blob: 308dd207e5d51158a2f2ac5d77047068d19918d1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000194 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000195 <ol>
196 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000197 </ol>
198 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000199 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000200 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000201 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000202 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Reid Spencerb043f672007-07-20 19:59:11 +0000203 </ol>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000204 <ol>
205 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000206 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000207 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 </li>
209 </ol>
210 </li>
211</ol>
212
213<div class="doc_author">
214 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
215 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
216</div>
217
218<!-- *********************************************************************** -->
219<div class="doc_section"> <a name="abstract">Abstract </a></div>
220<!-- *********************************************************************** -->
221
222<div class="doc_text">
223<p>This document is a reference manual for the LLVM assembly language.
224LLVM is an SSA based representation that provides type safety,
225low-level operations, flexibility, and the capability of representing
226'all' high-level languages cleanly. It is the common code
227representation used throughout all phases of the LLVM compilation
228strategy.</p>
229</div>
230
231<!-- *********************************************************************** -->
232<div class="doc_section"> <a name="introduction">Introduction</a> </div>
233<!-- *********************************************************************** -->
234
235<div class="doc_text">
236
237<p>The LLVM code representation is designed to be used in three
238different forms: as an in-memory compiler IR, as an on-disk bitcode
239representation (suitable for fast loading by a Just-In-Time compiler),
240and as a human readable assembly language representation. This allows
241LLVM to provide a powerful intermediate representation for efficient
242compiler transformations and analysis, while providing a natural means
243to debug and visualize the transformations. The three different forms
244of LLVM are all equivalent. This document describes the human readable
245representation and notation.</p>
246
247<p>The LLVM representation aims to be light-weight and low-level
248while being expressive, typed, and extensible at the same time. It
249aims to be a "universal IR" of sorts, by being at a low enough level
250that high-level ideas may be cleanly mapped to it (similar to how
251microprocessors are "universal IR's", allowing many source languages to
252be mapped to them). By providing type information, LLVM can be used as
253the target of optimizations: for example, through pointer analysis, it
254can be proven that a C automatic variable is never accessed outside of
255the current function... allowing it to be promoted to a simple SSA
256value instead of a memory location.</p>
257
258</div>
259
260<!-- _______________________________________________________________________ -->
261<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
262
263<div class="doc_text">
264
265<p>It is important to note that this document describes 'well formed'
266LLVM assembly language. There is a difference between what the parser
267accepts and what is considered 'well formed'. For example, the
268following instruction is syntactically okay, but not well formed:</p>
269
270<div class="doc_code">
271<pre>
272%x = <a href="#i_add">add</a> i32 1, %x
273</pre>
274</div>
275
276<p>...because the definition of <tt>%x</tt> does not dominate all of
277its uses. The LLVM infrastructure provides a verification pass that may
278be used to verify that an LLVM module is well formed. This pass is
279automatically run by the parser after parsing input assembly and by
280the optimizer before it outputs bitcode. The violations pointed out
281by the verifier pass indicate bugs in transformation passes or input to
282the parser.</p>
283</div>
284
Chris Lattnera83fdc02007-10-03 17:34:29 +0000285<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287<!-- *********************************************************************** -->
288<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
289<!-- *********************************************************************** -->
290
291<div class="doc_text">
292
Reid Spencerc8245b02007-08-07 14:34:28 +0000293 <p>LLVM identifiers come in two basic types: global and local. Global
294 identifiers (functions, global variables) begin with the @ character. Local
295 identifiers (register names, types) begin with the % character. Additionally,
296 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297
298<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000299 <li>Named values are represented as a string of characters with their prefix.
300 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
301 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000303 with quotes. In this way, anything except a <tt>&quot;</tt> character can
304 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305
Reid Spencerc8245b02007-08-07 14:34:28 +0000306 <li>Unnamed values are represented as an unsigned numeric value with their
307 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
309 <li>Constants, which are described in a <a href="#constants">section about
310 constants</a>, below.</li>
311</ol>
312
Reid Spencerc8245b02007-08-07 14:34:28 +0000313<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314don't need to worry about name clashes with reserved words, and the set of
315reserved words may be expanded in the future without penalty. Additionally,
316unnamed identifiers allow a compiler to quickly come up with a temporary
317variable without having to avoid symbol table conflicts.</p>
318
319<p>Reserved words in LLVM are very similar to reserved words in other
320languages. There are keywords for different opcodes
321('<tt><a href="#i_add">add</a></tt>',
322 '<tt><a href="#i_bitcast">bitcast</a></tt>',
323 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
324href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
325and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000326none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327
328<p>Here is an example of LLVM code to multiply the integer variable
329'<tt>%X</tt>' by 8:</p>
330
331<p>The easy way:</p>
332
333<div class="doc_code">
334<pre>
335%result = <a href="#i_mul">mul</a> i32 %X, 8
336</pre>
337</div>
338
339<p>After strength reduction:</p>
340
341<div class="doc_code">
342<pre>
343%result = <a href="#i_shl">shl</a> i32 %X, i8 3
344</pre>
345</div>
346
347<p>And the hard way:</p>
348
349<div class="doc_code">
350<pre>
351<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
352<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
353%result = <a href="#i_add">add</a> i32 %1, %1
354</pre>
355</div>
356
357<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
358important lexical features of LLVM:</p>
359
360<ol>
361
362 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
363 line.</li>
364
365 <li>Unnamed temporaries are created when the result of a computation is not
366 assigned to a named value.</li>
367
368 <li>Unnamed temporaries are numbered sequentially</li>
369
370</ol>
371
372<p>...and it also shows a convention that we follow in this document. When
373demonstrating instructions, we will follow an instruction with a comment that
374defines the type and name of value produced. Comments are shown in italic
375text.</p>
376
377</div>
378
379<!-- *********************************************************************** -->
380<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
381<!-- *********************************************************************** -->
382
383<!-- ======================================================================= -->
384<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
385</div>
386
387<div class="doc_text">
388
389<p>LLVM programs are composed of "Module"s, each of which is a
390translation unit of the input programs. Each module consists of
391functions, global variables, and symbol table entries. Modules may be
392combined together with the LLVM linker, which merges function (and
393global variable) definitions, resolves forward declarations, and merges
394symbol table entries. Here is an example of the "hello world" module:</p>
395
396<div class="doc_code">
397<pre><i>; Declare the string constant as a global constant...</i>
398<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
399 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
400
401<i>; External declaration of the puts function</i>
402<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
403
404<i>; Definition of main function</i>
405define i32 @main() { <i>; i32()* </i>
406 <i>; Convert [13x i8 ]* to i8 *...</i>
407 %cast210 = <a
408 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
409
410 <i>; Call puts function to write out the string to stdout...</i>
411 <a
412 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
413 <a
414 href="#i_ret">ret</a> i32 0<br>}<br>
415</pre>
416</div>
417
418<p>This example is made up of a <a href="#globalvars">global variable</a>
419named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
420function, and a <a href="#functionstructure">function definition</a>
421for "<tt>main</tt>".</p>
422
423<p>In general, a module is made up of a list of global values,
424where both functions and global variables are global values. Global values are
425represented by a pointer to a memory location (in this case, a pointer to an
426array of char, and a pointer to a function), and have one of the following <a
427href="#linkage">linkage types</a>.</p>
428
429</div>
430
431<!-- ======================================================================= -->
432<div class="doc_subsection">
433 <a name="linkage">Linkage Types</a>
434</div>
435
436<div class="doc_text">
437
438<p>
439All Global Variables and Functions have one of the following types of linkage:
440</p>
441
442<dl>
443
444 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
445
446 <dd>Global values with internal linkage are only directly accessible by
447 objects in the current module. In particular, linking code into a module with
448 an internal global value may cause the internal to be renamed as necessary to
449 avoid collisions. Because the symbol is internal to the module, all
450 references can be updated. This corresponds to the notion of the
451 '<tt>static</tt>' keyword in C.
452 </dd>
453
454 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
455
456 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
457 the same name when linkage occurs. This is typically used to implement
458 inline functions, templates, or other code which must be generated in each
459 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
460 allowed to be discarded.
461 </dd>
462
463 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
464
465 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
466 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
467 used for globals that may be emitted in multiple translation units, but that
468 are not guaranteed to be emitted into every translation unit that uses them.
469 One example of this are common globals in C, such as "<tt>int X;</tt>" at
470 global scope.
471 </dd>
472
473 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
474
475 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
476 pointer to array type. When two global variables with appending linkage are
477 linked together, the two global arrays are appended together. This is the
478 LLVM, typesafe, equivalent of having the system linker append together
479 "sections" with identical names when .o files are linked.
480 </dd>
481
482 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
483 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
484 until linked, if not linked, the symbol becomes null instead of being an
485 undefined reference.
486 </dd>
487
488 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
489
490 <dd>If none of the above identifiers are used, the global is externally
491 visible, meaning that it participates in linkage and can be used to resolve
492 external symbol references.
493 </dd>
494</dl>
495
496 <p>
497 The next two types of linkage are targeted for Microsoft Windows platform
498 only. They are designed to support importing (exporting) symbols from (to)
499 DLLs.
500 </p>
501
502 <dl>
503 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
504
505 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
506 or variable via a global pointer to a pointer that is set up by the DLL
507 exporting the symbol. On Microsoft Windows targets, the pointer name is
508 formed by combining <code>_imp__</code> and the function or variable name.
509 </dd>
510
511 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
512
513 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
514 pointer to a pointer in a DLL, so that it can be referenced with the
515 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
516 name is formed by combining <code>_imp__</code> and the function or variable
517 name.
518 </dd>
519
520</dl>
521
522<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
523variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
524variable and was linked with this one, one of the two would be renamed,
525preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
526external (i.e., lacking any linkage declarations), they are accessible
527outside of the current module.</p>
528<p>It is illegal for a function <i>declaration</i>
529to have any linkage type other than "externally visible", <tt>dllimport</tt>,
530or <tt>extern_weak</tt>.</p>
531<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
532linkages.
533</div>
534
535<!-- ======================================================================= -->
536<div class="doc_subsection">
537 <a name="callingconv">Calling Conventions</a>
538</div>
539
540<div class="doc_text">
541
542<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
543and <a href="#i_invoke">invokes</a> can all have an optional calling convention
544specified for the call. The calling convention of any pair of dynamic
545caller/callee must match, or the behavior of the program is undefined. The
546following calling conventions are supported by LLVM, and more may be added in
547the future:</p>
548
549<dl>
550 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
551
552 <dd>This calling convention (the default if no other calling convention is
553 specified) matches the target C calling conventions. This calling convention
554 supports varargs function calls and tolerates some mismatch in the declared
555 prototype and implemented declaration of the function (as does normal C).
556 </dd>
557
558 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
559
560 <dd>This calling convention attempts to make calls as fast as possible
561 (e.g. by passing things in registers). This calling convention allows the
562 target to use whatever tricks it wants to produce fast code for the target,
563 without having to conform to an externally specified ABI. Implementations of
564 this convention should allow arbitrary tail call optimization to be supported.
565 This calling convention does not support varargs and requires the prototype of
566 all callees to exactly match the prototype of the function definition.
567 </dd>
568
569 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
570
571 <dd>This calling convention attempts to make code in the caller as efficient
572 as possible under the assumption that the call is not commonly executed. As
573 such, these calls often preserve all registers so that the call does not break
574 any live ranges in the caller side. This calling convention does not support
575 varargs and requires the prototype of all callees to exactly match the
576 prototype of the function definition.
577 </dd>
578
579 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
580
581 <dd>Any calling convention may be specified by number, allowing
582 target-specific calling conventions to be used. Target specific calling
583 conventions start at 64.
584 </dd>
585</dl>
586
587<p>More calling conventions can be added/defined on an as-needed basis, to
588support pascal conventions or any other well-known target-independent
589convention.</p>
590
591</div>
592
593<!-- ======================================================================= -->
594<div class="doc_subsection">
595 <a name="visibility">Visibility Styles</a>
596</div>
597
598<div class="doc_text">
599
600<p>
601All Global Variables and Functions have one of the following visibility styles:
602</p>
603
604<dl>
605 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
606
607 <dd>On ELF, default visibility means that the declaration is visible to other
608 modules and, in shared libraries, means that the declared entity may be
609 overridden. On Darwin, default visibility means that the declaration is
610 visible to other modules. Default visibility corresponds to "external
611 linkage" in the language.
612 </dd>
613
614 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
615
616 <dd>Two declarations of an object with hidden visibility refer to the same
617 object if they are in the same shared object. Usually, hidden visibility
618 indicates that the symbol will not be placed into the dynamic symbol table,
619 so no other module (executable or shared library) can reference it
620 directly.
621 </dd>
622
623 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
624
625 <dd>On ELF, protected visibility indicates that the symbol will be placed in
626 the dynamic symbol table, but that references within the defining module will
627 bind to the local symbol. That is, the symbol cannot be overridden by another
628 module.
629 </dd>
630</dl>
631
632</div>
633
634<!-- ======================================================================= -->
635<div class="doc_subsection">
636 <a name="globalvars">Global Variables</a>
637</div>
638
639<div class="doc_text">
640
641<p>Global variables define regions of memory allocated at compilation time
642instead of run-time. Global variables may optionally be initialized, may have
643an explicit section to be placed in, and may have an optional explicit alignment
644specified. A variable may be defined as "thread_local", which means that it
645will not be shared by threads (each thread will have a separated copy of the
646variable). A variable may be defined as a global "constant," which indicates
647that the contents of the variable will <b>never</b> be modified (enabling better
648optimization, allowing the global data to be placed in the read-only section of
649an executable, etc). Note that variables that need runtime initialization
650cannot be marked "constant" as there is a store to the variable.</p>
651
652<p>
653LLVM explicitly allows <em>declarations</em> of global variables to be marked
654constant, even if the final definition of the global is not. This capability
655can be used to enable slightly better optimization of the program, but requires
656the language definition to guarantee that optimizations based on the
657'constantness' are valid for the translation units that do not include the
658definition.
659</p>
660
661<p>As SSA values, global variables define pointer values that are in
662scope (i.e. they dominate) all basic blocks in the program. Global
663variables always define a pointer to their "content" type because they
664describe a region of memory, and all memory objects in LLVM are
665accessed through pointers.</p>
666
667<p>LLVM allows an explicit section to be specified for globals. If the target
668supports it, it will emit globals to the section specified.</p>
669
670<p>An explicit alignment may be specified for a global. If not present, or if
671the alignment is set to zero, the alignment of the global is set by the target
672to whatever it feels convenient. If an explicit alignment is specified, the
673global is forced to have at least that much alignment. All alignments must be
674a power of 2.</p>
675
676<p>For example, the following defines a global with an initializer, section,
677 and alignment:</p>
678
679<div class="doc_code">
680<pre>
681@G = constant float 1.0, section "foo", align 4
682</pre>
683</div>
684
685</div>
686
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
690 <a name="functionstructure">Functions</a>
691</div>
692
693<div class="doc_text">
694
695<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
696an optional <a href="#linkage">linkage type</a>, an optional
697<a href="#visibility">visibility style</a>, an optional
698<a href="#callingconv">calling convention</a>, a return type, an optional
699<a href="#paramattrs">parameter attribute</a> for the return type, a function
700name, a (possibly empty) argument list (each with optional
701<a href="#paramattrs">parameter attributes</a>), an optional section, an
702optional alignment, an opening curly brace, a list of basic blocks, and a
703closing curly brace.
704
705LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
706optional <a href="#linkage">linkage type</a>, an optional
707<a href="#visibility">visibility style</a>, an optional
708<a href="#callingconv">calling convention</a>, a return type, an optional
709<a href="#paramattrs">parameter attribute</a> for the return type, a function
710name, a possibly empty list of arguments, and an optional alignment.</p>
711
712<p>A function definition contains a list of basic blocks, forming the CFG for
713the function. Each basic block may optionally start with a label (giving the
714basic block a symbol table entry), contains a list of instructions, and ends
715with a <a href="#terminators">terminator</a> instruction (such as a branch or
716function return).</p>
717
718<p>The first basic block in a function is special in two ways: it is immediately
719executed on entrance to the function, and it is not allowed to have predecessor
720basic blocks (i.e. there can not be any branches to the entry block of a
721function). Because the block can have no predecessors, it also cannot have any
722<a href="#i_phi">PHI nodes</a>.</p>
723
724<p>LLVM allows an explicit section to be specified for functions. If the target
725supports it, it will emit functions to the section specified.</p>
726
727<p>An explicit alignment may be specified for a function. If not present, or if
728the alignment is set to zero, the alignment of the function is set by the target
729to whatever it feels convenient. If an explicit alignment is specified, the
730function is forced to have at least that much alignment. All alignments must be
731a power of 2.</p>
732
733</div>
734
735
736<!-- ======================================================================= -->
737<div class="doc_subsection">
738 <a name="aliasstructure">Aliases</a>
739</div>
740<div class="doc_text">
741 <p>Aliases act as "second name" for the aliasee value (which can be either
742 function or global variable or bitcast of global value). Aliases may have an
743 optional <a href="#linkage">linkage type</a>, and an
744 optional <a href="#visibility">visibility style</a>.</p>
745
746 <h5>Syntax:</h5>
747
748<div class="doc_code">
749<pre>
750@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
751</pre>
752</div>
753
754</div>
755
756
757
758<!-- ======================================================================= -->
759<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
760<div class="doc_text">
761 <p>The return type and each parameter of a function type may have a set of
762 <i>parameter attributes</i> associated with them. Parameter attributes are
763 used to communicate additional information about the result or parameters of
764 a function. Parameter attributes are considered to be part of the function
765 type so two functions types that differ only by the parameter attributes
766 are different function types.</p>
767
768 <p>Parameter attributes are simple keywords that follow the type specified. If
769 multiple parameter attributes are needed, they are space separated. For
770 example:</p>
771
772<div class="doc_code">
773<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000774%someFunc = i16 (i8 signext %someParam) zeroext
775%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776</pre>
777</div>
778
779 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000780 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
781 the second). Also note that the attribute for the function result
782 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000783
784 <p>Currently, only the following parameter attributes are defined:</p>
785 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000786 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 <dd>This indicates that the parameter should be zero extended just before
788 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000789 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 <dd>This indicates that the parameter should be sign extended just before
791 a call to this function.</dd>
792 <dt><tt>inreg</tt></dt>
793 <dd>This indicates that the parameter should be placed in register (if
794 possible) during assembling function call. Support for this attribute is
795 target-specific</dd>
796 <dt><tt>sret</tt></dt>
797 <dd>This indicates that the parameter specifies the address of a structure
798 that is the return value of the function in the source program.</dd>
799 <dt><tt>noalias</tt></dt>
800 <dd>This indicates that the parameter not alias any other object or any
801 other "noalias" objects during the function call.
802 <dt><tt>noreturn</tt></dt>
803 <dd>This function attribute indicates that the function never returns. This
804 indicates to LLVM that every call to this function should be treated as if
805 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
806 <dt><tt>nounwind</tt></dt>
807 <dd>This function attribute indicates that the function type does not use
808 the unwind instruction and does not allow stack unwinding to propagate
809 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000810 <dt><tt>nest</tt></dt>
811 <dd>This indicates that the parameter can be excised using the
812 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000813 </dl>
814
815</div>
816
817<!-- ======================================================================= -->
818<div class="doc_subsection">
819 <a name="moduleasm">Module-Level Inline Assembly</a>
820</div>
821
822<div class="doc_text">
823<p>
824Modules may contain "module-level inline asm" blocks, which corresponds to the
825GCC "file scope inline asm" blocks. These blocks are internally concatenated by
826LLVM and treated as a single unit, but may be separated in the .ll file if
827desired. The syntax is very simple:
828</p>
829
830<div class="doc_code">
831<pre>
832module asm "inline asm code goes here"
833module asm "more can go here"
834</pre>
835</div>
836
837<p>The strings can contain any character by escaping non-printable characters.
838 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
839 for the number.
840</p>
841
842<p>
843 The inline asm code is simply printed to the machine code .s file when
844 assembly code is generated.
845</p>
846</div>
847
848<!-- ======================================================================= -->
849<div class="doc_subsection">
850 <a name="datalayout">Data Layout</a>
851</div>
852
853<div class="doc_text">
854<p>A module may specify a target specific data layout string that specifies how
855data is to be laid out in memory. The syntax for the data layout is simply:</p>
856<pre> target datalayout = "<i>layout specification</i>"</pre>
857<p>The <i>layout specification</i> consists of a list of specifications
858separated by the minus sign character ('-'). Each specification starts with a
859letter and may include other information after the letter to define some
860aspect of the data layout. The specifications accepted are as follows: </p>
861<dl>
862 <dt><tt>E</tt></dt>
863 <dd>Specifies that the target lays out data in big-endian form. That is, the
864 bits with the most significance have the lowest address location.</dd>
865 <dt><tt>e</tt></dt>
866 <dd>Specifies that hte target lays out data in little-endian form. That is,
867 the bits with the least significance have the lowest address location.</dd>
868 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
869 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
870 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
871 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
872 too.</dd>
873 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
874 <dd>This specifies the alignment for an integer type of a given bit
875 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
876 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
877 <dd>This specifies the alignment for a vector type of a given bit
878 <i>size</i>.</dd>
879 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
880 <dd>This specifies the alignment for a floating point type of a given bit
881 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
882 (double).</dd>
883 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
884 <dd>This specifies the alignment for an aggregate type of a given bit
885 <i>size</i>.</dd>
886</dl>
887<p>When constructing the data layout for a given target, LLVM starts with a
888default set of specifications which are then (possibly) overriden by the
889specifications in the <tt>datalayout</tt> keyword. The default specifications
890are given in this list:</p>
891<ul>
892 <li><tt>E</tt> - big endian</li>
893 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
894 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
895 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
896 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
897 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
898 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
899 alignment of 64-bits</li>
900 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
901 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
902 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
903 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
904 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
905</ul>
906<p>When llvm is determining the alignment for a given type, it uses the
907following rules:
908<ol>
909 <li>If the type sought is an exact match for one of the specifications, that
910 specification is used.</li>
911 <li>If no match is found, and the type sought is an integer type, then the
912 smallest integer type that is larger than the bitwidth of the sought type is
913 used. If none of the specifications are larger than the bitwidth then the the
914 largest integer type is used. For example, given the default specifications
915 above, the i7 type will use the alignment of i8 (next largest) while both
916 i65 and i256 will use the alignment of i64 (largest specified).</li>
917 <li>If no match is found, and the type sought is a vector type, then the
918 largest vector type that is smaller than the sought vector type will be used
919 as a fall back. This happens because <128 x double> can be implemented in
920 terms of 64 <2 x double>, for example.</li>
921</ol>
922</div>
923
924<!-- *********************************************************************** -->
925<div class="doc_section"> <a name="typesystem">Type System</a> </div>
926<!-- *********************************************************************** -->
927
928<div class="doc_text">
929
930<p>The LLVM type system is one of the most important features of the
931intermediate representation. Being typed enables a number of
932optimizations to be performed on the IR directly, without having to do
933extra analyses on the side before the transformation. A strong type
934system makes it easier to read the generated code and enables novel
935analyses and transformations that are not feasible to perform on normal
936three address code representations.</p>
937
938</div>
939
940<!-- ======================================================================= -->
941<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
942<div class="doc_text">
943<p>The primitive types are the fundamental building blocks of the LLVM
944system. The current set of primitive types is as follows:</p>
945
946<table class="layout">
947 <tr class="layout">
948 <td class="left">
949 <table>
950 <tbody>
951 <tr><th>Type</th><th>Description</th></tr>
952 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
953 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
954 </tbody>
955 </table>
956 </td>
957 <td class="right">
958 <table>
959 <tbody>
960 <tr><th>Type</th><th>Description</th></tr>
961 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
962 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
963 </tbody>
964 </table>
965 </td>
966 </tr>
967</table>
968</div>
969
970<!-- _______________________________________________________________________ -->
971<div class="doc_subsubsection"> <a name="t_classifications">Type
972Classifications</a> </div>
973<div class="doc_text">
974<p>These different primitive types fall into a few useful
975classifications:</p>
976
977<table border="1" cellspacing="0" cellpadding="4">
978 <tbody>
979 <tr><th>Classification</th><th>Types</th></tr>
980 <tr>
981 <td><a name="t_integer">integer</a></td>
982 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
983 </tr>
984 <tr>
985 <td><a name="t_floating">floating point</a></td>
986 <td><tt>float, double</tt></td>
987 </tr>
988 <tr>
989 <td><a name="t_firstclass">first class</a></td>
990 <td><tt>i1, ..., float, double, <br/>
991 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
992 </td>
993 </tr>
994 </tbody>
995</table>
996
997<p>The <a href="#t_firstclass">first class</a> types are perhaps the
998most important. Values of these types are the only ones which can be
999produced by instructions, passed as arguments, or used as operands to
1000instructions. This means that all structures and arrays must be
1001manipulated either by pointer or by component.</p>
1002</div>
1003
1004<!-- ======================================================================= -->
1005<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1006
1007<div class="doc_text">
1008
1009<p>The real power in LLVM comes from the derived types in the system.
1010This is what allows a programmer to represent arrays, functions,
1011pointers, and other useful types. Note that these derived types may be
1012recursive: For example, it is possible to have a two dimensional array.</p>
1013
1014</div>
1015
1016<!-- _______________________________________________________________________ -->
1017<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1018
1019<div class="doc_text">
1020
1021<h5>Overview:</h5>
1022<p>The integer type is a very simple derived type that simply specifies an
1023arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10242^23-1 (about 8 million) can be specified.</p>
1025
1026<h5>Syntax:</h5>
1027
1028<pre>
1029 iN
1030</pre>
1031
1032<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1033value.</p>
1034
1035<h5>Examples:</h5>
1036<table class="layout">
1037 <tr class="layout">
1038 <td class="left">
1039 <tt>i1</tt><br/>
1040 <tt>i4</tt><br/>
1041 <tt>i8</tt><br/>
1042 <tt>i16</tt><br/>
1043 <tt>i32</tt><br/>
1044 <tt>i42</tt><br/>
1045 <tt>i64</tt><br/>
1046 <tt>i1942652</tt><br/>
1047 </td>
1048 <td class="left">
1049 A boolean integer of 1 bit<br/>
1050 A nibble sized integer of 4 bits.<br/>
1051 A byte sized integer of 8 bits.<br/>
1052 A half word sized integer of 16 bits.<br/>
1053 A word sized integer of 32 bits.<br/>
1054 An integer whose bit width is the answer. <br/>
1055 A double word sized integer of 64 bits.<br/>
1056 A really big integer of over 1 million bits.<br/>
1057 </td>
1058 </tr>
1059</table>
1060</div>
1061
1062<!-- _______________________________________________________________________ -->
1063<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1064
1065<div class="doc_text">
1066
1067<h5>Overview:</h5>
1068
1069<p>The array type is a very simple derived type that arranges elements
1070sequentially in memory. The array type requires a size (number of
1071elements) and an underlying data type.</p>
1072
1073<h5>Syntax:</h5>
1074
1075<pre>
1076 [&lt;# elements&gt; x &lt;elementtype&gt;]
1077</pre>
1078
1079<p>The number of elements is a constant integer value; elementtype may
1080be any type with a size.</p>
1081
1082<h5>Examples:</h5>
1083<table class="layout">
1084 <tr class="layout">
1085 <td class="left">
1086 <tt>[40 x i32 ]</tt><br/>
1087 <tt>[41 x i32 ]</tt><br/>
1088 <tt>[40 x i8]</tt><br/>
1089 </td>
1090 <td class="left">
1091 Array of 40 32-bit integer values.<br/>
1092 Array of 41 32-bit integer values.<br/>
1093 Array of 40 8-bit integer values.<br/>
1094 </td>
1095 </tr>
1096</table>
1097<p>Here are some examples of multidimensional arrays:</p>
1098<table class="layout">
1099 <tr class="layout">
1100 <td class="left">
1101 <tt>[3 x [4 x i32]]</tt><br/>
1102 <tt>[12 x [10 x float]]</tt><br/>
1103 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1104 </td>
1105 <td class="left">
1106 3x4 array of 32-bit integer values.<br/>
1107 12x10 array of single precision floating point values.<br/>
1108 2x3x4 array of 16-bit integer values.<br/>
1109 </td>
1110 </tr>
1111</table>
1112
1113<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1114length array. Normally, accesses past the end of an array are undefined in
1115LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1116As a special case, however, zero length arrays are recognized to be variable
1117length. This allows implementation of 'pascal style arrays' with the LLVM
1118type "{ i32, [0 x float]}", for example.</p>
1119
1120</div>
1121
1122<!-- _______________________________________________________________________ -->
1123<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1124<div class="doc_text">
1125<h5>Overview:</h5>
1126<p>The function type can be thought of as a function signature. It
1127consists of a return type and a list of formal parameter types.
1128Function types are usually used to build virtual function tables
1129(which are structures of pointers to functions), for indirect function
1130calls, and when defining a function.</p>
1131<p>
1132The return type of a function type cannot be an aggregate type.
1133</p>
1134<h5>Syntax:</h5>
1135<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1136<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1137specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1138which indicates that the function takes a variable number of arguments.
1139Variable argument functions can access their arguments with the <a
1140 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1141<h5>Examples:</h5>
1142<table class="layout">
1143 <tr class="layout">
1144 <td class="left"><tt>i32 (i32)</tt></td>
1145 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1146 </td>
1147 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001148 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149 </tt></td>
1150 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1151 an <tt>i16</tt> that should be sign extended and a
1152 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1153 <tt>float</tt>.
1154 </td>
1155 </tr><tr class="layout">
1156 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1157 <td class="left">A vararg function that takes at least one
1158 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1159 which returns an integer. This is the signature for <tt>printf</tt> in
1160 LLVM.
1161 </td>
1162 </tr>
1163</table>
1164
1165</div>
1166<!-- _______________________________________________________________________ -->
1167<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1168<div class="doc_text">
1169<h5>Overview:</h5>
1170<p>The structure type is used to represent a collection of data members
1171together in memory. The packing of the field types is defined to match
1172the ABI of the underlying processor. The elements of a structure may
1173be any type that has a size.</p>
1174<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1175and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1176field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1177instruction.</p>
1178<h5>Syntax:</h5>
1179<pre> { &lt;type list&gt; }<br></pre>
1180<h5>Examples:</h5>
1181<table class="layout">
1182 <tr class="layout">
1183 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1184 <td class="left">A triple of three <tt>i32</tt> values</td>
1185 </tr><tr class="layout">
1186 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1187 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1188 second element is a <a href="#t_pointer">pointer</a> to a
1189 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1190 an <tt>i32</tt>.</td>
1191 </tr>
1192</table>
1193</div>
1194
1195<!-- _______________________________________________________________________ -->
1196<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1197</div>
1198<div class="doc_text">
1199<h5>Overview:</h5>
1200<p>The packed structure type is used to represent a collection of data members
1201together in memory. There is no padding between fields. Further, the alignment
1202of a packed structure is 1 byte. The elements of a packed structure may
1203be any type that has a size.</p>
1204<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1205and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1206field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1207instruction.</p>
1208<h5>Syntax:</h5>
1209<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1210<h5>Examples:</h5>
1211<table class="layout">
1212 <tr class="layout">
1213 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1214 <td class="left">A triple of three <tt>i32</tt> values</td>
1215 </tr><tr class="layout">
1216 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1217 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1218 second element is a <a href="#t_pointer">pointer</a> to a
1219 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1220 an <tt>i32</tt>.</td>
1221 </tr>
1222</table>
1223</div>
1224
1225<!-- _______________________________________________________________________ -->
1226<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1227<div class="doc_text">
1228<h5>Overview:</h5>
1229<p>As in many languages, the pointer type represents a pointer or
1230reference to another object, which must live in memory.</p>
1231<h5>Syntax:</h5>
1232<pre> &lt;type&gt; *<br></pre>
1233<h5>Examples:</h5>
1234<table class="layout">
1235 <tr class="layout">
1236 <td class="left">
1237 <tt>[4x i32]*</tt><br/>
1238 <tt>i32 (i32 *) *</tt><br/>
1239 </td>
1240 <td class="left">
1241 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1242 four <tt>i32</tt> values<br/>
1243 A <a href="#t_pointer">pointer</a> to a <a
1244 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1245 <tt>i32</tt>.<br/>
1246 </td>
1247 </tr>
1248</table>
1249</div>
1250
1251<!-- _______________________________________________________________________ -->
1252<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1253<div class="doc_text">
1254
1255<h5>Overview:</h5>
1256
1257<p>A vector type is a simple derived type that represents a vector
1258of elements. Vector types are used when multiple primitive data
1259are operated in parallel using a single instruction (SIMD).
1260A vector type requires a size (number of
1261elements) and an underlying primitive data type. Vectors must have a power
1262of two length (1, 2, 4, 8, 16 ...). Vector types are
1263considered <a href="#t_firstclass">first class</a>.</p>
1264
1265<h5>Syntax:</h5>
1266
1267<pre>
1268 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1269</pre>
1270
1271<p>The number of elements is a constant integer value; elementtype may
1272be any integer or floating point type.</p>
1273
1274<h5>Examples:</h5>
1275
1276<table class="layout">
1277 <tr class="layout">
1278 <td class="left">
1279 <tt>&lt;4 x i32&gt;</tt><br/>
1280 <tt>&lt;8 x float&gt;</tt><br/>
1281 <tt>&lt;2 x i64&gt;</tt><br/>
1282 </td>
1283 <td class="left">
1284 Vector of 4 32-bit integer values.<br/>
1285 Vector of 8 floating-point values.<br/>
1286 Vector of 2 64-bit integer values.<br/>
1287 </td>
1288 </tr>
1289</table>
1290</div>
1291
1292<!-- _______________________________________________________________________ -->
1293<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1294<div class="doc_text">
1295
1296<h5>Overview:</h5>
1297
1298<p>Opaque types are used to represent unknown types in the system. This
1299corresponds (for example) to the C notion of a foward declared structure type.
1300In LLVM, opaque types can eventually be resolved to any type (not just a
1301structure type).</p>
1302
1303<h5>Syntax:</h5>
1304
1305<pre>
1306 opaque
1307</pre>
1308
1309<h5>Examples:</h5>
1310
1311<table class="layout">
1312 <tr class="layout">
1313 <td class="left">
1314 <tt>opaque</tt>
1315 </td>
1316 <td class="left">
1317 An opaque type.<br/>
1318 </td>
1319 </tr>
1320</table>
1321</div>
1322
1323
1324<!-- *********************************************************************** -->
1325<div class="doc_section"> <a name="constants">Constants</a> </div>
1326<!-- *********************************************************************** -->
1327
1328<div class="doc_text">
1329
1330<p>LLVM has several different basic types of constants. This section describes
1331them all and their syntax.</p>
1332
1333</div>
1334
1335<!-- ======================================================================= -->
1336<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1337
1338<div class="doc_text">
1339
1340<dl>
1341 <dt><b>Boolean constants</b></dt>
1342
1343 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1344 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1345 </dd>
1346
1347 <dt><b>Integer constants</b></dt>
1348
1349 <dd>Standard integers (such as '4') are constants of the <a
1350 href="#t_integer">integer</a> type. Negative numbers may be used with
1351 integer types.
1352 </dd>
1353
1354 <dt><b>Floating point constants</b></dt>
1355
1356 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1357 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1358 notation (see below). Floating point constants must have a <a
1359 href="#t_floating">floating point</a> type. </dd>
1360
1361 <dt><b>Null pointer constants</b></dt>
1362
1363 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1364 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1365
1366</dl>
1367
1368<p>The one non-intuitive notation for constants is the optional hexadecimal form
1369of floating point constants. For example, the form '<tt>double
13700x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13714.5e+15</tt>'. The only time hexadecimal floating point constants are required
1372(and the only time that they are generated by the disassembler) is when a
1373floating point constant must be emitted but it cannot be represented as a
1374decimal floating point number. For example, NaN's, infinities, and other
1375special values are represented in their IEEE hexadecimal format so that
1376assembly and disassembly do not cause any bits to change in the constants.</p>
1377
1378</div>
1379
1380<!-- ======================================================================= -->
1381<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1382</div>
1383
1384<div class="doc_text">
1385<p>Aggregate constants arise from aggregation of simple constants
1386and smaller aggregate constants.</p>
1387
1388<dl>
1389 <dt><b>Structure constants</b></dt>
1390
1391 <dd>Structure constants are represented with notation similar to structure
1392 type definitions (a comma separated list of elements, surrounded by braces
1393 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1394 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1395 must have <a href="#t_struct">structure type</a>, and the number and
1396 types of elements must match those specified by the type.
1397 </dd>
1398
1399 <dt><b>Array constants</b></dt>
1400
1401 <dd>Array constants are represented with notation similar to array type
1402 definitions (a comma separated list of elements, surrounded by square brackets
1403 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1404 constants must have <a href="#t_array">array type</a>, and the number and
1405 types of elements must match those specified by the type.
1406 </dd>
1407
1408 <dt><b>Vector constants</b></dt>
1409
1410 <dd>Vector constants are represented with notation similar to vector type
1411 definitions (a comma separated list of elements, surrounded by
1412 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1413 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1414 href="#t_vector">vector type</a>, and the number and types of elements must
1415 match those specified by the type.
1416 </dd>
1417
1418 <dt><b>Zero initialization</b></dt>
1419
1420 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1421 value to zero of <em>any</em> type, including scalar and aggregate types.
1422 This is often used to avoid having to print large zero initializers (e.g. for
1423 large arrays) and is always exactly equivalent to using explicit zero
1424 initializers.
1425 </dd>
1426</dl>
1427
1428</div>
1429
1430<!-- ======================================================================= -->
1431<div class="doc_subsection">
1432 <a name="globalconstants">Global Variable and Function Addresses</a>
1433</div>
1434
1435<div class="doc_text">
1436
1437<p>The addresses of <a href="#globalvars">global variables</a> and <a
1438href="#functionstructure">functions</a> are always implicitly valid (link-time)
1439constants. These constants are explicitly referenced when the <a
1440href="#identifiers">identifier for the global</a> is used and always have <a
1441href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1442file:</p>
1443
1444<div class="doc_code">
1445<pre>
1446@X = global i32 17
1447@Y = global i32 42
1448@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1449</pre>
1450</div>
1451
1452</div>
1453
1454<!-- ======================================================================= -->
1455<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1456<div class="doc_text">
1457 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1458 no specific value. Undefined values may be of any type and be used anywhere
1459 a constant is permitted.</p>
1460
1461 <p>Undefined values indicate to the compiler that the program is well defined
1462 no matter what value is used, giving the compiler more freedom to optimize.
1463 </p>
1464</div>
1465
1466<!-- ======================================================================= -->
1467<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1468</div>
1469
1470<div class="doc_text">
1471
1472<p>Constant expressions are used to allow expressions involving other constants
1473to be used as constants. Constant expressions may be of any <a
1474href="#t_firstclass">first class</a> type and may involve any LLVM operation
1475that does not have side effects (e.g. load and call are not supported). The
1476following is the syntax for constant expressions:</p>
1477
1478<dl>
1479 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1480 <dd>Truncate a constant to another type. The bit size of CST must be larger
1481 than the bit size of TYPE. Both types must be integers.</dd>
1482
1483 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1484 <dd>Zero extend a constant to another type. The bit size of CST must be
1485 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1486
1487 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1488 <dd>Sign extend a constant to another type. The bit size of CST must be
1489 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1490
1491 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1492 <dd>Truncate a floating point constant to another floating point type. The
1493 size of CST must be larger than the size of TYPE. Both types must be
1494 floating point.</dd>
1495
1496 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1497 <dd>Floating point extend a constant to another type. The size of CST must be
1498 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1499
Reid Spencere6adee82007-07-31 14:40:14 +00001500 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501 <dd>Convert a floating point constant to the corresponding unsigned integer
1502 constant. TYPE must be an integer type. CST must be floating point. If the
1503 value won't fit in the integer type, the results are undefined.</dd>
1504
1505 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1506 <dd>Convert a floating point constant to the corresponding signed integer
1507 constant. TYPE must be an integer type. CST must be floating point. If the
1508 value won't fit in the integer type, the results are undefined.</dd>
1509
1510 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1511 <dd>Convert an unsigned integer constant to the corresponding floating point
1512 constant. TYPE must be floating point. CST must be of integer type. If the
1513 value won't fit in the floating point type, the results are undefined.</dd>
1514
1515 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1516 <dd>Convert a signed integer constant to the corresponding floating point
1517 constant. TYPE must be floating point. CST must be of integer type. If the
1518 value won't fit in the floating point type, the results are undefined.</dd>
1519
1520 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1521 <dd>Convert a pointer typed constant to the corresponding integer constant
1522 TYPE must be an integer type. CST must be of pointer type. The CST value is
1523 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1524
1525 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1526 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1527 pointer type. CST must be of integer type. The CST value is zero extended,
1528 truncated, or unchanged to make it fit in a pointer size. This one is
1529 <i>really</i> dangerous!</dd>
1530
1531 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1532 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1533 identical (same number of bits). The conversion is done as if the CST value
1534 was stored to memory and read back as TYPE. In other words, no bits change
1535 with this operator, just the type. This can be used for conversion of
1536 vector types to any other type, as long as they have the same bit width. For
1537 pointers it is only valid to cast to another pointer type.
1538 </dd>
1539
1540 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1541
1542 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1543 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1544 instruction, the index list may have zero or more indexes, which are required
1545 to make sense for the type of "CSTPTR".</dd>
1546
1547 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1548
1549 <dd>Perform the <a href="#i_select">select operation</a> on
1550 constants.</dd>
1551
1552 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1553 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1554
1555 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1556 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1557
1558 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1559
1560 <dd>Perform the <a href="#i_extractelement">extractelement
1561 operation</a> on constants.
1562
1563 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1564
1565 <dd>Perform the <a href="#i_insertelement">insertelement
1566 operation</a> on constants.</dd>
1567
1568
1569 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1570
1571 <dd>Perform the <a href="#i_shufflevector">shufflevector
1572 operation</a> on constants.</dd>
1573
1574 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1575
1576 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1577 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1578 binary</a> operations. The constraints on operands are the same as those for
1579 the corresponding instruction (e.g. no bitwise operations on floating point
1580 values are allowed).</dd>
1581</dl>
1582</div>
1583
1584<!-- *********************************************************************** -->
1585<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1586<!-- *********************************************************************** -->
1587
1588<!-- ======================================================================= -->
1589<div class="doc_subsection">
1590<a name="inlineasm">Inline Assembler Expressions</a>
1591</div>
1592
1593<div class="doc_text">
1594
1595<p>
1596LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1597Module-Level Inline Assembly</a>) through the use of a special value. This
1598value represents the inline assembler as a string (containing the instructions
1599to emit), a list of operand constraints (stored as a string), and a flag that
1600indicates whether or not the inline asm expression has side effects. An example
1601inline assembler expression is:
1602</p>
1603
1604<div class="doc_code">
1605<pre>
1606i32 (i32) asm "bswap $0", "=r,r"
1607</pre>
1608</div>
1609
1610<p>
1611Inline assembler expressions may <b>only</b> be used as the callee operand of
1612a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1613</p>
1614
1615<div class="doc_code">
1616<pre>
1617%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1618</pre>
1619</div>
1620
1621<p>
1622Inline asms with side effects not visible in the constraint list must be marked
1623as having side effects. This is done through the use of the
1624'<tt>sideeffect</tt>' keyword, like so:
1625</p>
1626
1627<div class="doc_code">
1628<pre>
1629call void asm sideeffect "eieio", ""()
1630</pre>
1631</div>
1632
1633<p>TODO: The format of the asm and constraints string still need to be
1634documented here. Constraints on what can be done (e.g. duplication, moving, etc
1635need to be documented).
1636</p>
1637
1638</div>
1639
1640<!-- *********************************************************************** -->
1641<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1642<!-- *********************************************************************** -->
1643
1644<div class="doc_text">
1645
1646<p>The LLVM instruction set consists of several different
1647classifications of instructions: <a href="#terminators">terminator
1648instructions</a>, <a href="#binaryops">binary instructions</a>,
1649<a href="#bitwiseops">bitwise binary instructions</a>, <a
1650 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1651instructions</a>.</p>
1652
1653</div>
1654
1655<!-- ======================================================================= -->
1656<div class="doc_subsection"> <a name="terminators">Terminator
1657Instructions</a> </div>
1658
1659<div class="doc_text">
1660
1661<p>As mentioned <a href="#functionstructure">previously</a>, every
1662basic block in a program ends with a "Terminator" instruction, which
1663indicates which block should be executed after the current block is
1664finished. These terminator instructions typically yield a '<tt>void</tt>'
1665value: they produce control flow, not values (the one exception being
1666the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1667<p>There are six different terminator instructions: the '<a
1668 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1669instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1670the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1671 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1672 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1673
1674</div>
1675
1676<!-- _______________________________________________________________________ -->
1677<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1678Instruction</a> </div>
1679<div class="doc_text">
1680<h5>Syntax:</h5>
1681<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1682 ret void <i>; Return from void function</i>
1683</pre>
1684<h5>Overview:</h5>
1685<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1686value) from a function back to the caller.</p>
1687<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1688returns a value and then causes control flow, and one that just causes
1689control flow to occur.</p>
1690<h5>Arguments:</h5>
1691<p>The '<tt>ret</tt>' instruction may return any '<a
1692 href="#t_firstclass">first class</a>' type. Notice that a function is
1693not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1694instruction inside of the function that returns a value that does not
1695match the return type of the function.</p>
1696<h5>Semantics:</h5>
1697<p>When the '<tt>ret</tt>' instruction is executed, control flow
1698returns back to the calling function's context. If the caller is a "<a
1699 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1700the instruction after the call. If the caller was an "<a
1701 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1702at the beginning of the "normal" destination block. If the instruction
1703returns a value, that value shall set the call or invoke instruction's
1704return value.</p>
1705<h5>Example:</h5>
1706<pre> ret i32 5 <i>; Return an integer value of 5</i>
1707 ret void <i>; Return from a void function</i>
1708</pre>
1709</div>
1710<!-- _______________________________________________________________________ -->
1711<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1712<div class="doc_text">
1713<h5>Syntax:</h5>
1714<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1715</pre>
1716<h5>Overview:</h5>
1717<p>The '<tt>br</tt>' instruction is used to cause control flow to
1718transfer to a different basic block in the current function. There are
1719two forms of this instruction, corresponding to a conditional branch
1720and an unconditional branch.</p>
1721<h5>Arguments:</h5>
1722<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1723single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1724unconditional form of the '<tt>br</tt>' instruction takes a single
1725'<tt>label</tt>' value as a target.</p>
1726<h5>Semantics:</h5>
1727<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1728argument is evaluated. If the value is <tt>true</tt>, control flows
1729to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1730control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1731<h5>Example:</h5>
1732<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1733 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1734</div>
1735<!-- _______________________________________________________________________ -->
1736<div class="doc_subsubsection">
1737 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1738</div>
1739
1740<div class="doc_text">
1741<h5>Syntax:</h5>
1742
1743<pre>
1744 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1745</pre>
1746
1747<h5>Overview:</h5>
1748
1749<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1750several different places. It is a generalization of the '<tt>br</tt>'
1751instruction, allowing a branch to occur to one of many possible
1752destinations.</p>
1753
1754
1755<h5>Arguments:</h5>
1756
1757<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1758comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1759an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1760table is not allowed to contain duplicate constant entries.</p>
1761
1762<h5>Semantics:</h5>
1763
1764<p>The <tt>switch</tt> instruction specifies a table of values and
1765destinations. When the '<tt>switch</tt>' instruction is executed, this
1766table is searched for the given value. If the value is found, control flow is
1767transfered to the corresponding destination; otherwise, control flow is
1768transfered to the default destination.</p>
1769
1770<h5>Implementation:</h5>
1771
1772<p>Depending on properties of the target machine and the particular
1773<tt>switch</tt> instruction, this instruction may be code generated in different
1774ways. For example, it could be generated as a series of chained conditional
1775branches or with a lookup table.</p>
1776
1777<h5>Example:</h5>
1778
1779<pre>
1780 <i>; Emulate a conditional br instruction</i>
1781 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1782 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1783
1784 <i>; Emulate an unconditional br instruction</i>
1785 switch i32 0, label %dest [ ]
1786
1787 <i>; Implement a jump table:</i>
1788 switch i32 %val, label %otherwise [ i32 0, label %onzero
1789 i32 1, label %onone
1790 i32 2, label %ontwo ]
1791</pre>
1792</div>
1793
1794<!-- _______________________________________________________________________ -->
1795<div class="doc_subsubsection">
1796 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1797</div>
1798
1799<div class="doc_text">
1800
1801<h5>Syntax:</h5>
1802
1803<pre>
1804 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1805 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1806</pre>
1807
1808<h5>Overview:</h5>
1809
1810<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1811function, with the possibility of control flow transfer to either the
1812'<tt>normal</tt>' label or the
1813'<tt>exception</tt>' label. If the callee function returns with the
1814"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1815"normal" label. If the callee (or any indirect callees) returns with the "<a
1816href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1817continued at the dynamically nearest "exception" label.</p>
1818
1819<h5>Arguments:</h5>
1820
1821<p>This instruction requires several arguments:</p>
1822
1823<ol>
1824 <li>
1825 The optional "cconv" marker indicates which <a href="#callingconv">calling
1826 convention</a> the call should use. If none is specified, the call defaults
1827 to using C calling conventions.
1828 </li>
1829 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1830 function value being invoked. In most cases, this is a direct function
1831 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1832 an arbitrary pointer to function value.
1833 </li>
1834
1835 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1836 function to be invoked. </li>
1837
1838 <li>'<tt>function args</tt>': argument list whose types match the function
1839 signature argument types. If the function signature indicates the function
1840 accepts a variable number of arguments, the extra arguments can be
1841 specified. </li>
1842
1843 <li>'<tt>normal label</tt>': the label reached when the called function
1844 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1845
1846 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1847 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1848
1849</ol>
1850
1851<h5>Semantics:</h5>
1852
1853<p>This instruction is designed to operate as a standard '<tt><a
1854href="#i_call">call</a></tt>' instruction in most regards. The primary
1855difference is that it establishes an association with a label, which is used by
1856the runtime library to unwind the stack.</p>
1857
1858<p>This instruction is used in languages with destructors to ensure that proper
1859cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1860exception. Additionally, this is important for implementation of
1861'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1862
1863<h5>Example:</h5>
1864<pre>
1865 %retval = invoke i32 %Test(i32 15) to label %Continue
1866 unwind label %TestCleanup <i>; {i32}:retval set</i>
1867 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1868 unwind label %TestCleanup <i>; {i32}:retval set</i>
1869</pre>
1870</div>
1871
1872
1873<!-- _______________________________________________________________________ -->
1874
1875<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1876Instruction</a> </div>
1877
1878<div class="doc_text">
1879
1880<h5>Syntax:</h5>
1881<pre>
1882 unwind
1883</pre>
1884
1885<h5>Overview:</h5>
1886
1887<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1888at the first callee in the dynamic call stack which used an <a
1889href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1890primarily used to implement exception handling.</p>
1891
1892<h5>Semantics:</h5>
1893
1894<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1895immediately halt. The dynamic call stack is then searched for the first <a
1896href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1897execution continues at the "exceptional" destination block specified by the
1898<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1899dynamic call chain, undefined behavior results.</p>
1900</div>
1901
1902<!-- _______________________________________________________________________ -->
1903
1904<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1905Instruction</a> </div>
1906
1907<div class="doc_text">
1908
1909<h5>Syntax:</h5>
1910<pre>
1911 unreachable
1912</pre>
1913
1914<h5>Overview:</h5>
1915
1916<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1917instruction is used to inform the optimizer that a particular portion of the
1918code is not reachable. This can be used to indicate that the code after a
1919no-return function cannot be reached, and other facts.</p>
1920
1921<h5>Semantics:</h5>
1922
1923<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1924</div>
1925
1926
1927
1928<!-- ======================================================================= -->
1929<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1930<div class="doc_text">
1931<p>Binary operators are used to do most of the computation in a
1932program. They require two operands, execute an operation on them, and
1933produce a single value. The operands might represent
1934multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1935The result value of a binary operator is not
1936necessarily the same type as its operands.</p>
1937<p>There are several different binary operators:</p>
1938</div>
1939<!-- _______________________________________________________________________ -->
1940<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1941Instruction</a> </div>
1942<div class="doc_text">
1943<h5>Syntax:</h5>
1944<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1945</pre>
1946<h5>Overview:</h5>
1947<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1948<h5>Arguments:</h5>
1949<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1950 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1951 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1952Both arguments must have identical types.</p>
1953<h5>Semantics:</h5>
1954<p>The value produced is the integer or floating point sum of the two
1955operands.</p>
1956<h5>Example:</h5>
1957<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1958</pre>
1959</div>
1960<!-- _______________________________________________________________________ -->
1961<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1962Instruction</a> </div>
1963<div class="doc_text">
1964<h5>Syntax:</h5>
1965<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1966</pre>
1967<h5>Overview:</h5>
1968<p>The '<tt>sub</tt>' instruction returns the difference of its two
1969operands.</p>
1970<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1971instruction present in most other intermediate representations.</p>
1972<h5>Arguments:</h5>
1973<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1974 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1975values.
1976This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1977Both arguments must have identical types.</p>
1978<h5>Semantics:</h5>
1979<p>The value produced is the integer or floating point difference of
1980the two operands.</p>
1981<h5>Example:</h5>
1982<pre>
1983 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1984 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1985</pre>
1986</div>
1987<!-- _______________________________________________________________________ -->
1988<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1989Instruction</a> </div>
1990<div class="doc_text">
1991<h5>Syntax:</h5>
1992<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1993</pre>
1994<h5>Overview:</h5>
1995<p>The '<tt>mul</tt>' instruction returns the product of its two
1996operands.</p>
1997<h5>Arguments:</h5>
1998<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
1999 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2000values.
2001This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2002Both arguments must have identical types.</p>
2003<h5>Semantics:</h5>
2004<p>The value produced is the integer or floating point product of the
2005two operands.</p>
2006<p>Because the operands are the same width, the result of an integer
2007multiplication is the same whether the operands should be deemed unsigned or
2008signed.</p>
2009<h5>Example:</h5>
2010<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2011</pre>
2012</div>
2013<!-- _______________________________________________________________________ -->
2014<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2015</a></div>
2016<div class="doc_text">
2017<h5>Syntax:</h5>
2018<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2019</pre>
2020<h5>Overview:</h5>
2021<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2022operands.</p>
2023<h5>Arguments:</h5>
2024<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2025<a href="#t_integer">integer</a> values. Both arguments must have identical
2026types. This instruction can also take <a href="#t_vector">vector</a> versions
2027of the values in which case the elements must be integers.</p>
2028<h5>Semantics:</h5>
2029<p>The value produced is the unsigned integer quotient of the two operands. This
2030instruction always performs an unsigned division operation, regardless of
2031whether the arguments are unsigned or not.</p>
2032<h5>Example:</h5>
2033<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2034</pre>
2035</div>
2036<!-- _______________________________________________________________________ -->
2037<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2038</a> </div>
2039<div class="doc_text">
2040<h5>Syntax:</h5>
2041<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2042</pre>
2043<h5>Overview:</h5>
2044<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2045operands.</p>
2046<h5>Arguments:</h5>
2047<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2048<a href="#t_integer">integer</a> values. Both arguments must have identical
2049types. This instruction can also take <a href="#t_vector">vector</a> versions
2050of the values in which case the elements must be integers.</p>
2051<h5>Semantics:</h5>
2052<p>The value produced is the signed integer quotient of the two operands. This
2053instruction always performs a signed division operation, regardless of whether
2054the arguments are signed or not.</p>
2055<h5>Example:</h5>
2056<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2057</pre>
2058</div>
2059<!-- _______________________________________________________________________ -->
2060<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2061Instruction</a> </div>
2062<div class="doc_text">
2063<h5>Syntax:</h5>
2064<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2065</pre>
2066<h5>Overview:</h5>
2067<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2068operands.</p>
2069<h5>Arguments:</h5>
2070<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2071<a href="#t_floating">floating point</a> values. Both arguments must have
2072identical types. This instruction can also take <a href="#t_vector">vector</a>
2073versions of floating point values.</p>
2074<h5>Semantics:</h5>
2075<p>The value produced is the floating point quotient of the two operands.</p>
2076<h5>Example:</h5>
2077<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2078</pre>
2079</div>
2080<!-- _______________________________________________________________________ -->
2081<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2082</div>
2083<div class="doc_text">
2084<h5>Syntax:</h5>
2085<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2086</pre>
2087<h5>Overview:</h5>
2088<p>The '<tt>urem</tt>' instruction returns the remainder from the
2089unsigned division of its two arguments.</p>
2090<h5>Arguments:</h5>
2091<p>The two arguments to the '<tt>urem</tt>' instruction must be
2092<a href="#t_integer">integer</a> values. Both arguments must have identical
2093types.</p>
2094<h5>Semantics:</h5>
2095<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2096This instruction always performs an unsigned division to get the remainder,
2097regardless of whether the arguments are unsigned or not.</p>
2098<h5>Example:</h5>
2099<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2100</pre>
2101
2102</div>
2103<!-- _______________________________________________________________________ -->
2104<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2105Instruction</a> </div>
2106<div class="doc_text">
2107<h5>Syntax:</h5>
2108<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2109</pre>
2110<h5>Overview:</h5>
2111<p>The '<tt>srem</tt>' instruction returns the remainder from the
2112signed division of its two operands.</p>
2113<h5>Arguments:</h5>
2114<p>The two arguments to the '<tt>srem</tt>' instruction must be
2115<a href="#t_integer">integer</a> values. Both arguments must have identical
2116types.</p>
2117<h5>Semantics:</h5>
2118<p>This instruction returns the <i>remainder</i> of a division (where the result
2119has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2120operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2121a value. For more information about the difference, see <a
2122 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2123Math Forum</a>. For a table of how this is implemented in various languages,
2124please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2125Wikipedia: modulo operation</a>.</p>
2126<h5>Example:</h5>
2127<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2128</pre>
2129
2130</div>
2131<!-- _______________________________________________________________________ -->
2132<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2133Instruction</a> </div>
2134<div class="doc_text">
2135<h5>Syntax:</h5>
2136<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2137</pre>
2138<h5>Overview:</h5>
2139<p>The '<tt>frem</tt>' instruction returns the remainder from the
2140division of its two operands.</p>
2141<h5>Arguments:</h5>
2142<p>The two arguments to the '<tt>frem</tt>' instruction must be
2143<a href="#t_floating">floating point</a> values. Both arguments must have
2144identical types.</p>
2145<h5>Semantics:</h5>
2146<p>This instruction returns the <i>remainder</i> of a division.</p>
2147<h5>Example:</h5>
2148<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2149</pre>
2150</div>
2151
2152<!-- ======================================================================= -->
2153<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2154Operations</a> </div>
2155<div class="doc_text">
2156<p>Bitwise binary operators are used to do various forms of
2157bit-twiddling in a program. They are generally very efficient
2158instructions and can commonly be strength reduced from other
2159instructions. They require two operands, execute an operation on them,
2160and produce a single value. The resulting value of the bitwise binary
2161operators is always the same type as its first operand.</p>
2162</div>
2163
2164<!-- _______________________________________________________________________ -->
2165<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2166Instruction</a> </div>
2167<div class="doc_text">
2168<h5>Syntax:</h5>
2169<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2170</pre>
2171<h5>Overview:</h5>
2172<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2173the left a specified number of bits.</p>
2174<h5>Arguments:</h5>
2175<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2176 href="#t_integer">integer</a> type.</p>
2177<h5>Semantics:</h5>
2178<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2179<h5>Example:</h5><pre>
2180 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2181 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2182 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2183</pre>
2184</div>
2185<!-- _______________________________________________________________________ -->
2186<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2187Instruction</a> </div>
2188<div class="doc_text">
2189<h5>Syntax:</h5>
2190<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2191</pre>
2192
2193<h5>Overview:</h5>
2194<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2195operand shifted to the right a specified number of bits with zero fill.</p>
2196
2197<h5>Arguments:</h5>
2198<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2199<a href="#t_integer">integer</a> type.</p>
2200
2201<h5>Semantics:</h5>
2202<p>This instruction always performs a logical shift right operation. The most
2203significant bits of the result will be filled with zero bits after the
2204shift.</p>
2205
2206<h5>Example:</h5>
2207<pre>
2208 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2209 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2210 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2211 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2212</pre>
2213</div>
2214
2215<!-- _______________________________________________________________________ -->
2216<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2217Instruction</a> </div>
2218<div class="doc_text">
2219
2220<h5>Syntax:</h5>
2221<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2222</pre>
2223
2224<h5>Overview:</h5>
2225<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2226operand shifted to the right a specified number of bits with sign extension.</p>
2227
2228<h5>Arguments:</h5>
2229<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2230<a href="#t_integer">integer</a> type.</p>
2231
2232<h5>Semantics:</h5>
2233<p>This instruction always performs an arithmetic shift right operation,
2234The most significant bits of the result will be filled with the sign bit
2235of <tt>var1</tt>.</p>
2236
2237<h5>Example:</h5>
2238<pre>
2239 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2240 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2241 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2242 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2243</pre>
2244</div>
2245
2246<!-- _______________________________________________________________________ -->
2247<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2248Instruction</a> </div>
2249<div class="doc_text">
2250<h5>Syntax:</h5>
2251<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2252</pre>
2253<h5>Overview:</h5>
2254<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2255its two operands.</p>
2256<h5>Arguments:</h5>
2257<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2258 href="#t_integer">integer</a> values. Both arguments must have
2259identical types.</p>
2260<h5>Semantics:</h5>
2261<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2262<p> </p>
2263<div style="align: center">
2264<table border="1" cellspacing="0" cellpadding="4">
2265 <tbody>
2266 <tr>
2267 <td>In0</td>
2268 <td>In1</td>
2269 <td>Out</td>
2270 </tr>
2271 <tr>
2272 <td>0</td>
2273 <td>0</td>
2274 <td>0</td>
2275 </tr>
2276 <tr>
2277 <td>0</td>
2278 <td>1</td>
2279 <td>0</td>
2280 </tr>
2281 <tr>
2282 <td>1</td>
2283 <td>0</td>
2284 <td>0</td>
2285 </tr>
2286 <tr>
2287 <td>1</td>
2288 <td>1</td>
2289 <td>1</td>
2290 </tr>
2291 </tbody>
2292</table>
2293</div>
2294<h5>Example:</h5>
2295<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2296 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2297 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2298</pre>
2299</div>
2300<!-- _______________________________________________________________________ -->
2301<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2302<div class="doc_text">
2303<h5>Syntax:</h5>
2304<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2305</pre>
2306<h5>Overview:</h5>
2307<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2308or of its two operands.</p>
2309<h5>Arguments:</h5>
2310<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2311 href="#t_integer">integer</a> values. Both arguments must have
2312identical types.</p>
2313<h5>Semantics:</h5>
2314<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2315<p> </p>
2316<div style="align: center">
2317<table border="1" cellspacing="0" cellpadding="4">
2318 <tbody>
2319 <tr>
2320 <td>In0</td>
2321 <td>In1</td>
2322 <td>Out</td>
2323 </tr>
2324 <tr>
2325 <td>0</td>
2326 <td>0</td>
2327 <td>0</td>
2328 </tr>
2329 <tr>
2330 <td>0</td>
2331 <td>1</td>
2332 <td>1</td>
2333 </tr>
2334 <tr>
2335 <td>1</td>
2336 <td>0</td>
2337 <td>1</td>
2338 </tr>
2339 <tr>
2340 <td>1</td>
2341 <td>1</td>
2342 <td>1</td>
2343 </tr>
2344 </tbody>
2345</table>
2346</div>
2347<h5>Example:</h5>
2348<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2349 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2350 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2351</pre>
2352</div>
2353<!-- _______________________________________________________________________ -->
2354<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2355Instruction</a> </div>
2356<div class="doc_text">
2357<h5>Syntax:</h5>
2358<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2359</pre>
2360<h5>Overview:</h5>
2361<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2362or of its two operands. The <tt>xor</tt> is used to implement the
2363"one's complement" operation, which is the "~" operator in C.</p>
2364<h5>Arguments:</h5>
2365<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2366 href="#t_integer">integer</a> values. Both arguments must have
2367identical types.</p>
2368<h5>Semantics:</h5>
2369<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2370<p> </p>
2371<div style="align: center">
2372<table border="1" cellspacing="0" cellpadding="4">
2373 <tbody>
2374 <tr>
2375 <td>In0</td>
2376 <td>In1</td>
2377 <td>Out</td>
2378 </tr>
2379 <tr>
2380 <td>0</td>
2381 <td>0</td>
2382 <td>0</td>
2383 </tr>
2384 <tr>
2385 <td>0</td>
2386 <td>1</td>
2387 <td>1</td>
2388 </tr>
2389 <tr>
2390 <td>1</td>
2391 <td>0</td>
2392 <td>1</td>
2393 </tr>
2394 <tr>
2395 <td>1</td>
2396 <td>1</td>
2397 <td>0</td>
2398 </tr>
2399 </tbody>
2400</table>
2401</div>
2402<p> </p>
2403<h5>Example:</h5>
2404<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2405 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2406 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2407 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2408</pre>
2409</div>
2410
2411<!-- ======================================================================= -->
2412<div class="doc_subsection">
2413 <a name="vectorops">Vector Operations</a>
2414</div>
2415
2416<div class="doc_text">
2417
2418<p>LLVM supports several instructions to represent vector operations in a
2419target-independent manner. These instructions cover the element-access and
2420vector-specific operations needed to process vectors effectively. While LLVM
2421does directly support these vector operations, many sophisticated algorithms
2422will want to use target-specific intrinsics to take full advantage of a specific
2423target.</p>
2424
2425</div>
2426
2427<!-- _______________________________________________________________________ -->
2428<div class="doc_subsubsection">
2429 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2430</div>
2431
2432<div class="doc_text">
2433
2434<h5>Syntax:</h5>
2435
2436<pre>
2437 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2438</pre>
2439
2440<h5>Overview:</h5>
2441
2442<p>
2443The '<tt>extractelement</tt>' instruction extracts a single scalar
2444element from a vector at a specified index.
2445</p>
2446
2447
2448<h5>Arguments:</h5>
2449
2450<p>
2451The first operand of an '<tt>extractelement</tt>' instruction is a
2452value of <a href="#t_vector">vector</a> type. The second operand is
2453an index indicating the position from which to extract the element.
2454The index may be a variable.</p>
2455
2456<h5>Semantics:</h5>
2457
2458<p>
2459The result is a scalar of the same type as the element type of
2460<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2461<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2462results are undefined.
2463</p>
2464
2465<h5>Example:</h5>
2466
2467<pre>
2468 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2469</pre>
2470</div>
2471
2472
2473<!-- _______________________________________________________________________ -->
2474<div class="doc_subsubsection">
2475 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2476</div>
2477
2478<div class="doc_text">
2479
2480<h5>Syntax:</h5>
2481
2482<pre>
2483 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2484</pre>
2485
2486<h5>Overview:</h5>
2487
2488<p>
2489The '<tt>insertelement</tt>' instruction inserts a scalar
2490element into a vector at a specified index.
2491</p>
2492
2493
2494<h5>Arguments:</h5>
2495
2496<p>
2497The first operand of an '<tt>insertelement</tt>' instruction is a
2498value of <a href="#t_vector">vector</a> type. The second operand is a
2499scalar value whose type must equal the element type of the first
2500operand. The third operand is an index indicating the position at
2501which to insert the value. The index may be a variable.</p>
2502
2503<h5>Semantics:</h5>
2504
2505<p>
2506The result is a vector of the same type as <tt>val</tt>. Its
2507element values are those of <tt>val</tt> except at position
2508<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2509exceeds the length of <tt>val</tt>, the results are undefined.
2510</p>
2511
2512<h5>Example:</h5>
2513
2514<pre>
2515 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2516</pre>
2517</div>
2518
2519<!-- _______________________________________________________________________ -->
2520<div class="doc_subsubsection">
2521 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2522</div>
2523
2524<div class="doc_text">
2525
2526<h5>Syntax:</h5>
2527
2528<pre>
2529 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2530</pre>
2531
2532<h5>Overview:</h5>
2533
2534<p>
2535The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2536from two input vectors, returning a vector of the same type.
2537</p>
2538
2539<h5>Arguments:</h5>
2540
2541<p>
2542The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2543with types that match each other and types that match the result of the
2544instruction. The third argument is a shuffle mask, which has the same number
2545of elements as the other vector type, but whose element type is always 'i32'.
2546</p>
2547
2548<p>
2549The shuffle mask operand is required to be a constant vector with either
2550constant integer or undef values.
2551</p>
2552
2553<h5>Semantics:</h5>
2554
2555<p>
2556The elements of the two input vectors are numbered from left to right across
2557both of the vectors. The shuffle mask operand specifies, for each element of
2558the result vector, which element of the two input registers the result element
2559gets. The element selector may be undef (meaning "don't care") and the second
2560operand may be undef if performing a shuffle from only one vector.
2561</p>
2562
2563<h5>Example:</h5>
2564
2565<pre>
2566 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2567 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2568 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2569 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2570</pre>
2571</div>
2572
2573
2574<!-- ======================================================================= -->
2575<div class="doc_subsection">
2576 <a name="memoryops">Memory Access and Addressing Operations</a>
2577</div>
2578
2579<div class="doc_text">
2580
2581<p>A key design point of an SSA-based representation is how it
2582represents memory. In LLVM, no memory locations are in SSA form, which
2583makes things very simple. This section describes how to read, write,
2584allocate, and free memory in LLVM.</p>
2585
2586</div>
2587
2588<!-- _______________________________________________________________________ -->
2589<div class="doc_subsubsection">
2590 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2591</div>
2592
2593<div class="doc_text">
2594
2595<h5>Syntax:</h5>
2596
2597<pre>
2598 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2599</pre>
2600
2601<h5>Overview:</h5>
2602
2603<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2604heap and returns a pointer to it.</p>
2605
2606<h5>Arguments:</h5>
2607
2608<p>The '<tt>malloc</tt>' instruction allocates
2609<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2610bytes of memory from the operating system and returns a pointer of the
2611appropriate type to the program. If "NumElements" is specified, it is the
2612number of elements allocated. If an alignment is specified, the value result
2613of the allocation is guaranteed to be aligned to at least that boundary. If
2614not specified, or if zero, the target can choose to align the allocation on any
2615convenient boundary.</p>
2616
2617<p>'<tt>type</tt>' must be a sized type.</p>
2618
2619<h5>Semantics:</h5>
2620
2621<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2622a pointer is returned.</p>
2623
2624<h5>Example:</h5>
2625
2626<pre>
2627 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2628
2629 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2630 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2631 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2632 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2633 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2634</pre>
2635</div>
2636
2637<!-- _______________________________________________________________________ -->
2638<div class="doc_subsubsection">
2639 <a name="i_free">'<tt>free</tt>' Instruction</a>
2640</div>
2641
2642<div class="doc_text">
2643
2644<h5>Syntax:</h5>
2645
2646<pre>
2647 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2648</pre>
2649
2650<h5>Overview:</h5>
2651
2652<p>The '<tt>free</tt>' instruction returns memory back to the unused
2653memory heap to be reallocated in the future.</p>
2654
2655<h5>Arguments:</h5>
2656
2657<p>'<tt>value</tt>' shall be a pointer value that points to a value
2658that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2659instruction.</p>
2660
2661<h5>Semantics:</h5>
2662
2663<p>Access to the memory pointed to by the pointer is no longer defined
2664after this instruction executes.</p>
2665
2666<h5>Example:</h5>
2667
2668<pre>
2669 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2670 free [4 x i8]* %array
2671</pre>
2672</div>
2673
2674<!-- _______________________________________________________________________ -->
2675<div class="doc_subsubsection">
2676 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2677</div>
2678
2679<div class="doc_text">
2680
2681<h5>Syntax:</h5>
2682
2683<pre>
2684 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2685</pre>
2686
2687<h5>Overview:</h5>
2688
2689<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2690currently executing function, to be automatically released when this function
2691returns to its caller.</p>
2692
2693<h5>Arguments:</h5>
2694
2695<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2696bytes of memory on the runtime stack, returning a pointer of the
2697appropriate type to the program. If "NumElements" is specified, it is the
2698number of elements allocated. If an alignment is specified, the value result
2699of the allocation is guaranteed to be aligned to at least that boundary. If
2700not specified, or if zero, the target can choose to align the allocation on any
2701convenient boundary.</p>
2702
2703<p>'<tt>type</tt>' may be any sized type.</p>
2704
2705<h5>Semantics:</h5>
2706
2707<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2708memory is automatically released when the function returns. The '<tt>alloca</tt>'
2709instruction is commonly used to represent automatic variables that must
2710have an address available. When the function returns (either with the <tt><a
2711 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2712instructions), the memory is reclaimed.</p>
2713
2714<h5>Example:</h5>
2715
2716<pre>
2717 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2718 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2719 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2720 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2721</pre>
2722</div>
2723
2724<!-- _______________________________________________________________________ -->
2725<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2726Instruction</a> </div>
2727<div class="doc_text">
2728<h5>Syntax:</h5>
2729<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2730<h5>Overview:</h5>
2731<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2732<h5>Arguments:</h5>
2733<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2734address from which to load. The pointer must point to a <a
2735 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2736marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2737the number or order of execution of this <tt>load</tt> with other
2738volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2739instructions. </p>
2740<h5>Semantics:</h5>
2741<p>The location of memory pointed to is loaded.</p>
2742<h5>Examples:</h5>
2743<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2744 <a
2745 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2746 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2747</pre>
2748</div>
2749<!-- _______________________________________________________________________ -->
2750<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2751Instruction</a> </div>
2752<div class="doc_text">
2753<h5>Syntax:</h5>
2754<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2755 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2756</pre>
2757<h5>Overview:</h5>
2758<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2759<h5>Arguments:</h5>
2760<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2761to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2762operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2763operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2764optimizer is not allowed to modify the number or order of execution of
2765this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2766 href="#i_store">store</a></tt> instructions.</p>
2767<h5>Semantics:</h5>
2768<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2769at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2770<h5>Example:</h5>
2771<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2772 <a
2773 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2774 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2775</pre>
2776</div>
2777
2778<!-- _______________________________________________________________________ -->
2779<div class="doc_subsubsection">
2780 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2781</div>
2782
2783<div class="doc_text">
2784<h5>Syntax:</h5>
2785<pre>
2786 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2787</pre>
2788
2789<h5>Overview:</h5>
2790
2791<p>
2792The '<tt>getelementptr</tt>' instruction is used to get the address of a
2793subelement of an aggregate data structure.</p>
2794
2795<h5>Arguments:</h5>
2796
2797<p>This instruction takes a list of integer operands that indicate what
2798elements of the aggregate object to index to. The actual types of the arguments
2799provided depend on the type of the first pointer argument. The
2800'<tt>getelementptr</tt>' instruction is used to index down through the type
2801levels of a structure or to a specific index in an array. When indexing into a
2802structure, only <tt>i32</tt> integer constants are allowed. When indexing
2803into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2804be sign extended to 64-bit values.</p>
2805
2806<p>For example, let's consider a C code fragment and how it gets
2807compiled to LLVM:</p>
2808
2809<div class="doc_code">
2810<pre>
2811struct RT {
2812 char A;
2813 int B[10][20];
2814 char C;
2815};
2816struct ST {
2817 int X;
2818 double Y;
2819 struct RT Z;
2820};
2821
2822int *foo(struct ST *s) {
2823 return &amp;s[1].Z.B[5][13];
2824}
2825</pre>
2826</div>
2827
2828<p>The LLVM code generated by the GCC frontend is:</p>
2829
2830<div class="doc_code">
2831<pre>
2832%RT = type { i8 , [10 x [20 x i32]], i8 }
2833%ST = type { i32, double, %RT }
2834
2835define i32* %foo(%ST* %s) {
2836entry:
2837 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2838 ret i32* %reg
2839}
2840</pre>
2841</div>
2842
2843<h5>Semantics:</h5>
2844
2845<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2846on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2847and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2848<a href="#t_integer">integer</a> type but the value will always be sign extended
2849to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2850<b>constants</b>.</p>
2851
2852<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2853type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2854}</tt>' type, a structure. The second index indexes into the third element of
2855the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2856i8 }</tt>' type, another structure. The third index indexes into the second
2857element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2858array. The two dimensions of the array are subscripted into, yielding an
2859'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2860to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2861
2862<p>Note that it is perfectly legal to index partially through a
2863structure, returning a pointer to an inner element. Because of this,
2864the LLVM code for the given testcase is equivalent to:</p>
2865
2866<pre>
2867 define i32* %foo(%ST* %s) {
2868 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2869 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2870 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2871 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2872 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2873 ret i32* %t5
2874 }
2875</pre>
2876
2877<p>Note that it is undefined to access an array out of bounds: array and
2878pointer indexes must always be within the defined bounds of the array type.
2879The one exception for this rules is zero length arrays. These arrays are
2880defined to be accessible as variable length arrays, which requires access
2881beyond the zero'th element.</p>
2882
2883<p>The getelementptr instruction is often confusing. For some more insight
2884into how it works, see <a href="GetElementPtr.html">the getelementptr
2885FAQ</a>.</p>
2886
2887<h5>Example:</h5>
2888
2889<pre>
2890 <i>; yields [12 x i8]*:aptr</i>
2891 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2892</pre>
2893</div>
2894
2895<!-- ======================================================================= -->
2896<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2897</div>
2898<div class="doc_text">
2899<p>The instructions in this category are the conversion instructions (casting)
2900which all take a single operand and a type. They perform various bit conversions
2901on the operand.</p>
2902</div>
2903
2904<!-- _______________________________________________________________________ -->
2905<div class="doc_subsubsection">
2906 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2907</div>
2908<div class="doc_text">
2909
2910<h5>Syntax:</h5>
2911<pre>
2912 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2913</pre>
2914
2915<h5>Overview:</h5>
2916<p>
2917The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2918</p>
2919
2920<h5>Arguments:</h5>
2921<p>
2922The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2923be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2924and type of the result, which must be an <a href="#t_integer">integer</a>
2925type. The bit size of <tt>value</tt> must be larger than the bit size of
2926<tt>ty2</tt>. Equal sized types are not allowed.</p>
2927
2928<h5>Semantics:</h5>
2929<p>
2930The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2931and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2932larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2933It will always truncate bits.</p>
2934
2935<h5>Example:</h5>
2936<pre>
2937 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2938 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2939 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2940</pre>
2941</div>
2942
2943<!-- _______________________________________________________________________ -->
2944<div class="doc_subsubsection">
2945 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2946</div>
2947<div class="doc_text">
2948
2949<h5>Syntax:</h5>
2950<pre>
2951 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2952</pre>
2953
2954<h5>Overview:</h5>
2955<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2956<tt>ty2</tt>.</p>
2957
2958
2959<h5>Arguments:</h5>
2960<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2961<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2962also be of <a href="#t_integer">integer</a> type. The bit size of the
2963<tt>value</tt> must be smaller than the bit size of the destination type,
2964<tt>ty2</tt>.</p>
2965
2966<h5>Semantics:</h5>
2967<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2968bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2969
2970<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2971
2972<h5>Example:</h5>
2973<pre>
2974 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2975 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2976</pre>
2977</div>
2978
2979<!-- _______________________________________________________________________ -->
2980<div class="doc_subsubsection">
2981 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2982</div>
2983<div class="doc_text">
2984
2985<h5>Syntax:</h5>
2986<pre>
2987 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2988</pre>
2989
2990<h5>Overview:</h5>
2991<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2992
2993<h5>Arguments:</h5>
2994<p>
2995The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2996<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2997also be of <a href="#t_integer">integer</a> type. The bit size of the
2998<tt>value</tt> must be smaller than the bit size of the destination type,
2999<tt>ty2</tt>.</p>
3000
3001<h5>Semantics:</h5>
3002<p>
3003The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3004bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3005the type <tt>ty2</tt>.</p>
3006
3007<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3008
3009<h5>Example:</h5>
3010<pre>
3011 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3012 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3013</pre>
3014</div>
3015
3016<!-- _______________________________________________________________________ -->
3017<div class="doc_subsubsection">
3018 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3019</div>
3020
3021<div class="doc_text">
3022
3023<h5>Syntax:</h5>
3024
3025<pre>
3026 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3027</pre>
3028
3029<h5>Overview:</h5>
3030<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3031<tt>ty2</tt>.</p>
3032
3033
3034<h5>Arguments:</h5>
3035<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3036 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3037cast it to. The size of <tt>value</tt> must be larger than the size of
3038<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3039<i>no-op cast</i>.</p>
3040
3041<h5>Semantics:</h5>
3042<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3043<a href="#t_floating">floating point</a> type to a smaller
3044<a href="#t_floating">floating point</a> type. If the value cannot fit within
3045the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3046
3047<h5>Example:</h5>
3048<pre>
3049 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3050 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3051</pre>
3052</div>
3053
3054<!-- _______________________________________________________________________ -->
3055<div class="doc_subsubsection">
3056 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3057</div>
3058<div class="doc_text">
3059
3060<h5>Syntax:</h5>
3061<pre>
3062 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3063</pre>
3064
3065<h5>Overview:</h5>
3066<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3067floating point value.</p>
3068
3069<h5>Arguments:</h5>
3070<p>The '<tt>fpext</tt>' instruction takes a
3071<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3072and a <a href="#t_floating">floating point</a> type to cast it to. The source
3073type must be smaller than the destination type.</p>
3074
3075<h5>Semantics:</h5>
3076<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3077<a href="#t_floating">floating point</a> type to a larger
3078<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3079used to make a <i>no-op cast</i> because it always changes bits. Use
3080<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3081
3082<h5>Example:</h5>
3083<pre>
3084 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3085 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3086</pre>
3087</div>
3088
3089<!-- _______________________________________________________________________ -->
3090<div class="doc_subsubsection">
3091 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3092</div>
3093<div class="doc_text">
3094
3095<h5>Syntax:</h5>
3096<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003097 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098</pre>
3099
3100<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003101<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003102unsigned integer equivalent of type <tt>ty2</tt>.
3103</p>
3104
3105<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003106<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003107<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3108must be an <a href="#t_integer">integer</a> type.</p>
3109
3110<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003111<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112<a href="#t_floating">floating point</a> operand into the nearest (rounding
3113towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3114the results are undefined.</p>
3115
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116<h5>Example:</h5>
3117<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003118 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003119 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003120 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121</pre>
3122</div>
3123
3124<!-- _______________________________________________________________________ -->
3125<div class="doc_subsubsection">
3126 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3127</div>
3128<div class="doc_text">
3129
3130<h5>Syntax:</h5>
3131<pre>
3132 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3133</pre>
3134
3135<h5>Overview:</h5>
3136<p>The '<tt>fptosi</tt>' instruction converts
3137<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3138</p>
3139
3140
3141<h5>Arguments:</h5>
3142<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3143<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3144must also be an <a href="#t_integer">integer</a> type.</p>
3145
3146<h5>Semantics:</h5>
3147<p>The '<tt>fptosi</tt>' instruction converts its
3148<a href="#t_floating">floating point</a> operand into the nearest (rounding
3149towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3150the results are undefined.</p>
3151
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003152<h5>Example:</h5>
3153<pre>
3154 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003155 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003156 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3157</pre>
3158</div>
3159
3160<!-- _______________________________________________________________________ -->
3161<div class="doc_subsubsection">
3162 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3163</div>
3164<div class="doc_text">
3165
3166<h5>Syntax:</h5>
3167<pre>
3168 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3169</pre>
3170
3171<h5>Overview:</h5>
3172<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3173integer and converts that value to the <tt>ty2</tt> type.</p>
3174
3175
3176<h5>Arguments:</h5>
3177<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3178<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3179be a <a href="#t_floating">floating point</a> type.</p>
3180
3181<h5>Semantics:</h5>
3182<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3183integer quantity and converts it to the corresponding floating point value. If
3184the value cannot fit in the floating point value, the results are undefined.</p>
3185
3186
3187<h5>Example:</h5>
3188<pre>
3189 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3190 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3191</pre>
3192</div>
3193
3194<!-- _______________________________________________________________________ -->
3195<div class="doc_subsubsection">
3196 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3197</div>
3198<div class="doc_text">
3199
3200<h5>Syntax:</h5>
3201<pre>
3202 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3203</pre>
3204
3205<h5>Overview:</h5>
3206<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3207integer and converts that value to the <tt>ty2</tt> type.</p>
3208
3209<h5>Arguments:</h5>
3210<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3211<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3212a <a href="#t_floating">floating point</a> type.</p>
3213
3214<h5>Semantics:</h5>
3215<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3216integer quantity and converts it to the corresponding floating point value. If
3217the value cannot fit in the floating point value, the results are undefined.</p>
3218
3219<h5>Example:</h5>
3220<pre>
3221 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3222 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3223</pre>
3224</div>
3225
3226<!-- _______________________________________________________________________ -->
3227<div class="doc_subsubsection">
3228 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3229</div>
3230<div class="doc_text">
3231
3232<h5>Syntax:</h5>
3233<pre>
3234 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3235</pre>
3236
3237<h5>Overview:</h5>
3238<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3239the integer type <tt>ty2</tt>.</p>
3240
3241<h5>Arguments:</h5>
3242<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3243must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3244<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3245
3246<h5>Semantics:</h5>
3247<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3248<tt>ty2</tt> by interpreting the pointer value as an integer and either
3249truncating or zero extending that value to the size of the integer type. If
3250<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3251<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3252are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3253change.</p>
3254
3255<h5>Example:</h5>
3256<pre>
3257 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3258 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3259</pre>
3260</div>
3261
3262<!-- _______________________________________________________________________ -->
3263<div class="doc_subsubsection">
3264 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3265</div>
3266<div class="doc_text">
3267
3268<h5>Syntax:</h5>
3269<pre>
3270 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3271</pre>
3272
3273<h5>Overview:</h5>
3274<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3275a pointer type, <tt>ty2</tt>.</p>
3276
3277<h5>Arguments:</h5>
3278<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3279value to cast, and a type to cast it to, which must be a
3280<a href="#t_pointer">pointer</a> type.
3281
3282<h5>Semantics:</h5>
3283<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3284<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3285the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3286size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3287the size of a pointer then a zero extension is done. If they are the same size,
3288nothing is done (<i>no-op cast</i>).</p>
3289
3290<h5>Example:</h5>
3291<pre>
3292 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3293 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3294 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3295</pre>
3296</div>
3297
3298<!-- _______________________________________________________________________ -->
3299<div class="doc_subsubsection">
3300 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3301</div>
3302<div class="doc_text">
3303
3304<h5>Syntax:</h5>
3305<pre>
3306 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3307</pre>
3308
3309<h5>Overview:</h5>
3310<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3311<tt>ty2</tt> without changing any bits.</p>
3312
3313<h5>Arguments:</h5>
3314<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3315a first class value, and a type to cast it to, which must also be a <a
3316 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3317and the destination type, <tt>ty2</tt>, must be identical. If the source
3318type is a pointer, the destination type must also be a pointer.</p>
3319
3320<h5>Semantics:</h5>
3321<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3322<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3323this conversion. The conversion is done as if the <tt>value</tt> had been
3324stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3325converted to other pointer types with this instruction. To convert pointers to
3326other types, use the <a href="#i_inttoptr">inttoptr</a> or
3327<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3328
3329<h5>Example:</h5>
3330<pre>
3331 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3332 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3333 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3334</pre>
3335</div>
3336
3337<!-- ======================================================================= -->
3338<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3339<div class="doc_text">
3340<p>The instructions in this category are the "miscellaneous"
3341instructions, which defy better classification.</p>
3342</div>
3343
3344<!-- _______________________________________________________________________ -->
3345<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3346</div>
3347<div class="doc_text">
3348<h5>Syntax:</h5>
3349<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3350</pre>
3351<h5>Overview:</h5>
3352<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3353of its two integer operands.</p>
3354<h5>Arguments:</h5>
3355<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3356the condition code indicating the kind of comparison to perform. It is not
3357a value, just a keyword. The possible condition code are:
3358<ol>
3359 <li><tt>eq</tt>: equal</li>
3360 <li><tt>ne</tt>: not equal </li>
3361 <li><tt>ugt</tt>: unsigned greater than</li>
3362 <li><tt>uge</tt>: unsigned greater or equal</li>
3363 <li><tt>ult</tt>: unsigned less than</li>
3364 <li><tt>ule</tt>: unsigned less or equal</li>
3365 <li><tt>sgt</tt>: signed greater than</li>
3366 <li><tt>sge</tt>: signed greater or equal</li>
3367 <li><tt>slt</tt>: signed less than</li>
3368 <li><tt>sle</tt>: signed less or equal</li>
3369</ol>
3370<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3371<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3372<h5>Semantics:</h5>
3373<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3374the condition code given as <tt>cond</tt>. The comparison performed always
3375yields a <a href="#t_primitive">i1</a> result, as follows:
3376<ol>
3377 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3378 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3379 </li>
3380 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3381 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3382 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3383 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3384 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3385 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3386 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3387 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3388 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3389 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3390 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3391 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3392 <li><tt>sge</tt>: interprets the operands as signed values and yields
3393 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3394 <li><tt>slt</tt>: interprets the operands as signed values and yields
3395 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3396 <li><tt>sle</tt>: interprets the operands as signed values and yields
3397 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3398</ol>
3399<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3400values are compared as if they were integers.</p>
3401
3402<h5>Example:</h5>
3403<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3404 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3405 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3406 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3407 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3408 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3409</pre>
3410</div>
3411
3412<!-- _______________________________________________________________________ -->
3413<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3414</div>
3415<div class="doc_text">
3416<h5>Syntax:</h5>
3417<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3418</pre>
3419<h5>Overview:</h5>
3420<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3421of its floating point operands.</p>
3422<h5>Arguments:</h5>
3423<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3424the condition code indicating the kind of comparison to perform. It is not
3425a value, just a keyword. The possible condition code are:
3426<ol>
3427 <li><tt>false</tt>: no comparison, always returns false</li>
3428 <li><tt>oeq</tt>: ordered and equal</li>
3429 <li><tt>ogt</tt>: ordered and greater than </li>
3430 <li><tt>oge</tt>: ordered and greater than or equal</li>
3431 <li><tt>olt</tt>: ordered and less than </li>
3432 <li><tt>ole</tt>: ordered and less than or equal</li>
3433 <li><tt>one</tt>: ordered and not equal</li>
3434 <li><tt>ord</tt>: ordered (no nans)</li>
3435 <li><tt>ueq</tt>: unordered or equal</li>
3436 <li><tt>ugt</tt>: unordered or greater than </li>
3437 <li><tt>uge</tt>: unordered or greater than or equal</li>
3438 <li><tt>ult</tt>: unordered or less than </li>
3439 <li><tt>ule</tt>: unordered or less than or equal</li>
3440 <li><tt>une</tt>: unordered or not equal</li>
3441 <li><tt>uno</tt>: unordered (either nans)</li>
3442 <li><tt>true</tt>: no comparison, always returns true</li>
3443</ol>
3444<p><i>Ordered</i> means that neither operand is a QNAN while
3445<i>unordered</i> means that either operand may be a QNAN.</p>
3446<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3447<a href="#t_floating">floating point</a> typed. They must have identical
3448types.</p>
3449<h5>Semantics:</h5>
3450<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3451the condition code given as <tt>cond</tt>. The comparison performed always
3452yields a <a href="#t_primitive">i1</a> result, as follows:
3453<ol>
3454 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3455 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3456 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3457 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3458 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3459 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3460 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3461 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3462 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3463 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3464 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3465 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3466 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3467 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3468 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3469 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3470 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3471 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3472 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3473 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3474 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3475 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3476 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3477 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3478 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3479 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3480 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3481 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3482</ol>
3483
3484<h5>Example:</h5>
3485<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3486 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3487 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3488 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3489</pre>
3490</div>
3491
3492<!-- _______________________________________________________________________ -->
3493<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3494Instruction</a> </div>
3495<div class="doc_text">
3496<h5>Syntax:</h5>
3497<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3498<h5>Overview:</h5>
3499<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3500the SSA graph representing the function.</p>
3501<h5>Arguments:</h5>
3502<p>The type of the incoming values is specified with the first type
3503field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3504as arguments, with one pair for each predecessor basic block of the
3505current block. Only values of <a href="#t_firstclass">first class</a>
3506type may be used as the value arguments to the PHI node. Only labels
3507may be used as the label arguments.</p>
3508<p>There must be no non-phi instructions between the start of a basic
3509block and the PHI instructions: i.e. PHI instructions must be first in
3510a basic block.</p>
3511<h5>Semantics:</h5>
3512<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3513specified by the pair corresponding to the predecessor basic block that executed
3514just prior to the current block.</p>
3515<h5>Example:</h5>
3516<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3517</div>
3518
3519<!-- _______________________________________________________________________ -->
3520<div class="doc_subsubsection">
3521 <a name="i_select">'<tt>select</tt>' Instruction</a>
3522</div>
3523
3524<div class="doc_text">
3525
3526<h5>Syntax:</h5>
3527
3528<pre>
3529 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3530</pre>
3531
3532<h5>Overview:</h5>
3533
3534<p>
3535The '<tt>select</tt>' instruction is used to choose one value based on a
3536condition, without branching.
3537</p>
3538
3539
3540<h5>Arguments:</h5>
3541
3542<p>
3543The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3544</p>
3545
3546<h5>Semantics:</h5>
3547
3548<p>
3549If the boolean condition evaluates to true, the instruction returns the first
3550value argument; otherwise, it returns the second value argument.
3551</p>
3552
3553<h5>Example:</h5>
3554
3555<pre>
3556 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3557</pre>
3558</div>
3559
3560
3561<!-- _______________________________________________________________________ -->
3562<div class="doc_subsubsection">
3563 <a name="i_call">'<tt>call</tt>' Instruction</a>
3564</div>
3565
3566<div class="doc_text">
3567
3568<h5>Syntax:</h5>
3569<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003570 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571</pre>
3572
3573<h5>Overview:</h5>
3574
3575<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3576
3577<h5>Arguments:</h5>
3578
3579<p>This instruction requires several arguments:</p>
3580
3581<ol>
3582 <li>
3583 <p>The optional "tail" marker indicates whether the callee function accesses
3584 any allocas or varargs in the caller. If the "tail" marker is present, the
3585 function call is eligible for tail call optimization. Note that calls may
3586 be marked "tail" even if they do not occur before a <a
3587 href="#i_ret"><tt>ret</tt></a> instruction.
3588 </li>
3589 <li>
3590 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3591 convention</a> the call should use. If none is specified, the call defaults
3592 to using C calling conventions.
3593 </li>
3594 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003595 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3596 the type of the return value. Functions that return no value are marked
3597 <tt><a href="#t_void">void</a></tt>.</p>
3598 </li>
3599 <li>
3600 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3601 value being invoked. The argument types must match the types implied by
3602 this signature. This type can be omitted if the function is not varargs
3603 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604 </li>
3605 <li>
3606 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3607 be invoked. In most cases, this is a direct function invocation, but
3608 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3609 to function value.</p>
3610 </li>
3611 <li>
3612 <p>'<tt>function args</tt>': argument list whose types match the
3613 function signature argument types. All arguments must be of
3614 <a href="#t_firstclass">first class</a> type. If the function signature
3615 indicates the function accepts a variable number of arguments, the extra
3616 arguments can be specified.</p>
3617 </li>
3618</ol>
3619
3620<h5>Semantics:</h5>
3621
3622<p>The '<tt>call</tt>' instruction is used to cause control flow to
3623transfer to a specified function, with its incoming arguments bound to
3624the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3625instruction in the called function, control flow continues with the
3626instruction after the function call, and the return value of the
3627function is bound to the result argument. This is a simpler case of
3628the <a href="#i_invoke">invoke</a> instruction.</p>
3629
3630<h5>Example:</h5>
3631
3632<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003633 %retval = call i32 @test(i32 %argc)
3634 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3635 %X = tail call i32 @foo()
3636 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3637 %Z = call void %foo(i8 97 signext)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003638</pre>
3639
3640</div>
3641
3642<!-- _______________________________________________________________________ -->
3643<div class="doc_subsubsection">
3644 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3645</div>
3646
3647<div class="doc_text">
3648
3649<h5>Syntax:</h5>
3650
3651<pre>
3652 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3653</pre>
3654
3655<h5>Overview:</h5>
3656
3657<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3658the "variable argument" area of a function call. It is used to implement the
3659<tt>va_arg</tt> macro in C.</p>
3660
3661<h5>Arguments:</h5>
3662
3663<p>This instruction takes a <tt>va_list*</tt> value and the type of
3664the argument. It returns a value of the specified argument type and
3665increments the <tt>va_list</tt> to point to the next argument. The
3666actual type of <tt>va_list</tt> is target specific.</p>
3667
3668<h5>Semantics:</h5>
3669
3670<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3671type from the specified <tt>va_list</tt> and causes the
3672<tt>va_list</tt> to point to the next argument. For more information,
3673see the variable argument handling <a href="#int_varargs">Intrinsic
3674Functions</a>.</p>
3675
3676<p>It is legal for this instruction to be called in a function which does not
3677take a variable number of arguments, for example, the <tt>vfprintf</tt>
3678function.</p>
3679
3680<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3681href="#intrinsics">intrinsic function</a> because it takes a type as an
3682argument.</p>
3683
3684<h5>Example:</h5>
3685
3686<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3687
3688</div>
3689
3690<!-- *********************************************************************** -->
3691<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3692<!-- *********************************************************************** -->
3693
3694<div class="doc_text">
3695
3696<p>LLVM supports the notion of an "intrinsic function". These functions have
3697well known names and semantics and are required to follow certain restrictions.
3698Overall, these intrinsics represent an extension mechanism for the LLVM
3699language that does not require changing all of the transformations in LLVM when
3700adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3701
3702<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3703prefix is reserved in LLVM for intrinsic names; thus, function names may not
3704begin with this prefix. Intrinsic functions must always be external functions:
3705you cannot define the body of intrinsic functions. Intrinsic functions may
3706only be used in call or invoke instructions: it is illegal to take the address
3707of an intrinsic function. Additionally, because intrinsic functions are part
3708of the LLVM language, it is required if any are added that they be documented
3709here.</p>
3710
Chandler Carrutha228e392007-08-04 01:51:18 +00003711<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3712a family of functions that perform the same operation but on different data
3713types. Because LLVM can represent over 8 million different integer types,
3714overloading is used commonly to allow an intrinsic function to operate on any
3715integer type. One or more of the argument types or the result type can be
3716overloaded to accept any integer type. Argument types may also be defined as
3717exactly matching a previous argument's type or the result type. This allows an
3718intrinsic function which accepts multiple arguments, but needs all of them to
3719be of the same type, to only be overloaded with respect to a single argument or
3720the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003721
Chandler Carrutha228e392007-08-04 01:51:18 +00003722<p>Overloaded intrinsics will have the names of its overloaded argument types
3723encoded into its function name, each preceded by a period. Only those types
3724which are overloaded result in a name suffix. Arguments whose type is matched
3725against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3726take an integer of any width and returns an integer of exactly the same integer
3727width. This leads to a family of functions such as
3728<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3729Only one type, the return type, is overloaded, and only one type suffix is
3730required. Because the argument's type is matched against the return type, it
3731does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003732
3733<p>To learn how to add an intrinsic function, please see the
3734<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3735</p>
3736
3737</div>
3738
3739<!-- ======================================================================= -->
3740<div class="doc_subsection">
3741 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3742</div>
3743
3744<div class="doc_text">
3745
3746<p>Variable argument support is defined in LLVM with the <a
3747 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3748intrinsic functions. These functions are related to the similarly
3749named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3750
3751<p>All of these functions operate on arguments that use a
3752target-specific value type "<tt>va_list</tt>". The LLVM assembly
3753language reference manual does not define what this type is, so all
3754transformations should be prepared to handle these functions regardless of
3755the type used.</p>
3756
3757<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3758instruction and the variable argument handling intrinsic functions are
3759used.</p>
3760
3761<div class="doc_code">
3762<pre>
3763define i32 @test(i32 %X, ...) {
3764 ; Initialize variable argument processing
3765 %ap = alloca i8*
3766 %ap2 = bitcast i8** %ap to i8*
3767 call void @llvm.va_start(i8* %ap2)
3768
3769 ; Read a single integer argument
3770 %tmp = va_arg i8** %ap, i32
3771
3772 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3773 %aq = alloca i8*
3774 %aq2 = bitcast i8** %aq to i8*
3775 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3776 call void @llvm.va_end(i8* %aq2)
3777
3778 ; Stop processing of arguments.
3779 call void @llvm.va_end(i8* %ap2)
3780 ret i32 %tmp
3781}
3782
3783declare void @llvm.va_start(i8*)
3784declare void @llvm.va_copy(i8*, i8*)
3785declare void @llvm.va_end(i8*)
3786</pre>
3787</div>
3788
3789</div>
3790
3791<!-- _______________________________________________________________________ -->
3792<div class="doc_subsubsection">
3793 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3794</div>
3795
3796
3797<div class="doc_text">
3798<h5>Syntax:</h5>
3799<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3800<h5>Overview:</h5>
3801<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3802<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3803href="#i_va_arg">va_arg</a></tt>.</p>
3804
3805<h5>Arguments:</h5>
3806
3807<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3808
3809<h5>Semantics:</h5>
3810
3811<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3812macro available in C. In a target-dependent way, it initializes the
3813<tt>va_list</tt> element to which the argument points, so that the next call to
3814<tt>va_arg</tt> will produce the first variable argument passed to the function.
3815Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3816last argument of the function as the compiler can figure that out.</p>
3817
3818</div>
3819
3820<!-- _______________________________________________________________________ -->
3821<div class="doc_subsubsection">
3822 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3823</div>
3824
3825<div class="doc_text">
3826<h5>Syntax:</h5>
3827<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3828<h5>Overview:</h5>
3829
3830<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3831which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3832or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3833
3834<h5>Arguments:</h5>
3835
3836<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3837
3838<h5>Semantics:</h5>
3839
3840<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3841macro available in C. In a target-dependent way, it destroys the
3842<tt>va_list</tt> element to which the argument points. Calls to <a
3843href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3844<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3845<tt>llvm.va_end</tt>.</p>
3846
3847</div>
3848
3849<!-- _______________________________________________________________________ -->
3850<div class="doc_subsubsection">
3851 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3852</div>
3853
3854<div class="doc_text">
3855
3856<h5>Syntax:</h5>
3857
3858<pre>
3859 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3860</pre>
3861
3862<h5>Overview:</h5>
3863
3864<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3865from the source argument list to the destination argument list.</p>
3866
3867<h5>Arguments:</h5>
3868
3869<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3870The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3871
3872
3873<h5>Semantics:</h5>
3874
3875<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3876macro available in C. In a target-dependent way, it copies the source
3877<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3878intrinsic is necessary because the <tt><a href="#int_va_start">
3879llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3880example, memory allocation.</p>
3881
3882</div>
3883
3884<!-- ======================================================================= -->
3885<div class="doc_subsection">
3886 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3887</div>
3888
3889<div class="doc_text">
3890
3891<p>
3892LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3893Collection</a> requires the implementation and generation of these intrinsics.
3894These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3895stack</a>, as well as garbage collector implementations that require <a
3896href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3897Front-ends for type-safe garbage collected languages should generate these
3898intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3899href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3900</p>
3901</div>
3902
3903<!-- _______________________________________________________________________ -->
3904<div class="doc_subsubsection">
3905 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3906</div>
3907
3908<div class="doc_text">
3909
3910<h5>Syntax:</h5>
3911
3912<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003913 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003914</pre>
3915
3916<h5>Overview:</h5>
3917
3918<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3919the code generator, and allows some metadata to be associated with it.</p>
3920
3921<h5>Arguments:</h5>
3922
3923<p>The first argument specifies the address of a stack object that contains the
3924root pointer. The second pointer (which must be either a constant or a global
3925value address) contains the meta-data to be associated with the root.</p>
3926
3927<h5>Semantics:</h5>
3928
3929<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3930location. At compile-time, the code generator generates information to allow
3931the runtime to find the pointer at GC safe points.
3932</p>
3933
3934</div>
3935
3936
3937<!-- _______________________________________________________________________ -->
3938<div class="doc_subsubsection">
3939 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3940</div>
3941
3942<div class="doc_text">
3943
3944<h5>Syntax:</h5>
3945
3946<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003947 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003948</pre>
3949
3950<h5>Overview:</h5>
3951
3952<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3953locations, allowing garbage collector implementations that require read
3954barriers.</p>
3955
3956<h5>Arguments:</h5>
3957
3958<p>The second argument is the address to read from, which should be an address
3959allocated from the garbage collector. The first object is a pointer to the
3960start of the referenced object, if needed by the language runtime (otherwise
3961null).</p>
3962
3963<h5>Semantics:</h5>
3964
3965<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3966instruction, but may be replaced with substantially more complex code by the
3967garbage collector runtime, as needed.</p>
3968
3969</div>
3970
3971
3972<!-- _______________________________________________________________________ -->
3973<div class="doc_subsubsection">
3974 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3975</div>
3976
3977<div class="doc_text">
3978
3979<h5>Syntax:</h5>
3980
3981<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003982 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003983</pre>
3984
3985<h5>Overview:</h5>
3986
3987<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3988locations, allowing garbage collector implementations that require write
3989barriers (such as generational or reference counting collectors).</p>
3990
3991<h5>Arguments:</h5>
3992
3993<p>The first argument is the reference to store, the second is the start of the
3994object to store it to, and the third is the address of the field of Obj to
3995store to. If the runtime does not require a pointer to the object, Obj may be
3996null.</p>
3997
3998<h5>Semantics:</h5>
3999
4000<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4001instruction, but may be replaced with substantially more complex code by the
4002garbage collector runtime, as needed.</p>
4003
4004</div>
4005
4006
4007
4008<!-- ======================================================================= -->
4009<div class="doc_subsection">
4010 <a name="int_codegen">Code Generator Intrinsics</a>
4011</div>
4012
4013<div class="doc_text">
4014<p>
4015These intrinsics are provided by LLVM to expose special features that may only
4016be implemented with code generator support.
4017</p>
4018
4019</div>
4020
4021<!-- _______________________________________________________________________ -->
4022<div class="doc_subsubsection">
4023 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4024</div>
4025
4026<div class="doc_text">
4027
4028<h5>Syntax:</h5>
4029<pre>
4030 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4031</pre>
4032
4033<h5>Overview:</h5>
4034
4035<p>
4036The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4037target-specific value indicating the return address of the current function
4038or one of its callers.
4039</p>
4040
4041<h5>Arguments:</h5>
4042
4043<p>
4044The argument to this intrinsic indicates which function to return the address
4045for. Zero indicates the calling function, one indicates its caller, etc. The
4046argument is <b>required</b> to be a constant integer value.
4047</p>
4048
4049<h5>Semantics:</h5>
4050
4051<p>
4052The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4053the return address of the specified call frame, or zero if it cannot be
4054identified. The value returned by this intrinsic is likely to be incorrect or 0
4055for arguments other than zero, so it should only be used for debugging purposes.
4056</p>
4057
4058<p>
4059Note that calling this intrinsic does not prevent function inlining or other
4060aggressive transformations, so the value returned may not be that of the obvious
4061source-language caller.
4062</p>
4063</div>
4064
4065
4066<!-- _______________________________________________________________________ -->
4067<div class="doc_subsubsection">
4068 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4069</div>
4070
4071<div class="doc_text">
4072
4073<h5>Syntax:</h5>
4074<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004075 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004076</pre>
4077
4078<h5>Overview:</h5>
4079
4080<p>
4081The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4082target-specific frame pointer value for the specified stack frame.
4083</p>
4084
4085<h5>Arguments:</h5>
4086
4087<p>
4088The argument to this intrinsic indicates which function to return the frame
4089pointer for. Zero indicates the calling function, one indicates its caller,
4090etc. The argument is <b>required</b> to be a constant integer value.
4091</p>
4092
4093<h5>Semantics:</h5>
4094
4095<p>
4096The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4097the frame address of the specified call frame, or zero if it cannot be
4098identified. The value returned by this intrinsic is likely to be incorrect or 0
4099for arguments other than zero, so it should only be used for debugging purposes.
4100</p>
4101
4102<p>
4103Note that calling this intrinsic does not prevent function inlining or other
4104aggressive transformations, so the value returned may not be that of the obvious
4105source-language caller.
4106</p>
4107</div>
4108
4109<!-- _______________________________________________________________________ -->
4110<div class="doc_subsubsection">
4111 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4112</div>
4113
4114<div class="doc_text">
4115
4116<h5>Syntax:</h5>
4117<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004118 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004119</pre>
4120
4121<h5>Overview:</h5>
4122
4123<p>
4124The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4125the function stack, for use with <a href="#int_stackrestore">
4126<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4127features like scoped automatic variable sized arrays in C99.
4128</p>
4129
4130<h5>Semantics:</h5>
4131
4132<p>
4133This intrinsic returns a opaque pointer value that can be passed to <a
4134href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4135<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4136<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4137state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4138practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4139that were allocated after the <tt>llvm.stacksave</tt> was executed.
4140</p>
4141
4142</div>
4143
4144<!-- _______________________________________________________________________ -->
4145<div class="doc_subsubsection">
4146 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4147</div>
4148
4149<div class="doc_text">
4150
4151<h5>Syntax:</h5>
4152<pre>
4153 declare void @llvm.stackrestore(i8 * %ptr)
4154</pre>
4155
4156<h5>Overview:</h5>
4157
4158<p>
4159The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4160the function stack to the state it was in when the corresponding <a
4161href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4162useful for implementing language features like scoped automatic variable sized
4163arrays in C99.
4164</p>
4165
4166<h5>Semantics:</h5>
4167
4168<p>
4169See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4170</p>
4171
4172</div>
4173
4174
4175<!-- _______________________________________________________________________ -->
4176<div class="doc_subsubsection">
4177 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4178</div>
4179
4180<div class="doc_text">
4181
4182<h5>Syntax:</h5>
4183<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004184 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185</pre>
4186
4187<h5>Overview:</h5>
4188
4189
4190<p>
4191The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4192a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4193no
4194effect on the behavior of the program but can change its performance
4195characteristics.
4196</p>
4197
4198<h5>Arguments:</h5>
4199
4200<p>
4201<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4202determining if the fetch should be for a read (0) or write (1), and
4203<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4204locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4205<tt>locality</tt> arguments must be constant integers.
4206</p>
4207
4208<h5>Semantics:</h5>
4209
4210<p>
4211This intrinsic does not modify the behavior of the program. In particular,
4212prefetches cannot trap and do not produce a value. On targets that support this
4213intrinsic, the prefetch can provide hints to the processor cache for better
4214performance.
4215</p>
4216
4217</div>
4218
4219<!-- _______________________________________________________________________ -->
4220<div class="doc_subsubsection">
4221 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4222</div>
4223
4224<div class="doc_text">
4225
4226<h5>Syntax:</h5>
4227<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004228 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004229</pre>
4230
4231<h5>Overview:</h5>
4232
4233
4234<p>
4235The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4236(PC) in a region of
4237code to simulators and other tools. The method is target specific, but it is
4238expected that the marker will use exported symbols to transmit the PC of the marker.
4239The marker makes no guarantees that it will remain with any specific instruction
4240after optimizations. It is possible that the presence of a marker will inhibit
4241optimizations. The intended use is to be inserted after optimizations to allow
4242correlations of simulation runs.
4243</p>
4244
4245<h5>Arguments:</h5>
4246
4247<p>
4248<tt>id</tt> is a numerical id identifying the marker.
4249</p>
4250
4251<h5>Semantics:</h5>
4252
4253<p>
4254This intrinsic does not modify the behavior of the program. Backends that do not
4255support this intrinisic may ignore it.
4256</p>
4257
4258</div>
4259
4260<!-- _______________________________________________________________________ -->
4261<div class="doc_subsubsection">
4262 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4263</div>
4264
4265<div class="doc_text">
4266
4267<h5>Syntax:</h5>
4268<pre>
4269 declare i64 @llvm.readcyclecounter( )
4270</pre>
4271
4272<h5>Overview:</h5>
4273
4274
4275<p>
4276The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4277counter register (or similar low latency, high accuracy clocks) on those targets
4278that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4279As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4280should only be used for small timings.
4281</p>
4282
4283<h5>Semantics:</h5>
4284
4285<p>
4286When directly supported, reading the cycle counter should not modify any memory.
4287Implementations are allowed to either return a application specific value or a
4288system wide value. On backends without support, this is lowered to a constant 0.
4289</p>
4290
4291</div>
4292
4293<!-- ======================================================================= -->
4294<div class="doc_subsection">
4295 <a name="int_libc">Standard C Library Intrinsics</a>
4296</div>
4297
4298<div class="doc_text">
4299<p>
4300LLVM provides intrinsics for a few important standard C library functions.
4301These intrinsics allow source-language front-ends to pass information about the
4302alignment of the pointer arguments to the code generator, providing opportunity
4303for more efficient code generation.
4304</p>
4305
4306</div>
4307
4308<!-- _______________________________________________________________________ -->
4309<div class="doc_subsubsection">
4310 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4311</div>
4312
4313<div class="doc_text">
4314
4315<h5>Syntax:</h5>
4316<pre>
4317 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4318 i32 &lt;len&gt;, i32 &lt;align&gt;)
4319 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4320 i64 &lt;len&gt;, i32 &lt;align&gt;)
4321</pre>
4322
4323<h5>Overview:</h5>
4324
4325<p>
4326The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4327location to the destination location.
4328</p>
4329
4330<p>
4331Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4332intrinsics do not return a value, and takes an extra alignment argument.
4333</p>
4334
4335<h5>Arguments:</h5>
4336
4337<p>
4338The first argument is a pointer to the destination, the second is a pointer to
4339the source. The third argument is an integer argument
4340specifying the number of bytes to copy, and the fourth argument is the alignment
4341of the source and destination locations.
4342</p>
4343
4344<p>
4345If the call to this intrinisic has an alignment value that is not 0 or 1, then
4346the caller guarantees that both the source and destination pointers are aligned
4347to that boundary.
4348</p>
4349
4350<h5>Semantics:</h5>
4351
4352<p>
4353The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4354location to the destination location, which are not allowed to overlap. It
4355copies "len" bytes of memory over. If the argument is known to be aligned to
4356some boundary, this can be specified as the fourth argument, otherwise it should
4357be set to 0 or 1.
4358</p>
4359</div>
4360
4361
4362<!-- _______________________________________________________________________ -->
4363<div class="doc_subsubsection">
4364 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4365</div>
4366
4367<div class="doc_text">
4368
4369<h5>Syntax:</h5>
4370<pre>
4371 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4372 i32 &lt;len&gt;, i32 &lt;align&gt;)
4373 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4374 i64 &lt;len&gt;, i32 &lt;align&gt;)
4375</pre>
4376
4377<h5>Overview:</h5>
4378
4379<p>
4380The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4381location to the destination location. It is similar to the
4382'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4383</p>
4384
4385<p>
4386Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4387intrinsics do not return a value, and takes an extra alignment argument.
4388</p>
4389
4390<h5>Arguments:</h5>
4391
4392<p>
4393The first argument is a pointer to the destination, the second is a pointer to
4394the source. The third argument is an integer argument
4395specifying the number of bytes to copy, and the fourth argument is the alignment
4396of the source and destination locations.
4397</p>
4398
4399<p>
4400If the call to this intrinisic has an alignment value that is not 0 or 1, then
4401the caller guarantees that the source and destination pointers are aligned to
4402that boundary.
4403</p>
4404
4405<h5>Semantics:</h5>
4406
4407<p>
4408The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4409location to the destination location, which may overlap. It
4410copies "len" bytes of memory over. If the argument is known to be aligned to
4411some boundary, this can be specified as the fourth argument, otherwise it should
4412be set to 0 or 1.
4413</p>
4414</div>
4415
4416
4417<!-- _______________________________________________________________________ -->
4418<div class="doc_subsubsection">
4419 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4420</div>
4421
4422<div class="doc_text">
4423
4424<h5>Syntax:</h5>
4425<pre>
4426 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4427 i32 &lt;len&gt;, i32 &lt;align&gt;)
4428 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4429 i64 &lt;len&gt;, i32 &lt;align&gt;)
4430</pre>
4431
4432<h5>Overview:</h5>
4433
4434<p>
4435The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4436byte value.
4437</p>
4438
4439<p>
4440Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4441does not return a value, and takes an extra alignment argument.
4442</p>
4443
4444<h5>Arguments:</h5>
4445
4446<p>
4447The first argument is a pointer to the destination to fill, the second is the
4448byte value to fill it with, the third argument is an integer
4449argument specifying the number of bytes to fill, and the fourth argument is the
4450known alignment of destination location.
4451</p>
4452
4453<p>
4454If the call to this intrinisic has an alignment value that is not 0 or 1, then
4455the caller guarantees that the destination pointer is aligned to that boundary.
4456</p>
4457
4458<h5>Semantics:</h5>
4459
4460<p>
4461The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4462the
4463destination location. If the argument is known to be aligned to some boundary,
4464this can be specified as the fourth argument, otherwise it should be set to 0 or
44651.
4466</p>
4467</div>
4468
4469
4470<!-- _______________________________________________________________________ -->
4471<div class="doc_subsubsection">
4472 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4473</div>
4474
4475<div class="doc_text">
4476
4477<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004478<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
4479floating point type. Not all targets support all types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004480<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004481 declare float @llvm.sqrt.f32(float %Val)
4482 declare double @llvm.sqrt.f64(double %Val)
4483 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4484 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4485 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004486</pre>
4487
4488<h5>Overview:</h5>
4489
4490<p>
4491The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4492returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4493<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4494negative numbers (which allows for better optimization).
4495</p>
4496
4497<h5>Arguments:</h5>
4498
4499<p>
4500The argument and return value are floating point numbers of the same type.
4501</p>
4502
4503<h5>Semantics:</h5>
4504
4505<p>
4506This function returns the sqrt of the specified operand if it is a nonnegative
4507floating point number.
4508</p>
4509</div>
4510
4511<!-- _______________________________________________________________________ -->
4512<div class="doc_subsubsection">
4513 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4514</div>
4515
4516<div class="doc_text">
4517
4518<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004519<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
4520floating point type. Not all targets support all types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004521<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004522 declare float @llvm.powi.f32(float %Val, i32 %power)
4523 declare double @llvm.powi.f64(double %Val, i32 %power)
4524 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4525 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4526 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004527</pre>
4528
4529<h5>Overview:</h5>
4530
4531<p>
4532The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4533specified (positive or negative) power. The order of evaluation of
4534multiplications is not defined.
4535</p>
4536
4537<h5>Arguments:</h5>
4538
4539<p>
4540The second argument is an integer power, and the first is a value to raise to
4541that power.
4542</p>
4543
4544<h5>Semantics:</h5>
4545
4546<p>
4547This function returns the first value raised to the second power with an
4548unspecified sequence of rounding operations.</p>
4549</div>
4550
4551
4552<!-- ======================================================================= -->
4553<div class="doc_subsection">
4554 <a name="int_manip">Bit Manipulation Intrinsics</a>
4555</div>
4556
4557<div class="doc_text">
4558<p>
4559LLVM provides intrinsics for a few important bit manipulation operations.
4560These allow efficient code generation for some algorithms.
4561</p>
4562
4563</div>
4564
4565<!-- _______________________________________________________________________ -->
4566<div class="doc_subsubsection">
4567 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4568</div>
4569
4570<div class="doc_text">
4571
4572<h5>Syntax:</h5>
4573<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004574type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004575<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004576 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4577 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4578 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004579</pre>
4580
4581<h5>Overview:</h5>
4582
4583<p>
4584The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4585values with an even number of bytes (positive multiple of 16 bits). These are
4586useful for performing operations on data that is not in the target's native
4587byte order.
4588</p>
4589
4590<h5>Semantics:</h5>
4591
4592<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004593The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004594and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4595intrinsic returns an i32 value that has the four bytes of the input i32
4596swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004597i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4598<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004599additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4600</p>
4601
4602</div>
4603
4604<!-- _______________________________________________________________________ -->
4605<div class="doc_subsubsection">
4606 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4607</div>
4608
4609<div class="doc_text">
4610
4611<h5>Syntax:</h5>
4612<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4613width. Not all targets support all bit widths however.
4614<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004615 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4616 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004617 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004618 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4619 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004620</pre>
4621
4622<h5>Overview:</h5>
4623
4624<p>
4625The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4626value.
4627</p>
4628
4629<h5>Arguments:</h5>
4630
4631<p>
4632The only argument is the value to be counted. The argument may be of any
4633integer type. The return type must match the argument type.
4634</p>
4635
4636<h5>Semantics:</h5>
4637
4638<p>
4639The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4640</p>
4641</div>
4642
4643<!-- _______________________________________________________________________ -->
4644<div class="doc_subsubsection">
4645 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4646</div>
4647
4648<div class="doc_text">
4649
4650<h5>Syntax:</h5>
4651<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4652integer bit width. Not all targets support all bit widths however.
4653<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004654 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4655 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004656 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004657 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4658 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004659</pre>
4660
4661<h5>Overview:</h5>
4662
4663<p>
4664The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4665leading zeros in a variable.
4666</p>
4667
4668<h5>Arguments:</h5>
4669
4670<p>
4671The only argument is the value to be counted. The argument may be of any
4672integer type. The return type must match the argument type.
4673</p>
4674
4675<h5>Semantics:</h5>
4676
4677<p>
4678The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4679in a variable. If the src == 0 then the result is the size in bits of the type
4680of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4681</p>
4682</div>
4683
4684
4685
4686<!-- _______________________________________________________________________ -->
4687<div class="doc_subsubsection">
4688 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4689</div>
4690
4691<div class="doc_text">
4692
4693<h5>Syntax:</h5>
4694<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4695integer bit width. Not all targets support all bit widths however.
4696<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004697 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4698 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004699 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004700 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4701 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004702</pre>
4703
4704<h5>Overview:</h5>
4705
4706<p>
4707The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4708trailing zeros.
4709</p>
4710
4711<h5>Arguments:</h5>
4712
4713<p>
4714The only argument is the value to be counted. The argument may be of any
4715integer type. The return type must match the argument type.
4716</p>
4717
4718<h5>Semantics:</h5>
4719
4720<p>
4721The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4722in a variable. If the src == 0 then the result is the size in bits of the type
4723of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4724</p>
4725</div>
4726
4727<!-- _______________________________________________________________________ -->
4728<div class="doc_subsubsection">
4729 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4730</div>
4731
4732<div class="doc_text">
4733
4734<h5>Syntax:</h5>
4735<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4736on any integer bit width.
4737<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004738 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4739 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004740</pre>
4741
4742<h5>Overview:</h5>
4743<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4744range of bits from an integer value and returns them in the same bit width as
4745the original value.</p>
4746
4747<h5>Arguments:</h5>
4748<p>The first argument, <tt>%val</tt> and the result may be integer types of
4749any bit width but they must have the same bit width. The second and third
4750arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4751
4752<h5>Semantics:</h5>
4753<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4754of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4755<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4756operates in forward mode.</p>
4757<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4758right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4759only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4760<ol>
4761 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4762 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4763 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4764 to determine the number of bits to retain.</li>
4765 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4766 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4767</ol>
4768<p>In reverse mode, a similar computation is made except that the bits are
4769returned in the reverse order. So, for example, if <tt>X</tt> has the value
4770<tt>i16 0x0ACF (101011001111)</tt> and we apply
4771<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4772<tt>i16 0x0026 (000000100110)</tt>.</p>
4773</div>
4774
4775<div class="doc_subsubsection">
4776 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4777</div>
4778
4779<div class="doc_text">
4780
4781<h5>Syntax:</h5>
4782<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4783on any integer bit width.
4784<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004785 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4786 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004787</pre>
4788
4789<h5>Overview:</h5>
4790<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4791of bits in an integer value with another integer value. It returns the integer
4792with the replaced bits.</p>
4793
4794<h5>Arguments:</h5>
4795<p>The first argument, <tt>%val</tt> and the result may be integer types of
4796any bit width but they must have the same bit width. <tt>%val</tt> is the value
4797whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4798integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4799type since they specify only a bit index.</p>
4800
4801<h5>Semantics:</h5>
4802<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4803of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4804<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4805operates in forward mode.</p>
4806<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4807truncating it down to the size of the replacement area or zero extending it
4808up to that size.</p>
4809<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4810are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4811in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4812to the <tt>%hi</tt>th bit.
4813<p>In reverse mode, a similar computation is made except that the bits are
4814reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4815<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4816<h5>Examples:</h5>
4817<pre>
4818 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4819 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4820 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4821 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4822 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4823</pre>
4824</div>
4825
4826<!-- ======================================================================= -->
4827<div class="doc_subsection">
4828 <a name="int_debugger">Debugger Intrinsics</a>
4829</div>
4830
4831<div class="doc_text">
4832<p>
4833The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4834are described in the <a
4835href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4836Debugging</a> document.
4837</p>
4838</div>
4839
4840
4841<!-- ======================================================================= -->
4842<div class="doc_subsection">
4843 <a name="int_eh">Exception Handling Intrinsics</a>
4844</div>
4845
4846<div class="doc_text">
4847<p> The LLVM exception handling intrinsics (which all start with
4848<tt>llvm.eh.</tt> prefix), are described in the <a
4849href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4850Handling</a> document. </p>
4851</div>
4852
4853<!-- ======================================================================= -->
4854<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00004855 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00004856</div>
4857
4858<div class="doc_text">
4859<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004860 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00004861 the <tt>nest</tt> attribute, from a function. The result is a callable
4862 function pointer lacking the nest parameter - the caller does not need
4863 to provide a value for it. Instead, the value to use is stored in
4864 advance in a "trampoline", a block of memory usually allocated
4865 on the stack, which also contains code to splice the nest value into the
4866 argument list. This is used to implement the GCC nested function address
4867 extension.
4868</p>
4869<p>
4870 For example, if the function is
4871 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00004872 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00004873<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004874 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
4875 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
4876 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
4877 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00004878</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00004879 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
4880 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00004881</div>
4882
4883<!-- _______________________________________________________________________ -->
4884<div class="doc_subsubsection">
4885 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
4886</div>
4887<div class="doc_text">
4888<h5>Syntax:</h5>
4889<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004890declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00004891</pre>
4892<h5>Overview:</h5>
4893<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004894 This fills the memory pointed to by <tt>tramp</tt> with code
4895 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00004896</p>
4897<h5>Arguments:</h5>
4898<p>
4899 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
4900 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
4901 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00004902 intrinsic. Note that the size and the alignment are target-specific - LLVM
4903 currently provides no portable way of determining them, so a front-end that
4904 generates this intrinsic needs to have some target-specific knowledge.
4905 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00004906</p>
4907<h5>Semantics:</h5>
4908<p>
4909 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00004910 dependent code, turning it into a function. A pointer to this function is
4911 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00004912 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004913 before being called. The new function's signature is the same as that of
4914 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
4915 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
4916 of pointer type. Calling the new function is equivalent to calling
4917 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
4918 missing <tt>nest</tt> argument. If, after calling
4919 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
4920 modified, then the effect of any later call to the returned function pointer is
4921 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00004922</p>
4923</div>
4924
4925<!-- ======================================================================= -->
4926<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004927 <a name="int_general">General Intrinsics</a>
4928</div>
4929
4930<div class="doc_text">
4931<p> This class of intrinsics is designed to be generic and has
4932no specific purpose. </p>
4933</div>
4934
4935<!-- _______________________________________________________________________ -->
4936<div class="doc_subsubsection">
4937 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
4938</div>
4939
4940<div class="doc_text">
4941
4942<h5>Syntax:</h5>
4943<pre>
4944 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4945</pre>
4946
4947<h5>Overview:</h5>
4948
4949<p>
4950The '<tt>llvm.var.annotation</tt>' intrinsic
4951</p>
4952
4953<h5>Arguments:</h5>
4954
4955<p>
4956The first argument is a pointer to a value, the second is a pointer to a
4957global string, the third is a pointer to a global string which is the source
4958file name, and the last argument is the line number.
4959</p>
4960
4961<h5>Semantics:</h5>
4962
4963<p>
4964This intrinsic allows annotation of local variables with arbitrary strings.
4965This can be useful for special purpose optimizations that want to look for these
4966 annotations. These have no other defined use, they are ignored by code
4967 generation and optimization.
4968</div>
4969
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004970<!-- _______________________________________________________________________ -->
4971<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00004972 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004973</div>
4974
4975<div class="doc_text">
4976
4977<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00004978<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
4979any integer bit width.
4980</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004981<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00004982 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4983 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4984 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4985 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4986 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004987</pre>
4988
4989<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00004990
4991<p>
4992The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004993</p>
4994
4995<h5>Arguments:</h5>
4996
4997<p>
4998The first argument is an integer value (result of some expression),
4999the second is a pointer to a global string, the third is a pointer to a global
5000string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00005001It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005002</p>
5003
5004<h5>Semantics:</h5>
5005
5006<p>
5007This intrinsic allows annotations to be put on arbitrary expressions
5008with arbitrary strings. This can be useful for special purpose optimizations
5009that want to look for these annotations. These have no other defined use, they
5010are ignored by code generation and optimization.
5011</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005012
5013<!-- *********************************************************************** -->
5014<hr>
5015<address>
5016 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5017 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5018 <a href="http://validator.w3.org/check/referer"><img
5019 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5020
5021 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5022 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5023 Last modified: $Date$
5024</address>
5025</body>
5026</html>