blob: d3147426cb4cdace02ccf85cd7a8a72e61735fd0 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Neil Booth and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#include <cassert>
16#include "llvm/ADT/APFloat.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerb39cdde2007-08-20 22:49:32 +000018
19using namespace llvm;
20
21#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
22
23/* Assumed in hexadecimal significand parsing. */
24COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
25
26namespace llvm {
27
28 /* Represents floating point arithmetic semantics. */
29 struct fltSemantics {
30 /* The largest E such that 2^E is representable; this matches the
31 definition of IEEE 754. */
32 exponent_t maxExponent;
33
34 /* The smallest E such that 2^E is a normalized number; this
35 matches the definition of IEEE 754. */
36 exponent_t minExponent;
37
38 /* Number of bits in the significand. This includes the integer
39 bit. */
40 unsigned char precision;
41
42 /* If the target format has an implicit integer bit. */
43 bool implicitIntegerBit;
44 };
45
46 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
47 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
48 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
49 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
Dale Johannesena72a5a02007-09-20 23:47:58 +000050 const fltSemantics APFloat::Bogus = { 0, 0, 0, false };
Chris Lattnerb39cdde2007-08-20 22:49:32 +000051}
52
53/* Put a bunch of private, handy routines in an anonymous namespace. */
54namespace {
55
56 inline unsigned int
57 partCountForBits(unsigned int bits)
58 {
59 return ((bits) + integerPartWidth - 1) / integerPartWidth;
60 }
61
62 unsigned int
63 digitValue(unsigned int c)
64 {
65 unsigned int r;
66
67 r = c - '0';
68 if(r <= 9)
69 return r;
70
71 return -1U;
72 }
73
74 unsigned int
75 hexDigitValue (unsigned int c)
76 {
77 unsigned int r;
78
79 r = c - '0';
80 if(r <= 9)
81 return r;
82
83 r = c - 'A';
84 if(r <= 5)
85 return r + 10;
86
87 r = c - 'a';
88 if(r <= 5)
89 return r + 10;
90
91 return -1U;
92 }
93
94 /* This is ugly and needs cleaning up, but I don't immediately see
95 how whilst remaining safe. */
96 static int
97 totalExponent(const char *p, int exponentAdjustment)
98 {
99 integerPart unsignedExponent;
100 bool negative, overflow;
101 long exponent;
102
103 /* Move past the exponent letter and sign to the digits. */
104 p++;
105 negative = *p == '-';
106 if(*p == '-' || *p == '+')
107 p++;
108
109 unsignedExponent = 0;
110 overflow = false;
111 for(;;) {
112 unsigned int value;
113
114 value = digitValue(*p);
115 if(value == -1U)
116 break;
117
118 p++;
119 unsignedExponent = unsignedExponent * 10 + value;
120 if(unsignedExponent > 65535)
121 overflow = true;
122 }
123
124 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
125 overflow = true;
126
127 if(!overflow) {
128 exponent = unsignedExponent;
129 if(negative)
130 exponent = -exponent;
131 exponent += exponentAdjustment;
132 if(exponent > 65535 || exponent < -65536)
133 overflow = true;
134 }
135
136 if(overflow)
137 exponent = negative ? -65536: 65535;
138
139 return exponent;
140 }
141
142 const char *
143 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
144 {
145 *dot = 0;
146 while(*p == '0')
147 p++;
148
149 if(*p == '.') {
150 *dot = p++;
151 while(*p == '0')
152 p++;
153 }
154
155 return p;
156 }
157
158 /* Return the trailing fraction of a hexadecimal number.
159 DIGITVALUE is the first hex digit of the fraction, P points to
160 the next digit. */
161 lostFraction
162 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
163 {
164 unsigned int hexDigit;
165
166 /* If the first trailing digit isn't 0 or 8 we can work out the
167 fraction immediately. */
168 if(digitValue > 8)
169 return lfMoreThanHalf;
170 else if(digitValue < 8 && digitValue > 0)
171 return lfLessThanHalf;
172
173 /* Otherwise we need to find the first non-zero digit. */
174 while(*p == '0')
175 p++;
176
177 hexDigit = hexDigitValue(*p);
178
179 /* If we ran off the end it is exactly zero or one-half, otherwise
180 a little more. */
181 if(hexDigit == -1U)
182 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
183 else
184 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
185 }
186
187 /* Return the fraction lost were a bignum truncated. */
188 lostFraction
189 lostFractionThroughTruncation(integerPart *parts,
190 unsigned int partCount,
191 unsigned int bits)
192 {
193 unsigned int lsb;
194
195 lsb = APInt::tcLSB(parts, partCount);
196
197 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
198 if(bits <= lsb)
199 return lfExactlyZero;
200 if(bits == lsb + 1)
201 return lfExactlyHalf;
202 if(bits <= partCount * integerPartWidth
203 && APInt::tcExtractBit(parts, bits - 1))
204 return lfMoreThanHalf;
205
206 return lfLessThanHalf;
207 }
208
209 /* Shift DST right BITS bits noting lost fraction. */
210 lostFraction
211 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
212 {
213 lostFraction lost_fraction;
214
215 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
216
217 APInt::tcShiftRight(dst, parts, bits);
218
219 return lost_fraction;
220 }
221}
222
223/* Constructors. */
224void
225APFloat::initialize(const fltSemantics *ourSemantics)
226{
227 unsigned int count;
228
229 semantics = ourSemantics;
230 count = partCount();
231 if(count > 1)
232 significand.parts = new integerPart[count];
233}
234
235void
236APFloat::freeSignificand()
237{
238 if(partCount() > 1)
239 delete [] significand.parts;
240}
241
242void
243APFloat::assign(const APFloat &rhs)
244{
245 assert(semantics == rhs.semantics);
246
247 sign = rhs.sign;
248 category = rhs.category;
249 exponent = rhs.exponent;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000250 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000251 copySignificand(rhs);
252}
253
254void
255APFloat::copySignificand(const APFloat &rhs)
256{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000257 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000258 assert(rhs.partCount() >= partCount());
259
260 APInt::tcAssign(significandParts(), rhs.significandParts(),
261 partCount());
262}
263
264APFloat &
265APFloat::operator=(const APFloat &rhs)
266{
267 if(this != &rhs) {
268 if(semantics != rhs.semantics) {
269 freeSignificand();
270 initialize(rhs.semantics);
271 }
272 assign(rhs);
273 }
274
275 return *this;
276}
277
Dale Johannesen343e7702007-08-24 00:56:33 +0000278bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000279APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000280 if (this == &rhs)
281 return true;
282 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000283 category != rhs.category ||
284 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000285 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000286 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000287 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000288 else if (category==fcNormal && exponent!=rhs.exponent)
289 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000290 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000291 int i= partCount();
292 const integerPart* p=significandParts();
293 const integerPart* q=rhs.significandParts();
294 for (; i>0; i--, p++, q++) {
295 if (*p != *q)
296 return false;
297 }
298 return true;
299 }
300}
301
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000302APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
303{
304 initialize(&ourSemantics);
305 sign = 0;
306 zeroSignificand();
307 exponent = ourSemantics.precision - 1;
308 significandParts()[0] = value;
309 normalize(rmNearestTiesToEven, lfExactlyZero);
310}
311
312APFloat::APFloat(const fltSemantics &ourSemantics,
313 fltCategory ourCategory, bool negative)
314{
315 initialize(&ourSemantics);
316 category = ourCategory;
317 sign = negative;
318 if(category == fcNormal)
319 category = fcZero;
320}
321
322APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
323{
324 initialize(&ourSemantics);
325 convertFromString(text, rmNearestTiesToEven);
326}
327
328APFloat::APFloat(const APFloat &rhs)
329{
330 initialize(rhs.semantics);
331 assign(rhs);
332}
333
334APFloat::~APFloat()
335{
336 freeSignificand();
337}
338
339unsigned int
340APFloat::partCount() const
341{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000342 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000343}
344
345unsigned int
346APFloat::semanticsPrecision(const fltSemantics &semantics)
347{
348 return semantics.precision;
349}
350
351const integerPart *
352APFloat::significandParts() const
353{
354 return const_cast<APFloat *>(this)->significandParts();
355}
356
357integerPart *
358APFloat::significandParts()
359{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000360 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000361
362 if(partCount() > 1)
363 return significand.parts;
364 else
365 return &significand.part;
366}
367
368/* Combine the effect of two lost fractions. */
369lostFraction
370APFloat::combineLostFractions(lostFraction moreSignificant,
371 lostFraction lessSignificant)
372{
373 if(lessSignificant != lfExactlyZero) {
374 if(moreSignificant == lfExactlyZero)
375 moreSignificant = lfLessThanHalf;
376 else if(moreSignificant == lfExactlyHalf)
377 moreSignificant = lfMoreThanHalf;
378 }
379
380 return moreSignificant;
381}
382
383void
384APFloat::zeroSignificand()
385{
386 category = fcNormal;
387 APInt::tcSet(significandParts(), 0, partCount());
388}
389
390/* Increment an fcNormal floating point number's significand. */
391void
392APFloat::incrementSignificand()
393{
394 integerPart carry;
395
396 carry = APInt::tcIncrement(significandParts(), partCount());
397
398 /* Our callers should never cause us to overflow. */
399 assert(carry == 0);
400}
401
402/* Add the significand of the RHS. Returns the carry flag. */
403integerPart
404APFloat::addSignificand(const APFloat &rhs)
405{
406 integerPart *parts;
407
408 parts = significandParts();
409
410 assert(semantics == rhs.semantics);
411 assert(exponent == rhs.exponent);
412
413 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
414}
415
416/* Subtract the significand of the RHS with a borrow flag. Returns
417 the borrow flag. */
418integerPart
419APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
420{
421 integerPart *parts;
422
423 parts = significandParts();
424
425 assert(semantics == rhs.semantics);
426 assert(exponent == rhs.exponent);
427
428 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
429 partCount());
430}
431
432/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
433 on to the full-precision result of the multiplication. Returns the
434 lost fraction. */
435lostFraction
436APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
437{
438 unsigned int omsb; // One, not zero, based MSB.
439 unsigned int partsCount, newPartsCount, precision;
440 integerPart *lhsSignificand;
441 integerPart scratch[4];
442 integerPart *fullSignificand;
443 lostFraction lost_fraction;
444
445 assert(semantics == rhs.semantics);
446
447 precision = semantics->precision;
448 newPartsCount = partCountForBits(precision * 2);
449
450 if(newPartsCount > 4)
451 fullSignificand = new integerPart[newPartsCount];
452 else
453 fullSignificand = scratch;
454
455 lhsSignificand = significandParts();
456 partsCount = partCount();
457
458 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
459 rhs.significandParts(), partsCount);
460
461 lost_fraction = lfExactlyZero;
462 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
463 exponent += rhs.exponent;
464
465 if(addend) {
466 Significand savedSignificand = significand;
467 const fltSemantics *savedSemantics = semantics;
468 fltSemantics extendedSemantics;
469 opStatus status;
470 unsigned int extendedPrecision;
471
472 /* Normalize our MSB. */
473 extendedPrecision = precision + precision - 1;
474 if(omsb != extendedPrecision)
475 {
476 APInt::tcShiftLeft(fullSignificand, newPartsCount,
477 extendedPrecision - omsb);
478 exponent -= extendedPrecision - omsb;
479 }
480
481 /* Create new semantics. */
482 extendedSemantics = *semantics;
483 extendedSemantics.precision = extendedPrecision;
484
485 if(newPartsCount == 1)
486 significand.part = fullSignificand[0];
487 else
488 significand.parts = fullSignificand;
489 semantics = &extendedSemantics;
490
491 APFloat extendedAddend(*addend);
492 status = extendedAddend.convert(extendedSemantics, rmTowardZero);
493 assert(status == opOK);
494 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
495
496 /* Restore our state. */
497 if(newPartsCount == 1)
498 fullSignificand[0] = significand.part;
499 significand = savedSignificand;
500 semantics = savedSemantics;
501
502 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
503 }
504
505 exponent -= (precision - 1);
506
507 if(omsb > precision) {
508 unsigned int bits, significantParts;
509 lostFraction lf;
510
511 bits = omsb - precision;
512 significantParts = partCountForBits(omsb);
513 lf = shiftRight(fullSignificand, significantParts, bits);
514 lost_fraction = combineLostFractions(lf, lost_fraction);
515 exponent += bits;
516 }
517
518 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
519
520 if(newPartsCount > 4)
521 delete [] fullSignificand;
522
523 return lost_fraction;
524}
525
526/* Multiply the significands of LHS and RHS to DST. */
527lostFraction
528APFloat::divideSignificand(const APFloat &rhs)
529{
530 unsigned int bit, i, partsCount;
531 const integerPart *rhsSignificand;
532 integerPart *lhsSignificand, *dividend, *divisor;
533 integerPart scratch[4];
534 lostFraction lost_fraction;
535
536 assert(semantics == rhs.semantics);
537
538 lhsSignificand = significandParts();
539 rhsSignificand = rhs.significandParts();
540 partsCount = partCount();
541
542 if(partsCount > 2)
543 dividend = new integerPart[partsCount * 2];
544 else
545 dividend = scratch;
546
547 divisor = dividend + partsCount;
548
549 /* Copy the dividend and divisor as they will be modified in-place. */
550 for(i = 0; i < partsCount; i++) {
551 dividend[i] = lhsSignificand[i];
552 divisor[i] = rhsSignificand[i];
553 lhsSignificand[i] = 0;
554 }
555
556 exponent -= rhs.exponent;
557
558 unsigned int precision = semantics->precision;
559
560 /* Normalize the divisor. */
561 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
562 if(bit) {
563 exponent += bit;
564 APInt::tcShiftLeft(divisor, partsCount, bit);
565 }
566
567 /* Normalize the dividend. */
568 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
569 if(bit) {
570 exponent -= bit;
571 APInt::tcShiftLeft(dividend, partsCount, bit);
572 }
573
574 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
575 exponent--;
576 APInt::tcShiftLeft(dividend, partsCount, 1);
577 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
578 }
579
580 /* Long division. */
581 for(bit = precision; bit; bit -= 1) {
582 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
583 APInt::tcSubtract(dividend, divisor, 0, partsCount);
584 APInt::tcSetBit(lhsSignificand, bit - 1);
585 }
586
587 APInt::tcShiftLeft(dividend, partsCount, 1);
588 }
589
590 /* Figure out the lost fraction. */
591 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
592
593 if(cmp > 0)
594 lost_fraction = lfMoreThanHalf;
595 else if(cmp == 0)
596 lost_fraction = lfExactlyHalf;
597 else if(APInt::tcIsZero(dividend, partsCount))
598 lost_fraction = lfExactlyZero;
599 else
600 lost_fraction = lfLessThanHalf;
601
602 if(partsCount > 2)
603 delete [] dividend;
604
605 return lost_fraction;
606}
607
608unsigned int
609APFloat::significandMSB() const
610{
611 return APInt::tcMSB(significandParts(), partCount());
612}
613
614unsigned int
615APFloat::significandLSB() const
616{
617 return APInt::tcLSB(significandParts(), partCount());
618}
619
620/* Note that a zero result is NOT normalized to fcZero. */
621lostFraction
622APFloat::shiftSignificandRight(unsigned int bits)
623{
624 /* Our exponent should not overflow. */
625 assert((exponent_t) (exponent + bits) >= exponent);
626
627 exponent += bits;
628
629 return shiftRight(significandParts(), partCount(), bits);
630}
631
632/* Shift the significand left BITS bits, subtract BITS from its exponent. */
633void
634APFloat::shiftSignificandLeft(unsigned int bits)
635{
636 assert(bits < semantics->precision);
637
638 if(bits) {
639 unsigned int partsCount = partCount();
640
641 APInt::tcShiftLeft(significandParts(), partsCount, bits);
642 exponent -= bits;
643
644 assert(!APInt::tcIsZero(significandParts(), partsCount));
645 }
646}
647
648APFloat::cmpResult
649APFloat::compareAbsoluteValue(const APFloat &rhs) const
650{
651 int compare;
652
653 assert(semantics == rhs.semantics);
654 assert(category == fcNormal);
655 assert(rhs.category == fcNormal);
656
657 compare = exponent - rhs.exponent;
658
659 /* If exponents are equal, do an unsigned bignum comparison of the
660 significands. */
661 if(compare == 0)
662 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
663 partCount());
664
665 if(compare > 0)
666 return cmpGreaterThan;
667 else if(compare < 0)
668 return cmpLessThan;
669 else
670 return cmpEqual;
671}
672
673/* Handle overflow. Sign is preserved. We either become infinity or
674 the largest finite number. */
675APFloat::opStatus
676APFloat::handleOverflow(roundingMode rounding_mode)
677{
678 /* Infinity? */
679 if(rounding_mode == rmNearestTiesToEven
680 || rounding_mode == rmNearestTiesToAway
681 || (rounding_mode == rmTowardPositive && !sign)
682 || (rounding_mode == rmTowardNegative && sign))
683 {
684 category = fcInfinity;
685 return (opStatus) (opOverflow | opInexact);
686 }
687
688 /* Otherwise we become the largest finite number. */
689 category = fcNormal;
690 exponent = semantics->maxExponent;
691 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
692 semantics->precision);
693
694 return opInexact;
695}
696
697/* This routine must work for fcZero of both signs, and fcNormal
698 numbers. */
699bool
700APFloat::roundAwayFromZero(roundingMode rounding_mode,
701 lostFraction lost_fraction)
702{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000703 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000704 assert(category == fcNormal || category == fcZero);
705
706 /* Our caller has already handled this case. */
707 assert(lost_fraction != lfExactlyZero);
708
709 switch(rounding_mode) {
710 default:
711 assert(0);
712
713 case rmNearestTiesToAway:
714 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
715
716 case rmNearestTiesToEven:
717 if(lost_fraction == lfMoreThanHalf)
718 return true;
719
720 /* Our zeroes don't have a significand to test. */
721 if(lost_fraction == lfExactlyHalf && category != fcZero)
722 return significandParts()[0] & 1;
723
724 return false;
725
726 case rmTowardZero:
727 return false;
728
729 case rmTowardPositive:
730 return sign == false;
731
732 case rmTowardNegative:
733 return sign == true;
734 }
735}
736
737APFloat::opStatus
738APFloat::normalize(roundingMode rounding_mode,
739 lostFraction lost_fraction)
740{
741 unsigned int omsb; /* One, not zero, based MSB. */
742 int exponentChange;
743
744 if(category != fcNormal)
745 return opOK;
746
747 /* Before rounding normalize the exponent of fcNormal numbers. */
748 omsb = significandMSB() + 1;
749
750 if(omsb) {
751 /* OMSB is numbered from 1. We want to place it in the integer
752 bit numbered PRECISON if possible, with a compensating change in
753 the exponent. */
754 exponentChange = omsb - semantics->precision;
755
756 /* If the resulting exponent is too high, overflow according to
757 the rounding mode. */
758 if(exponent + exponentChange > semantics->maxExponent)
759 return handleOverflow(rounding_mode);
760
761 /* Subnormal numbers have exponent minExponent, and their MSB
762 is forced based on that. */
763 if(exponent + exponentChange < semantics->minExponent)
764 exponentChange = semantics->minExponent - exponent;
765
766 /* Shifting left is easy as we don't lose precision. */
767 if(exponentChange < 0) {
768 assert(lost_fraction == lfExactlyZero);
769
770 shiftSignificandLeft(-exponentChange);
771
772 return opOK;
773 }
774
775 if(exponentChange > 0) {
776 lostFraction lf;
777
778 /* Shift right and capture any new lost fraction. */
779 lf = shiftSignificandRight(exponentChange);
780
781 lost_fraction = combineLostFractions(lf, lost_fraction);
782
783 /* Keep OMSB up-to-date. */
784 if(omsb > (unsigned) exponentChange)
785 omsb -= (unsigned) exponentChange;
786 else
787 omsb = 0;
788 }
789 }
790
791 /* Now round the number according to rounding_mode given the lost
792 fraction. */
793
794 /* As specified in IEEE 754, since we do not trap we do not report
795 underflow for exact results. */
796 if(lost_fraction == lfExactlyZero) {
797 /* Canonicalize zeroes. */
798 if(omsb == 0)
799 category = fcZero;
800
801 return opOK;
802 }
803
804 /* Increment the significand if we're rounding away from zero. */
805 if(roundAwayFromZero(rounding_mode, lost_fraction)) {
806 if(omsb == 0)
807 exponent = semantics->minExponent;
808
809 incrementSignificand();
810 omsb = significandMSB() + 1;
811
812 /* Did the significand increment overflow? */
813 if(omsb == (unsigned) semantics->precision + 1) {
814 /* Renormalize by incrementing the exponent and shifting our
815 significand right one. However if we already have the
816 maximum exponent we overflow to infinity. */
817 if(exponent == semantics->maxExponent) {
818 category = fcInfinity;
819
820 return (opStatus) (opOverflow | opInexact);
821 }
822
823 shiftSignificandRight(1);
824
825 return opInexact;
826 }
827 }
828
829 /* The normal case - we were and are not denormal, and any
830 significand increment above didn't overflow. */
831 if(omsb == semantics->precision)
832 return opInexact;
833
834 /* We have a non-zero denormal. */
835 assert(omsb < semantics->precision);
836 assert(exponent == semantics->minExponent);
837
838 /* Canonicalize zeroes. */
839 if(omsb == 0)
840 category = fcZero;
841
842 /* The fcZero case is a denormal that underflowed to zero. */
843 return (opStatus) (opUnderflow | opInexact);
844}
845
846APFloat::opStatus
847APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
848{
849 switch(convolve(category, rhs.category)) {
850 default:
851 assert(0);
852
Dale Johanneseneaf08942007-08-31 04:03:46 +0000853 case convolve(fcNaN, fcZero):
854 case convolve(fcNaN, fcNormal):
855 case convolve(fcNaN, fcInfinity):
856 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000857 case convolve(fcNormal, fcZero):
858 case convolve(fcInfinity, fcNormal):
859 case convolve(fcInfinity, fcZero):
860 return opOK;
861
Dale Johanneseneaf08942007-08-31 04:03:46 +0000862 case convolve(fcZero, fcNaN):
863 case convolve(fcNormal, fcNaN):
864 case convolve(fcInfinity, fcNaN):
865 category = fcNaN;
866 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000867 return opOK;
868
869 case convolve(fcNormal, fcInfinity):
870 case convolve(fcZero, fcInfinity):
871 category = fcInfinity;
872 sign = rhs.sign ^ subtract;
873 return opOK;
874
875 case convolve(fcZero, fcNormal):
876 assign(rhs);
877 sign = rhs.sign ^ subtract;
878 return opOK;
879
880 case convolve(fcZero, fcZero):
881 /* Sign depends on rounding mode; handled by caller. */
882 return opOK;
883
884 case convolve(fcInfinity, fcInfinity):
885 /* Differently signed infinities can only be validly
886 subtracted. */
887 if(sign ^ rhs.sign != subtract) {
Dale Johanneseneaf08942007-08-31 04:03:46 +0000888 category = fcNaN;
889 // Arbitrary but deterministic value for significand
890 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000891 return opInvalidOp;
892 }
893
894 return opOK;
895
896 case convolve(fcNormal, fcNormal):
897 return opDivByZero;
898 }
899}
900
901/* Add or subtract two normal numbers. */
902lostFraction
903APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
904{
905 integerPart carry;
906 lostFraction lost_fraction;
907 int bits;
908
909 /* Determine if the operation on the absolute values is effectively
910 an addition or subtraction. */
911 subtract ^= (sign ^ rhs.sign);
912
913 /* Are we bigger exponent-wise than the RHS? */
914 bits = exponent - rhs.exponent;
915
916 /* Subtraction is more subtle than one might naively expect. */
917 if(subtract) {
918 APFloat temp_rhs(rhs);
919 bool reverse;
920
Chris Lattnerada530b2007-08-24 03:02:34 +0000921 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000922 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
923 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +0000924 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000925 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
926 shiftSignificandLeft(1);
927 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +0000928 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000929 lost_fraction = shiftSignificandRight(-bits - 1);
930 temp_rhs.shiftSignificandLeft(1);
931 reverse = true;
932 }
933
Chris Lattnerada530b2007-08-24 03:02:34 +0000934 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000935 carry = temp_rhs.subtractSignificand
936 (*this, lost_fraction != lfExactlyZero);
937 copySignificand(temp_rhs);
938 sign = !sign;
939 } else {
940 carry = subtractSignificand
941 (temp_rhs, lost_fraction != lfExactlyZero);
942 }
943
944 /* Invert the lost fraction - it was on the RHS and
945 subtracted. */
946 if(lost_fraction == lfLessThanHalf)
947 lost_fraction = lfMoreThanHalf;
948 else if(lost_fraction == lfMoreThanHalf)
949 lost_fraction = lfLessThanHalf;
950
951 /* The code above is intended to ensure that no borrow is
952 necessary. */
953 assert(!carry);
954 } else {
955 if(bits > 0) {
956 APFloat temp_rhs(rhs);
957
958 lost_fraction = temp_rhs.shiftSignificandRight(bits);
959 carry = addSignificand(temp_rhs);
960 } else {
961 lost_fraction = shiftSignificandRight(-bits);
962 carry = addSignificand(rhs);
963 }
964
965 /* We have a guard bit; generating a carry cannot happen. */
966 assert(!carry);
967 }
968
969 return lost_fraction;
970}
971
972APFloat::opStatus
973APFloat::multiplySpecials(const APFloat &rhs)
974{
975 switch(convolve(category, rhs.category)) {
976 default:
977 assert(0);
978
Dale Johanneseneaf08942007-08-31 04:03:46 +0000979 case convolve(fcNaN, fcZero):
980 case convolve(fcNaN, fcNormal):
981 case convolve(fcNaN, fcInfinity):
982 case convolve(fcNaN, fcNaN):
983 return opOK;
984
985 case convolve(fcZero, fcNaN):
986 case convolve(fcNormal, fcNaN):
987 case convolve(fcInfinity, fcNaN):
988 category = fcNaN;
989 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000990 return opOK;
991
992 case convolve(fcNormal, fcInfinity):
993 case convolve(fcInfinity, fcNormal):
994 case convolve(fcInfinity, fcInfinity):
995 category = fcInfinity;
996 return opOK;
997
998 case convolve(fcZero, fcNormal):
999 case convolve(fcNormal, fcZero):
1000 case convolve(fcZero, fcZero):
1001 category = fcZero;
1002 return opOK;
1003
1004 case convolve(fcZero, fcInfinity):
1005 case convolve(fcInfinity, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001006 category = fcNaN;
1007 // Arbitrary but deterministic value for significand
1008 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001009 return opInvalidOp;
1010
1011 case convolve(fcNormal, fcNormal):
1012 return opOK;
1013 }
1014}
1015
1016APFloat::opStatus
1017APFloat::divideSpecials(const APFloat &rhs)
1018{
1019 switch(convolve(category, rhs.category)) {
1020 default:
1021 assert(0);
1022
Dale Johanneseneaf08942007-08-31 04:03:46 +00001023 case convolve(fcNaN, fcZero):
1024 case convolve(fcNaN, fcNormal):
1025 case convolve(fcNaN, fcInfinity):
1026 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001027 case convolve(fcInfinity, fcZero):
1028 case convolve(fcInfinity, fcNormal):
1029 case convolve(fcZero, fcInfinity):
1030 case convolve(fcZero, fcNormal):
1031 return opOK;
1032
Dale Johanneseneaf08942007-08-31 04:03:46 +00001033 case convolve(fcZero, fcNaN):
1034 case convolve(fcNormal, fcNaN):
1035 case convolve(fcInfinity, fcNaN):
1036 category = fcNaN;
1037 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001038 return opOK;
1039
1040 case convolve(fcNormal, fcInfinity):
1041 category = fcZero;
1042 return opOK;
1043
1044 case convolve(fcNormal, fcZero):
1045 category = fcInfinity;
1046 return opDivByZero;
1047
1048 case convolve(fcInfinity, fcInfinity):
1049 case convolve(fcZero, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001050 category = fcNaN;
1051 // Arbitrary but deterministic value for significand
1052 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001053 return opInvalidOp;
1054
1055 case convolve(fcNormal, fcNormal):
1056 return opOK;
1057 }
1058}
1059
1060/* Change sign. */
1061void
1062APFloat::changeSign()
1063{
1064 /* Look mummy, this one's easy. */
1065 sign = !sign;
1066}
1067
Dale Johannesene15c2db2007-08-31 23:35:31 +00001068void
1069APFloat::clearSign()
1070{
1071 /* So is this one. */
1072 sign = 0;
1073}
1074
1075void
1076APFloat::copySign(const APFloat &rhs)
1077{
1078 /* And this one. */
1079 sign = rhs.sign;
1080}
1081
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001082/* Normalized addition or subtraction. */
1083APFloat::opStatus
1084APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1085 bool subtract)
1086{
1087 opStatus fs;
1088
1089 fs = addOrSubtractSpecials(rhs, subtract);
1090
1091 /* This return code means it was not a simple case. */
1092 if(fs == opDivByZero) {
1093 lostFraction lost_fraction;
1094
1095 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1096 fs = normalize(rounding_mode, lost_fraction);
1097
1098 /* Can only be zero if we lost no fraction. */
1099 assert(category != fcZero || lost_fraction == lfExactlyZero);
1100 }
1101
1102 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1103 positive zero unless rounding to minus infinity, except that
1104 adding two like-signed zeroes gives that zero. */
1105 if(category == fcZero) {
1106 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1107 sign = (rounding_mode == rmTowardNegative);
1108 }
1109
1110 return fs;
1111}
1112
1113/* Normalized addition. */
1114APFloat::opStatus
1115APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1116{
1117 return addOrSubtract(rhs, rounding_mode, false);
1118}
1119
1120/* Normalized subtraction. */
1121APFloat::opStatus
1122APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1123{
1124 return addOrSubtract(rhs, rounding_mode, true);
1125}
1126
1127/* Normalized multiply. */
1128APFloat::opStatus
1129APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1130{
1131 opStatus fs;
1132
1133 sign ^= rhs.sign;
1134 fs = multiplySpecials(rhs);
1135
1136 if(category == fcNormal) {
1137 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1138 fs = normalize(rounding_mode, lost_fraction);
1139 if(lost_fraction != lfExactlyZero)
1140 fs = (opStatus) (fs | opInexact);
1141 }
1142
1143 return fs;
1144}
1145
1146/* Normalized divide. */
1147APFloat::opStatus
1148APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1149{
1150 opStatus fs;
1151
1152 sign ^= rhs.sign;
1153 fs = divideSpecials(rhs);
1154
1155 if(category == fcNormal) {
1156 lostFraction lost_fraction = divideSignificand(rhs);
1157 fs = normalize(rounding_mode, lost_fraction);
1158 if(lost_fraction != lfExactlyZero)
1159 fs = (opStatus) (fs | opInexact);
1160 }
1161
1162 return fs;
1163}
1164
Dale Johannesene15c2db2007-08-31 23:35:31 +00001165/* Normalized remainder. */
1166APFloat::opStatus
1167APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1168{
1169 opStatus fs;
1170 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001171 unsigned int origSign = sign;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001172 fs = V.divide(rhs, rmNearestTiesToEven);
1173 if (fs == opDivByZero)
1174 return fs;
1175
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001176 int parts = partCount();
1177 integerPart *x = new integerPart[parts];
1178 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1179 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001180 if (fs==opInvalidOp)
1181 return fs;
1182
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001183 fs = V.convertFromInteger(x, parts, true, rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001184 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001185
Dale Johannesene15c2db2007-08-31 23:35:31 +00001186 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001187 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1188
Dale Johannesene15c2db2007-08-31 23:35:31 +00001189 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001190 assert(fs==opOK || fs==opInexact); // likewise
1191
1192 if (isZero())
1193 sign = origSign; // IEEE754 requires this
1194 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001195 return fs;
1196}
1197
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001198/* Normalized fused-multiply-add. */
1199APFloat::opStatus
1200APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1201 const APFloat &addend,
1202 roundingMode rounding_mode)
1203{
1204 opStatus fs;
1205
1206 /* Post-multiplication sign, before addition. */
1207 sign ^= multiplicand.sign;
1208
1209 /* If and only if all arguments are normal do we need to do an
1210 extended-precision calculation. */
1211 if(category == fcNormal
1212 && multiplicand.category == fcNormal
1213 && addend.category == fcNormal) {
1214 lostFraction lost_fraction;
1215
1216 lost_fraction = multiplySignificand(multiplicand, &addend);
1217 fs = normalize(rounding_mode, lost_fraction);
1218 if(lost_fraction != lfExactlyZero)
1219 fs = (opStatus) (fs | opInexact);
1220
1221 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1222 positive zero unless rounding to minus infinity, except that
1223 adding two like-signed zeroes gives that zero. */
1224 if(category == fcZero && sign != addend.sign)
1225 sign = (rounding_mode == rmTowardNegative);
1226 } else {
1227 fs = multiplySpecials(multiplicand);
1228
1229 /* FS can only be opOK or opInvalidOp. There is no more work
1230 to do in the latter case. The IEEE-754R standard says it is
1231 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001232 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001233
1234 If we need to do the addition we can do so with normal
1235 precision. */
1236 if(fs == opOK)
1237 fs = addOrSubtract(addend, rounding_mode, false);
1238 }
1239
1240 return fs;
1241}
1242
1243/* Comparison requires normalized numbers. */
1244APFloat::cmpResult
1245APFloat::compare(const APFloat &rhs) const
1246{
1247 cmpResult result;
1248
1249 assert(semantics == rhs.semantics);
1250
1251 switch(convolve(category, rhs.category)) {
1252 default:
1253 assert(0);
1254
Dale Johanneseneaf08942007-08-31 04:03:46 +00001255 case convolve(fcNaN, fcZero):
1256 case convolve(fcNaN, fcNormal):
1257 case convolve(fcNaN, fcInfinity):
1258 case convolve(fcNaN, fcNaN):
1259 case convolve(fcZero, fcNaN):
1260 case convolve(fcNormal, fcNaN):
1261 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001262 return cmpUnordered;
1263
1264 case convolve(fcInfinity, fcNormal):
1265 case convolve(fcInfinity, fcZero):
1266 case convolve(fcNormal, fcZero):
1267 if(sign)
1268 return cmpLessThan;
1269 else
1270 return cmpGreaterThan;
1271
1272 case convolve(fcNormal, fcInfinity):
1273 case convolve(fcZero, fcInfinity):
1274 case convolve(fcZero, fcNormal):
1275 if(rhs.sign)
1276 return cmpGreaterThan;
1277 else
1278 return cmpLessThan;
1279
1280 case convolve(fcInfinity, fcInfinity):
1281 if(sign == rhs.sign)
1282 return cmpEqual;
1283 else if(sign)
1284 return cmpLessThan;
1285 else
1286 return cmpGreaterThan;
1287
1288 case convolve(fcZero, fcZero):
1289 return cmpEqual;
1290
1291 case convolve(fcNormal, fcNormal):
1292 break;
1293 }
1294
1295 /* Two normal numbers. Do they have the same sign? */
1296 if(sign != rhs.sign) {
1297 if(sign)
1298 result = cmpLessThan;
1299 else
1300 result = cmpGreaterThan;
1301 } else {
1302 /* Compare absolute values; invert result if negative. */
1303 result = compareAbsoluteValue(rhs);
1304
1305 if(sign) {
1306 if(result == cmpLessThan)
1307 result = cmpGreaterThan;
1308 else if(result == cmpGreaterThan)
1309 result = cmpLessThan;
1310 }
1311 }
1312
1313 return result;
1314}
1315
1316APFloat::opStatus
1317APFloat::convert(const fltSemantics &toSemantics,
1318 roundingMode rounding_mode)
1319{
1320 unsigned int newPartCount;
1321 opStatus fs;
1322
1323 newPartCount = partCountForBits(toSemantics.precision + 1);
1324
1325 /* If our new form is wider, re-allocate our bit pattern into wider
Dale Johannesena72a5a02007-09-20 23:47:58 +00001326 storage.
1327 If we're narrowing from multiple words to 1 words, copy to the single
1328 word. If we are losing information by doing this, we would have to
1329 worry about rounding; right now the only case is f80 -> shorter
1330 conversion, and we are keeping all 64 significant bits, so it's OK. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001331 if(newPartCount > partCount()) {
1332 integerPart *newParts;
1333
1334 newParts = new integerPart[newPartCount];
1335 APInt::tcSet(newParts, 0, newPartCount);
1336 APInt::tcAssign(newParts, significandParts(), partCount());
1337 freeSignificand();
1338 significand.parts = newParts;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001339 } else if (newPartCount==1 && newPartCount < partCount()) {
1340 integerPart newPart;
1341
1342 APInt::tcSet(&newPart, 0, newPartCount);
1343 APInt::tcAssign(&newPart, significandParts(), partCount());
1344 freeSignificand();
1345 significand.part = newPart;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001346 }
1347
1348 if(category == fcNormal) {
1349 /* Re-interpret our bit-pattern. */
1350 exponent += toSemantics.precision - semantics->precision;
1351 semantics = &toSemantics;
1352 fs = normalize(rounding_mode, lfExactlyZero);
1353 } else {
1354 semantics = &toSemantics;
1355 fs = opOK;
1356 }
1357
1358 return fs;
1359}
1360
1361/* Convert a floating point number to an integer according to the
1362 rounding mode. If the rounded integer value is out of range this
1363 returns an invalid operation exception. If the rounded value is in
1364 range but the floating point number is not the exact integer, the C
1365 standard doesn't require an inexact exception to be raised. IEEE
1366 854 does require it so we do that.
1367
1368 Note that for conversions to integer type the C standard requires
1369 round-to-zero to always be used. */
1370APFloat::opStatus
1371APFloat::convertToInteger(integerPart *parts, unsigned int width,
1372 bool isSigned,
1373 roundingMode rounding_mode) const
1374{
1375 lostFraction lost_fraction;
1376 unsigned int msb, partsCount;
1377 int bits;
1378
1379 /* Handle the three special cases first. */
Dale Johanneseneaf08942007-08-31 04:03:46 +00001380 if(category == fcInfinity || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001381 return opInvalidOp;
1382
1383 partsCount = partCountForBits(width);
1384
1385 if(category == fcZero) {
1386 APInt::tcSet(parts, 0, partsCount);
1387 return opOK;
1388 }
1389
1390 /* Shift the bit pattern so the fraction is lost. */
1391 APFloat tmp(*this);
1392
1393 bits = (int) semantics->precision - 1 - exponent;
1394
1395 if(bits > 0) {
1396 lost_fraction = tmp.shiftSignificandRight(bits);
1397 } else {
1398 tmp.shiftSignificandLeft(-bits);
1399 lost_fraction = lfExactlyZero;
1400 }
1401
1402 if(lost_fraction != lfExactlyZero
1403 && tmp.roundAwayFromZero(rounding_mode, lost_fraction))
1404 tmp.incrementSignificand();
1405
1406 msb = tmp.significandMSB();
1407
1408 /* Negative numbers cannot be represented as unsigned. */
1409 if(!isSigned && tmp.sign && msb != -1U)
1410 return opInvalidOp;
1411
1412 /* It takes exponent + 1 bits to represent the truncated floating
1413 point number without its sign. We lose a bit for the sign, but
1414 the maximally negative integer is a special case. */
1415 if(msb + 1 > width) /* !! Not same as msb >= width !! */
1416 return opInvalidOp;
1417
1418 if(isSigned && msb + 1 == width
1419 && (!tmp.sign || tmp.significandLSB() != msb))
1420 return opInvalidOp;
1421
1422 APInt::tcAssign(parts, tmp.significandParts(), partsCount);
1423
1424 if(tmp.sign)
1425 APInt::tcNegate(parts, partsCount);
1426
1427 if(lost_fraction == lfExactlyZero)
1428 return opOK;
1429 else
1430 return opInexact;
1431}
1432
1433APFloat::opStatus
1434APFloat::convertFromUnsignedInteger(integerPart *parts,
1435 unsigned int partCount,
1436 roundingMode rounding_mode)
1437{
1438 unsigned int msb, precision;
1439 lostFraction lost_fraction;
1440
1441 msb = APInt::tcMSB(parts, partCount) + 1;
1442 precision = semantics->precision;
1443
1444 category = fcNormal;
1445 exponent = precision - 1;
1446
1447 if(msb > precision) {
1448 exponent += (msb - precision);
1449 lost_fraction = shiftRight(parts, partCount, msb - precision);
1450 msb = precision;
1451 } else
1452 lost_fraction = lfExactlyZero;
1453
1454 /* Copy the bit image. */
1455 zeroSignificand();
1456 APInt::tcAssign(significandParts(), parts, partCountForBits(msb));
1457
1458 return normalize(rounding_mode, lost_fraction);
1459}
1460
1461APFloat::opStatus
1462APFloat::convertFromInteger(const integerPart *parts,
1463 unsigned int partCount, bool isSigned,
1464 roundingMode rounding_mode)
1465{
1466 unsigned int width;
1467 opStatus status;
1468 integerPart *copy;
1469
1470 copy = new integerPart[partCount];
1471 APInt::tcAssign(copy, parts, partCount);
1472
1473 width = partCount * integerPartWidth;
1474
1475 sign = false;
1476 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
1477 sign = true;
1478 APInt::tcNegate(copy, partCount);
1479 }
1480
1481 status = convertFromUnsignedInteger(copy, partCount, rounding_mode);
1482 delete [] copy;
1483
1484 return status;
1485}
1486
1487APFloat::opStatus
1488APFloat::convertFromHexadecimalString(const char *p,
1489 roundingMode rounding_mode)
1490{
1491 lostFraction lost_fraction;
1492 integerPart *significand;
1493 unsigned int bitPos, partsCount;
1494 const char *dot, *firstSignificantDigit;
1495
1496 zeroSignificand();
1497 exponent = 0;
1498 category = fcNormal;
1499
1500 significand = significandParts();
1501 partsCount = partCount();
1502 bitPos = partsCount * integerPartWidth;
1503
1504 /* Skip leading zeroes and any(hexa)decimal point. */
1505 p = skipLeadingZeroesAndAnyDot(p, &dot);
1506 firstSignificantDigit = p;
1507
1508 for(;;) {
1509 integerPart hex_value;
1510
1511 if(*p == '.') {
1512 assert(dot == 0);
1513 dot = p++;
1514 }
1515
1516 hex_value = hexDigitValue(*p);
1517 if(hex_value == -1U) {
1518 lost_fraction = lfExactlyZero;
1519 break;
1520 }
1521
1522 p++;
1523
1524 /* Store the number whilst 4-bit nibbles remain. */
1525 if(bitPos) {
1526 bitPos -= 4;
1527 hex_value <<= bitPos % integerPartWidth;
1528 significand[bitPos / integerPartWidth] |= hex_value;
1529 } else {
1530 lost_fraction = trailingHexadecimalFraction(p, hex_value);
1531 while(hexDigitValue(*p) != -1U)
1532 p++;
1533 break;
1534 }
1535 }
1536
1537 /* Hex floats require an exponent but not a hexadecimal point. */
1538 assert(*p == 'p' || *p == 'P');
1539
1540 /* Ignore the exponent if we are zero. */
1541 if(p != firstSignificantDigit) {
1542 int expAdjustment;
1543
1544 /* Implicit hexadecimal point? */
1545 if(!dot)
1546 dot = p;
1547
1548 /* Calculate the exponent adjustment implicit in the number of
1549 significant digits. */
1550 expAdjustment = dot - firstSignificantDigit;
1551 if(expAdjustment < 0)
1552 expAdjustment++;
1553 expAdjustment = expAdjustment * 4 - 1;
1554
1555 /* Adjust for writing the significand starting at the most
1556 significant nibble. */
1557 expAdjustment += semantics->precision;
1558 expAdjustment -= partsCount * integerPartWidth;
1559
1560 /* Adjust for the given exponent. */
1561 exponent = totalExponent(p, expAdjustment);
1562 }
1563
1564 return normalize(rounding_mode, lost_fraction);
1565}
1566
1567APFloat::opStatus
Chris Lattnerada530b2007-08-24 03:02:34 +00001568APFloat::convertFromString(const char *p, roundingMode rounding_mode) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001569 /* Handle a leading minus sign. */
1570 if(*p == '-')
1571 sign = 1, p++;
1572 else
1573 sign = 0;
1574
1575 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
1576 return convertFromHexadecimalString(p + 2, rounding_mode);
Chris Lattnerada530b2007-08-24 03:02:34 +00001577
1578 assert(0 && "Decimal to binary conversions not yet implemented");
1579 abort();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001580}
Dale Johannesen343e7702007-08-24 00:56:33 +00001581
1582// For good performance it is desirable for different APFloats
1583// to produce different integers.
1584uint32_t
1585APFloat::getHashValue() const {
1586 if (category==fcZero) return sign<<8 | semantics->precision ;
1587 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001588 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00001589 else {
1590 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
1591 const integerPart* p = significandParts();
1592 for (int i=partCount(); i>0; i--, p++)
1593 hash ^= ((uint32_t)*p) ^ (*p)>>32;
1594 return hash;
1595 }
1596}
1597
1598// Conversion from APFloat to/from host float/double. It may eventually be
1599// possible to eliminate these and have everybody deal with APFloats, but that
1600// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00001601// Current implementation requires integerPartWidth==64, which is correct at
1602// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00001603
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001604// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00001605// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001606
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001607APInt
1608APFloat::convertF80LongDoubleAPFloatToAPInt() const {
1609 assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00001610 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001611
1612 uint64_t myexponent, mysignificand;
1613
1614 if (category==fcNormal) {
1615 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00001616 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001617 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
1618 myexponent = 0; // denormal
1619 } else if (category==fcZero) {
1620 myexponent = 0;
1621 mysignificand = 0;
1622 } else if (category==fcInfinity) {
1623 myexponent = 0x7fff;
1624 mysignificand = 0x8000000000000000ULL;
1625 } else if (category==fcNaN) {
1626 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001627 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001628 } else
1629 assert(0);
1630
1631 uint64_t words[2];
1632 words[0] = (((uint64_t)sign & 1) << 63) |
1633 ((myexponent & 0x7fff) << 48) |
1634 ((mysignificand >>16) & 0xffffffffffffLL);
1635 words[1] = mysignificand & 0xffff;
1636 APInt api(80, 2, words);
1637 return api;
1638}
1639
1640APInt
1641APFloat::convertDoubleAPFloatToAPInt() const {
Dan Gohmancb648f92007-09-14 20:08:19 +00001642 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00001643 assert (partCount()==1);
1644
Dale Johanneseneaf08942007-08-31 04:03:46 +00001645 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001646
1647 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001648 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001649 mysignificand = *significandParts();
1650 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
1651 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00001652 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001653 myexponent = 0;
1654 mysignificand = 0;
1655 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001656 myexponent = 0x7ff;
1657 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001658 } else if (category==fcNaN) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001659 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001660 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001661 } else
1662 assert(0);
1663
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001664 APInt api(64, (((((uint64_t)sign & 1) << 63) |
1665 ((myexponent & 0x7ff) << 52) |
1666 (mysignificand & 0xfffffffffffffLL))));
1667 return api;
Dale Johannesen343e7702007-08-24 00:56:33 +00001668}
1669
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001670APInt
1671APFloat::convertFloatAPFloatToAPInt() const {
Dan Gohmancb648f92007-09-14 20:08:19 +00001672 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00001673 assert (partCount()==1);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001674
Dale Johanneseneaf08942007-08-31 04:03:46 +00001675 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001676
1677 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001678 myexponent = exponent+127; //bias
1679 mysignificand = *significandParts();
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001680 if (myexponent == 1 && !(mysignificand & 0x400000))
1681 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00001682 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001683 myexponent = 0;
1684 mysignificand = 0;
1685 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001686 myexponent = 0xff;
1687 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001688 } else if (category==fcNaN) {
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001689 myexponent = 0xff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001690 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001691 } else
1692 assert(0);
1693
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001694 APInt api(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
1695 (mysignificand & 0x7fffff)));
1696 return api;
Dale Johannesen343e7702007-08-24 00:56:33 +00001697}
1698
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001699APInt
1700APFloat::convertToAPInt() const {
1701 if (semantics == (const llvm::fltSemantics* const)&IEEEsingle)
1702 return convertFloatAPFloatToAPInt();
1703 else if (semantics == (const llvm::fltSemantics* const)&IEEEdouble)
1704 return convertDoubleAPFloatToAPInt();
1705 else if (semantics == (const llvm::fltSemantics* const)&x87DoubleExtended)
1706 return convertF80LongDoubleAPFloatToAPInt();
1707 else
1708 assert(0);
1709}
1710
1711float
1712APFloat::convertToFloat() const {
1713 assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
1714 APInt api = convertToAPInt();
1715 return api.bitsToFloat();
1716}
1717
1718double
1719APFloat::convertToDouble() const {
1720 assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
1721 APInt api = convertToAPInt();
1722 return api.bitsToDouble();
1723}
1724
1725/// Integer bit is explicit in this format. Current Intel book does not
1726/// define meaning of:
1727/// exponent = all 1's, integer bit not set.
1728/// exponent = 0, integer bit set. (formerly "psuedodenormals")
1729/// exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals")
1730void
1731APFloat::initFromF80LongDoubleAPInt(const APInt &api) {
1732 assert(api.getBitWidth()==80);
1733 uint64_t i1 = api.getRawData()[0];
1734 uint64_t i2 = api.getRawData()[1];
1735 uint64_t myexponent = (i1 >> 48) & 0x7fff;
1736 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
1737 (i2 & 0xffff);
1738
1739 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00001740 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001741
1742 sign = i1>>63;
1743 if (myexponent==0 && mysignificand==0) {
1744 // exponent, significand meaningless
1745 category = fcZero;
1746 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
1747 // exponent, significand meaningless
1748 category = fcInfinity;
1749 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
1750 // exponent meaningless
1751 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001752 significandParts()[0] = mysignificand;
1753 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001754 } else {
1755 category = fcNormal;
1756 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001757 significandParts()[0] = mysignificand;
1758 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001759 if (myexponent==0) // denormal
1760 exponent = -16382;
1761 }
1762}
1763
1764void
1765APFloat::initFromDoubleAPInt(const APInt &api) {
1766 assert(api.getBitWidth()==64);
1767 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001768 uint64_t myexponent = (i >> 52) & 0x7ff;
1769 uint64_t mysignificand = i & 0xfffffffffffffLL;
1770
Dale Johannesen343e7702007-08-24 00:56:33 +00001771 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00001772 assert(partCount()==1);
1773
Dale Johanneseneaf08942007-08-31 04:03:46 +00001774 sign = i>>63;
Dale Johannesen343e7702007-08-24 00:56:33 +00001775 if (myexponent==0 && mysignificand==0) {
1776 // exponent, significand meaningless
1777 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00001778 } else if (myexponent==0x7ff && mysignificand==0) {
1779 // exponent, significand meaningless
1780 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001781 } else if (myexponent==0x7ff && mysignificand!=0) {
1782 // exponent meaningless
1783 category = fcNaN;
1784 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001785 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00001786 category = fcNormal;
1787 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001788 *significandParts() = mysignificand;
1789 if (myexponent==0) // denormal
1790 exponent = -1022;
1791 else
1792 *significandParts() |= 0x10000000000000LL; // integer bit
Dale Johanneseneaf08942007-08-31 04:03:46 +00001793 }
Dale Johannesen343e7702007-08-24 00:56:33 +00001794}
1795
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001796void
1797APFloat::initFromFloatAPInt(const APInt & api) {
1798 assert(api.getBitWidth()==32);
1799 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001800 uint32_t myexponent = (i >> 23) & 0xff;
1801 uint32_t mysignificand = i & 0x7fffff;
1802
Dale Johannesen343e7702007-08-24 00:56:33 +00001803 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00001804 assert(partCount()==1);
1805
Dale Johanneseneaf08942007-08-31 04:03:46 +00001806 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00001807 if (myexponent==0 && mysignificand==0) {
1808 // exponent, significand meaningless
1809 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00001810 } else if (myexponent==0xff && mysignificand==0) {
1811 // exponent, significand meaningless
1812 category = fcInfinity;
Dale Johannesen343e7702007-08-24 00:56:33 +00001813 } else if (myexponent==0xff && (mysignificand & 0x400000)) {
1814 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00001815 category = fcNaN;
1816 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001817 } else {
1818 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00001819 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001820 *significandParts() = mysignificand;
1821 if (myexponent==0) // denormal
1822 exponent = -126;
1823 else
1824 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00001825 }
1826}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001827
1828/// Treat api as containing the bits of a floating point number. Currently
1829/// we infer the floating point type from the size of the APInt. FIXME: This
1830/// breaks when we get to PPC128 and IEEE128 (but both cannot exist in the
1831/// same compile...)
1832void
1833APFloat::initFromAPInt(const APInt& api) {
1834 if (api.getBitWidth() == 32)
1835 return initFromFloatAPInt(api);
1836 else if (api.getBitWidth()==64)
1837 return initFromDoubleAPInt(api);
1838 else if (api.getBitWidth()==80)
1839 return initFromF80LongDoubleAPInt(api);
1840 else
1841 assert(0);
1842}
1843
1844APFloat::APFloat(const APInt& api) {
1845 initFromAPInt(api);
1846}
1847
1848APFloat::APFloat(float f) {
1849 APInt api = APInt(32, 0);
1850 initFromAPInt(api.floatToBits(f));
1851}
1852
1853APFloat::APFloat(double d) {
1854 APInt api = APInt(64, 0);
1855 initFromAPInt(api.doubleToBits(d));
1856}
1857