blob: 528e5abdd345f916c02bb401f8dd45fe4abb31ed [file] [log] [blame]
Vikram S. Advef0ba2802001-09-18 12:51:38 +00001// $Id$
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00002//***************************************************************************
3// File:
4// InstrScheduling.cpp
5//
6// Purpose:
7//
8// History:
9// 7/23/01 - Vikram Adve - Created
Vikram S. Advef0ba2802001-09-18 12:51:38 +000010//**************************************************************************/
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000011
Vikram S. Advec5b46322001-09-30 23:43:34 +000012
13//************************* User Include Files *****************************/
14
Chris Lattner1ff63a12001-09-07 21:19:42 +000015#include "llvm/CodeGen/InstrScheduling.h"
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000016#include "llvm/Analysis/LiveVar/BBLiveVar.h"
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000017#include "llvm/CodeGen/MachineInstr.h"
Chris Lattner1ff63a12001-09-07 21:19:42 +000018#include "llvm/Instruction.h"
Chris Lattnercee8f9a2001-11-27 00:03:19 +000019#include "Support/CommandLine.h"
20#include "SchedPriorities.h"
Chris Lattner1ff63a12001-09-07 21:19:42 +000021#include <hash_set>
22#include <algorithm>
23#include <iterator>
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000024
Vikram S. Advec5b46322001-09-30 23:43:34 +000025
26//************************* External Data Types *****************************/
27
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000028cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags,
29 "enable instruction scheduling debugging information",
30 clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
31 clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
32 clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
33 clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0);
34
35
Vikram S. Advec5b46322001-09-30 23:43:34 +000036//************************* Internal Data Types *****************************/
37
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000038class InstrSchedule;
39class SchedulingManager;
40class DelaySlotInfo;
41
Vikram S. Adve0e1158f2001-08-28 23:07:19 +000042
43//----------------------------------------------------------------------
44// class InstrGroup:
45//
46// Represents a group of instructions scheduled to be issued
47// in a single cycle.
48//----------------------------------------------------------------------
49
50class InstrGroup: public NonCopyable {
51public:
52 inline const SchedGraphNode* operator[](unsigned int slotNum) const {
53 assert(slotNum < group.size());
54 return group[slotNum];
55 }
56
57private:
58 friend class InstrSchedule;
59
60 inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
61 assert(slotNum < group.size());
62 group[slotNum] = node;
63 }
64
65 /*ctor*/ InstrGroup(unsigned int nslots)
66 : group(nslots, NULL) {}
67
68 /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
69
70private:
71 vector<const SchedGraphNode*> group;
72};
73
74
75//----------------------------------------------------------------------
76// class ScheduleIterator:
77//
78// Iterates over the machine instructions in the for a single basic block.
79// The schedule is represented by an InstrSchedule object.
80//----------------------------------------------------------------------
81
82template<class _NodeType>
83class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> {
84private:
85 unsigned cycleNum;
86 unsigned slotNum;
87 const InstrSchedule& S;
88public:
89 typedef ScheduleIterator<_NodeType> _Self;
90
91 /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
92 unsigned _cycleNum,
93 unsigned _slotNum)
94 : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
95 skipToNextInstr();
96 }
97
98 /*ctor*/ inline ScheduleIterator(const _Self& x)
99 : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
100
101 inline bool operator==(const _Self& x) const {
102 return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
103 }
104
105 inline bool operator!=(const _Self& x) const { return !operator==(x); }
106
107 inline _NodeType* operator*() const {
108 assert(cycleNum < S.groups.size());
109 return (*S.groups[cycleNum])[slotNum];
110 }
111 inline _NodeType* operator->() const { return operator*(); }
112
113 _Self& operator++(); // Preincrement
114 inline _Self operator++(int) { // Postincrement
115 _Self tmp(*this); ++*this; return tmp;
116 }
117
118 static _Self begin(const InstrSchedule& _schedule);
119 static _Self end( const InstrSchedule& _schedule);
120
121private:
122 inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
123 void skipToNextInstr();
124};
125
126
127//----------------------------------------------------------------------
128// class InstrSchedule:
129//
130// Represents the schedule of machine instructions for a single basic block.
131//----------------------------------------------------------------------
132
133class InstrSchedule: public NonCopyable {
134private:
135 const unsigned int nslots;
136 unsigned int numInstr;
137 vector<InstrGroup*> groups; // indexed by cycle number
138 vector<cycles_t> startTime; // indexed by node id
139
140public: // iterators
141 typedef ScheduleIterator<SchedGraphNode> iterator;
142 typedef ScheduleIterator<const SchedGraphNode> const_iterator;
143
144 iterator begin();
145 const_iterator begin() const;
146 iterator end();
147 const_iterator end() const;
148
149public: // constructors and destructor
150 /*ctor*/ InstrSchedule (unsigned int _nslots,
151 unsigned int _numNodes);
152 /*dtor*/ ~InstrSchedule ();
153
154public: // accessor functions to query chosen schedule
155 const SchedGraphNode* getInstr (unsigned int slotNum,
156 cycles_t c) const {
157 const InstrGroup* igroup = this->getIGroup(c);
158 return (igroup == NULL)? NULL : (*igroup)[slotNum];
159 }
160
161 inline InstrGroup* getIGroup (cycles_t c) {
162 if (c >= groups.size())
163 groups.resize(c+1);
164 if (groups[c] == NULL)
165 groups[c] = new InstrGroup(nslots);
166 return groups[c];
167 }
168
169 inline const InstrGroup* getIGroup (cycles_t c) const {
170 assert(c < groups.size());
171 return groups[c];
172 }
173
174 inline cycles_t getStartTime (unsigned int nodeId) const {
175 assert(nodeId < startTime.size());
176 return startTime[nodeId];
177 }
178
179 unsigned int getNumInstructions() const {
180 return numInstr;
181 }
182
183 inline void scheduleInstr (const SchedGraphNode* node,
184 unsigned int slotNum,
185 cycles_t cycle) {
186 InstrGroup* igroup = this->getIGroup(cycle);
187 assert((*igroup)[slotNum] == NULL && "Slot already filled?");
188 igroup->addInstr(node, slotNum);
189 assert(node->getNodeId() < startTime.size());
190 startTime[node->getNodeId()] = cycle;
191 ++numInstr;
192 }
193
194private:
195 friend class iterator;
196 friend class const_iterator;
197 /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
198};
199
200
201/*ctor*/
202InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
203 : nslots(_nslots),
204 numInstr(0),
205 groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
206 startTime(_numNodes, (cycles_t) -1) // set all to -1
207{
208}
209
210
211/*dtor*/
212InstrSchedule::~InstrSchedule()
213{
214 for (unsigned c=0, NC=groups.size(); c < NC; c++)
215 if (groups[c] != NULL)
216 delete groups[c]; // delete InstrGroup objects
217}
218
219
220template<class _NodeType>
221inline
222void
223ScheduleIterator<_NodeType>::skipToNextInstr()
224{
225 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
226 ++cycleNum; // skip cycles with no instructions
227
228 while (cycleNum < S.groups.size() &&
229 (*S.groups[cycleNum])[slotNum] == NULL)
230 {
231 ++slotNum;
232 if (slotNum == S.nslots)
233 {
234 ++cycleNum;
235 slotNum = 0;
236 while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
237 ++cycleNum; // skip cycles with no instructions
238 }
239 }
240}
241
242template<class _NodeType>
243inline
244ScheduleIterator<_NodeType>&
245ScheduleIterator<_NodeType>::operator++() // Preincrement
246{
247 ++slotNum;
248 if (slotNum == S.nslots)
249 {
250 ++cycleNum;
251 slotNum = 0;
252 }
253 skipToNextInstr();
254 return *this;
255}
256
257template<class _NodeType>
258ScheduleIterator<_NodeType>
259ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
260{
261 return _Self(_schedule, 0, 0);
262}
263
264template<class _NodeType>
265ScheduleIterator<_NodeType>
266ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
267{
268 return _Self(_schedule, _schedule.groups.size(), 0);
269}
270
271InstrSchedule::iterator
272InstrSchedule::begin()
273{
274 return iterator::begin(*this);
275}
276
277InstrSchedule::const_iterator
278InstrSchedule::begin() const
279{
280 return const_iterator::begin(*this);
281}
282
283InstrSchedule::iterator
284InstrSchedule::end()
285{
286 return iterator::end(*this);
287}
288
289InstrSchedule::const_iterator
290InstrSchedule::end() const
291{
292 return const_iterator::end( *this);
293}
294
295
296//----------------------------------------------------------------------
297// class DelaySlotInfo:
298//
299// Record information about delay slots for a single branch instruction.
300// Delay slots are simply indexed by slot number 1 ... numDelaySlots
301//----------------------------------------------------------------------
302
303class DelaySlotInfo: public NonCopyable {
304private:
305 const SchedGraphNode* brNode;
306 unsigned int ndelays;
307 vector<const SchedGraphNode*> delayNodeVec;
308 cycles_t delayedNodeCycle;
309 unsigned int delayedNodeSlotNum;
310
311public:
312 /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
313 unsigned _ndelays)
314 : brNode(_brNode), ndelays(_ndelays),
315 delayedNodeCycle(0), delayedNodeSlotNum(0) {}
316
317 inline unsigned getNumDelays () {
318 return ndelays;
319 }
320
321 inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
322 return delayNodeVec;
323 }
324
325 inline void addDelayNode (const SchedGraphNode* node) {
326 delayNodeVec.push_back(node);
327 assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
328 }
329
330 inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
331 delayedNodeCycle = cycle;
332 delayedNodeSlotNum = slotNum;
333 }
334
Vikram S. Advec5b46322001-09-30 23:43:34 +0000335 unsigned scheduleDelayedNode (SchedulingManager& S);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000336};
337
338
339//----------------------------------------------------------------------
340// class SchedulingManager:
341//
342// Represents the schedule of machine instructions for a single basic block.
343//----------------------------------------------------------------------
344
345class SchedulingManager: public NonCopyable {
346public: // publicly accessible data members
347 const unsigned int nslots;
348 const MachineSchedInfo& schedInfo;
349 SchedPriorities& schedPrio;
350 InstrSchedule isched;
351
352private:
353 unsigned int totalInstrCount;
354 cycles_t curTime;
355 cycles_t nextEarliestIssueTime; // next cycle we can issue
356 vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
357 vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
358 vector<int> numInClass; // indexed by sched class
359 vector<cycles_t> nextEarliestStartTime; // indexed by opCode
360 hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
361 // indexed by branch node ptr
362
363public:
364 /*ctor*/ SchedulingManager (const TargetMachine& _target,
365 const SchedGraph* graph,
366 SchedPriorities& schedPrio);
367 /*dtor*/ ~SchedulingManager () {}
368
369 //----------------------------------------------------------------------
370 // Simplify access to the machine instruction info
371 //----------------------------------------------------------------------
372
373 inline const MachineInstrInfo& getInstrInfo () const {
374 return schedInfo.getInstrInfo();
375 }
376
377 //----------------------------------------------------------------------
378 // Interface for checking and updating the current time
379 //----------------------------------------------------------------------
380
381 inline cycles_t getTime () const {
382 return curTime;
383 }
384
385 inline cycles_t getEarliestIssueTime() const {
386 return nextEarliestIssueTime;
387 }
388
389 inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
390 assert(opCode < (int) nextEarliestStartTime.size());
391 return nextEarliestStartTime[opCode];
392 }
393
394 // Update current time to specified cycle
395 inline void updateTime (cycles_t c) {
396 curTime = c;
397 schedPrio.updateTime(c);
398 }
399
400 //----------------------------------------------------------------------
401 // Functions to manage the choices for the current cycle including:
402 // -- a vector of choices by priority (choiceVec)
403 // -- vectors of the choices for each instruction slot (choicesForSlot[])
404 // -- number of choices in each sched class, used to check issue conflicts
405 // between choices for a single cycle
406 //----------------------------------------------------------------------
407
408 inline unsigned int getNumChoices () const {
409 return choiceVec.size();
410 }
411
412 inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
413 assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
414 return numInClass[sc];
415 }
416
417 inline const SchedGraphNode* getChoice(unsigned int i) const {
418 // assert(i < choiceVec.size()); don't check here.
419 return choiceVec[i];
420 }
421
422 inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
423 assert(slotNum < nslots);
424 return choicesForSlot[slotNum];
425 }
426
427 inline void addChoice (const SchedGraphNode* node) {
428 // Append the instruction to the vector of choices for current cycle.
429 // Increment numInClass[c] for the sched class to which the instr belongs.
430 choiceVec.push_back(node);
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000431 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000432 assert(sc < (int) numInClass.size());
433 numInClass[sc]++;
434 }
435
436 inline void addChoiceToSlot (unsigned int slotNum,
437 const SchedGraphNode* node) {
438 // Add the instruction to the choice set for the specified slot
439 assert(slotNum < nslots);
440 choicesForSlot[slotNum].insert(node);
441 }
442
443 inline void resetChoices () {
444 choiceVec.clear();
445 for (unsigned int s=0; s < nslots; s++)
446 choicesForSlot[s].clear();
447 for (unsigned int c=0; c < numInClass.size(); c++)
448 numInClass[c] = 0;
449 }
450
451 //----------------------------------------------------------------------
452 // Code to query and manage the partial instruction schedule so far
453 //----------------------------------------------------------------------
454
455 inline unsigned int getNumScheduled () const {
456 return isched.getNumInstructions();
457 }
458
459 inline unsigned int getNumUnscheduled() const {
460 return totalInstrCount - isched.getNumInstructions();
461 }
462
463 inline bool isScheduled (const SchedGraphNode* node) const {
464 return (isched.getStartTime(node->getNodeId()) >= 0);
465 }
466
467 inline void scheduleInstr (const SchedGraphNode* node,
468 unsigned int slotNum,
469 cycles_t cycle)
470 {
471 assert(! isScheduled(node) && "Instruction already scheduled?");
472
473 // add the instruction to the schedule
474 isched.scheduleInstr(node, slotNum, cycle);
475
476 // update the earliest start times of all nodes that conflict with `node'
477 // and the next-earliest time anything can issue if `node' causes bubbles
478 updateEarliestStartTimes(node, cycle);
479
480 // remove the instruction from the choice sets for all slots
481 for (unsigned s=0; s < nslots; s++)
482 choicesForSlot[s].erase(node);
483
484 // and decrement the instr count for the sched class to which it belongs
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000485 const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000486 assert(sc < (int) numInClass.size());
487 numInClass[sc]--;
488 }
Chris Lattner1ff63a12001-09-07 21:19:42 +0000489
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000490 //----------------------------------------------------------------------
491 // Create and retrieve delay slot info for delayed instructions
492 //----------------------------------------------------------------------
493
494 inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
495 bool createIfMissing=false)
496 {
497 DelaySlotInfo* dinfo;
498 hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator
499 I = delaySlotInfoForBranches.find(bn);
500 if (I == delaySlotInfoForBranches.end())
501 {
502 if (createIfMissing)
503 {
504 dinfo = new DelaySlotInfo(bn,
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000505 getInstrInfo().getNumDelaySlots(bn->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000506 delaySlotInfoForBranches[bn] = dinfo;
507 }
508 else
509 dinfo = NULL;
510 }
511 else
512 dinfo = (*I).second;
513
514 return dinfo;
515 }
516
517private:
518 /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT.
519 void updateEarliestStartTimes(const SchedGraphNode* node,
520 cycles_t schedTime);
521};
522
523
524/*ctor*/
525SchedulingManager::SchedulingManager(const TargetMachine& target,
526 const SchedGraph* graph,
527 SchedPriorities& _schedPrio)
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000528 : nslots(target.getSchedInfo().getMaxNumIssueTotal()),
529 schedInfo(target.getSchedInfo()),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000530 schedPrio(_schedPrio),
531 isched(nslots, graph->getNumNodes()),
532 totalInstrCount(graph->getNumNodes() - 2),
533 nextEarliestIssueTime(0),
534 choicesForSlot(nslots),
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000535 numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000536 nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
537 (cycles_t) 0) // set all to 0
538{
539 updateTime(0);
540
541 // Note that an upper bound on #choices for each slot is = nslots since
542 // we use this vector to hold a feasible set of instructions, and more
543 // would be infeasible. Reserve that much memory since it is probably small.
544 for (unsigned int i=0; i < nslots; i++)
545 choicesForSlot[i].resize(nslots);
546}
547
548
549void
550SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
551 cycles_t schedTime)
552{
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000553 if (schedInfo.numBubblesAfter(node->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000554 { // Update next earliest time before which *nothing* can issue.
555 nextEarliestIssueTime = max(nextEarliestIssueTime,
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000556 curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000557 }
558
559 const vector<MachineOpCode>*
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000560 conflictVec = schedInfo.getConflictList(node->getOpCode());
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000561
562 if (conflictVec != NULL)
563 for (unsigned i=0; i < conflictVec->size(); i++)
564 {
565 MachineOpCode toOp = (*conflictVec)[i];
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000566 cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(),
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000567 toOp);
568 assert(toOp < (int) nextEarliestStartTime.size());
569 if (nextEarliestStartTime[toOp] < est)
570 nextEarliestStartTime[toOp] = est;
571 }
572}
573
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000574//************************* Internal Functions *****************************/
575
576
577static void
Vikram S. Advec5b46322001-09-30 23:43:34 +0000578AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000579{
Vikram S. Advec5b46322001-09-30 23:43:34 +0000580 // find the slot to start from, in the current cycle
581 unsigned int startSlot = 0;
582 cycles_t curTime = S.getTime();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000583
Vikram S. Advec5b46322001-09-30 23:43:34 +0000584 assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000585
Vikram S. Advec5b46322001-09-30 23:43:34 +0000586 // If only one instruction can be issued, do so.
587 if (maxIssue == 1)
588 for (unsigned s=startSlot; s < S.nslots; s++)
589 if (S.getChoicesForSlot(s).size() > 0)
590 {// found the one instruction
591 S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
592 return;
593 }
594
595 // Otherwise, choose from the choices for each slot
596 //
597 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
598 assert(igroup != NULL && "Group creation failed?");
599
600 // Find a slot that has only a single choice, and take it.
601 // If all slots have 0 or multiple choices, pick the first slot with
602 // choices and use its last instruction (just to avoid shifting the vector).
603 unsigned numIssued;
604 for (numIssued = 0; numIssued < maxIssue; numIssued++)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000605 {
Vikram S. Advec5b46322001-09-30 23:43:34 +0000606 int chosenSlot = -1, chosenNodeIndex = -1;
607 for (unsigned s=startSlot; s < S.nslots; s++)
608 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000609 {
Vikram S. Advec5b46322001-09-30 23:43:34 +0000610 chosenSlot = (int) s;
611 break;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000612 }
613
Vikram S. Advec5b46322001-09-30 23:43:34 +0000614 if (chosenSlot == -1)
615 for (unsigned s=startSlot; s < S.nslots; s++)
616 if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
617 {
618 chosenSlot = (int) s;
619 break;
620 }
621
622 if (chosenSlot != -1)
623 { // Insert the chosen instr in the chosen slot and
624 // erase it from all slots.
625 const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
626 S.scheduleInstr(node, chosenSlot, curTime);
627 }
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000628 }
Vikram S. Advec5b46322001-09-30 23:43:34 +0000629
630 assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000631}
632
633
634//
635// For now, just assume we are scheduling within a single basic block.
636// Get the machine instruction vector for the basic block and clear it,
637// then append instructions in scheduled order.
638// Also, re-insert the dummy PHI instructions that were at the beginning
639// of the basic block, since they are not part of the schedule.
640//
641static void
642RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
643{
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000644 MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
645 const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
646
647#ifndef NDEBUG
648 // Lets make sure we didn't lose any instructions, except possibly
649 // some NOPs from delay slots. Also, PHIs are not included in the schedule.
650 unsigned numInstr = 0;
651 for (MachineCodeForBasicBlock::iterator I=mvec.begin(); I != mvec.end(); ++I)
652 if (! mii.isNop((*I)->getOpCode()) &&
653 ! mii.isDummyPhiInstr((*I)->getOpCode()))
654 ++numInstr;
655 assert(S.isched.getNumInstructions() >= numInstr &&
656 "Lost some non-NOP instructions during scheduling!");
657#endif
658
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000659 if (S.isched.getNumInstructions() == 0)
660 return; // empty basic block!
661
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000662 // First find the dummy instructions at the start of the basic block
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000663 MachineCodeForBasicBlock::iterator I = mvec.begin();
664 for ( ; I != mvec.end(); ++I)
665 if (! mii.isDummyPhiInstr((*I)->getOpCode()))
666 break;
667
668 // Erase all except the dummy PHI instructions from mvec, and
Vikram S. Advef0ba2802001-09-18 12:51:38 +0000669 // pre-allocate create space for the ones we will put back in.
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000670 mvec.erase(I, mvec.end());
671 mvec.reserve(mvec.size() + S.isched.getNumInstructions());
672
673 InstrSchedule::const_iterator NIend = S.isched.end();
674 for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
Chris Lattner2e530932001-09-09 19:41:52 +0000675 mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000676}
677
678
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000679
680static void
681MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
682{
683 // Check if any successors are now ready that were not already marked
684 // ready before, and that have not yet been scheduled.
685 //
686 for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
687 if (! (*SI)->isDummyNode()
688 && ! S.isScheduled(*SI)
689 && ! S.schedPrio.nodeIsReady(*SI))
690 {// successor not scheduled and not marked ready; check *its* preds.
691
692 bool succIsReady = true;
693 for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
694 if (! (*P)->isDummyNode()
695 && ! S.isScheduled(*P))
696 {
697 succIsReady = false;
698 break;
699 }
700
701 if (succIsReady) // add the successor to the ready list
702 S.schedPrio.insertReady(*SI);
703 }
704}
705
706
707// Choose up to `nslots' FEASIBLE instructions and assign each
708// instruction to all possible slots that do not violate feasibility.
709// FEASIBLE means it should be guaranteed that the set
710// of chosen instructions can be issued in a single group.
711//
712// Return value:
713// maxIssue : total number of feasible instructions
714// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
715//
716static unsigned
717FindSlotChoices(SchedulingManager& S,
718 DelaySlotInfo*& getDelaySlotInfo)
719{
720 // initialize result vectors to empty
721 S.resetChoices();
722
723 // find the slot to start from, in the current cycle
724 unsigned int startSlot = 0;
725 InstrGroup* igroup = S.isched.getIGroup(S.getTime());
726 for (int s = S.nslots - 1; s >= 0; s--)
727 if ((*igroup)[s] != NULL)
728 {
729 startSlot = s+1;
730 break;
731 }
732
733 // Make sure we pick at most one instruction that would break the group.
734 // Also, if we do pick one, remember which it was.
735 unsigned int indexForBreakingNode = S.nslots;
736 unsigned int indexForDelayedInstr = S.nslots;
737 DelaySlotInfo* delaySlotInfo = NULL;
738
739 getDelaySlotInfo = NULL;
740
741 // Choose instructions in order of priority.
742 // Add choices to the choice vector in the SchedulingManager class as
743 // we choose them so that subsequent choices will be correctly tested
744 // for feasibility, w.r.t. higher priority choices for the same cycle.
745 //
746 while (S.getNumChoices() < S.nslots - startSlot)
747 {
748 const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
749 if (nextNode == NULL)
750 break; // no more instructions for this cycle
751
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000752 if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000753 {
754 delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
755 if (delaySlotInfo != NULL)
756 {
757 if (indexForBreakingNode < S.nslots)
758 // cannot issue a delayed instr in the same cycle as one
759 // that breaks the issue group or as another delayed instr
760 nextNode = NULL;
761 else
762 indexForDelayedInstr = S.getNumChoices();
763 }
764 }
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000765 else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000766 {
767 if (indexForBreakingNode < S.nslots)
768 // have a breaking instruction already so throw this one away
769 nextNode = NULL;
770 else
771 indexForBreakingNode = S.getNumChoices();
772 }
773
774 if (nextNode != NULL)
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000775 {
776 S.addChoice(nextNode);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000777
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000778 if (S.schedInfo.isSingleIssue(nextNode->getOpCode()))
779 {
780 assert(S.getNumChoices() == 1 &&
781 "Prioritizer returned invalid instr for this cycle!");
782 break;
783 }
784 }
785
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000786 if (indexForDelayedInstr < S.nslots)
787 break; // leave the rest for delay slots
788 }
789
790 assert(S.getNumChoices() <= S.nslots);
791 assert(! (indexForDelayedInstr < S.nslots &&
792 indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
793
794 // Assign each chosen instruction to all possible slots for that instr.
795 // But if only one instruction was chosen, put it only in the first
796 // feasible slot; no more analysis will be needed.
797 //
798 if (indexForDelayedInstr >= S.nslots &&
799 indexForBreakingNode >= S.nslots)
800 { // No instructions that break the issue group or that have delay slots.
801 // This is the common case, so handle it separately for efficiency.
802
803 if (S.getNumChoices() == 1)
804 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000805 MachineOpCode opCode = S.getChoice(0)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000806 unsigned int s;
807 for (s=startSlot; s < S.nslots; s++)
808 if (S.schedInfo.instrCanUseSlot(opCode, s))
809 break;
810 assert(s < S.nslots && "No feasible slot for this opCode?");
811 S.addChoiceToSlot(s, S.getChoice(0));
812 }
813 else
814 {
815 for (unsigned i=0; i < S.getNumChoices(); i++)
816 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000817 MachineOpCode opCode = S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000818 for (unsigned int s=startSlot; s < S.nslots; s++)
819 if (S.schedInfo.instrCanUseSlot(opCode, s))
820 S.addChoiceToSlot(s, S.getChoice(i));
821 }
822 }
823 }
824 else if (indexForDelayedInstr < S.nslots)
825 {
826 // There is an instruction that needs delay slots.
827 // Try to assign that instruction to a higher slot than any other
828 // instructions in the group, so that its delay slots can go
829 // right after it.
830 //
831
832 assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
833 "Instruction with delay slots should be last choice!");
834 assert(delaySlotInfo != NULL && "No delay slot info for instr?");
835
836 const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000837 MachineOpCode delayOpCode = delayedNode->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000838 unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
839
840 unsigned delayedNodeSlot = S.nslots;
841 int highestSlotUsed;
842
843 // Find the last possible slot for the delayed instruction that leaves
844 // at least `d' slots vacant after it (d = #delay slots)
845 for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
846 if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
847 {
848 delayedNodeSlot = s;
849 break;
850 }
851
852 highestSlotUsed = -1;
853 for (unsigned i=0; i < S.getNumChoices() - 1; i++)
854 {
855 // Try to assign every other instruction to a lower numbered
856 // slot than delayedNodeSlot.
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000857 MachineOpCode opCode =S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000858 bool noSlotFound = true;
859 unsigned int s;
860 for (s=startSlot; s < delayedNodeSlot; s++)
861 if (S.schedInfo.instrCanUseSlot(opCode, s))
862 {
863 S.addChoiceToSlot(s, S.getChoice(i));
864 noSlotFound = false;
865 }
866
867 // No slot before `delayedNodeSlot' was found for this opCode
868 // Use a later slot, and allow some delay slots to fall in
869 // the next cycle.
870 if (noSlotFound)
871 for ( ; s < S.nslots; s++)
872 if (S.schedInfo.instrCanUseSlot(opCode, s))
873 {
874 S.addChoiceToSlot(s, S.getChoice(i));
875 break;
876 }
877
878 assert(s < S.nslots && "No feasible slot for instruction?");
879
880 highestSlotUsed = max(highestSlotUsed, (int) s);
881 }
882
883 assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
884
885 // We will put the delayed node in the first slot after the
886 // highest slot used. But we just mark that for now, and
887 // schedule it separately because we want to schedule the delay
888 // slots for the node at the same time.
889 cycles_t dcycle = S.getTime();
890 unsigned int dslot = highestSlotUsed + 1;
891 if (dslot == S.nslots)
892 {
893 dslot = 0;
894 ++dcycle;
895 }
896 delaySlotInfo->recordChosenSlot(dcycle, dslot);
897 getDelaySlotInfo = delaySlotInfo;
898 }
899 else
900 { // There is an instruction that breaks the issue group.
901 // For such an instruction, assign to the last possible slot in
902 // the current group, and then don't assign any other instructions
903 // to later slots.
904 assert(indexForBreakingNode < S.nslots);
905 const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
906 unsigned breakingSlot = INT_MAX;
907 unsigned int nslotsToUse = S.nslots;
908
909 // Find the last possible slot for this instruction.
910 for (int s = S.nslots-1; s >= (int) startSlot; s--)
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000911 if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000912 {
913 breakingSlot = s;
914 break;
915 }
916 assert(breakingSlot < S.nslots &&
917 "No feasible slot for `breakingNode'?");
918
919 // Higher priority instructions than the one that breaks the group:
920 // These can be assigned to all slots, but will be assigned only
921 // to earlier slots if possible.
922 for (unsigned i=0;
923 i < S.getNumChoices() && i < indexForBreakingNode; i++)
924 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000925 MachineOpCode opCode =S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000926
927 // If a higher priority instruction cannot be assigned to
928 // any earlier slots, don't schedule the breaking instruction.
929 //
930 bool foundLowerSlot = false;
931 nslotsToUse = S.nslots; // May be modified in the loop
932 for (unsigned int s=startSlot; s < nslotsToUse; s++)
933 if (S.schedInfo.instrCanUseSlot(opCode, s))
934 {
935 if (breakingSlot < S.nslots && s < breakingSlot)
936 {
937 foundLowerSlot = true;
938 nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
939 }
940
941 S.addChoiceToSlot(s, S.getChoice(i));
942 }
943
944 if (!foundLowerSlot)
945 breakingSlot = INT_MAX; // disable breaking instr
946 }
947
948 // Assign the breaking instruction (if any) to a single slot
949 // Otherwise, just ignore the instruction. It will simply be
950 // scheduled in a later cycle.
951 if (breakingSlot < S.nslots)
952 {
953 S.addChoiceToSlot(breakingSlot, breakingNode);
954 nslotsToUse = breakingSlot;
955 }
956 else
957 nslotsToUse = S.nslots;
958
959 // For lower priority instructions than the one that breaks the
960 // group, only assign them to slots lower than the breaking slot.
961 // Otherwise, just ignore the instruction.
962 for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
963 {
964 bool foundLowerSlot = false;
Vikram S. Advefb1a6c82001-11-09 02:14:20 +0000965 MachineOpCode opCode = S.getChoice(i)->getOpCode();
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000966 for (unsigned int s=startSlot; s < nslotsToUse; s++)
967 if (S.schedInfo.instrCanUseSlot(opCode, s))
968 S.addChoiceToSlot(s, S.getChoice(i));
969 }
970 } // endif (no delay slots and no breaking slots)
971
972 return S.getNumChoices();
973}
974
975
Vikram S. Advec5b46322001-09-30 23:43:34 +0000976static unsigned
977ChooseOneGroup(SchedulingManager& S)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000978{
Vikram S. Advec5b46322001-09-30 23:43:34 +0000979 assert(S.schedPrio.getNumReady() > 0
980 && "Don't get here without ready instructions.");
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000981
Vikram S. Advec5b46322001-09-30 23:43:34 +0000982 cycles_t firstCycle = S.getTime();
983 DelaySlotInfo* getDelaySlotInfo = NULL;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000984
Vikram S. Advec5b46322001-09-30 23:43:34 +0000985 // Choose up to `nslots' feasible instructions and their possible slots.
986 unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000987
Vikram S. Advec5b46322001-09-30 23:43:34 +0000988 while (numIssued == 0)
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000989 {
Vikram S. Advec5b46322001-09-30 23:43:34 +0000990 S.updateTime(S.getTime()+1);
991 numIssued = FindSlotChoices(S, getDelaySlotInfo);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +0000992 }
993
Vikram S. Advec5b46322001-09-30 23:43:34 +0000994 AssignInstructionsToSlots(S, numIssued);
995
996 if (getDelaySlotInfo != NULL)
997 numIssued += getDelaySlotInfo->scheduleDelayedNode(S);
998
999 // Print trace of scheduled instructions before newly ready ones
1000 if (SchedDebugLevel >= Sched_PrintSchedTrace)
1001 {
1002 for (cycles_t c = firstCycle; c <= S.getTime(); c++)
1003 {
1004 cout << " Cycle " << c << " : Scheduled instructions:\n";
1005 const InstrGroup* igroup = S.isched.getIGroup(c);
1006 for (unsigned int s=0; s < S.nslots; s++)
1007 {
1008 cout << " ";
1009 if ((*igroup)[s] != NULL)
1010 cout << * ((*igroup)[s])->getMachineInstr() << endl;
1011 else
1012 cout << "<none>" << endl;
1013 }
1014 }
1015 }
1016
1017 return numIssued;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001018}
1019
1020
Vikram S. Advec5b46322001-09-30 23:43:34 +00001021static void
1022ForwardListSchedule(SchedulingManager& S)
1023{
1024 unsigned N;
1025 const SchedGraphNode* node;
1026
1027 S.schedPrio.initialize();
1028
1029 while ((N = S.schedPrio.getNumReady()) > 0)
1030 {
1031 cycles_t nextCycle = S.getTime();
1032
1033 // Choose one group of instructions for a cycle, plus any delay slot
1034 // instructions (which may overflow into successive cycles).
1035 // This will advance S.getTime() to the last cycle in which
1036 // instructions are actually issued.
1037 //
1038 unsigned numIssued = ChooseOneGroup(S);
1039 assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
1040
1041 // Notify the priority manager of scheduled instructions and mark
1042 // any successors that may now be ready
1043 //
1044 for (cycles_t c = nextCycle; c <= S.getTime(); c++)
1045 {
1046 const InstrGroup* igroup = S.isched.getIGroup(c);
1047 for (unsigned int s=0; s < S.nslots; s++)
1048 if ((node = (*igroup)[s]) != NULL)
1049 {
1050 S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
1051 MarkSuccessorsReady(S, node);
1052 }
1053 }
1054
1055 // Move to the next the next earliest cycle for which
1056 // an instruction can be issued, or the next earliest in which
1057 // one will be ready, or to the next cycle, whichever is latest.
1058 //
1059 S.updateTime(max(S.getTime() + 1,
1060 max(S.getEarliestIssueTime(),
1061 S.schedPrio.getEarliestReadyTime())));
1062 }
1063}
1064
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001065
1066//---------------------------------------------------------------------
1067// Code for filling delay slots for delayed terminator instructions
1068// (e.g., BRANCH and RETURN). Delay slots for non-terminator
1069// instructions (e.g., CALL) are not handled here because they almost
1070// always can be filled with instructions from the call sequence code
1071// before a call. That's preferable because we incur many tradeoffs here
1072// when we cannot find single-cycle instructions that can be reordered.
1073//----------------------------------------------------------------------
1074
Vikram S. Advec5b46322001-09-30 23:43:34 +00001075static bool
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001076NodeCanFillDelaySlot(const SchedulingManager& S,
1077 const SchedGraphNode* node,
1078 const SchedGraphNode* brNode,
1079 bool nodeIsPredecessor)
1080{
1081 assert(! node->isDummyNode());
1082
1083 // don't put a branch in the delay slot of another branch
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001084 if (S.getInstrInfo().isBranch(node->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001085 return false;
1086
1087 // don't put a single-issue instruction in the delay slot of a branch
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001088 if (S.schedInfo.isSingleIssue(node->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001089 return false;
1090
1091 // don't put a load-use dependence in the delay slot of a branch
1092 const MachineInstrInfo& mii = S.getInstrInfo();
1093
1094 for (SchedGraphNode::const_iterator EI = node->beginInEdges();
1095 EI != node->endInEdges(); ++EI)
1096 if (! (*EI)->getSrc()->isDummyNode()
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001097 && mii.isLoad((*EI)->getSrc()->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001098 && (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
1099 return false;
1100
1101 // for now, don't put an instruction that does not have operand
1102 // interlocks in the delay slot of a branch
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001103 if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001104 return false;
1105
1106 // Finally, if the instruction preceeds the branch, we make sure the
1107 // instruction can be reordered relative to the branch. We simply check
1108 // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
1109 //
1110 if (nodeIsPredecessor)
1111 {
1112 bool onlyCDEdgeToBranch = true;
1113 for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
1114 OEI != node->endOutEdges(); ++OEI)
1115 if (! (*OEI)->getSink()->isDummyNode()
1116 && ((*OEI)->getSink() != brNode
1117 || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
1118 {
1119 onlyCDEdgeToBranch = false;
1120 break;
1121 }
1122
1123 if (!onlyCDEdgeToBranch)
1124 return false;
1125 }
1126
1127 return true;
1128}
1129
1130
Vikram S. Advec5b46322001-09-30 23:43:34 +00001131static void
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001132MarkNodeForDelaySlot(SchedulingManager& S,
Vikram S. Advef0ba2802001-09-18 12:51:38 +00001133 SchedGraph* graph,
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001134 SchedGraphNode* node,
1135 const SchedGraphNode* brNode,
1136 bool nodeIsPredecessor)
1137{
1138 if (nodeIsPredecessor)
1139 { // If node is in the same basic block (i.e., preceeds brNode),
Vikram S. Advef0ba2802001-09-18 12:51:38 +00001140 // remove it and all its incident edges from the graph. Make sure we
1141 // add dummy edges for pred/succ nodes that become entry/exit nodes.
1142 graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001143 }
1144 else
1145 { // If the node was from a target block, add the node to the graph
1146 // and add a CD edge from brNode to node.
1147 assert(0 && "NOT IMPLEMENTED YET");
1148 }
1149
1150 DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
1151 dinfo->addDelayNode(node);
1152}
1153
1154
Vikram S. Advec5b46322001-09-30 23:43:34 +00001155void
1156FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
1157 SchedGraphNode* brNode,
1158 vector<SchedGraphNode*>& sdelayNodeVec)
1159{
1160 const MachineInstrInfo& mii = S.getInstrInfo();
1161 unsigned ndelays =
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001162 mii.getNumDelaySlots(brNode->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001163
1164 if (ndelays == 0)
1165 return;
1166
1167 sdelayNodeVec.reserve(ndelays);
1168
1169 // Use a separate vector to hold the feasible multi-cycle nodes.
1170 // These will be used if not enough single-cycle nodes are found.
1171 //
1172 vector<SchedGraphNode*> mdelayNodeVec;
1173
1174 for (sg_pred_iterator P = pred_begin(brNode);
1175 P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
1176 if (! (*P)->isDummyNode() &&
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001177 ! mii.isNop((*P)->getOpCode()) &&
Vikram S. Advec5b46322001-09-30 23:43:34 +00001178 NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
1179 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001180 if (mii.maxLatency((*P)->getOpCode()) > 1)
Vikram S. Advec5b46322001-09-30 23:43:34 +00001181 mdelayNodeVec.push_back(*P);
1182 else
1183 sdelayNodeVec.push_back(*P);
1184 }
1185
1186 // If not enough single-cycle instructions were found, select the
1187 // lowest-latency multi-cycle instructions and use them.
1188 // Note that this is the most efficient code when only 1 (or even 2)
1189 // values need to be selected.
1190 //
1191 while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
1192 {
1193 unsigned lmin =
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001194 mii.maxLatency(mdelayNodeVec[0]->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001195 unsigned minIndex = 0;
1196 for (unsigned i=1; i < mdelayNodeVec.size(); i++)
1197 {
1198 unsigned li =
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001199 mii.maxLatency(mdelayNodeVec[i]->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001200 if (lmin >= li)
1201 {
1202 lmin = li;
1203 minIndex = i;
1204 }
1205 }
1206 sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
1207 if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
1208 mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
1209 }
1210}
1211
1212
1213// Remove the NOPs currently in delay slots from the graph.
1214// Mark instructions specified in sdelayNodeVec to replace them.
1215// If not enough useful instructions were found, mark the NOPs to be used
1216// for filling delay slots, otherwise, otherwise just discard them.
1217//
1218void
1219ReplaceNopsWithUsefulInstr(SchedulingManager& S,
1220 SchedGraphNode* node,
1221 vector<SchedGraphNode*> sdelayNodeVec,
1222 SchedGraph* graph)
1223{
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001224 vector<SchedGraphNode*> nopNodeVec; // this will hold unused NOPs
Vikram S. Advec5b46322001-09-30 23:43:34 +00001225 const MachineInstrInfo& mii = S.getInstrInfo();
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001226 const MachineInstr* brInstr = node->getMachineInstr();
1227 unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpCode());
Vikram S. Advec5b46322001-09-30 23:43:34 +00001228 assert(ndelays > 0 && "Unnecessary call to replace NOPs");
1229
1230 // Remove the NOPs currently in delay slots from the graph.
1231 // If not enough useful instructions were found, use the NOPs to
1232 // fill delay slots, otherwise, just discard them.
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001233 //
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001234 unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1;
1235 MachineCodeForBasicBlock& bbMvec = node->getBB()->getMachineInstrVec();
1236 assert(bbMvec[firstDelaySlotIdx - 1] == brInstr &&
1237 "Incorrect instr. index in basic block for brInstr");
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001238
1239 // First find all useful instructions already in the delay slots
1240 // and USE THEM. We'll throw away the unused alternatives below
1241 //
1242 for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001243 if (! mii.isNop(bbMvec[i]->getOpCode()))
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001244 sdelayNodeVec.insert(sdelayNodeVec.begin(),
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001245 graph->getGraphNodeForInstr(bbMvec[i]));
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001246
1247 // Then find the NOPs and keep only as many as are needed.
1248 // Put the rest in nopNodeVec to be deleted.
1249 for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001250 if (mii.isNop(bbMvec[i]->getOpCode()))
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001251 if (sdelayNodeVec.size() < ndelays)
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001252 sdelayNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001253 else
Vikram S. Adveaf00d482001-11-12 14:18:01 +00001254 nopNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
Vikram S. Advefb8c0532001-10-22 13:49:27 +00001255
1256 assert(sdelayNodeVec.size() >= ndelays);
1257
1258 // If some delay slots were already filled, throw away that many new choices
1259 if (sdelayNodeVec.size() > ndelays)
1260 sdelayNodeVec.resize(ndelays);
Vikram S. Advec5b46322001-09-30 23:43:34 +00001261
1262 // Mark the nodes chosen for delay slots. This removes them from the graph.
1263 for (unsigned i=0; i < sdelayNodeVec.size(); i++)
1264 MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
1265
1266 // And remove the unused NOPs from the graph.
1267 for (unsigned i=0; i < nopNodeVec.size(); i++)
1268 graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
1269}
1270
1271
1272// For all delayed instructions, choose instructions to put in the delay
1273// slots and pull those out of the graph. Mark them for the delay slots
1274// in the DelaySlotInfo object for that graph node. If no useful work
1275// is found for a delay slot, use the NOP that is currently in that slot.
1276//
1277// We try to fill the delay slots with useful work for all instructions
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001278// EXCEPT CALLS AND RETURNS.
1279// For CALLs and RETURNs, it is nearly always possible to use one of the
Vikram S. Advec5b46322001-09-30 23:43:34 +00001280// call sequence instrs and putting anything else in the delay slot could be
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001281// suboptimal. Also, it complicates generating the calling sequence code in
1282// regalloc.
Vikram S. Advec5b46322001-09-30 23:43:34 +00001283//
1284static void
1285ChooseInstructionsForDelaySlots(SchedulingManager& S,
1286 const BasicBlock* bb,
1287 SchedGraph* graph)
1288{
1289 const MachineInstrInfo& mii = S.getInstrInfo();
1290 const TerminatorInst* termInstr = bb->getTerminator();
1291 MachineCodeForVMInstr& termMvec = termInstr->getMachineInstrVec();
1292 vector<SchedGraphNode*> delayNodeVec;
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001293 const MachineInstr* brInstr = NULL;
Vikram S. Advec5b46322001-09-30 23:43:34 +00001294
1295 assert(termInstr->getOpcode() != Instruction::Call
1296 && "Call used as terminator?");
1297
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001298 if (termInstr->getOpcode() != Instruction::Ret)
Vikram S. Advec5b46322001-09-30 23:43:34 +00001299 {
Vikram S. Adve6db77c52001-10-10 20:58:11 +00001300 // To find instructions that need delay slots without searching the full
1301 // machine code, we assume that the only delayed instructions are CALLs
1302 // or instructions generated for the terminator inst.
1303 // Find the first branch instr in the sequence of machine instrs for term
1304 //
1305 unsigned first = 0;
1306 while (first < termMvec.size() &&
1307 ! mii.isBranch(termMvec[first]->getOpCode()))
1308 {
1309 ++first;
1310 }
1311 assert(first < termMvec.size() &&
1312 "No branch instructions for BR? Ok, but weird! Delete assertion.");
1313
1314 brInstr = (first < termMvec.size())? termMvec[first] : NULL;
1315
1316 // Compute a vector of the nodes chosen for delay slots and then
1317 // mark delay slots to replace NOPs with these useful instructions.
1318 //
1319 if (brInstr != NULL)
1320 {
1321 SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
1322 FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
1323 ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
1324 }
Vikram S. Advec5b46322001-09-30 23:43:34 +00001325 }
1326
1327 // Also mark delay slots for other delayed instructions to hold NOPs.
1328 // Simply passing in an empty delayNodeVec will have this effect.
1329 //
1330 delayNodeVec.clear();
1331 const MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
1332 for (unsigned i=0; i < bbMvec.size(); i++)
1333 if (bbMvec[i] != brInstr &&
1334 mii.getNumDelaySlots(bbMvec[i]->getOpCode()) > 0)
1335 {
1336 SchedGraphNode* node = graph->getGraphNodeForInstr(bbMvec[i]);
1337 ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
1338 }
1339}
1340
1341
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001342//
1343// Schedule the delayed branch and its delay slots
1344//
Vikram S. Advec5b46322001-09-30 23:43:34 +00001345unsigned
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001346DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
1347{
1348 assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
1349 assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
1350 && "Slot for branch should be empty");
1351
1352 unsigned int nextSlot = delayedNodeSlotNum;
1353 cycles_t nextTime = delayedNodeCycle;
1354
1355 S.scheduleInstr(brNode, nextSlot, nextTime);
1356
1357 for (unsigned d=0; d < ndelays; d++)
1358 {
1359 ++nextSlot;
1360 if (nextSlot == S.nslots)
1361 {
1362 nextSlot = 0;
1363 nextTime++;
1364 }
1365
1366 // Find the first feasible instruction for this delay slot
1367 // Note that we only check for issue restrictions here.
1368 // We do *not* check for flow dependences but rely on pipeline
1369 // interlocks to resolve them. Machines without interlocks
1370 // will require this code to be modified.
1371 for (unsigned i=0; i < delayNodeVec.size(); i++)
1372 {
1373 const SchedGraphNode* dnode = delayNodeVec[i];
1374 if ( ! S.isScheduled(dnode)
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001375 && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot)
1376 && instrIsFeasible(S, dnode->getOpCode()))
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001377 {
Vikram S. Advefb1a6c82001-11-09 02:14:20 +00001378 assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode())
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001379 && "Instructions without interlocks not yet supported "
1380 "when filling branch delay slots");
1381 S.scheduleInstr(dnode, nextSlot, nextTime);
1382 break;
1383 }
1384 }
1385 }
1386
1387 // Update current time if delay slots overflowed into later cycles.
1388 // Do this here because we know exactly which cycle is the last cycle
1389 // that contains delay slots. The next loop doesn't compute that.
1390 if (nextTime > S.getTime())
1391 S.updateTime(nextTime);
1392
1393 // Now put any remaining instructions in the unfilled delay slots.
1394 // This could lead to suboptimal performance but needed for correctness.
1395 nextSlot = delayedNodeSlotNum;
1396 nextTime = delayedNodeCycle;
1397 for (unsigned i=0; i < delayNodeVec.size(); i++)
1398 if (! S.isScheduled(delayNodeVec[i]))
1399 {
1400 do { // find the next empty slot
1401 ++nextSlot;
1402 if (nextSlot == S.nslots)
1403 {
1404 nextSlot = 0;
1405 nextTime++;
1406 }
1407 } while (S.isched.getInstr(nextSlot, nextTime) != NULL);
1408
1409 S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
1410 break;
1411 }
Vikram S. Advec5b46322001-09-30 23:43:34 +00001412
1413 return 1 + ndelays;
Vikram S. Adve0e1158f2001-08-28 23:07:19 +00001414}
1415
Vikram S. Advec5b46322001-09-30 23:43:34 +00001416
1417// Check if the instruction would conflict with instructions already
1418// chosen for the current cycle
1419//
1420static inline bool
1421ConflictsWithChoices(const SchedulingManager& S,
1422 MachineOpCode opCode)
1423{
1424 // Check if the instruction must issue by itself, and some feasible
1425 // choices have already been made for this cycle
1426 if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
1427 return true;
1428
1429 // For each class that opCode belongs to, check if there are too many
1430 // instructions of that class.
1431 //
1432 const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
1433 return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
1434}
1435
1436
1437//************************* External Functions *****************************/
1438
1439
1440//---------------------------------------------------------------------------
1441// Function: ViolatesMinimumGap
1442//
1443// Purpose:
1444// Check minimum gap requirements relative to instructions scheduled in
1445// previous cycles.
1446// Note that we do not need to consider `nextEarliestIssueTime' here because
1447// that is also captured in the earliest start times for each opcode.
1448//---------------------------------------------------------------------------
1449
1450static inline bool
1451ViolatesMinimumGap(const SchedulingManager& S,
1452 MachineOpCode opCode,
1453 const cycles_t inCycle)
1454{
1455 return (inCycle < S.getEarliestStartTimeForOp(opCode));
1456}
1457
1458
1459//---------------------------------------------------------------------------
1460// Function: instrIsFeasible
1461//
1462// Purpose:
1463// Check if any issue restrictions would prevent the instruction from
1464// being issued in the current cycle
1465//---------------------------------------------------------------------------
1466
1467bool
1468instrIsFeasible(const SchedulingManager& S,
1469 MachineOpCode opCode)
1470{
1471 // skip the instruction if it cannot be issued due to issue restrictions
1472 // caused by previously issued instructions
1473 if (ViolatesMinimumGap(S, opCode, S.getTime()))
1474 return false;
1475
1476 // skip the instruction if it cannot be issued due to issue restrictions
1477 // caused by previously chosen instructions for the current cycle
1478 if (ConflictsWithChoices(S, opCode))
1479 return false;
1480
1481 return true;
1482}
1483
1484//---------------------------------------------------------------------------
1485// Function: ScheduleInstructionsWithSSA
1486//
1487// Purpose:
1488// Entry point for instruction scheduling on SSA form.
1489// Schedules the machine instructions generated by instruction selection.
1490// Assumes that register allocation has not been done, i.e., operands
1491// are still in SSA form.
1492//---------------------------------------------------------------------------
1493
1494bool
1495ScheduleInstructionsWithSSA(Method* method,
1496 const TargetMachine &target)
1497{
1498 SchedGraphSet graphSet(method, target);
1499
1500 if (SchedDebugLevel >= Sched_PrintSchedGraphs)
1501 {
1502 cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING"
1503 << endl;
1504 graphSet.dump();
1505 }
1506
1507 for (SchedGraphSet::const_iterator GI=graphSet.begin();
1508 GI != graphSet.end(); ++GI)
1509 {
1510 SchedGraph* graph = (*GI).second;
1511 const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks();
1512 assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
1513 const BasicBlock* bb = bbvec[0];
1514
1515 if (SchedDebugLevel >= Sched_PrintSchedTrace)
1516 cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
1517
1518 SchedPriorities schedPrio(method, graph); // expensive!
1519 SchedulingManager S(target, graph, schedPrio);
1520
1521 ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
1522
1523 ForwardListSchedule(S); // computes schedule in S
1524
1525 RecordSchedule((*GI).first, S); // records schedule in BB
1526 }
1527
1528 if (SchedDebugLevel >= Sched_PrintMachineCode)
1529 {
1530 cout << endl
1531 << "*** Machine instructions after INSTRUCTION SCHEDULING" << endl;
Vikram S. Adveaf1d2c82001-11-08 05:18:18 +00001532 MachineCodeForMethod::get(method).dump();
Vikram S. Advec5b46322001-09-30 23:43:34 +00001533 }
1534
1535 return false; // no reason to fail yet
1536}
1537
1538