blob: ec1046fcb14d828fae87387093a6e78b27850aa3 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38 cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43 setPow2DivIsCheap();
44
45 // Use _setjmp/_longjmp instead of setjmp/longjmp.
46 setUseUnderscoreSetJmp(true);
47 setUseUnderscoreLongJmp(true);
48
49 // Set up the register classes.
50 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC does not have truncstore for i1.
59 setStoreXAction(MVT::i1, Promote);
60
61 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
76 // PowerPC has no intrinsics for these particular operations
77 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
78 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
79 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
80
81 // PowerPC has no SREM/UREM instructions
82 setOperationAction(ISD::SREM, MVT::i32, Expand);
83 setOperationAction(ISD::UREM, MVT::i32, Expand);
84 setOperationAction(ISD::SREM, MVT::i64, Expand);
85 setOperationAction(ISD::UREM, MVT::i64, Expand);
86
87 // We don't support sin/cos/sqrt/fmod
88 setOperationAction(ISD::FSIN , MVT::f64, Expand);
89 setOperationAction(ISD::FCOS , MVT::f64, Expand);
90 setOperationAction(ISD::FREM , MVT::f64, Expand);
91 setOperationAction(ISD::FSIN , MVT::f32, Expand);
92 setOperationAction(ISD::FCOS , MVT::f32, Expand);
93 setOperationAction(ISD::FREM , MVT::f32, Expand);
94
95 // If we're enabling GP optimizations, use hardware square root
96 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
97 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
98 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
99 }
100
101 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
102 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
103
104 // PowerPC does not have BSWAP, CTPOP or CTTZ
105 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
106 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
107 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
108 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
109 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
110 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
111
112 // PowerPC does not have ROTR
113 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
114
115 // PowerPC does not have Select
116 setOperationAction(ISD::SELECT, MVT::i32, Expand);
117 setOperationAction(ISD::SELECT, MVT::i64, Expand);
118 setOperationAction(ISD::SELECT, MVT::f32, Expand);
119 setOperationAction(ISD::SELECT, MVT::f64, Expand);
120
121 // PowerPC wants to turn select_cc of FP into fsel when possible.
122 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
123 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
124
125 // PowerPC wants to optimize integer setcc a bit
126 setOperationAction(ISD::SETCC, MVT::i32, Custom);
127
128 // PowerPC does not have BRCOND which requires SetCC
129 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
130
131 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
132
133 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
134 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
135
136 // PowerPC does not have [U|S]INT_TO_FP
137 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
138 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
139
140 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
141 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
142 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
143 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
144
145 // We cannot sextinreg(i1). Expand to shifts.
146 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
147
148 // Support label based line numbers.
149 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
150 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
151 if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
152 setOperationAction(ISD::LABEL, MVT::Other, Expand);
153 } else {
154 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
155 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
156 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
157 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
158 }
159
160 // We want to legalize GlobalAddress and ConstantPool nodes into the
161 // appropriate instructions to materialize the address.
162 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
163 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
164 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
165 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
166 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
167 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
168 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
169 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
170
171 // RET must be custom lowered, to meet ABI requirements
172 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000173
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
175 setOperationAction(ISD::VASTART , MVT::Other, Custom);
176
177 // VAARG is custom lowered with ELF 32 ABI
178 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
179 setOperationAction(ISD::VAARG, MVT::Other, Custom);
180 else
181 setOperationAction(ISD::VAARG, MVT::Other, Expand);
182
183 // Use the default implementation.
184 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
185 setOperationAction(ISD::VAEND , MVT::Other, Expand);
186 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
187 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
188 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
189 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
190
191 // We want to custom lower some of our intrinsics.
192 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
193
194 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
195 // They also have instructions for converting between i64 and fp.
196 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
197 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
198 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
199 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
200 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
201
202 // FIXME: disable this lowered code. This generates 64-bit register values,
203 // and we don't model the fact that the top part is clobbered by calls. We
204 // need to flag these together so that the value isn't live across a call.
205 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
206
207 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
208 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
209 } else {
210 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
211 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
212 }
213
214 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
215 // 64 bit PowerPC implementations can support i64 types directly
216 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
217 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
218 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
219 } else {
220 // 32 bit PowerPC wants to expand i64 shifts itself.
221 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
222 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
223 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
224 }
225
226 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
227 // First set operation action for all vector types to expand. Then we
228 // will selectively turn on ones that can be effectively codegen'd.
229 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
230 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
231 // add/sub are legal for all supported vector VT's.
232 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
233 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
234
235 // We promote all shuffles to v16i8.
236 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
237 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
238
239 // We promote all non-typed operations to v4i32.
240 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
241 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
242 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
243 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
244 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
245 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
246 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
247 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
248 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
249 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
250 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
251 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
252
253 // No other operations are legal.
254 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
255 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
256 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
257 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
258 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
259 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000260 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
262 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
263 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
264
265 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
266 }
267
268 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
269 // with merges, splats, etc.
270 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
271
272 setOperationAction(ISD::AND , MVT::v4i32, Legal);
273 setOperationAction(ISD::OR , MVT::v4i32, Legal);
274 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
275 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
276 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
277 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
278
279 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
280 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
281 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
282 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
283
284 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
285 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
286 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
287 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
288
289 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
290 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
291
292 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
293 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
294 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
295 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
296 }
297
298 setSetCCResultType(MVT::i32);
299 setShiftAmountType(MVT::i32);
300 setSetCCResultContents(ZeroOrOneSetCCResult);
301
302 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
303 setStackPointerRegisterToSaveRestore(PPC::X1);
304 setExceptionPointerRegister(PPC::X3);
305 setExceptionSelectorRegister(PPC::X4);
306 } else {
307 setStackPointerRegisterToSaveRestore(PPC::R1);
308 setExceptionPointerRegister(PPC::R3);
309 setExceptionSelectorRegister(PPC::R4);
310 }
311
312 // We have target-specific dag combine patterns for the following nodes:
313 setTargetDAGCombine(ISD::SINT_TO_FP);
314 setTargetDAGCombine(ISD::STORE);
315 setTargetDAGCombine(ISD::BR_CC);
316 setTargetDAGCombine(ISD::BSWAP);
317
318 computeRegisterProperties();
319}
320
321const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
322 switch (Opcode) {
323 default: return 0;
324 case PPCISD::FSEL: return "PPCISD::FSEL";
325 case PPCISD::FCFID: return "PPCISD::FCFID";
326 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
327 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
328 case PPCISD::STFIWX: return "PPCISD::STFIWX";
329 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
330 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
331 case PPCISD::VPERM: return "PPCISD::VPERM";
332 case PPCISD::Hi: return "PPCISD::Hi";
333 case PPCISD::Lo: return "PPCISD::Lo";
334 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
335 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
336 case PPCISD::SRL: return "PPCISD::SRL";
337 case PPCISD::SRA: return "PPCISD::SRA";
338 case PPCISD::SHL: return "PPCISD::SHL";
339 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
340 case PPCISD::STD_32: return "PPCISD::STD_32";
341 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
342 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
343 case PPCISD::MTCTR: return "PPCISD::MTCTR";
344 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
345 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
346 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
347 case PPCISD::MFCR: return "PPCISD::MFCR";
348 case PPCISD::VCMP: return "PPCISD::VCMP";
349 case PPCISD::VCMPo: return "PPCISD::VCMPo";
350 case PPCISD::LBRX: return "PPCISD::LBRX";
351 case PPCISD::STBRX: return "PPCISD::STBRX";
352 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
353 }
354}
355
356//===----------------------------------------------------------------------===//
357// Node matching predicates, for use by the tblgen matching code.
358//===----------------------------------------------------------------------===//
359
360/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
361static bool isFloatingPointZero(SDOperand Op) {
362 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000363 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000364 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
365 // Maybe this has already been legalized into the constant pool?
366 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
367 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000368 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369 }
370 return false;
371}
372
373/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
374/// true if Op is undef or if it matches the specified value.
375static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
376 return Op.getOpcode() == ISD::UNDEF ||
377 cast<ConstantSDNode>(Op)->getValue() == Val;
378}
379
380/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
381/// VPKUHUM instruction.
382bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
383 if (!isUnary) {
384 for (unsigned i = 0; i != 16; ++i)
385 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
386 return false;
387 } else {
388 for (unsigned i = 0; i != 8; ++i)
389 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
390 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
391 return false;
392 }
393 return true;
394}
395
396/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
397/// VPKUWUM instruction.
398bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
399 if (!isUnary) {
400 for (unsigned i = 0; i != 16; i += 2)
401 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
402 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
403 return false;
404 } else {
405 for (unsigned i = 0; i != 8; i += 2)
406 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
407 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
408 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
409 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
410 return false;
411 }
412 return true;
413}
414
415/// isVMerge - Common function, used to match vmrg* shuffles.
416///
417static bool isVMerge(SDNode *N, unsigned UnitSize,
418 unsigned LHSStart, unsigned RHSStart) {
419 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
420 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
421 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
422 "Unsupported merge size!");
423
424 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
425 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
426 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
427 LHSStart+j+i*UnitSize) ||
428 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
429 RHSStart+j+i*UnitSize))
430 return false;
431 }
432 return true;
433}
434
435/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
436/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
437bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
438 if (!isUnary)
439 return isVMerge(N, UnitSize, 8, 24);
440 return isVMerge(N, UnitSize, 8, 8);
441}
442
443/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
444/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
445bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
446 if (!isUnary)
447 return isVMerge(N, UnitSize, 0, 16);
448 return isVMerge(N, UnitSize, 0, 0);
449}
450
451
452/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
453/// amount, otherwise return -1.
454int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
455 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
456 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
457 // Find the first non-undef value in the shuffle mask.
458 unsigned i;
459 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
460 /*search*/;
461
462 if (i == 16) return -1; // all undef.
463
464 // Otherwise, check to see if the rest of the elements are consequtively
465 // numbered from this value.
466 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
467 if (ShiftAmt < i) return -1;
468 ShiftAmt -= i;
469
470 if (!isUnary) {
471 // Check the rest of the elements to see if they are consequtive.
472 for (++i; i != 16; ++i)
473 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
474 return -1;
475 } else {
476 // Check the rest of the elements to see if they are consequtive.
477 for (++i; i != 16; ++i)
478 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
479 return -1;
480 }
481
482 return ShiftAmt;
483}
484
485/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
486/// specifies a splat of a single element that is suitable for input to
487/// VSPLTB/VSPLTH/VSPLTW.
488bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
489 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
490 N->getNumOperands() == 16 &&
491 (EltSize == 1 || EltSize == 2 || EltSize == 4));
492
493 // This is a splat operation if each element of the permute is the same, and
494 // if the value doesn't reference the second vector.
495 unsigned ElementBase = 0;
496 SDOperand Elt = N->getOperand(0);
497 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
498 ElementBase = EltV->getValue();
499 else
500 return false; // FIXME: Handle UNDEF elements too!
501
502 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
503 return false;
504
505 // Check that they are consequtive.
506 for (unsigned i = 1; i != EltSize; ++i) {
507 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
508 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
509 return false;
510 }
511
512 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
513 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
514 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
515 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
516 "Invalid VECTOR_SHUFFLE mask!");
517 for (unsigned j = 0; j != EltSize; ++j)
518 if (N->getOperand(i+j) != N->getOperand(j))
519 return false;
520 }
521
522 return true;
523}
524
Evan Chengc5912e32007-07-30 07:51:22 +0000525/// isAllNegativeZeroVector - Returns true if all elements of build_vector
526/// are -0.0.
527bool PPC::isAllNegativeZeroVector(SDNode *N) {
528 assert(N->getOpcode() == ISD::BUILD_VECTOR);
529 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
530 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000531 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000532 return false;
533}
534
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000535/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
536/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
537unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
538 assert(isSplatShuffleMask(N, EltSize));
539 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
540}
541
542/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
543/// by using a vspltis[bhw] instruction of the specified element size, return
544/// the constant being splatted. The ByteSize field indicates the number of
545/// bytes of each element [124] -> [bhw].
546SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
547 SDOperand OpVal(0, 0);
548
549 // If ByteSize of the splat is bigger than the element size of the
550 // build_vector, then we have a case where we are checking for a splat where
551 // multiple elements of the buildvector are folded together into a single
552 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
553 unsigned EltSize = 16/N->getNumOperands();
554 if (EltSize < ByteSize) {
555 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
556 SDOperand UniquedVals[4];
557 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
558
559 // See if all of the elements in the buildvector agree across.
560 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
561 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
562 // If the element isn't a constant, bail fully out.
563 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
564
565
566 if (UniquedVals[i&(Multiple-1)].Val == 0)
567 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
568 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
569 return SDOperand(); // no match.
570 }
571
572 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
573 // either constant or undef values that are identical for each chunk. See
574 // if these chunks can form into a larger vspltis*.
575
576 // Check to see if all of the leading entries are either 0 or -1. If
577 // neither, then this won't fit into the immediate field.
578 bool LeadingZero = true;
579 bool LeadingOnes = true;
580 for (unsigned i = 0; i != Multiple-1; ++i) {
581 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
582
583 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
584 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
585 }
586 // Finally, check the least significant entry.
587 if (LeadingZero) {
588 if (UniquedVals[Multiple-1].Val == 0)
589 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
590 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
591 if (Val < 16)
592 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
593 }
594 if (LeadingOnes) {
595 if (UniquedVals[Multiple-1].Val == 0)
596 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
597 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
598 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
599 return DAG.getTargetConstant(Val, MVT::i32);
600 }
601
602 return SDOperand();
603 }
604
605 // Check to see if this buildvec has a single non-undef value in its elements.
606 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
607 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
608 if (OpVal.Val == 0)
609 OpVal = N->getOperand(i);
610 else if (OpVal != N->getOperand(i))
611 return SDOperand();
612 }
613
614 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
615
616 unsigned ValSizeInBytes = 0;
617 uint64_t Value = 0;
618 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
619 Value = CN->getValue();
620 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
621 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
622 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000623 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624 ValSizeInBytes = 4;
625 }
626
627 // If the splat value is larger than the element value, then we can never do
628 // this splat. The only case that we could fit the replicated bits into our
629 // immediate field for would be zero, and we prefer to use vxor for it.
630 if (ValSizeInBytes < ByteSize) return SDOperand();
631
632 // If the element value is larger than the splat value, cut it in half and
633 // check to see if the two halves are equal. Continue doing this until we
634 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
635 while (ValSizeInBytes > ByteSize) {
636 ValSizeInBytes >>= 1;
637
638 // If the top half equals the bottom half, we're still ok.
639 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
640 (Value & ((1 << (8*ValSizeInBytes))-1)))
641 return SDOperand();
642 }
643
644 // Properly sign extend the value.
645 int ShAmt = (4-ByteSize)*8;
646 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
647
648 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
649 if (MaskVal == 0) return SDOperand();
650
651 // Finally, if this value fits in a 5 bit sext field, return it
652 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
653 return DAG.getTargetConstant(MaskVal, MVT::i32);
654 return SDOperand();
655}
656
657//===----------------------------------------------------------------------===//
658// Addressing Mode Selection
659//===----------------------------------------------------------------------===//
660
661/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
662/// or 64-bit immediate, and if the value can be accurately represented as a
663/// sign extension from a 16-bit value. If so, this returns true and the
664/// immediate.
665static bool isIntS16Immediate(SDNode *N, short &Imm) {
666 if (N->getOpcode() != ISD::Constant)
667 return false;
668
669 Imm = (short)cast<ConstantSDNode>(N)->getValue();
670 if (N->getValueType(0) == MVT::i32)
671 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
672 else
673 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
674}
675static bool isIntS16Immediate(SDOperand Op, short &Imm) {
676 return isIntS16Immediate(Op.Val, Imm);
677}
678
679
680/// SelectAddressRegReg - Given the specified addressed, check to see if it
681/// can be represented as an indexed [r+r] operation. Returns false if it
682/// can be more efficiently represented with [r+imm].
683bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
684 SDOperand &Index,
685 SelectionDAG &DAG) {
686 short imm = 0;
687 if (N.getOpcode() == ISD::ADD) {
688 if (isIntS16Immediate(N.getOperand(1), imm))
689 return false; // r+i
690 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
691 return false; // r+i
692
693 Base = N.getOperand(0);
694 Index = N.getOperand(1);
695 return true;
696 } else if (N.getOpcode() == ISD::OR) {
697 if (isIntS16Immediate(N.getOperand(1), imm))
698 return false; // r+i can fold it if we can.
699
700 // If this is an or of disjoint bitfields, we can codegen this as an add
701 // (for better address arithmetic) if the LHS and RHS of the OR are provably
702 // disjoint.
703 uint64_t LHSKnownZero, LHSKnownOne;
704 uint64_t RHSKnownZero, RHSKnownOne;
705 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
706
707 if (LHSKnownZero) {
708 DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
709 // If all of the bits are known zero on the LHS or RHS, the add won't
710 // carry.
711 if ((LHSKnownZero | RHSKnownZero) == ~0U) {
712 Base = N.getOperand(0);
713 Index = N.getOperand(1);
714 return true;
715 }
716 }
717 }
718
719 return false;
720}
721
722/// Returns true if the address N can be represented by a base register plus
723/// a signed 16-bit displacement [r+imm], and if it is not better
724/// represented as reg+reg.
725bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
726 SDOperand &Base, SelectionDAG &DAG){
727 // If this can be more profitably realized as r+r, fail.
728 if (SelectAddressRegReg(N, Disp, Base, DAG))
729 return false;
730
731 if (N.getOpcode() == ISD::ADD) {
732 short imm = 0;
733 if (isIntS16Immediate(N.getOperand(1), imm)) {
734 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
735 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
736 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
737 } else {
738 Base = N.getOperand(0);
739 }
740 return true; // [r+i]
741 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
742 // Match LOAD (ADD (X, Lo(G))).
743 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
744 && "Cannot handle constant offsets yet!");
745 Disp = N.getOperand(1).getOperand(0); // The global address.
746 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
747 Disp.getOpcode() == ISD::TargetConstantPool ||
748 Disp.getOpcode() == ISD::TargetJumpTable);
749 Base = N.getOperand(0);
750 return true; // [&g+r]
751 }
752 } else if (N.getOpcode() == ISD::OR) {
753 short imm = 0;
754 if (isIntS16Immediate(N.getOperand(1), imm)) {
755 // If this is an or of disjoint bitfields, we can codegen this as an add
756 // (for better address arithmetic) if the LHS and RHS of the OR are
757 // provably disjoint.
758 uint64_t LHSKnownZero, LHSKnownOne;
759 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
760 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
761 // If all of the bits are known zero on the LHS or RHS, the add won't
762 // carry.
763 Base = N.getOperand(0);
764 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
765 return true;
766 }
767 }
768 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
769 // Loading from a constant address.
770
771 // If this address fits entirely in a 16-bit sext immediate field, codegen
772 // this as "d, 0"
773 short Imm;
774 if (isIntS16Immediate(CN, Imm)) {
775 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
776 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
777 return true;
778 }
779
780 // Handle 32-bit sext immediates with LIS + addr mode.
781 if (CN->getValueType(0) == MVT::i32 ||
782 (int64_t)CN->getValue() == (int)CN->getValue()) {
783 int Addr = (int)CN->getValue();
784
785 // Otherwise, break this down into an LIS + disp.
786 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
787
788 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
789 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
790 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
791 return true;
792 }
793 }
794
795 Disp = DAG.getTargetConstant(0, getPointerTy());
796 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
797 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
798 else
799 Base = N;
800 return true; // [r+0]
801}
802
803/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
804/// represented as an indexed [r+r] operation.
805bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
806 SDOperand &Index,
807 SelectionDAG &DAG) {
808 // Check to see if we can easily represent this as an [r+r] address. This
809 // will fail if it thinks that the address is more profitably represented as
810 // reg+imm, e.g. where imm = 0.
811 if (SelectAddressRegReg(N, Base, Index, DAG))
812 return true;
813
814 // If the operand is an addition, always emit this as [r+r], since this is
815 // better (for code size, and execution, as the memop does the add for free)
816 // than emitting an explicit add.
817 if (N.getOpcode() == ISD::ADD) {
818 Base = N.getOperand(0);
819 Index = N.getOperand(1);
820 return true;
821 }
822
823 // Otherwise, do it the hard way, using R0 as the base register.
824 Base = DAG.getRegister(PPC::R0, N.getValueType());
825 Index = N;
826 return true;
827}
828
829/// SelectAddressRegImmShift - Returns true if the address N can be
830/// represented by a base register plus a signed 14-bit displacement
831/// [r+imm*4]. Suitable for use by STD and friends.
832bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
833 SDOperand &Base,
834 SelectionDAG &DAG) {
835 // If this can be more profitably realized as r+r, fail.
836 if (SelectAddressRegReg(N, Disp, Base, DAG))
837 return false;
838
839 if (N.getOpcode() == ISD::ADD) {
840 short imm = 0;
841 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
842 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
843 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
844 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
845 } else {
846 Base = N.getOperand(0);
847 }
848 return true; // [r+i]
849 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
850 // Match LOAD (ADD (X, Lo(G))).
851 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
852 && "Cannot handle constant offsets yet!");
853 Disp = N.getOperand(1).getOperand(0); // The global address.
854 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
855 Disp.getOpcode() == ISD::TargetConstantPool ||
856 Disp.getOpcode() == ISD::TargetJumpTable);
857 Base = N.getOperand(0);
858 return true; // [&g+r]
859 }
860 } else if (N.getOpcode() == ISD::OR) {
861 short imm = 0;
862 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
863 // If this is an or of disjoint bitfields, we can codegen this as an add
864 // (for better address arithmetic) if the LHS and RHS of the OR are
865 // provably disjoint.
866 uint64_t LHSKnownZero, LHSKnownOne;
867 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
868 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
869 // If all of the bits are known zero on the LHS or RHS, the add won't
870 // carry.
871 Base = N.getOperand(0);
872 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
873 return true;
874 }
875 }
876 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
877 // Loading from a constant address. Verify low two bits are clear.
878 if ((CN->getValue() & 3) == 0) {
879 // If this address fits entirely in a 14-bit sext immediate field, codegen
880 // this as "d, 0"
881 short Imm;
882 if (isIntS16Immediate(CN, Imm)) {
883 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
884 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
885 return true;
886 }
887
888 // Fold the low-part of 32-bit absolute addresses into addr mode.
889 if (CN->getValueType(0) == MVT::i32 ||
890 (int64_t)CN->getValue() == (int)CN->getValue()) {
891 int Addr = (int)CN->getValue();
892
893 // Otherwise, break this down into an LIS + disp.
894 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
895
896 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
897 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
898 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
899 return true;
900 }
901 }
902 }
903
904 Disp = DAG.getTargetConstant(0, getPointerTy());
905 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
906 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
907 else
908 Base = N;
909 return true; // [r+0]
910}
911
912
913/// getPreIndexedAddressParts - returns true by value, base pointer and
914/// offset pointer and addressing mode by reference if the node's address
915/// can be legally represented as pre-indexed load / store address.
916bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
917 SDOperand &Offset,
918 ISD::MemIndexedMode &AM,
919 SelectionDAG &DAG) {
920 // Disabled by default for now.
921 if (!EnablePPCPreinc) return false;
922
923 SDOperand Ptr;
924 MVT::ValueType VT;
925 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
926 Ptr = LD->getBasePtr();
927 VT = LD->getLoadedVT();
928
929 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
930 ST = ST;
931 Ptr = ST->getBasePtr();
932 VT = ST->getStoredVT();
933 } else
934 return false;
935
936 // PowerPC doesn't have preinc load/store instructions for vectors.
937 if (MVT::isVector(VT))
938 return false;
939
940 // TODO: Check reg+reg first.
941
942 // LDU/STU use reg+imm*4, others use reg+imm.
943 if (VT != MVT::i64) {
944 // reg + imm
945 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
946 return false;
947 } else {
948 // reg + imm * 4.
949 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
950 return false;
951 }
952
953 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
954 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
955 // sext i32 to i64 when addr mode is r+i.
956 if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
957 LD->getExtensionType() == ISD::SEXTLOAD &&
958 isa<ConstantSDNode>(Offset))
959 return false;
960 }
961
962 AM = ISD::PRE_INC;
963 return true;
964}
965
966//===----------------------------------------------------------------------===//
967// LowerOperation implementation
968//===----------------------------------------------------------------------===//
969
970static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
971 MVT::ValueType PtrVT = Op.getValueType();
972 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
973 Constant *C = CP->getConstVal();
974 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
975 SDOperand Zero = DAG.getConstant(0, PtrVT);
976
977 const TargetMachine &TM = DAG.getTarget();
978
979 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
980 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
981
982 // If this is a non-darwin platform, we don't support non-static relo models
983 // yet.
984 if (TM.getRelocationModel() == Reloc::Static ||
985 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
986 // Generate non-pic code that has direct accesses to the constant pool.
987 // The address of the global is just (hi(&g)+lo(&g)).
988 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
989 }
990
991 if (TM.getRelocationModel() == Reloc::PIC_) {
992 // With PIC, the first instruction is actually "GR+hi(&G)".
993 Hi = DAG.getNode(ISD::ADD, PtrVT,
994 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
995 }
996
997 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
998 return Lo;
999}
1000
1001static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1002 MVT::ValueType PtrVT = Op.getValueType();
1003 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1004 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1005 SDOperand Zero = DAG.getConstant(0, PtrVT);
1006
1007 const TargetMachine &TM = DAG.getTarget();
1008
1009 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1010 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1011
1012 // If this is a non-darwin platform, we don't support non-static relo models
1013 // yet.
1014 if (TM.getRelocationModel() == Reloc::Static ||
1015 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1016 // Generate non-pic code that has direct accesses to the constant pool.
1017 // The address of the global is just (hi(&g)+lo(&g)).
1018 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1019 }
1020
1021 if (TM.getRelocationModel() == Reloc::PIC_) {
1022 // With PIC, the first instruction is actually "GR+hi(&G)".
1023 Hi = DAG.getNode(ISD::ADD, PtrVT,
1024 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1025 }
1026
1027 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1028 return Lo;
1029}
1030
1031static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1032 assert(0 && "TLS not implemented for PPC.");
1033}
1034
1035static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1036 MVT::ValueType PtrVT = Op.getValueType();
1037 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1038 GlobalValue *GV = GSDN->getGlobal();
1039 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1040 SDOperand Zero = DAG.getConstant(0, PtrVT);
1041
1042 const TargetMachine &TM = DAG.getTarget();
1043
1044 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1045 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1046
1047 // If this is a non-darwin platform, we don't support non-static relo models
1048 // yet.
1049 if (TM.getRelocationModel() == Reloc::Static ||
1050 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1051 // Generate non-pic code that has direct accesses to globals.
1052 // The address of the global is just (hi(&g)+lo(&g)).
1053 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1054 }
1055
1056 if (TM.getRelocationModel() == Reloc::PIC_) {
1057 // With PIC, the first instruction is actually "GR+hi(&G)".
1058 Hi = DAG.getNode(ISD::ADD, PtrVT,
1059 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1060 }
1061
1062 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1063
1064 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1065 return Lo;
1066
1067 // If the global is weak or external, we have to go through the lazy
1068 // resolution stub.
1069 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1070}
1071
1072static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1073 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1074
1075 // If we're comparing for equality to zero, expose the fact that this is
1076 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1077 // fold the new nodes.
1078 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1079 if (C->isNullValue() && CC == ISD::SETEQ) {
1080 MVT::ValueType VT = Op.getOperand(0).getValueType();
1081 SDOperand Zext = Op.getOperand(0);
1082 if (VT < MVT::i32) {
1083 VT = MVT::i32;
1084 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1085 }
1086 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1087 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1088 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1089 DAG.getConstant(Log2b, MVT::i32));
1090 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1091 }
1092 // Leave comparisons against 0 and -1 alone for now, since they're usually
1093 // optimized. FIXME: revisit this when we can custom lower all setcc
1094 // optimizations.
1095 if (C->isAllOnesValue() || C->isNullValue())
1096 return SDOperand();
1097 }
1098
1099 // If we have an integer seteq/setne, turn it into a compare against zero
1100 // by xor'ing the rhs with the lhs, which is faster than setting a
1101 // condition register, reading it back out, and masking the correct bit. The
1102 // normal approach here uses sub to do this instead of xor. Using xor exposes
1103 // the result to other bit-twiddling opportunities.
1104 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1105 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1106 MVT::ValueType VT = Op.getValueType();
1107 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1108 Op.getOperand(1));
1109 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1110 }
1111 return SDOperand();
1112}
1113
1114static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1115 int VarArgsFrameIndex,
1116 int VarArgsStackOffset,
1117 unsigned VarArgsNumGPR,
1118 unsigned VarArgsNumFPR,
1119 const PPCSubtarget &Subtarget) {
1120
1121 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1122}
1123
1124static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1125 int VarArgsFrameIndex,
1126 int VarArgsStackOffset,
1127 unsigned VarArgsNumGPR,
1128 unsigned VarArgsNumFPR,
1129 const PPCSubtarget &Subtarget) {
1130
1131 if (Subtarget.isMachoABI()) {
1132 // vastart just stores the address of the VarArgsFrameIndex slot into the
1133 // memory location argument.
1134 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1135 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1136 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1137 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1138 SV->getOffset());
1139 }
1140
1141 // For ELF 32 ABI we follow the layout of the va_list struct.
1142 // We suppose the given va_list is already allocated.
1143 //
1144 // typedef struct {
1145 // char gpr; /* index into the array of 8 GPRs
1146 // * stored in the register save area
1147 // * gpr=0 corresponds to r3,
1148 // * gpr=1 to r4, etc.
1149 // */
1150 // char fpr; /* index into the array of 8 FPRs
1151 // * stored in the register save area
1152 // * fpr=0 corresponds to f1,
1153 // * fpr=1 to f2, etc.
1154 // */
1155 // char *overflow_arg_area;
1156 // /* location on stack that holds
1157 // * the next overflow argument
1158 // */
1159 // char *reg_save_area;
1160 // /* where r3:r10 and f1:f8 (if saved)
1161 // * are stored
1162 // */
1163 // } va_list[1];
1164
1165
1166 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1167 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1168
1169
1170 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1171
1172 SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1173 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1174
1175 SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1176 PtrVT);
1177 SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1178 PtrVT);
1179 SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
1180
1181 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1182
1183 // Store first byte : number of int regs
1184 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1185 Op.getOperand(1), SV->getValue(),
1186 SV->getOffset());
1187 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1188 ConstFPROffset);
1189
1190 // Store second byte : number of float regs
1191 SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1192 SV->getValue(), SV->getOffset());
1193 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1194
1195 // Store second word : arguments given on stack
1196 SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1197 SV->getValue(), SV->getOffset());
1198 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1199
1200 // Store third word : arguments given in registers
1201 return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1202 SV->getOffset());
1203
1204}
1205
1206#include "PPCGenCallingConv.inc"
1207
1208/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1209/// depending on which subtarget is selected.
1210static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1211 if (Subtarget.isMachoABI()) {
1212 static const unsigned FPR[] = {
1213 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1214 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1215 };
1216 return FPR;
1217 }
1218
1219
1220 static const unsigned FPR[] = {
1221 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1222 PPC::F8
1223 };
1224 return FPR;
1225}
1226
1227static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1228 int &VarArgsFrameIndex,
1229 int &VarArgsStackOffset,
1230 unsigned &VarArgsNumGPR,
1231 unsigned &VarArgsNumFPR,
1232 const PPCSubtarget &Subtarget) {
1233 // TODO: add description of PPC stack frame format, or at least some docs.
1234 //
1235 MachineFunction &MF = DAG.getMachineFunction();
1236 MachineFrameInfo *MFI = MF.getFrameInfo();
1237 SSARegMap *RegMap = MF.getSSARegMap();
1238 SmallVector<SDOperand, 8> ArgValues;
1239 SDOperand Root = Op.getOperand(0);
1240
1241 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1242 bool isPPC64 = PtrVT == MVT::i64;
1243 bool isMachoABI = Subtarget.isMachoABI();
1244 bool isELF32_ABI = Subtarget.isELF32_ABI();
1245 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1246
1247 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1248
1249 static const unsigned GPR_32[] = { // 32-bit registers.
1250 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1251 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1252 };
1253 static const unsigned GPR_64[] = { // 64-bit registers.
1254 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1255 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1256 };
1257
1258 static const unsigned *FPR = GetFPR(Subtarget);
1259
1260 static const unsigned VR[] = {
1261 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1262 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1263 };
1264
Owen Anderson1636de92007-09-07 04:06:50 +00001265 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001266 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001267 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268
1269 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1270
1271 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1272
1273 // Add DAG nodes to load the arguments or copy them out of registers. On
1274 // entry to a function on PPC, the arguments start after the linkage area,
1275 // although the first ones are often in registers.
1276 //
1277 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1278 // represented with two words (long long or double) must be copied to an
1279 // even GPR_idx value or to an even ArgOffset value.
1280
1281 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1282 SDOperand ArgVal;
1283 bool needsLoad = false;
1284 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1285 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1286 unsigned ArgSize = ObjSize;
1287 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1288 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1289 // See if next argument requires stack alignment in ELF
1290 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1291 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1292 (!(Flags & AlignFlag)));
1293
1294 unsigned CurArgOffset = ArgOffset;
1295 switch (ObjectVT) {
1296 default: assert(0 && "Unhandled argument type!");
1297 case MVT::i32:
1298 // Double word align in ELF
1299 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1300 if (GPR_idx != Num_GPR_Regs) {
1301 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1302 MF.addLiveIn(GPR[GPR_idx], VReg);
1303 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1304 ++GPR_idx;
1305 } else {
1306 needsLoad = true;
1307 ArgSize = PtrByteSize;
1308 }
1309 // Stack align in ELF
1310 if (needsLoad && Expand && isELF32_ABI)
1311 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1312 // All int arguments reserve stack space in Macho ABI.
1313 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1314 break;
1315
1316 case MVT::i64: // PPC64
1317 if (GPR_idx != Num_GPR_Regs) {
1318 unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1319 MF.addLiveIn(GPR[GPR_idx], VReg);
1320 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1321 ++GPR_idx;
1322 } else {
1323 needsLoad = true;
1324 }
1325 // All int arguments reserve stack space in Macho ABI.
1326 if (isMachoABI || needsLoad) ArgOffset += 8;
1327 break;
1328
1329 case MVT::f32:
1330 case MVT::f64:
1331 // Every 4 bytes of argument space consumes one of the GPRs available for
1332 // argument passing.
1333 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1334 ++GPR_idx;
1335 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1336 ++GPR_idx;
1337 }
1338 if (FPR_idx != Num_FPR_Regs) {
1339 unsigned VReg;
1340 if (ObjectVT == MVT::f32)
1341 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1342 else
1343 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1344 MF.addLiveIn(FPR[FPR_idx], VReg);
1345 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1346 ++FPR_idx;
1347 } else {
1348 needsLoad = true;
1349 }
1350
1351 // Stack align in ELF
1352 if (needsLoad && Expand && isELF32_ABI)
1353 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1354 // All FP arguments reserve stack space in Macho ABI.
1355 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1356 break;
1357 case MVT::v4f32:
1358 case MVT::v4i32:
1359 case MVT::v8i16:
1360 case MVT::v16i8:
1361 // Note that vector arguments in registers don't reserve stack space.
1362 if (VR_idx != Num_VR_Regs) {
1363 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1364 MF.addLiveIn(VR[VR_idx], VReg);
1365 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1366 ++VR_idx;
1367 } else {
1368 // This should be simple, but requires getting 16-byte aligned stack
1369 // values.
1370 assert(0 && "Loading VR argument not implemented yet!");
1371 needsLoad = true;
1372 }
1373 break;
1374 }
1375
1376 // We need to load the argument to a virtual register if we determined above
1377 // that we ran out of physical registers of the appropriate type
1378 if (needsLoad) {
1379 // If the argument is actually used, emit a load from the right stack
1380 // slot.
1381 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1382 int FI = MFI->CreateFixedObject(ObjSize,
1383 CurArgOffset + (ArgSize - ObjSize));
1384 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1385 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1386 } else {
1387 // Don't emit a dead load.
1388 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1389 }
1390 }
1391
1392 ArgValues.push_back(ArgVal);
1393 }
1394
1395 // If the function takes variable number of arguments, make a frame index for
1396 // the start of the first vararg value... for expansion of llvm.va_start.
1397 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1398 if (isVarArg) {
1399
1400 int depth;
1401 if (isELF32_ABI) {
1402 VarArgsNumGPR = GPR_idx;
1403 VarArgsNumFPR = FPR_idx;
1404
1405 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1406 // pointer.
1407 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1408 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1409 MVT::getSizeInBits(PtrVT)/8);
1410
1411 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1412 ArgOffset);
1413
1414 }
1415 else
1416 depth = ArgOffset;
1417
1418 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1419 depth);
1420 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1421
1422 SmallVector<SDOperand, 8> MemOps;
1423
1424 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1425 // stored to the VarArgsFrameIndex on the stack.
1426 if (isELF32_ABI) {
1427 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1428 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1429 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1430 MemOps.push_back(Store);
1431 // Increment the address by four for the next argument to store
1432 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1433 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1434 }
1435 }
1436
1437 // If this function is vararg, store any remaining integer argument regs
1438 // to their spots on the stack so that they may be loaded by deferencing the
1439 // result of va_next.
1440 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1441 unsigned VReg;
1442 if (isPPC64)
1443 VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1444 else
1445 VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1446
1447 MF.addLiveIn(GPR[GPR_idx], VReg);
1448 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1449 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1450 MemOps.push_back(Store);
1451 // Increment the address by four for the next argument to store
1452 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1453 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1454 }
1455
1456 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1457 // on the stack.
1458 if (isELF32_ABI) {
1459 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1460 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1461 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1462 MemOps.push_back(Store);
1463 // Increment the address by eight for the next argument to store
1464 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1465 PtrVT);
1466 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1467 }
1468
1469 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1470 unsigned VReg;
1471 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1472
1473 MF.addLiveIn(FPR[FPR_idx], VReg);
1474 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1475 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1476 MemOps.push_back(Store);
1477 // Increment the address by eight for the next argument to store
1478 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1479 PtrVT);
1480 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1481 }
1482 }
1483
1484 if (!MemOps.empty())
1485 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1486 }
1487
1488 ArgValues.push_back(Root);
1489
1490 // Return the new list of results.
1491 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1492 Op.Val->value_end());
1493 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1494}
1495
1496/// isCallCompatibleAddress - Return the immediate to use if the specified
1497/// 32-bit value is representable in the immediate field of a BxA instruction.
1498static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1499 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1500 if (!C) return 0;
1501
1502 int Addr = C->getValue();
1503 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1504 (Addr << 6 >> 6) != Addr)
1505 return 0; // Top 6 bits have to be sext of immediate.
1506
1507 return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1508}
1509
1510
1511static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1512 const PPCSubtarget &Subtarget) {
1513 SDOperand Chain = Op.getOperand(0);
1514 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1515 SDOperand Callee = Op.getOperand(4);
1516 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1517
1518 bool isMachoABI = Subtarget.isMachoABI();
1519 bool isELF32_ABI = Subtarget.isELF32_ABI();
1520
1521 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1522 bool isPPC64 = PtrVT == MVT::i64;
1523 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1524
1525 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1526 // SelectExpr to use to put the arguments in the appropriate registers.
1527 std::vector<SDOperand> args_to_use;
1528
1529 // Count how many bytes are to be pushed on the stack, including the linkage
1530 // area, and parameter passing area. We start with 24/48 bytes, which is
1531 // prereserved space for [SP][CR][LR][3 x unused].
1532 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1533
1534 // Add up all the space actually used.
1535 for (unsigned i = 0; i != NumOps; ++i) {
1536 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1537 ArgSize = std::max(ArgSize, PtrByteSize);
1538 NumBytes += ArgSize;
1539 }
1540
1541 // The prolog code of the callee may store up to 8 GPR argument registers to
1542 // the stack, allowing va_start to index over them in memory if its varargs.
1543 // Because we cannot tell if this is needed on the caller side, we have to
1544 // conservatively assume that it is needed. As such, make sure we have at
1545 // least enough stack space for the caller to store the 8 GPRs.
1546 NumBytes = std::max(NumBytes,
1547 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1548
1549 // Adjust the stack pointer for the new arguments...
1550 // These operations are automatically eliminated by the prolog/epilog pass
1551 Chain = DAG.getCALLSEQ_START(Chain,
1552 DAG.getConstant(NumBytes, PtrVT));
1553
1554 // Set up a copy of the stack pointer for use loading and storing any
1555 // arguments that may not fit in the registers available for argument
1556 // passing.
1557 SDOperand StackPtr;
1558 if (isPPC64)
1559 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1560 else
1561 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1562
1563 // Figure out which arguments are going to go in registers, and which in
1564 // memory. Also, if this is a vararg function, floating point operations
1565 // must be stored to our stack, and loaded into integer regs as well, if
1566 // any integer regs are available for argument passing.
1567 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1568 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1569
1570 static const unsigned GPR_32[] = { // 32-bit registers.
1571 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1572 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1573 };
1574 static const unsigned GPR_64[] = { // 64-bit registers.
1575 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1576 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1577 };
1578 static const unsigned *FPR = GetFPR(Subtarget);
1579
1580 static const unsigned VR[] = {
1581 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1582 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1583 };
Owen Anderson1636de92007-09-07 04:06:50 +00001584 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001586 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001587
1588 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1589
1590 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1591 SmallVector<SDOperand, 8> MemOpChains;
1592 for (unsigned i = 0; i != NumOps; ++i) {
1593 bool inMem = false;
1594 SDOperand Arg = Op.getOperand(5+2*i);
1595 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1596 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1597 // See if next argument requires stack alignment in ELF
1598 unsigned next = 5+2*(i+1)+1;
1599 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1600 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1601 (!(Flags & AlignFlag)));
1602
1603 // PtrOff will be used to store the current argument to the stack if a
1604 // register cannot be found for it.
1605 SDOperand PtrOff;
1606
1607 // Stack align in ELF 32
1608 if (isELF32_ABI && Expand)
1609 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1610 StackPtr.getValueType());
1611 else
1612 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1613
1614 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1615
1616 // On PPC64, promote integers to 64-bit values.
1617 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1618 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1619
1620 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1621 }
1622
1623 switch (Arg.getValueType()) {
1624 default: assert(0 && "Unexpected ValueType for argument!");
1625 case MVT::i32:
1626 case MVT::i64:
1627 // Double word align in ELF
1628 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1629 if (GPR_idx != NumGPRs) {
1630 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1631 } else {
1632 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1633 inMem = true;
1634 }
1635 if (inMem || isMachoABI) {
1636 // Stack align in ELF
1637 if (isELF32_ABI && Expand)
1638 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1639
1640 ArgOffset += PtrByteSize;
1641 }
1642 break;
1643 case MVT::f32:
1644 case MVT::f64:
1645 if (isVarArg) {
1646 // Float varargs need to be promoted to double.
1647 if (Arg.getValueType() == MVT::f32)
1648 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1649 }
1650
1651 if (FPR_idx != NumFPRs) {
1652 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1653
1654 if (isVarArg) {
1655 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1656 MemOpChains.push_back(Store);
1657
1658 // Float varargs are always shadowed in available integer registers
1659 if (GPR_idx != NumGPRs) {
1660 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1661 MemOpChains.push_back(Load.getValue(1));
1662 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1663 Load));
1664 }
1665 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1666 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1667 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1668 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1669 MemOpChains.push_back(Load.getValue(1));
1670 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1671 Load));
1672 }
1673 } else {
1674 // If we have any FPRs remaining, we may also have GPRs remaining.
1675 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1676 // GPRs.
1677 if (isMachoABI) {
1678 if (GPR_idx != NumGPRs)
1679 ++GPR_idx;
1680 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1681 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1682 ++GPR_idx;
1683 }
1684 }
1685 } else {
1686 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1687 inMem = true;
1688 }
1689 if (inMem || isMachoABI) {
1690 // Stack align in ELF
1691 if (isELF32_ABI && Expand)
1692 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1693 if (isPPC64)
1694 ArgOffset += 8;
1695 else
1696 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1697 }
1698 break;
1699 case MVT::v4f32:
1700 case MVT::v4i32:
1701 case MVT::v8i16:
1702 case MVT::v16i8:
1703 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1704 assert(VR_idx != NumVRs &&
1705 "Don't support passing more than 12 vector args yet!");
1706 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1707 break;
1708 }
1709 }
1710 if (!MemOpChains.empty())
1711 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1712 &MemOpChains[0], MemOpChains.size());
1713
1714 // Build a sequence of copy-to-reg nodes chained together with token chain
1715 // and flag operands which copy the outgoing args into the appropriate regs.
1716 SDOperand InFlag;
1717 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1718 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1719 InFlag);
1720 InFlag = Chain.getValue(1);
1721 }
1722
1723 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1724 if (isVarArg && isELF32_ABI) {
1725 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1726 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1727 InFlag = Chain.getValue(1);
1728 }
1729
1730 std::vector<MVT::ValueType> NodeTys;
1731 NodeTys.push_back(MVT::Other); // Returns a chain
1732 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1733
1734 SmallVector<SDOperand, 8> Ops;
1735 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1736
1737 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1738 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1739 // node so that legalize doesn't hack it.
1740 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1741 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1742 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1743 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1744 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1745 // If this is an absolute destination address, use the munged value.
1746 Callee = SDOperand(Dest, 0);
1747 else {
1748 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1749 // to do the call, we can't use PPCISD::CALL.
1750 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1751 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1752 InFlag = Chain.getValue(1);
1753
1754 // Copy the callee address into R12 on darwin.
1755 if (isMachoABI) {
1756 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1757 InFlag = Chain.getValue(1);
1758 }
1759
1760 NodeTys.clear();
1761 NodeTys.push_back(MVT::Other);
1762 NodeTys.push_back(MVT::Flag);
1763 Ops.push_back(Chain);
1764 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1765 Callee.Val = 0;
1766 }
1767
1768 // If this is a direct call, pass the chain and the callee.
1769 if (Callee.Val) {
1770 Ops.push_back(Chain);
1771 Ops.push_back(Callee);
1772 }
1773
1774 // Add argument registers to the end of the list so that they are known live
1775 // into the call.
1776 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1777 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1778 RegsToPass[i].second.getValueType()));
1779
1780 if (InFlag.Val)
1781 Ops.push_back(InFlag);
1782 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1783 InFlag = Chain.getValue(1);
1784
1785 SDOperand ResultVals[3];
1786 unsigned NumResults = 0;
1787 NodeTys.clear();
1788
1789 // If the call has results, copy the values out of the ret val registers.
1790 switch (Op.Val->getValueType(0)) {
1791 default: assert(0 && "Unexpected ret value!");
1792 case MVT::Other: break;
1793 case MVT::i32:
1794 if (Op.Val->getValueType(1) == MVT::i32) {
1795 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1796 ResultVals[0] = Chain.getValue(0);
1797 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1798 Chain.getValue(2)).getValue(1);
1799 ResultVals[1] = Chain.getValue(0);
1800 NumResults = 2;
1801 NodeTys.push_back(MVT::i32);
1802 } else {
1803 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1804 ResultVals[0] = Chain.getValue(0);
1805 NumResults = 1;
1806 }
1807 NodeTys.push_back(MVT::i32);
1808 break;
1809 case MVT::i64:
1810 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1811 ResultVals[0] = Chain.getValue(0);
1812 NumResults = 1;
1813 NodeTys.push_back(MVT::i64);
1814 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001815 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00001816 if (Op.Val->getValueType(1) == MVT::f64) {
1817 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1818 ResultVals[0] = Chain.getValue(0);
1819 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1820 Chain.getValue(2)).getValue(1);
1821 ResultVals[1] = Chain.getValue(0);
1822 NumResults = 2;
1823 NodeTys.push_back(MVT::f64);
1824 NodeTys.push_back(MVT::f64);
1825 break;
1826 }
1827 // else fall through
1828 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001829 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1830 InFlag).getValue(1);
1831 ResultVals[0] = Chain.getValue(0);
1832 NumResults = 1;
1833 NodeTys.push_back(Op.Val->getValueType(0));
1834 break;
1835 case MVT::v4f32:
1836 case MVT::v4i32:
1837 case MVT::v8i16:
1838 case MVT::v16i8:
1839 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1840 InFlag).getValue(1);
1841 ResultVals[0] = Chain.getValue(0);
1842 NumResults = 1;
1843 NodeTys.push_back(Op.Val->getValueType(0));
1844 break;
1845 }
1846
1847 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1848 DAG.getConstant(NumBytes, PtrVT));
1849 NodeTys.push_back(MVT::Other);
1850
1851 // If the function returns void, just return the chain.
1852 if (NumResults == 0)
1853 return Chain;
1854
1855 // Otherwise, merge everything together with a MERGE_VALUES node.
1856 ResultVals[NumResults++] = Chain;
1857 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1858 ResultVals, NumResults);
1859 return Res.getValue(Op.ResNo);
1860}
1861
1862static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1863 SmallVector<CCValAssign, 16> RVLocs;
1864 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1865 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1866 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1867 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1868
1869 // If this is the first return lowered for this function, add the regs to the
1870 // liveout set for the function.
1871 if (DAG.getMachineFunction().liveout_empty()) {
1872 for (unsigned i = 0; i != RVLocs.size(); ++i)
1873 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1874 }
1875
1876 SDOperand Chain = Op.getOperand(0);
1877 SDOperand Flag;
1878
1879 // Copy the result values into the output registers.
1880 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1881 CCValAssign &VA = RVLocs[i];
1882 assert(VA.isRegLoc() && "Can only return in registers!");
1883 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1884 Flag = Chain.getValue(1);
1885 }
1886
1887 if (Flag.Val)
1888 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1889 else
1890 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1891}
1892
1893static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1894 const PPCSubtarget &Subtarget) {
1895 // When we pop the dynamic allocation we need to restore the SP link.
1896
1897 // Get the corect type for pointers.
1898 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1899
1900 // Construct the stack pointer operand.
1901 bool IsPPC64 = Subtarget.isPPC64();
1902 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1903 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1904
1905 // Get the operands for the STACKRESTORE.
1906 SDOperand Chain = Op.getOperand(0);
1907 SDOperand SaveSP = Op.getOperand(1);
1908
1909 // Load the old link SP.
1910 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1911
1912 // Restore the stack pointer.
1913 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1914
1915 // Store the old link SP.
1916 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1917}
1918
1919static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1920 const PPCSubtarget &Subtarget) {
1921 MachineFunction &MF = DAG.getMachineFunction();
1922 bool IsPPC64 = Subtarget.isPPC64();
1923 bool isMachoABI = Subtarget.isMachoABI();
1924
1925 // Get current frame pointer save index. The users of this index will be
1926 // primarily DYNALLOC instructions.
1927 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1928 int FPSI = FI->getFramePointerSaveIndex();
1929
1930 // If the frame pointer save index hasn't been defined yet.
1931 if (!FPSI) {
1932 // Find out what the fix offset of the frame pointer save area.
1933 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1934
1935 // Allocate the frame index for frame pointer save area.
1936 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1937 // Save the result.
1938 FI->setFramePointerSaveIndex(FPSI);
1939 }
1940
1941 // Get the inputs.
1942 SDOperand Chain = Op.getOperand(0);
1943 SDOperand Size = Op.getOperand(1);
1944
1945 // Get the corect type for pointers.
1946 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1947 // Negate the size.
1948 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1949 DAG.getConstant(0, PtrVT), Size);
1950 // Construct a node for the frame pointer save index.
1951 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1952 // Build a DYNALLOC node.
1953 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1954 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1955 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1956}
1957
1958
1959/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1960/// possible.
1961static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1962 // Not FP? Not a fsel.
1963 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1964 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1965 return SDOperand();
1966
1967 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1968
1969 // Cannot handle SETEQ/SETNE.
1970 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1971
1972 MVT::ValueType ResVT = Op.getValueType();
1973 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1974 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1975 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
1976
1977 // If the RHS of the comparison is a 0.0, we don't need to do the
1978 // subtraction at all.
1979 if (isFloatingPointZero(RHS))
1980 switch (CC) {
1981 default: break; // SETUO etc aren't handled by fsel.
1982 case ISD::SETULT:
1983 case ISD::SETOLT:
1984 case ISD::SETLT:
1985 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1986 case ISD::SETUGE:
1987 case ISD::SETOGE:
1988 case ISD::SETGE:
1989 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1990 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1991 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1992 case ISD::SETUGT:
1993 case ISD::SETOGT:
1994 case ISD::SETGT:
1995 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1996 case ISD::SETULE:
1997 case ISD::SETOLE:
1998 case ISD::SETLE:
1999 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2000 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2001 return DAG.getNode(PPCISD::FSEL, ResVT,
2002 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2003 }
2004
2005 SDOperand Cmp;
2006 switch (CC) {
2007 default: break; // SETUO etc aren't handled by fsel.
2008 case ISD::SETULT:
2009 case ISD::SETOLT:
2010 case ISD::SETLT:
2011 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2012 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2013 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2014 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2015 case ISD::SETUGE:
2016 case ISD::SETOGE:
2017 case ISD::SETGE:
2018 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2019 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2020 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2021 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2022 case ISD::SETUGT:
2023 case ISD::SETOGT:
2024 case ISD::SETGT:
2025 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2026 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2027 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2028 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2029 case ISD::SETULE:
2030 case ISD::SETOLE:
2031 case ISD::SETLE:
2032 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2033 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2034 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2035 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2036 }
2037 return SDOperand();
2038}
2039
2040static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2041 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2042 SDOperand Src = Op.getOperand(0);
2043 if (Src.getValueType() == MVT::f32)
2044 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2045
2046 SDOperand Tmp;
2047 switch (Op.getValueType()) {
2048 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2049 case MVT::i32:
2050 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2051 break;
2052 case MVT::i64:
2053 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2054 break;
2055 }
2056
2057 // Convert the FP value to an int value through memory.
2058 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2059 if (Op.getValueType() == MVT::i32)
2060 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2061 return Bits;
2062}
2063
2064static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2065 if (Op.getOperand(0).getValueType() == MVT::i64) {
2066 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2067 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2068 if (Op.getValueType() == MVT::f32)
2069 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2070 return FP;
2071 }
2072
2073 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2074 "Unhandled SINT_TO_FP type in custom expander!");
2075 // Since we only generate this in 64-bit mode, we can take advantage of
2076 // 64-bit registers. In particular, sign extend the input value into the
2077 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2078 // then lfd it and fcfid it.
2079 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2080 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2081 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2082 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2083
2084 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2085 Op.getOperand(0));
2086
2087 // STD the extended value into the stack slot.
2088 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2089 DAG.getEntryNode(), Ext64, FIdx,
2090 DAG.getSrcValue(NULL));
2091 // Load the value as a double.
2092 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2093
2094 // FCFID it and return it.
2095 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2096 if (Op.getValueType() == MVT::f32)
2097 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2098 return FP;
2099}
2100
2101static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2102 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2103 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2104
2105 // Expand into a bunch of logical ops. Note that these ops
2106 // depend on the PPC behavior for oversized shift amounts.
2107 SDOperand Lo = Op.getOperand(0);
2108 SDOperand Hi = Op.getOperand(1);
2109 SDOperand Amt = Op.getOperand(2);
2110
2111 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2112 DAG.getConstant(32, MVT::i32), Amt);
2113 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2114 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2115 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2116 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2117 DAG.getConstant(-32U, MVT::i32));
2118 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2119 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2120 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2121 SDOperand OutOps[] = { OutLo, OutHi };
2122 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2123 OutOps, 2);
2124}
2125
2126static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2127 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2128 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2129
2130 // Otherwise, expand into a bunch of logical ops. Note that these ops
2131 // depend on the PPC behavior for oversized shift amounts.
2132 SDOperand Lo = Op.getOperand(0);
2133 SDOperand Hi = Op.getOperand(1);
2134 SDOperand Amt = Op.getOperand(2);
2135
2136 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2137 DAG.getConstant(32, MVT::i32), Amt);
2138 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2139 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2140 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2141 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2142 DAG.getConstant(-32U, MVT::i32));
2143 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2144 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2145 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2146 SDOperand OutOps[] = { OutLo, OutHi };
2147 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2148 OutOps, 2);
2149}
2150
2151static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2152 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2153 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2154
2155 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2156 SDOperand Lo = Op.getOperand(0);
2157 SDOperand Hi = Op.getOperand(1);
2158 SDOperand Amt = Op.getOperand(2);
2159
2160 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2161 DAG.getConstant(32, MVT::i32), Amt);
2162 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2163 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2164 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2165 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2166 DAG.getConstant(-32U, MVT::i32));
2167 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2168 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2169 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2170 Tmp4, Tmp6, ISD::SETLE);
2171 SDOperand OutOps[] = { OutLo, OutHi };
2172 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2173 OutOps, 2);
2174}
2175
2176//===----------------------------------------------------------------------===//
2177// Vector related lowering.
2178//
2179
2180// If this is a vector of constants or undefs, get the bits. A bit in
2181// UndefBits is set if the corresponding element of the vector is an
2182// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2183// zero. Return true if this is not an array of constants, false if it is.
2184//
2185static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2186 uint64_t UndefBits[2]) {
2187 // Start with zero'd results.
2188 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2189
2190 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2191 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2192 SDOperand OpVal = BV->getOperand(i);
2193
2194 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2195 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2196
2197 uint64_t EltBits = 0;
2198 if (OpVal.getOpcode() == ISD::UNDEF) {
2199 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2200 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2201 continue;
2202 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2203 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2204 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2205 assert(CN->getValueType(0) == MVT::f32 &&
2206 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002207 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002208 } else {
2209 // Nonconstant element.
2210 return true;
2211 }
2212
2213 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2214 }
2215
2216 //printf("%llx %llx %llx %llx\n",
2217 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2218 return false;
2219}
2220
2221// If this is a splat (repetition) of a value across the whole vector, return
2222// the smallest size that splats it. For example, "0x01010101010101..." is a
2223// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2224// SplatSize = 1 byte.
2225static bool isConstantSplat(const uint64_t Bits128[2],
2226 const uint64_t Undef128[2],
2227 unsigned &SplatBits, unsigned &SplatUndef,
2228 unsigned &SplatSize) {
2229
2230 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2231 // the same as the lower 64-bits, ignoring undefs.
2232 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2233 return false; // Can't be a splat if two pieces don't match.
2234
2235 uint64_t Bits64 = Bits128[0] | Bits128[1];
2236 uint64_t Undef64 = Undef128[0] & Undef128[1];
2237
2238 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2239 // undefs.
2240 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2241 return false; // Can't be a splat if two pieces don't match.
2242
2243 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2244 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2245
2246 // If the top 16-bits are different than the lower 16-bits, ignoring
2247 // undefs, we have an i32 splat.
2248 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2249 SplatBits = Bits32;
2250 SplatUndef = Undef32;
2251 SplatSize = 4;
2252 return true;
2253 }
2254
2255 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2256 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2257
2258 // If the top 8-bits are different than the lower 8-bits, ignoring
2259 // undefs, we have an i16 splat.
2260 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2261 SplatBits = Bits16;
2262 SplatUndef = Undef16;
2263 SplatSize = 2;
2264 return true;
2265 }
2266
2267 // Otherwise, we have an 8-bit splat.
2268 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2269 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2270 SplatSize = 1;
2271 return true;
2272}
2273
2274/// BuildSplatI - Build a canonical splati of Val with an element size of
2275/// SplatSize. Cast the result to VT.
2276static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2277 SelectionDAG &DAG) {
2278 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2279
2280 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2281 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2282 };
2283
2284 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2285
2286 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2287 if (Val == -1)
2288 SplatSize = 1;
2289
2290 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2291
2292 // Build a canonical splat for this value.
2293 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2294 SmallVector<SDOperand, 8> Ops;
2295 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2296 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2297 &Ops[0], Ops.size());
2298 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2299}
2300
2301/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2302/// specified intrinsic ID.
2303static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2304 SelectionDAG &DAG,
2305 MVT::ValueType DestVT = MVT::Other) {
2306 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2307 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2308 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2309}
2310
2311/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2312/// specified intrinsic ID.
2313static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2314 SDOperand Op2, SelectionDAG &DAG,
2315 MVT::ValueType DestVT = MVT::Other) {
2316 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2317 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2318 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2319}
2320
2321
2322/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2323/// amount. The result has the specified value type.
2324static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2325 MVT::ValueType VT, SelectionDAG &DAG) {
2326 // Force LHS/RHS to be the right type.
2327 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2328 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2329
2330 SDOperand Ops[16];
2331 for (unsigned i = 0; i != 16; ++i)
2332 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2333 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2334 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2335 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2336}
2337
2338// If this is a case we can't handle, return null and let the default
2339// expansion code take care of it. If we CAN select this case, and if it
2340// selects to a single instruction, return Op. Otherwise, if we can codegen
2341// this case more efficiently than a constant pool load, lower it to the
2342// sequence of ops that should be used.
2343static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2344 // If this is a vector of constants or undefs, get the bits. A bit in
2345 // UndefBits is set if the corresponding element of the vector is an
2346 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2347 // zero.
2348 uint64_t VectorBits[2];
2349 uint64_t UndefBits[2];
2350 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2351 return SDOperand(); // Not a constant vector.
2352
2353 // If this is a splat (repetition) of a value across the whole vector, return
2354 // the smallest size that splats it. For example, "0x01010101010101..." is a
2355 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2356 // SplatSize = 1 byte.
2357 unsigned SplatBits, SplatUndef, SplatSize;
2358 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2359 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2360
2361 // First, handle single instruction cases.
2362
2363 // All zeros?
2364 if (SplatBits == 0) {
2365 // Canonicalize all zero vectors to be v4i32.
2366 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2367 SDOperand Z = DAG.getConstant(0, MVT::i32);
2368 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2369 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2370 }
2371 return Op;
2372 }
2373
2374 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2375 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2376 if (SextVal >= -16 && SextVal <= 15)
2377 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2378
2379
2380 // Two instruction sequences.
2381
2382 // If this value is in the range [-32,30] and is even, use:
2383 // tmp = VSPLTI[bhw], result = add tmp, tmp
2384 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2385 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2386 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2387 }
2388
2389 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2390 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2391 // for fneg/fabs.
2392 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2393 // Make -1 and vspltisw -1:
2394 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2395
2396 // Make the VSLW intrinsic, computing 0x8000_0000.
2397 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2398 OnesV, DAG);
2399
2400 // xor by OnesV to invert it.
2401 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2402 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2403 }
2404
2405 // Check to see if this is a wide variety of vsplti*, binop self cases.
2406 unsigned SplatBitSize = SplatSize*8;
2407 static const signed char SplatCsts[] = {
2408 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2409 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2410 };
2411
Owen Anderson1636de92007-09-07 04:06:50 +00002412 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002413 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2414 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2415 int i = SplatCsts[idx];
2416
2417 // Figure out what shift amount will be used by altivec if shifted by i in
2418 // this splat size.
2419 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2420
2421 // vsplti + shl self.
2422 if (SextVal == (i << (int)TypeShiftAmt)) {
2423 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2424 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2425 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2426 Intrinsic::ppc_altivec_vslw
2427 };
2428 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2429 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2430 }
2431
2432 // vsplti + srl self.
2433 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2434 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2435 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2436 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2437 Intrinsic::ppc_altivec_vsrw
2438 };
2439 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2440 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2441 }
2442
2443 // vsplti + sra self.
2444 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2445 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2446 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2447 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2448 Intrinsic::ppc_altivec_vsraw
2449 };
2450 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2451 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2452 }
2453
2454 // vsplti + rol self.
2455 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2456 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2457 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2458 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2459 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2460 Intrinsic::ppc_altivec_vrlw
2461 };
2462 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2463 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2464 }
2465
2466 // t = vsplti c, result = vsldoi t, t, 1
2467 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2468 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2469 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2470 }
2471 // t = vsplti c, result = vsldoi t, t, 2
2472 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2473 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2474 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2475 }
2476 // t = vsplti c, result = vsldoi t, t, 3
2477 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2478 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2479 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2480 }
2481 }
2482
2483 // Three instruction sequences.
2484
2485 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2486 if (SextVal >= 0 && SextVal <= 31) {
2487 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2488 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2489 LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2490 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2491 }
2492 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2493 if (SextVal >= -31 && SextVal <= 0) {
2494 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2495 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2496 LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2497 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2498 }
2499 }
2500
2501 return SDOperand();
2502}
2503
2504/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2505/// the specified operations to build the shuffle.
2506static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2507 SDOperand RHS, SelectionDAG &DAG) {
2508 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2509 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2510 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2511
2512 enum {
2513 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2514 OP_VMRGHW,
2515 OP_VMRGLW,
2516 OP_VSPLTISW0,
2517 OP_VSPLTISW1,
2518 OP_VSPLTISW2,
2519 OP_VSPLTISW3,
2520 OP_VSLDOI4,
2521 OP_VSLDOI8,
2522 OP_VSLDOI12
2523 };
2524
2525 if (OpNum == OP_COPY) {
2526 if (LHSID == (1*9+2)*9+3) return LHS;
2527 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2528 return RHS;
2529 }
2530
2531 SDOperand OpLHS, OpRHS;
2532 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2533 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2534
2535 unsigned ShufIdxs[16];
2536 switch (OpNum) {
2537 default: assert(0 && "Unknown i32 permute!");
2538 case OP_VMRGHW:
2539 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2540 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2541 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2542 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2543 break;
2544 case OP_VMRGLW:
2545 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2546 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2547 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2548 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2549 break;
2550 case OP_VSPLTISW0:
2551 for (unsigned i = 0; i != 16; ++i)
2552 ShufIdxs[i] = (i&3)+0;
2553 break;
2554 case OP_VSPLTISW1:
2555 for (unsigned i = 0; i != 16; ++i)
2556 ShufIdxs[i] = (i&3)+4;
2557 break;
2558 case OP_VSPLTISW2:
2559 for (unsigned i = 0; i != 16; ++i)
2560 ShufIdxs[i] = (i&3)+8;
2561 break;
2562 case OP_VSPLTISW3:
2563 for (unsigned i = 0; i != 16; ++i)
2564 ShufIdxs[i] = (i&3)+12;
2565 break;
2566 case OP_VSLDOI4:
2567 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2568 case OP_VSLDOI8:
2569 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2570 case OP_VSLDOI12:
2571 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2572 }
2573 SDOperand Ops[16];
2574 for (unsigned i = 0; i != 16; ++i)
2575 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2576
2577 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2578 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2579}
2580
2581/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2582/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2583/// return the code it can be lowered into. Worst case, it can always be
2584/// lowered into a vperm.
2585static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2586 SDOperand V1 = Op.getOperand(0);
2587 SDOperand V2 = Op.getOperand(1);
2588 SDOperand PermMask = Op.getOperand(2);
2589
2590 // Cases that are handled by instructions that take permute immediates
2591 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2592 // selected by the instruction selector.
2593 if (V2.getOpcode() == ISD::UNDEF) {
2594 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2595 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2596 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2597 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2598 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2599 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2600 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2601 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2602 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2603 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2604 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2605 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2606 return Op;
2607 }
2608 }
2609
2610 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2611 // and produce a fixed permutation. If any of these match, do not lower to
2612 // VPERM.
2613 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2614 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2615 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2616 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2617 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2618 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2619 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2620 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2621 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2622 return Op;
2623
2624 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2625 // perfect shuffle table to emit an optimal matching sequence.
2626 unsigned PFIndexes[4];
2627 bool isFourElementShuffle = true;
2628 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2629 unsigned EltNo = 8; // Start out undef.
2630 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2631 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2632 continue; // Undef, ignore it.
2633
2634 unsigned ByteSource =
2635 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2636 if ((ByteSource & 3) != j) {
2637 isFourElementShuffle = false;
2638 break;
2639 }
2640
2641 if (EltNo == 8) {
2642 EltNo = ByteSource/4;
2643 } else if (EltNo != ByteSource/4) {
2644 isFourElementShuffle = false;
2645 break;
2646 }
2647 }
2648 PFIndexes[i] = EltNo;
2649 }
2650
2651 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2652 // perfect shuffle vector to determine if it is cost effective to do this as
2653 // discrete instructions, or whether we should use a vperm.
2654 if (isFourElementShuffle) {
2655 // Compute the index in the perfect shuffle table.
2656 unsigned PFTableIndex =
2657 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2658
2659 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2660 unsigned Cost = (PFEntry >> 30);
2661
2662 // Determining when to avoid vperm is tricky. Many things affect the cost
2663 // of vperm, particularly how many times the perm mask needs to be computed.
2664 // For example, if the perm mask can be hoisted out of a loop or is already
2665 // used (perhaps because there are multiple permutes with the same shuffle
2666 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2667 // the loop requires an extra register.
2668 //
2669 // As a compromise, we only emit discrete instructions if the shuffle can be
2670 // generated in 3 or fewer operations. When we have loop information
2671 // available, if this block is within a loop, we should avoid using vperm
2672 // for 3-operation perms and use a constant pool load instead.
2673 if (Cost < 3)
2674 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2675 }
2676
2677 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2678 // vector that will get spilled to the constant pool.
2679 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2680
2681 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2682 // that it is in input element units, not in bytes. Convert now.
2683 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2684 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2685
2686 SmallVector<SDOperand, 16> ResultMask;
2687 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2688 unsigned SrcElt;
2689 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2690 SrcElt = 0;
2691 else
2692 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2693
2694 for (unsigned j = 0; j != BytesPerElement; ++j)
2695 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2696 MVT::i8));
2697 }
2698
2699 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2700 &ResultMask[0], ResultMask.size());
2701 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2702}
2703
2704/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2705/// altivec comparison. If it is, return true and fill in Opc/isDot with
2706/// information about the intrinsic.
2707static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2708 bool &isDot) {
2709 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2710 CompareOpc = -1;
2711 isDot = false;
2712 switch (IntrinsicID) {
2713 default: return false;
2714 // Comparison predicates.
2715 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2716 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2717 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2718 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2719 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2720 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2721 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2722 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2723 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2724 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2725 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2726 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2727 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2728
2729 // Normal Comparisons.
2730 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2731 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2732 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2733 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2734 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2735 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2736 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2737 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2738 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2739 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2740 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2741 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2742 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2743 }
2744 return true;
2745}
2746
2747/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2748/// lower, do it, otherwise return null.
2749static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2750 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2751 // opcode number of the comparison.
2752 int CompareOpc;
2753 bool isDot;
2754 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2755 return SDOperand(); // Don't custom lower most intrinsics.
2756
2757 // If this is a non-dot comparison, make the VCMP node and we are done.
2758 if (!isDot) {
2759 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2760 Op.getOperand(1), Op.getOperand(2),
2761 DAG.getConstant(CompareOpc, MVT::i32));
2762 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2763 }
2764
2765 // Create the PPCISD altivec 'dot' comparison node.
2766 SDOperand Ops[] = {
2767 Op.getOperand(2), // LHS
2768 Op.getOperand(3), // RHS
2769 DAG.getConstant(CompareOpc, MVT::i32)
2770 };
2771 std::vector<MVT::ValueType> VTs;
2772 VTs.push_back(Op.getOperand(2).getValueType());
2773 VTs.push_back(MVT::Flag);
2774 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2775
2776 // Now that we have the comparison, emit a copy from the CR to a GPR.
2777 // This is flagged to the above dot comparison.
2778 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2779 DAG.getRegister(PPC::CR6, MVT::i32),
2780 CompNode.getValue(1));
2781
2782 // Unpack the result based on how the target uses it.
2783 unsigned BitNo; // Bit # of CR6.
2784 bool InvertBit; // Invert result?
2785 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2786 default: // Can't happen, don't crash on invalid number though.
2787 case 0: // Return the value of the EQ bit of CR6.
2788 BitNo = 0; InvertBit = false;
2789 break;
2790 case 1: // Return the inverted value of the EQ bit of CR6.
2791 BitNo = 0; InvertBit = true;
2792 break;
2793 case 2: // Return the value of the LT bit of CR6.
2794 BitNo = 2; InvertBit = false;
2795 break;
2796 case 3: // Return the inverted value of the LT bit of CR6.
2797 BitNo = 2; InvertBit = true;
2798 break;
2799 }
2800
2801 // Shift the bit into the low position.
2802 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2803 DAG.getConstant(8-(3-BitNo), MVT::i32));
2804 // Isolate the bit.
2805 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2806 DAG.getConstant(1, MVT::i32));
2807
2808 // If we are supposed to, toggle the bit.
2809 if (InvertBit)
2810 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2811 DAG.getConstant(1, MVT::i32));
2812 return Flags;
2813}
2814
2815static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2816 // Create a stack slot that is 16-byte aligned.
2817 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2818 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2819 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2820 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2821
2822 // Store the input value into Value#0 of the stack slot.
2823 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2824 Op.getOperand(0), FIdx, NULL, 0);
2825 // Load it out.
2826 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2827}
2828
2829static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2830 if (Op.getValueType() == MVT::v4i32) {
2831 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2832
2833 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2834 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2835
2836 SDOperand RHSSwap = // = vrlw RHS, 16
2837 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2838
2839 // Shrinkify inputs to v8i16.
2840 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2841 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2842 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2843
2844 // Low parts multiplied together, generating 32-bit results (we ignore the
2845 // top parts).
2846 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2847 LHS, RHS, DAG, MVT::v4i32);
2848
2849 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2850 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2851 // Shift the high parts up 16 bits.
2852 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2853 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2854 } else if (Op.getValueType() == MVT::v8i16) {
2855 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2856
2857 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2858
2859 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2860 LHS, RHS, Zero, DAG);
2861 } else if (Op.getValueType() == MVT::v16i8) {
2862 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2863
2864 // Multiply the even 8-bit parts, producing 16-bit sums.
2865 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2866 LHS, RHS, DAG, MVT::v8i16);
2867 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2868
2869 // Multiply the odd 8-bit parts, producing 16-bit sums.
2870 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2871 LHS, RHS, DAG, MVT::v8i16);
2872 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2873
2874 // Merge the results together.
2875 SDOperand Ops[16];
2876 for (unsigned i = 0; i != 8; ++i) {
2877 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
2878 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2879 }
2880 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2881 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2882 } else {
2883 assert(0 && "Unknown mul to lower!");
2884 abort();
2885 }
2886}
2887
2888/// LowerOperation - Provide custom lowering hooks for some operations.
2889///
2890SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2891 switch (Op.getOpcode()) {
2892 default: assert(0 && "Wasn't expecting to be able to lower this!");
2893 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2894 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
2895 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2896 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2897 case ISD::SETCC: return LowerSETCC(Op, DAG);
2898 case ISD::VASTART:
2899 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2900 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2901
2902 case ISD::VAARG:
2903 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2904 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2905
2906 case ISD::FORMAL_ARGUMENTS:
2907 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2908 VarArgsStackOffset, VarArgsNumGPR,
2909 VarArgsNumFPR, PPCSubTarget);
2910
2911 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
2912 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
2913 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2914 case ISD::DYNAMIC_STACKALLOC:
2915 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2916
2917 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2918 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
2919 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
2920
2921 // Lower 64-bit shifts.
2922 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
2923 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
2924 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
2925
2926 // Vector-related lowering.
2927 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2928 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2929 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2930 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2931 case ISD::MUL: return LowerMUL(Op, DAG);
2932
2933 // Frame & Return address. Currently unimplemented
2934 case ISD::RETURNADDR: break;
2935 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2936 }
2937 return SDOperand();
2938}
2939
2940//===----------------------------------------------------------------------===//
2941// Other Lowering Code
2942//===----------------------------------------------------------------------===//
2943
2944MachineBasicBlock *
2945PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2946 MachineBasicBlock *BB) {
2947 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2948 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2949 MI->getOpcode() == PPC::SELECT_CC_I8 ||
2950 MI->getOpcode() == PPC::SELECT_CC_F4 ||
2951 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2952 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2953 "Unexpected instr type to insert");
2954
2955 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2956 // control-flow pattern. The incoming instruction knows the destination vreg
2957 // to set, the condition code register to branch on, the true/false values to
2958 // select between, and a branch opcode to use.
2959 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2960 ilist<MachineBasicBlock>::iterator It = BB;
2961 ++It;
2962
2963 // thisMBB:
2964 // ...
2965 // TrueVal = ...
2966 // cmpTY ccX, r1, r2
2967 // bCC copy1MBB
2968 // fallthrough --> copy0MBB
2969 MachineBasicBlock *thisMBB = BB;
2970 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2971 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2972 unsigned SelectPred = MI->getOperand(4).getImm();
2973 BuildMI(BB, TII->get(PPC::BCC))
2974 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2975 MachineFunction *F = BB->getParent();
2976 F->getBasicBlockList().insert(It, copy0MBB);
2977 F->getBasicBlockList().insert(It, sinkMBB);
2978 // Update machine-CFG edges by first adding all successors of the current
2979 // block to the new block which will contain the Phi node for the select.
2980 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2981 e = BB->succ_end(); i != e; ++i)
2982 sinkMBB->addSuccessor(*i);
2983 // Next, remove all successors of the current block, and add the true
2984 // and fallthrough blocks as its successors.
2985 while(!BB->succ_empty())
2986 BB->removeSuccessor(BB->succ_begin());
2987 BB->addSuccessor(copy0MBB);
2988 BB->addSuccessor(sinkMBB);
2989
2990 // copy0MBB:
2991 // %FalseValue = ...
2992 // # fallthrough to sinkMBB
2993 BB = copy0MBB;
2994
2995 // Update machine-CFG edges
2996 BB->addSuccessor(sinkMBB);
2997
2998 // sinkMBB:
2999 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3000 // ...
3001 BB = sinkMBB;
3002 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3003 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3004 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3005
3006 delete MI; // The pseudo instruction is gone now.
3007 return BB;
3008}
3009
3010//===----------------------------------------------------------------------===//
3011// Target Optimization Hooks
3012//===----------------------------------------------------------------------===//
3013
3014SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3015 DAGCombinerInfo &DCI) const {
3016 TargetMachine &TM = getTargetMachine();
3017 SelectionDAG &DAG = DCI.DAG;
3018 switch (N->getOpcode()) {
3019 default: break;
3020 case PPCISD::SHL:
3021 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3022 if (C->getValue() == 0) // 0 << V -> 0.
3023 return N->getOperand(0);
3024 }
3025 break;
3026 case PPCISD::SRL:
3027 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3028 if (C->getValue() == 0) // 0 >>u V -> 0.
3029 return N->getOperand(0);
3030 }
3031 break;
3032 case PPCISD::SRA:
3033 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3034 if (C->getValue() == 0 || // 0 >>s V -> 0.
3035 C->isAllOnesValue()) // -1 >>s V -> -1.
3036 return N->getOperand(0);
3037 }
3038 break;
3039
3040 case ISD::SINT_TO_FP:
3041 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3042 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3043 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3044 // We allow the src/dst to be either f32/f64, but the intermediate
3045 // type must be i64.
3046 if (N->getOperand(0).getValueType() == MVT::i64) {
3047 SDOperand Val = N->getOperand(0).getOperand(0);
3048 if (Val.getValueType() == MVT::f32) {
3049 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3050 DCI.AddToWorklist(Val.Val);
3051 }
3052
3053 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3054 DCI.AddToWorklist(Val.Val);
3055 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3056 DCI.AddToWorklist(Val.Val);
3057 if (N->getValueType(0) == MVT::f32) {
3058 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3059 DCI.AddToWorklist(Val.Val);
3060 }
3061 return Val;
3062 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3063 // If the intermediate type is i32, we can avoid the load/store here
3064 // too.
3065 }
3066 }
3067 }
3068 break;
3069 case ISD::STORE:
3070 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3071 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3072 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3073 N->getOperand(1).getValueType() == MVT::i32) {
3074 SDOperand Val = N->getOperand(1).getOperand(0);
3075 if (Val.getValueType() == MVT::f32) {
3076 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3077 DCI.AddToWorklist(Val.Val);
3078 }
3079 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3080 DCI.AddToWorklist(Val.Val);
3081
3082 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3083 N->getOperand(2), N->getOperand(3));
3084 DCI.AddToWorklist(Val.Val);
3085 return Val;
3086 }
3087
3088 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3089 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3090 N->getOperand(1).Val->hasOneUse() &&
3091 (N->getOperand(1).getValueType() == MVT::i32 ||
3092 N->getOperand(1).getValueType() == MVT::i16)) {
3093 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3094 // Do an any-extend to 32-bits if this is a half-word input.
3095 if (BSwapOp.getValueType() == MVT::i16)
3096 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3097
3098 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3099 N->getOperand(2), N->getOperand(3),
3100 DAG.getValueType(N->getOperand(1).getValueType()));
3101 }
3102 break;
3103 case ISD::BSWAP:
3104 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3105 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3106 N->getOperand(0).hasOneUse() &&
3107 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3108 SDOperand Load = N->getOperand(0);
3109 LoadSDNode *LD = cast<LoadSDNode>(Load);
3110 // Create the byte-swapping load.
3111 std::vector<MVT::ValueType> VTs;
3112 VTs.push_back(MVT::i32);
3113 VTs.push_back(MVT::Other);
3114 SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3115 SDOperand Ops[] = {
3116 LD->getChain(), // Chain
3117 LD->getBasePtr(), // Ptr
3118 SV, // SrcValue
3119 DAG.getValueType(N->getValueType(0)) // VT
3120 };
3121 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3122
3123 // If this is an i16 load, insert the truncate.
3124 SDOperand ResVal = BSLoad;
3125 if (N->getValueType(0) == MVT::i16)
3126 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3127
3128 // First, combine the bswap away. This makes the value produced by the
3129 // load dead.
3130 DCI.CombineTo(N, ResVal);
3131
3132 // Next, combine the load away, we give it a bogus result value but a real
3133 // chain result. The result value is dead because the bswap is dead.
3134 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3135
3136 // Return N so it doesn't get rechecked!
3137 return SDOperand(N, 0);
3138 }
3139
3140 break;
3141 case PPCISD::VCMP: {
3142 // If a VCMPo node already exists with exactly the same operands as this
3143 // node, use its result instead of this node (VCMPo computes both a CR6 and
3144 // a normal output).
3145 //
3146 if (!N->getOperand(0).hasOneUse() &&
3147 !N->getOperand(1).hasOneUse() &&
3148 !N->getOperand(2).hasOneUse()) {
3149
3150 // Scan all of the users of the LHS, looking for VCMPo's that match.
3151 SDNode *VCMPoNode = 0;
3152
3153 SDNode *LHSN = N->getOperand(0).Val;
3154 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3155 UI != E; ++UI)
3156 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3157 (*UI)->getOperand(1) == N->getOperand(1) &&
3158 (*UI)->getOperand(2) == N->getOperand(2) &&
3159 (*UI)->getOperand(0) == N->getOperand(0)) {
3160 VCMPoNode = *UI;
3161 break;
3162 }
3163
3164 // If there is no VCMPo node, or if the flag value has a single use, don't
3165 // transform this.
3166 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3167 break;
3168
3169 // Look at the (necessarily single) use of the flag value. If it has a
3170 // chain, this transformation is more complex. Note that multiple things
3171 // could use the value result, which we should ignore.
3172 SDNode *FlagUser = 0;
3173 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3174 FlagUser == 0; ++UI) {
3175 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3176 SDNode *User = *UI;
3177 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3178 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3179 FlagUser = User;
3180 break;
3181 }
3182 }
3183 }
3184
3185 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3186 // give up for right now.
3187 if (FlagUser->getOpcode() == PPCISD::MFCR)
3188 return SDOperand(VCMPoNode, 0);
3189 }
3190 break;
3191 }
3192 case ISD::BR_CC: {
3193 // If this is a branch on an altivec predicate comparison, lower this so
3194 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3195 // lowering is done pre-legalize, because the legalizer lowers the predicate
3196 // compare down to code that is difficult to reassemble.
3197 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3198 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3199 int CompareOpc;
3200 bool isDot;
3201
3202 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3203 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3204 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3205 assert(isDot && "Can't compare against a vector result!");
3206
3207 // If this is a comparison against something other than 0/1, then we know
3208 // that the condition is never/always true.
3209 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3210 if (Val != 0 && Val != 1) {
3211 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3212 return N->getOperand(0);
3213 // Always !=, turn it into an unconditional branch.
3214 return DAG.getNode(ISD::BR, MVT::Other,
3215 N->getOperand(0), N->getOperand(4));
3216 }
3217
3218 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3219
3220 // Create the PPCISD altivec 'dot' comparison node.
3221 std::vector<MVT::ValueType> VTs;
3222 SDOperand Ops[] = {
3223 LHS.getOperand(2), // LHS of compare
3224 LHS.getOperand(3), // RHS of compare
3225 DAG.getConstant(CompareOpc, MVT::i32)
3226 };
3227 VTs.push_back(LHS.getOperand(2).getValueType());
3228 VTs.push_back(MVT::Flag);
3229 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3230
3231 // Unpack the result based on how the target uses it.
3232 PPC::Predicate CompOpc;
3233 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3234 default: // Can't happen, don't crash on invalid number though.
3235 case 0: // Branch on the value of the EQ bit of CR6.
3236 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3237 break;
3238 case 1: // Branch on the inverted value of the EQ bit of CR6.
3239 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3240 break;
3241 case 2: // Branch on the value of the LT bit of CR6.
3242 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3243 break;
3244 case 3: // Branch on the inverted value of the LT bit of CR6.
3245 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3246 break;
3247 }
3248
3249 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3250 DAG.getConstant(CompOpc, MVT::i32),
3251 DAG.getRegister(PPC::CR6, MVT::i32),
3252 N->getOperand(4), CompNode.getValue(1));
3253 }
3254 break;
3255 }
3256 }
3257
3258 return SDOperand();
3259}
3260
3261//===----------------------------------------------------------------------===//
3262// Inline Assembly Support
3263//===----------------------------------------------------------------------===//
3264
3265void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3266 uint64_t Mask,
3267 uint64_t &KnownZero,
3268 uint64_t &KnownOne,
3269 const SelectionDAG &DAG,
3270 unsigned Depth) const {
3271 KnownZero = 0;
3272 KnownOne = 0;
3273 switch (Op.getOpcode()) {
3274 default: break;
3275 case PPCISD::LBRX: {
3276 // lhbrx is known to have the top bits cleared out.
3277 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3278 KnownZero = 0xFFFF0000;
3279 break;
3280 }
3281 case ISD::INTRINSIC_WO_CHAIN: {
3282 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3283 default: break;
3284 case Intrinsic::ppc_altivec_vcmpbfp_p:
3285 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3286 case Intrinsic::ppc_altivec_vcmpequb_p:
3287 case Intrinsic::ppc_altivec_vcmpequh_p:
3288 case Intrinsic::ppc_altivec_vcmpequw_p:
3289 case Intrinsic::ppc_altivec_vcmpgefp_p:
3290 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3291 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3292 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3293 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3294 case Intrinsic::ppc_altivec_vcmpgtub_p:
3295 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3296 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3297 KnownZero = ~1U; // All bits but the low one are known to be zero.
3298 break;
3299 }
3300 }
3301 }
3302}
3303
3304
3305/// getConstraintType - Given a constraint, return the type of
3306/// constraint it is for this target.
3307PPCTargetLowering::ConstraintType
3308PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3309 if (Constraint.size() == 1) {
3310 switch (Constraint[0]) {
3311 default: break;
3312 case 'b':
3313 case 'r':
3314 case 'f':
3315 case 'v':
3316 case 'y':
3317 return C_RegisterClass;
3318 }
3319 }
3320 return TargetLowering::getConstraintType(Constraint);
3321}
3322
3323std::pair<unsigned, const TargetRegisterClass*>
3324PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3325 MVT::ValueType VT) const {
3326 if (Constraint.size() == 1) {
3327 // GCC RS6000 Constraint Letters
3328 switch (Constraint[0]) {
3329 case 'b': // R1-R31
3330 case 'r': // R0-R31
3331 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3332 return std::make_pair(0U, PPC::G8RCRegisterClass);
3333 return std::make_pair(0U, PPC::GPRCRegisterClass);
3334 case 'f':
3335 if (VT == MVT::f32)
3336 return std::make_pair(0U, PPC::F4RCRegisterClass);
3337 else if (VT == MVT::f64)
3338 return std::make_pair(0U, PPC::F8RCRegisterClass);
3339 break;
3340 case 'v':
3341 return std::make_pair(0U, PPC::VRRCRegisterClass);
3342 case 'y': // crrc
3343 return std::make_pair(0U, PPC::CRRCRegisterClass);
3344 }
3345 }
3346
3347 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3348}
3349
3350
Chris Lattnera531abc2007-08-25 00:47:38 +00003351/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3352/// vector. If it is invalid, don't add anything to Ops.
3353void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3354 std::vector<SDOperand>&Ops,
3355 SelectionDAG &DAG) {
3356 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003357 switch (Letter) {
3358 default: break;
3359 case 'I':
3360 case 'J':
3361 case 'K':
3362 case 'L':
3363 case 'M':
3364 case 'N':
3365 case 'O':
3366 case 'P': {
3367 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003368 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003369 unsigned Value = CST->getValue();
3370 switch (Letter) {
3371 default: assert(0 && "Unknown constraint letter!");
3372 case 'I': // "I" is a signed 16-bit constant.
3373 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003374 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003375 break;
3376 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3377 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3378 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003379 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003380 break;
3381 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3382 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003383 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003384 break;
3385 case 'M': // "M" is a constant that is greater than 31.
3386 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003387 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003388 break;
3389 case 'N': // "N" is a positive constant that is an exact power of two.
3390 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003391 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003392 break;
3393 case 'O': // "O" is the constant zero.
3394 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003395 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003396 break;
3397 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3398 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003399 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003400 break;
3401 }
3402 break;
3403 }
3404 }
3405
Chris Lattnera531abc2007-08-25 00:47:38 +00003406 if (Result.Val) {
3407 Ops.push_back(Result);
3408 return;
3409 }
3410
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003411 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003412 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003413}
3414
3415// isLegalAddressingMode - Return true if the addressing mode represented
3416// by AM is legal for this target, for a load/store of the specified type.
3417bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3418 const Type *Ty) const {
3419 // FIXME: PPC does not allow r+i addressing modes for vectors!
3420
3421 // PPC allows a sign-extended 16-bit immediate field.
3422 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3423 return false;
3424
3425 // No global is ever allowed as a base.
3426 if (AM.BaseGV)
3427 return false;
3428
3429 // PPC only support r+r,
3430 switch (AM.Scale) {
3431 case 0: // "r+i" or just "i", depending on HasBaseReg.
3432 break;
3433 case 1:
3434 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3435 return false;
3436 // Otherwise we have r+r or r+i.
3437 break;
3438 case 2:
3439 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3440 return false;
3441 // Allow 2*r as r+r.
3442 break;
3443 default:
3444 // No other scales are supported.
3445 return false;
3446 }
3447
3448 return true;
3449}
3450
3451/// isLegalAddressImmediate - Return true if the integer value can be used
3452/// as the offset of the target addressing mode for load / store of the
3453/// given type.
3454bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3455 // PPC allows a sign-extended 16-bit immediate field.
3456 return (V > -(1 << 16) && V < (1 << 16)-1);
3457}
3458
3459bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3460 return false;
3461}
3462
3463SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3464{
3465 // Depths > 0 not supported yet!
3466 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3467 return SDOperand();
3468
3469 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3470 bool isPPC64 = PtrVT == MVT::i64;
3471
3472 MachineFunction &MF = DAG.getMachineFunction();
3473 MachineFrameInfo *MFI = MF.getFrameInfo();
3474 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3475 && MFI->getStackSize();
3476
3477 if (isPPC64)
3478 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003479 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003480 else
3481 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3482 MVT::i32);
3483}