blob: 631d609018488cd5c5f08c0ea77ffa8bdb737504 [file] [log] [blame]
Vikram S. Adve243dd452001-09-18 13:03:13 +00001// $Id$
Chris Lattner20b1ea02001-09-14 03:47:57 +00002//***************************************************************************
3// File:
4// SparcInstrSelection.cpp
5//
6// Purpose:
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00007// BURS instruction selection for SPARC V9 architecture.
Chris Lattner20b1ea02001-09-14 03:47:57 +00008//
9// History:
10// 7/02/01 - Vikram Adve - Created
11//**************************************************************************/
12
13#include "SparcInternals.h"
Vikram S. Adve7fe27872001-10-18 00:26:20 +000014#include "SparcInstrSelectionSupport.h"
Vikram S. Adve8557b222001-10-10 20:56:33 +000015#include "llvm/CodeGen/InstrSelectionSupport.h"
Chris Lattner20b1ea02001-09-14 03:47:57 +000016#include "llvm/CodeGen/MachineInstr.h"
17#include "llvm/CodeGen/InstrForest.h"
18#include "llvm/CodeGen/InstrSelection.h"
Chris Lattner20b1ea02001-09-14 03:47:57 +000019#include "llvm/DerivedTypes.h"
20#include "llvm/iTerminators.h"
21#include "llvm/iMemory.h"
22#include "llvm/iOther.h"
23#include "llvm/BasicBlock.h"
24#include "llvm/Method.h"
25#include "llvm/ConstPoolVals.h"
Chris Lattnercee8f9a2001-11-27 00:03:19 +000026#include "Support/MathExtras.h"
Chris Lattner749655f2001-10-13 06:54:30 +000027#include <math.h>
Chris Lattner20b1ea02001-09-14 03:47:57 +000028
Chris Lattner20b1ea02001-09-14 03:47:57 +000029
30//************************* Forward Declarations ***************************/
31
32
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000033static void SetMemOperands_Internal (MachineInstr* minstr,
34 const InstructionNode* vmInstrNode,
35 Value* ptrVal,
36 Value* arrayOffsetVal,
37 const vector<ConstPoolVal*>& idxVec,
38 const TargetMachine& target);
Chris Lattner20b1ea02001-09-14 03:47:57 +000039
40
41//************************ Internal Functions ******************************/
42
Chris Lattner20b1ea02001-09-14 03:47:57 +000043
Chris Lattner20b1ea02001-09-14 03:47:57 +000044static inline MachineOpCode
45ChooseBprInstruction(const InstructionNode* instrNode)
46{
47 MachineOpCode opCode;
48
49 Instruction* setCCInstr =
50 ((InstructionNode*) instrNode->leftChild())->getInstruction();
51
52 switch(setCCInstr->getOpcode())
53 {
54 case Instruction::SetEQ: opCode = BRZ; break;
55 case Instruction::SetNE: opCode = BRNZ; break;
56 case Instruction::SetLE: opCode = BRLEZ; break;
57 case Instruction::SetGE: opCode = BRGEZ; break;
58 case Instruction::SetLT: opCode = BRLZ; break;
59 case Instruction::SetGT: opCode = BRGZ; break;
60 default:
61 assert(0 && "Unrecognized VM instruction!");
62 opCode = INVALID_OPCODE;
63 break;
64 }
65
66 return opCode;
67}
68
69
70static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +000071ChooseBpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000072 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +000073{
74 MachineOpCode opCode = INVALID_OPCODE;
75
76 bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
77
78 if (isSigned)
79 {
80 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000081 {
82 case Instruction::SetEQ: opCode = BE; break;
83 case Instruction::SetNE: opCode = BNE; break;
84 case Instruction::SetLE: opCode = BLE; break;
85 case Instruction::SetGE: opCode = BGE; break;
86 case Instruction::SetLT: opCode = BL; break;
87 case Instruction::SetGT: opCode = BG; break;
88 default:
89 assert(0 && "Unrecognized VM instruction!");
90 break;
91 }
Chris Lattner20b1ea02001-09-14 03:47:57 +000092 }
93 else
94 {
95 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000096 {
97 case Instruction::SetEQ: opCode = BE; break;
98 case Instruction::SetNE: opCode = BNE; break;
99 case Instruction::SetLE: opCode = BLEU; break;
100 case Instruction::SetGE: opCode = BCC; break;
101 case Instruction::SetLT: opCode = BCS; break;
102 case Instruction::SetGT: opCode = BGU; break;
103 default:
104 assert(0 && "Unrecognized VM instruction!");
105 break;
106 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000107 }
108
109 return opCode;
110}
111
112static inline MachineOpCode
113ChooseBFpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000114 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000115{
116 MachineOpCode opCode = INVALID_OPCODE;
117
118 switch(setCCInstr->getOpcode())
119 {
120 case Instruction::SetEQ: opCode = FBE; break;
121 case Instruction::SetNE: opCode = FBNE; break;
122 case Instruction::SetLE: opCode = FBLE; break;
123 case Instruction::SetGE: opCode = FBGE; break;
124 case Instruction::SetLT: opCode = FBL; break;
125 case Instruction::SetGT: opCode = FBG; break;
126 default:
127 assert(0 && "Unrecognized VM instruction!");
128 break;
129 }
130
131 return opCode;
132}
133
134
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000135// Create a unique TmpInstruction for a boolean value,
136// representing the CC register used by a branch on that value.
137// For now, hack this using a little static cache of TmpInstructions.
138// Eventually the entire BURG instruction selection should be put
139// into a separate class that can hold such information.
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000140// The static cache is not too bad because the memory for these
141// TmpInstructions will be freed along with the rest of the Method anyway.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000142//
143static TmpInstruction*
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000144GetTmpForCC(Value* boolVal, const Method* method, const Type* ccType)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000145{
146 typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
147 static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
148 static const Method* lastMethod = NULL; // Use to flush cache between methods
149
150 assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
151
152 if (lastMethod != method)
153 {
154 lastMethod = method;
155 boolToTmpCache.clear();
156 }
157
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000158 // Look for tmpI and create a new one otherwise. The new value is
159 // directly written to map using the ref returned by operator[].
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000160 TmpInstruction*& tmpI = boolToTmpCache[boolVal];
161 if (tmpI == NULL)
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000162 tmpI = new TmpInstruction(TMP_INSTRUCTION_OPCODE, ccType, boolVal, NULL);
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000163
164 return tmpI;
165}
166
167
Chris Lattner20b1ea02001-09-14 03:47:57 +0000168static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000169ChooseBccInstruction(const InstructionNode* instrNode,
170 bool& isFPBranch)
171{
172 InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
173 BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
174 const Type* setCCType = setCCInstr->getOperand(0)->getType();
175
176 isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
177
178 if (isFPBranch)
179 return ChooseBFpccInstruction(instrNode, setCCInstr);
180 else
181 return ChooseBpccInstruction(instrNode, setCCInstr);
182}
183
184
185static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +0000186ChooseMovFpccInstruction(const InstructionNode* instrNode)
187{
188 MachineOpCode opCode = INVALID_OPCODE;
189
190 switch(instrNode->getInstruction()->getOpcode())
191 {
192 case Instruction::SetEQ: opCode = MOVFE; break;
193 case Instruction::SetNE: opCode = MOVFNE; break;
194 case Instruction::SetLE: opCode = MOVFLE; break;
195 case Instruction::SetGE: opCode = MOVFGE; break;
196 case Instruction::SetLT: opCode = MOVFL; break;
197 case Instruction::SetGT: opCode = MOVFG; break;
198 default:
199 assert(0 && "Unrecognized VM instruction!");
200 break;
201 }
202
203 return opCode;
204}
205
206
207// Assumes that SUBcc v1, v2 -> v3 has been executed.
208// In most cases, we want to clear v3 and then follow it by instruction
209// MOVcc 1 -> v3.
210// Set mustClearReg=false if v3 need not be cleared before conditional move.
211// Set valueToMove=0 if we want to conditionally move 0 instead of 1
212// (i.e., we want to test inverse of a condition)
Vikram S. Adve243dd452001-09-18 13:03:13 +0000213// (The latter two cases do not seem to arise because SetNE needs nothing.)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000214//
215static MachineOpCode
216ChooseMovpccAfterSub(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000217 bool& mustClearReg,
218 int& valueToMove)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000219{
220 MachineOpCode opCode = INVALID_OPCODE;
221 mustClearReg = true;
222 valueToMove = 1;
223
224 switch(instrNode->getInstruction()->getOpcode())
225 {
Vikram S. Adve243dd452001-09-18 13:03:13 +0000226 case Instruction::SetEQ: opCode = MOVE; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000227 case Instruction::SetLE: opCode = MOVLE; break;
228 case Instruction::SetGE: opCode = MOVGE; break;
229 case Instruction::SetLT: opCode = MOVL; break;
230 case Instruction::SetGT: opCode = MOVG; break;
Vikram S. Adve243dd452001-09-18 13:03:13 +0000231 case Instruction::SetNE: assert(0 && "No move required!"); break;
232 default: assert(0 && "Unrecognized VM instr!"); break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000233 }
234
235 return opCode;
236}
237
Chris Lattner20b1ea02001-09-14 03:47:57 +0000238static inline MachineOpCode
239ChooseConvertToFloatInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000240 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000241{
242 MachineOpCode opCode = INVALID_OPCODE;
243
244 switch(instrNode->getOpLabel())
245 {
246 case ToFloatTy:
247 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000248 opCode = FITOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000249 else if (opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000250 opCode = FXTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000251 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000252 opCode = FDTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000253 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000254 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000255 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000256 assert(0 && "Cannot convert this type to FLOAT on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000257 break;
258
259 case ToDoubleTy:
Vikram S. Adveff5a09e2001-11-08 05:04:09 +0000260 // Use FXTOD for all integer-to-double conversions. This has to be
261 // consistent with the code in CreateCodeToCopyIntToFloat() since
262 // that will be used to load the integer into an FP register.
263 //
264 if (opType == Type::SByteTy || opType == Type::ShortTy ||
265 opType == Type::IntTy || opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000266 opCode = FXTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000267 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000268 opCode = FSTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000269 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000270 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000271 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000272 assert(0 && "Cannot convert this type to DOUBLE on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000273 break;
274
275 default:
276 break;
277 }
278
279 return opCode;
280}
281
282static inline MachineOpCode
283ChooseConvertToIntInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000284 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000285{
286 MachineOpCode opCode = INVALID_OPCODE;;
287
288 int instrType = (int) instrNode->getOpLabel();
289
290 if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
291 {
292 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000293 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000294 case Type::FloatTyID: opCode = FSTOI; break;
295 case Type::DoubleTyID: opCode = FDTOI; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000296 default:
297 assert(0 && "Non-numeric non-bool type cannot be converted to Int");
298 break;
299 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000300 }
301 else if (instrType == ToLongTy)
302 {
303 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000304 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000305 case Type::FloatTyID: opCode = FSTOX; break;
306 case Type::DoubleTyID: opCode = FDTOX; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000307 default:
308 assert(0 && "Non-numeric non-bool type cannot be converted to Long");
309 break;
310 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000311 }
312 else
313 assert(0 && "Should not get here, Mo!");
314
315 return opCode;
316}
317
318
319static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000320ChooseAddInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000321{
322 MachineOpCode opCode = INVALID_OPCODE;
323
Chris Lattner20b1ea02001-09-14 03:47:57 +0000324 if (resultType->isIntegral() ||
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000325 resultType->isPointerType() ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000326 resultType->isLabelType() ||
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000327 isa<MethodType>(resultType) ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000328 resultType == Type::BoolTy)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000329 {
330 opCode = ADD;
331 }
332 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000333 switch(resultType->getPrimitiveID())
334 {
335 case Type::FloatTyID: opCode = FADDS; break;
336 case Type::DoubleTyID: opCode = FADDD; break;
337 default: assert(0 && "Invalid type for ADD instruction"); break;
338 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000339
340 return opCode;
341}
342
343
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000344static inline MachineOpCode
345ChooseAddInstruction(const InstructionNode* instrNode)
346{
347 return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
348}
349
350
Chris Lattner20b1ea02001-09-14 03:47:57 +0000351static inline MachineInstr*
352CreateMovFloatInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000353 const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000354{
355 MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000356 ? FMOVS : FMOVD);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000357 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000358 instrNode->leftChild()->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000359 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000360 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000361 return minstr;
362}
363
364static inline MachineInstr*
365CreateAddConstInstruction(const InstructionNode* instrNode)
366{
367 MachineInstr* minstr = NULL;
368
369 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000370 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000371
372 // Cases worth optimizing are:
373 // (1) Add with 0 for float or double: use an FMOV of appropriate type,
374 // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
375 //
376 const Type* resultType = instrNode->getInstruction()->getType();
377
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000378 if (resultType == Type::FloatTy ||
379 resultType == Type::DoubleTy)
380 {
381 double dval = ((ConstPoolFP*) constOp)->getValue();
382 if (dval == 0.0)
383 minstr = CreateMovFloatInstruction(instrNode, resultType);
384 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000385
386 return minstr;
387}
388
389
390static inline MachineOpCode
Vikram S. Adve510eec72001-11-04 21:59:14 +0000391ChooseSubInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000392{
393 MachineOpCode opCode = INVALID_OPCODE;
394
Chris Lattner20b1ea02001-09-14 03:47:57 +0000395 if (resultType->isIntegral() ||
396 resultType->isPointerType())
397 {
398 opCode = SUB;
399 }
400 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000401 switch(resultType->getPrimitiveID())
402 {
403 case Type::FloatTyID: opCode = FSUBS; break;
404 case Type::DoubleTyID: opCode = FSUBD; break;
405 default: assert(0 && "Invalid type for SUB instruction"); break;
406 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000407
408 return opCode;
409}
410
411
412static inline MachineInstr*
413CreateSubConstInstruction(const InstructionNode* instrNode)
414{
415 MachineInstr* minstr = NULL;
416
417 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000418 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000419
420 // Cases worth optimizing are:
421 // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
422 // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
423 //
424 const Type* resultType = instrNode->getInstruction()->getType();
425
426 if (resultType == Type::FloatTy ||
427 resultType == Type::DoubleTy)
428 {
429 double dval = ((ConstPoolFP*) constOp)->getValue();
430 if (dval == 0.0)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000431 minstr = CreateMovFloatInstruction(instrNode, resultType);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000432 }
433
434 return minstr;
435}
436
437
438static inline MachineOpCode
439ChooseFcmpInstruction(const InstructionNode* instrNode)
440{
441 MachineOpCode opCode = INVALID_OPCODE;
442
443 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
444 switch(operand->getType()->getPrimitiveID()) {
445 case Type::FloatTyID: opCode = FCMPS; break;
446 case Type::DoubleTyID: opCode = FCMPD; break;
447 default: assert(0 && "Invalid type for FCMP instruction"); break;
448 }
449
450 return opCode;
451}
452
453
454// Assumes that leftArg and rightArg are both cast instructions.
455//
456static inline bool
457BothFloatToDouble(const InstructionNode* instrNode)
458{
459 InstrTreeNode* leftArg = instrNode->leftChild();
460 InstrTreeNode* rightArg = instrNode->rightChild();
461 InstrTreeNode* leftArgArg = leftArg->leftChild();
462 InstrTreeNode* rightArgArg = rightArg->leftChild();
463 assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
464
465 // Check if both arguments are floats cast to double
466 return (leftArg->getValue()->getType() == Type::DoubleTy &&
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000467 leftArgArg->getValue()->getType() == Type::FloatTy &&
468 rightArgArg->getValue()->getType() == Type::FloatTy);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000469}
470
471
472static inline MachineOpCode
Vikram S. Adve510eec72001-11-04 21:59:14 +0000473ChooseMulInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000474{
475 MachineOpCode opCode = INVALID_OPCODE;
476
Chris Lattner20b1ea02001-09-14 03:47:57 +0000477 if (resultType->isIntegral())
Vikram S. Adve510eec72001-11-04 21:59:14 +0000478 opCode = MULX;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000479 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000480 switch(resultType->getPrimitiveID())
481 {
482 case Type::FloatTyID: opCode = FMULS; break;
483 case Type::DoubleTyID: opCode = FMULD; break;
484 default: assert(0 && "Invalid type for MUL instruction"); break;
485 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000486
487 return opCode;
488}
489
490
Vikram S. Adve510eec72001-11-04 21:59:14 +0000491static inline MachineOpCode
492ChooseMulInstruction(const InstructionNode* instrNode,
493 bool checkCasts)
494{
495 if (checkCasts && BothFloatToDouble(instrNode))
496 return FSMULD;
497
498 // else use the regular multiply instructions
499 return ChooseMulInstructionByType(instrNode->getInstruction()->getType());
500}
501
502
Chris Lattner20b1ea02001-09-14 03:47:57 +0000503static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000504CreateIntNegInstruction(TargetMachine& target,
505 Value* vreg)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000506{
507 MachineInstr* minstr = new MachineInstr(SUB);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000508 minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000509 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
510 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
511 return minstr;
512}
513
514
515static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000516CreateMulConstInstruction(TargetMachine &target,
517 const InstructionNode* instrNode,
518 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000519{
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000520 MachineInstr* minstr = NULL; // return NULL if we cannot exploit constant
521 getMinstr2 = NULL; // to create a cheaper instruction
Chris Lattner20b1ea02001-09-14 03:47:57 +0000522 bool needNeg = false;
523
524 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000525 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000526
527 // Cases worth optimizing are:
528 // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
529 // (2) Multiply by 2^x for integer types: replace with Shift
530 //
531 const Type* resultType = instrNode->getInstruction()->getType();
532
Vikram S. Adve243dd452001-09-18 13:03:13 +0000533 if (resultType->isIntegral() || resultType->isPointerType())
Chris Lattner20b1ea02001-09-14 03:47:57 +0000534 {
535 unsigned pow;
536 bool isValidConst;
537 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
538 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000539 {
540 bool needNeg = false;
541 if (C < 0)
542 {
543 needNeg = true;
544 C = -C;
545 }
546
547 if (C == 0 || C == 1)
548 {
549 minstr = new MachineInstr(ADD);
550
551 if (C == 0)
552 minstr->SetMachineOperand(0,
553 target.getRegInfo().getZeroRegNum());
554 else
555 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
556 instrNode->leftChild()->getValue());
557 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
558 }
559 else if (IsPowerOf2(C, pow))
560 {
561 minstr = new MachineInstr((resultType == Type::LongTy)
562 ? SLLX : SLL);
563 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
564 instrNode->leftChild()->getValue());
565 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
566 pow);
567 }
568
569 if (minstr && needNeg)
570 { // insert <reg = SUB 0, reg> after the instr to flip the sign
571 getMinstr2 = CreateIntNegInstruction(target,
572 instrNode->getValue());
573 }
574 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000575 }
576 else
577 {
578 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000579 resultType == Type::DoubleTy)
580 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000581 double dval = ((ConstPoolFP*) constOp)->getValue();
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000582 if (fabs(dval) == 1)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000583 {
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000584 bool needNeg = (dval < 0);
585
586 MachineOpCode opCode = needNeg
587 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
588 : (resultType == Type::FloatTy? FMOVS : FMOVD);
589
590 minstr = new MachineInstr(opCode);
591 minstr->SetMachineOperand(0,
592 MachineOperand::MO_VirtualRegister,
593 instrNode->leftChild()->getValue());
594 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000595 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000596 }
597
598 if (minstr != NULL)
599 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000600 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000601
602 return minstr;
603}
604
605
Vikram S. Adve510eec72001-11-04 21:59:14 +0000606// Generate a divide instruction for Div or Rem.
607// For Rem, this assumes that the operand type will be signed if the result
608// type is signed. This is correct because they must have the same sign.
609//
Chris Lattner20b1ea02001-09-14 03:47:57 +0000610static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000611ChooseDivInstruction(TargetMachine &target,
612 const InstructionNode* instrNode)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000613{
614 MachineOpCode opCode = INVALID_OPCODE;
615
616 const Type* resultType = instrNode->getInstruction()->getType();
617
618 if (resultType->isIntegral())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000619 opCode = resultType->isSigned()? SDIVX : UDIVX;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000620 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000621 switch(resultType->getPrimitiveID())
622 {
623 case Type::FloatTyID: opCode = FDIVS; break;
624 case Type::DoubleTyID: opCode = FDIVD; break;
625 default: assert(0 && "Invalid type for DIV instruction"); break;
626 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000627
628 return opCode;
629}
630
631
632static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000633CreateDivConstInstruction(TargetMachine &target,
634 const InstructionNode* instrNode,
635 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000636{
637 MachineInstr* minstr = NULL;
638 getMinstr2 = NULL;
639
640 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000641 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000642
643 // Cases worth optimizing are:
644 // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
645 // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
646 //
647 const Type* resultType = instrNode->getInstruction()->getType();
648
649 if (resultType->isIntegral())
650 {
651 unsigned pow;
652 bool isValidConst;
653 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
654 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000655 {
656 bool needNeg = false;
657 if (C < 0)
658 {
659 needNeg = true;
660 C = -C;
661 }
662
663 if (C == 1)
664 {
665 minstr = new MachineInstr(ADD);
666 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
667 instrNode->leftChild()->getValue());
668 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
669 }
670 else if (IsPowerOf2(C, pow))
671 {
672 MachineOpCode opCode= ((resultType->isSigned())
673 ? (resultType==Type::LongTy)? SRAX : SRA
674 : (resultType==Type::LongTy)? SRLX : SRL);
675 minstr = new MachineInstr(opCode);
676 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
677 instrNode->leftChild()->getValue());
678 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
679 pow);
680 }
681
682 if (minstr && needNeg)
683 { // insert <reg = SUB 0, reg> after the instr to flip the sign
684 getMinstr2 = CreateIntNegInstruction(target,
685 instrNode->getValue());
686 }
687 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000688 }
689 else
690 {
691 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000692 resultType == Type::DoubleTy)
693 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000694 double dval = ((ConstPoolFP*) constOp)->getValue();
Vikram S. Adve6ad7c552001-11-09 02:18:16 +0000695 if (fabs(dval) == 1)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000696 {
697 bool needNeg = (dval < 0);
698
699 MachineOpCode opCode = needNeg
700 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
701 : (resultType == Type::FloatTy? FMOVS : FMOVD);
702
703 minstr = new MachineInstr(opCode);
704 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
705 instrNode->leftChild()->getValue());
706 }
707 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000708 }
709
710 if (minstr != NULL)
711 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000712 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000713
714 return minstr;
715}
716
717
Chris Lattner20b1ea02001-09-14 03:47:57 +0000718//------------------------------------------------------------------------
719// Function SetOperandsForMemInstr
720//
721// Choose addressing mode for the given load or store instruction.
722// Use [reg+reg] if it is an indexed reference, and the index offset is
723// not a constant or if it cannot fit in the offset field.
724// Use [reg+offset] in all other cases.
725//
726// This assumes that all array refs are "lowered" to one of these forms:
727// %x = load (subarray*) ptr, constant ; single constant offset
728// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
729// Generally, this should happen via strength reduction + LICM.
730// Also, strength reduction should take care of using the same register for
731// the loop index variable and an array index, when that is profitable.
732//------------------------------------------------------------------------
733
734static void
735SetOperandsForMemInstr(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000736 const InstructionNode* vmInstrNode,
737 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000738{
739 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
740
741 // Variables to hold the index vector, ptr value, and offset value.
742 // The major work here is to extract these for all 3 instruction types
743 // and then call the common function SetMemOperands_Internal().
744 //
Chris Lattner69a86e42001-11-26 16:56:19 +0000745 const vector<ConstPoolVal*> OLDIDXVEC = memInst->getIndicesBROKEN();
746 const vector<ConstPoolVal*>* idxVec = &OLDIDXVEC; //FIXME
Chris Lattner20b1ea02001-09-14 03:47:57 +0000747 vector<ConstPoolVal*>* newIdxVec = NULL;
748 Value* ptrVal;
749 Value* arrayOffsetVal = NULL;
750
751 // Test if a GetElemPtr instruction is being folded into this mem instrn.
752 // If so, it will be in the left child for Load and GetElemPtr,
753 // and in the right child for Store instructions.
754 //
755 InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000756 ? vmInstrNode->rightChild()
757 : vmInstrNode->leftChild());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000758
759 if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
760 ptrChild->getOpLabel() == GetElemPtrIdx)
761 {
762 // There is a GetElemPtr instruction and there may be a chain of
763 // more than one. Use the pointer value of the last one in the chain.
764 // Fold the index vectors from the entire chain and from the mem
765 // instruction into one single index vector.
766 // Finally, we never fold for an array instruction so make that NULL.
767
768 newIdxVec = new vector<ConstPoolVal*>;
769 ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
770
771 newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
772 idxVec = newIdxVec;
773
774 assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000775 && "GetElemPtr cannot be folded into array refs in selection");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000776 }
777 else
778 {
779 // There is no GetElemPtr instruction.
780 // Use the pointer value and the index vector from the Mem instruction.
781 // If it is an array reference, get the array offset value.
782 //
Chris Lattner65ea1712001-11-14 11:27:58 +0000783 ptrVal = memInst->getPointerOperand();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000784
Chris Lattner65ea1712001-11-14 11:27:58 +0000785 const Type* opType = cast<PointerType>(ptrVal->getType())->getValueType();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000786 if (opType->isArrayType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000787 {
788 assert((memInst->getNumOperands()
Chris Lattner65ea1712001-11-14 11:27:58 +0000789 == (unsigned) 1 + memInst->getFirstIndexOperandNumber())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000790 && "Array refs must be lowered before Instruction Selection");
791
Chris Lattner65ea1712001-11-14 11:27:58 +0000792 arrayOffsetVal = memInst->getOperand(memInst->getFirstIndexOperandNumber());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000793 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000794 }
795
796 SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000797 *idxVec, target);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000798
799 if (newIdxVec != NULL)
800 delete newIdxVec;
801}
802
803
804static void
805SetMemOperands_Internal(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000806 const InstructionNode* vmInstrNode,
807 Value* ptrVal,
808 Value* arrayOffsetVal,
809 const vector<ConstPoolVal*>& idxVec,
810 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000811{
812 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
813
814 // Initialize so we default to storing the offset in a register.
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000815 int64_t smallConstOffset = 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000816 Value* valueForRegOffset = NULL;
817 MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
818
819 // Check if there is an index vector and if so, if it translates to
820 // a small enough constant to fit in the immediate-offset field.
821 //
822 if (idxVec.size() > 0)
823 {
824 bool isConstantOffset = false;
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000825 unsigned offset = 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000826
827 const PointerType* ptrType = (PointerType*) ptrVal->getType();
828
829 if (ptrType->getValueType()->isStructType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000830 {
831 // the offset is always constant for structs
832 isConstantOffset = true;
833
834 // Compute the offset value using the index vector
835 offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
836 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000837 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000838 {
839 // It must be an array ref. Check if the offset is a constant,
840 // and that the indexing has been lowered to a single offset.
841 //
842 assert(ptrType->getValueType()->isArrayType());
843 assert(arrayOffsetVal != NULL
844 && "Expect to be given Value* for array offsets");
845
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000846 if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(arrayOffsetVal))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000847 {
848 isConstantOffset = true; // always constant for structs
849 assert(arrayOffsetVal->getType()->isIntegral());
850 offset = (CPV->getType()->isSigned()
851 ? ((ConstPoolSInt*)CPV)->getValue()
852 : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
853 }
854 else
855 {
856 valueForRegOffset = arrayOffsetVal;
857 }
858 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000859
860 if (isConstantOffset)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000861 {
862 // create a virtual register for the constant
863 valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
864 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000865 }
866 else
867 {
868 offsetOpType = MachineOperand::MO_SignExtendedImmed;
869 smallConstOffset = 0;
870 }
871
872 // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
873 // It is the left child in the instruction tree in all cases.
874 Value* leftVal = vmInstrNode->leftChild()->getValue();
875 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
876
877 // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000878 // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
Chris Lattner20b1ea02001-09-14 03:47:57 +0000879 //
880 unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
881 if (offsetOpType == MachineOperand::MO_VirtualRegister)
882 {
883 assert(valueForRegOffset != NULL);
884 minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
885 }
886 else
887 minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
888
889 if (memInst->getOpcode() == Instruction::Store)
890 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
891 else
892 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000893 vmInstrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000894}
895
896
Chris Lattner20b1ea02001-09-14 03:47:57 +0000897//
898// Substitute operand `operandNum' of the instruction in node `treeNode'
Vikram S. Advec025fc12001-10-14 23:28:43 +0000899// in place of the use(s) of that instruction in node `parent'.
900// Check both explicit and implicit operands!
Chris Lattner20b1ea02001-09-14 03:47:57 +0000901//
902static void
903ForwardOperand(InstructionNode* treeNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000904 InstrTreeNode* parent,
905 int operandNum)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000906{
Vikram S. Adve243dd452001-09-18 13:03:13 +0000907 assert(treeNode && parent && "Invalid invocation of ForwardOperand");
908
Chris Lattner20b1ea02001-09-14 03:47:57 +0000909 Instruction* unusedOp = treeNode->getInstruction();
910 Value* fwdOp = unusedOp->getOperand(operandNum);
Vikram S. Adve243dd452001-09-18 13:03:13 +0000911
912 // The parent itself may be a list node, so find the real parent instruction
913 while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
914 {
915 parent = parent->parent();
916 assert(parent && "ERROR: Non-instruction node has no parent in tree.");
917 }
918 InstructionNode* parentInstrNode = (InstructionNode*) parent;
919
920 Instruction* userInstr = parentInstrNode->getInstruction();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000921 MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
922 for (unsigned i=0, N=mvec.size(); i < N; i++)
923 {
924 MachineInstr* minstr = mvec[i];
Vikram S. Advec025fc12001-10-14 23:28:43 +0000925
926 for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000927 {
928 const MachineOperand& mop = minstr->getOperand(i);
929 if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
930 mop.getVRegValue() == unusedOp)
931 {
932 minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
933 fwdOp);
934 }
935 }
Vikram S. Advec025fc12001-10-14 23:28:43 +0000936
937 for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i)
938 if (minstr->getImplicitRef(i) == unusedOp)
939 minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000940 }
941}
942
943
Ruchira Sasanka67a463a2001-11-12 14:45:33 +0000944
945void UltraSparcInstrInfo::
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000946CreateCopyInstructionsByType(const TargetMachine& target,
947 Value* src,
948 Instruction* dest,
Ruchira Sasanka67a463a2001-11-12 14:45:33 +0000949 vector<MachineInstr*>& minstrVec) const
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000950{
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000951 bool loadConstantToReg = false;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000952
953 const Type* resultType = dest->getType();
954
955 MachineOpCode opCode = ChooseAddInstructionByType(resultType);
956 if (opCode == INVALID_OPCODE)
957 {
958 assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000959 return;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000960 }
961
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000962 // if `src' is a constant that doesn't fit in the immed field or if it is
963 // a global variable (i.e., a constant address), generate a load
964 // instruction instead of an add
965 //
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000966 if (isa<ConstPoolVal>(src))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000967 {
968 unsigned int machineRegNum;
969 int64_t immedValue;
970 MachineOperand::MachineOperandType opType =
971 ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
972 machineRegNum, immedValue);
973
974 if (opType == MachineOperand::MO_VirtualRegister)
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000975 loadConstantToReg = true;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000976 }
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000977 else if (isa<GlobalValue>(src))
978 loadConstantToReg = true;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000979
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000980 if (loadConstantToReg)
981 { // `src' is constant and cannot fit in immed field for the ADD
982 // Insert instructions to "load" the constant into a register
983 vector<TmpInstruction*> tempVec;
984 target.getInstrInfo().CreateCodeToLoadConst(src,dest,minstrVec,tempVec);
985 for (unsigned i=0; i < tempVec.size(); i++)
986 dest->getMachineInstrVec().addTempValue(tempVec[i]);
987 }
988 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000989 { // Create the appropriate add instruction.
990 // Make `src' the second operand, in case it is a constant
991 // Use (unsigned long) 0 for a NULL pointer value.
992 //
993 const Type* nullValueType =
994 (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
995 : resultType;
Vikram S. Adve7fe27872001-10-18 00:26:20 +0000996 MachineInstr* minstr = new MachineInstr(opCode);
997 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
998 ConstPoolVal::getNullConstant(nullValueType));
999 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
1000 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
1001 minstrVec.push_back(minstr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001002 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001003}
1004
1005
Ruchira Sasanka67a463a2001-11-12 14:45:33 +00001006
Vikram S. Advefb361122001-10-22 13:36:31 +00001007//******************* Externally Visible Functions *************************/
1008
1009
1010//------------------------------------------------------------------------
1011// External Function: GetInstructionsForProlog
1012// External Function: GetInstructionsForEpilog
1013//
1014// Purpose:
1015// Create prolog and epilog code for procedure entry and exit
1016//------------------------------------------------------------------------
1017
1018extern unsigned
1019GetInstructionsForProlog(BasicBlock* entryBB,
1020 TargetMachine &target,
1021 MachineInstr** mvec)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001022{
Vikram S. Advefb361122001-10-22 13:36:31 +00001023 int64_t s0=0; // used to avoid overloading ambiguity below
Chris Lattner20b1ea02001-09-14 03:47:57 +00001024
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001025 const MachineFrameInfo& frameInfo = target.getFrameInfo();
1026
Vikram S. Advefb361122001-10-22 13:36:31 +00001027 // The second operand is the stack size. If it does not fit in the
1028 // immediate field, we either have to find an unused register in the
1029 // caller's window or move some elements to the dynamically allocated
1030 // area of the stack frame (just above save area and method args).
1031 Method* method = entryBB->getParent();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001032 MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
1033 unsigned int staticStackSize = mcInfo.getStaticStackSize();
1034
1035 if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
1036 staticStackSize = (unsigned) frameInfo.getMinStackFrameSize();
1037
1038 if (unsigned padsz = (staticStackSize %
1039 (unsigned) frameInfo.getStackFrameSizeAlignment()))
Vikram S. Advefd9b7dc2001-11-12 05:16:39 +00001040 staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001041
Vikram S. Advefb361122001-10-22 13:36:31 +00001042 assert(target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize)
1043 && "Stack size too large for immediate field of SAVE instruction. Need additional work as described in the comment above");
Chris Lattner20b1ea02001-09-14 03:47:57 +00001044
Vikram S. Advefb361122001-10-22 13:36:31 +00001045 mvec[0] = new MachineInstr(SAVE);
1046 mvec[0]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
1047 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001048 - (int) staticStackSize);
Vikram S. Advefb361122001-10-22 13:36:31 +00001049 mvec[0]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
1050
1051 return 1;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001052}
1053
1054
Vikram S. Advefb361122001-10-22 13:36:31 +00001055extern unsigned
1056GetInstructionsForEpilog(BasicBlock* anExitBB,
1057 TargetMachine &target,
1058 MachineInstr** mvec)
1059{
1060 int64_t s0=0; // used to avoid overloading ambiguity below
1061
1062 mvec[0] = new MachineInstr(RESTORE);
1063 mvec[0]->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
1064 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
1065 mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum());
1066
1067 return 1;
1068}
1069
1070
1071//------------------------------------------------------------------------
1072// External Function: ThisIsAChainRule
1073//
1074// Purpose:
1075// Check if a given BURG rule is a chain rule.
1076//------------------------------------------------------------------------
1077
1078extern bool
1079ThisIsAChainRule(int eruleno)
1080{
1081 switch(eruleno)
1082 {
1083 case 111: // stmt: reg
1084 case 113: // stmt: bool
1085 case 123:
1086 case 124:
1087 case 125:
1088 case 126:
1089 case 127:
1090 case 128:
1091 case 129:
1092 case 130:
1093 case 131:
1094 case 132:
1095 case 133:
1096 case 155:
1097 case 221:
1098 case 222:
1099 case 241:
1100 case 242:
1101 case 243:
1102 case 244:
1103 return true; break;
1104
1105 default:
1106 return false; break;
1107 }
1108}
Chris Lattner20b1ea02001-09-14 03:47:57 +00001109
1110
1111//------------------------------------------------------------------------
1112// External Function: GetInstructionsByRule
1113//
1114// Purpose:
1115// Choose machine instructions for the SPARC according to the
1116// patterns chosen by the BURG-generated parser.
1117//------------------------------------------------------------------------
1118
1119unsigned
1120GetInstructionsByRule(InstructionNode* subtreeRoot,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001121 int ruleForNode,
1122 short* nts,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001123 TargetMachine &target,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001124 MachineInstr** mvec)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001125{
1126 int numInstr = 1; // initialize for common case
1127 bool checkCast = false; // initialize here to use fall-through
Chris Lattner20b1ea02001-09-14 03:47:57 +00001128 int nextRule;
1129 int forwardOperandNum = -1;
Vikram S. Adve8557b222001-10-10 20:56:33 +00001130 int64_t s0=0, s8=8; // variables holding constants to avoid
1131 uint64_t u0=0; // overloading ambiguities below
Chris Lattner20b1ea02001-09-14 03:47:57 +00001132
Vikram S. Advefb361122001-10-22 13:36:31 +00001133 for (unsigned i=0; i < MAX_INSTR_PER_VMINSTR; i++)
1134 mvec[i] = NULL;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001135
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001136 //
1137 // Let's check for chain rules outside the switch so that we don't have
1138 // to duplicate the list of chain rule production numbers here again
1139 //
1140 if (ThisIsAChainRule(ruleForNode))
Chris Lattner20b1ea02001-09-14 03:47:57 +00001141 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001142 // Chain rules have a single nonterminal on the RHS.
1143 // Get the rule that matches the RHS non-terminal and use that instead.
1144 //
1145 assert(nts[0] && ! nts[1]
1146 && "A chain rule should have only one RHS non-terminal!");
1147 nextRule = burm_rule(subtreeRoot->state, nts[0]);
1148 nts = burm_nts[nextRule];
1149 numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001150 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001151 else
Chris Lattner20b1ea02001-09-14 03:47:57 +00001152 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001153 switch(ruleForNode) {
1154 case 1: // stmt: Ret
1155 case 2: // stmt: RetValue(reg)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001156 { // NOTE: Prepass of register allocation is responsible
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001157 // for moving return value to appropriate register.
1158 // Mark the return-address register as a hidden virtual reg.
Vikram S. Advea995e602001-10-11 04:23:19 +00001159 // Mark the return value register as an implicit ref of
1160 // the machine instruction.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001161 // Finally put a NOP in the delay slot.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001162 ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
1163 assert(returnInstr->getOpcode() == Instruction::Ret);
Vikram S. Advefb361122001-10-22 13:36:31 +00001164 Method* method = returnInstr->getParent()->getParent();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001165
Vikram S. Adve7fe27872001-10-18 00:26:20 +00001166 Instruction* returnReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001167 returnInstr, NULL);
1168 returnInstr->getMachineInstrVec().addTempValue(returnReg);
Vikram S. Advefb361122001-10-22 13:36:31 +00001169
1170 mvec[0] = new MachineInstr(JMPLRET);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001171 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1172 returnReg);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001173 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8);
Vikram S. Advefb361122001-10-22 13:36:31 +00001174 mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001175
Vikram S. Advea995e602001-10-11 04:23:19 +00001176 if (returnInstr->getReturnValue() != NULL)
1177 mvec[0]->addImplicitRef(returnInstr->getReturnValue());
1178
Vikram S. Advefb361122001-10-22 13:36:31 +00001179 unsigned n = numInstr++; // delay slot
1180 mvec[n] = new MachineInstr(NOP);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001181
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001182 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001183 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001184
1185 case 3: // stmt: Store(reg,reg)
1186 case 4: // stmt: Store(reg,ptrreg)
1187 mvec[0] = new MachineInstr(
1188 ChooseStoreInstruction(
1189 subtreeRoot->leftChild()->getValue()->getType()));
1190 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1191 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001192
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001193 case 5: // stmt: BrUncond
1194 mvec[0] = new MachineInstr(BA);
1195 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1196 (Value*)NULL);
1197 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1198 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1199
1200 // delay slot
1201 mvec[numInstr++] = new MachineInstr(NOP);
1202 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001203
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001204 case 206: // stmt: BrCond(setCCconst)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001205 { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001206 // If the constant is ZERO, we can use the branch-on-integer-register
1207 // instructions and avoid the SUBcc instruction entirely.
1208 // Otherwise this is just the same as case 5, so just fall through.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001209 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001210 InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
1211 assert(constNode &&
1212 constNode->getNodeType() ==InstrTreeNode::NTConstNode);
1213 ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
1214 bool isValidConst;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001215
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001216 if ((constVal->getType()->isIntegral()
1217 || constVal->getType()->isPointerType())
1218 && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
1219 && isValidConst)
1220 {
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001221 BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
1222
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001223 // That constant is a zero after all...
1224 // Use the left child of setCC as the first argument!
1225 mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
1226 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1227 subtreeRoot->leftChild()->leftChild()->getValue());
1228 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001229 brInst->getSuccessor(0));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001230
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001231 // delay slot
1232 mvec[numInstr++] = new MachineInstr(NOP);
1233
1234 // false branch
1235 int n = numInstr++;
1236 mvec[n] = new MachineInstr(BA);
1237 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1238 (Value*) NULL);
1239 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001240 brInst->getSuccessor(1));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001241
1242 // delay slot
1243 mvec[numInstr++] = new MachineInstr(NOP);
1244
1245 break;
1246 }
1247 // ELSE FALL THROUGH
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001248 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001249
1250 case 6: // stmt: BrCond(bool)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001251 { // bool => boolean was computed with some boolean operator
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001252 // (SetCC, Not, ...). We need to check whether the type was a FP,
1253 // signed int or unsigned int, and check the branching condition in
1254 // order to choose the branch to use.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001255 // If it is an integer CC, we also need to find the unique
1256 // TmpInstruction representing that CC.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001257 //
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001258 BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001259 bool isFPBranch;
1260 mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
1261 isFPBranch));
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001262
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001263 Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
1264 brInst->getParent()->getParent(),
1265 isFPBranch? Type::FloatTy : Type::IntTy);
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001266
1267 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, ccValue);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001268 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001269 brInst->getSuccessor(0));
1270
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001271 // delay slot
1272 mvec[numInstr++] = new MachineInstr(NOP);
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001273
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001274 // false branch
1275 int n = numInstr++;
1276 mvec[n] = new MachineInstr(BA);
1277 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1278 (Value*) NULL);
1279 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001280 brInst->getSuccessor(1));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001281
1282 // delay slot
1283 mvec[numInstr++] = new MachineInstr(NOP);
1284 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001285 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001286
1287 case 208: // stmt: BrCond(boolconst)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001288 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001289 // boolconst => boolean is a constant; use BA to first or second label
Chris Lattnercfe26c92001-10-01 18:26:53 +00001290 ConstPoolVal* constVal =
1291 cast<ConstPoolVal>(subtreeRoot->leftChild()->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001292 unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
1293
1294 mvec[0] = new MachineInstr(BA);
1295 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1296 (Value*) NULL);
1297 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1298 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
1299
1300 // delay slot
1301 mvec[numInstr++] = new MachineInstr(NOP);
1302 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001303 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001304
1305 case 8: // stmt: BrCond(boolreg)
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001306 { // boolreg => boolean is stored in an existing register.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001307 // Just use the branch-on-integer-register instruction!
1308 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001309 mvec[0] = new MachineInstr(BRNZ);
1310 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1311 subtreeRoot->leftChild()->getValue());
1312 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1313 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1314
1315 // delay slot
1316 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1317
1318 // false branch
1319 int n = numInstr++;
1320 mvec[n] = new MachineInstr(BA);
1321 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1322 (Value*) NULL);
1323 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1324 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1325
1326 // delay slot
1327 mvec[numInstr++] = new MachineInstr(NOP);
1328 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001329 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001330
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001331 case 9: // stmt: Switch(reg)
1332 assert(0 && "*** SWITCH instruction is not implemented yet.");
1333 numInstr = 0;
1334 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001335
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001336 case 10: // reg: VRegList(reg, reg)
1337 assert(0 && "VRegList should never be the topmost non-chain rule");
1338 break;
1339
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001340 case 21: // bool: Not(bool): Both these are implemented as:
1341 case 321: // reg: BNot(reg) : reg = reg XOR-NOT 0
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001342 mvec[0] = new MachineInstr(XNOR);
1343 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1344 subtreeRoot->leftChild()->getValue());
1345 mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1346 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1347 subtreeRoot->getValue());
1348 break;
1349
1350 case 322: // reg: ToBoolTy(bool):
1351 case 22: // reg: ToBoolTy(reg):
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001352 {
1353 const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
1354 assert(opType->isIntegral() || opType->isPointerType()
1355 || opType == Type::BoolTy);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001356 numInstr = 0;
1357 forwardOperandNum = 0;
1358 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001359 }
1360
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001361 case 23: // reg: ToUByteTy(reg)
1362 case 25: // reg: ToUShortTy(reg)
1363 case 27: // reg: ToUIntTy(reg)
1364 case 29: // reg: ToULongTy(reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001365 {
1366 const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001367 assert(opType->isIntegral() ||
1368 opType->isPointerType() ||
1369 opType == Type::BoolTy && "Cast is illegal for other types");
1370 numInstr = 0;
1371 forwardOperandNum = 0;
1372 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001373 }
1374
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001375 case 24: // reg: ToSByteTy(reg)
1376 case 26: // reg: ToShortTy(reg)
1377 case 28: // reg: ToIntTy(reg)
1378 case 30: // reg: ToLongTy(reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001379 {
1380 const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
1381 if (opType->isIntegral()
1382 || opType->isPointerType()
1383 || opType == Type::BoolTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001384 {
1385 numInstr = 0;
1386 forwardOperandNum = 0;
1387 }
1388 else
1389 {
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001390 // If the source operand is an FP type, the int result must be
1391 // copied from float to int register via memory!
1392 Instruction *dest = subtreeRoot->getInstruction();
1393 Value* leftVal = subtreeRoot->leftChild()->getValue();
1394 Value* destForCast;
1395 vector<MachineInstr*> minstrVec;
1396
1397 if (opType == Type::FloatTy || opType == Type::DoubleTy)
1398 {
1399 // Create a temporary to represent the INT register
1400 // into which the FP value will be copied via memory.
1401 // The type of this temporary will determine the FP
1402 // register used: single-prec for a 32-bit int or smaller,
1403 // double-prec for a 64-bit int.
1404 //
1405 const Type* destTypeToUse =
1406 (dest->getType() == Type::LongTy)? Type::DoubleTy
1407 : Type::FloatTy;
1408 destForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
1409 destTypeToUse, leftVal, NULL);
1410 dest->getMachineInstrVec().addTempValue(destForCast);
1411
1412 vector<TmpInstruction*> tempVec;
1413 target.getInstrInfo().CreateCodeToCopyFloatToInt(
1414 dest->getParent()->getParent(),
1415 (TmpInstruction*) destForCast, dest,
1416 minstrVec, tempVec, target);
1417
1418 for (unsigned i=0; i < tempVec.size(); ++i)
1419 dest->getMachineInstrVec().addTempValue(tempVec[i]);
1420 }
1421 else
1422 destForCast = leftVal;
1423
1424 MachineOpCode opCode=ChooseConvertToIntInstr(subtreeRoot, opType);
1425 assert(opCode != INVALID_OPCODE && "Expected to need conversion!");
1426
1427 mvec[0] = new MachineInstr(opCode);
1428 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1429 leftVal);
1430 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1431 destForCast);
1432
1433 assert(numInstr == 1 && "Should be initialized to 1 at the top");
1434 for (unsigned i=0; i < minstrVec.size(); ++i)
1435 mvec[numInstr++] = minstrVec[i];
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001436 }
1437 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001438 }
1439
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001440 case 31: // reg: ToFloatTy(reg):
1441 case 32: // reg: ToDoubleTy(reg):
1442 case 232: // reg: ToDoubleTy(Constant):
1443
1444 // If this instruction has a parent (a user) in the tree
1445 // and the user is translated as an FsMULd instruction,
1446 // then the cast is unnecessary. So check that first.
1447 // In the future, we'll want to do the same for the FdMULq instruction,
1448 // so do the check here instead of only for ToFloatTy(reg).
1449 //
1450 if (subtreeRoot->parent() != NULL &&
1451 ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
1452 {
1453 numInstr = 0;
1454 forwardOperandNum = 0;
1455 }
1456 else
1457 {
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001458 Value* leftVal = subtreeRoot->leftChild()->getValue();
1459 const Type* opType = leftVal->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001460 MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
1461 if (opCode == INVALID_OPCODE) // no conversion needed
1462 {
1463 numInstr = 0;
1464 forwardOperandNum = 0;
1465 }
1466 else
1467 {
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001468 // If the source operand is a non-FP type it must be
1469 // first copied from int to float register via memory!
1470 Instruction *dest = subtreeRoot->getInstruction();
1471 Value* srcForCast;
1472 int n = 0;
1473 if (opType != Type::FloatTy && opType != Type::DoubleTy)
1474 {
1475 // Create a temporary to represent the FP register
1476 // into which the integer will be copied via memory.
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001477 // The type of this temporary will determine the FP
1478 // register used: single-prec for a 32-bit int or smaller,
1479 // double-prec for a 64-bit int.
1480 //
1481 const Type* srcTypeToUse =
1482 (leftVal->getType() == Type::LongTy)? Type::DoubleTy
1483 : Type::FloatTy;
1484
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001485 srcForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001486 srcTypeToUse, dest, NULL);
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001487 dest->getMachineInstrVec().addTempValue(srcForCast);
1488
1489 vector<MachineInstr*> minstrVec;
1490 vector<TmpInstruction*> tempVec;
1491 target.getInstrInfo().CreateCodeToCopyIntToFloat(
1492 dest->getParent()->getParent(),
1493 leftVal, (TmpInstruction*) srcForCast,
1494 minstrVec, tempVec, target);
1495
1496 for (unsigned i=0; i < minstrVec.size(); ++i)
1497 mvec[n++] = minstrVec[i];
1498
1499 for (unsigned i=0; i < tempVec.size(); ++i)
1500 dest->getMachineInstrVec().addTempValue(tempVec[i]);
1501 }
1502 else
1503 srcForCast = leftVal;
1504
1505 MachineInstr* castI = new MachineInstr(opCode);
1506 castI->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1507 srcForCast);
1508 castI->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1509 dest);
1510 mvec[n++] = castI;
1511 numInstr = n;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001512 }
1513 }
1514 break;
1515
1516 case 19: // reg: ToArrayTy(reg):
1517 case 20: // reg: ToPointerTy(reg):
1518 numInstr = 0;
1519 forwardOperandNum = 0;
1520 break;
1521
1522 case 233: // reg: Add(reg, Constant)
1523 mvec[0] = CreateAddConstInstruction(subtreeRoot);
1524 if (mvec[0] != NULL)
1525 break;
1526 // ELSE FALL THROUGH
1527
1528 case 33: // reg: Add(reg, reg)
1529 mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
1530 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1531 break;
1532
1533 case 234: // reg: Sub(reg, Constant)
1534 mvec[0] = CreateSubConstInstruction(subtreeRoot);
1535 if (mvec[0] != NULL)
1536 break;
1537 // ELSE FALL THROUGH
1538
1539 case 34: // reg: Sub(reg, reg)
Vikram S. Adve510eec72001-11-04 21:59:14 +00001540 mvec[0] = new MachineInstr(ChooseSubInstructionByType(
1541 subtreeRoot->getInstruction()->getType()));
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001542 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1543 break;
1544
1545 case 135: // reg: Mul(todouble, todouble)
1546 checkCast = true;
1547 // FALL THROUGH
1548
1549 case 35: // reg: Mul(reg, reg)
1550 mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
1551 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1552 break;
1553
1554 case 335: // reg: Mul(todouble, todoubleConst)
1555 checkCast = true;
1556 // FALL THROUGH
1557
1558 case 235: // reg: Mul(reg, Constant)
1559 mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
1560 if (mvec[0] == NULL)
1561 {
1562 mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
1563 checkCast));
1564 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1565 }
1566 else
1567 if (mvec[1] != NULL)
1568 ++numInstr;
1569 break;
1570
1571 case 236: // reg: Div(reg, Constant)
1572 mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
1573 if (mvec[0] != NULL)
1574 {
1575 if (mvec[1] != NULL)
1576 ++numInstr;
1577 }
1578 else
1579 // ELSE FALL THROUGH
1580
1581 case 36: // reg: Div(reg, reg)
1582 mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
1583 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1584 break;
1585
1586 case 37: // reg: Rem(reg, reg)
1587 case 237: // reg: Rem(reg, Constant)
Vikram S. Adve510eec72001-11-04 21:59:14 +00001588 {
1589 Instruction* remInstr = subtreeRoot->getInstruction();
1590
1591 TmpInstruction* quot = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
1592 subtreeRoot->leftChild()->getValue(),
1593 subtreeRoot->rightChild()->getValue());
1594 TmpInstruction* prod = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
1595 quot,
1596 subtreeRoot->rightChild()->getValue());
1597 remInstr->getMachineInstrVec().addTempValue(quot);
1598 remInstr->getMachineInstrVec().addTempValue(prod);
1599
1600 mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
1601 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1602 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,quot);
1603
1604 int n = numInstr++;
1605 mvec[n] = new MachineInstr(ChooseMulInstructionByType(
1606 subtreeRoot->getInstruction()->getType()));
1607 mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,quot);
1608 mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1609 subtreeRoot->rightChild()->getValue());
1610 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,prod);
1611
1612 n = numInstr++;
1613 mvec[n] = new MachineInstr(ChooseSubInstructionByType(
1614 subtreeRoot->getInstruction()->getType()));
1615 Set3OperandsFromInstr(mvec[n], subtreeRoot, target);
1616 mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,prod);
1617
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001618 break;
Vikram S. Adve510eec72001-11-04 21:59:14 +00001619 }
1620
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001621 case 38: // bool: And(bool, bool)
1622 case 238: // bool: And(bool, boolconst)
1623 case 338: // reg : BAnd(reg, reg)
1624 case 538: // reg : BAnd(reg, Constant)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001625 mvec[0] = new MachineInstr(AND);
1626 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1627 break;
1628
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001629 case 138: // bool: And(bool, not)
1630 case 438: // bool: BAnd(bool, not)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001631 mvec[0] = new MachineInstr(ANDN);
1632 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1633 break;
1634
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001635 case 39: // bool: Or(bool, bool)
1636 case 239: // bool: Or(bool, boolconst)
1637 case 339: // reg : BOr(reg, reg)
1638 case 539: // reg : BOr(reg, Constant)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001639 mvec[0] = new MachineInstr(ORN);
1640 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1641 break;
1642
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001643 case 139: // bool: Or(bool, not)
1644 case 439: // bool: BOr(bool, not)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001645 mvec[0] = new MachineInstr(ORN);
1646 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1647 break;
1648
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001649 case 40: // bool: Xor(bool, bool)
1650 case 240: // bool: Xor(bool, boolconst)
1651 case 340: // reg : BXor(reg, reg)
1652 case 540: // reg : BXor(reg, Constant)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001653 mvec[0] = new MachineInstr(XOR);
1654 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1655 break;
1656
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001657 case 140: // bool: Xor(bool, not)
1658 case 440: // bool: BXor(bool, not)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001659 mvec[0] = new MachineInstr(XNOR);
1660 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1661 break;
1662
1663 case 41: // boolconst: SetCC(reg, Constant)
1664 // Check if this is an integer comparison, and
1665 // there is a parent, and the parent decided to use
1666 // a branch-on-integer-register instead of branch-on-condition-code.
1667 // If so, the SUBcc instruction is not required.
1668 // (However, we must still check for constants to be loaded from
1669 // the constant pool so that such a load can be associated with
1670 // this instruction.)
1671 //
1672 // Otherwise this is just the same as case 42, so just fall through.
1673 //
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001674 if ((subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
1675 subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
1676 && subtreeRoot->parent() != NULL)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001677 {
1678 InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
1679 assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
1680 const vector<MachineInstr*>&
1681 minstrVec = parent->getInstruction()->getMachineInstrVec();
1682 MachineOpCode parentOpCode;
1683 if (parent->getInstruction()->getOpcode() == Instruction::Br &&
1684 (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
1685 parentOpCode <= BRGEZ)
1686 {
1687 numInstr = 0; // don't forward the operand!
1688 break;
1689 }
1690 }
1691 // ELSE FALL THROUGH
1692
1693 case 42: // bool: SetCC(reg, reg):
1694 {
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001695 // This generates a SUBCC instruction, putting the difference in
1696 // a result register, and setting a condition code.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001697 //
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001698 // If the boolean result of the SetCC is used by anything other
1699 // than a single branch instruction, the boolean must be
1700 // computed and stored in the result register. Otherwise, discard
1701 // the difference (by using %g0) and keep only the condition code.
1702 //
1703 // To compute the boolean result in a register we use a conditional
1704 // move, unless the result of the SUBCC instruction can be used as
1705 // the bool! This assumes that zero is FALSE and any non-zero
1706 // integer is TRUE.
1707 //
1708 InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
1709 Instruction* setCCInstr = subtreeRoot->getInstruction();
1710 bool keepBoolVal = (parentNode == NULL ||
1711 parentNode->getInstruction()->getOpcode()
1712 != Instruction::Br);
1713 bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001714 bool keepSubVal = keepBoolVal && subValIsBoolVal;
1715 bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
1716
1717 bool mustClearReg;
1718 int valueToMove;
Chris Lattner8e5c0b42001-11-07 14:01:59 +00001719 MachineOpCode movOpCode = 0;
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001720
1721 // Mark the 4th operand as being a CC register, and as a def
1722 // A TmpInstruction is created to represent the CC "result".
1723 // Unlike other instances of TmpInstruction, this one is used
1724 // by machine code of multiple LLVM instructions, viz.,
1725 // the SetCC and the branch. Make sure to get the same one!
1726 // Note that we do this even for FP CC registers even though they
1727 // are explicit operands, because the type of the operand
1728 // needs to be a floating point condition code, not an integer
1729 // condition code. Think of this as casting the bool result to
1730 // a FP condition code register.
1731 //
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001732 Value* leftVal = subtreeRoot->leftChild()->getValue();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001733 bool isFPCompare = (leftVal->getType() == Type::FloatTy ||
1734 leftVal->getType() == Type::DoubleTy);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001735
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001736 TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
1737 setCCInstr->getParent()->getParent(),
1738 isFPCompare? Type::FloatTy : Type::IntTy);
1739 setCCInstr->getMachineInstrVec().addTempValue(tmpForCC);
1740
1741 if (! isFPCompare)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001742 {
1743 // Integer condition: dest. should be %g0 or an integer register.
1744 // If result must be saved but condition is not SetEQ then we need
1745 // a separate instruction to compute the bool result, so discard
1746 // result of SUBcc instruction anyway.
1747 //
1748 mvec[0] = new MachineInstr(SUBcc);
1749 Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
1750
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001751 mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001752 tmpForCC, /*def*/true);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001753
1754 if (computeBoolVal)
1755 { // recompute bool using the integer condition codes
1756 movOpCode =
1757 ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
1758 }
1759 }
1760 else
1761 {
1762 // FP condition: dest of FCMP should be some FCCn register
1763 mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001764 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001765 tmpForCC);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001766 mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
1767 subtreeRoot->leftChild()->getValue());
1768 mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
1769 subtreeRoot->rightChild()->getValue());
1770
1771 if (computeBoolVal)
1772 {// recompute bool using the FP condition codes
1773 mustClearReg = true;
1774 valueToMove = 1;
1775 movOpCode = ChooseMovFpccInstruction(subtreeRoot);
1776 }
1777 }
1778
1779 if (computeBoolVal)
1780 {
1781 if (mustClearReg)
1782 {// Unconditionally set register to 0
1783 int n = numInstr++;
1784 mvec[n] = new MachineInstr(SETHI);
1785 mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
1786 s0);
1787 mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001788 setCCInstr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001789 }
1790
1791 // Now conditionally move `valueToMove' (0 or 1) into the register
1792 int n = numInstr++;
1793 mvec[n] = new MachineInstr(movOpCode);
1794 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001795 tmpForCC);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001796 mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
1797 valueToMove);
1798 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001799 setCCInstr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001800 }
1801 break;
1802 }
1803
1804 case 43: // boolreg: VReg
1805 case 44: // boolreg: Constant
1806 numInstr = 0;
1807 break;
1808
1809 case 51: // reg: Load(reg)
1810 case 52: // reg: Load(ptrreg)
1811 case 53: // reg: LoadIdx(reg,reg)
1812 case 54: // reg: LoadIdx(ptrreg,reg)
1813 mvec[0] = new MachineInstr(ChooseLoadInstruction(
1814 subtreeRoot->getValue()->getType()));
1815 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1816 break;
1817
1818 case 55: // reg: GetElemPtr(reg)
1819 case 56: // reg: GetElemPtrIdx(reg,reg)
1820 if (subtreeRoot->parent() != NULL)
1821 {
Vikram S. Adve671b16d2001-11-10 01:05:26 +00001822 // If the parent was a memory operation and not an array access,
1823 // the parent will fold this instruction in so generate nothing.
1824 //
1825 Instruction* parent =
1826 cast<Instruction>(subtreeRoot->parent()->getValue());
1827 if (parent->getOpcode() == Instruction::Load ||
1828 parent->getOpcode() == Instruction::Store ||
1829 parent->getOpcode() == Instruction::GetElementPtr)
1830 {
1831 // Check if the parent is an array access,
1832 // If so, we still need to generate this instruction.
1833 GetElementPtrInst* getElemInst =
1834 cast<GetElementPtrInst>(subtreeRoot->getInstruction());
1835 const PointerType* ptrType =
Chris Lattner65ea1712001-11-14 11:27:58 +00001836 cast<PointerType>(getElemInst->getPointerOperand()->getType());
Vikram S. Adve671b16d2001-11-10 01:05:26 +00001837 if (! ptrType->getValueType()->isArrayType())
1838 {// we don't need a separate instr
1839 numInstr = 0; // don't forward operand!
1840 break;
1841 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001842 }
1843 }
1844 // else in all other cases we need to a separate ADD instruction
1845 mvec[0] = new MachineInstr(ADD);
1846 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1847 break;
1848
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001849 case 57: // reg: Alloca: Implement as 1 instruction:
1850 { // add %fp, offsetFromFP -> result
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001851 Instruction* instr = subtreeRoot->getInstruction();
1852 const PointerType* instrType = (const PointerType*) instr->getType();
1853 assert(instrType->isPointerType());
1854 int tsize = (int)
1855 target.findOptimalStorageSize(instrType->getValueType());
1856 assert(tsize != 0 && "Just to check when this can happen");
1857
Vikram S. Advefb361122001-10-22 13:36:31 +00001858 Method* method = instr->getParent()->getParent();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001859 MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
Vikram S. Adve345bcc82001-11-15 15:22:39 +00001860 int offsetFromFP = mcInfo.allocateLocalVar(target, instr, (unsigned int) tsize);
Vikram S. Advefb361122001-10-22 13:36:31 +00001861
1862 // Create a temporary Value to hold the constant offset.
1863 // This is needed because it may not fit in the immediate field.
1864 ConstPoolSInt* offsetVal=ConstPoolSInt::get(Type::IntTy, offsetFromFP);
1865
1866 // Instruction 1: add %fp, offsetFromFP -> result
1867 mvec[0] = new MachineInstr(ADD);
1868 mvec[0]->SetMachineOperand(0, target.getRegInfo().getFramePointer());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001869 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Advefb361122001-10-22 13:36:31 +00001870 offsetVal);
1871 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001872 instr);
1873 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001874 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001875
1876 case 58: // reg: Alloca(reg): Implement as 3 instructions:
1877 // mul num, typeSz -> tmp
1878 // sub %sp, tmp -> %sp
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001879 { // add %sp, frameSizeBelowDynamicArea -> result
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001880 Instruction* instr = subtreeRoot->getInstruction();
1881 const PointerType* instrType = (const PointerType*) instr->getType();
1882 assert(instrType->isPointerType() &&
1883 instrType->getValueType()->isArrayType());
1884 const Type* eltType =
1885 ((ArrayType*) instrType->getValueType())->getElementType();
1886 int tsize = (int) target.findOptimalStorageSize(eltType);
Vikram S. Advefb361122001-10-22 13:36:31 +00001887
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001888 assert(tsize != 0 && "Just to check when this can happen");
Vikram S. Advefb361122001-10-22 13:36:31 +00001889
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001890 // Create a temporary Value to hold the constant type-size
Vikram S. Advefb361122001-10-22 13:36:31 +00001891 ConstPoolSInt* tsizeVal = ConstPoolSInt::get(Type::IntTy, tsize);
1892
1893 // Create a temporary Value to hold the constant offset from SP
1894 Method* method = instr->getParent()->getParent();
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001895 bool ignore; // we don't need this
1896 ConstPoolSInt* dynamicAreaOffset = ConstPoolSInt::get(Type::IntTy,
1897 target.getFrameInfo().getDynamicAreaOffset(MachineCodeForMethod::get(method),
1898 ignore));
Vikram S. Advefb361122001-10-22 13:36:31 +00001899
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001900 // Create a temporary value to hold `tmp'
Vikram S. Adve7fe27872001-10-18 00:26:20 +00001901 Instruction* tmpInstr = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001902 subtreeRoot->leftChild()->getValue(),
1903 NULL /*could insert tsize here*/);
1904 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
1905
1906 // Instruction 1: mul numElements, typeSize -> tmp
1907 mvec[0] = new MachineInstr(MULX);
1908 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Advefb361122001-10-22 13:36:31 +00001909 subtreeRoot->leftChild()->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001910 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Advefb361122001-10-22 13:36:31 +00001911 tsizeVal);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001912 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1913 tmpInstr);
Vikram S. Advefb361122001-10-22 13:36:31 +00001914
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001915 // Instruction 2: sub %sp, tmp -> %sp
1916 numInstr++;
1917 mvec[1] = new MachineInstr(SUB);
Vikram S. Advefb361122001-10-22 13:36:31 +00001918 mvec[1]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001919 mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1920 tmpInstr);
Vikram S. Advefb361122001-10-22 13:36:31 +00001921 mvec[1]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001922
Vikram S. Advefb361122001-10-22 13:36:31 +00001923 // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001924 numInstr++;
1925 mvec[2] = new MachineInstr(ADD);
Vikram S. Advefb361122001-10-22 13:36:31 +00001926 mvec[2]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
1927 mvec[2]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adveff5a09e2001-11-08 05:04:09 +00001928 dynamicAreaOffset);
Vikram S. Advefb361122001-10-22 13:36:31 +00001929 mvec[2]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,instr);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001930 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001931 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001932
1933 case 61: // reg: Call
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001934 { // Generate a call-indirect (i.e., jmpl) for now to expose
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001935 // the potential need for registers. If an absolute address
1936 // is available, replace this with a CALL instruction.
1937 // Mark both the indirection register and the return-address
1938 // register as hidden virtual registers.
Vikram S. Advea995e602001-10-11 04:23:19 +00001939 // Also, mark the operands of the Call and return value (if
1940 // any) as implicit operands of the CALL machine instruction.
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001941 //
Chris Lattnerb00c5822001-10-02 03:41:24 +00001942 CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
Chris Lattner749655f2001-10-13 06:54:30 +00001943 Value *callee = callInstr->getCalledValue();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001944
Vikram S. Adve7fe27872001-10-18 00:26:20 +00001945 Instruction* retAddrReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001946 callInstr, NULL);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001947
Vikram S. Advea995e602001-10-11 04:23:19 +00001948 // Note temporary values in the machineInstrVec for the VM instr.
Vikram S. Adve8557b222001-10-10 20:56:33 +00001949 //
1950 // WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
1951 // The result value must go in slot N. This is assumed
1952 // in register allocation.
1953 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001954 callInstr->getMachineInstrVec().addTempValue(retAddrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001955
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001956
1957 // Generate the machine instruction and its operands.
1958 // Use CALL for direct function calls; this optimistically assumes
1959 // the PC-relative address fits in the CALL address field (22 bits).
1960 // Use JMPL for indirect calls.
1961 //
1962 if (callee->getValueType() == Value::MethodVal)
1963 { // direct function call
1964 mvec[0] = new MachineInstr(CALL);
1965 mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
1966 callee);
1967 }
1968 else
1969 { // indirect function call
Vikram S. Advefb361122001-10-22 13:36:31 +00001970 mvec[0] = new MachineInstr(JMPLCALL);
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001971 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1972 callee);
1973 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
1974 (int64_t) 0);
1975 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1976 retAddrReg);
1977 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001978
Vikram S. Advea995e602001-10-11 04:23:19 +00001979 // Add the call operands and return value as implicit refs
1980 for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
1981 if (callInstr->getOperand(i) != callee)
1982 mvec[0]->addImplicitRef(callInstr->getOperand(i));
1983
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001984 if (callInstr->getType() != Type::VoidTy)
Vikram S. Advea995e602001-10-11 04:23:19 +00001985 mvec[0]->addImplicitRef(callInstr, /*isDef*/ true);
1986
Vikram S. Adveea21a6c2001-10-20 20:57:06 +00001987 // For the CALL instruction, the ret. addr. reg. is also implicit
1988 if (callee->getValueType() == Value::MethodVal)
1989 mvec[0]->addImplicitRef(retAddrReg, /*isDef*/ true);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001990
1991 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1992 break;
Vikram S. Adveb7f06f42001-11-04 19:34:49 +00001993 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001994
1995 case 62: // reg: Shl(reg, reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00001996 { const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001997 assert(opType->isIntegral()
1998 || opType == Type::BoolTy
1999 || opType->isPointerType()&& "Shl unsupported for other types");
2000 mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
2001 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2002 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002003 }
2004
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002005 case 63: // reg: Shr(reg, reg)
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002006 { const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002007 assert(opType->isIntegral()
2008 || opType == Type::BoolTy
2009 || opType->isPointerType() &&"Shr unsupported for other types");
2010 mvec[0] = new MachineInstr((opType->isSigned()
2011 ? ((opType == Type::LongTy)? SRAX : SRA)
2012 : ((opType == Type::LongTy)? SRLX : SRL)));
2013 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2014 break;
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002015 }
2016
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002017 case 64: // reg: Phi(reg,reg)
Vikram S. Adve3438b212001-11-12 18:54:11 +00002018 numInstr = 0; // don't forward the value
2019 break;
2020#undef NEED_PHI_MACHINE_INSTRS
2021#ifdef NEED_PHI_MACHINE_INSTRS
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002022 { // This instruction has variable #operands, so resultPos is 0.
2023 Instruction* phi = subtreeRoot->getInstruction();
2024 mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
2025 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2026 subtreeRoot->getValue());
2027 for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
2028 mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
2029 phi->getOperand(i));
2030 break;
2031 }
Vikram S. Adve3438b212001-11-12 18:54:11 +00002032#endif NEED_PHI_MACHINE_INSTRS
Vikram S. Adve6ad7c552001-11-09 02:18:16 +00002033
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002034 case 71: // reg: VReg
2035 case 72: // reg: Constant
2036 numInstr = 0; // don't forward the value
2037 break;
2038
2039 default:
2040 assert(0 && "Unrecognized BURG rule");
2041 numInstr = 0;
2042 break;
2043 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002044 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002045
2046 if (forwardOperandNum >= 0)
2047 { // We did not generate a machine instruction but need to use operand.
2048 // If user is in the same tree, replace Value in its machine operand.
2049 // If not, insert a copy instruction which should get coalesced away
2050 // by register allocation.
2051 if (subtreeRoot->parent() != NULL)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002052 ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
Chris Lattner20b1ea02001-09-14 03:47:57 +00002053 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002054 {
Vikram S. Adve7fe27872001-10-18 00:26:20 +00002055 vector<MachineInstr*> minstrVec;
Ruchira Sasanka67a463a2001-11-12 14:45:33 +00002056 target.getInstrInfo().CreateCopyInstructionsByType(target,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002057 subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
Vikram S. Adve7fe27872001-10-18 00:26:20 +00002058 subtreeRoot->getInstruction(), minstrVec);
2059 assert(minstrVec.size() > 0);
2060 for (unsigned i=0; i < minstrVec.size(); ++i)
2061 mvec[numInstr++] = minstrVec[i];
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002062 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002063 }
2064
Chris Lattner20b1ea02001-09-14 03:47:57 +00002065 return numInstr;
2066}
2067
2068