blob: 04936348af7b8a60153193406d64b9c820ce2267 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000017#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000018#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000019#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000022#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000023#include "llvm/Target/MRegisterInfo.h"
24#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000025
Chris Lattner06925362002-11-17 21:56:38 +000026using namespace MOTy; // Get Use, Def, UseAndDef
27
Chris Lattner72614082002-10-25 22:55:53 +000028namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000029 struct ISel : public FunctionPass, InstVisitor<ISel> {
30 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000031 MachineFunction *F; // The function we are compiling into
32 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000033
34 unsigned CurReg;
35 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
36
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000037 ISel(TargetMachine &tm)
38 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000039
40 /// runOnFunction - Top level implementation of instruction selection for
41 /// the entire function.
42 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000043 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000044 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000045 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000046 RegMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000047 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000048 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000049 return false; // We never modify the LLVM itself.
50 }
51
52 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000053 /// block. This simply creates a new MachineBasicBlock to emit code into
54 /// and adds it to the current MachineFunction. Subsequent visit* for
55 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000056 ///
57 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000058 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000059 // FIXME: Use the auto-insert form when it's available
60 F->getBasicBlockList().push_back(BB);
61 }
62
63 // Visitation methods for various instructions. These methods simply emit
64 // fixed X86 code for each instruction.
65 //
Brian Gaekefa8d5712002-11-22 11:07:01 +000066
67 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +000068 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000069 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +000070 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000071
72 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000073 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000074 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
75 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +000076 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000077
Chris Lattnerf01729e2002-11-02 20:54:46 +000078 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
79 void visitRem(BinaryOperator &B) { visitDivRem(B); }
80 void visitDivRem(BinaryOperator &B);
81
Chris Lattnere2954c82002-11-02 20:04:26 +000082 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000083 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
84 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
85 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000086
87 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +000088 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
89 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
90 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
91 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
92 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
93 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
94 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +000095
96 // Memory Instructions
97 void visitLoadInst(LoadInst &I);
98 void visitStoreInst(StoreInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000099
100 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000101 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000102 void visitPHINode(PHINode &I);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000103 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000104
105 void visitInstruction(Instruction &I) {
106 std::cerr << "Cannot instruction select: " << I;
107 abort();
108 }
109
Chris Lattnerc5291f52002-10-27 21:16:59 +0000110
111 /// copyConstantToRegister - Output the instructions required to put the
112 /// specified constant into the specified register.
113 ///
114 void copyConstantToRegister(Constant *C, unsigned Reg);
115
Chris Lattner72614082002-10-25 22:55:53 +0000116 /// getReg - This method turns an LLVM value into a register number. This
117 /// is guaranteed to produce the same register number for a particular value
118 /// every time it is queried.
119 ///
120 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
121 unsigned getReg(Value *V) {
122 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000123 if (Reg == 0) {
Chris Lattner72614082002-10-25 22:55:53 +0000124 Reg = CurReg++;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000125 RegMap[V] = Reg;
126
127 // Add the mapping of regnumber => reg class to MachineFunction
128 F->addRegMap(Reg,
129 TM.getRegisterInfo()->getRegClassForType(V->getType()));
130 }
Chris Lattner72614082002-10-25 22:55:53 +0000131
Chris Lattner6f8fd252002-10-27 21:23:43 +0000132 // If this operand is a constant, emit the code to copy the constant into
133 // the register here...
134 //
Chris Lattnerc5291f52002-10-27 21:16:59 +0000135 if (Constant *C = dyn_cast<Constant>(V))
136 copyConstantToRegister(C, Reg);
137
Chris Lattner72614082002-10-25 22:55:53 +0000138 return Reg;
139 }
Chris Lattner72614082002-10-25 22:55:53 +0000140 };
141}
142
Chris Lattner43189d12002-11-17 20:07:45 +0000143/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
144/// Representation.
145///
146enum TypeClass {
147 cByte, cShort, cInt, cLong, cFloat, cDouble
148};
149
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000150/// getClass - Turn a primitive type into a "class" number which is based on the
151/// size of the type, and whether or not it is floating point.
152///
Chris Lattner43189d12002-11-17 20:07:45 +0000153static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000154 switch (Ty->getPrimitiveID()) {
155 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000156 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000157 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000158 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000159 case Type::IntTyID:
160 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000161 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000162
163 case Type::LongTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000164 case Type::ULongTyID: return cLong; // Longs are class #3
165 case Type::FloatTyID: return cFloat; // Float is class #4
166 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000167 default:
168 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000169 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000170 }
171}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000172
Chris Lattner06925362002-11-17 21:56:38 +0000173
Chris Lattnerc5291f52002-10-27 21:16:59 +0000174/// copyConstantToRegister - Output the instructions required to put the
175/// specified constant into the specified register.
176///
177void ISel::copyConstantToRegister(Constant *C, unsigned R) {
178 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
179
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000180 if (C->getType()->isIntegral()) {
181 unsigned Class = getClass(C->getType());
182 assert(Class != 3 && "Type not handled yet!");
183
184 static const unsigned IntegralOpcodeTab[] = {
185 X86::MOVir8, X86::MOVir16, X86::MOVir32
186 };
187
188 if (C->getType()->isSigned()) {
189 ConstantSInt *CSI = cast<ConstantSInt>(C);
190 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
191 } else {
192 ConstantUInt *CUI = cast<ConstantUInt>(C);
193 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
194 }
195 } else {
196 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000197 }
198}
199
Chris Lattner06925362002-11-17 21:56:38 +0000200
Brian Gaeke1749d632002-11-07 17:59:21 +0000201/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
202/// register, then move it to wherever the result should be.
203/// We handle FP setcc instructions by pushing them, doing a
204/// compare-and-pop-twice, and then copying the concodes to the main
205/// processor's concodes (I didn't make this up, it's in the Intel manual)
206///
Chris Lattner05093a52002-11-21 15:52:38 +0000207void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000208 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000209 const Type *CompTy = I.getOperand(0)->getType();
210 unsigned reg1 = getReg(I.getOperand(0));
211 unsigned reg2 = getReg(I.getOperand(1));
212
213 unsigned Class = getClass(CompTy);
214 switch (Class) {
215 // Emit: cmp <var1>, <var2> (do the comparison). We can
216 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
217 // 32-bit.
218 case cByte:
219 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
220 break;
221 case cShort:
222 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
223 break;
224 case cInt:
225 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
226 break;
227
228 // Push the variables on the stack with fldl opcodes.
229 // FIXME: assuming var1, var2 are in memory, if not, spill to
230 // stack first
231 case cFloat: // Floats
Chris Lattner3a9a6932002-11-21 22:49:20 +0000232 BuildMI (BB, X86::FLDr4, 1).addReg (reg1);
233 BuildMI (BB, X86::FLDr4, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000234 break;
235 case cDouble: // Doubles
Chris Lattner3a9a6932002-11-21 22:49:20 +0000236 BuildMI (BB, X86::FLDr8, 1).addReg (reg1);
237 BuildMI (BB, X86::FLDr8, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000238 break;
239 case cLong:
240 default:
241 visitInstruction(I);
242 }
243
244 if (CompTy->isFloatingPoint()) {
245 // (Non-trapping) compare and pop twice.
246 BuildMI (BB, X86::FUCOMPP, 0);
247 // Move fp status word (concodes) to ax.
248 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
249 // Load real concodes from ax.
250 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
251 }
252
Brian Gaeke1749d632002-11-07 17:59:21 +0000253 // Emit setOp instruction (extract concode; clobbers ax),
254 // using the following mapping:
255 // LLVM -> X86 signed X86 unsigned
256 // ----- ----- -----
257 // seteq -> sete sete
258 // setne -> setne setne
259 // setlt -> setl setb
260 // setgt -> setg seta
261 // setle -> setle setbe
262 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000263
264 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000265 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
266 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000267 };
268
269 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
270
Brian Gaeke1749d632002-11-07 17:59:21 +0000271 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000272 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000273}
Chris Lattner51b49a92002-11-02 19:45:49 +0000274
Chris Lattnerc5291f52002-10-27 21:16:59 +0000275
Chris Lattner72614082002-10-25 22:55:53 +0000276/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
277/// we have the following possibilities:
278///
279/// ret void: No return value, simply emit a 'ret' instruction
280/// ret sbyte, ubyte : Extend value into EAX and return
281/// ret short, ushort: Extend value into EAX and return
282/// ret int, uint : Move value into EAX and return
283/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000284/// ret long, ulong : Move value into EAX/EDX and return
285/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000286///
Chris Lattner6fc3c522002-11-17 21:11:55 +0000287void ISel::visitReturnInst (ReturnInst &I) {
Chris Lattner43189d12002-11-17 20:07:45 +0000288 if (I.getNumOperands() == 0) {
289 // Emit a 'ret' instruction
290 BuildMI(BB, X86::RET, 0);
291 return;
292 }
293
294 unsigned val = getReg(I.getOperand(0));
Chris Lattner6fc3c522002-11-17 21:11:55 +0000295 unsigned Class = getClass(I.getOperand(0)->getType());
Chris Lattner43189d12002-11-17 20:07:45 +0000296 bool isUnsigned = I.getOperand(0)->getType()->isUnsigned();
297 switch (Class) {
298 case cByte:
299 // ret sbyte, ubyte: Extend value into EAX and return
Chris Lattner6fc3c522002-11-17 21:11:55 +0000300 if (isUnsigned)
Chris Lattner43189d12002-11-17 20:07:45 +0000301 BuildMI (BB, X86::MOVZXr32r8, 1, X86::EAX).addReg (val);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000302 else
Chris Lattner43189d12002-11-17 20:07:45 +0000303 BuildMI (BB, X86::MOVSXr32r8, 1, X86::EAX).addReg (val);
Chris Lattner43189d12002-11-17 20:07:45 +0000304 break;
305 case cShort:
306 // ret short, ushort: Extend value into EAX and return
Chris Lattner6fc3c522002-11-17 21:11:55 +0000307 if (isUnsigned)
Chris Lattner43189d12002-11-17 20:07:45 +0000308 BuildMI (BB, X86::MOVZXr32r16, 1, X86::EAX).addReg (val);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000309 else
Chris Lattner43189d12002-11-17 20:07:45 +0000310 BuildMI (BB, X86::MOVSXr32r16, 1, X86::EAX).addReg (val);
Chris Lattner43189d12002-11-17 20:07:45 +0000311 break;
312 case cInt:
313 // ret int, uint, ptr: Move value into EAX and return
314 // MOV EAX, <val>
315 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(val);
316 break;
317
318 // ret float/double: top of FP stack
319 // FLD <val>
320 case cFloat: // Floats
321 BuildMI(BB, X86::FLDr4, 1).addReg(val);
322 break;
323 case cDouble: // Doubles
324 BuildMI(BB, X86::FLDr8, 1).addReg(val);
325 break;
326 case cLong:
327 // ret long: use EAX(least significant 32 bits)/EDX (most
328 // significant 32)...uh, I think so Brain, but how do i call
329 // up the two parts of the value from inside this mouse
330 // cage? *zort*
331 default:
332 visitInstruction(I);
333 }
334
335 // Emit a 'ret' instruction
336 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000337}
338
Chris Lattner51b49a92002-11-02 19:45:49 +0000339/// visitBranchInst - Handle conditional and unconditional branches here. Note
340/// that since code layout is frozen at this point, that if we are trying to
341/// jump to a block that is the immediate successor of the current block, we can
342/// just make a fall-through. (but we don't currently).
343///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000344void
345ISel::visitBranchInst (BranchInst & BI)
346{
347 if (BI.isConditional ())
348 {
349 BasicBlock *ifTrue = BI.getSuccessor (0);
350 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000351
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000352 // simplest thing I can think of: compare condition with zero,
353 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
354 // ifTrue
355 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000356 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000357 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
358 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
359 }
360 else // unconditional branch
361 {
362 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
363 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000364}
365
Brian Gaeke18a20212002-11-29 12:01:58 +0000366/// visitCallInst - Push args on stack and do a procedure call instruction.
367void
368ISel::visitCallInst (CallInst & CI)
369{
370 // Push the arguments on the stack in reverse order, as specified by
371 // the ABI.
372 for (unsigned i = CI.getNumOperands (); i >= 1; --i)
373 {
374 Value *v = CI.getOperand (i);
375 unsigned argReg = getReg (v);
376 switch (getClass (v->getType ()))
377 {
378 case cInt:
379 case cFloat:
380 BuildMI (BB, X86::PUSHr32, 1).addReg (argReg);
381 break;
382 default:
383 // FIXME
384 visitInstruction (CI);
385 break;
386 }
387 }
388 // Emit a CALL instruction with PC-relative displacement.
389 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Brian Gaekefa8d5712002-11-22 11:07:01 +0000390}
Chris Lattner2df035b2002-11-02 19:27:56 +0000391
Chris Lattner68aad932002-11-02 20:13:22 +0000392/// visitSimpleBinary - Implement simple binary operators for integral types...
393/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
394/// 4 for Xor.
395///
396void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
397 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000398 visitInstruction(B);
399
400 unsigned Class = getClass(B.getType());
401 if (Class > 2) // FIXME: Handle longs
402 visitInstruction(B);
403
404 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000405 // Arithmetic operators
406 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
407 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
408
409 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000410 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
411 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
412 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
413 };
414
415 unsigned Opcode = OpcodeTab[OperatorClass][Class];
416 unsigned Op0r = getReg(B.getOperand(0));
417 unsigned Op1r = getReg(B.getOperand(1));
418 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
419}
420
Chris Lattnerca9671d2002-11-02 20:28:58 +0000421/// visitMul - Multiplies are not simple binary operators because they must deal
422/// with the EAX register explicitly.
423///
424void ISel::visitMul(BinaryOperator &I) {
425 unsigned Class = getClass(I.getType());
426 if (Class > 2) // FIXME: Handle longs
427 visitInstruction(I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000428
Chris Lattnerca9671d2002-11-02 20:28:58 +0000429 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
430 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
431 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
432
Chris Lattner06925362002-11-17 21:56:38 +0000433 unsigned Reg = Regs[Class];
Chris Lattner06925362002-11-17 21:56:38 +0000434 unsigned Op0Reg = getReg(I.getOperand(0));
435 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattnerca9671d2002-11-02 20:28:58 +0000436
437 // Put the first operand into one of the A registers...
438 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
439
Chris Lattner06925362002-11-17 21:56:38 +0000440 // Emit the appropriate multiply instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000441 BuildMI(BB, MulOpcode[Class], 1).addReg(Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000442
443 // Put the result into the destination register...
444 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000445}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000446
Chris Lattner06925362002-11-17 21:56:38 +0000447
Chris Lattnerf01729e2002-11-02 20:54:46 +0000448/// visitDivRem - Handle division and remainder instructions... these
449/// instruction both require the same instructions to be generated, they just
450/// select the result from a different register. Note that both of these
451/// instructions work differently for signed and unsigned operands.
452///
453void ISel::visitDivRem(BinaryOperator &I) {
454 unsigned Class = getClass(I.getType());
455 if (Class > 2) // FIXME: Handle longs
456 visitInstruction(I);
457
458 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
459 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000460 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000461 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
462 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
463
464 static const unsigned DivOpcode[][4] = {
465 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
466 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
467 };
468
469 bool isSigned = I.getType()->isSigned();
470 unsigned Reg = Regs[Class];
471 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000472 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000473 unsigned Op1Reg = getReg(I.getOperand(1));
474
475 // Put the first operand into one of the A registers...
476 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
477
478 if (isSigned) {
479 // Emit a sign extension instruction...
480 BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
481 } else {
482 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
483 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
484 }
485
Chris Lattner06925362002-11-17 21:56:38 +0000486 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000487 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000488
Chris Lattnerf01729e2002-11-02 20:54:46 +0000489 // Figure out which register we want to pick the result out of...
490 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
491
Chris Lattnerf01729e2002-11-02 20:54:46 +0000492 // Put the result into the destination register...
493 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000494}
Chris Lattnere2954c82002-11-02 20:04:26 +0000495
Chris Lattner06925362002-11-17 21:56:38 +0000496
Brian Gaekea1719c92002-10-31 23:03:59 +0000497/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
498/// for constant immediate shift values, and for constant immediate
499/// shift values equal to 1. Even the general case is sort of special,
500/// because the shift amount has to be in CL, not just any old register.
501///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000502void ISel::visitShiftInst (ShiftInst &I) {
503 unsigned Op0r = getReg (I.getOperand(0));
504 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000505 bool isLeftShift = I.getOpcode() == Instruction::Shl;
506 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000507 unsigned OperandClass = getClass(I.getType());
508
509 if (OperandClass > 2)
510 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000511
Brian Gaekea1719c92002-10-31 23:03:59 +0000512 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
513 {
Chris Lattner796df732002-11-02 00:44:25 +0000514 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
515 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
516 unsigned char shAmt = CUI->getValue();
517
Chris Lattnere9913f22002-11-02 01:41:55 +0000518 static const unsigned ConstantOperand[][4] = {
519 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
520 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
521 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
522 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000523 };
524
Chris Lattnere9913f22002-11-02 01:41:55 +0000525 const unsigned *OpTab = // Figure out the operand table to use
526 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000527
Brian Gaekea1719c92002-10-31 23:03:59 +0000528 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000529 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000530 }
531 else
532 {
533 // The shift amount is non-constant.
534 //
535 // In fact, you can only shift with a variable shift amount if
536 // that amount is already in the CL register, so we have to put it
537 // there first.
538 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000539
Brian Gaekea1719c92002-10-31 23:03:59 +0000540 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000541 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000542
543 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000544 static const unsigned NonConstantOperand[][4] = {
545 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
546 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
547 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
548 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000549 };
550
Chris Lattnere9913f22002-11-02 01:41:55 +0000551 const unsigned *OpTab = // Figure out the operand table to use
552 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000553
Chris Lattner3a9a6932002-11-21 22:49:20 +0000554 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000555 }
556}
557
Chris Lattner06925362002-11-17 21:56:38 +0000558
Chris Lattner6fc3c522002-11-17 21:11:55 +0000559/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
560/// instruction.
561///
562void ISel::visitLoadInst(LoadInst &I) {
563 unsigned Class = getClass(I.getType());
564 if (Class > 2) // FIXME: Handle longs and others...
565 visitInstruction(I);
566
567 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
568
569 unsigned AddressReg = getReg(I.getOperand(0));
570 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
571}
572
Chris Lattner06925362002-11-17 21:56:38 +0000573
Chris Lattner6fc3c522002-11-17 21:11:55 +0000574/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
575/// instruction.
576///
577void ISel::visitStoreInst(StoreInst &I) {
578 unsigned Class = getClass(I.getOperand(0)->getType());
579 if (Class > 2) // FIXME: Handle longs and others...
580 visitInstruction(I);
581
582 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
583
584 unsigned ValReg = getReg(I.getOperand(0));
585 unsigned AddressReg = getReg(I.getOperand(1));
586 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
587}
588
589
Chris Lattnere2954c82002-11-02 20:04:26 +0000590/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
591///
592void ISel::visitPHINode(PHINode &PN) {
593 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000594
Chris Lattnere2954c82002-11-02 20:04:26 +0000595 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
596 // FIXME: This will put constants after the PHI nodes in the block, which
597 // is invalid. They should be put inline into the PHI node eventually.
598 //
599 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
600 MI->addPCDispOperand(PN.getIncomingBlock(i));
601 }
Chris Lattner72614082002-10-25 22:55:53 +0000602}
603
Brian Gaekec11232a2002-11-26 10:43:30 +0000604/// visitCastInst - Here we have various kinds of copying with or without
605/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000606void
607ISel::visitCastInst (CastInst &CI)
608{
Brian Gaekec11232a2002-11-26 10:43:30 +0000609//> cast larger int to smaller int --> copy least significant byte/word w/ mov?
610//
611//I'm not really sure what to do with this. We could insert a pseudo-op
612//that says take the low X bits of a Y bit register, but for now we can just
613//force the value into, say, EAX, then rip out AL or AX. The advantage of
614//the former is that the register allocator could use any register it wants,
615//but for now this obviously doesn't matter. :)
616
617// if target type is bool
618// Emit Compare
619// Emit Set-if-not-zero
620
621// if size of target type == size of source type
622// Emit Mov reg(target) <- reg(source)
623
624// if size of target type > size of source type
625// if both types are integer types
626// if source type is signed
627// sbyte to short, ushort: Emit movsx 8->16
628// sbyte to int, uint: Emit movsx 8->32
629// short to int, uint: Emit movsx 16->32
630// else if source type is unsigned
631// ubyte to short, ushort: Emit movzx 8->16
632// ubyte to int, uint: Emit movzx 8->32
633// ushort to int, uint: Emit movzx 16->32
634// if both types are fp types
635// float to double: Emit fstp, fld (???)
636
Brian Gaekefa8d5712002-11-22 11:07:01 +0000637 visitInstruction (CI);
638}
Brian Gaekea1719c92002-10-31 23:03:59 +0000639
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000640/// createSimpleX86InstructionSelector - This pass converts an LLVM function
641/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000642/// generated code sucks but the implementation is nice and simple.
643///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000644Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
645 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000646}