blob: 37ac7f285e8e9e773cc484bcc273a17e82232a2a [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/DerivedTypes.h"
Owen Anderson0a5372e2009-07-13 04:09:18 +000021#include "llvm/LLVMContext.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman62c939d2008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000027#include "llvm/CodeGen/LiveVariables.h"
Chris Lattneree9eb412010-04-26 23:37:21 +000028#include "llvm/MC/MCInst.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000029#include "llvm/Support/CommandLine.h"
David Greene5b901322010-01-05 01:29:29 +000030#include "llvm/Support/Debug.h"
Torok Edwinab7c09b2009-07-08 18:01:40 +000031#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
Evan Cheng0488db92007-09-25 01:57:46 +000033#include "llvm/Target/TargetOptions.h"
Chris Lattneraf76e592009-08-22 20:48:53 +000034#include "llvm/MC/MCAsmInfo.h"
David Greeneb87bc952009-11-12 20:55:29 +000035#include <limits>
36
Evan Cheng4db3cff2011-07-01 17:57:27 +000037#define GET_INSTRINFO_CTOR
Evan Cheng22fee2d2011-06-28 20:07:07 +000038#include "X86GenInstrInfo.inc"
39
Brian Gaeked0fde302003-11-11 22:41:34 +000040using namespace llvm;
41
Chris Lattner705e07f2009-08-23 03:41:05 +000042static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44 cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47 cl::desc("Print instructions that the allocator wants to"
48 " fuse, but the X86 backend currently can't"),
49 cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52 cl::desc("Re-materialize load from stub in PIC mode"),
53 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000054
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000055enum {
56 // Select which memory operand is being unfolded.
57 // (stored in bits 0 - 7)
58 TB_INDEX_0 = 0,
59 TB_INDEX_1 = 1,
60 TB_INDEX_2 = 2,
61 TB_INDEX_MASK = 0xff,
62
63 // Minimum alignment required for load/store.
64 // Used for RegOp->MemOp conversion.
65 // (stored in bits 8 - 15)
66 TB_ALIGN_SHIFT = 8,
67 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
68 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
69 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
70 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT,
71
72 // Do not insert the reverse map (MemOp -> RegOp) into the table.
73 // This may be needed because there is a many -> one mapping.
74 TB_NO_REVERSE = 1 << 16,
75
76 // Do not insert the forward map (RegOp -> MemOp) into the table.
77 // This is needed for Native Client, which prohibits branch
78 // instructions from using a memory operand.
79 TB_NO_FORWARD = 1 << 17,
80
81 TB_FOLDED_LOAD = 1 << 18,
82 TB_FOLDED_STORE = 1 << 19
83};
84
Evan Chengaa3c1412006-05-30 21:45:53 +000085X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Evan Cheng4db3cff2011-07-01 17:57:27 +000086 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
87 ? X86::ADJCALLSTACKDOWN64
88 : X86::ADJCALLSTACKDOWN32),
89 (tm.getSubtarget<X86Subtarget>().is64Bit()
90 ? X86::ADJCALLSTACKUP64
91 : X86::ADJCALLSTACKUP32)),
Evan Cheng25ab6902006-09-08 06:48:29 +000092 TM(tm), RI(tm, *this) {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +000093
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +000094 static const unsigned OpTbl2Addr[][3] = {
95 { X86::ADC32ri, X86::ADC32mi, 0 },
96 { X86::ADC32ri8, X86::ADC32mi8, 0 },
97 { X86::ADC32rr, X86::ADC32mr, 0 },
98 { X86::ADC64ri32, X86::ADC64mi32, 0 },
99 { X86::ADC64ri8, X86::ADC64mi8, 0 },
100 { X86::ADC64rr, X86::ADC64mr, 0 },
101 { X86::ADD16ri, X86::ADD16mi, 0 },
102 { X86::ADD16ri8, X86::ADD16mi8, 0 },
103 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
104 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
105 { X86::ADD16rr, X86::ADD16mr, 0 },
106 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
107 { X86::ADD32ri, X86::ADD32mi, 0 },
108 { X86::ADD32ri8, X86::ADD32mi8, 0 },
109 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
110 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
111 { X86::ADD32rr, X86::ADD32mr, 0 },
112 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
113 { X86::ADD64ri32, X86::ADD64mi32, 0 },
114 { X86::ADD64ri8, X86::ADD64mi8, 0 },
115 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
116 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
117 { X86::ADD64rr, X86::ADD64mr, 0 },
118 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
119 { X86::ADD8ri, X86::ADD8mi, 0 },
120 { X86::ADD8rr, X86::ADD8mr, 0 },
121 { X86::AND16ri, X86::AND16mi, 0 },
122 { X86::AND16ri8, X86::AND16mi8, 0 },
123 { X86::AND16rr, X86::AND16mr, 0 },
124 { X86::AND32ri, X86::AND32mi, 0 },
125 { X86::AND32ri8, X86::AND32mi8, 0 },
126 { X86::AND32rr, X86::AND32mr, 0 },
127 { X86::AND64ri32, X86::AND64mi32, 0 },
128 { X86::AND64ri8, X86::AND64mi8, 0 },
129 { X86::AND64rr, X86::AND64mr, 0 },
130 { X86::AND8ri, X86::AND8mi, 0 },
131 { X86::AND8rr, X86::AND8mr, 0 },
132 { X86::DEC16r, X86::DEC16m, 0 },
133 { X86::DEC32r, X86::DEC32m, 0 },
134 { X86::DEC64_16r, X86::DEC64_16m, 0 },
135 { X86::DEC64_32r, X86::DEC64_32m, 0 },
136 { X86::DEC64r, X86::DEC64m, 0 },
137 { X86::DEC8r, X86::DEC8m, 0 },
138 { X86::INC16r, X86::INC16m, 0 },
139 { X86::INC32r, X86::INC32m, 0 },
140 { X86::INC64_16r, X86::INC64_16m, 0 },
141 { X86::INC64_32r, X86::INC64_32m, 0 },
142 { X86::INC64r, X86::INC64m, 0 },
143 { X86::INC8r, X86::INC8m, 0 },
144 { X86::NEG16r, X86::NEG16m, 0 },
145 { X86::NEG32r, X86::NEG32m, 0 },
146 { X86::NEG64r, X86::NEG64m, 0 },
147 { X86::NEG8r, X86::NEG8m, 0 },
148 { X86::NOT16r, X86::NOT16m, 0 },
149 { X86::NOT32r, X86::NOT32m, 0 },
150 { X86::NOT64r, X86::NOT64m, 0 },
151 { X86::NOT8r, X86::NOT8m, 0 },
152 { X86::OR16ri, X86::OR16mi, 0 },
153 { X86::OR16ri8, X86::OR16mi8, 0 },
154 { X86::OR16rr, X86::OR16mr, 0 },
155 { X86::OR32ri, X86::OR32mi, 0 },
156 { X86::OR32ri8, X86::OR32mi8, 0 },
157 { X86::OR32rr, X86::OR32mr, 0 },
158 { X86::OR64ri32, X86::OR64mi32, 0 },
159 { X86::OR64ri8, X86::OR64mi8, 0 },
160 { X86::OR64rr, X86::OR64mr, 0 },
161 { X86::OR8ri, X86::OR8mi, 0 },
162 { X86::OR8rr, X86::OR8mr, 0 },
163 { X86::ROL16r1, X86::ROL16m1, 0 },
164 { X86::ROL16rCL, X86::ROL16mCL, 0 },
165 { X86::ROL16ri, X86::ROL16mi, 0 },
166 { X86::ROL32r1, X86::ROL32m1, 0 },
167 { X86::ROL32rCL, X86::ROL32mCL, 0 },
168 { X86::ROL32ri, X86::ROL32mi, 0 },
169 { X86::ROL64r1, X86::ROL64m1, 0 },
170 { X86::ROL64rCL, X86::ROL64mCL, 0 },
171 { X86::ROL64ri, X86::ROL64mi, 0 },
172 { X86::ROL8r1, X86::ROL8m1, 0 },
173 { X86::ROL8rCL, X86::ROL8mCL, 0 },
174 { X86::ROL8ri, X86::ROL8mi, 0 },
175 { X86::ROR16r1, X86::ROR16m1, 0 },
176 { X86::ROR16rCL, X86::ROR16mCL, 0 },
177 { X86::ROR16ri, X86::ROR16mi, 0 },
178 { X86::ROR32r1, X86::ROR32m1, 0 },
179 { X86::ROR32rCL, X86::ROR32mCL, 0 },
180 { X86::ROR32ri, X86::ROR32mi, 0 },
181 { X86::ROR64r1, X86::ROR64m1, 0 },
182 { X86::ROR64rCL, X86::ROR64mCL, 0 },
183 { X86::ROR64ri, X86::ROR64mi, 0 },
184 { X86::ROR8r1, X86::ROR8m1, 0 },
185 { X86::ROR8rCL, X86::ROR8mCL, 0 },
186 { X86::ROR8ri, X86::ROR8mi, 0 },
187 { X86::SAR16r1, X86::SAR16m1, 0 },
188 { X86::SAR16rCL, X86::SAR16mCL, 0 },
189 { X86::SAR16ri, X86::SAR16mi, 0 },
190 { X86::SAR32r1, X86::SAR32m1, 0 },
191 { X86::SAR32rCL, X86::SAR32mCL, 0 },
192 { X86::SAR32ri, X86::SAR32mi, 0 },
193 { X86::SAR64r1, X86::SAR64m1, 0 },
194 { X86::SAR64rCL, X86::SAR64mCL, 0 },
195 { X86::SAR64ri, X86::SAR64mi, 0 },
196 { X86::SAR8r1, X86::SAR8m1, 0 },
197 { X86::SAR8rCL, X86::SAR8mCL, 0 },
198 { X86::SAR8ri, X86::SAR8mi, 0 },
199 { X86::SBB32ri, X86::SBB32mi, 0 },
200 { X86::SBB32ri8, X86::SBB32mi8, 0 },
201 { X86::SBB32rr, X86::SBB32mr, 0 },
202 { X86::SBB64ri32, X86::SBB64mi32, 0 },
203 { X86::SBB64ri8, X86::SBB64mi8, 0 },
204 { X86::SBB64rr, X86::SBB64mr, 0 },
205 { X86::SHL16rCL, X86::SHL16mCL, 0 },
206 { X86::SHL16ri, X86::SHL16mi, 0 },
207 { X86::SHL32rCL, X86::SHL32mCL, 0 },
208 { X86::SHL32ri, X86::SHL32mi, 0 },
209 { X86::SHL64rCL, X86::SHL64mCL, 0 },
210 { X86::SHL64ri, X86::SHL64mi, 0 },
211 { X86::SHL8rCL, X86::SHL8mCL, 0 },
212 { X86::SHL8ri, X86::SHL8mi, 0 },
213 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
214 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
215 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
216 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
217 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
218 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
219 { X86::SHR16r1, X86::SHR16m1, 0 },
220 { X86::SHR16rCL, X86::SHR16mCL, 0 },
221 { X86::SHR16ri, X86::SHR16mi, 0 },
222 { X86::SHR32r1, X86::SHR32m1, 0 },
223 { X86::SHR32rCL, X86::SHR32mCL, 0 },
224 { X86::SHR32ri, X86::SHR32mi, 0 },
225 { X86::SHR64r1, X86::SHR64m1, 0 },
226 { X86::SHR64rCL, X86::SHR64mCL, 0 },
227 { X86::SHR64ri, X86::SHR64mi, 0 },
228 { X86::SHR8r1, X86::SHR8m1, 0 },
229 { X86::SHR8rCL, X86::SHR8mCL, 0 },
230 { X86::SHR8ri, X86::SHR8mi, 0 },
231 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
232 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
233 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
234 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
235 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
236 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
237 { X86::SUB16ri, X86::SUB16mi, 0 },
238 { X86::SUB16ri8, X86::SUB16mi8, 0 },
239 { X86::SUB16rr, X86::SUB16mr, 0 },
240 { X86::SUB32ri, X86::SUB32mi, 0 },
241 { X86::SUB32ri8, X86::SUB32mi8, 0 },
242 { X86::SUB32rr, X86::SUB32mr, 0 },
243 { X86::SUB64ri32, X86::SUB64mi32, 0 },
244 { X86::SUB64ri8, X86::SUB64mi8, 0 },
245 { X86::SUB64rr, X86::SUB64mr, 0 },
246 { X86::SUB8ri, X86::SUB8mi, 0 },
247 { X86::SUB8rr, X86::SUB8mr, 0 },
248 { X86::XOR16ri, X86::XOR16mi, 0 },
249 { X86::XOR16ri8, X86::XOR16mi8, 0 },
250 { X86::XOR16rr, X86::XOR16mr, 0 },
251 { X86::XOR32ri, X86::XOR32mi, 0 },
252 { X86::XOR32ri8, X86::XOR32mi8, 0 },
253 { X86::XOR32rr, X86::XOR32mr, 0 },
254 { X86::XOR64ri32, X86::XOR64mi32, 0 },
255 { X86::XOR64ri8, X86::XOR64mi8, 0 },
256 { X86::XOR64rr, X86::XOR64mr, 0 },
257 { X86::XOR8ri, X86::XOR8mi, 0 },
258 { X86::XOR8rr, X86::XOR8mr, 0 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000259 };
260
261 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
262 unsigned RegOp = OpTbl2Addr[i][0];
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000263 unsigned MemOp = OpTbl2Addr[i][1];
264 unsigned Flags = OpTbl2Addr[i][2];
265 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
266 RegOp, MemOp,
267 // Index 0, folded load and store, no alignment requirement.
268 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
Owen Anderson43dbe052008-01-07 01:35:02 +0000269 }
270
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000271 static const unsigned OpTbl0[][3] = {
272 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
273 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
274 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
275 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
276 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
277 { X86::WINCALL64r, X86::WINCALL64m, TB_FOLDED_LOAD },
278 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
279 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
280 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
281 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
282 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
283 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
284 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
285 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
286 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
287 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
288 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
289 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
290 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
291 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
292 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
293 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
294 { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
295 { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000296 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
297 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
298 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
299 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
300 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
301 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
302 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
303 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
304 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
305 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
306 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
307 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
308 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
309 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
310 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
311 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
312 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
313 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
314 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
315 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
316 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
317 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000318 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
319 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
320 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
321 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
322 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
323 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000324 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
325 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
326 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
327 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
328 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
329 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
330 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
331 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
332 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
333 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
334 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
335 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
336 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
337 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
338 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
339 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
340 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
341 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
342 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
343 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
344 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
345 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
346 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
347 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
348 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000349 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
350 // AVX 128-bit versions of foldable instructions
351 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
352 { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
353 { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
354 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
355 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
356 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
357 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
358 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
359 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
360 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
361 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
362 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
363 // AVX 256-bit foldable instructions
364 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
365 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
366 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
367 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
368 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }
Owen Anderson43dbe052008-01-07 01:35:02 +0000369 };
370
371 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
Chris Lattner15df55d2010-10-08 03:57:25 +0000372 unsigned RegOp = OpTbl0[i][0];
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000373 unsigned MemOp = OpTbl0[i][1];
374 unsigned Flags = OpTbl0[i][2];
375 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
376 RegOp, MemOp, TB_INDEX_0 | Flags);
Owen Anderson43dbe052008-01-07 01:35:02 +0000377 }
378
Evan Chengf9b36f02009-07-15 06:10:07 +0000379 static const unsigned OpTbl1[][3] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000380 { X86::CMP16rr, X86::CMP16rm, 0 },
381 { X86::CMP32rr, X86::CMP32rm, 0 },
382 { X86::CMP64rr, X86::CMP64rm, 0 },
383 { X86::CMP8rr, X86::CMP8rm, 0 },
384 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
385 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
386 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
387 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
388 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
389 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
390 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
391 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
392 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
393 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
394 { X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE },
395 { X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000396 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
397 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
398 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
399 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
400 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
401 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
402 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
403 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
404 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, TB_ALIGN_16 },
405 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, TB_ALIGN_16 },
406 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, TB_ALIGN_16 },
407 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, TB_ALIGN_16 },
408 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, TB_ALIGN_16 },
409 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
410 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
411 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
412 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
413 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
414 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
415 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
416 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
417 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
418 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
419 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
420 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
421 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
422 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
423 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
424 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
425 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000426 { X86::MOV16rr, X86::MOV16rm, 0 },
427 { X86::MOV32rr, X86::MOV32rm, 0 },
428 { X86::MOV64rr, X86::MOV64rm, 0 },
429 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
430 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
431 { X86::MOV8rr, X86::MOV8rm, 0 },
432 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
433 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000434 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
435 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
436 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
437 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000438 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
439 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
440 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
441 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
442 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
443 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
444 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
445 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
446 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
447 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000448 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
449 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
450 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
451 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
452 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
453 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
454 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
455 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
456 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
457 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000458 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
459 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
460 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000461 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
462 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
463 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
464 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
465 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
466 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
467 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
468 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
469 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
470 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
471 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 },
472 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
473 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 },
474 { X86::SQRTSDr, X86::SQRTSDm, 0 },
475 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
476 { X86::SQRTSSr, X86::SQRTSSm, 0 },
477 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
478 { X86::TEST16rr, X86::TEST16rm, 0 },
479 { X86::TEST32rr, X86::TEST32rm, 0 },
480 { X86::TEST64rr, X86::TEST64rm, 0 },
481 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000482 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000483 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
484 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000485 // AVX 128-bit versions of foldable instructions
486 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
487 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
488 { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm, TB_ALIGN_16 },
489 { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm, TB_ALIGN_16 },
490 { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm, TB_ALIGN_16 },
491 { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm, TB_ALIGN_16 },
492 { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm, TB_ALIGN_16 },
493 { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm, 0 },
494 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
495 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
496 { X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE },
497 { X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE },
498 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
499 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
500 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
501 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
502 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
503 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
504 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
505 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
506 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
507 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
508 { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 },
509 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
510 { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 },
511 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
512 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000513 { X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 },
514 { X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 },
515 { X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000516 { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 },
517 { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 },
518 { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 },
519 { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 },
520 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 },
521 { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 },
522 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 },
523 { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 },
524 { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 },
525 { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 },
526 { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000527 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000528 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
529 // AVX 256-bit foldable instructions
530 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
531 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
532 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_16 },
533 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000534 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
535 // AVX2 foldable instructions
536 { X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_16 },
537 { X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_16 },
538 { X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_16 },
539 { X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_16 },
540 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_16 },
541 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_16 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000542 };
543
544 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
545 unsigned RegOp = OpTbl1[i][0];
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000546 unsigned MemOp = OpTbl1[i][1];
547 unsigned Flags = OpTbl1[i][2];
548 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
549 RegOp, MemOp,
550 // Index 1, folded load
551 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
Owen Anderson43dbe052008-01-07 01:35:02 +0000552 }
553
Evan Chengf9b36f02009-07-15 06:10:07 +0000554 static const unsigned OpTbl2[][3] = {
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000555 { X86::ADC32rr, X86::ADC32rm, 0 },
556 { X86::ADC64rr, X86::ADC64rm, 0 },
557 { X86::ADD16rr, X86::ADD16rm, 0 },
558 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
559 { X86::ADD32rr, X86::ADD32rm, 0 },
560 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
561 { X86::ADD64rr, X86::ADD64rm, 0 },
562 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
563 { X86::ADD8rr, X86::ADD8rm, 0 },
564 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
565 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
566 { X86::ADDSDrr, X86::ADDSDrm, 0 },
567 { X86::ADDSSrr, X86::ADDSSrm, 0 },
568 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
569 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
570 { X86::AND16rr, X86::AND16rm, 0 },
571 { X86::AND32rr, X86::AND32rm, 0 },
572 { X86::AND64rr, X86::AND64rm, 0 },
573 { X86::AND8rr, X86::AND8rm, 0 },
574 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
575 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
576 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
577 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
578 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
579 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
580 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
581 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
582 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
583 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
584 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
585 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
586 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
587 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
588 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
589 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
590 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
591 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
592 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
593 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
594 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
595 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
596 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
597 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
598 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
599 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
600 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
601 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
602 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
603 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
604 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
605 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
606 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
607 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
608 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
609 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
610 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
611 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
612 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
613 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
614 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
615 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
616 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
617 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
618 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
619 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
620 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
621 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
622 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
623 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
624 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
625 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
626 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
627 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
628 { X86::CMPSDrr, X86::CMPSDrm, 0 },
629 { X86::CMPSSrr, X86::CMPSSrm, 0 },
630 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
631 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
632 { X86::DIVSDrr, X86::DIVSDrm, 0 },
633 { X86::DIVSSrr, X86::DIVSSrm, 0 },
634 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
635 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
636 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
637 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
638 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
639 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
640 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
641 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
642 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
643 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
644 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
645 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
646 { X86::IMUL16rr, X86::IMUL16rm, 0 },
647 { X86::IMUL32rr, X86::IMUL32rm, 0 },
648 { X86::IMUL64rr, X86::IMUL64rm, 0 },
649 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
650 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
651 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
652 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 },
653 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
654 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 },
655 { X86::MAXSDrr, X86::MAXSDrm, 0 },
656 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
657 { X86::MAXSSrr, X86::MAXSSrm, 0 },
658 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
659 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
660 { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 },
661 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
662 { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 },
663 { X86::MINSDrr, X86::MINSDrm, 0 },
664 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
665 { X86::MINSSrr, X86::MINSSrm, 0 },
666 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000667 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000668 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
669 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
670 { X86::MULSDrr, X86::MULSDrm, 0 },
671 { X86::MULSSrr, X86::MULSSrm, 0 },
672 { X86::OR16rr, X86::OR16rm, 0 },
673 { X86::OR32rr, X86::OR32rm, 0 },
674 { X86::OR64rr, X86::OR64rm, 0 },
675 { X86::OR8rr, X86::OR8rm, 0 },
676 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
677 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
678 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
679 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000680 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000681 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
682 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
683 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
684 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
685 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
686 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000687 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
688 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000689 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000690 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000691 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
692 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
693 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
694 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
695 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
696 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000697 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000698 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
699 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
700 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000701 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000702 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000703 { X86::PHADDDrr128, X86::PHADDDrm128, TB_ALIGN_16 },
704 { X86::PHADDWrr128, X86::PHADDWrm128, TB_ALIGN_16 },
705 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
706 { X86::PHSUBDrr128, X86::PHSUBDrm128, TB_ALIGN_16 },
707 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
708 { X86::PHSUBWrr128, X86::PHSUBWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000709 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000710 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000711 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
712 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
713 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
714 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
715 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
716 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000717 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000718 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
719 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
720 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
721 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
722 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
723 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
724 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000725 { X86::PSHUFBrr128, X86::PSHUFBrm128, TB_ALIGN_16 },
726 { X86::PSIGNBrr128, X86::PSIGNBrm128, TB_ALIGN_16 },
727 { X86::PSIGNWrr128, X86::PSIGNWrm128, TB_ALIGN_16 },
728 { X86::PSIGNDrr128, X86::PSIGNDrm128, TB_ALIGN_16 },
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000729 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
730 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
731 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
732 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
733 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
734 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
735 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
736 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
737 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
738 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
739 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
740 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
741 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
742 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
743 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
744 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
745 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
746 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
747 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
748 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
749 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
750 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
751 { X86::SBB32rr, X86::SBB32rm, 0 },
752 { X86::SBB64rr, X86::SBB64rm, 0 },
753 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
754 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
755 { X86::SUB16rr, X86::SUB16rm, 0 },
756 { X86::SUB32rr, X86::SUB32rm, 0 },
757 { X86::SUB64rr, X86::SUB64rm, 0 },
758 { X86::SUB8rr, X86::SUB8rm, 0 },
759 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
760 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
761 { X86::SUBSDrr, X86::SUBSDrm, 0 },
762 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000763 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +0000764 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
765 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
766 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
767 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
768 { X86::XOR16rr, X86::XOR16rm, 0 },
769 { X86::XOR32rr, X86::XOR32rm, 0 },
770 { X86::XOR64rr, X86::XOR64rm, 0 },
771 { X86::XOR8rr, X86::XOR8rm, 0 },
772 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000773 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
774 // AVX 128-bit versions of foldable instructions
775 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
776 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
777 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
778 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
779 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
780 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
781 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
782 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
783 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
784 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
785 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
786 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
787 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
788 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 },
789 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
790 { X86::Int_VCVTTSD2SIrr, X86::Int_VCVTTSD2SIrm, 0 },
791 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
792 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 },
793 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
794 { X86::Int_VCVTTSS2SIrr, X86::Int_VCVTTSS2SIrm, 0 },
795 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
796 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
797 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, TB_ALIGN_16 },
798 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 },
799 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
800 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
801 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
802 { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 },
803 { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 },
804 { X86::VADDSDrr, X86::VADDSDrm, 0 },
805 { X86::VADDSSrr, X86::VADDSSrm, 0 },
806 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 },
807 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 },
808 { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 },
809 { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 },
810 { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 },
811 { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 },
812 { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 },
813 { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 },
814 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
815 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
816 { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 },
817 { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 },
818 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
819 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
820 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
821 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
822 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
823 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
824 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
825 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
826 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
827 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
828 { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 },
829 { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 },
830 { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 },
831 { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 },
832 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
833 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
834 { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 },
835 { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 },
836 { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 },
837 { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 },
838 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
839 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
840 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
841 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
842 { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 },
843 { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 },
844 { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 },
845 { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 },
846 { X86::VMINSDrr, X86::VMINSDrm, 0 },
847 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
848 { X86::VMINSSrr, X86::VMINSSrm, 0 },
849 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
Craig Topperdcce2442011-11-14 08:07:55 +0000850 { X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000851 { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 },
852 { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 },
853 { X86::VMULSDrr, X86::VMULSDrm, 0 },
854 { X86::VMULSSrr, X86::VMULSSrm, 0 },
855 { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 },
856 { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 },
857 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 },
858 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000859 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000860 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 },
861 { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 },
862 { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 },
863 { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 },
864 { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 },
865 { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000866 { X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 },
867 { X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000868 { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000869 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000870 { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 },
871 { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000872 { X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 },
873 { X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000874 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 },
875 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000876 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000877 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 },
878 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 },
879 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000880 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000881 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000882 { X86::VPHADDDrr128, X86::VPHADDDrm128, TB_ALIGN_16 },
883 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 },
884 { X86::VPHADDWrr128, X86::VPHADDWrm128, TB_ALIGN_16 },
885 { X86::VPHSUBDrr128, X86::VPHSUBDrm128, TB_ALIGN_16 },
886 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 },
887 { X86::VPHSUBWrr128, X86::VPHSUBWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000888 { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000889 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000890 { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 },
891 { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 },
892 { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 },
893 { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 },
894 { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 },
895 { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000896 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000897 { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 },
898 { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 },
899 { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 },
900 { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 },
901 { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 },
902 { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 },
903 { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000904 { X86::VPSHUFBrr128, X86::VPSHUFBrm128, TB_ALIGN_16 },
905 { X86::VPSIGNBrr128, X86::VPSIGNBrm128, TB_ALIGN_16 },
906 { X86::VPSIGNWrr128, X86::VPSIGNWrm128, TB_ALIGN_16 },
907 { X86::VPSIGNDrr128, X86::VPSIGNDrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +0000908 { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 },
909 { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 },
910 { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 },
911 { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 },
912 { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 },
913 { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 },
914 { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 },
915 { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 },
916 { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 },
917 { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 },
918 { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 },
919 { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 },
920 { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 },
921 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 },
922 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 },
923 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 },
924 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 },
925 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 },
926 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 },
927 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 },
928 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 },
929 { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 },
930 { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 },
931 { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 },
932 { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 },
933 { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 },
934 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
935 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
936 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 },
937 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 },
938 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 },
939 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 },
940 { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 },
Craig Topperdcce2442011-11-14 08:07:55 +0000941 { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 },
942 // AVX2 foldable instructions
943 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_16 },
944 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_16 },
945 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_16 },
946 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_16 },
947 { X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_16 },
948 { X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_16 },
949 { X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_16 },
950 { X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_16 },
951 { X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_16 },
952 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_16 },
953 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_16 },
954 { X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_16 },
955 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_16 },
956 { X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_16 },
957 { X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_16 },
958 { X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_16 },
959 { X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_16 },
960 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_16 },
961 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_16 },
962 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_16 },
963 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_16 },
964 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_16 },
965 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_16 },
966 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_16 },
967 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_16 },
968 { X86::VPHADDDrr256, X86::VPHADDDrm256, TB_ALIGN_16 },
969 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_16 },
970 { X86::VPHADDWrr256, X86::VPHADDWrm256, TB_ALIGN_16 },
971 { X86::VPHSUBDrr256, X86::VPHSUBDrm256, TB_ALIGN_16 },
972 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_16 },
973 { X86::VPHSUBWrr256, X86::VPHSUBWrm256, TB_ALIGN_16 },
974 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_16 },
975 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_16 },
976 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_16 },
977 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_16 },
978 { X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_16 },
979 { X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_16 },
980 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_16 },
981 { X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_16 },
982 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_16 },
983 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_16 },
984 { X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_16 },
985 { X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_16 },
986 { X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_16 },
987 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_16 },
988 { X86::VPORYrr, X86::VPORYrm, TB_ALIGN_16 },
989 { X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_16 },
990 { X86::VPSHUFBrr256, X86::VPSHUFBrm256, TB_ALIGN_16 },
991 { X86::VPSIGNBrr256, X86::VPSIGNBrm256, TB_ALIGN_16 },
992 { X86::VPSIGNWrr256, X86::VPSIGNWrm256, TB_ALIGN_16 },
993 { X86::VPSIGNDrr256, X86::VPSIGNDrm256, TB_ALIGN_16 },
994 { X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 },
995 { X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 },
996 { X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 },
997 { X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 },
998 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_16 },
999 { X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 },
1000 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_16 },
1001 { X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 },
1002 { X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 },
1003 { X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 },
1004 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_16 },
1005 { X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 },
1006 { X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 },
1007 { X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 },
1008 { X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 },
1009 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_16 },
1010 { X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 },
1011 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_16 },
1012 { X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_16 },
1013 { X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_16 },
1014 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_16 },
1015 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_16 },
1016 { X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_16 },
1017 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_16 },
1018 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_16 },
1019 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 },
1020 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_16 },
1021 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_16 },
1022 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_16 },
1023 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_16 },
1024 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_16 },
1025 { X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_16 },
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001026 // FIXME: add AVX 256-bit foldable instructions
Owen Anderson43dbe052008-01-07 01:35:02 +00001027 };
1028
1029 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1030 unsigned RegOp = OpTbl2[i][0];
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00001031 unsigned MemOp = OpTbl2[i][1];
1032 unsigned Flags = OpTbl2[i][2];
1033 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1034 RegOp, MemOp,
1035 // Index 2, folded load
1036 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
Owen Anderson43dbe052008-01-07 01:35:02 +00001037 }
Chris Lattner72614082002-10-25 22:55:53 +00001038}
1039
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00001040void
1041X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1042 MemOp2RegOpTableType &M2RTable,
1043 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1044 if ((Flags & TB_NO_FORWARD) == 0) {
1045 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1046 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1047 }
1048 if ((Flags & TB_NO_REVERSE) == 0) {
1049 assert(!M2RTable.count(MemOp) &&
1050 "Duplicated entries in unfolding maps?");
1051 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1052 }
1053}
1054
Evan Chenga5a81d72010-01-12 00:09:37 +00001055bool
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001056X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1057 unsigned &SrcReg, unsigned &DstReg,
1058 unsigned &SubIdx) const {
Evan Chenga5a81d72010-01-12 00:09:37 +00001059 switch (MI.getOpcode()) {
1060 default: break;
1061 case X86::MOVSX16rr8:
1062 case X86::MOVZX16rr8:
1063 case X86::MOVSX32rr8:
1064 case X86::MOVZX32rr8:
1065 case X86::MOVSX64rr8:
1066 case X86::MOVZX64rr8:
Evan Cheng57d1d932010-01-13 08:01:32 +00001067 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1068 // It's not always legal to reference the low 8-bit of the larger
1069 // register in 32-bit mode.
1070 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001071 case X86::MOVSX32rr16:
1072 case X86::MOVZX32rr16:
1073 case X86::MOVSX64rr16:
1074 case X86::MOVZX64rr16:
1075 case X86::MOVSX64rr32:
1076 case X86::MOVZX64rr32: {
1077 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1078 // Be conservative.
1079 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001080 SrcReg = MI.getOperand(1).getReg();
1081 DstReg = MI.getOperand(0).getReg();
Evan Chenga5a81d72010-01-12 00:09:37 +00001082 switch (MI.getOpcode()) {
1083 default:
1084 llvm_unreachable(0);
1085 break;
1086 case X86::MOVSX16rr8:
1087 case X86::MOVZX16rr8:
1088 case X86::MOVSX32rr8:
1089 case X86::MOVZX32rr8:
1090 case X86::MOVSX64rr8:
1091 case X86::MOVZX64rr8:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001092 SubIdx = X86::sub_8bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001093 break;
1094 case X86::MOVSX32rr16:
1095 case X86::MOVZX32rr16:
1096 case X86::MOVSX64rr16:
1097 case X86::MOVZX64rr16:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001098 SubIdx = X86::sub_16bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001099 break;
1100 case X86::MOVSX64rr32:
1101 case X86::MOVZX64rr32:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +00001102 SubIdx = X86::sub_32bit;
Evan Chenga5a81d72010-01-12 00:09:37 +00001103 break;
1104 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001105 return true;
Evan Chenga5a81d72010-01-12 00:09:37 +00001106 }
1107 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +00001108 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +00001109}
1110
David Greeneb87bc952009-11-12 20:55:29 +00001111/// isFrameOperand - Return true and the FrameIndex if the specified
1112/// operand and follow operands form a reference to the stack frame.
1113bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1114 int &FrameIndex) const {
1115 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1116 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1117 MI->getOperand(Op+1).getImm() == 1 &&
1118 MI->getOperand(Op+2).getReg() == 0 &&
1119 MI->getOperand(Op+3).getImm() == 0) {
1120 FrameIndex = MI->getOperand(Op).getIndex();
1121 return true;
1122 }
1123 return false;
1124}
1125
David Greenedda39782009-11-13 00:29:53 +00001126static bool isFrameLoadOpcode(int Opcode) {
1127 switch (Opcode) {
Chris Lattner40839602006-02-02 20:12:32 +00001128 default: break;
1129 case X86::MOV8rm:
1130 case X86::MOV16rm:
1131 case X86::MOV32rm:
Evan Cheng25ab6902006-09-08 06:48:29 +00001132 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +00001133 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +00001134 case X86::MOVSSrm:
1135 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +00001136 case X86::MOVAPSrm:
1137 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +00001138 case X86::MOVDQArm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001139 case X86::VMOVSSrm:
1140 case X86::VMOVSDrm:
1141 case X86::VMOVAPSrm:
1142 case X86::VMOVAPDrm:
1143 case X86::VMOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001144 case X86::VMOVAPSYrm:
1145 case X86::VMOVAPDYrm:
1146 case X86::VMOVDQAYrm:
Bill Wendling823efee2007-04-03 06:00:37 +00001147 case X86::MMX_MOVD64rm:
1148 case X86::MMX_MOVQ64rm:
David Greenedda39782009-11-13 00:29:53 +00001149 return true;
1150 break;
1151 }
1152 return false;
1153}
1154
1155static bool isFrameStoreOpcode(int Opcode) {
1156 switch (Opcode) {
1157 default: break;
1158 case X86::MOV8mr:
1159 case X86::MOV16mr:
1160 case X86::MOV32mr:
1161 case X86::MOV64mr:
1162 case X86::ST_FpP64m:
1163 case X86::MOVSSmr:
1164 case X86::MOVSDmr:
1165 case X86::MOVAPSmr:
1166 case X86::MOVAPDmr:
1167 case X86::MOVDQAmr:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001168 case X86::VMOVSSmr:
1169 case X86::VMOVSDmr:
1170 case X86::VMOVAPSmr:
1171 case X86::VMOVAPDmr:
1172 case X86::VMOVDQAmr:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001173 case X86::VMOVAPSYmr:
1174 case X86::VMOVAPDYmr:
1175 case X86::VMOVDQAYmr:
David Greenedda39782009-11-13 00:29:53 +00001176 case X86::MMX_MOVD64mr:
1177 case X86::MMX_MOVQ64mr:
1178 case X86::MMX_MOVNTQmr:
1179 return true;
1180 }
1181 return false;
1182}
1183
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001184unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +00001185 int &FrameIndex) const {
1186 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +00001187 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattner40839602006-02-02 20:12:32 +00001188 return MI->getOperand(0).getReg();
David Greenedda39782009-11-13 00:29:53 +00001189 return 0;
1190}
1191
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001192unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +00001193 int &FrameIndex) const {
1194 if (isFrameLoadOpcode(MI->getOpcode())) {
1195 unsigned Reg;
1196 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1197 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +00001198 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +00001199 const MachineMemOperand *Dummy;
1200 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +00001201 }
1202 return 0;
1203}
1204
Dan Gohmancbad42c2008-11-18 19:49:32 +00001205unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +00001206 int &FrameIndex) const {
David Greenedda39782009-11-13 00:29:53 +00001207 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +00001208 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1209 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00001210 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greenedda39782009-11-13 00:29:53 +00001211 return 0;
1212}
1213
1214unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1215 int &FrameIndex) const {
1216 if (isFrameStoreOpcode(MI->getOpcode())) {
1217 unsigned Reg;
1218 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1219 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +00001220 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +00001221 const MachineMemOperand *Dummy;
1222 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +00001223 }
1224 return 0;
1225}
1226
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001227/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1228/// X86::MOVPC32r.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001229static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001230 bool isPICBase = false;
1231 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1232 E = MRI.def_end(); I != E; ++I) {
1233 MachineInstr *DefMI = I.getOperand().getParent();
1234 if (DefMI->getOpcode() != X86::MOVPC32r)
1235 return false;
1236 assert(!isPICBase && "More than one PIC base?");
1237 isPICBase = true;
1238 }
1239 return isPICBase;
1240}
Evan Cheng9d15abe2008-03-31 07:54:19 +00001241
Bill Wendling9f8fea32008-05-12 20:54:26 +00001242bool
Dan Gohman3731bc02009-10-10 00:34:18 +00001243X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1244 AliasAnalysis *AA) const {
Dan Gohmanc101e952007-06-14 20:50:44 +00001245 switch (MI->getOpcode()) {
1246 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +00001247 case X86::MOV8rm:
1248 case X86::MOV16rm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001249 case X86::MOV32rm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001250 case X86::MOV64rm:
1251 case X86::LD_Fp64m:
1252 case X86::MOVSSrm:
1253 case X86::MOVSDrm:
1254 case X86::MOVAPSrm:
Evan Cheng600c0432009-11-16 21:56:03 +00001255 case X86::MOVUPSrm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001256 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +00001257 case X86::MOVDQArm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00001258 case X86::VMOVSSrm:
1259 case X86::VMOVSDrm:
1260 case X86::VMOVAPSrm:
1261 case X86::VMOVUPSrm:
1262 case X86::VMOVAPDrm:
1263 case X86::VMOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001264 case X86::VMOVAPSYrm:
1265 case X86::VMOVUPSYrm:
1266 case X86::VMOVAPDYrm:
1267 case X86::VMOVDQAYrm:
Evan Chenge771ebd2008-03-27 01:41:09 +00001268 case X86::MMX_MOVD64rm:
Evan Chengd15ac2f2009-11-17 09:51:18 +00001269 case X86::MMX_MOVQ64rm:
Bruno Cardoso Lopes0e59a042011-09-03 00:46:45 +00001270 case X86::FsVMOVAPSrm:
1271 case X86::FsVMOVAPDrm:
Evan Chengd15ac2f2009-11-17 09:51:18 +00001272 case X86::FsMOVAPSrm:
1273 case X86::FsMOVAPDrm: {
Evan Chenge771ebd2008-03-27 01:41:09 +00001274 // Loads from constant pools are trivially rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +00001275 if (MI->getOperand(1).isReg() &&
1276 MI->getOperand(2).isImm() &&
1277 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman3731bc02009-10-10 00:34:18 +00001278 MI->isInvariantLoad(AA)) {
Evan Chenge771ebd2008-03-27 01:41:09 +00001279 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattner18c59872009-06-27 04:16:01 +00001280 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Chenge771ebd2008-03-27 01:41:09 +00001281 return true;
1282 // Allow re-materialization of PIC load.
Dan Gohmand735b802008-10-03 15:45:36 +00001283 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengffe2eb02008-04-01 23:26:12 +00001284 return false;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001285 const MachineFunction &MF = *MI->getParent()->getParent();
1286 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge771ebd2008-03-27 01:41:09 +00001287 bool isPICBase = false;
1288 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1289 E = MRI.def_end(); I != E; ++I) {
1290 MachineInstr *DefMI = I.getOperand().getParent();
1291 if (DefMI->getOpcode() != X86::MOVPC32r)
1292 return false;
1293 assert(!isPICBase && "More than one PIC base?");
1294 isPICBase = true;
1295 }
1296 return isPICBase;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001297 }
Evan Chenge771ebd2008-03-27 01:41:09 +00001298 return false;
Evan Chengd8850a52008-02-22 09:25:47 +00001299 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001300
Evan Chenge771ebd2008-03-27 01:41:09 +00001301 case X86::LEA32r:
1302 case X86::LEA64r: {
Dan Gohmand735b802008-10-03 15:45:36 +00001303 if (MI->getOperand(2).isImm() &&
1304 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1305 !MI->getOperand(4).isReg()) {
Evan Chenge771ebd2008-03-27 01:41:09 +00001306 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +00001307 if (!MI->getOperand(1).isReg())
Dan Gohman83ccd142008-09-26 21:30:20 +00001308 return true;
Evan Chenge771ebd2008-03-27 01:41:09 +00001309 unsigned BaseReg = MI->getOperand(1).getReg();
1310 if (BaseReg == 0)
1311 return true;
1312 // Allow re-materialization of lea PICBase + x.
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001313 const MachineFunction &MF = *MI->getParent()->getParent();
1314 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge3d8dbf2008-03-27 01:45:11 +00001315 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +00001316 }
1317 return false;
1318 }
Dan Gohmanc101e952007-06-14 20:50:44 +00001319 }
Evan Chenge771ebd2008-03-27 01:41:09 +00001320
Dan Gohmand45eddd2007-06-26 00:48:07 +00001321 // All other instructions marked M_REMATERIALIZABLE are always trivially
1322 // rematerializable.
1323 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +00001324}
1325
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001326/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1327/// would clobber the EFLAGS condition register. Note the result may be
1328/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohman1b1764b2009-10-14 00:08:59 +00001329/// a few instructions in each direction it assumes it's not safe.
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001330static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1331 MachineBasicBlock::iterator I) {
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001332 MachineBasicBlock::iterator E = MBB.end();
1333
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001334 // For compile time consideration, if we are not able to determine the
Dan Gohman1b1764b2009-10-14 00:08:59 +00001335 // safety after visiting 4 instructions in each direction, we will assume
1336 // it's not safe.
1337 MachineBasicBlock::iterator Iter = I;
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001338 for (unsigned i = 0; Iter != E && i < 4; ++i) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001339 bool SeenDef = false;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001340 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1341 MachineOperand &MO = Iter->getOperand(j);
Dan Gohmand735b802008-10-03 15:45:36 +00001342 if (!MO.isReg())
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001343 continue;
1344 if (MO.getReg() == X86::EFLAGS) {
1345 if (MO.isUse())
1346 return false;
1347 SeenDef = true;
1348 }
1349 }
1350
1351 if (SeenDef)
1352 // This instruction defines EFLAGS, no need to look any further.
1353 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001354 ++Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001355 // Skip over DBG_VALUE.
1356 while (Iter != E && Iter->isDebugValue())
1357 ++Iter;
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001358 }
Dan Gohman3afda6e2008-10-21 03:24:31 +00001359
Jakob Stoklund Olesenb8e052e2011-09-02 23:52:52 +00001360 // It is safe to clobber EFLAGS at the end of a block of no successor has it
1361 // live in.
1362 if (Iter == E) {
1363 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1364 SE = MBB.succ_end(); SI != SE; ++SI)
1365 if ((*SI)->isLiveIn(X86::EFLAGS))
1366 return false;
1367 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001368 }
1369
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001370 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman1b1764b2009-10-14 00:08:59 +00001371 Iter = I;
1372 for (unsigned i = 0; i < 4; ++i) {
1373 // If we make it to the beginning of the block, it's safe to clobber
1374 // EFLAGS iff EFLAGS is not live-in.
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001375 if (Iter == B)
Dan Gohman1b1764b2009-10-14 00:08:59 +00001376 return !MBB.isLiveIn(X86::EFLAGS);
1377
1378 --Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001379 // Skip over DBG_VALUE.
1380 while (Iter != B && Iter->isDebugValue())
1381 --Iter;
1382
Dan Gohman1b1764b2009-10-14 00:08:59 +00001383 bool SawKill = false;
1384 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1385 MachineOperand &MO = Iter->getOperand(j);
1386 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1387 if (MO.isDef()) return MO.isDead();
1388 if (MO.isKill()) SawKill = true;
1389 }
1390 }
1391
1392 if (SawKill)
1393 // This instruction kills EFLAGS and doesn't redefine it, so
1394 // there's no need to look further.
Dan Gohman3afda6e2008-10-21 03:24:31 +00001395 return true;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001396 }
1397
1398 // Conservative answer.
1399 return false;
1400}
1401
Evan Chengca1267c2008-03-31 20:40:39 +00001402void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1403 MachineBasicBlock::iterator I,
Evan Cheng37844532009-07-16 09:20:10 +00001404 unsigned DestReg, unsigned SubIdx,
Evan Chengd57cdd52009-11-14 02:55:43 +00001405 const MachineInstr *Orig,
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001406 const TargetRegisterInfo &TRI) const {
Dan Gohman0d881042010-05-07 01:28:10 +00001407 DebugLoc DL = Orig->getDebugLoc();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001408
Evan Chengca1267c2008-03-31 20:40:39 +00001409 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1410 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng37844532009-07-16 09:20:10 +00001411 bool Clone = true;
1412 unsigned Opc = Orig->getOpcode();
1413 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001414 default: break;
Evan Chengca1267c2008-03-31 20:40:39 +00001415 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001416 case X86::MOV16r0:
1417 case X86::MOV32r0:
1418 case X86::MOV64r0: {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001419 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng37844532009-07-16 09:20:10 +00001420 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001421 default: break;
1422 case X86::MOV8r0: Opc = X86::MOV8ri; break;
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001423 case X86::MOV16r0: Opc = X86::MOV16ri; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001424 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Dan Gohman6fe0df22010-02-26 16:49:27 +00001425 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001426 }
Evan Cheng37844532009-07-16 09:20:10 +00001427 Clone = false;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001428 }
Evan Chengca1267c2008-03-31 20:40:39 +00001429 break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001430 }
1431 }
1432
Evan Cheng37844532009-07-16 09:20:10 +00001433 if (Clone) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001434 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chengca1267c2008-03-31 20:40:39 +00001435 MBB.insert(I, MI);
Evan Cheng37844532009-07-16 09:20:10 +00001436 } else {
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001437 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
Evan Chengca1267c2008-03-31 20:40:39 +00001438 }
Evan Cheng03eb3882008-04-16 23:44:44 +00001439
Evan Cheng37844532009-07-16 09:20:10 +00001440 MachineInstr *NewMI = prior(I);
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001441 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chengca1267c2008-03-31 20:40:39 +00001442}
1443
Evan Cheng3f411c72007-10-05 08:04:01 +00001444/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1445/// is not marked dead.
1446static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +00001447 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1448 MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001449 if (MO.isReg() && MO.isDef() &&
Evan Cheng3f411c72007-10-05 08:04:01 +00001450 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1451 return true;
1452 }
1453 }
1454 return false;
1455}
1456
Evan Chengdd99f3a2009-12-12 20:03:14 +00001457/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
Evan Cheng656e5142009-12-11 06:01:48 +00001458/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1459/// to a 32-bit superregister and then truncating back down to a 16-bit
1460/// subregister.
1461MachineInstr *
1462X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1463 MachineFunction::iterator &MFI,
1464 MachineBasicBlock::iterator &MBBI,
1465 LiveVariables *LV) const {
1466 MachineInstr *MI = MBBI;
1467 unsigned Dest = MI->getOperand(0).getReg();
1468 unsigned Src = MI->getOperand(1).getReg();
1469 bool isDead = MI->getOperand(0).isDead();
1470 bool isKill = MI->getOperand(1).isKill();
1471
1472 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1473 ? X86::LEA64_32r : X86::LEA32r;
1474 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001475 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001476 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001477
Evan Cheng656e5142009-12-11 06:01:48 +00001478 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001479 // well be shifting and then extracting the lower 16-bits.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001480 // This has the potential to cause partial register stall. e.g.
Evan Cheng04ab19c2009-12-12 18:55:26 +00001481 // movw (%rbp,%rcx,2), %dx
1482 // leal -65(%rdx), %esi
Evan Chengdd99f3a2009-12-12 20:03:14 +00001483 // But testing has shown this *does* help performance in 64-bit mode (at
1484 // least on modern x86 machines).
Evan Cheng656e5142009-12-11 06:01:48 +00001485 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1486 MachineInstr *InsMI =
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001487 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1488 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1489 .addReg(Src, getKillRegState(isKill));
Evan Cheng656e5142009-12-11 06:01:48 +00001490
1491 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1492 get(Opc), leaOutReg);
1493 switch (MIOpc) {
1494 default:
1495 llvm_unreachable(0);
1496 break;
1497 case X86::SHL16ri: {
1498 unsigned ShAmt = MI->getOperand(2).getImm();
1499 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001500 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng656e5142009-12-11 06:01:48 +00001501 break;
1502 }
1503 case X86::INC16r:
1504 case X86::INC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001505 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng656e5142009-12-11 06:01:48 +00001506 break;
1507 case X86::DEC16r:
1508 case X86::DEC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001509 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng656e5142009-12-11 06:01:48 +00001510 break;
1511 case X86::ADD16ri:
1512 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001513 case X86::ADD16ri_DB:
1514 case X86::ADD16ri8_DB:
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001515 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng656e5142009-12-11 06:01:48 +00001516 break;
Chris Lattner99ae6652010-10-08 03:54:52 +00001517 case X86::ADD16rr:
1518 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001519 unsigned Src2 = MI->getOperand(2).getReg();
1520 bool isKill2 = MI->getOperand(2).isKill();
1521 unsigned leaInReg2 = 0;
1522 MachineInstr *InsMI2 = 0;
1523 if (Src == Src2) {
1524 // ADD16rr %reg1028<kill>, %reg1028
1525 // just a single insert_subreg.
1526 addRegReg(MIB, leaInReg, true, leaInReg, false);
1527 } else {
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001528 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001529 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001530 // well be shifting and then extracting the lower 16-bits.
Evan Cheng656e5142009-12-11 06:01:48 +00001531 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1532 InsMI2 =
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001533 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1534 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1535 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng656e5142009-12-11 06:01:48 +00001536 addRegReg(MIB, leaInReg, true, leaInReg2, true);
1537 }
1538 if (LV && isKill2 && InsMI2)
1539 LV->replaceKillInstruction(Src2, MI, InsMI2);
1540 break;
1541 }
1542 }
1543
1544 MachineInstr *NewMI = MIB;
1545 MachineInstr *ExtMI =
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001546 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng656e5142009-12-11 06:01:48 +00001547 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001548 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng656e5142009-12-11 06:01:48 +00001549
1550 if (LV) {
1551 // Update live variables
1552 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1553 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1554 if (isKill)
1555 LV->replaceKillInstruction(Src, MI, InsMI);
1556 if (isDead)
1557 LV->replaceKillInstruction(Dest, MI, ExtMI);
1558 }
1559
1560 return ExtMI;
1561}
1562
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001563/// convertToThreeAddress - This method must be implemented by targets that
1564/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1565/// may be able to convert a two-address instruction into a true
1566/// three-address instruction on demand. This allows the X86 target (for
1567/// example) to convert ADD and SHL instructions into LEA instructions if they
1568/// would require register copies due to two-addressness.
1569///
1570/// This method returns a null pointer if the transformation cannot be
1571/// performed, otherwise it returns the new instruction.
1572///
Evan Cheng258ff672006-12-01 21:52:41 +00001573MachineInstr *
1574X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1575 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +00001576 LiveVariables *LV) const {
Evan Cheng258ff672006-12-01 21:52:41 +00001577 MachineInstr *MI = MBBI;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001578 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001579 // All instructions input are two-addr instructions. Get the known operands.
1580 unsigned Dest = MI->getOperand(0).getReg();
1581 unsigned Src = MI->getOperand(1).getReg();
Evan Cheng9f1c8312008-07-03 09:09:37 +00001582 bool isDead = MI->getOperand(0).isDead();
1583 bool isKill = MI->getOperand(1).isKill();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001584
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001585 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +00001586 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001587 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001588 // 16-bit LEA is also slow on Core2.
Evan Cheng258ff672006-12-01 21:52:41 +00001589 bool DisableLEA16 = true;
Evan Chengdd99f3a2009-12-12 20:03:14 +00001590 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng258ff672006-12-01 21:52:41 +00001591
Evan Cheng559dc462007-10-05 20:34:26 +00001592 unsigned MIOpc = MI->getOpcode();
1593 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +00001594 case X86::SHUFPSrri: {
1595 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001596 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001597
Evan Chengaa3c1412006-05-30 21:45:53 +00001598 unsigned B = MI->getOperand(1).getReg();
1599 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001600 if (B != C) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001601 unsigned A = MI->getOperand(0).getReg();
1602 unsigned M = MI->getOperand(3).getImm();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001603 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling587daed2009-05-13 21:33:08 +00001604 .addReg(A, RegState::Define | getDeadRegState(isDead))
1605 .addReg(B, getKillRegState(isKill)).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001606 break;
1607 }
Chris Lattner995f5502007-03-28 18:12:31 +00001608 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001609 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +00001610 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1611 // the flags produced by a shift yet, so this is safe.
Chris Lattner995f5502007-03-28 18:12:31 +00001612 unsigned ShAmt = MI->getOperand(2).getImm();
1613 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001614
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001615 // LEA can't handle RSP.
1616 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1617 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1618 return 0;
1619
Bill Wendlingfbef3102009-02-11 21:51:19 +00001620 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling587daed2009-05-13 21:33:08 +00001621 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1622 .addReg(0).addImm(1 << ShAmt)
1623 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001624 .addImm(0).addReg(0);
Chris Lattner995f5502007-03-28 18:12:31 +00001625 break;
1626 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001627 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001628 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001629 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1630 // the flags produced by a shift yet, so this is safe.
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001631 unsigned ShAmt = MI->getOperand(2).getImm();
1632 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001633
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001634 // LEA can't handle ESP.
1635 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1636 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1637 return 0;
1638
Evan Chengdd99f3a2009-12-12 20:03:14 +00001639 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Bill Wendlingfbef3102009-02-11 21:51:19 +00001640 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001641 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001642 .addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001643 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001644 break;
1645 }
1646 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001647 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +00001648 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1649 // the flags produced by a shift yet, so this is safe.
Evan Cheng61d9c862007-09-06 00:14:41 +00001650 unsigned ShAmt = MI->getOperand(2).getImm();
1651 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001652
Evan Cheng656e5142009-12-11 06:01:48 +00001653 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001654 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001655 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1656 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1657 .addReg(0).addImm(1 << ShAmt)
1658 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001659 .addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001660 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001661 }
Evan Cheng559dc462007-10-05 20:34:26 +00001662 default: {
1663 // The following opcodes also sets the condition code register(s). Only
1664 // convert them to equivalent lea if the condition code register def's
1665 // are dead!
1666 if (hasLiveCondCodeDef(MI))
1667 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001668
Evan Cheng559dc462007-10-05 20:34:26 +00001669 switch (MIOpc) {
1670 default: return 0;
1671 case X86::INC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001672 case X86::INC32r:
1673 case X86::INC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001674 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001675 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1676 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001677
1678 // LEA can't handle RSP.
1679 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1680 !MF.getRegInfo().constrainRegClass(Src,
1681 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1682 X86::GR32_NOSPRegisterClass))
1683 return 0;
1684
Chris Lattner599b5312010-07-08 23:46:44 +00001685 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001686 .addReg(Dest, RegState::Define |
1687 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001688 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001689 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001690 }
Evan Cheng559dc462007-10-05 20:34:26 +00001691 case X86::INC16r:
1692 case X86::INC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001693 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001694 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001695 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001696 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001697 .addReg(Dest, RegState::Define |
1698 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001699 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001700 break;
1701 case X86::DEC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001702 case X86::DEC32r:
1703 case X86::DEC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001704 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001705 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1706 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001707 // LEA can't handle RSP.
1708 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1709 !MF.getRegInfo().constrainRegClass(Src,
1710 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1711 X86::GR32_NOSPRegisterClass))
1712 return 0;
1713
Chris Lattner599b5312010-07-08 23:46:44 +00001714 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001715 .addReg(Dest, RegState::Define |
1716 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001717 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001718 break;
1719 }
1720 case X86::DEC16r:
1721 case X86::DEC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001722 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001723 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001724 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001725 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001726 .addReg(Dest, RegState::Define |
1727 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001728 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001729 break;
1730 case X86::ADD64rr:
Chris Lattner99ae6652010-10-08 03:54:52 +00001731 case X86::ADD64rr_DB:
1732 case X86::ADD32rr:
1733 case X86::ADD32rr_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001734 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner99ae6652010-10-08 03:54:52 +00001735 unsigned Opc;
1736 TargetRegisterClass *RC;
1737 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1738 Opc = X86::LEA64r;
1739 RC = X86::GR64_NOSPRegisterClass;
1740 } else {
1741 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1742 RC = X86::GR32_NOSPRegisterClass;
1743 }
1744
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001745
Evan Cheng9f1c8312008-07-03 09:09:37 +00001746 unsigned Src2 = MI->getOperand(2).getReg();
1747 bool isKill2 = MI->getOperand(2).isKill();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001748
1749 // LEA can't handle RSP.
1750 if (TargetRegisterInfo::isVirtualRegister(Src2) &&
Chris Lattner99ae6652010-10-08 03:54:52 +00001751 !MF.getRegInfo().constrainRegClass(Src2, RC))
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001752 return 0;
1753
Bill Wendlingfbef3102009-02-11 21:51:19 +00001754 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001755 .addReg(Dest, RegState::Define |
1756 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001757 Src, isKill, Src2, isKill2);
1758 if (LV && isKill2)
1759 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001760 break;
1761 }
Chris Lattner99ae6652010-10-08 03:54:52 +00001762 case X86::ADD16rr:
1763 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001764 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001765 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001766 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng9f1c8312008-07-03 09:09:37 +00001767 unsigned Src2 = MI->getOperand(2).getReg();
1768 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001769 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001770 .addReg(Dest, RegState::Define |
1771 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001772 Src, isKill, Src2, isKill2);
1773 if (LV && isKill2)
1774 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001775 break;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001776 }
Evan Cheng559dc462007-10-05 20:34:26 +00001777 case X86::ADD64ri32:
1778 case X86::ADD64ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001779 case X86::ADD64ri32_DB:
1780 case X86::ADD64ri8_DB:
Evan Cheng559dc462007-10-05 20:34:26 +00001781 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00001782 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Evan Cheng656e5142009-12-11 06:01:48 +00001783 .addReg(Dest, RegState::Define |
1784 getDeadRegState(isDead)),
1785 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001786 break;
1787 case X86::ADD32ri:
Chris Lattner15df55d2010-10-08 03:57:25 +00001788 case X86::ADD32ri8:
1789 case X86::ADD32ri_DB:
1790 case X86::ADD32ri8_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001791 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng656e5142009-12-11 06:01:48 +00001792 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner599b5312010-07-08 23:46:44 +00001793 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Cheng656e5142009-12-11 06:01:48 +00001794 .addReg(Dest, RegState::Define |
1795 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001796 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001797 break;
1798 }
Evan Cheng656e5142009-12-11 06:01:48 +00001799 case X86::ADD16ri:
1800 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001801 case X86::ADD16ri_DB:
1802 case X86::ADD16ri8_DB:
Evan Cheng656e5142009-12-11 06:01:48 +00001803 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001804 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001805 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00001806 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Cheng656e5142009-12-11 06:01:48 +00001807 .addReg(Dest, RegState::Define |
1808 getDeadRegState(isDead)),
1809 Src, isKill, MI->getOperand(2).getImm());
1810 break;
Evan Cheng559dc462007-10-05 20:34:26 +00001811 }
1812 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001813 }
1814
Evan Cheng15246732008-02-07 08:29:53 +00001815 if (!NewMI) return 0;
1816
Evan Cheng9f1c8312008-07-03 09:09:37 +00001817 if (LV) { // Update live variables
1818 if (isKill)
1819 LV->replaceKillInstruction(Src, MI, NewMI);
1820 if (isDead)
1821 LV->replaceKillInstruction(Dest, MI, NewMI);
1822 }
1823
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001824 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001825 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001826}
1827
Chris Lattner41e431b2005-01-19 07:11:01 +00001828/// commuteInstruction - We have a few instructions that must be hacked on to
1829/// commute them.
1830///
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001831MachineInstr *
1832X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner41e431b2005-01-19 07:11:01 +00001833 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001834 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1835 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001836 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001837 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1838 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1839 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001840 unsigned Opc;
1841 unsigned Size;
1842 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001843 default: llvm_unreachable("Unreachable!");
Chris Lattner0df53d22005-01-19 07:31:24 +00001844 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1845 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1846 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1847 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001848 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1849 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001850 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001851 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman74feef22008-10-17 01:23:35 +00001852 if (NewMI) {
1853 MachineFunction &MF = *MI->getParent()->getParent();
1854 MI = MF.CloneMachineInstr(MI);
1855 NewMI = false;
Evan Chenga4d16a12008-02-13 02:46:49 +00001856 }
Dan Gohman74feef22008-10-17 01:23:35 +00001857 MI->setDesc(get(Opc));
1858 MI->getOperand(3).setImm(Size-Amt);
1859 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001860 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001861 case X86::CMOVB16rr:
1862 case X86::CMOVB32rr:
1863 case X86::CMOVB64rr:
1864 case X86::CMOVAE16rr:
1865 case X86::CMOVAE32rr:
1866 case X86::CMOVAE64rr:
1867 case X86::CMOVE16rr:
1868 case X86::CMOVE32rr:
1869 case X86::CMOVE64rr:
1870 case X86::CMOVNE16rr:
1871 case X86::CMOVNE32rr:
1872 case X86::CMOVNE64rr:
Chris Lattner25cbf502010-10-05 23:00:14 +00001873 case X86::CMOVBE16rr:
1874 case X86::CMOVBE32rr:
1875 case X86::CMOVBE64rr:
Evan Cheng7ad42d92007-10-05 23:13:21 +00001876 case X86::CMOVA16rr:
1877 case X86::CMOVA32rr:
1878 case X86::CMOVA64rr:
1879 case X86::CMOVL16rr:
1880 case X86::CMOVL32rr:
1881 case X86::CMOVL64rr:
1882 case X86::CMOVGE16rr:
1883 case X86::CMOVGE32rr:
1884 case X86::CMOVGE64rr:
1885 case X86::CMOVLE16rr:
1886 case X86::CMOVLE32rr:
1887 case X86::CMOVLE64rr:
1888 case X86::CMOVG16rr:
1889 case X86::CMOVG32rr:
1890 case X86::CMOVG64rr:
1891 case X86::CMOVS16rr:
1892 case X86::CMOVS32rr:
1893 case X86::CMOVS64rr:
1894 case X86::CMOVNS16rr:
1895 case X86::CMOVNS32rr:
1896 case X86::CMOVNS64rr:
1897 case X86::CMOVP16rr:
1898 case X86::CMOVP32rr:
1899 case X86::CMOVP64rr:
1900 case X86::CMOVNP16rr:
1901 case X86::CMOVNP32rr:
Dan Gohman305fceb2009-01-07 00:35:10 +00001902 case X86::CMOVNP64rr:
1903 case X86::CMOVO16rr:
1904 case X86::CMOVO32rr:
1905 case X86::CMOVO64rr:
1906 case X86::CMOVNO16rr:
1907 case X86::CMOVNO32rr:
1908 case X86::CMOVNO64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001909 unsigned Opc = 0;
1910 switch (MI->getOpcode()) {
1911 default: break;
1912 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1913 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1914 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1915 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1916 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1917 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1918 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1919 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1920 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1921 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1922 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1923 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner25cbf502010-10-05 23:00:14 +00001924 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1925 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1926 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1927 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1928 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1929 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001930 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1931 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1932 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1933 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1934 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1935 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1936 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1937 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1938 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1939 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1940 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1941 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1942 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1943 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00001944 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001945 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1946 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1947 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1948 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1949 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00001950 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001951 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1952 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1953 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00001954 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1955 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00001956 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00001957 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1958 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1959 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001960 }
Dan Gohman74feef22008-10-17 01:23:35 +00001961 if (NewMI) {
1962 MachineFunction &MF = *MI->getParent()->getParent();
1963 MI = MF.CloneMachineInstr(MI);
1964 NewMI = false;
1965 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00001966 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001967 // Fallthrough intended.
1968 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001969 default:
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001970 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001971 }
1972}
1973
Chris Lattner7fbe9722006-10-20 17:42:20 +00001974static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1975 switch (BrOpc) {
1976 default: return X86::COND_INVALID;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00001977 case X86::JE_4: return X86::COND_E;
1978 case X86::JNE_4: return X86::COND_NE;
1979 case X86::JL_4: return X86::COND_L;
1980 case X86::JLE_4: return X86::COND_LE;
1981 case X86::JG_4: return X86::COND_G;
1982 case X86::JGE_4: return X86::COND_GE;
1983 case X86::JB_4: return X86::COND_B;
1984 case X86::JBE_4: return X86::COND_BE;
1985 case X86::JA_4: return X86::COND_A;
1986 case X86::JAE_4: return X86::COND_AE;
1987 case X86::JS_4: return X86::COND_S;
1988 case X86::JNS_4: return X86::COND_NS;
1989 case X86::JP_4: return X86::COND_P;
1990 case X86::JNP_4: return X86::COND_NP;
1991 case X86::JO_4: return X86::COND_O;
1992 case X86::JNO_4: return X86::COND_NO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001993 }
1994}
1995
1996unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1997 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001998 default: llvm_unreachable("Illegal condition code!");
Chris Lattnerbd13fb62010-02-11 19:25:55 +00001999 case X86::COND_E: return X86::JE_4;
2000 case X86::COND_NE: return X86::JNE_4;
2001 case X86::COND_L: return X86::JL_4;
2002 case X86::COND_LE: return X86::JLE_4;
2003 case X86::COND_G: return X86::JG_4;
2004 case X86::COND_GE: return X86::JGE_4;
2005 case X86::COND_B: return X86::JB_4;
2006 case X86::COND_BE: return X86::JBE_4;
2007 case X86::COND_A: return X86::JA_4;
2008 case X86::COND_AE: return X86::JAE_4;
2009 case X86::COND_S: return X86::JS_4;
2010 case X86::COND_NS: return X86::JNS_4;
2011 case X86::COND_P: return X86::JP_4;
2012 case X86::COND_NP: return X86::JNP_4;
2013 case X86::COND_O: return X86::JO_4;
2014 case X86::COND_NO: return X86::JNO_4;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002015 }
2016}
2017
Chris Lattner9cd68752006-10-21 05:52:40 +00002018/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2019/// e.g. turning COND_E to COND_NE.
2020X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2021 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002022 default: llvm_unreachable("Illegal condition code!");
Chris Lattner9cd68752006-10-21 05:52:40 +00002023 case X86::COND_E: return X86::COND_NE;
2024 case X86::COND_NE: return X86::COND_E;
2025 case X86::COND_L: return X86::COND_GE;
2026 case X86::COND_LE: return X86::COND_G;
2027 case X86::COND_G: return X86::COND_LE;
2028 case X86::COND_GE: return X86::COND_L;
2029 case X86::COND_B: return X86::COND_AE;
2030 case X86::COND_BE: return X86::COND_A;
2031 case X86::COND_A: return X86::COND_BE;
2032 case X86::COND_AE: return X86::COND_B;
2033 case X86::COND_S: return X86::COND_NS;
2034 case X86::COND_NS: return X86::COND_S;
2035 case X86::COND_P: return X86::COND_NP;
2036 case X86::COND_NP: return X86::COND_P;
2037 case X86::COND_O: return X86::COND_NO;
2038 case X86::COND_NO: return X86::COND_O;
2039 }
2040}
2041
Dale Johannesen318093b2007-06-14 22:03:45 +00002042bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002043 if (!MI->isTerminator()) return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002044
Chris Lattner69244302008-01-07 01:56:04 +00002045 // Conditional branch is a special case.
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002046 if (MI->isBranch() && !MI->isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00002047 return true;
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002048 if (!MI->isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00002049 return true;
2050 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00002051}
Chris Lattner9cd68752006-10-21 05:52:40 +00002052
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002053bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
Chris Lattner7fbe9722006-10-20 17:42:20 +00002054 MachineBasicBlock *&TBB,
2055 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +00002056 SmallVectorImpl<MachineOperand> &Cond,
2057 bool AllowModify) const {
Dan Gohman279c22e2008-10-21 03:29:32 +00002058 // Start from the bottom of the block and work up, examining the
2059 // terminator instructions.
Chris Lattner7fbe9722006-10-20 17:42:20 +00002060 MachineBasicBlock::iterator I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00002061 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002062 while (I != MBB.begin()) {
2063 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00002064 if (I->isDebugValue())
2065 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00002066
2067 // Working from the bottom, when we see a non-terminator instruction, we're
2068 // done.
Jakob Stoklund Olesen468a2a42010-07-16 17:41:44 +00002069 if (!isUnpredicatedTerminator(I))
Dan Gohman279c22e2008-10-21 03:29:32 +00002070 break;
Bill Wendling85de1e52009-12-14 06:51:19 +00002071
2072 // A terminator that isn't a branch can't easily be handled by this
2073 // analysis.
Evan Cheng5a96b3d2011-12-07 07:15:52 +00002074 if (!I->isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00002075 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002076
Dan Gohman279c22e2008-10-21 03:29:32 +00002077 // Handle unconditional branches.
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002078 if (I->getOpcode() == X86::JMP_4) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00002079 UnCondBrIter = I;
2080
Evan Chengdc54d312009-02-09 07:14:22 +00002081 if (!AllowModify) {
2082 TBB = I->getOperand(0).getMBB();
Evan Cheng45e00102009-05-08 06:34:09 +00002083 continue;
Evan Chengdc54d312009-02-09 07:14:22 +00002084 }
2085
Dan Gohman279c22e2008-10-21 03:29:32 +00002086 // If the block has any instructions after a JMP, delete them.
Chris Lattner7896c9f2009-12-03 00:50:42 +00002087 while (llvm::next(I) != MBB.end())
2088 llvm::next(I)->eraseFromParent();
Bill Wendling85de1e52009-12-14 06:51:19 +00002089
Dan Gohman279c22e2008-10-21 03:29:32 +00002090 Cond.clear();
2091 FBB = 0;
Bill Wendling85de1e52009-12-14 06:51:19 +00002092
Dan Gohman279c22e2008-10-21 03:29:32 +00002093 // Delete the JMP if it's equivalent to a fall-through.
2094 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2095 TBB = 0;
2096 I->eraseFromParent();
2097 I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00002098 UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002099 continue;
2100 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002101
Evan Chengfc5a03e2010-04-13 18:50:27 +00002102 // TBB is used to indicate the unconditional destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00002103 TBB = I->getOperand(0).getMBB();
2104 continue;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002105 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002106
Dan Gohman279c22e2008-10-21 03:29:32 +00002107 // Handle conditional branches.
2108 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Chris Lattner7fbe9722006-10-20 17:42:20 +00002109 if (BranchCode == X86::COND_INVALID)
2110 return true; // Can't handle indirect branch.
Bill Wendling85de1e52009-12-14 06:51:19 +00002111
Dan Gohman279c22e2008-10-21 03:29:32 +00002112 // Working from the bottom, handle the first conditional branch.
2113 if (Cond.empty()) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00002114 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2115 if (AllowModify && UnCondBrIter != MBB.end() &&
2116 MBB.isLayoutSuccessor(TargetBB)) {
2117 // If we can modify the code and it ends in something like:
2118 //
2119 // jCC L1
2120 // jmp L2
2121 // L1:
2122 // ...
2123 // L2:
2124 //
2125 // Then we can change this to:
2126 //
2127 // jnCC L2
2128 // L1:
2129 // ...
2130 // L2:
2131 //
2132 // Which is a bit more efficient.
2133 // We conditionally jump to the fall-through block.
2134 BranchCode = GetOppositeBranchCondition(BranchCode);
2135 unsigned JNCC = GetCondBranchFromCond(BranchCode);
2136 MachineBasicBlock::iterator OldInst = I;
2137
2138 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2139 .addMBB(UnCondBrIter->getOperand(0).getMBB());
2140 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2141 .addMBB(TargetBB);
Evan Chengfc5a03e2010-04-13 18:50:27 +00002142
2143 OldInst->eraseFromParent();
2144 UnCondBrIter->eraseFromParent();
2145
2146 // Restart the analysis.
2147 UnCondBrIter = MBB.end();
2148 I = MBB.end();
2149 continue;
2150 }
2151
Dan Gohman279c22e2008-10-21 03:29:32 +00002152 FBB = TBB;
2153 TBB = I->getOperand(0).getMBB();
2154 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2155 continue;
2156 }
Bill Wendling85de1e52009-12-14 06:51:19 +00002157
2158 // Handle subsequent conditional branches. Only handle the case where all
2159 // conditional branches branch to the same destination and their condition
2160 // opcodes fit one of the special multi-branch idioms.
Dan Gohman279c22e2008-10-21 03:29:32 +00002161 assert(Cond.size() == 1);
2162 assert(TBB);
Bill Wendling85de1e52009-12-14 06:51:19 +00002163
2164 // Only handle the case where all conditional branches branch to the same
2165 // destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00002166 if (TBB != I->getOperand(0).getMBB())
2167 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002168
Dan Gohman279c22e2008-10-21 03:29:32 +00002169 // If the conditions are the same, we can leave them alone.
Bill Wendling85de1e52009-12-14 06:51:19 +00002170 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman279c22e2008-10-21 03:29:32 +00002171 if (OldBranchCode == BranchCode)
2172 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00002173
2174 // If they differ, see if they fit one of the known patterns. Theoretically,
2175 // we could handle more patterns here, but we shouldn't expect to see them
2176 // if instruction selection has done a reasonable job.
Dan Gohman279c22e2008-10-21 03:29:32 +00002177 if ((OldBranchCode == X86::COND_NP &&
2178 BranchCode == X86::COND_E) ||
2179 (OldBranchCode == X86::COND_E &&
2180 BranchCode == X86::COND_NP))
2181 BranchCode = X86::COND_NP_OR_E;
2182 else if ((OldBranchCode == X86::COND_P &&
2183 BranchCode == X86::COND_NE) ||
2184 (OldBranchCode == X86::COND_NE &&
2185 BranchCode == X86::COND_P))
2186 BranchCode = X86::COND_NE_OR_P;
2187 else
2188 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00002189
Dan Gohman279c22e2008-10-21 03:29:32 +00002190 // Update the MachineOperand.
2191 Cond[0].setImm(BranchCode);
Chris Lattner6ce64432006-10-30 22:27:23 +00002192 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00002193
Dan Gohman279c22e2008-10-21 03:29:32 +00002194 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002195}
2196
Evan Cheng6ae36262007-05-18 00:18:17 +00002197unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002198 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00002199 unsigned Count = 0;
2200
2201 while (I != MBB.begin()) {
2202 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00002203 if (I->isDebugValue())
2204 continue;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00002205 if (I->getOpcode() != X86::JMP_4 &&
Dan Gohman279c22e2008-10-21 03:29:32 +00002206 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2207 break;
2208 // Remove the branch.
2209 I->eraseFromParent();
2210 I = MBB.end();
2211 ++Count;
2212 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002213
Dan Gohman279c22e2008-10-21 03:29:32 +00002214 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002215}
2216
Evan Cheng6ae36262007-05-18 00:18:17 +00002217unsigned
2218X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2219 MachineBasicBlock *FBB,
Stuart Hastings3bf91252010-06-17 22:43:56 +00002220 const SmallVectorImpl<MachineOperand> &Cond,
2221 DebugLoc DL) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00002222 // Shouldn't be a fall through.
2223 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00002224 assert((Cond.size() == 1 || Cond.size() == 0) &&
2225 "X86 branch conditions have one component!");
2226
Dan Gohman279c22e2008-10-21 03:29:32 +00002227 if (Cond.empty()) {
2228 // Unconditional branch?
2229 assert(!FBB && "Unconditional branch with multiple successors!");
Stuart Hastings3bf91252010-06-17 22:43:56 +00002230 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00002231 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002232 }
Dan Gohman279c22e2008-10-21 03:29:32 +00002233
2234 // Conditional branch.
2235 unsigned Count = 0;
2236 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2237 switch (CC) {
2238 case X86::COND_NP_OR_E:
2239 // Synthesize NP_OR_E with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002240 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002241 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00002242 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002243 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002244 break;
2245 case X86::COND_NE_OR_P:
2246 // Synthesize NE_OR_P with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002247 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002248 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00002249 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002250 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002251 break;
Bill Wendling18ce64e2010-03-05 00:33:59 +00002252 default: {
2253 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings3bf91252010-06-17 22:43:56 +00002254 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00002255 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00002256 }
Bill Wendling18ce64e2010-03-05 00:33:59 +00002257 }
Dan Gohman279c22e2008-10-21 03:29:32 +00002258 if (FBB) {
2259 // Two-way Conditional branch. Insert the second branch.
Stuart Hastings3bf91252010-06-17 22:43:56 +00002260 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
Dan Gohman279c22e2008-10-21 03:29:32 +00002261 ++Count;
2262 }
2263 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002264}
2265
Dan Gohman6d9305c2009-04-15 00:04:23 +00002266/// isHReg - Test if the given register is a physical h register.
2267static bool isHReg(unsigned Reg) {
Dan Gohman4af325d2009-04-27 16:41:36 +00002268 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman6d9305c2009-04-15 00:04:23 +00002269}
2270
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002271// Try and copy between VR128/VR64 and GR64 registers.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002272static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2273 bool HasAVX) {
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002274 // SrcReg(VR128) -> DestReg(GR64)
2275 // SrcReg(VR64) -> DestReg(GR64)
2276 // SrcReg(GR64) -> DestReg(VR128)
2277 // SrcReg(GR64) -> DestReg(VR64)
2278
2279 if (X86::GR64RegClass.contains(DestReg)) {
2280 if (X86::VR128RegClass.contains(SrcReg)) {
2281 // Copy from a VR128 register to a GR64 register.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002282 return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002283 } else if (X86::VR64RegClass.contains(SrcReg)) {
2284 // Copy from a VR64 register to a GR64 register.
2285 return X86::MOVSDto64rr;
2286 }
2287 } else if (X86::GR64RegClass.contains(SrcReg)) {
2288 // Copy from a GR64 register to a VR128 register.
2289 if (X86::VR128RegClass.contains(DestReg))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002290 return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002291 // Copy from a GR64 register to a VR64 register.
2292 else if (X86::VR64RegClass.contains(DestReg))
2293 return X86::MOV64toSDrr;
2294 }
2295
Jakob Stoklund Olesen4bd89872011-09-22 22:45:24 +00002296 // SrcReg(FR32) -> DestReg(GR32)
2297 // SrcReg(GR32) -> DestReg(FR32)
2298
2299 if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2300 // Copy from a FR32 register to a GR32 register.
2301 return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2302
2303 if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2304 // Copy from a GR32 register to a FR32 register.
2305 return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2306
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002307 return 0;
2308}
2309
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002310void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2311 MachineBasicBlock::iterator MI, DebugLoc DL,
2312 unsigned DestReg, unsigned SrcReg,
2313 bool KillSrc) const {
2314 // First deal with the normal symmetric copies.
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002315 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002316 unsigned Opc = 0;
2317 if (X86::GR64RegClass.contains(DestReg, SrcReg))
2318 Opc = X86::MOV64rr;
2319 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2320 Opc = X86::MOV32rr;
2321 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2322 Opc = X86::MOV16rr;
2323 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2324 // Copying to or from a physical H register on x86-64 requires a NOREX
2325 // move. Otherwise use a normal move.
2326 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Jakob Stoklund Olesenb66f1842011-10-07 20:15:54 +00002327 TM.getSubtarget<X86Subtarget>().is64Bit()) {
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002328 Opc = X86::MOV8rr_NOREX;
Jakob Stoklund Olesenb66f1842011-10-07 20:15:54 +00002329 // Both operands must be encodable without an REX prefix.
2330 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2331 "8-bit H register can not be copied outside GR8_NOREX");
2332 } else
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002333 Opc = X86::MOV8rr;
2334 } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002335 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002336 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2337 Opc = X86::VMOVAPSYrr;
Jakob Stoklund Olesen61c8ecc2010-07-08 22:30:35 +00002338 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2339 Opc = X86::MMX_MOVQ64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00002340 else
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002341 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00002342
2343 if (Opc) {
2344 BuildMI(MBB, MI, DL, get(Opc), DestReg)
2345 .addReg(SrcReg, getKillRegState(KillSrc));
2346 return;
2347 }
2348
2349 // Moving EFLAGS to / from another register requires a push and a pop.
2350 if (SrcReg == X86::EFLAGS) {
2351 if (X86::GR64RegClass.contains(DestReg)) {
2352 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2353 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2354 return;
2355 } else if (X86::GR32RegClass.contains(DestReg)) {
2356 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2357 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2358 return;
2359 }
2360 }
2361 if (DestReg == X86::EFLAGS) {
2362 if (X86::GR64RegClass.contains(SrcReg)) {
2363 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2364 .addReg(SrcReg, getKillRegState(KillSrc));
2365 BuildMI(MBB, MI, DL, get(X86::POPF64));
2366 return;
2367 } else if (X86::GR32RegClass.contains(SrcReg)) {
2368 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2369 .addReg(SrcReg, getKillRegState(KillSrc));
2370 BuildMI(MBB, MI, DL, get(X86::POPF32));
2371 return;
2372 }
2373 }
2374
2375 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2376 << " to " << RI.getName(DestReg) << '\n');
2377 llvm_unreachable("Cannot emit physreg copy instruction");
2378}
2379
Rafael Espindola21d238f2010-06-12 20:13:29 +00002380static unsigned getLoadStoreRegOpcode(unsigned Reg,
2381 const TargetRegisterClass *RC,
2382 bool isStackAligned,
2383 const TargetMachine &TM,
2384 bool load) {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002385 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002386 switch (RC->getSize()) {
Rafael Espindola5a717a32010-07-12 03:43:04 +00002387 default:
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002388 llvm_unreachable("Unknown spill size");
2389 case 1:
2390 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002391 if (TM.getSubtarget<X86Subtarget>().is64Bit())
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002392 // Copying to or from a physical H register on x86-64 requires a NOREX
2393 // move. Otherwise use a normal move.
2394 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2395 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2396 return load ? X86::MOV8rm : X86::MOV8mr;
2397 case 2:
2398 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2399 return load ? X86::MOV16rm : X86::MOV16mr;
2400 case 4:
2401 if (X86::GR32RegClass.hasSubClassEq(RC))
2402 return load ? X86::MOV32rm : X86::MOV32mr;
2403 if (X86::FR32RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002404 return load ?
2405 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2406 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002407 if (X86::RFP32RegClass.hasSubClassEq(RC))
2408 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2409 llvm_unreachable("Unknown 4-byte regclass");
2410 case 8:
2411 if (X86::GR64RegClass.hasSubClassEq(RC))
2412 return load ? X86::MOV64rm : X86::MOV64mr;
2413 if (X86::FR64RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002414 return load ?
2415 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2416 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002417 if (X86::VR64RegClass.hasSubClassEq(RC))
2418 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2419 if (X86::RFP64RegClass.hasSubClassEq(RC))
2420 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2421 llvm_unreachable("Unknown 8-byte regclass");
2422 case 10:
2423 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002424 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002425 case 16: {
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002426 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002427 // If stack is realigned we can use aligned stores.
2428 if (isStackAligned)
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002429 return load ?
2430 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2431 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindola21d238f2010-06-12 20:13:29 +00002432 else
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002433 return load ?
2434 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2435 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2436 }
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002437 case 32:
2438 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2439 // If stack is realigned we can use aligned stores.
2440 if (isStackAligned)
2441 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2442 else
2443 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Rafael Espindola21d238f2010-06-12 20:13:29 +00002444 }
2445}
2446
Dan Gohman4af325d2009-04-27 16:41:36 +00002447static unsigned getStoreRegOpcode(unsigned SrcReg,
2448 const TargetRegisterClass *RC,
2449 bool isStackAligned,
2450 TargetMachine &TM) {
Rafael Espindola21d238f2010-06-12 20:13:29 +00002451 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2452}
Owen Andersonf6372aa2008-01-01 21:11:32 +00002453
Rafael Espindola21d238f2010-06-12 20:13:29 +00002454
2455static unsigned getLoadRegOpcode(unsigned DestReg,
2456 const TargetRegisterClass *RC,
2457 bool isStackAligned,
2458 const TargetMachine &TM) {
2459 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002460}
2461
2462void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2463 MachineBasicBlock::iterator MI,
2464 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002465 const TargetRegisterClass *RC,
2466 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002467 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesen516cd452010-07-27 04:16:58 +00002468 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2469 "Stack slot too small for store");
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002470 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2471 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002472 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002473 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002474 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002475 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling587daed2009-05-13 21:33:08 +00002476 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002477}
2478
2479void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2480 bool isKill,
2481 SmallVectorImpl<MachineOperand> &Addr,
2482 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002483 MachineInstr::mmo_iterator MMOBegin,
2484 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002485 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002486 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2487 bool isAligned = MMOBegin != MMOEnd &&
2488 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman4af325d2009-04-27 16:41:36 +00002489 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002490 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002491 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002492 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002493 MIB.addOperand(Addr[i]);
Bill Wendling587daed2009-05-13 21:33:08 +00002494 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohman91e69c32009-10-09 18:10:05 +00002495 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002496 NewMIs.push_back(MIB);
2497}
2498
Owen Andersonf6372aa2008-01-01 21:11:32 +00002499
2500void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002501 MachineBasicBlock::iterator MI,
2502 unsigned DestReg, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002503 const TargetRegisterClass *RC,
2504 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002505 const MachineFunction &MF = *MBB.getParent();
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002506 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2507 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002508 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002509 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002510 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002511 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002512}
2513
2514void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng9f1c8312008-07-03 09:09:37 +00002515 SmallVectorImpl<MachineOperand> &Addr,
2516 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002517 MachineInstr::mmo_iterator MMOBegin,
2518 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002519 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00002520 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2521 bool isAligned = MMOBegin != MMOEnd &&
2522 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman4af325d2009-04-27 16:41:36 +00002523 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002524 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002525 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002526 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002527 MIB.addOperand(Addr[i]);
Dan Gohman91e69c32009-10-09 18:10:05 +00002528 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002529 NewMIs.push_back(MIB);
2530}
2531
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002532/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
2533/// instruction with two undef reads of the register being defined. This is
2534/// used for mapping:
2535/// %xmm4 = V_SET0
2536/// to:
2537/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
2538///
2539static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
2540 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
2541 unsigned Reg = MI->getOperand(0).getReg();
2542 MI->setDesc(Desc);
2543
2544 // MachineInstr::addOperand() will insert explicit operands before any
2545 // implicit operands.
2546 MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
2547 .addReg(Reg, RegState::Undef);
2548 // But we don't trust that.
2549 assert(MI->getOperand(1).getReg() == Reg &&
2550 MI->getOperand(2).getReg() == Reg && "Misplaced operand");
2551 return true;
2552}
2553
2554bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
2555 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2556 switch (MI->getOpcode()) {
2557 case X86::V_SET0:
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00002558 case X86::FsFLD0SS:
2559 case X86::FsFLD0SD:
Jakob Stoklund Olesen3e5d5c52011-11-07 19:15:58 +00002560 return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
Jakob Stoklund Olesened744822011-10-08 18:28:28 +00002561 case X86::TEST8ri_NOREX:
2562 MI->setDesc(get(X86::TEST8ri));
2563 return true;
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002564 }
2565 return false;
2566}
2567
Evan Cheng962021b2010-04-26 07:38:55 +00002568MachineInstr*
2569X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
Evan Cheng8601a3d2010-04-29 01:13:30 +00002570 int FrameIx, uint64_t Offset,
Evan Cheng962021b2010-04-26 07:38:55 +00002571 const MDNode *MDPtr,
2572 DebugLoc DL) const {
Evan Cheng962021b2010-04-26 07:38:55 +00002573 X86AddressMode AM;
2574 AM.BaseType = X86AddressMode::FrameIndexBase;
2575 AM.Base.FrameIndex = FrameIx;
2576 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2577 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2578 return &*MIB;
2579}
2580
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002581static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00002582 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling9bc96a52009-02-03 00:55:04 +00002583 MachineInstr *MI,
2584 const TargetInstrInfo &TII) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002585 // Create the base instruction with the memory operand as the first part.
Bill Wendling9bc96a52009-02-03 00:55:04 +00002586 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2587 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002588 MachineInstrBuilder MIB(NewMI);
2589 unsigned NumAddrOps = MOs.size();
2590 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002591 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002592 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002593 addOffset(MIB, 0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002594
Owen Anderson43dbe052008-01-07 01:35:02 +00002595 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00002596 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00002597 for (unsigned i = 0; i != NumOps; ++i) {
2598 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman97357612009-02-18 05:45:50 +00002599 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002600 }
2601 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2602 MachineOperand &MO = MI->getOperand(i);
Dan Gohman97357612009-02-18 05:45:50 +00002603 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002604 }
2605 return MIB;
2606}
2607
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002608static MachineInstr *FuseInst(MachineFunction &MF,
2609 unsigned Opcode, unsigned OpNo,
Dan Gohmand68a0762009-01-05 17:59:02 +00002610 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00002611 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling9bc96a52009-02-03 00:55:04 +00002612 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2613 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002614 MachineInstrBuilder MIB(NewMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002615
Owen Anderson43dbe052008-01-07 01:35:02 +00002616 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2617 MachineOperand &MO = MI->getOperand(i);
2618 if (i == OpNo) {
Dan Gohmand735b802008-10-03 15:45:36 +00002619 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson43dbe052008-01-07 01:35:02 +00002620 unsigned NumAddrOps = MOs.size();
2621 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002622 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002623 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002624 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00002625 } else {
Dan Gohman97357612009-02-18 05:45:50 +00002626 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002627 }
2628 }
2629 return MIB;
2630}
2631
2632static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00002633 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00002634 MachineInstr *MI) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002635 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendlingfbef3102009-02-11 21:51:19 +00002636 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson43dbe052008-01-07 01:35:02 +00002637
2638 unsigned NumAddrOps = MOs.size();
2639 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002640 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002641 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002642 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00002643 return MIB.addImm(0);
2644}
2645
2646MachineInstr*
Dan Gohmanc54baa22008-12-03 18:43:12 +00002647X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2648 MachineInstr *MI, unsigned i,
Evan Chengf9b36f02009-07-15 06:10:07 +00002649 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng9cef48e2009-09-11 00:39:26 +00002650 unsigned Size, unsigned Align) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00002651 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00002652 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00002653 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002654 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00002655 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002656
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00002657 // FIXME: AsmPrinter doesn't know how to handle
2658 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2659 if (MI->getOpcode() == X86::ADD32ri &&
2660 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2661 return NULL;
2662
Owen Anderson43dbe052008-01-07 01:35:02 +00002663 MachineInstr *NewMI = NULL;
2664 // Folding a memory location into the two-address part of a two-address
2665 // instruction is different than folding it other places. It requires
2666 // replacing the *two* registers with the memory location.
2667 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +00002668 MI->getOperand(0).isReg() &&
2669 MI->getOperand(1).isReg() &&
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002670 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002671 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2672 isTwoAddrFold = true;
2673 } else if (i == 0) { // If operand 0
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002674 if (MI->getOpcode() == X86::MOV64r0)
2675 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2676 else if (MI->getOpcode() == X86::MOV32r0)
Owen Anderson43dbe052008-01-07 01:35:02 +00002677 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002678 else if (MI->getOpcode() == X86::MOV16r0)
2679 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
Owen Anderson43dbe052008-01-07 01:35:02 +00002680 else if (MI->getOpcode() == X86::MOV8r0)
2681 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Cheng9f1c8312008-07-03 09:09:37 +00002682 if (NewMI)
Owen Anderson43dbe052008-01-07 01:35:02 +00002683 return NewMI;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002684
Owen Anderson43dbe052008-01-07 01:35:02 +00002685 OpcodeTablePtr = &RegOp2MemOpTable0;
2686 } else if (i == 1) {
2687 OpcodeTablePtr = &RegOp2MemOpTable1;
2688 } else if (i == 2) {
2689 OpcodeTablePtr = &RegOp2MemOpTable2;
2690 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002691
Owen Anderson43dbe052008-01-07 01:35:02 +00002692 // If table selected...
2693 if (OpcodeTablePtr) {
2694 // Find the Opcode to fuse
Chris Lattner45a1cb22010-10-07 23:08:41 +00002695 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2696 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002697 if (I != OpcodeTablePtr->end()) {
Evan Cheng9cef48e2009-09-11 00:39:26 +00002698 unsigned Opcode = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00002699 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Evan Chengf9b36f02009-07-15 06:10:07 +00002700 if (Align < MinAlign)
2701 return NULL;
Evan Cheng879caea2009-09-11 01:01:31 +00002702 bool NarrowToMOV32rm = false;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002703 if (Size) {
Evan Cheng15993f82011-06-27 21:26:13 +00002704 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
Evan Cheng9cef48e2009-09-11 00:39:26 +00002705 if (Size < RCSize) {
2706 // Check if it's safe to fold the load. If the size of the object is
2707 // narrower than the load width, then it's not.
2708 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2709 return NULL;
2710 // If this is a 64-bit load, but the spill slot is 32, then we can do
2711 // a 32-bit load which is implicitly zero-extended. This likely is due
2712 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng879caea2009-09-11 01:01:31 +00002713 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2714 return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002715 Opcode = X86::MOV32rm;
Evan Cheng879caea2009-09-11 01:01:31 +00002716 NarrowToMOV32rm = true;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002717 }
2718 }
2719
Owen Anderson43dbe052008-01-07 01:35:02 +00002720 if (isTwoAddrFold)
Evan Cheng9cef48e2009-09-11 00:39:26 +00002721 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002722 else
Evan Cheng9cef48e2009-09-11 00:39:26 +00002723 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng879caea2009-09-11 01:01:31 +00002724
2725 if (NarrowToMOV32rm) {
2726 // If this is the special case where we use a MOV32rm to load a 32-bit
2727 // value and zero-extend the top bits. Change the destination register
2728 // to a 32-bit one.
2729 unsigned DstReg = NewMI->getOperand(0).getReg();
2730 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2731 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00002732 X86::sub_32bit));
Evan Cheng879caea2009-09-11 01:01:31 +00002733 else
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00002734 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng879caea2009-09-11 01:01:31 +00002735 }
Owen Anderson43dbe052008-01-07 01:35:02 +00002736 return NewMI;
2737 }
2738 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002739
2740 // No fusion
Jakob Stoklund Olesen9c50e8b2010-07-09 20:43:09 +00002741 if (PrintFailedFusing && !MI->isCopy())
David Greene5b901322010-01-05 01:29:29 +00002742 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00002743 return NULL;
2744}
2745
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002746/// hasPartialRegUpdate - Return true for all instructions that only update
2747/// the first 32 or 64-bits of the destination register and leave the rest
2748/// unmodified. This can be used to avoid folding loads if the instructions
2749/// only update part of the destination register, and the non-updated part is
2750/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
2751/// instructions breaks the partial register dependency and it can improve
2752/// performance. e.g.:
2753///
2754/// movss (%rdi), %xmm0
2755/// cvtss2sd %xmm0, %xmm0
2756///
2757/// Instead of
2758/// cvtss2sd (%rdi), %xmm0
2759///
Bruno Cardoso Lopes6b5b79c2011-09-15 23:04:24 +00002760/// FIXME: This should be turned into a TSFlags.
2761///
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002762static bool hasPartialRegUpdate(unsigned Opcode) {
2763 switch (Opcode) {
Jakob Stoklund Olesenc2ecf3e2011-11-15 01:15:30 +00002764 case X86::CVTSI2SSrr:
2765 case X86::CVTSI2SS64rr:
2766 case X86::CVTSI2SDrr:
2767 case X86::CVTSI2SD64rr:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002768 case X86::CVTSD2SSrr:
2769 case X86::Int_CVTSD2SSrr:
2770 case X86::CVTSS2SDrr:
2771 case X86::Int_CVTSS2SDrr:
2772 case X86::RCPSSr:
2773 case X86::RCPSSr_Int:
2774 case X86::ROUNDSDr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002775 case X86::ROUNDSDr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002776 case X86::ROUNDSSr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002777 case X86::ROUNDSSr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002778 case X86::RSQRTSSr:
2779 case X86::RSQRTSSr_Int:
2780 case X86::SQRTSSr:
2781 case X86::SQRTSSr_Int:
2782 // AVX encoded versions
2783 case X86::VCVTSD2SSrr:
2784 case X86::Int_VCVTSD2SSrr:
2785 case X86::VCVTSS2SDrr:
2786 case X86::Int_VCVTSS2SDrr:
2787 case X86::VRCPSSr:
2788 case X86::VROUNDSDr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002789 case X86::VROUNDSDr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002790 case X86::VROUNDSSr:
Benjamin Kramera73fb9a2011-12-09 15:43:55 +00002791 case X86::VROUNDSSr_Int:
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002792 case X86::VRSQRTSSr:
2793 case X86::VSQRTSSr:
2794 return true;
2795 }
2796
2797 return false;
2798}
Owen Anderson43dbe052008-01-07 01:35:02 +00002799
Jakob Stoklund Olesenc2ecf3e2011-11-15 01:15:30 +00002800/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
2801/// instructions we would like before a partial register update.
2802unsigned X86InstrInfo::
2803getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
2804 const TargetRegisterInfo *TRI) const {
2805 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
2806 return 0;
2807
2808 // If MI is marked as reading Reg, the partial register update is wanted.
2809 const MachineOperand &MO = MI->getOperand(0);
2810 unsigned Reg = MO.getReg();
2811 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2812 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
2813 return 0;
2814 } else {
2815 if (MI->readsRegister(Reg, TRI))
2816 return 0;
2817 }
2818
2819 // If any of the preceding 16 instructions are reading Reg, insert a
2820 // dependency breaking instruction. The magic number is based on a few
2821 // Nehalem experiments.
2822 return 16;
2823}
2824
2825void X86InstrInfo::
2826breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
2827 const TargetRegisterInfo *TRI) const {
2828 unsigned Reg = MI->getOperand(OpNum).getReg();
2829 if (X86::VR128RegClass.contains(Reg)) {
2830 // These instructions are all floating point domain, so xorps is the best
2831 // choice.
2832 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2833 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
2834 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
2835 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
2836 } else if (X86::VR256RegClass.contains(Reg)) {
2837 // Use vxorps to clear the full ymm register.
2838 // It wants to read and write the xmm sub-register.
2839 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
2840 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
2841 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
2842 .addReg(Reg, RegState::ImplicitDefine);
2843 } else
2844 return;
2845 MI->addRegisterKilled(Reg, TRI, true);
2846}
2847
Dan Gohmanc54baa22008-12-03 18:43:12 +00002848MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2849 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00002850 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00002851 int FrameIndex) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002852 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00002853 if (NoFusing) return NULL;
2854
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002855 // Unless optimizing for size, don't fold to avoid partial
2856 // register update stalls
2857 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2858 hasPartialRegUpdate(MI->getOpcode()))
2859 return 0;
Evan Cheng400073d2009-12-18 07:40:29 +00002860
Evan Cheng5fd79d02008-02-08 21:20:40 +00002861 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng9cef48e2009-09-11 00:39:26 +00002862 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng5fd79d02008-02-08 21:20:40 +00002863 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson43dbe052008-01-07 01:35:02 +00002864 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2865 unsigned NewOpc = 0;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002866 unsigned RCSize = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00002867 switch (MI->getOpcode()) {
2868 default: return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002869 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohmane5efbaf2010-05-18 21:42:03 +00002870 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2871 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2872 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00002873 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00002874 // Check if it's safe to fold the load. If the size of the object is
2875 // narrower than the load width, then it's not.
2876 if (Size < RCSize)
2877 return NULL;
Owen Anderson43dbe052008-01-07 01:35:02 +00002878 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002879 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002880 MI->getOperand(1).ChangeToImmediate(0);
2881 } else if (Ops.size() != 1)
2882 return NULL;
2883
2884 SmallVector<MachineOperand,4> MOs;
2885 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng9cef48e2009-09-11 00:39:26 +00002886 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00002887}
2888
Dan Gohmanc54baa22008-12-03 18:43:12 +00002889MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2890 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00002891 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00002892 MachineInstr *LoadMI) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002893 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00002894 if (NoFusing) return NULL;
2895
Bruno Cardoso Lopescd2857e2011-09-15 21:42:23 +00002896 // Unless optimizing for size, don't fold to avoid partial
2897 // register update stalls
2898 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2899 hasPartialRegUpdate(MI->getOpcode()))
2900 return 0;
Evan Cheng400073d2009-12-18 07:40:29 +00002901
Dan Gohmancddc11e2008-07-12 00:10:52 +00002902 // Determine the alignment of the load.
Evan Cheng5fd79d02008-02-08 21:20:40 +00002903 unsigned Alignment = 0;
Dan Gohmancddc11e2008-07-12 00:10:52 +00002904 if (LoadMI->hasOneMemOperand())
Dan Gohmanc76909a2009-09-25 20:36:54 +00002905 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002906 else
2907 switch (LoadMI->getOpcode()) {
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002908 case X86::AVX_SET0PSY:
2909 case X86::AVX_SET0PDY:
Craig Topper745a86b2011-11-19 22:34:59 +00002910 case X86::AVX2_SETALLONES:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002911 Alignment = 32;
2912 break;
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002913 case X86::V_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002914 case X86::V_SETALLONES:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002915 case X86::AVX_SETALLONES:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002916 Alignment = 16;
2917 break;
2918 case X86::FsFLD0SD:
2919 Alignment = 8;
2920 break;
2921 case X86::FsFLD0SS:
2922 Alignment = 4;
2923 break;
2924 default:
Eli Friedmanbe5cbaa2011-06-10 01:13:01 +00002925 return 0;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002926 }
Owen Anderson43dbe052008-01-07 01:35:02 +00002927 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2928 unsigned NewOpc = 0;
2929 switch (MI->getOpcode()) {
2930 default: return NULL;
2931 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002932 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2933 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2934 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00002935 }
2936 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002937 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002938 MI->getOperand(1).ChangeToImmediate(0);
2939 } else if (Ops.size() != 1)
2940 return NULL;
2941
Jakob Stoklund Olesend29583b2010-08-11 23:08:22 +00002942 // Make sure the subregisters match.
2943 // Otherwise we risk changing the size of the load.
2944 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2945 return NULL;
2946
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002947 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002948 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002949 case X86::V_SET0:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002950 case X86::V_SETALLONES:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002951 case X86::AVX_SET0PSY:
2952 case X86::AVX_SET0PDY:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002953 case X86::AVX_SETALLONES:
Craig Topper745a86b2011-11-19 22:34:59 +00002954 case X86::AVX2_SETALLONES:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002955 case X86::FsFLD0SD:
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00002956 case X86::FsFLD0SS: {
Jakob Stoklund Olesen92fb79b2011-09-29 05:10:54 +00002957 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
Dan Gohman62c939d2008-12-03 05:21:24 +00002958 // Create a constant-pool entry and operands to load from it.
2959
Dan Gohman81d0c362010-03-09 03:01:40 +00002960 // Medium and large mode can't fold loads this way.
2961 if (TM.getCodeModel() != CodeModel::Small &&
2962 TM.getCodeModel() != CodeModel::Kernel)
2963 return NULL;
2964
Dan Gohman62c939d2008-12-03 05:21:24 +00002965 // x86-32 PIC requires a PIC base register for constant pools.
2966 unsigned PICBase = 0;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00002967 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng2b48ab92009-07-16 18:44:05 +00002968 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2969 PICBase = X86::RIP;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00002970 else
Dan Gohman84023e02010-07-10 09:00:22 +00002971 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Cheng2b48ab92009-07-16 18:44:05 +00002972 // This doesn't work for several reasons.
2973 // 1. GlobalBaseReg may have been spilled.
2974 // 2. It may not be live at MI.
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002975 return NULL;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00002976 }
Dan Gohman62c939d2008-12-03 05:21:24 +00002977
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002978 // Create a constant-pool entry.
Dan Gohman62c939d2008-12-03 05:21:24 +00002979 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002980 Type *Ty;
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002981 unsigned Opc = LoadMI->getOpcode();
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00002982 if (Opc == X86::FsFLD0SS)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002983 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Jakob Stoklund Olesen0edd83b2011-11-29 22:27:25 +00002984 else if (Opc == X86::FsFLD0SD)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002985 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002986 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2987 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002988 else
2989 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002990
Craig Topper745a86b2011-11-19 22:34:59 +00002991 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
2992 Opc == X86::AVX2_SETALLONES);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002993 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
2994 Constant::getNullValue(Ty);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002995 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman62c939d2008-12-03 05:21:24 +00002996
2997 // Create operands to load from the constant pool entry.
2998 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2999 MOs.push_back(MachineOperand::CreateImm(1));
3000 MOs.push_back(MachineOperand::CreateReg(0, false));
3001 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola094fad32009-04-08 21:14:34 +00003002 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003003 break;
3004 }
3005 default: {
Dan Gohman62c939d2008-12-03 05:21:24 +00003006 // Folding a normal load. Just copy the load's address operands.
3007 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003008 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Dan Gohman62c939d2008-12-03 05:21:24 +00003009 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00003010 break;
3011 }
Dan Gohman62c939d2008-12-03 05:21:24 +00003012 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00003013 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00003014}
3015
3016
Dan Gohman8e8b8a22008-10-16 01:49:15 +00003017bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3018 const SmallVectorImpl<unsigned> &Ops) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003019 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00003020 if (NoFusing) return 0;
3021
3022 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3023 switch (MI->getOpcode()) {
3024 default: return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003025 case X86::TEST8rr:
Owen Anderson43dbe052008-01-07 01:35:02 +00003026 case X86::TEST16rr:
3027 case X86::TEST32rr:
3028 case X86::TEST64rr:
3029 return true;
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00003030 case X86::ADD32ri:
3031 // FIXME: AsmPrinter doesn't know how to handle
3032 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3033 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3034 return false;
3035 break;
Owen Anderson43dbe052008-01-07 01:35:02 +00003036 }
3037 }
3038
3039 if (Ops.size() != 1)
3040 return false;
3041
3042 unsigned OpNum = Ops[0];
3043 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00003044 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00003045 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00003046 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00003047
3048 // Folding a memory location into the two-address part of a two-address
3049 // instruction is different than folding it other places. It requires
3050 // replacing the *two* registers with the memory location.
Chris Lattner45a1cb22010-10-07 23:08:41 +00003051 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003052 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003053 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3054 } else if (OpNum == 0) { // If operand 0
3055 switch (Opc) {
Chris Lattner9ac75422009-07-14 20:19:57 +00003056 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00003057 case X86::MOV16r0:
Owen Anderson43dbe052008-01-07 01:35:02 +00003058 case X86::MOV32r0:
Chris Lattner45a1cb22010-10-07 23:08:41 +00003059 case X86::MOV64r0: return true;
Owen Anderson43dbe052008-01-07 01:35:02 +00003060 default: break;
3061 }
3062 OpcodeTablePtr = &RegOp2MemOpTable0;
3063 } else if (OpNum == 1) {
3064 OpcodeTablePtr = &RegOp2MemOpTable1;
3065 } else if (OpNum == 2) {
3066 OpcodeTablePtr = &RegOp2MemOpTable2;
3067 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003068
Chris Lattner99ae6652010-10-08 03:54:52 +00003069 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
3070 return true;
Jakob Stoklund Olesen1f323402010-07-09 20:43:13 +00003071 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
Owen Anderson43dbe052008-01-07 01:35:02 +00003072}
3073
3074bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
3075 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendlingfbef3102009-02-11 21:51:19 +00003076 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00003077 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3078 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00003079 if (I == MemOp2RegOpTable.end())
3080 return false;
3081 unsigned Opc = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003082 unsigned Index = I->second.second & TB_INDEX_MASK;
3083 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3084 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson43dbe052008-01-07 01:35:02 +00003085 if (UnfoldLoad && !FoldedLoad)
3086 return false;
3087 UnfoldLoad &= FoldedLoad;
3088 if (UnfoldStore && !FoldedStore)
3089 return false;
3090 UnfoldStore &= FoldedStore;
3091
Evan Chenge837dea2011-06-28 19:10:37 +00003092 const MCInstrDesc &MCID = get(Opc);
3093 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
Evan Cheng98ec91e2010-07-02 20:36:18 +00003094 if (!MI->hasOneMemOperand() &&
3095 RC == &X86::VR128RegClass &&
3096 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3097 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
3098 // conservatively assume the address is unaligned. That's bad for
3099 // performance.
3100 return false;
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003101 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson43dbe052008-01-07 01:35:02 +00003102 SmallVector<MachineOperand,2> BeforeOps;
3103 SmallVector<MachineOperand,2> AfterOps;
3104 SmallVector<MachineOperand,4> ImpOps;
3105 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3106 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003107 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00003108 AddrOps.push_back(Op);
Dan Gohmand735b802008-10-03 15:45:36 +00003109 else if (Op.isReg() && Op.isImplicit())
Owen Anderson43dbe052008-01-07 01:35:02 +00003110 ImpOps.push_back(Op);
3111 else if (i < Index)
3112 BeforeOps.push_back(Op);
3113 else if (i > Index)
3114 AfterOps.push_back(Op);
3115 }
3116
3117 // Emit the load instruction.
3118 if (UnfoldLoad) {
Dan Gohman91e69c32009-10-09 18:10:05 +00003119 std::pair<MachineInstr::mmo_iterator,
3120 MachineInstr::mmo_iterator> MMOs =
3121 MF.extractLoadMemRefs(MI->memoperands_begin(),
3122 MI->memoperands_end());
3123 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00003124 if (UnfoldStore) {
3125 // Address operands cannot be marked isKill.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003126 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson43dbe052008-01-07 01:35:02 +00003127 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00003128 if (MO.isReg())
Owen Anderson43dbe052008-01-07 01:35:02 +00003129 MO.setIsKill(false);
3130 }
3131 }
3132 }
3133
3134 // Emit the data processing instruction.
Evan Chenge837dea2011-06-28 19:10:37 +00003135 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00003136 MachineInstrBuilder MIB(DataMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003137
Owen Anderson43dbe052008-01-07 01:35:02 +00003138 if (FoldedStore)
Bill Wendling587daed2009-05-13 21:33:08 +00003139 MIB.addReg(Reg, RegState::Define);
Owen Anderson43dbe052008-01-07 01:35:02 +00003140 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003141 MIB.addOperand(BeforeOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003142 if (FoldedLoad)
3143 MIB.addReg(Reg);
3144 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00003145 MIB.addOperand(AfterOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00003146 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
3147 MachineOperand &MO = ImpOps[i];
Bill Wendling587daed2009-05-13 21:33:08 +00003148 MIB.addReg(MO.getReg(),
3149 getDefRegState(MO.isDef()) |
3150 RegState::Implicit |
3151 getKillRegState(MO.isKill()) |
Evan Cheng4784f1f2009-06-30 08:49:04 +00003152 getDeadRegState(MO.isDead()) |
3153 getUndefRegState(MO.isUndef()));
Owen Anderson43dbe052008-01-07 01:35:02 +00003154 }
3155 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
3156 unsigned NewOpc = 0;
3157 switch (DataMI->getOpcode()) {
3158 default: break;
3159 case X86::CMP64ri32:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003160 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003161 case X86::CMP32ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003162 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003163 case X86::CMP16ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003164 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003165 case X86::CMP8ri: {
3166 MachineOperand &MO0 = DataMI->getOperand(0);
3167 MachineOperand &MO1 = DataMI->getOperand(1);
3168 if (MO1.getImm() == 0) {
3169 switch (DataMI->getOpcode()) {
3170 default: break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003171 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003172 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003173 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003174 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00003175 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00003176 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
3177 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
3178 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00003179 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00003180 MO1.ChangeToRegister(MO0.getReg(), false);
3181 }
3182 }
3183 }
3184 NewMIs.push_back(DataMI);
3185
3186 // Emit the store instruction.
3187 if (UnfoldStore) {
Evan Chenge837dea2011-06-28 19:10:37 +00003188 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
Dan Gohman91e69c32009-10-09 18:10:05 +00003189 std::pair<MachineInstr::mmo_iterator,
3190 MachineInstr::mmo_iterator> MMOs =
3191 MF.extractStoreMemRefs(MI->memoperands_begin(),
3192 MI->memoperands_end());
3193 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00003194 }
3195
3196 return true;
3197}
3198
3199bool
3200X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendlingfbef3102009-02-11 21:51:19 +00003201 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmane8be6c62008-07-17 19:10:17 +00003202 if (!N->isMachineOpcode())
Owen Anderson43dbe052008-01-07 01:35:02 +00003203 return false;
3204
Chris Lattner45a1cb22010-10-07 23:08:41 +00003205 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3206 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00003207 if (I == MemOp2RegOpTable.end())
3208 return false;
3209 unsigned Opc = I->second.first;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003210 unsigned Index = I->second.second & TB_INDEX_MASK;
3211 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3212 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Evan Chenge837dea2011-06-28 19:10:37 +00003213 const MCInstrDesc &MCID = get(Opc);
3214 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
3215 unsigned NumDefs = MCID.NumDefs;
Dan Gohman475871a2008-07-27 21:46:04 +00003216 std::vector<SDValue> AddrOps;
3217 std::vector<SDValue> BeforeOps;
3218 std::vector<SDValue> AfterOps;
Dale Johannesened2eee62009-02-06 01:31:28 +00003219 DebugLoc dl = N->getDebugLoc();
Owen Anderson43dbe052008-01-07 01:35:02 +00003220 unsigned NumOps = N->getNumOperands();
Dan Gohmanc76909a2009-09-25 20:36:54 +00003221 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman475871a2008-07-27 21:46:04 +00003222 SDValue Op = N->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00003223 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00003224 AddrOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00003225 else if (i < Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00003226 BeforeOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00003227 else if (i > Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00003228 AfterOps.push_back(Op);
3229 }
Dan Gohman475871a2008-07-27 21:46:04 +00003230 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson43dbe052008-01-07 01:35:02 +00003231 AddrOps.push_back(Chain);
3232
3233 // Emit the load instruction.
3234 SDNode *Load = 0;
Dan Gohman91e69c32009-10-09 18:10:05 +00003235 MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson43dbe052008-01-07 01:35:02 +00003236 if (FoldedLoad) {
Owen Andersone50ed302009-08-10 22:56:29 +00003237 EVT VT = *RC->vt_begin();
Evan Cheng600c0432009-11-16 21:56:03 +00003238 std::pair<MachineInstr::mmo_iterator,
3239 MachineInstr::mmo_iterator> MMOs =
3240 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3241 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00003242 if (!(*MMOs.first) &&
3243 RC == &X86::VR128RegClass &&
3244 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3245 // Do not introduce a slow unaligned load.
3246 return false;
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003247 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3248 bool isAligned = (*MMOs.first) &&
3249 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman602b0c82009-09-25 18:54:59 +00003250 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
3251 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00003252 NewNodes.push_back(Load);
Dan Gohman91e69c32009-10-09 18:10:05 +00003253
3254 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00003255 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00003256 }
3257
3258 // Emit the data processing instruction.
Owen Andersone50ed302009-08-10 22:56:29 +00003259 std::vector<EVT> VTs;
Owen Anderson43dbe052008-01-07 01:35:02 +00003260 const TargetRegisterClass *DstRC = 0;
Evan Chenge837dea2011-06-28 19:10:37 +00003261 if (MCID.getNumDefs() > 0) {
3262 DstRC = getRegClass(MCID, 0, &RI);
Owen Anderson43dbe052008-01-07 01:35:02 +00003263 VTs.push_back(*DstRC->vt_begin());
3264 }
3265 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersone50ed302009-08-10 22:56:29 +00003266 EVT VT = N->getValueType(i);
Evan Chenge837dea2011-06-28 19:10:37 +00003267 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00003268 VTs.push_back(VT);
3269 }
3270 if (Load)
Dan Gohman475871a2008-07-27 21:46:04 +00003271 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00003272 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman602b0c82009-09-25 18:54:59 +00003273 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
3274 BeforeOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00003275 NewNodes.push_back(NewNode);
3276
3277 // Emit the store instruction.
3278 if (FoldedStore) {
3279 AddrOps.pop_back();
Dan Gohman475871a2008-07-27 21:46:04 +00003280 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00003281 AddrOps.push_back(Chain);
Evan Cheng600c0432009-11-16 21:56:03 +00003282 std::pair<MachineInstr::mmo_iterator,
3283 MachineInstr::mmo_iterator> MMOs =
3284 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3285 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00003286 if (!(*MMOs.first) &&
3287 RC == &X86::VR128RegClass &&
3288 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3289 // Do not introduce a slow unaligned store.
3290 return false;
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003291 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3292 bool isAligned = (*MMOs.first) &&
3293 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman602b0c82009-09-25 18:54:59 +00003294 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
3295 isAligned, TM),
3296 dl, MVT::Other,
3297 &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00003298 NewNodes.push_back(Store);
Dan Gohman91e69c32009-10-09 18:10:05 +00003299
3300 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00003301 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00003302 }
3303
3304 return true;
3305}
3306
3307unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman0115e162009-10-30 22:18:41 +00003308 bool UnfoldLoad, bool UnfoldStore,
3309 unsigned *LoadRegIndex) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00003310 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3311 MemOp2RegOpTable.find(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00003312 if (I == MemOp2RegOpTable.end())
3313 return 0;
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003314 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3315 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson43dbe052008-01-07 01:35:02 +00003316 if (UnfoldLoad && !FoldedLoad)
3317 return 0;
3318 if (UnfoldStore && !FoldedStore)
3319 return 0;
Dan Gohman0115e162009-10-30 22:18:41 +00003320 if (LoadRegIndex)
Bruno Cardoso Lopescbf479d2011-09-08 18:35:57 +00003321 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
Owen Anderson43dbe052008-01-07 01:35:02 +00003322 return I->second.first;
3323}
3324
Evan Cheng96dc1152010-01-22 03:34:51 +00003325bool
3326X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
3327 int64_t &Offset1, int64_t &Offset2) const {
3328 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
3329 return false;
3330 unsigned Opc1 = Load1->getMachineOpcode();
3331 unsigned Opc2 = Load2->getMachineOpcode();
3332 switch (Opc1) {
3333 default: return false;
3334 case X86::MOV8rm:
3335 case X86::MOV16rm:
3336 case X86::MOV32rm:
3337 case X86::MOV64rm:
3338 case X86::LD_Fp32m:
3339 case X86::LD_Fp64m:
3340 case X86::LD_Fp80m:
3341 case X86::MOVSSrm:
3342 case X86::MOVSDrm:
3343 case X86::MMX_MOVD64rm:
3344 case X86::MMX_MOVQ64rm:
3345 case X86::FsMOVAPSrm:
3346 case X86::FsMOVAPDrm:
3347 case X86::MOVAPSrm:
3348 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003349 case X86::MOVAPDrm:
3350 case X86::MOVDQArm:
3351 case X86::MOVDQUrm:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00003352 // AVX load instructions
3353 case X86::VMOVSSrm:
3354 case X86::VMOVSDrm:
3355 case X86::FsVMOVAPSrm:
3356 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003357 case X86::VMOVAPSrm:
3358 case X86::VMOVUPSrm:
3359 case X86::VMOVAPDrm:
3360 case X86::VMOVDQArm:
3361 case X86::VMOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003362 case X86::VMOVAPSYrm:
3363 case X86::VMOVUPSYrm:
3364 case X86::VMOVAPDYrm:
3365 case X86::VMOVDQAYrm:
3366 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003367 break;
3368 }
3369 switch (Opc2) {
3370 default: return false;
3371 case X86::MOV8rm:
3372 case X86::MOV16rm:
3373 case X86::MOV32rm:
3374 case X86::MOV64rm:
3375 case X86::LD_Fp32m:
3376 case X86::LD_Fp64m:
3377 case X86::LD_Fp80m:
3378 case X86::MOVSSrm:
3379 case X86::MOVSDrm:
3380 case X86::MMX_MOVD64rm:
3381 case X86::MMX_MOVQ64rm:
3382 case X86::FsMOVAPSrm:
3383 case X86::FsMOVAPDrm:
3384 case X86::MOVAPSrm:
3385 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003386 case X86::MOVAPDrm:
3387 case X86::MOVDQArm:
3388 case X86::MOVDQUrm:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00003389 // AVX load instructions
3390 case X86::VMOVSSrm:
3391 case X86::VMOVSDrm:
3392 case X86::FsVMOVAPSrm:
3393 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopes484ddf52011-09-14 02:36:58 +00003394 case X86::VMOVAPSrm:
3395 case X86::VMOVUPSrm:
3396 case X86::VMOVAPDrm:
3397 case X86::VMOVDQArm:
3398 case X86::VMOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003399 case X86::VMOVAPSYrm:
3400 case X86::VMOVUPSYrm:
3401 case X86::VMOVAPDYrm:
3402 case X86::VMOVDQAYrm:
3403 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00003404 break;
3405 }
3406
3407 // Check if chain operands and base addresses match.
3408 if (Load1->getOperand(0) != Load2->getOperand(0) ||
3409 Load1->getOperand(5) != Load2->getOperand(5))
3410 return false;
3411 // Segment operands should match as well.
3412 if (Load1->getOperand(4) != Load2->getOperand(4))
3413 return false;
3414 // Scale should be 1, Index should be Reg0.
3415 if (Load1->getOperand(1) == Load2->getOperand(1) &&
3416 Load1->getOperand(2) == Load2->getOperand(2)) {
3417 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
3418 return false;
Evan Cheng96dc1152010-01-22 03:34:51 +00003419
3420 // Now let's examine the displacements.
3421 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
3422 isa<ConstantSDNode>(Load2->getOperand(3))) {
3423 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
3424 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
3425 return true;
3426 }
3427 }
3428 return false;
3429}
3430
3431bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
3432 int64_t Offset1, int64_t Offset2,
3433 unsigned NumLoads) const {
3434 assert(Offset2 > Offset1);
3435 if ((Offset2 - Offset1) / 8 > 64)
3436 return false;
3437
3438 unsigned Opc1 = Load1->getMachineOpcode();
3439 unsigned Opc2 = Load2->getMachineOpcode();
3440 if (Opc1 != Opc2)
3441 return false; // FIXME: overly conservative?
3442
3443 switch (Opc1) {
3444 default: break;
3445 case X86::LD_Fp32m:
3446 case X86::LD_Fp64m:
3447 case X86::LD_Fp80m:
3448 case X86::MMX_MOVD64rm:
3449 case X86::MMX_MOVQ64rm:
3450 return false;
3451 }
3452
3453 EVT VT = Load1->getValueType(0);
3454 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling19d85972010-06-22 22:16:17 +00003455 default:
Evan Cheng96dc1152010-01-22 03:34:51 +00003456 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
3457 // have 16 of them to play with.
3458 if (TM.getSubtargetImpl()->is64Bit()) {
3459 if (NumLoads >= 3)
3460 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00003461 } else if (NumLoads) {
Evan Cheng96dc1152010-01-22 03:34:51 +00003462 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00003463 }
Evan Cheng96dc1152010-01-22 03:34:51 +00003464 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00003465 case MVT::i8:
3466 case MVT::i16:
3467 case MVT::i32:
3468 case MVT::i64:
Evan Chengafc36732010-01-22 23:49:11 +00003469 case MVT::f32:
3470 case MVT::f64:
Evan Cheng96dc1152010-01-22 03:34:51 +00003471 if (NumLoads)
3472 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00003473 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00003474 }
3475
3476 return true;
3477}
3478
3479
Chris Lattner7fbe9722006-10-20 17:42:20 +00003480bool X86InstrInfo::
Owen Anderson44eb65c2008-08-14 22:49:33 +00003481ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00003482 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Cheng97af60b2008-08-29 23:21:31 +00003483 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman279c22e2008-10-21 03:29:32 +00003484 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3485 return true;
Evan Cheng97af60b2008-08-29 23:21:31 +00003486 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner9cd68752006-10-21 05:52:40 +00003487 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00003488}
3489
Evan Cheng23066282008-10-27 07:14:50 +00003490bool X86InstrInfo::
Evan Cheng4350eb82009-02-06 17:17:30 +00003491isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3492 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng23066282008-10-27 07:14:50 +00003493 // allow any loads of these registers before FpGet_ST0_80.
Evan Cheng4350eb82009-02-06 17:17:30 +00003494 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3495 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng23066282008-10-27 07:14:50 +00003496}
3497
Dan Gohman57c3dac2008-09-30 00:58:23 +00003498/// getGlobalBaseReg - Return a virtual register initialized with the
3499/// the global base register value. Output instructions required to
3500/// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +00003501///
Dan Gohman84023e02010-07-10 09:00:22 +00003502/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3503///
Dan Gohman57c3dac2008-09-30 00:58:23 +00003504unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3505 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3506 "X86-64 PIC uses RIP relative addressing");
3507
3508 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3509 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3510 if (GlobalBaseReg != 0)
3511 return GlobalBaseReg;
3512
Dan Gohman84023e02010-07-10 09:00:22 +00003513 // Create the register. The code to initialize it is inserted
3514 // later, by the CGBR pass (below).
Dan Gohman8b746962008-09-23 18:22:58 +00003515 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Dan Gohman84023e02010-07-10 09:00:22 +00003516 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
Dan Gohman57c3dac2008-09-30 00:58:23 +00003517 X86FI->setGlobalBaseReg(GlobalBaseReg);
3518 return GlobalBaseReg;
Dan Gohman8b746962008-09-23 18:22:58 +00003519}
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003520
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003521// These are the replaceable SSE instructions. Some of these have Int variants
3522// that we don't include here. We don't want to replace instructions selected
3523// by intrinsics.
3524static const unsigned ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes4d043622010-08-12 02:08:52 +00003525 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +00003526 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
3527 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
3528 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
3529 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
3530 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
3531 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
3532 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
3533 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
3534 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
3535 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
3536 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
3537 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
3538 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
3539 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003540 // AVX 128-bit support
3541 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
3542 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
3543 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
3544 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
3545 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
3546 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3547 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
3548 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
3549 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
3550 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
3551 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
3552 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003553 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
3554 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003555 // AVX 256-bit support
3556 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
3557 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
3558 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
3559 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
3560 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
Craig Topper4c077a12011-11-15 05:55:35 +00003561 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
3562};
3563
3564static const unsigned ReplaceableInstrsAVX2[][3] = {
3565 //PackedSingle PackedDouble PackedInt
Craig Topperb80ada92011-11-09 09:37:21 +00003566 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
3567 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
3568 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
3569 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
3570 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
3571 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
3572 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
Craig Topperfe2a6c52011-11-29 05:37:58 +00003573 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
3574 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
3575 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
3576 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
3577 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
3578 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
3579 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003580};
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003581
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003582// FIXME: Some shuffle and unpack instructions have equivalents in different
3583// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003584
Craig Topper44ec9fd2011-11-15 06:39:01 +00003585static const unsigned *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003586 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003587 if (ReplaceableInstrs[i][domain-1] == opcode)
3588 return ReplaceableInstrs[i];
Craig Topper44ec9fd2011-11-15 06:39:01 +00003589 return 0;
3590}
3591
3592static const unsigned *lookupAVX2(unsigned opcode, unsigned domain) {
3593 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
3594 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
3595 return ReplaceableInstrsAVX2[i];
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003596 return 0;
3597}
3598
3599std::pair<uint16_t, uint16_t>
Jakob Stoklund Olesen98e933f2011-09-27 22:57:18 +00003600X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003601 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Craig Topper4c077a12011-11-15 05:55:35 +00003602 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
Craig Topper44ec9fd2011-11-15 06:39:01 +00003603 uint16_t validDomains = 0;
3604 if (domain && lookup(MI->getOpcode(), domain))
3605 validDomains = 0xe;
3606 else if (domain && lookupAVX2(MI->getOpcode(), domain))
3607 validDomains = hasAVX2 ? 0xe : 0x6;
3608 return std::make_pair(domain, validDomains);
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003609}
3610
Jakob Stoklund Olesen98e933f2011-09-27 22:57:18 +00003611void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003612 assert(Domain>0 && Domain<4 && "Invalid execution domain");
3613 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3614 assert(dom && "Not an SSE instruction");
Craig Topper44ec9fd2011-11-15 06:39:01 +00003615 const unsigned *table = lookup(MI->getOpcode(), dom);
Jakob Stoklund Olesen7f5e43f2011-11-23 04:03:08 +00003616 if (!table) { // try the other table
3617 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
3618 "256-bit vector operations only available in AVX2");
Craig Topper44ec9fd2011-11-15 06:39:01 +00003619 table = lookupAVX2(MI->getOpcode(), dom);
Jakob Stoklund Olesen7f5e43f2011-11-23 04:03:08 +00003620 }
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003621 assert(table && "Cannot change domain");
3622 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003623}
Chris Lattneree9eb412010-04-26 23:37:21 +00003624
3625/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3626void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3627 NopInst.setOpcode(X86::NOOP);
3628}
Dan Gohman84023e02010-07-10 09:00:22 +00003629
Andrew Tricke0ef5092011-03-05 08:00:22 +00003630bool X86InstrInfo::isHighLatencyDef(int opc) const {
3631 switch (opc) {
Evan Cheng23128422010-10-19 18:58:51 +00003632 default: return false;
3633 case X86::DIVSDrm:
3634 case X86::DIVSDrm_Int:
3635 case X86::DIVSDrr:
3636 case X86::DIVSDrr_Int:
3637 case X86::DIVSSrm:
3638 case X86::DIVSSrm_Int:
3639 case X86::DIVSSrr:
3640 case X86::DIVSSrr_Int:
3641 case X86::SQRTPDm:
3642 case X86::SQRTPDm_Int:
3643 case X86::SQRTPDr:
3644 case X86::SQRTPDr_Int:
3645 case X86::SQRTPSm:
3646 case X86::SQRTPSm_Int:
3647 case X86::SQRTPSr:
3648 case X86::SQRTPSr_Int:
3649 case X86::SQRTSDm:
3650 case X86::SQRTSDm_Int:
3651 case X86::SQRTSDr:
3652 case X86::SQRTSDr_Int:
3653 case X86::SQRTSSm:
3654 case X86::SQRTSSm_Int:
3655 case X86::SQRTSSr:
3656 case X86::SQRTSSr_Int:
Bruno Cardoso Lopesb4e905d2011-09-15 22:15:52 +00003657 // AVX instructions with high latency
3658 case X86::VDIVSDrm:
3659 case X86::VDIVSDrm_Int:
3660 case X86::VDIVSDrr:
3661 case X86::VDIVSDrr_Int:
3662 case X86::VDIVSSrm:
3663 case X86::VDIVSSrm_Int:
3664 case X86::VDIVSSrr:
3665 case X86::VDIVSSrr_Int:
3666 case X86::VSQRTPDm:
3667 case X86::VSQRTPDm_Int:
3668 case X86::VSQRTPDr:
3669 case X86::VSQRTPDr_Int:
3670 case X86::VSQRTPSm:
3671 case X86::VSQRTPSm_Int:
3672 case X86::VSQRTPSr:
3673 case X86::VSQRTPSr_Int:
3674 case X86::VSQRTSDm:
3675 case X86::VSQRTSDm_Int:
3676 case X86::VSQRTSDr:
3677 case X86::VSQRTSSm:
3678 case X86::VSQRTSSm_Int:
3679 case X86::VSQRTSSr:
Evan Cheng23128422010-10-19 18:58:51 +00003680 return true;
3681 }
3682}
3683
Andrew Tricke0ef5092011-03-05 08:00:22 +00003684bool X86InstrInfo::
3685hasHighOperandLatency(const InstrItineraryData *ItinData,
3686 const MachineRegisterInfo *MRI,
3687 const MachineInstr *DefMI, unsigned DefIdx,
3688 const MachineInstr *UseMI, unsigned UseIdx) const {
3689 return isHighLatencyDef(DefMI->getOpcode());
3690}
3691
Dan Gohman84023e02010-07-10 09:00:22 +00003692namespace {
3693 /// CGBR - Create Global Base Reg pass. This initializes the PIC
3694 /// global base register for x86-32.
3695 struct CGBR : public MachineFunctionPass {
3696 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +00003697 CGBR() : MachineFunctionPass(ID) {}
Dan Gohman84023e02010-07-10 09:00:22 +00003698
3699 virtual bool runOnMachineFunction(MachineFunction &MF) {
3700 const X86TargetMachine *TM =
3701 static_cast<const X86TargetMachine *>(&MF.getTarget());
3702
3703 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3704 "X86-64 PIC uses RIP relative addressing");
3705
3706 // Only emit a global base reg in PIC mode.
3707 if (TM->getRelocationModel() != Reloc::PIC_)
3708 return false;
3709
Dan Gohmand8c0a512010-09-17 20:24:24 +00003710 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3711 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3712
3713 // If we didn't need a GlobalBaseReg, don't insert code.
3714 if (GlobalBaseReg == 0)
3715 return false;
3716
Dan Gohman84023e02010-07-10 09:00:22 +00003717 // Insert the set of GlobalBaseReg into the first MBB of the function
3718 MachineBasicBlock &FirstMBB = MF.front();
3719 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3720 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3721 MachineRegisterInfo &RegInfo = MF.getRegInfo();
3722 const X86InstrInfo *TII = TM->getInstrInfo();
3723
3724 unsigned PC;
3725 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3726 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3727 else
Dan Gohmand8c0a512010-09-17 20:24:24 +00003728 PC = GlobalBaseReg;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003729
Dan Gohman84023e02010-07-10 09:00:22 +00003730 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3731 // only used in JIT code emission as displacement to pc.
3732 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003733
Dan Gohman84023e02010-07-10 09:00:22 +00003734 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3735 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3736 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman84023e02010-07-10 09:00:22 +00003737 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3738 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3739 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3740 X86II::MO_GOT_ABSOLUTE_ADDRESS);
3741 }
3742
3743 return true;
3744 }
3745
3746 virtual const char *getPassName() const {
3747 return "X86 PIC Global Base Reg Initialization";
3748 }
3749
3750 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3751 AU.setPreservesCFG();
3752 MachineFunctionPass::getAnalysisUsage(AU);
3753 }
3754 };
3755}
3756
3757char CGBR::ID = 0;
3758FunctionPass*
3759llvm::createGlobalBaseRegPass() { return new CGBR(); }