blob: c1b39fe7d752dfd7af7b5fb3b0a215d736c3cfa2 [file] [log] [blame]
Chris Lattnerab7d9cc2008-05-12 01:12:24 +00001//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an abstract sparse conditional propagation algorithm,
11// modeled after SCCP, but with a customizable lattice function.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sparseprop"
16#include "llvm/Analysis/SparsePropagation.h"
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000020#include "llvm/LLVMContext.h"
Chris Lattnerab7d9cc2008-05-12 01:12:24 +000021#include "llvm/Support/Debug.h"
Chris Lattnerab7d9cc2008-05-12 01:12:24 +000022using namespace llvm;
23
24//===----------------------------------------------------------------------===//
25// AbstractLatticeFunction Implementation
26//===----------------------------------------------------------------------===//
27
28AbstractLatticeFunction::~AbstractLatticeFunction() {}
29
30/// PrintValue - Render the specified lattice value to the specified stream.
31void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) {
32 if (V == UndefVal)
33 OS << "undefined";
34 else if (V == OverdefinedVal)
35 OS << "overdefined";
36 else if (V == UntrackedVal)
37 OS << "untracked";
38 else
39 OS << "unknown lattice value";
40}
41
42//===----------------------------------------------------------------------===//
43// SparseSolver Implementation
44//===----------------------------------------------------------------------===//
45
46/// getOrInitValueState - Return the LatticeVal object that corresponds to the
47/// value, initializing the value's state if it hasn't been entered into the
48/// map yet. This function is necessary because not all values should start
49/// out in the underdefined state... Arguments should be overdefined, and
50/// constants should be marked as constants.
51///
52SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
53 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
54 if (I != ValueState.end()) return I->second; // Common case, in the map
55
56 LatticeVal LV;
57 if (LatticeFunc->IsUntrackedValue(V))
58 return LatticeFunc->getUntrackedVal();
59 else if (Constant *C = dyn_cast<Constant>(V))
60 LV = LatticeFunc->ComputeConstant(C);
Chris Lattnerafcde472008-08-09 17:23:35 +000061 else if (Argument *A = dyn_cast<Argument>(V))
62 LV = LatticeFunc->ComputeArgument(A);
Chris Lattnerab7d9cc2008-05-12 01:12:24 +000063 else if (!isa<Instruction>(V))
Chris Lattnerafcde472008-08-09 17:23:35 +000064 // All other non-instructions are overdefined.
Chris Lattnerab7d9cc2008-05-12 01:12:24 +000065 LV = LatticeFunc->getOverdefinedVal();
66 else
67 // All instructions are underdefined by default.
68 LV = LatticeFunc->getUndefVal();
69
70 // If this value is untracked, don't add it to the map.
71 if (LV == LatticeFunc->getUntrackedVal())
72 return LV;
73 return ValueState[V] = LV;
74}
75
76/// UpdateState - When the state for some instruction is potentially updated,
77/// this function notices and adds I to the worklist if needed.
78void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
79 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
80 if (I != ValueState.end() && I->second == V)
81 return; // No change.
82
83 // An update. Visit uses of I.
84 ValueState[&Inst] = V;
85 InstWorkList.push_back(&Inst);
86}
87
88/// MarkBlockExecutable - This method can be used by clients to mark all of
89/// the blocks that are known to be intrinsically live in the processed unit.
90void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
91 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
92 BBExecutable.insert(BB); // Basic block is executable!
93 BBWorkList.push_back(BB); // Add the block to the work list!
94}
95
96/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
97/// work list if it is not already executable...
98void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
99 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
100 return; // This edge is already known to be executable!
101
Dan Gohmanb22d6ac2008-05-27 20:47:30 +0000102 DOUT << "Marking Edge Executable: " << Source->getNameStart()
103 << " -> " << Dest->getNameStart() << "\n";
104
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000105 if (BBExecutable.count(Dest)) {
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000106 // The destination is already executable, but we just made an edge
107 // feasible that wasn't before. Revisit the PHI nodes in the block
108 // because they have potentially new operands.
109 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
110 visitPHINode(*cast<PHINode>(I));
111
112 } else {
113 MarkBlockExecutable(Dest);
114 }
115}
116
117
118/// getFeasibleSuccessors - Return a vector of booleans to indicate which
119/// successors are reachable from a given terminator instruction.
120void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000121 SmallVectorImpl<bool> &Succs,
122 bool AggressiveUndef) {
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000123 Succs.resize(TI.getNumSuccessors());
124 if (TI.getNumSuccessors() == 0) return;
125
126 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
127 if (BI->isUnconditional()) {
128 Succs[0] = true;
129 return;
130 }
131
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000132 LatticeVal BCValue;
133 if (AggressiveUndef)
134 BCValue = getOrInitValueState(BI->getCondition());
135 else
136 BCValue = getLatticeState(BI->getCondition());
137
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000138 if (BCValue == LatticeFunc->getOverdefinedVal() ||
139 BCValue == LatticeFunc->getUntrackedVal()) {
140 // Overdefined condition variables can branch either way.
141 Succs[0] = Succs[1] = true;
142 return;
143 }
144
145 // If undefined, neither is feasible yet.
146 if (BCValue == LatticeFunc->getUndefVal())
147 return;
148
149 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
150 if (C == 0 || !isa<ConstantInt>(C)) {
151 // Non-constant values can go either way.
152 Succs[0] = Succs[1] = true;
153 return;
154 }
155
156 // Constant condition variables mean the branch can only go a single way
Owen Andersonb3056fa2009-07-21 18:03:38 +0000157 Succs[C == Context->getFalse()] = true;
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000158 return;
159 }
160
161 if (isa<InvokeInst>(TI)) {
162 // Invoke instructions successors are always executable.
163 // TODO: Could ask the lattice function if the value can throw.
164 Succs[0] = Succs[1] = true;
165 return;
166 }
167
168 SwitchInst &SI = cast<SwitchInst>(TI);
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000169 LatticeVal SCValue;
170 if (AggressiveUndef)
171 SCValue = getOrInitValueState(SI.getCondition());
172 else
173 SCValue = getLatticeState(SI.getCondition());
174
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000175 if (SCValue == LatticeFunc->getOverdefinedVal() ||
176 SCValue == LatticeFunc->getUntrackedVal()) {
177 // All destinations are executable!
178 Succs.assign(TI.getNumSuccessors(), true);
179 return;
180 }
181
182 // If undefined, neither is feasible yet.
183 if (SCValue == LatticeFunc->getUndefVal())
184 return;
185
186 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
187 if (C == 0 || !isa<ConstantInt>(C)) {
188 // All destinations are executable!
189 Succs.assign(TI.getNumSuccessors(), true);
190 return;
191 }
192
193 Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true;
194}
195
196
197/// isEdgeFeasible - Return true if the control flow edge from the 'From'
198/// basic block to the 'To' basic block is currently feasible...
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000199bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
200 bool AggressiveUndef) {
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000201 SmallVector<bool, 16> SuccFeasible;
202 TerminatorInst *TI = From->getTerminator();
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000203 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000204
205 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
206 if (TI->getSuccessor(i) == To && SuccFeasible[i])
207 return true;
208
209 return false;
210}
211
212void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
213 SmallVector<bool, 16> SuccFeasible;
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000214 getFeasibleSuccessors(TI, SuccFeasible, true);
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000215
216 BasicBlock *BB = TI.getParent();
217
218 // Mark all feasible successors executable...
219 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
220 if (SuccFeasible[i])
221 markEdgeExecutable(BB, TI.getSuccessor(i));
222}
223
224void SparseSolver::visitPHINode(PHINode &PN) {
225 LatticeVal PNIV = getOrInitValueState(&PN);
226 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
227
228 // If this value is already overdefined (common) just return.
229 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
230 return; // Quick exit
231
232 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
233 // and slow us down a lot. Just mark them overdefined.
234 if (PN.getNumIncomingValues() > 64) {
235 UpdateState(PN, Overdefined);
236 return;
237 }
238
239 // Look at all of the executable operands of the PHI node. If any of them
240 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
241 // transfer function to give us the merge of the incoming values.
242 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
243 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
Chris Lattner28a8dbc2008-05-20 03:39:39 +0000244 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000245 continue;
246
247 // Merge in this value.
248 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
249 if (OpVal != PNIV)
250 PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
251
252 if (PNIV == Overdefined)
253 break; // Rest of input values don't matter.
254 }
255
256 // Update the PHI with the compute value, which is the merge of the inputs.
257 UpdateState(PN, PNIV);
258}
259
260
261void SparseSolver::visitInst(Instruction &I) {
262 // PHIs are handled by the propagation logic, they are never passed into the
263 // transfer functions.
264 if (PHINode *PN = dyn_cast<PHINode>(&I))
265 return visitPHINode(*PN);
266
267 // Otherwise, ask the transfer function what the result is. If this is
268 // something that we care about, remember it.
269 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
270 if (IV != LatticeFunc->getUntrackedVal())
271 UpdateState(I, IV);
272
273 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
274 visitTerminatorInst(*TI);
275}
276
277void SparseSolver::Solve(Function &F) {
Dan Gohmanef61af02008-05-27 20:55:29 +0000278 MarkBlockExecutable(&F.getEntryBlock());
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000279
280 // Process the work lists until they are empty!
281 while (!BBWorkList.empty() || !InstWorkList.empty()) {
282 // Process the instruction work list.
283 while (!InstWorkList.empty()) {
284 Instruction *I = InstWorkList.back();
285 InstWorkList.pop_back();
286
287 DOUT << "\nPopped off I-WL: " << *I;
288
289 // "I" got into the work list because it made a transition. See if any
290 // users are both live and in need of updating.
291 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
292 UI != E; ++UI) {
293 Instruction *U = cast<Instruction>(*UI);
294 if (BBExecutable.count(U->getParent())) // Inst is executable?
295 visitInst(*U);
296 }
297 }
298
299 // Process the basic block work list.
300 while (!BBWorkList.empty()) {
301 BasicBlock *BB = BBWorkList.back();
302 BBWorkList.pop_back();
303
304 DOUT << "\nPopped off BBWL: " << *BB;
305
306 // Notify all instructions in this basic block that they are newly
307 // executable.
308 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
309 visitInst(*I);
310 }
311 }
312}
313
Torok Edwin1d988702009-03-11 20:50:17 +0000314void SparseSolver::Print(Function &F, std::ostream &OS) const {
Chris Lattnerab7d9cc2008-05-12 01:12:24 +0000315 OS << "\nFUNCTION: " << F.getNameStr() << "\n";
316 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
317 if (!BBExecutable.count(BB))
318 OS << "INFEASIBLE: ";
319 OS << "\t";
320 if (BB->hasName())
321 OS << BB->getNameStr() << ":\n";
322 else
323 OS << "; anon bb\n";
324 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
325 LatticeFunc->PrintValue(getLatticeState(I), OS);
326 OS << *I;
327 }
328
329 OS << "\n";
330 }
331}
332