst::ICMP_EQ: { // while (X == Y)
3810 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003811 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3812 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003813 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003814 }
3815 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003816 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3817 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003818 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003819 }
3820 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003821 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3822 getNotSCEV(RHS), L, true);
3823 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003824 break;
3825 }
3826 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003827 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3828 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003829 break;
3830 }
3831 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003832 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3833 getNotSCEV(RHS), L, false);
3834 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003835 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003836 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003837 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003838#if 0
David Greene25e0e872009-12-23 22:18:14 +00003839 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003840 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003841 dbgs() << "[unsigned] ";
3842 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003843 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003844 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003845#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003846 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003847 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003848 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003849 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003850}
3851
Chris Lattner673e02b2004-10-12 01:49:27 +00003852static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003853EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3854 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003855 const SCEV *InVal = SE.getConstant(C);
3856 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003857 assert(isa<SCEVConstant>(Val) &&
3858 "Evaluation of SCEV at constant didn't fold correctly?");
3859 return cast<SCEVConstant>(Val)->getValue();
3860}
3861
3862/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3863/// and a GEP expression (missing the pointer index) indexing into it, return
3864/// the addressed element of the initializer or null if the index expression is
3865/// invalid.
3866static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003867GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003868 const std::vector<ConstantInt*> &Indices) {
3869 Constant *Init = GV->getInitializer();
3870 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003871 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003872 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3873 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3874 Init = cast<Constant>(CS->getOperand(Idx));
3875 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3876 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3877 Init = cast<Constant>(CA->getOperand(Idx));
3878 } else if (isa<ConstantAggregateZero>(Init)) {
3879 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3880 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003881 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003882 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3883 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003884 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003885 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003886 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003887 }
3888 return 0;
3889 } else {
3890 return 0; // Unknown initializer type
3891 }
3892 }
3893 return Init;
3894}
3895
Dan Gohman46bdfb02009-02-24 18:55:53 +00003896/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3897/// 'icmp op load X, cst', try to see if we can compute the backedge
3898/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003899ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00003900ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3901 LoadInst *LI,
3902 Constant *RHS,
3903 const Loop *L,
3904 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003905 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003906
3907 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003908 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00003909 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003910 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003911
3912 // Make sure that it is really a constant global we are gepping, with an
3913 // initializer, and make sure the first IDX is really 0.
3914 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003915 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003916 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3917 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003918 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003919
3920 // Okay, we allow one non-constant index into the GEP instruction.
3921 Value *VarIdx = 0;
3922 std::vector<ConstantInt*> Indexes;
3923 unsigned VarIdxNum = 0;
3924 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3925 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3926 Indexes.push_back(CI);
3927 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003928 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003929 VarIdx = GEP->getOperand(i);
3930 VarIdxNum = i-2;
3931 Indexes.push_back(0);
3932 }
3933
3934 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3935 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003936 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003937 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003938
3939 // We can only recognize very limited forms of loop index expressions, in
3940 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003941 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003942 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3943 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3944 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003945 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003946
3947 unsigned MaxSteps = MaxBruteForceIterations;
3948 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003949 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003950 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003951 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003952
3953 // Form the GEP offset.
3954 Indexes[VarIdxNum] = Val;
3955
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003956 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003957 if (Result == 0) break; // Cannot compute!
3958
3959 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003960 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003961 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003962 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003963#if 0
David Greene25e0e872009-12-23 22:18:14 +00003964 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003965 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3966 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003967#endif
3968 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003969 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003970 }
3971 }
Dan Gohman1c343752009-06-27 21:21:31 +00003972 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003973}
3974
3975
Chris Lattner3221ad02004-04-17 22:58:41 +00003976/// CanConstantFold - Return true if we can constant fold an instruction of the
3977/// specified type, assuming that all operands were constants.
3978static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00003979 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00003980 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3981 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003982
Chris Lattner3221ad02004-04-17 22:58:41 +00003983 if (const CallInst *CI = dyn_cast<CallInst>(I))
3984 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00003985 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00003986 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00003987}
3988
Chris Lattner3221ad02004-04-17 22:58:41 +00003989/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3990/// in the loop that V is derived from. We allow arbitrary operations along the
3991/// way, but the operands of an operation must either be constants or a value
3992/// derived from a constant PHI. If this expression does not fit with these
3993/// constraints, return null.
3994static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3995 // If this is not an instruction, or if this is an instruction outside of the
3996 // loop, it can't be derived from a loop PHI.
3997 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00003998 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003999
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004000 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004001 if (L->getHeader() == I->getParent())
4002 return PN;
4003 else
4004 // We don't currently keep track of the control flow needed to evaluate
4005 // PHIs, so we cannot handle PHIs inside of loops.
4006 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004007 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004008
4009 // If we won't be able to constant fold this expression even if the operands
4010 // are constants, return early.
4011 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004012
Chris Lattner3221ad02004-04-17 22:58:41 +00004013 // Otherwise, we can evaluate this instruction if all of its operands are
4014 // constant or derived from a PHI node themselves.
4015 PHINode *PHI = 0;
4016 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4017 if (!(isa<Constant>(I->getOperand(Op)) ||
4018 isa<GlobalValue>(I->getOperand(Op)))) {
4019 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4020 if (P == 0) return 0; // Not evolving from PHI
4021 if (PHI == 0)
4022 PHI = P;
4023 else if (PHI != P)
4024 return 0; // Evolving from multiple different PHIs.
4025 }
4026
4027 // This is a expression evolving from a constant PHI!
4028 return PHI;
4029}
4030
4031/// EvaluateExpression - Given an expression that passes the
4032/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4033/// in the loop has the value PHIVal. If we can't fold this expression for some
4034/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004035static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4036 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004037 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004038 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004039 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004040 Instruction *I = cast<Instruction>(V);
4041
4042 std::vector<Constant*> Operands;
4043 Operands.resize(I->getNumOperands());
4044
4045 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004046 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004047 if (Operands[i] == 0) return 0;
4048 }
4049
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004050 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004051 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004052 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004053 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004054 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004055}
4056
4057/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4058/// in the header of its containing loop, we know the loop executes a
4059/// constant number of times, and the PHI node is just a recurrence
4060/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004061Constant *
4062ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004063 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004064 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004065 std::map<PHINode*, Constant*>::iterator I =
4066 ConstantEvolutionLoopExitValue.find(PN);
4067 if (I != ConstantEvolutionLoopExitValue.end())
4068 return I->second;
4069
Dan Gohman46bdfb02009-02-24 18:55:53 +00004070 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00004071 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4072
4073 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4074
4075 // Since the loop is canonicalized, the PHI node must have two entries. One
4076 // entry must be a constant (coming in from outside of the loop), and the
4077 // second must be derived from the same PHI.
4078 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4079 Constant *StartCST =
4080 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4081 if (StartCST == 0)
4082 return RetVal = 0; // Must be a constant.
4083
4084 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4085 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4086 if (PN2 != PN)
4087 return RetVal = 0; // Not derived from same PHI.
4088
4089 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004090 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004091 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004092
Dan Gohman46bdfb02009-02-24 18:55:53 +00004093 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004094 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004095 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4096 if (IterationNum == NumIterations)
4097 return RetVal = PHIVal; // Got exit value!
4098
4099 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004100 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004101 if (NextPHI == PHIVal)
4102 return RetVal = NextPHI; // Stopped evolving!
4103 if (NextPHI == 0)
4104 return 0; // Couldn't evaluate!
4105 PHIVal = NextPHI;
4106 }
4107}
4108
Dan Gohman07ad19b2009-07-27 16:09:48 +00004109/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004110/// constant number of times (the condition evolves only from constants),
4111/// try to evaluate a few iterations of the loop until we get the exit
4112/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004113/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004114const SCEV *
4115ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4116 Value *Cond,
4117 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004118 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004119 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004120
4121 // Since the loop is canonicalized, the PHI node must have two entries. One
4122 // entry must be a constant (coming in from outside of the loop), and the
4123 // second must be derived from the same PHI.
4124 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4125 Constant *StartCST =
4126 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004127 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004128
4129 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4130 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004131 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004132
4133 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4134 // the loop symbolically to determine when the condition gets a value of
4135 // "ExitWhen".
4136 unsigned IterationNum = 0;
4137 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4138 for (Constant *PHIVal = StartCST;
4139 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004140 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004141 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004142
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004143 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004144 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004145
Reid Spencere8019bb2007-03-01 07:25:48 +00004146 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004147 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004148 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004149 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004150
Chris Lattner3221ad02004-04-17 22:58:41 +00004151 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004152 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004153 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004154 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004155 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004156 }
4157
4158 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004159 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004160}
4161
Dan Gohmane7125f42009-09-03 15:00:26 +00004162/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004163/// at the specified scope in the program. The L value specifies a loop
4164/// nest to evaluate the expression at, where null is the top-level or a
4165/// specified loop is immediately inside of the loop.
4166///
4167/// This method can be used to compute the exit value for a variable defined
4168/// in a loop by querying what the value will hold in the parent loop.
4169///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004170/// In the case that a relevant loop exit value cannot be computed, the
4171/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004172const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004173 // Check to see if we've folded this expression at this loop before.
4174 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4175 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4176 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4177 if (!Pair.second)
4178 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004179
Dan Gohman42214892009-08-31 21:15:23 +00004180 // Otherwise compute it.
4181 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004182 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004183 return C;
4184}
4185
4186const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004187 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004188
Nick Lewycky3e630762008-02-20 06:48:22 +00004189 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004190 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004191 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004192 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004193 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004194 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4195 if (PHINode *PN = dyn_cast<PHINode>(I))
4196 if (PN->getParent() == LI->getHeader()) {
4197 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004198 // to see if the loop that contains it has a known backedge-taken
4199 // count. If so, we may be able to force computation of the exit
4200 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004201 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004202 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004203 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004204 // Okay, we know how many times the containing loop executes. If
4205 // this is a constant evolving PHI node, get the final value at
4206 // the specified iteration number.
4207 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004208 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004209 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004210 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004211 }
4212 }
4213
Reid Spencer09906f32006-12-04 21:33:23 +00004214 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004215 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004216 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004217 // result. This is particularly useful for computing loop exit values.
4218 if (CanConstantFold(I)) {
4219 std::vector<Constant*> Operands;
4220 Operands.reserve(I->getNumOperands());
4221 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4222 Value *Op = I->getOperand(i);
4223 if (Constant *C = dyn_cast<Constant>(Op)) {
4224 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004225 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004226 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004227 // non-integer and non-pointer, don't even try to analyze them
4228 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004229 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004230 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004231
Dan Gohman5d984912009-12-18 01:14:11 +00004232 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004233 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004234 Constant *C = SC->getValue();
4235 if (C->getType() != Op->getType())
4236 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4237 Op->getType(),
4238 false),
4239 C, Op->getType());
4240 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004241 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004242 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4243 if (C->getType() != Op->getType())
4244 C =
4245 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4246 Op->getType(),
4247 false),
4248 C, Op->getType());
4249 Operands.push_back(C);
4250 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004251 return V;
4252 } else {
4253 return V;
4254 }
4255 }
4256 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004257
Dan Gohmane177c9a2010-02-24 19:31:47 +00004258 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004259 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4260 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004261 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004262 else
4263 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004264 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004265 if (C)
4266 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004267 }
4268 }
4269
4270 // This is some other type of SCEVUnknown, just return it.
4271 return V;
4272 }
4273
Dan Gohman622ed672009-05-04 22:02:23 +00004274 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004275 // Avoid performing the look-up in the common case where the specified
4276 // expression has no loop-variant portions.
4277 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004278 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004279 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004280 // Okay, at least one of these operands is loop variant but might be
4281 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004282 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4283 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004284 NewOps.push_back(OpAtScope);
4285
4286 for (++i; i != e; ++i) {
4287 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004288 NewOps.push_back(OpAtScope);
4289 }
4290 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004291 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004292 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004293 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004294 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004295 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004296 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004297 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004298 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004299 }
4300 }
4301 // If we got here, all operands are loop invariant.
4302 return Comm;
4303 }
4304
Dan Gohman622ed672009-05-04 22:02:23 +00004305 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004306 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4307 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004308 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4309 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004310 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 }
4312
4313 // If this is a loop recurrence for a loop that does not contain L, then we
4314 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004315 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004316 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004317 // To evaluate this recurrence, we need to know how many times the AddRec
4318 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004319 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004320 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004321
Eli Friedmanb42a6262008-08-04 23:49:06 +00004322 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004323 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004324 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004325 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004326 }
4327
Dan Gohman622ed672009-05-04 22:02:23 +00004328 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004329 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004330 if (Op == Cast->getOperand())
4331 return Cast; // must be loop invariant
4332 return getZeroExtendExpr(Op, Cast->getType());
4333 }
4334
Dan Gohman622ed672009-05-04 22:02:23 +00004335 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004336 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004337 if (Op == Cast->getOperand())
4338 return Cast; // must be loop invariant
4339 return getSignExtendExpr(Op, Cast->getType());
4340 }
4341
Dan Gohman622ed672009-05-04 22:02:23 +00004342 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004343 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004344 if (Op == Cast->getOperand())
4345 return Cast; // must be loop invariant
4346 return getTruncateExpr(Op, Cast->getType());
4347 }
4348
Torok Edwinc23197a2009-07-14 16:55:14 +00004349 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004350 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004351}
4352
Dan Gohman66a7e852009-05-08 20:38:54 +00004353/// getSCEVAtScope - This is a convenience function which does
4354/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004355const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004356 return getSCEVAtScope(getSCEV(V), L);
4357}
4358
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004359/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4360/// following equation:
4361///
4362/// A * X = B (mod N)
4363///
4364/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4365/// A and B isn't important.
4366///
4367/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004368static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004369 ScalarEvolution &SE) {
4370 uint32_t BW = A.getBitWidth();
4371 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4372 assert(A != 0 && "A must be non-zero.");
4373
4374 // 1. D = gcd(A, N)
4375 //
4376 // The gcd of A and N may have only one prime factor: 2. The number of
4377 // trailing zeros in A is its multiplicity
4378 uint32_t Mult2 = A.countTrailingZeros();
4379 // D = 2^Mult2
4380
4381 // 2. Check if B is divisible by D.
4382 //
4383 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4384 // is not less than multiplicity of this prime factor for D.
4385 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004386 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004387
4388 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4389 // modulo (N / D).
4390 //
4391 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4392 // bit width during computations.
4393 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4394 APInt Mod(BW + 1, 0);
4395 Mod.set(BW - Mult2); // Mod = N / D
4396 APInt I = AD.multiplicativeInverse(Mod);
4397
4398 // 4. Compute the minimum unsigned root of the equation:
4399 // I * (B / D) mod (N / D)
4400 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4401
4402 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4403 // bits.
4404 return SE.getConstant(Result.trunc(BW));
4405}
Chris Lattner53e677a2004-04-02 20:23:17 +00004406
4407/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4408/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4409/// might be the same) or two SCEVCouldNotCompute objects.
4410///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004411static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004412SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004413 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004414 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4415 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4416 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004417
Chris Lattner53e677a2004-04-02 20:23:17 +00004418 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004419 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004420 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004421 return std::make_pair(CNC, CNC);
4422 }
4423
Reid Spencere8019bb2007-03-01 07:25:48 +00004424 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004425 const APInt &L = LC->getValue()->getValue();
4426 const APInt &M = MC->getValue()->getValue();
4427 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004428 APInt Two(BitWidth, 2);
4429 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004430
Dan Gohman64a845e2009-06-24 04:48:43 +00004431 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004432 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004433 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004434 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4435 // The B coefficient is M-N/2
4436 APInt B(M);
4437 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004438
Reid Spencere8019bb2007-03-01 07:25:48 +00004439 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004440 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004441
Reid Spencere8019bb2007-03-01 07:25:48 +00004442 // Compute the B^2-4ac term.
4443 APInt SqrtTerm(B);
4444 SqrtTerm *= B;
4445 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004446
Reid Spencere8019bb2007-03-01 07:25:48 +00004447 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4448 // integer value or else APInt::sqrt() will assert.
4449 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004450
Dan Gohman64a845e2009-06-24 04:48:43 +00004451 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004452 // The divisions must be performed as signed divisions.
4453 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004454 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004455 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004456 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004457 return std::make_pair(CNC, CNC);
4458 }
4459
Owen Andersone922c022009-07-22 00:24:57 +00004460 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004461
4462 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004463 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004464 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004465 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004466
Dan Gohman64a845e2009-06-24 04:48:43 +00004467 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004468 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004469 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004470}
4471
4472/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004473/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004474ScalarEvolution::BackedgeTakenInfo
4475ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004476 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004477 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004478 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004479 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004480 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004481 }
4482
Dan Gohman35738ac2009-05-04 22:30:44 +00004483 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004484 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004485 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004486
4487 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004488 // If this is an affine expression, the execution count of this branch is
4489 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004490 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004491 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004492 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004493 // equivalent to:
4494 //
4495 // Step*N = -Start (mod 2^BW)
4496 //
4497 // where BW is the common bit width of Start and Step.
4498
Chris Lattner53e677a2004-04-02 20:23:17 +00004499 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004500 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4501 L->getParentLoop());
4502 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4503 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004504
Dan Gohman622ed672009-05-04 22:02:23 +00004505 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004506 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004507
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004508 // First, handle unitary steps.
4509 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004510 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004511 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4512 return Start; // N = Start (as unsigned)
4513
4514 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004515 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004516 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004517 -StartC->getValue()->getValue(),
4518 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004519 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004520 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004521 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4522 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004523 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004524 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004525 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4526 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004527 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004528#if 0
David Greene25e0e872009-12-23 22:18:14 +00004529 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004530 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004531#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004532 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004533 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004534 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004535 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004536 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004537 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004538
Chris Lattner53e677a2004-04-02 20:23:17 +00004539 // We can only use this value if the chrec ends up with an exact zero
4540 // value at this index. When solving for "X*X != 5", for example, we
4541 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004542 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004543 if (Val->isZero())
4544 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004545 }
4546 }
4547 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004548
Dan Gohman1c343752009-06-27 21:21:31 +00004549 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004550}
4551
4552/// HowFarToNonZero - Return the number of times a backedge checking the
4553/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004554/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004555ScalarEvolution::BackedgeTakenInfo
4556ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004557 // Loops that look like: while (X == 0) are very strange indeed. We don't
4558 // handle them yet except for the trivial case. This could be expanded in the
4559 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004560
Chris Lattner53e677a2004-04-02 20:23:17 +00004561 // If the value is a constant, check to see if it is known to be non-zero
4562 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004563 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004564 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004565 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004566 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004567 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004568
Chris Lattner53e677a2004-04-02 20:23:17 +00004569 // We could implement others, but I really doubt anyone writes loops like
4570 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004571 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004572}
4573
Dan Gohman859b4822009-05-18 15:36:09 +00004574/// getLoopPredecessor - If the given loop's header has exactly one unique
4575/// predecessor outside the loop, return it. Otherwise return null.
4576///
4577BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4578 BasicBlock *Header = L->getHeader();
4579 BasicBlock *Pred = 0;
4580 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4581 PI != E; ++PI)
4582 if (!L->contains(*PI)) {
4583 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4584 Pred = *PI;
4585 }
4586 return Pred;
4587}
4588
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004589/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4590/// (which may not be an immediate predecessor) which has exactly one
4591/// successor from which BB is reachable, or null if no such block is
4592/// found.
4593///
4594BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004595ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004596 // If the block has a unique predecessor, then there is no path from the
4597 // predecessor to the block that does not go through the direct edge
4598 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004599 if (BasicBlock *Pred = BB->getSinglePredecessor())
4600 return Pred;
4601
4602 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004603 // If the header has a unique predecessor outside the loop, it must be
4604 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004605 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00004606 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004607
4608 return 0;
4609}
4610
Dan Gohman763bad12009-06-20 00:35:32 +00004611/// HasSameValue - SCEV structural equivalence is usually sufficient for
4612/// testing whether two expressions are equal, however for the purposes of
4613/// looking for a condition guarding a loop, it can be useful to be a little
4614/// more general, since a front-end may have replicated the controlling
4615/// expression.
4616///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004617static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004618 // Quick check to see if they are the same SCEV.
4619 if (A == B) return true;
4620
4621 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4622 // two different instructions with the same value. Check for this case.
4623 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4624 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4625 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4626 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004627 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004628 return true;
4629
4630 // Otherwise assume they may have a different value.
4631 return false;
4632}
4633
Dan Gohman85b05a22009-07-13 21:35:55 +00004634bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4635 return getSignedRange(S).getSignedMax().isNegative();
4636}
4637
4638bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4639 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4640}
4641
4642bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4643 return !getSignedRange(S).getSignedMin().isNegative();
4644}
4645
4646bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4647 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4648}
4649
4650bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4651 return isKnownNegative(S) || isKnownPositive(S);
4652}
4653
4654bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4655 const SCEV *LHS, const SCEV *RHS) {
4656
4657 if (HasSameValue(LHS, RHS))
4658 return ICmpInst::isTrueWhenEqual(Pred);
4659
4660 switch (Pred) {
4661 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004662 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004663 break;
4664 case ICmpInst::ICMP_SGT:
4665 Pred = ICmpInst::ICMP_SLT;
4666 std::swap(LHS, RHS);
4667 case ICmpInst::ICMP_SLT: {
4668 ConstantRange LHSRange = getSignedRange(LHS);
4669 ConstantRange RHSRange = getSignedRange(RHS);
4670 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4671 return true;
4672 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4673 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004674 break;
4675 }
4676 case ICmpInst::ICMP_SGE:
4677 Pred = ICmpInst::ICMP_SLE;
4678 std::swap(LHS, RHS);
4679 case ICmpInst::ICMP_SLE: {
4680 ConstantRange LHSRange = getSignedRange(LHS);
4681 ConstantRange RHSRange = getSignedRange(RHS);
4682 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4683 return true;
4684 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4685 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004686 break;
4687 }
4688 case ICmpInst::ICMP_UGT:
4689 Pred = ICmpInst::ICMP_ULT;
4690 std::swap(LHS, RHS);
4691 case ICmpInst::ICMP_ULT: {
4692 ConstantRange LHSRange = getUnsignedRange(LHS);
4693 ConstantRange RHSRange = getUnsignedRange(RHS);
4694 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4695 return true;
4696 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4697 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004698 break;
4699 }
4700 case ICmpInst::ICMP_UGE:
4701 Pred = ICmpInst::ICMP_ULE;
4702 std::swap(LHS, RHS);
4703 case ICmpInst::ICMP_ULE: {
4704 ConstantRange LHSRange = getUnsignedRange(LHS);
4705 ConstantRange RHSRange = getUnsignedRange(RHS);
4706 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4707 return true;
4708 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4709 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004710 break;
4711 }
4712 case ICmpInst::ICMP_NE: {
4713 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4714 return true;
4715 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4716 return true;
4717
4718 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4719 if (isKnownNonZero(Diff))
4720 return true;
4721 break;
4722 }
4723 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00004724 // The check at the top of the function catches the case where
4725 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00004726 break;
4727 }
4728 return false;
4729}
4730
4731/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4732/// protected by a conditional between LHS and RHS. This is used to
4733/// to eliminate casts.
4734bool
4735ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4736 ICmpInst::Predicate Pred,
4737 const SCEV *LHS, const SCEV *RHS) {
4738 // Interpret a null as meaning no loop, where there is obviously no guard
4739 // (interprocedural conditions notwithstanding).
4740 if (!L) return true;
4741
4742 BasicBlock *Latch = L->getLoopLatch();
4743 if (!Latch)
4744 return false;
4745
4746 BranchInst *LoopContinuePredicate =
4747 dyn_cast<BranchInst>(Latch->getTerminator());
4748 if (!LoopContinuePredicate ||
4749 LoopContinuePredicate->isUnconditional())
4750 return false;
4751
Dan Gohman0f4b2852009-07-21 23:03:19 +00004752 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4753 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00004754}
4755
4756/// isLoopGuardedByCond - Test whether entry to the loop is protected
4757/// by a conditional between LHS and RHS. This is used to help avoid max
4758/// expressions in loop trip counts, and to eliminate casts.
4759bool
4760ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4761 ICmpInst::Predicate Pred,
4762 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00004763 // Interpret a null as meaning no loop, where there is obviously no guard
4764 // (interprocedural conditions notwithstanding).
4765 if (!L) return false;
4766
Dan Gohman859b4822009-05-18 15:36:09 +00004767 BasicBlock *Predecessor = getLoopPredecessor(L);
4768 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00004769
Dan Gohman859b4822009-05-18 15:36:09 +00004770 // Starting at the loop predecessor, climb up the predecessor chain, as long
4771 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004772 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00004773 for (; Predecessor;
4774 PredecessorDest = Predecessor,
4775 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00004776
4777 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00004778 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00004779 if (!LoopEntryPredicate ||
4780 LoopEntryPredicate->isUnconditional())
4781 continue;
4782
Dan Gohman0f4b2852009-07-21 23:03:19 +00004783 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4784 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohman38372182008-08-12 20:17:31 +00004785 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004786 }
4787
Dan Gohman38372182008-08-12 20:17:31 +00004788 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004789}
4790
Dan Gohman0f4b2852009-07-21 23:03:19 +00004791/// isImpliedCond - Test whether the condition described by Pred, LHS,
4792/// and RHS is true whenever the given Cond value evaluates to true.
4793bool ScalarEvolution::isImpliedCond(Value *CondValue,
4794 ICmpInst::Predicate Pred,
4795 const SCEV *LHS, const SCEV *RHS,
4796 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004797 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004798 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4799 if (BO->getOpcode() == Instruction::And) {
4800 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004801 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4802 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004803 } else if (BO->getOpcode() == Instruction::Or) {
4804 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004805 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4806 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004807 }
4808 }
4809
4810 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4811 if (!ICI) return false;
4812
Dan Gohman85b05a22009-07-13 21:35:55 +00004813 // Bail if the ICmp's operands' types are wider than the needed type
4814 // before attempting to call getSCEV on them. This avoids infinite
4815 // recursion, since the analysis of widening casts can require loop
4816 // exit condition information for overflow checking, which would
4817 // lead back here.
4818 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00004819 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00004820 return false;
4821
Dan Gohman0f4b2852009-07-21 23:03:19 +00004822 // Now that we found a conditional branch that dominates the loop, check to
4823 // see if it is the comparison we are looking for.
4824 ICmpInst::Predicate FoundPred;
4825 if (Inverse)
4826 FoundPred = ICI->getInversePredicate();
4827 else
4828 FoundPred = ICI->getPredicate();
4829
4830 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4831 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00004832
4833 // Balance the types. The case where FoundLHS' type is wider than
4834 // LHS' type is checked for above.
4835 if (getTypeSizeInBits(LHS->getType()) >
4836 getTypeSizeInBits(FoundLHS->getType())) {
4837 if (CmpInst::isSigned(Pred)) {
4838 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4839 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4840 } else {
4841 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4842 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4843 }
4844 }
4845
Dan Gohman0f4b2852009-07-21 23:03:19 +00004846 // Canonicalize the query to match the way instcombine will have
4847 // canonicalized the comparison.
4848 // First, put a constant operand on the right.
4849 if (isa<SCEVConstant>(LHS)) {
4850 std::swap(LHS, RHS);
4851 Pred = ICmpInst::getSwappedPredicate(Pred);
4852 }
4853 // Then, canonicalize comparisons with boundary cases.
4854 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4855 const APInt &RA = RC->getValue()->getValue();
4856 switch (Pred) {
4857 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4858 case ICmpInst::ICMP_EQ:
4859 case ICmpInst::ICMP_NE:
4860 break;
4861 case ICmpInst::ICMP_UGE:
4862 if ((RA - 1).isMinValue()) {
4863 Pred = ICmpInst::ICMP_NE;
4864 RHS = getConstant(RA - 1);
4865 break;
4866 }
4867 if (RA.isMaxValue()) {
4868 Pred = ICmpInst::ICMP_EQ;
4869 break;
4870 }
4871 if (RA.isMinValue()) return true;
4872 break;
4873 case ICmpInst::ICMP_ULE:
4874 if ((RA + 1).isMaxValue()) {
4875 Pred = ICmpInst::ICMP_NE;
4876 RHS = getConstant(RA + 1);
4877 break;
4878 }
4879 if (RA.isMinValue()) {
4880 Pred = ICmpInst::ICMP_EQ;
4881 break;
4882 }
4883 if (RA.isMaxValue()) return true;
4884 break;
4885 case ICmpInst::ICMP_SGE:
4886 if ((RA - 1).isMinSignedValue()) {
4887 Pred = ICmpInst::ICMP_NE;
4888 RHS = getConstant(RA - 1);
4889 break;
4890 }
4891 if (RA.isMaxSignedValue()) {
4892 Pred = ICmpInst::ICMP_EQ;
4893 break;
4894 }
4895 if (RA.isMinSignedValue()) return true;
4896 break;
4897 case ICmpInst::ICMP_SLE:
4898 if ((RA + 1).isMaxSignedValue()) {
4899 Pred = ICmpInst::ICMP_NE;
4900 RHS = getConstant(RA + 1);
4901 break;
4902 }
4903 if (RA.isMinSignedValue()) {
4904 Pred = ICmpInst::ICMP_EQ;
4905 break;
4906 }
4907 if (RA.isMaxSignedValue()) return true;
4908 break;
4909 case ICmpInst::ICMP_UGT:
4910 if (RA.isMinValue()) {
4911 Pred = ICmpInst::ICMP_NE;
4912 break;
4913 }
4914 if ((RA + 1).isMaxValue()) {
4915 Pred = ICmpInst::ICMP_EQ;
4916 RHS = getConstant(RA + 1);
4917 break;
4918 }
4919 if (RA.isMaxValue()) return false;
4920 break;
4921 case ICmpInst::ICMP_ULT:
4922 if (RA.isMaxValue()) {
4923 Pred = ICmpInst::ICMP_NE;
4924 break;
4925 }
4926 if ((RA - 1).isMinValue()) {
4927 Pred = ICmpInst::ICMP_EQ;
4928 RHS = getConstant(RA - 1);
4929 break;
4930 }
4931 if (RA.isMinValue()) return false;
4932 break;
4933 case ICmpInst::ICMP_SGT:
4934 if (RA.isMinSignedValue()) {
4935 Pred = ICmpInst::ICMP_NE;
4936 break;
4937 }
4938 if ((RA + 1).isMaxSignedValue()) {
4939 Pred = ICmpInst::ICMP_EQ;
4940 RHS = getConstant(RA + 1);
4941 break;
4942 }
4943 if (RA.isMaxSignedValue()) return false;
4944 break;
4945 case ICmpInst::ICMP_SLT:
4946 if (RA.isMaxSignedValue()) {
4947 Pred = ICmpInst::ICMP_NE;
4948 break;
4949 }
4950 if ((RA - 1).isMinSignedValue()) {
4951 Pred = ICmpInst::ICMP_EQ;
4952 RHS = getConstant(RA - 1);
4953 break;
4954 }
4955 if (RA.isMinSignedValue()) return false;
4956 break;
4957 }
4958 }
4959
4960 // Check to see if we can make the LHS or RHS match.
4961 if (LHS == FoundRHS || RHS == FoundLHS) {
4962 if (isa<SCEVConstant>(RHS)) {
4963 std::swap(FoundLHS, FoundRHS);
4964 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4965 } else {
4966 std::swap(LHS, RHS);
4967 Pred = ICmpInst::getSwappedPredicate(Pred);
4968 }
4969 }
4970
4971 // Check whether the found predicate is the same as the desired predicate.
4972 if (FoundPred == Pred)
4973 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4974
4975 // Check whether swapping the found predicate makes it the same as the
4976 // desired predicate.
4977 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4978 if (isa<SCEVConstant>(RHS))
4979 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4980 else
4981 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4982 RHS, LHS, FoundLHS, FoundRHS);
4983 }
4984
4985 // Check whether the actual condition is beyond sufficient.
4986 if (FoundPred == ICmpInst::ICMP_EQ)
4987 if (ICmpInst::isTrueWhenEqual(Pred))
4988 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4989 return true;
4990 if (Pred == ICmpInst::ICMP_NE)
4991 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4992 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4993 return true;
4994
4995 // Otherwise assume the worst.
4996 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004997}
4998
Dan Gohman0f4b2852009-07-21 23:03:19 +00004999/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005000/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005001/// and FoundRHS is true.
5002bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5003 const SCEV *LHS, const SCEV *RHS,
5004 const SCEV *FoundLHS,
5005 const SCEV *FoundRHS) {
5006 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5007 FoundLHS, FoundRHS) ||
5008 // ~x < ~y --> x > y
5009 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5010 getNotSCEV(FoundRHS),
5011 getNotSCEV(FoundLHS));
5012}
5013
5014/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005015/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005016/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005017bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005018ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5019 const SCEV *LHS, const SCEV *RHS,
5020 const SCEV *FoundLHS,
5021 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005022 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005023 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5024 case ICmpInst::ICMP_EQ:
5025 case ICmpInst::ICMP_NE:
5026 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5027 return true;
5028 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005029 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005030 case ICmpInst::ICMP_SLE:
Dan Gohman85b05a22009-07-13 21:35:55 +00005031 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5032 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5033 return true;
5034 break;
5035 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005036 case ICmpInst::ICMP_SGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00005037 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5038 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5039 return true;
5040 break;
5041 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005042 case ICmpInst::ICMP_ULE:
Dan Gohman85b05a22009-07-13 21:35:55 +00005043 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5044 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5045 return true;
5046 break;
5047 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005048 case ICmpInst::ICMP_UGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00005049 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5050 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5051 return true;
5052 break;
5053 }
5054
5055 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005056}
5057
Dan Gohman51f53b72009-06-21 23:46:38 +00005058/// getBECount - Subtract the end and start values and divide by the step,
5059/// rounding up, to get the number of times the backedge is executed. Return
5060/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005061const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005062 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005063 const SCEV *Step,
5064 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005065 assert(!isKnownNegative(Step) &&
5066 "This code doesn't handle negative strides yet!");
5067
Dan Gohman51f53b72009-06-21 23:46:38 +00005068 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00005069 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
5070 const SCEV *Diff = getMinusSCEV(End, Start);
5071 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005072
5073 // Add an adjustment to the difference between End and Start so that
5074 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005075 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005076
Dan Gohman1f96e672009-09-17 18:05:20 +00005077 if (!NoWrap) {
5078 // Check Add for unsigned overflow.
5079 // TODO: More sophisticated things could be done here.
5080 const Type *WideTy = IntegerType::get(getContext(),
5081 getTypeSizeInBits(Ty) + 1);
5082 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5083 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5084 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5085 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5086 return getCouldNotCompute();
5087 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005088
5089 return getUDivExpr(Add, Step);
5090}
5091
Chris Lattnerdb25de42005-08-15 23:33:51 +00005092/// HowManyLessThans - Return the number of times a backedge containing the
5093/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005094/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005095ScalarEvolution::BackedgeTakenInfo
5096ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5097 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005098 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005099 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005100
Dan Gohman35738ac2009-05-04 22:30:44 +00005101 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005102 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005103 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005104
Dan Gohman1f96e672009-09-17 18:05:20 +00005105 // Check to see if we have a flag which makes analysis easy.
5106 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5107 AddRec->hasNoUnsignedWrap();
5108
Chris Lattnerdb25de42005-08-15 23:33:51 +00005109 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005110 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005111 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005112
Dan Gohman52fddd32010-01-26 04:40:18 +00005113 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005114 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005115 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005116 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005117 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005118 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005119 // value and past the maximum value for its type in a single step.
5120 // Note that it's not sufficient to check NoWrap here, because even
5121 // though the value after a wrap is undefined, it's not undefined
5122 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005123 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005124 // iterate at least until the iteration where the wrapping occurs.
5125 const SCEV *One = getIntegerSCEV(1, Step->getType());
5126 if (isSigned) {
5127 APInt Max = APInt::getSignedMaxValue(BitWidth);
5128 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5129 .slt(getSignedRange(RHS).getSignedMax()))
5130 return getCouldNotCompute();
5131 } else {
5132 APInt Max = APInt::getMaxValue(BitWidth);
5133 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5134 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5135 return getCouldNotCompute();
5136 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005137 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005138 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005139 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005140
Dan Gohmana1af7572009-04-30 20:47:05 +00005141 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5142 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5143 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005144 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005145
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005146 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005147 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005148
Dan Gohmana1af7572009-04-30 20:47:05 +00005149 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005150 const SCEV *MinStart = getConstant(isSigned ?
5151 getSignedRange(Start).getSignedMin() :
5152 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005153
Dan Gohmana1af7572009-04-30 20:47:05 +00005154 // If we know that the condition is true in order to enter the loop,
5155 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005156 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5157 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005158 const SCEV *End = RHS;
Dan Gohmana1af7572009-04-30 20:47:05 +00005159 if (!isLoopGuardedByCond(L,
Dan Gohman85b05a22009-07-13 21:35:55 +00005160 isSigned ? ICmpInst::ICMP_SLT :
5161 ICmpInst::ICMP_ULT,
Dan Gohmana1af7572009-04-30 20:47:05 +00005162 getMinusSCEV(Start, Step), RHS))
5163 End = isSigned ? getSMaxExpr(RHS, Start)
5164 : getUMaxExpr(RHS, Start);
5165
5166 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005167 const SCEV *MaxEnd = getConstant(isSigned ?
5168 getSignedRange(End).getSignedMax() :
5169 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005170
Dan Gohman52fddd32010-01-26 04:40:18 +00005171 // If MaxEnd is within a step of the maximum integer value in its type,
5172 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005173 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005174 // compute the correct value.
5175 const SCEV *StepMinusOne = getMinusSCEV(Step,
5176 getIntegerSCEV(1, Step->getType()));
5177 MaxEnd = isSigned ?
5178 getSMinExpr(MaxEnd,
5179 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5180 StepMinusOne)) :
5181 getUMinExpr(MaxEnd,
5182 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5183 StepMinusOne));
5184
Dan Gohmana1af7572009-04-30 20:47:05 +00005185 // Finally, we subtract these two values and divide, rounding up, to get
5186 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005187 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005188
5189 // The maximum backedge count is similar, except using the minimum start
5190 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005191 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005192
5193 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005194 }
5195
Dan Gohman1c343752009-06-27 21:21:31 +00005196 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005197}
5198
Chris Lattner53e677a2004-04-02 20:23:17 +00005199/// getNumIterationsInRange - Return the number of iterations of this loop that
5200/// produce values in the specified constant range. Another way of looking at
5201/// this is that it returns the first iteration number where the value is not in
5202/// the condition, thus computing the exit count. If the iteration count can't
5203/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005204const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005205 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005206 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005207 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005208
5209 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005210 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005211 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005212 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005213 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005214 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005215 if (const SCEVAddRecExpr *ShiftedAddRec =
5216 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005217 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005218 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005219 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005220 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005221 }
5222
5223 // The only time we can solve this is when we have all constant indices.
5224 // Otherwise, we cannot determine the overflow conditions.
5225 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5226 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005227 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005228
5229
5230 // Okay at this point we know that all elements of the chrec are constants and
5231 // that the start element is zero.
5232
5233 // First check to see if the range contains zero. If not, the first
5234 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005235 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005236 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00005237 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005238
Chris Lattner53e677a2004-04-02 20:23:17 +00005239 if (isAffine()) {
5240 // If this is an affine expression then we have this situation:
5241 // Solve {0,+,A} in Range === Ax in Range
5242
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005243 // We know that zero is in the range. If A is positive then we know that
5244 // the upper value of the range must be the first possible exit value.
5245 // If A is negative then the lower of the range is the last possible loop
5246 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005247 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005248 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5249 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005250
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005251 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005252 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005253 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005254
5255 // Evaluate at the exit value. If we really did fall out of the valid
5256 // range, then we computed our trip count, otherwise wrap around or other
5257 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005258 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005259 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005260 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005261
5262 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005263 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005264 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005265 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005266 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005267 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005268 } else if (isQuadratic()) {
5269 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5270 // quadratic equation to solve it. To do this, we must frame our problem in
5271 // terms of figuring out when zero is crossed, instead of when
5272 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005273 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005274 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005275 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005276
5277 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005278 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005279 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005280 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5281 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005282 if (R1) {
5283 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005284 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005285 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005286 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005287 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005288 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005289
Chris Lattner53e677a2004-04-02 20:23:17 +00005290 // Make sure the root is not off by one. The returned iteration should
5291 // not be in the range, but the previous one should be. When solving
5292 // for "X*X < 5", for example, we should not return a root of 2.
5293 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005294 R1->getValue(),
5295 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005296 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005297 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005298 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005299 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005300
Dan Gohman246b2562007-10-22 18:31:58 +00005301 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005302 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005303 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005304 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005305 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005306
Chris Lattner53e677a2004-04-02 20:23:17 +00005307 // If R1 was not in the range, then it is a good return value. Make
5308 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005309 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005310 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005311 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005312 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005313 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005314 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005315 }
5316 }
5317 }
5318
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005319 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005320}
5321
5322
5323
5324//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005325// SCEVCallbackVH Class Implementation
5326//===----------------------------------------------------------------------===//
5327
Dan Gohman1959b752009-05-19 19:22:47 +00005328void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005329 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005330 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5331 SE->ConstantEvolutionLoopExitValue.erase(PN);
5332 SE->Scalars.erase(getValPtr());
5333 // this now dangles!
5334}
5335
Dan Gohman1959b752009-05-19 19:22:47 +00005336void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005337 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005338
5339 // Forget all the expressions associated with users of the old value,
5340 // so that future queries will recompute the expressions using the new
5341 // value.
5342 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005343 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005344 Value *Old = getValPtr();
5345 bool DeleteOld = false;
5346 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5347 UI != UE; ++UI)
5348 Worklist.push_back(*UI);
5349 while (!Worklist.empty()) {
5350 User *U = Worklist.pop_back_val();
5351 // Deleting the Old value will cause this to dangle. Postpone
5352 // that until everything else is done.
5353 if (U == Old) {
5354 DeleteOld = true;
5355 continue;
5356 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005357 if (!Visited.insert(U))
5358 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005359 if (PHINode *PN = dyn_cast<PHINode>(U))
5360 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005361 SE->Scalars.erase(U);
5362 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5363 UI != UE; ++UI)
5364 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005365 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005366 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005367 if (DeleteOld) {
5368 if (PHINode *PN = dyn_cast<PHINode>(Old))
5369 SE->ConstantEvolutionLoopExitValue.erase(PN);
5370 SE->Scalars.erase(Old);
5371 // this now dangles!
5372 }
5373 // this may dangle!
5374}
5375
Dan Gohman1959b752009-05-19 19:22:47 +00005376ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005377 : CallbackVH(V), SE(se) {}
5378
5379//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005380// ScalarEvolution Class Implementation
5381//===----------------------------------------------------------------------===//
5382
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005383ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005384 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005385}
5386
Chris Lattner53e677a2004-04-02 20:23:17 +00005387bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005388 this->F = &F;
5389 LI = &getAnalysis<LoopInfo>();
5390 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005391 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005392 return false;
5393}
5394
5395void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005396 Scalars.clear();
5397 BackedgeTakenCounts.clear();
5398 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005399 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005400 UniqueSCEVs.clear();
5401 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005402}
5403
5404void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5405 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005406 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005407 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005408}
5409
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005410bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005411 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005412}
5413
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005414static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005415 const Loop *L) {
5416 // Print all inner loops first
5417 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5418 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005419
Dan Gohman30733292010-01-09 18:17:45 +00005420 OS << "Loop ";
5421 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5422 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005423
Dan Gohman5d984912009-12-18 01:14:11 +00005424 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005425 L->getExitBlocks(ExitBlocks);
5426 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005427 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005428
Dan Gohman46bdfb02009-02-24 18:55:53 +00005429 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5430 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005431 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005432 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005433 }
5434
Dan Gohman30733292010-01-09 18:17:45 +00005435 OS << "\n"
5436 "Loop ";
5437 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5438 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005439
5440 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5441 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5442 } else {
5443 OS << "Unpredictable max backedge-taken count. ";
5444 }
5445
5446 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005447}
5448
Dan Gohman5d984912009-12-18 01:14:11 +00005449void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005450 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005451 // out SCEV values of all instructions that are interesting. Doing
5452 // this potentially causes it to create new SCEV objects though,
5453 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005454 // observable from outside the class though, so casting away the
5455 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005456 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005457
Dan Gohman30733292010-01-09 18:17:45 +00005458 OS << "Classifying expressions for: ";
5459 WriteAsOperand(OS, F, /*PrintType=*/false);
5460 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005461 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00005462 if (isSCEVable(I->getType())) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005463 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005464 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005465 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005466 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005467
Dan Gohman0c689c52009-06-19 17:49:54 +00005468 const Loop *L = LI->getLoopFor((*I).getParent());
5469
Dan Gohman0bba49c2009-07-07 17:06:11 +00005470 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005471 if (AtUse != SV) {
5472 OS << " --> ";
5473 AtUse->print(OS);
5474 }
5475
5476 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005477 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005478 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005479 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005480 OS << "<<Unknown>>";
5481 } else {
5482 OS << *ExitValue;
5483 }
5484 }
5485
Chris Lattner53e677a2004-04-02 20:23:17 +00005486 OS << "\n";
5487 }
5488
Dan Gohman30733292010-01-09 18:17:45 +00005489 OS << "Determining loop execution counts for: ";
5490 WriteAsOperand(OS, F, /*PrintType=*/false);
5491 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005492 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5493 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005494}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005495