blob: 5977eea63a0fcb72dcf05a16ba48f671f6994f53 [file] [log] [blame]
Owen Andersond8c87882011-02-18 21:51:29 +00001//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
Peter Collingbourne7c788882011-10-01 16:41:13 +000019#include "llvm/TableGen/Record.h"
James Molloy3015dfb2012-02-09 10:56:31 +000020#include "llvm/ADT/APInt.h"
Owen Andersond8c87882011-02-18 21:51:29 +000021#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24
25#include <vector>
26#include <map>
27#include <string>
28
29using namespace llvm;
30
31// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
32// for a bit value.
33//
34// BIT_UNFILTERED is used as the init value for a filter position. It is used
35// only for filter processings.
36typedef enum {
37 BIT_TRUE, // '1'
38 BIT_FALSE, // '0'
39 BIT_UNSET, // '?'
40 BIT_UNFILTERED // unfiltered
41} bit_value_t;
42
43static bool ValueSet(bit_value_t V) {
44 return (V == BIT_TRUE || V == BIT_FALSE);
45}
46static bool ValueNotSet(bit_value_t V) {
47 return (V == BIT_UNSET);
48}
49static int Value(bit_value_t V) {
50 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
51}
David Greene05bce0b2011-07-29 22:43:06 +000052static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
53 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
Owen Andersond8c87882011-02-18 21:51:29 +000054 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
55
56 // The bit is uninitialized.
57 return BIT_UNSET;
58}
59// Prints the bit value for each position.
David Greene05bce0b2011-07-29 22:43:06 +000060static void dumpBits(raw_ostream &o, BitsInit &bits) {
Owen Andersond8c87882011-02-18 21:51:29 +000061 unsigned index;
62
63 for (index = bits.getNumBits(); index > 0; index--) {
64 switch (bitFromBits(bits, index - 1)) {
65 case BIT_TRUE:
66 o << "1";
67 break;
68 case BIT_FALSE:
69 o << "0";
70 break;
71 case BIT_UNSET:
72 o << "_";
73 break;
74 default:
Craig Topper655b8de2012-02-05 07:21:30 +000075 llvm_unreachable("unexpected return value from bitFromBits");
Owen Andersond8c87882011-02-18 21:51:29 +000076 }
77 }
78}
79
David Greene05bce0b2011-07-29 22:43:06 +000080static BitsInit &getBitsField(const Record &def, const char *str) {
81 BitsInit *bits = def.getValueAsBitsInit(str);
Owen Andersond8c87882011-02-18 21:51:29 +000082 return *bits;
83}
84
85// Forward declaration.
86class FilterChooser;
87
Owen Andersond8c87882011-02-18 21:51:29 +000088// Representation of the instruction to work on.
Owen Andersonf1a00902011-07-19 21:06:00 +000089typedef std::vector<bit_value_t> insn_t;
Owen Andersond8c87882011-02-18 21:51:29 +000090
91/// Filter - Filter works with FilterChooser to produce the decoding tree for
92/// the ISA.
93///
94/// It is useful to think of a Filter as governing the switch stmts of the
95/// decoding tree in a certain level. Each case stmt delegates to an inferior
96/// FilterChooser to decide what further decoding logic to employ, or in another
97/// words, what other remaining bits to look at. The FilterChooser eventually
98/// chooses a best Filter to do its job.
99///
100/// This recursive scheme ends when the number of Opcodes assigned to the
101/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
102/// the Filter/FilterChooser combo does not know how to distinguish among the
103/// Opcodes assigned.
104///
105/// An example of a conflict is
106///
107/// Conflict:
108/// 111101000.00........00010000....
109/// 111101000.00........0001........
110/// 1111010...00........0001........
111/// 1111010...00....................
112/// 1111010.........................
113/// 1111............................
114/// ................................
115/// VST4q8a 111101000_00________00010000____
116/// VST4q8b 111101000_00________00010000____
117///
118/// The Debug output shows the path that the decoding tree follows to reach the
119/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
120/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
121///
122/// The encoding info in the .td files does not specify this meta information,
123/// which could have been used by the decoder to resolve the conflict. The
124/// decoder could try to decode the even/odd register numbering and assign to
125/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
126/// version and return the Opcode since the two have the same Asm format string.
127class Filter {
128protected:
129 FilterChooser *Owner; // points to the FilterChooser who owns this filter
130 unsigned StartBit; // the starting bit position
131 unsigned NumBits; // number of bits to filter
132 bool Mixed; // a mixed region contains both set and unset bits
133
134 // Map of well-known segment value to the set of uid's with that value.
135 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
136
137 // Set of uid's with non-constant segment values.
138 std::vector<unsigned> VariableInstructions;
139
140 // Map of well-known segment value to its delegate.
141 std::map<unsigned, FilterChooser*> FilterChooserMap;
142
143 // Number of instructions which fall under FilteredInstructions category.
144 unsigned NumFiltered;
145
146 // Keeps track of the last opcode in the filtered bucket.
147 unsigned LastOpcFiltered;
148
Owen Andersond8c87882011-02-18 21:51:29 +0000149public:
150 unsigned getNumFiltered() { return NumFiltered; }
Owen Andersond8c87882011-02-18 21:51:29 +0000151 unsigned getSingletonOpc() {
152 assert(NumFiltered == 1);
153 return LastOpcFiltered;
154 }
155 // Return the filter chooser for the group of instructions without constant
156 // segment values.
157 FilterChooser &getVariableFC() {
158 assert(NumFiltered == 1);
159 assert(FilterChooserMap.size() == 1);
160 return *(FilterChooserMap.find((unsigned)-1)->second);
161 }
162
163 Filter(const Filter &f);
164 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
165
166 ~Filter();
167
168 // Divides the decoding task into sub tasks and delegates them to the
169 // inferior FilterChooser's.
170 //
171 // A special case arises when there's only one entry in the filtered
172 // instructions. In order to unambiguously decode the singleton, we need to
173 // match the remaining undecoded encoding bits against the singleton.
174 void recurse();
175
176 // Emit code to decode instructions given a segment or segments of bits.
177 void emit(raw_ostream &o, unsigned &Indentation);
178
179 // Returns the number of fanout produced by the filter. More fanout implies
180 // the filter distinguishes more categories of instructions.
181 unsigned usefulness() const;
182}; // End of class Filter
183
184// These are states of our finite state machines used in FilterChooser's
185// filterProcessor() which produces the filter candidates to use.
186typedef enum {
187 ATTR_NONE,
188 ATTR_FILTERED,
189 ATTR_ALL_SET,
190 ATTR_ALL_UNSET,
191 ATTR_MIXED
192} bitAttr_t;
193
194/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
195/// in order to perform the decoding of instructions at the current level.
196///
197/// Decoding proceeds from the top down. Based on the well-known encoding bits
198/// of instructions available, FilterChooser builds up the possible Filters that
199/// can further the task of decoding by distinguishing among the remaining
200/// candidate instructions.
201///
202/// Once a filter has been chosen, it is called upon to divide the decoding task
203/// into sub-tasks and delegates them to its inferior FilterChoosers for further
204/// processings.
205///
206/// It is useful to think of a Filter as governing the switch stmts of the
207/// decoding tree. And each case is delegated to an inferior FilterChooser to
208/// decide what further remaining bits to look at.
209class FilterChooser {
210protected:
211 friend class Filter;
212
213 // Vector of codegen instructions to choose our filter.
214 const std::vector<const CodeGenInstruction*> &AllInstructions;
215
216 // Vector of uid's for this filter chooser to work on.
217 const std::vector<unsigned> Opcodes;
218
219 // Lookup table for the operand decoding of instructions.
220 std::map<unsigned, std::vector<OperandInfo> > &Operands;
221
222 // Vector of candidate filters.
223 std::vector<Filter> Filters;
224
225 // Array of bit values passed down from our parent.
226 // Set to all BIT_UNFILTERED's for Parent == NULL.
Owen Andersonf1a00902011-07-19 21:06:00 +0000227 std::vector<bit_value_t> FilterBitValues;
Owen Andersond8c87882011-02-18 21:51:29 +0000228
229 // Links to the FilterChooser above us in the decoding tree.
230 FilterChooser *Parent;
231
232 // Index of the best filter from Filters.
233 int BestIndex;
234
Owen Andersonf1a00902011-07-19 21:06:00 +0000235 // Width of instructions
236 unsigned BitWidth;
237
Owen Anderson83e3f672011-08-17 17:44:15 +0000238 // Parent emitter
239 const FixedLenDecoderEmitter *Emitter;
240
Owen Andersond8c87882011-02-18 21:51:29 +0000241public:
242 FilterChooser(const FilterChooser &FC) :
243 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Owen Andersonf1a00902011-07-19 21:06:00 +0000244 Operands(FC.Operands), Filters(FC.Filters),
245 FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
Owen Anderson83e3f672011-08-17 17:44:15 +0000246 BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
247 Emitter(FC.Emitter) { }
Owen Andersond8c87882011-02-18 21:51:29 +0000248
249 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
250 const std::vector<unsigned> &IDs,
Owen Andersonf1a00902011-07-19 21:06:00 +0000251 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Anderson83e3f672011-08-17 17:44:15 +0000252 unsigned BW,
253 const FixedLenDecoderEmitter *E) :
Owen Andersond8c87882011-02-18 21:51:29 +0000254 AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
Owen Anderson83e3f672011-08-17 17:44:15 +0000255 Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000256 for (unsigned i = 0; i < BitWidth; ++i)
257 FilterBitValues.push_back(BIT_UNFILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +0000258
259 doFilter();
260 }
261
262 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
263 const std::vector<unsigned> &IDs,
264 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Andersonf1a00902011-07-19 21:06:00 +0000265 std::vector<bit_value_t> &ParentFilterBitValues,
Owen Andersond8c87882011-02-18 21:51:29 +0000266 FilterChooser &parent) :
267 AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
Owen Andersonf1a00902011-07-19 21:06:00 +0000268 Filters(), FilterBitValues(ParentFilterBitValues),
Owen Anderson83e3f672011-08-17 17:44:15 +0000269 Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
270 Emitter(parent.Emitter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000271 doFilter();
272 }
273
274 // The top level filter chooser has NULL as its parent.
275 bool isTopLevel() { return Parent == NULL; }
276
277 // Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000278 void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
Owen Andersond8c87882011-02-18 21:51:29 +0000279
280protected:
281 // Populates the insn given the uid.
282 void insnWithID(insn_t &Insn, unsigned Opcode) const {
David Greene05bce0b2011-07-29 22:43:06 +0000283 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
Owen Andersond8c87882011-02-18 21:51:29 +0000284
James Molloy3015dfb2012-02-09 10:56:31 +0000285 // We may have a SoftFail bitmask, which specifies a mask where an encoding
286 // may differ from the value in "Inst" and yet still be valid, but the
287 // disassembler should return SoftFail instead of Success.
288 //
289 // This is used for marking UNPREDICTABLE instructions in the ARM world.
Jim Grosbach9c826d22012-02-29 22:07:56 +0000290 BitsInit *SFBits =
291 AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
James Molloy3015dfb2012-02-09 10:56:31 +0000292
293 for (unsigned i = 0; i < BitWidth; ++i) {
294 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
295 Insn.push_back(BIT_UNSET);
296 else
297 Insn.push_back(bitFromBits(Bits, i));
298 }
Owen Andersond8c87882011-02-18 21:51:29 +0000299 }
300
301 // Returns the record name.
302 const std::string &nameWithID(unsigned Opcode) const {
303 return AllInstructions[Opcode]->TheDef->getName();
304 }
305
306 // Populates the field of the insn given the start position and the number of
307 // consecutive bits to scan for.
308 //
309 // Returns false if there exists any uninitialized bit value in the range.
310 // Returns true, otherwise.
311 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
312 unsigned NumBits) const;
313
314 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
315 /// filter array as a series of chars.
Owen Andersonf1a00902011-07-19 21:06:00 +0000316 void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
Owen Andersond8c87882011-02-18 21:51:29 +0000317
318 /// dumpStack - dumpStack traverses the filter chooser chain and calls
319 /// dumpFilterArray on each filter chooser up to the top level one.
320 void dumpStack(raw_ostream &o, const char *prefix);
321
322 Filter &bestFilter() {
323 assert(BestIndex != -1 && "BestIndex not set");
324 return Filters[BestIndex];
325 }
326
327 // Called from Filter::recurse() when singleton exists. For debug purpose.
328 void SingletonExists(unsigned Opc);
329
330 bool PositionFiltered(unsigned i) {
331 return ValueSet(FilterBitValues[i]);
332 }
333
334 // Calculates the island(s) needed to decode the instruction.
335 // This returns a lit of undecoded bits of an instructions, for example,
336 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
337 // decoded bits in order to verify that the instruction matches the Opcode.
338 unsigned getIslands(std::vector<unsigned> &StartBits,
339 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
340 insn_t &Insn);
341
James Molloya5d58562011-09-07 19:42:28 +0000342 // Emits code to check the Predicates member of an instruction are true.
343 // Returns true if predicate matches were emitted, false otherwise.
344 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc);
345
James Molloy3015dfb2012-02-09 10:56:31 +0000346 void emitSoftFailCheck(raw_ostream &o, unsigned Indentation, unsigned Opc);
347
Owen Andersond8c87882011-02-18 21:51:29 +0000348 // Emits code to decode the singleton. Return true if we have matched all the
349 // well-known bits.
350 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
351
352 // Emits code to decode the singleton, and then to decode the rest.
353 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
354
Owen Andersond1e38df2011-07-28 21:54:31 +0000355 void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
356 OperandInfo &OpInfo);
357
Owen Andersond8c87882011-02-18 21:51:29 +0000358 // Assign a single filter and run with it.
359 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
360 bool mixed);
361
362 // reportRegion is a helper function for filterProcessor to mark a region as
363 // eligible for use as a filter region.
364 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
365 bool AllowMixed);
366
367 // FilterProcessor scans the well-known encoding bits of the instructions and
368 // builds up a list of candidate filters. It chooses the best filter and
369 // recursively descends down the decoding tree.
370 bool filterProcessor(bool AllowMixed, bool Greedy = true);
371
372 // Decides on the best configuration of filter(s) to use in order to decode
373 // the instructions. A conflict of instructions may occur, in which case we
374 // dump the conflict set to the standard error.
375 void doFilter();
376
377 // Emits code to decode our share of instructions. Returns true if the
378 // emitted code causes a return, which occurs if we know how to decode
379 // the instruction at this level or the instruction is not decodeable.
380 bool emit(raw_ostream &o, unsigned &Indentation);
381};
382
383///////////////////////////
384// //
Craig Topper797ba552012-03-16 00:56:01 +0000385// Filter Implementation //
Owen Andersond8c87882011-02-18 21:51:29 +0000386// //
387///////////////////////////
388
389Filter::Filter(const Filter &f) :
390 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
391 FilteredInstructions(f.FilteredInstructions),
392 VariableInstructions(f.VariableInstructions),
393 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
Craig Topper797ba552012-03-16 00:56:01 +0000394 LastOpcFiltered(f.LastOpcFiltered) {
Owen Andersond8c87882011-02-18 21:51:29 +0000395}
396
397Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
398 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
399 Mixed(mixed) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000400 assert(StartBit + NumBits - 1 < Owner->BitWidth);
Owen Andersond8c87882011-02-18 21:51:29 +0000401
402 NumFiltered = 0;
403 LastOpcFiltered = 0;
Owen Andersond8c87882011-02-18 21:51:29 +0000404
405 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
406 insn_t Insn;
407
408 // Populates the insn given the uid.
409 Owner->insnWithID(Insn, Owner->Opcodes[i]);
410
411 uint64_t Field;
412 // Scans the segment for possibly well-specified encoding bits.
413 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
414
415 if (ok) {
416 // The encoding bits are well-known. Lets add the uid of the
417 // instruction into the bucket keyed off the constant field value.
418 LastOpcFiltered = Owner->Opcodes[i];
419 FilteredInstructions[Field].push_back(LastOpcFiltered);
420 ++NumFiltered;
421 } else {
Craig Topper797ba552012-03-16 00:56:01 +0000422 // Some of the encoding bit(s) are unspecified. This contributes to
Owen Andersond8c87882011-02-18 21:51:29 +0000423 // one additional member of "Variable" instructions.
424 VariableInstructions.push_back(Owner->Opcodes[i]);
Owen Andersond8c87882011-02-18 21:51:29 +0000425 }
426 }
427
428 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
429 && "Filter returns no instruction categories");
430}
431
432Filter::~Filter() {
433 std::map<unsigned, FilterChooser*>::iterator filterIterator;
434 for (filterIterator = FilterChooserMap.begin();
435 filterIterator != FilterChooserMap.end();
436 filterIterator++) {
437 delete filterIterator->second;
438 }
439}
440
441// Divides the decoding task into sub tasks and delegates them to the
442// inferior FilterChooser's.
443//
444// A special case arises when there's only one entry in the filtered
445// instructions. In order to unambiguously decode the singleton, we need to
446// match the remaining undecoded encoding bits against the singleton.
447void Filter::recurse() {
448 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
449
Owen Andersond8c87882011-02-18 21:51:29 +0000450 // Starts by inheriting our parent filter chooser's filter bit values.
Owen Andersonf1a00902011-07-19 21:06:00 +0000451 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
Owen Andersond8c87882011-02-18 21:51:29 +0000452
453 unsigned bitIndex;
454
455 if (VariableInstructions.size()) {
456 // Conservatively marks each segment position as BIT_UNSET.
457 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
458 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
459
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000460 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000461 // group of instructions whose segment values are variable.
462 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
463 (unsigned)-1,
464 new FilterChooser(Owner->AllInstructions,
465 VariableInstructions,
466 Owner->Operands,
467 BitValueArray,
468 *Owner)
469 ));
470 }
471
472 // No need to recurse for a singleton filtered instruction.
473 // See also Filter::emit().
474 if (getNumFiltered() == 1) {
475 //Owner->SingletonExists(LastOpcFiltered);
476 assert(FilterChooserMap.size() == 1);
477 return;
478 }
479
480 // Otherwise, create sub choosers.
481 for (mapIterator = FilteredInstructions.begin();
482 mapIterator != FilteredInstructions.end();
483 mapIterator++) {
484
485 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
486 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
487 if (mapIterator->first & (1ULL << bitIndex))
488 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
489 else
490 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
491 }
492
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000493 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000494 // category of instructions.
495 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
496 mapIterator->first,
497 new FilterChooser(Owner->AllInstructions,
498 mapIterator->second,
499 Owner->Operands,
500 BitValueArray,
501 *Owner)
502 ));
503 }
504}
505
506// Emit code to decode instructions given a segment or segments of bits.
507void Filter::emit(raw_ostream &o, unsigned &Indentation) {
508 o.indent(Indentation) << "// Check Inst{";
509
510 if (NumBits > 1)
511 o << (StartBit + NumBits - 1) << '-';
512
513 o << StartBit << "} ...\n";
514
Owen Andersonf1a00902011-07-19 21:06:00 +0000515 o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
516 << "(insn, " << StartBit << ", "
517 << NumBits << ")) {\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000518
519 std::map<unsigned, FilterChooser*>::iterator filterIterator;
520
521 bool DefaultCase = false;
522 for (filterIterator = FilterChooserMap.begin();
523 filterIterator != FilterChooserMap.end();
524 filterIterator++) {
525
526 // Field value -1 implies a non-empty set of variable instructions.
527 // See also recurse().
528 if (filterIterator->first == (unsigned)-1) {
529 DefaultCase = true;
530
531 o.indent(Indentation) << "default:\n";
532 o.indent(Indentation) << " break; // fallthrough\n";
533
534 // Closing curly brace for the switch statement.
535 // This is unconventional because we want the default processing to be
536 // performed for the fallthrough cases as well, i.e., when the "cases"
537 // did not prove a decoded instruction.
538 o.indent(Indentation) << "}\n";
539
540 } else
541 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
542
543 // We arrive at a category of instructions with the same segment value.
544 // Now delegate to the sub filter chooser for further decodings.
545 // The case may fallthrough, which happens if the remaining well-known
546 // encoding bits do not match exactly.
547 if (!DefaultCase) { ++Indentation; ++Indentation; }
548
549 bool finished = filterIterator->second->emit(o, Indentation);
550 // For top level default case, there's no need for a break statement.
551 if (Owner->isTopLevel() && DefaultCase)
552 break;
553 if (!finished)
554 o.indent(Indentation) << "break;\n";
555
556 if (!DefaultCase) { --Indentation; --Indentation; }
557 }
558
559 // If there is no default case, we still need to supply a closing brace.
560 if (!DefaultCase) {
561 // Closing curly brace for the switch statement.
562 o.indent(Indentation) << "}\n";
563 }
564}
565
566// Returns the number of fanout produced by the filter. More fanout implies
567// the filter distinguishes more categories of instructions.
568unsigned Filter::usefulness() const {
569 if (VariableInstructions.size())
570 return FilteredInstructions.size();
571 else
572 return FilteredInstructions.size() + 1;
573}
574
575//////////////////////////////////
576// //
577// Filterchooser Implementation //
578// //
579//////////////////////////////////
580
581// Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000582void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
583 std::string Namespace) {
Owen Andersond8c87882011-02-18 21:51:29 +0000584 o.indent(Indentation) <<
Jim Grosbach9c826d22012-02-29 22:07:56 +0000585 "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction"
586 << BitWidth << "(MCInst &MI, uint" << BitWidth
587 << "_t insn, uint64_t Address, "
James Molloya5d58562011-09-07 19:42:28 +0000588 << "const void *Decoder, const MCSubtargetInfo &STI) {\n";
Owen Anderson684dfcf2011-10-17 16:56:47 +0000589 o.indent(Indentation) << " unsigned tmp = 0;\n";
590 o.indent(Indentation) << " (void)tmp;\n";
591 o.indent(Indentation) << Emitter->Locals << "\n";
Bob Wilson1cea66c2011-10-01 02:47:54 +0000592 o.indent(Indentation) << " uint64_t Bits = STI.getFeatureBits();\n";
Owen Anderson684dfcf2011-10-17 16:56:47 +0000593 o.indent(Indentation) << " (void)Bits;\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000594
595 ++Indentation; ++Indentation;
596 // Emits code to decode the instructions.
597 emit(o, Indentation);
598
599 o << '\n';
Owen Anderson83e3f672011-08-17 17:44:15 +0000600 o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000601 --Indentation; --Indentation;
602
603 o.indent(Indentation) << "}\n";
604
605 o << '\n';
606}
607
608// Populates the field of the insn given the start position and the number of
609// consecutive bits to scan for.
610//
611// Returns false if and on the first uninitialized bit value encountered.
612// Returns true, otherwise.
613bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
614 unsigned StartBit, unsigned NumBits) const {
615 Field = 0;
616
617 for (unsigned i = 0; i < NumBits; ++i) {
618 if (Insn[StartBit + i] == BIT_UNSET)
619 return false;
620
621 if (Insn[StartBit + i] == BIT_TRUE)
622 Field = Field | (1ULL << i);
623 }
624
625 return true;
626}
627
628/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
629/// filter array as a series of chars.
630void FilterChooser::dumpFilterArray(raw_ostream &o,
Owen Andersonf1a00902011-07-19 21:06:00 +0000631 std::vector<bit_value_t> &filter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000632 unsigned bitIndex;
633
Owen Andersonf1a00902011-07-19 21:06:00 +0000634 for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
Owen Andersond8c87882011-02-18 21:51:29 +0000635 switch (filter[bitIndex - 1]) {
636 case BIT_UNFILTERED:
637 o << ".";
638 break;
639 case BIT_UNSET:
640 o << "_";
641 break;
642 case BIT_TRUE:
643 o << "1";
644 break;
645 case BIT_FALSE:
646 o << "0";
647 break;
648 }
649 }
650}
651
652/// dumpStack - dumpStack traverses the filter chooser chain and calls
653/// dumpFilterArray on each filter chooser up to the top level one.
654void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
655 FilterChooser *current = this;
656
657 while (current) {
658 o << prefix;
659 dumpFilterArray(o, current->FilterBitValues);
660 o << '\n';
661 current = current->Parent;
662 }
663}
664
665// Called from Filter::recurse() when singleton exists. For debug purpose.
666void FilterChooser::SingletonExists(unsigned Opc) {
667 insn_t Insn0;
668 insnWithID(Insn0, Opc);
669
670 errs() << "Singleton exists: " << nameWithID(Opc)
671 << " with its decoding dominating ";
672 for (unsigned i = 0; i < Opcodes.size(); ++i) {
673 if (Opcodes[i] == Opc) continue;
674 errs() << nameWithID(Opcodes[i]) << ' ';
675 }
676 errs() << '\n';
677
678 dumpStack(errs(), "\t\t");
679 for (unsigned i = 0; i < Opcodes.size(); i++) {
680 const std::string &Name = nameWithID(Opcodes[i]);
681
682 errs() << '\t' << Name << " ";
683 dumpBits(errs(),
684 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
685 errs() << '\n';
686 }
687}
688
689// Calculates the island(s) needed to decode the instruction.
690// This returns a list of undecoded bits of an instructions, for example,
691// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
692// decoded bits in order to verify that the instruction matches the Opcode.
693unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
694 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
695 insn_t &Insn) {
696 unsigned Num, BitNo;
697 Num = BitNo = 0;
698
699 uint64_t FieldVal = 0;
700
701 // 0: Init
702 // 1: Water (the bit value does not affect decoding)
703 // 2: Island (well-known bit value needed for decoding)
704 int State = 0;
705 int Val = -1;
706
Owen Andersonf1a00902011-07-19 21:06:00 +0000707 for (unsigned i = 0; i < BitWidth; ++i) {
Owen Andersond8c87882011-02-18 21:51:29 +0000708 Val = Value(Insn[i]);
709 bool Filtered = PositionFiltered(i);
710 switch (State) {
Craig Topper655b8de2012-02-05 07:21:30 +0000711 default: llvm_unreachable("Unreachable code!");
Owen Andersond8c87882011-02-18 21:51:29 +0000712 case 0:
713 case 1:
714 if (Filtered || Val == -1)
715 State = 1; // Still in Water
716 else {
717 State = 2; // Into the Island
718 BitNo = 0;
719 StartBits.push_back(i);
720 FieldVal = Val;
721 }
722 break;
723 case 2:
724 if (Filtered || Val == -1) {
725 State = 1; // Into the Water
726 EndBits.push_back(i - 1);
727 FieldVals.push_back(FieldVal);
728 ++Num;
729 } else {
730 State = 2; // Still in Island
731 ++BitNo;
732 FieldVal = FieldVal | Val << BitNo;
733 }
734 break;
735 }
736 }
737 // If we are still in Island after the loop, do some housekeeping.
738 if (State == 2) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000739 EndBits.push_back(BitWidth - 1);
Owen Andersond8c87882011-02-18 21:51:29 +0000740 FieldVals.push_back(FieldVal);
741 ++Num;
742 }
743
744 assert(StartBits.size() == Num && EndBits.size() == Num &&
745 FieldVals.size() == Num);
746 return Num;
747}
748
Owen Andersond1e38df2011-07-28 21:54:31 +0000749void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
750 OperandInfo &OpInfo) {
751 std::string &Decoder = OpInfo.Decoder;
752
753 if (OpInfo.numFields() == 1) {
754 OperandInfo::iterator OI = OpInfo.begin();
755 o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth
756 << "(insn, " << OI->Base << ", " << OI->Width
757 << ");\n";
758 } else {
759 o.indent(Indentation) << " tmp = 0;\n";
760 for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
761 OI != OE; ++OI) {
762 o.indent(Indentation) << " tmp |= (fieldFromInstruction" << BitWidth
Andrew Tricked968a92011-09-08 05:23:14 +0000763 << "(insn, " << OI->Base << ", " << OI->Width
Owen Andersond1e38df2011-07-28 21:54:31 +0000764 << ") << " << OI->Offset << ");\n";
765 }
766 }
767
768 if (Decoder != "")
Owen Anderson83e3f672011-08-17 17:44:15 +0000769 o.indent(Indentation) << " " << Emitter->GuardPrefix << Decoder
Jim Grosbach9c826d22012-02-29 22:07:56 +0000770 << "(MI, tmp, Address, Decoder)"
771 << Emitter->GuardPostfix << "\n";
Owen Andersond1e38df2011-07-28 21:54:31 +0000772 else
773 o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
774
775}
776
James Molloya5d58562011-09-07 19:42:28 +0000777static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
778 std::string PredicateNamespace) {
Andrew Trick22b4c812011-09-08 05:25:49 +0000779 if (str[0] == '!')
780 o << "!(Bits & " << PredicateNamespace << "::"
781 << str.slice(1,str.size()) << ")";
James Molloya5d58562011-09-07 19:42:28 +0000782 else
Andrew Trick22b4c812011-09-08 05:25:49 +0000783 o << "(Bits & " << PredicateNamespace << "::" << str << ")";
James Molloya5d58562011-09-07 19:42:28 +0000784}
785
786bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
787 unsigned Opc) {
Jim Grosbach9c826d22012-02-29 22:07:56 +0000788 ListInit *Predicates =
789 AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
James Molloya5d58562011-09-07 19:42:28 +0000790 for (unsigned i = 0; i < Predicates->getSize(); ++i) {
791 Record *Pred = Predicates->getElementAsRecord(i);
792 if (!Pred->getValue("AssemblerMatcherPredicate"))
793 continue;
794
795 std::string P = Pred->getValueAsString("AssemblerCondString");
796
797 if (!P.length())
798 continue;
799
800 if (i != 0)
801 o << " && ";
802
803 StringRef SR(P);
804 std::pair<StringRef, StringRef> pairs = SR.split(',');
805 while (pairs.second.size()) {
806 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
807 o << " && ";
808 pairs = pairs.second.split(',');
809 }
810 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
811 }
812 return Predicates->getSize() > 0;
Andrew Tricked968a92011-09-08 05:23:14 +0000813}
James Molloya5d58562011-09-07 19:42:28 +0000814
Jim Grosbach9c826d22012-02-29 22:07:56 +0000815void FilterChooser::emitSoftFailCheck(raw_ostream &o, unsigned Indentation,
816 unsigned Opc) {
817 BitsInit *SFBits =
818 AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
James Molloy3015dfb2012-02-09 10:56:31 +0000819 if (!SFBits) return;
820 BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
821
822 APInt PositiveMask(BitWidth, 0ULL);
823 APInt NegativeMask(BitWidth, 0ULL);
824 for (unsigned i = 0; i < BitWidth; ++i) {
825 bit_value_t B = bitFromBits(*SFBits, i);
826 bit_value_t IB = bitFromBits(*InstBits, i);
827
828 if (B != BIT_TRUE) continue;
829
830 switch (IB) {
831 case BIT_FALSE:
832 // The bit is meant to be false, so emit a check to see if it is true.
833 PositiveMask.setBit(i);
834 break;
835 case BIT_TRUE:
836 // The bit is meant to be true, so emit a check to see if it is false.
837 NegativeMask.setBit(i);
838 break;
839 default:
840 // The bit is not set; this must be an error!
841 StringRef Name = AllInstructions[Opc]->TheDef->getName();
842 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
843 << Name
844 << " is set but Inst{" << i <<"} is unset!\n"
845 << " - You can only mark a bit as SoftFail if it is fully defined"
846 << " (1/0 - not '?') in Inst\n";
847 o << "#error SoftFail Conflict, " << Name << "::SoftFail{" << i
848 << "} set but Inst{" << i << "} undefined!\n";
849 }
850 }
851
852 bool NeedPositiveMask = PositiveMask.getBoolValue();
853 bool NeedNegativeMask = NegativeMask.getBoolValue();
854
855 if (!NeedPositiveMask && !NeedNegativeMask)
856 return;
857
858 std::string PositiveMaskStr = PositiveMask.toString(16, /*signed=*/false);
859 std::string NegativeMaskStr = NegativeMask.toString(16, /*signed=*/false);
860 StringRef BitExt = "";
861 if (BitWidth > 32)
862 BitExt = "ULL";
863
864 o.indent(Indentation) << "if (";
865 if (NeedPositiveMask)
866 o << "insn & 0x" << PositiveMaskStr << BitExt;
867 if (NeedPositiveMask && NeedNegativeMask)
868 o << " || ";
869 if (NeedNegativeMask)
870 o << "~insn & 0x" << NegativeMaskStr << BitExt;
871 o << ")\n";
872 o.indent(Indentation+2) << "S = MCDisassembler::SoftFail;\n";
873}
874
Owen Andersond8c87882011-02-18 21:51:29 +0000875// Emits code to decode the singleton. Return true if we have matched all the
876// well-known bits.
877bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
878 unsigned Opc) {
879 std::vector<unsigned> StartBits;
880 std::vector<unsigned> EndBits;
881 std::vector<uint64_t> FieldVals;
882 insn_t Insn;
883 insnWithID(Insn, Opc);
884
885 // Look for islands of undecoded bits of the singleton.
886 getIslands(StartBits, EndBits, FieldVals, Insn);
887
888 unsigned Size = StartBits.size();
889 unsigned I, NumBits;
890
891 // If we have matched all the well-known bits, just issue a return.
892 if (Size == 0) {
James Molloya5d58562011-09-07 19:42:28 +0000893 o.indent(Indentation) << "if (";
Eli Friedman64a17b32011-09-08 21:00:31 +0000894 if (!emitPredicateMatch(o, Indentation, Opc))
895 o << "1";
James Molloya5d58562011-09-07 19:42:28 +0000896 o << ") {\n";
James Molloy3015dfb2012-02-09 10:56:31 +0000897 emitSoftFailCheck(o, Indentation+2, Opc);
Owen Andersond8c87882011-02-18 21:51:29 +0000898 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
899 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
900 for (std::vector<OperandInfo>::iterator
901 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
902 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000903 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson83e3f672011-08-17 17:44:15 +0000904 o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
Jim Grosbach9c826d22012-02-29 22:07:56 +0000905 << "(MI, insn, Address, Decoder)"
906 << Emitter->GuardPostfix << "\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000907 break;
908 }
909
Owen Andersond1e38df2011-07-28 21:54:31 +0000910 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000911 }
912
Jim Grosbach9c826d22012-02-29 22:07:56 +0000913 o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // "
914 << nameWithID(Opc) << '\n';
James Molloya5d58562011-09-07 19:42:28 +0000915 o.indent(Indentation) << "}\n"; // Closing predicate block.
Owen Andersond8c87882011-02-18 21:51:29 +0000916 return true;
917 }
918
919 // Otherwise, there are more decodings to be done!
920
921 // Emit code to match the island(s) for the singleton.
922 o.indent(Indentation) << "// Check ";
923
924 for (I = Size; I != 0; --I) {
925 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
926 if (I > 1)
James Molloya5d58562011-09-07 19:42:28 +0000927 o << " && ";
Owen Andersond8c87882011-02-18 21:51:29 +0000928 else
929 o << "for singleton decoding...\n";
930 }
931
932 o.indent(Indentation) << "if (";
James Molloy0d76b192011-09-08 08:12:01 +0000933 if (emitPredicateMatch(o, Indentation, Opc)) {
James Molloya5d58562011-09-07 19:42:28 +0000934 o << " &&\n";
935 o.indent(Indentation+4);
936 }
Owen Andersond8c87882011-02-18 21:51:29 +0000937
938 for (I = Size; I != 0; --I) {
939 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
Owen Andersonf1a00902011-07-19 21:06:00 +0000940 o << "fieldFromInstruction" << BitWidth << "(insn, "
941 << StartBits[I-1] << ", " << NumBits
Owen Andersond8c87882011-02-18 21:51:29 +0000942 << ") == " << FieldVals[I-1];
943 if (I > 1)
944 o << " && ";
945 else
946 o << ") {\n";
947 }
James Molloy3015dfb2012-02-09 10:56:31 +0000948 emitSoftFailCheck(o, Indentation+2, Opc);
Owen Andersond8c87882011-02-18 21:51:29 +0000949 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
950 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
951 for (std::vector<OperandInfo>::iterator
952 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
953 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000954 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson83e3f672011-08-17 17:44:15 +0000955 o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
Jim Grosbach9c826d22012-02-29 22:07:56 +0000956 << "(MI, insn, Address, Decoder)"
957 << Emitter->GuardPostfix << "\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000958 break;
959 }
960
Owen Andersond1e38df2011-07-28 21:54:31 +0000961 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000962 }
Jim Grosbach9c826d22012-02-29 22:07:56 +0000963 o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // "
964 << nameWithID(Opc) << '\n';
Owen Andersond8c87882011-02-18 21:51:29 +0000965 o.indent(Indentation) << "}\n";
966
967 return false;
968}
969
970// Emits code to decode the singleton, and then to decode the rest.
971void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
972 Filter &Best) {
973
974 unsigned Opc = Best.getSingletonOpc();
975
976 emitSingletonDecoder(o, Indentation, Opc);
977
978 // Emit code for the rest.
979 o.indent(Indentation) << "else\n";
980
981 Indentation += 2;
982 Best.getVariableFC().emit(o, Indentation);
983 Indentation -= 2;
984}
985
986// Assign a single filter and run with it. Top level API client can initialize
987// with a single filter to start the filtering process.
988void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
989 unsigned numBit, bool mixed) {
990 Filters.clear();
991 Filter F(*this, startBit, numBit, true);
992 Filters.push_back(F);
993 BestIndex = 0; // Sole Filter instance to choose from.
994 bestFilter().recurse();
995}
996
997// reportRegion is a helper function for filterProcessor to mark a region as
998// eligible for use as a filter region.
999void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1000 unsigned BitIndex, bool AllowMixed) {
1001 if (RA == ATTR_MIXED && AllowMixed)
1002 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1003 else if (RA == ATTR_ALL_SET && !AllowMixed)
1004 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1005}
1006
1007// FilterProcessor scans the well-known encoding bits of the instructions and
1008// builds up a list of candidate filters. It chooses the best filter and
1009// recursively descends down the decoding tree.
1010bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1011 Filters.clear();
1012 BestIndex = -1;
1013 unsigned numInstructions = Opcodes.size();
1014
1015 assert(numInstructions && "Filter created with no instructions");
1016
1017 // No further filtering is necessary.
1018 if (numInstructions == 1)
1019 return true;
1020
1021 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1022 // instructions is 3.
1023 if (AllowMixed && !Greedy) {
1024 assert(numInstructions == 3);
1025
1026 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1027 std::vector<unsigned> StartBits;
1028 std::vector<unsigned> EndBits;
1029 std::vector<uint64_t> FieldVals;
1030 insn_t Insn;
1031
1032 insnWithID(Insn, Opcodes[i]);
1033
1034 // Look for islands of undecoded bits of any instruction.
1035 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1036 // Found an instruction with island(s). Now just assign a filter.
1037 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1038 true);
1039 return true;
1040 }
1041 }
1042 }
1043
1044 unsigned BitIndex, InsnIndex;
1045
1046 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1047 // The automaton consumes the corresponding bit from each
1048 // instruction.
1049 //
1050 // Input symbols: 0, 1, and _ (unset).
1051 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1052 // Initial state: NONE.
1053 //
1054 // (NONE) ------- [01] -> (ALL_SET)
1055 // (NONE) ------- _ ----> (ALL_UNSET)
1056 // (ALL_SET) ---- [01] -> (ALL_SET)
1057 // (ALL_SET) ---- _ ----> (MIXED)
1058 // (ALL_UNSET) -- [01] -> (MIXED)
1059 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1060 // (MIXED) ------ . ----> (MIXED)
1061 // (FILTERED)---- . ----> (FILTERED)
1062
Owen Andersonf1a00902011-07-19 21:06:00 +00001063 std::vector<bitAttr_t> bitAttrs;
Owen Andersond8c87882011-02-18 21:51:29 +00001064
1065 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1066 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
Owen Andersonf1a00902011-07-19 21:06:00 +00001067 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
Owen Andersond8c87882011-02-18 21:51:29 +00001068 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1069 FilterBitValues[BitIndex] == BIT_FALSE)
Owen Andersonf1a00902011-07-19 21:06:00 +00001070 bitAttrs.push_back(ATTR_FILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +00001071 else
Owen Andersonf1a00902011-07-19 21:06:00 +00001072 bitAttrs.push_back(ATTR_NONE);
Owen Andersond8c87882011-02-18 21:51:29 +00001073
1074 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1075 insn_t insn;
1076
1077 insnWithID(insn, Opcodes[InsnIndex]);
1078
Owen Andersonf1a00902011-07-19 21:06:00 +00001079 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
Owen Andersond8c87882011-02-18 21:51:29 +00001080 switch (bitAttrs[BitIndex]) {
1081 case ATTR_NONE:
1082 if (insn[BitIndex] == BIT_UNSET)
1083 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1084 else
1085 bitAttrs[BitIndex] = ATTR_ALL_SET;
1086 break;
1087 case ATTR_ALL_SET:
1088 if (insn[BitIndex] == BIT_UNSET)
1089 bitAttrs[BitIndex] = ATTR_MIXED;
1090 break;
1091 case ATTR_ALL_UNSET:
1092 if (insn[BitIndex] != BIT_UNSET)
1093 bitAttrs[BitIndex] = ATTR_MIXED;
1094 break;
1095 case ATTR_MIXED:
1096 case ATTR_FILTERED:
1097 break;
1098 }
1099 }
1100 }
1101
1102 // The regionAttr automaton consumes the bitAttrs automatons' state,
1103 // lowest-to-highest.
1104 //
1105 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1106 // States: NONE, ALL_SET, MIXED
1107 // Initial state: NONE
1108 //
1109 // (NONE) ----- F --> (NONE)
1110 // (NONE) ----- S --> (ALL_SET) ; and set region start
1111 // (NONE) ----- U --> (NONE)
1112 // (NONE) ----- M --> (MIXED) ; and set region start
1113 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1114 // (ALL_SET) -- S --> (ALL_SET)
1115 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1116 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1117 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1118 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1119 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1120 // (MIXED) ---- M --> (MIXED)
1121
1122 bitAttr_t RA = ATTR_NONE;
1123 unsigned StartBit = 0;
1124
Owen Andersonf1a00902011-07-19 21:06:00 +00001125 for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
Owen Andersond8c87882011-02-18 21:51:29 +00001126 bitAttr_t bitAttr = bitAttrs[BitIndex];
1127
1128 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1129
1130 switch (RA) {
1131 case ATTR_NONE:
1132 switch (bitAttr) {
1133 case ATTR_FILTERED:
1134 break;
1135 case ATTR_ALL_SET:
1136 StartBit = BitIndex;
1137 RA = ATTR_ALL_SET;
1138 break;
1139 case ATTR_ALL_UNSET:
1140 break;
1141 case ATTR_MIXED:
1142 StartBit = BitIndex;
1143 RA = ATTR_MIXED;
1144 break;
1145 default:
Craig Topper655b8de2012-02-05 07:21:30 +00001146 llvm_unreachable("Unexpected bitAttr!");
Owen Andersond8c87882011-02-18 21:51:29 +00001147 }
1148 break;
1149 case ATTR_ALL_SET:
1150 switch (bitAttr) {
1151 case ATTR_FILTERED:
1152 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1153 RA = ATTR_NONE;
1154 break;
1155 case ATTR_ALL_SET:
1156 break;
1157 case ATTR_ALL_UNSET:
1158 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1159 RA = ATTR_NONE;
1160 break;
1161 case ATTR_MIXED:
1162 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1163 StartBit = BitIndex;
1164 RA = ATTR_MIXED;
1165 break;
1166 default:
Craig Topper655b8de2012-02-05 07:21:30 +00001167 llvm_unreachable("Unexpected bitAttr!");
Owen Andersond8c87882011-02-18 21:51:29 +00001168 }
1169 break;
1170 case ATTR_MIXED:
1171 switch (bitAttr) {
1172 case ATTR_FILTERED:
1173 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1174 StartBit = BitIndex;
1175 RA = ATTR_NONE;
1176 break;
1177 case ATTR_ALL_SET:
1178 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1179 StartBit = BitIndex;
1180 RA = ATTR_ALL_SET;
1181 break;
1182 case ATTR_ALL_UNSET:
1183 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1184 RA = ATTR_NONE;
1185 break;
1186 case ATTR_MIXED:
1187 break;
1188 default:
Craig Topper655b8de2012-02-05 07:21:30 +00001189 llvm_unreachable("Unexpected bitAttr!");
Owen Andersond8c87882011-02-18 21:51:29 +00001190 }
1191 break;
1192 case ATTR_ALL_UNSET:
Craig Topper655b8de2012-02-05 07:21:30 +00001193 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
Owen Andersond8c87882011-02-18 21:51:29 +00001194 case ATTR_FILTERED:
Craig Topper655b8de2012-02-05 07:21:30 +00001195 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
Owen Andersond8c87882011-02-18 21:51:29 +00001196 }
1197 }
1198
1199 // At the end, if we're still in ALL_SET or MIXED states, report a region
1200 switch (RA) {
1201 case ATTR_NONE:
1202 break;
1203 case ATTR_FILTERED:
1204 break;
1205 case ATTR_ALL_SET:
1206 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1207 break;
1208 case ATTR_ALL_UNSET:
1209 break;
1210 case ATTR_MIXED:
1211 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1212 break;
1213 }
1214
1215 // We have finished with the filter processings. Now it's time to choose
1216 // the best performing filter.
1217 BestIndex = 0;
1218 bool AllUseless = true;
1219 unsigned BestScore = 0;
1220
1221 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1222 unsigned Usefulness = Filters[i].usefulness();
1223
1224 if (Usefulness)
1225 AllUseless = false;
1226
1227 if (Usefulness > BestScore) {
1228 BestIndex = i;
1229 BestScore = Usefulness;
1230 }
1231 }
1232
1233 if (!AllUseless)
1234 bestFilter().recurse();
1235
1236 return !AllUseless;
1237} // end of FilterChooser::filterProcessor(bool)
1238
1239// Decides on the best configuration of filter(s) to use in order to decode
1240// the instructions. A conflict of instructions may occur, in which case we
1241// dump the conflict set to the standard error.
1242void FilterChooser::doFilter() {
1243 unsigned Num = Opcodes.size();
1244 assert(Num && "FilterChooser created with no instructions");
1245
1246 // Try regions of consecutive known bit values first.
1247 if (filterProcessor(false))
1248 return;
1249
1250 // Then regions of mixed bits (both known and unitialized bit values allowed).
1251 if (filterProcessor(true))
1252 return;
1253
1254 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1255 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1256 // well-known encoding pattern. In such case, we backtrack and scan for the
1257 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1258 if (Num == 3 && filterProcessor(true, false))
1259 return;
1260
1261 // If we come to here, the instruction decoding has failed.
1262 // Set the BestIndex to -1 to indicate so.
1263 BestIndex = -1;
1264}
1265
1266// Emits code to decode our share of instructions. Returns true if the
1267// emitted code causes a return, which occurs if we know how to decode
1268// the instruction at this level or the instruction is not decodeable.
1269bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1270 if (Opcodes.size() == 1)
1271 // There is only one instruction in the set, which is great!
1272 // Call emitSingletonDecoder() to see whether there are any remaining
1273 // encodings bits.
1274 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1275
1276 // Choose the best filter to do the decodings!
1277 if (BestIndex != -1) {
1278 Filter &Best = bestFilter();
1279 if (Best.getNumFiltered() == 1)
1280 emitSingletonDecoder(o, Indentation, Best);
1281 else
1282 bestFilter().emit(o, Indentation);
1283 return false;
1284 }
1285
1286 // We don't know how to decode these instructions! Return 0 and dump the
1287 // conflict set!
1288 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1289 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1290 o << nameWithID(Opcodes[i]);
1291 if (i < (N - 1))
1292 o << ", ";
1293 else
1294 o << '\n';
1295 }
1296
1297 // Print out useful conflict information for postmortem analysis.
1298 errs() << "Decoding Conflict:\n";
1299
1300 dumpStack(errs(), "\t\t");
1301
1302 for (unsigned i = 0; i < Opcodes.size(); i++) {
1303 const std::string &Name = nameWithID(Opcodes[i]);
1304
1305 errs() << '\t' << Name << " ";
1306 dumpBits(errs(),
1307 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1308 errs() << '\n';
1309 }
1310
1311 return true;
1312}
1313
Owen Andersonf1a00902011-07-19 21:06:00 +00001314static bool populateInstruction(const CodeGenInstruction &CGI,
1315 unsigned Opc,
1316 std::map<unsigned, std::vector<OperandInfo> >& Operands){
Owen Andersond8c87882011-02-18 21:51:29 +00001317 const Record &Def = *CGI.TheDef;
1318 // If all the bit positions are not specified; do not decode this instruction.
1319 // We are bound to fail! For proper disassembly, the well-known encoding bits
1320 // of the instruction must be fully specified.
1321 //
1322 // This also removes pseudo instructions from considerations of disassembly,
1323 // which is a better design and less fragile than the name matchings.
Owen Andersond8c87882011-02-18 21:51:29 +00001324 // Ignore "asm parser only" instructions.
Owen Anderson4dd27eb2011-03-14 20:58:49 +00001325 if (Def.getValueAsBit("isAsmParserOnly") ||
1326 Def.getValueAsBit("isCodeGenOnly"))
Owen Andersond8c87882011-02-18 21:51:29 +00001327 return false;
1328
David Greene05bce0b2011-07-29 22:43:06 +00001329 BitsInit &Bits = getBitsField(Def, "Inst");
Jim Grosbach806fcc02011-07-06 21:33:38 +00001330 if (Bits.allInComplete()) return false;
1331
Owen Andersond8c87882011-02-18 21:51:29 +00001332 std::vector<OperandInfo> InsnOperands;
1333
1334 // If the instruction has specified a custom decoding hook, use that instead
1335 // of trying to auto-generate the decoder.
1336 std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1337 if (InstDecoder != "") {
Owen Andersond1e38df2011-07-28 21:54:31 +00001338 InsnOperands.push_back(OperandInfo(InstDecoder));
Owen Andersond8c87882011-02-18 21:51:29 +00001339 Operands[Opc] = InsnOperands;
1340 return true;
1341 }
1342
1343 // Generate a description of the operand of the instruction that we know
1344 // how to decode automatically.
1345 // FIXME: We'll need to have a way to manually override this as needed.
1346
1347 // Gather the outputs/inputs of the instruction, so we can find their
1348 // positions in the encoding. This assumes for now that they appear in the
1349 // MCInst in the order that they're listed.
David Greene05bce0b2011-07-29 22:43:06 +00001350 std::vector<std::pair<Init*, std::string> > InOutOperands;
1351 DagInit *Out = Def.getValueAsDag("OutOperandList");
1352 DagInit *In = Def.getValueAsDag("InOperandList");
Owen Andersond8c87882011-02-18 21:51:29 +00001353 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1354 InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1355 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1356 InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1357
Owen Anderson00ef6e32011-07-28 23:56:20 +00001358 // Search for tied operands, so that we can correctly instantiate
1359 // operands that are not explicitly represented in the encoding.
Owen Andersonea242982011-07-29 18:28:52 +00001360 std::map<std::string, std::string> TiedNames;
Owen Anderson00ef6e32011-07-28 23:56:20 +00001361 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1362 int tiedTo = CGI.Operands[i].getTiedRegister();
Owen Andersonea242982011-07-29 18:28:52 +00001363 if (tiedTo != -1) {
1364 TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
1365 TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
1366 }
Owen Anderson00ef6e32011-07-28 23:56:20 +00001367 }
1368
Owen Andersond8c87882011-02-18 21:51:29 +00001369 // For each operand, see if we can figure out where it is encoded.
David Greene05bce0b2011-07-29 22:43:06 +00001370 for (std::vector<std::pair<Init*, std::string> >::iterator
Owen Andersond8c87882011-02-18 21:51:29 +00001371 NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
Owen Andersond8c87882011-02-18 21:51:29 +00001372 std::string Decoder = "";
1373
Owen Andersond1e38df2011-07-28 21:54:31 +00001374 // At this point, we can locate the field, but we need to know how to
1375 // interpret it. As a first step, require the target to provide callbacks
1376 // for decoding register classes.
1377 // FIXME: This need to be extended to handle instructions with custom
1378 // decoder methods, and operands with (simple) MIOperandInfo's.
David Greene05bce0b2011-07-29 22:43:06 +00001379 TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
Owen Andersond1e38df2011-07-28 21:54:31 +00001380 RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1381 Record *TypeRecord = Type->getRecord();
1382 bool isReg = false;
1383 if (TypeRecord->isSubClassOf("RegisterOperand"))
1384 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1385 if (TypeRecord->isSubClassOf("RegisterClass")) {
1386 Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1387 isReg = true;
1388 }
1389
1390 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
David Greene05bce0b2011-07-29 22:43:06 +00001391 StringInit *String = DecoderString ?
1392 dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
Owen Andersond1e38df2011-07-28 21:54:31 +00001393 if (!isReg && String && String->getValue() != "")
1394 Decoder = String->getValue();
1395
1396 OperandInfo OpInfo(Decoder);
1397 unsigned Base = ~0U;
1398 unsigned Width = 0;
1399 unsigned Offset = 0;
1400
Owen Andersond8c87882011-02-18 21:51:29 +00001401 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
Owen Andersoncf603952011-08-01 22:45:43 +00001402 VarInit *Var = 0;
David Greene05bce0b2011-07-29 22:43:06 +00001403 VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
Owen Andersoncf603952011-08-01 22:45:43 +00001404 if (BI)
1405 Var = dynamic_cast<VarInit*>(BI->getVariable());
1406 else
1407 Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
1408
1409 if (!Var) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001410 if (Base != ~0U) {
1411 OpInfo.addField(Base, Width, Offset);
1412 Base = ~0U;
1413 Width = 0;
1414 Offset = 0;
1415 }
1416 continue;
1417 }
Owen Andersond8c87882011-02-18 21:51:29 +00001418
Owen Anderson00ef6e32011-07-28 23:56:20 +00001419 if (Var->getName() != NI->second &&
Owen Andersonea242982011-07-29 18:28:52 +00001420 Var->getName() != TiedNames[NI->second]) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001421 if (Base != ~0U) {
1422 OpInfo.addField(Base, Width, Offset);
1423 Base = ~0U;
1424 Width = 0;
1425 Offset = 0;
1426 }
1427 continue;
Owen Andersond8c87882011-02-18 21:51:29 +00001428 }
1429
Owen Andersond1e38df2011-07-28 21:54:31 +00001430 if (Base == ~0U) {
1431 Base = bi;
1432 Width = 1;
Owen Andersoncf603952011-08-01 22:45:43 +00001433 Offset = BI ? BI->getBitNum() : 0;
1434 } else if (BI && BI->getBitNum() != Offset + Width) {
Owen Andersoneb809f52011-07-29 23:01:18 +00001435 OpInfo.addField(Base, Width, Offset);
1436 Base = bi;
1437 Width = 1;
1438 Offset = BI->getBitNum();
Owen Andersond1e38df2011-07-28 21:54:31 +00001439 } else {
1440 ++Width;
Owen Andersond8c87882011-02-18 21:51:29 +00001441 }
Owen Andersond8c87882011-02-18 21:51:29 +00001442 }
1443
Owen Andersond1e38df2011-07-28 21:54:31 +00001444 if (Base != ~0U)
1445 OpInfo.addField(Base, Width, Offset);
1446
1447 if (OpInfo.numFields() > 0)
1448 InsnOperands.push_back(OpInfo);
Owen Andersond8c87882011-02-18 21:51:29 +00001449 }
1450
1451 Operands[Opc] = InsnOperands;
1452
1453
1454#if 0
1455 DEBUG({
1456 // Dumps the instruction encoding bits.
1457 dumpBits(errs(), Bits);
1458
1459 errs() << '\n';
1460
1461 // Dumps the list of operand info.
1462 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1463 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1464 const std::string &OperandName = Info.Name;
1465 const Record &OperandDef = *Info.Rec;
1466
1467 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1468 }
1469 });
1470#endif
1471
1472 return true;
1473}
1474
Owen Andersonf1a00902011-07-19 21:06:00 +00001475static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
1476 unsigned Indentation = 0;
1477 std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
Owen Andersond8c87882011-02-18 21:51:29 +00001478
Owen Andersonf1a00902011-07-19 21:06:00 +00001479 o << '\n';
1480
1481 o.indent(Indentation) << "static " << WidthStr <<
1482 " fieldFromInstruction" << BitWidth <<
1483 "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
1484
1485 o.indent(Indentation) << "{\n";
1486
1487 ++Indentation; ++Indentation;
1488 o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
1489 << " && \"Instruction field out of bounds!\");\n";
1490 o << '\n';
1491 o.indent(Indentation) << WidthStr << " fieldMask;\n";
1492 o << '\n';
1493 o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
1494
1495 ++Indentation; ++Indentation;
1496 o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
1497 --Indentation; --Indentation;
1498
1499 o.indent(Indentation) << "else\n";
1500
1501 ++Indentation; ++Indentation;
1502 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
1503 --Indentation; --Indentation;
1504
1505 o << '\n';
1506 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
1507 --Indentation; --Indentation;
1508
1509 o.indent(Indentation) << "}\n";
1510
1511 o << '\n';
Owen Andersond8c87882011-02-18 21:51:29 +00001512}
1513
1514// Emits disassembler code for instruction decoding.
1515void FixedLenDecoderEmitter::run(raw_ostream &o)
1516{
1517 o << "#include \"llvm/MC/MCInst.h\"\n";
1518 o << "#include \"llvm/Support/DataTypes.h\"\n";
1519 o << "#include <assert.h>\n";
1520 o << '\n';
1521 o << "namespace llvm {\n\n";
1522
Owen Andersonf1a00902011-07-19 21:06:00 +00001523 // Parameterize the decoders based on namespace and instruction width.
Craig Topperc007ba82012-03-13 06:39:00 +00001524 std::vector<const CodeGenInstruction*> NumberedInstructions =
1525 Target.getInstructionsByEnumValue();
Owen Andersonf1a00902011-07-19 21:06:00 +00001526 std::map<std::pair<std::string, unsigned>,
1527 std::vector<unsigned> > OpcMap;
1528 std::map<unsigned, std::vector<OperandInfo> > Operands;
1529
1530 for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
1531 const CodeGenInstruction *Inst = NumberedInstructions[i];
1532 Record *Def = Inst->TheDef;
1533 unsigned Size = Def->getValueAsInt("Size");
1534 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
1535 Def->getValueAsBit("isPseudo") ||
1536 Def->getValueAsBit("isAsmParserOnly") ||
1537 Def->getValueAsBit("isCodeGenOnly"))
1538 continue;
1539
1540 std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
1541
1542 if (Size) {
1543 if (populateInstruction(*Inst, i, Operands)) {
1544 OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
1545 }
1546 }
1547 }
1548
1549 std::set<unsigned> Sizes;
1550 for (std::map<std::pair<std::string, unsigned>,
1551 std::vector<unsigned> >::iterator
1552 I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
1553 // If we haven't visited this instruction width before, emit the
1554 // helper method to extract fields.
1555 if (!Sizes.count(I->first.second)) {
1556 emitHelper(o, 8*I->first.second);
1557 Sizes.insert(I->first.second);
1558 }
1559
1560 // Emit the decoder for this namespace+width combination.
1561 FilterChooser FC(NumberedInstructions, I->second, Operands,
Owen Anderson83e3f672011-08-17 17:44:15 +00001562 8*I->first.second, this);
Owen Andersonf1a00902011-07-19 21:06:00 +00001563 FC.emitTop(o, 0, I->first.first);
1564 }
Owen Andersond8c87882011-02-18 21:51:29 +00001565
1566 o << "\n} // End llvm namespace \n";
1567}