blob: 354ff0a6492d25fffa9dc970dc84046cf0d42da3 [file] [log] [blame]
Owen Anderson1ed5b712009-03-11 22:31:21 +00001//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "spiller"
11#include "Spiller.h"
Owen Anderson0ff4e212009-03-12 06:58:19 +000012#include "llvm/Support/Compiler.h"
13#include "llvm/ADT/DepthFirstIterator.h"
14#include "llvm/ADT/Statistic.h"
15#include "llvm/ADT/STLExtras.h"
Owen Anderson1ed5b712009-03-11 22:31:21 +000016#include <algorithm>
17using namespace llvm;
18
19STATISTIC(NumDSE , "Number of dead stores elided");
20STATISTIC(NumDSS , "Number of dead spill slots removed");
21STATISTIC(NumCommutes, "Number of instructions commuted");
22STATISTIC(NumDRM , "Number of re-materializable defs elided");
23STATISTIC(NumStores , "Number of stores added");
24STATISTIC(NumPSpills , "Number of physical register spills");
25STATISTIC(NumOmitted , "Number of reloads omited");
26STATISTIC(NumCopified, "Number of available reloads turned into copies");
27STATISTIC(NumReMats , "Number of re-materialization");
28STATISTIC(NumLoads , "Number of loads added");
29STATISTIC(NumReused , "Number of values reused");
30STATISTIC(NumDCE , "Number of copies elided");
Evan Chenge47b0082009-03-17 01:23:09 +000031STATISTIC(NumSUnfold , "Number of stores unfolded");
Owen Anderson1ed5b712009-03-11 22:31:21 +000032
33namespace {
34 enum SpillerName { simple, local };
35}
36
37static cl::opt<SpillerName>
38SpillerOpt("spiller",
39 cl::desc("Spiller to use: (default: local)"),
40 cl::Prefix,
41 cl::values(clEnumVal(simple, "simple spiller"),
42 clEnumVal(local, "local spiller"),
43 clEnumValEnd),
44 cl::init(local));
45
46// ****************************** //
47// Simple Spiller Implementation //
48// ****************************** //
49
50Spiller::~Spiller() {}
51
52bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
53 DOUT << "********** REWRITE MACHINE CODE **********\n";
54 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
55 const TargetMachine &TM = MF.getTarget();
56 const TargetInstrInfo &TII = *TM.getInstrInfo();
57 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
58
59
60 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
61 // each vreg once (in the case where a spilled vreg is used by multiple
62 // operands). This is always smaller than the number of operands to the
63 // current machine instr, so it should be small.
64 std::vector<unsigned> LoadedRegs;
65
66 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
67 MBBI != E; ++MBBI) {
68 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
69 MachineBasicBlock &MBB = *MBBI;
70 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
71 MII != E; ++MII) {
72 MachineInstr &MI = *MII;
73 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
74 MachineOperand &MO = MI.getOperand(i);
75 if (MO.isReg() && MO.getReg()) {
76 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
77 unsigned VirtReg = MO.getReg();
78 unsigned SubIdx = MO.getSubReg();
79 unsigned PhysReg = VRM.getPhys(VirtReg);
80 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
81 if (!VRM.isAssignedReg(VirtReg)) {
82 int StackSlot = VRM.getStackSlot(VirtReg);
83 const TargetRegisterClass* RC =
84 MF.getRegInfo().getRegClass(VirtReg);
85
86 if (MO.isUse() &&
87 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
88 == LoadedRegs.end()) {
89 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
90 MachineInstr *LoadMI = prior(MII);
91 VRM.addSpillSlotUse(StackSlot, LoadMI);
92 LoadedRegs.push_back(VirtReg);
93 ++NumLoads;
94 DOUT << '\t' << *LoadMI;
95 }
96
97 if (MO.isDef()) {
98 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
99 StackSlot, RC);
100 MachineInstr *StoreMI = next(MII);
101 VRM.addSpillSlotUse(StackSlot, StoreMI);
102 ++NumStores;
103 }
104 }
105 MF.getRegInfo().setPhysRegUsed(RReg);
106 MI.getOperand(i).setReg(RReg);
107 } else {
108 MF.getRegInfo().setPhysRegUsed(MO.getReg());
109 }
110 }
111 }
112
113 DOUT << '\t' << MI;
114 LoadedRegs.clear();
115 }
116 }
117 return true;
118}
119
120// ****************** //
121// Utility Functions //
122// ****************** //
123
124/// InvalidateKill - A MI that defines the specified register is being deleted,
125/// invalidate the register kill information.
126static void InvalidateKill(unsigned Reg, BitVector &RegKills,
127 std::vector<MachineOperand*> &KillOps) {
128 if (RegKills[Reg]) {
129 KillOps[Reg]->setIsKill(false);
130 KillOps[Reg] = NULL;
131 RegKills.reset(Reg);
132 }
133}
134
135/// findSinglePredSuccessor - Return via reference a vector of machine basic
136/// blocks each of which is a successor of the specified BB and has no other
137/// predecessor.
138static void findSinglePredSuccessor(MachineBasicBlock *MBB,
139 SmallVectorImpl<MachineBasicBlock *> &Succs) {
140 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
141 SE = MBB->succ_end(); SI != SE; ++SI) {
142 MachineBasicBlock *SuccMBB = *SI;
143 if (SuccMBB->pred_size() == 1)
144 Succs.push_back(SuccMBB);
145 }
146}
147
148/// InvalidateKills - MI is going to be deleted. If any of its operands are
149/// marked kill, then invalidate the information.
150static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
151 std::vector<MachineOperand*> &KillOps,
152 SmallVector<unsigned, 2> *KillRegs = NULL) {
153 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
154 MachineOperand &MO = MI.getOperand(i);
155 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
156 continue;
157 unsigned Reg = MO.getReg();
158 if (TargetRegisterInfo::isVirtualRegister(Reg))
159 continue;
160 if (KillRegs)
161 KillRegs->push_back(Reg);
162 assert(Reg < KillOps.size());
163 if (KillOps[Reg] == &MO) {
164 RegKills.reset(Reg);
165 KillOps[Reg] = NULL;
166 }
167 }
168}
169
170/// InvalidateRegDef - If the def operand of the specified def MI is now dead
171/// (since it's spill instruction is removed), mark it isDead. Also checks if
172/// the def MI has other definition operands that are not dead. Returns it by
173/// reference.
174static bool InvalidateRegDef(MachineBasicBlock::iterator I,
175 MachineInstr &NewDef, unsigned Reg,
176 bool &HasLiveDef) {
177 // Due to remat, it's possible this reg isn't being reused. That is,
178 // the def of this reg (by prev MI) is now dead.
179 MachineInstr *DefMI = I;
180 MachineOperand *DefOp = NULL;
181 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
182 MachineOperand &MO = DefMI->getOperand(i);
183 if (MO.isReg() && MO.isDef()) {
184 if (MO.getReg() == Reg)
185 DefOp = &MO;
186 else if (!MO.isDead())
187 HasLiveDef = true;
188 }
189 }
190 if (!DefOp)
191 return false;
192
193 bool FoundUse = false, Done = false;
194 MachineBasicBlock::iterator E = &NewDef;
195 ++I; ++E;
196 for (; !Done && I != E; ++I) {
197 MachineInstr *NMI = I;
198 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
199 MachineOperand &MO = NMI->getOperand(j);
200 if (!MO.isReg() || MO.getReg() != Reg)
201 continue;
202 if (MO.isUse())
203 FoundUse = true;
204 Done = true; // Stop after scanning all the operands of this MI.
205 }
206 }
207 if (!FoundUse) {
208 // Def is dead!
209 DefOp->setIsDead();
210 return true;
211 }
212 return false;
213}
214
215/// UpdateKills - Track and update kill info. If a MI reads a register that is
216/// marked kill, then it must be due to register reuse. Transfer the kill info
217/// over.
218static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
219 std::vector<MachineOperand*> &KillOps,
220 const TargetRegisterInfo* TRI) {
Owen Anderson1ed5b712009-03-11 22:31:21 +0000221 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
222 MachineOperand &MO = MI.getOperand(i);
223 if (!MO.isReg() || !MO.isUse())
224 continue;
225 unsigned Reg = MO.getReg();
226 if (Reg == 0)
227 continue;
228
229 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
230 // That can't be right. Register is killed but not re-defined and it's
231 // being reused. Let's fix that.
232 KillOps[Reg]->setIsKill(false);
233 KillOps[Reg] = NULL;
234 RegKills.reset(Reg);
Evan Chenga24752f2009-03-19 20:30:06 +0000235 if (!MI.isRegTiedToDefOperand(i))
Owen Anderson1ed5b712009-03-11 22:31:21 +0000236 // Unless it's a two-address operand, this is the new kill.
237 MO.setIsKill();
238 }
239 if (MO.isKill()) {
240 RegKills.set(Reg);
241 KillOps[Reg] = &MO;
242 }
243 }
244
245 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
246 const MachineOperand &MO = MI.getOperand(i);
247 if (!MO.isReg() || !MO.isDef())
248 continue;
249 unsigned Reg = MO.getReg();
250 RegKills.reset(Reg);
251 KillOps[Reg] = NULL;
252 // It also defines (or partially define) aliases.
253 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
254 RegKills.reset(*AS);
255 KillOps[*AS] = NULL;
256 }
257 }
258}
259
260/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
261///
262static void ReMaterialize(MachineBasicBlock &MBB,
263 MachineBasicBlock::iterator &MII,
264 unsigned DestReg, unsigned Reg,
265 const TargetInstrInfo *TII,
266 const TargetRegisterInfo *TRI,
267 VirtRegMap &VRM) {
268 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
269 MachineInstr *NewMI = prior(MII);
270 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
271 MachineOperand &MO = NewMI->getOperand(i);
272 if (!MO.isReg() || MO.getReg() == 0)
273 continue;
274 unsigned VirtReg = MO.getReg();
275 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
276 continue;
277 assert(MO.isUse());
278 unsigned SubIdx = MO.getSubReg();
279 unsigned Phys = VRM.getPhys(VirtReg);
280 assert(Phys);
281 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
282 MO.setReg(RReg);
283 }
284 ++NumReMats;
285}
286
287/// findSuperReg - Find the SubReg's super-register of given register class
288/// where its SubIdx sub-register is SubReg.
289static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
290 unsigned SubIdx, const TargetRegisterInfo *TRI) {
291 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
292 I != E; ++I) {
293 unsigned Reg = *I;
294 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
295 return Reg;
296 }
297 return 0;
298}
299
300// ******************************** //
301// Available Spills Implementation //
302// ******************************** //
303
304/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
305/// stackslot register. The register is still available but is no longer
306/// allowed to be modifed.
307void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
308 std::multimap<unsigned, int>::iterator I =
309 PhysRegsAvailable.lower_bound(PhysReg);
310 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
311 int SlotOrReMat = I->second;
312 I++;
313 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
314 "Bidirectional map mismatch!");
315 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
316 DOUT << "PhysReg " << TRI->getName(PhysReg)
317 << " copied, it is available for use but can no longer be modified\n";
318 }
319}
320
321/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
322/// stackslot register and its aliases. The register and its aliases may
323/// still available but is no longer allowed to be modifed.
324void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
325 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
326 disallowClobberPhysRegOnly(*AS);
327 disallowClobberPhysRegOnly(PhysReg);
328}
329
330/// ClobberPhysRegOnly - This is called when the specified physreg changes
331/// value. We use this to invalidate any info about stuff we thing lives in it.
332void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
333 std::multimap<unsigned, int>::iterator I =
334 PhysRegsAvailable.lower_bound(PhysReg);
335 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
336 int SlotOrReMat = I->second;
337 PhysRegsAvailable.erase(I++);
338 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
339 "Bidirectional map mismatch!");
340 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
341 DOUT << "PhysReg " << TRI->getName(PhysReg)
342 << " clobbered, invalidating ";
343 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
344 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
345 else
346 DOUT << "SS#" << SlotOrReMat << "\n";
347 }
348}
349
350/// ClobberPhysReg - This is called when the specified physreg changes
351/// value. We use this to invalidate any info about stuff we thing lives in
352/// it and any of its aliases.
353void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
354 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
355 ClobberPhysRegOnly(*AS);
356 ClobberPhysRegOnly(PhysReg);
357}
358
359/// AddAvailableRegsToLiveIn - Availability information is being kept coming
360/// into the specified MBB. Add available physical registers as potential
361/// live-in's. If they are reused in the MBB, they will be added to the
362/// live-in set to make register scavenger and post-allocation scheduler.
363void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
364 BitVector &RegKills,
365 std::vector<MachineOperand*> &KillOps) {
366 std::set<unsigned> NotAvailable;
367 for (std::multimap<unsigned, int>::iterator
368 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
369 I != E; ++I) {
370 unsigned Reg = I->first;
371 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
372 // FIXME: A temporary workaround. We can't reuse available value if it's
373 // not safe to move the def of the virtual register's class. e.g.
374 // X86::RFP* register classes. Do not add it as a live-in.
375 if (!TII->isSafeToMoveRegClassDefs(RC))
376 // This is no longer available.
377 NotAvailable.insert(Reg);
378 else {
379 MBB.addLiveIn(Reg);
380 InvalidateKill(Reg, RegKills, KillOps);
381 }
382
383 // Skip over the same register.
384 std::multimap<unsigned, int>::iterator NI = next(I);
385 while (NI != E && NI->first == Reg) {
386 ++I;
387 ++NI;
388 }
389 }
390
391 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
392 E = NotAvailable.end(); I != E; ++I) {
393 ClobberPhysReg(*I);
394 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
395 *SubRegs; ++SubRegs)
396 ClobberPhysReg(*SubRegs);
397 }
398}
399
400/// ModifyStackSlotOrReMat - This method is called when the value in a stack
401/// slot changes. This removes information about which register the previous
402/// value for this slot lives in (as the previous value is dead now).
403void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
404 std::map<int, unsigned>::iterator It =
405 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
406 if (It == SpillSlotsOrReMatsAvailable.end()) return;
407 unsigned Reg = It->second >> 1;
408 SpillSlotsOrReMatsAvailable.erase(It);
409
410 // This register may hold the value of multiple stack slots, only remove this
411 // stack slot from the set of values the register contains.
412 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
413 for (; ; ++I) {
414 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
415 "Map inverse broken!");
416 if (I->second == SlotOrReMat) break;
417 }
418 PhysRegsAvailable.erase(I);
419}
420
421// ************************** //
422// Reuse Info Implementation //
423// ************************** //
424
425/// GetRegForReload - We are about to emit a reload into PhysReg. If there
426/// is some other operand that is using the specified register, either pick
427/// a new register to use, or evict the previous reload and use this reg.
428unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
429 AvailableSpills &Spills,
430 std::vector<MachineInstr*> &MaybeDeadStores,
431 SmallSet<unsigned, 8> &Rejected,
432 BitVector &RegKills,
433 std::vector<MachineOperand*> &KillOps,
434 VirtRegMap &VRM) {
435 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
436 .getInstrInfo();
437
438 if (Reuses.empty()) return PhysReg; // This is most often empty.
439
440 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
441 ReusedOp &Op = Reuses[ro];
442 // If we find some other reuse that was supposed to use this register
443 // exactly for its reload, we can change this reload to use ITS reload
444 // register. That is, unless its reload register has already been
445 // considered and subsequently rejected because it has also been reused
446 // by another operand.
447 if (Op.PhysRegReused == PhysReg &&
448 Rejected.count(Op.AssignedPhysReg) == 0) {
449 // Yup, use the reload register that we didn't use before.
450 unsigned NewReg = Op.AssignedPhysReg;
451 Rejected.insert(PhysReg);
452 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
453 RegKills, KillOps, VRM);
454 } else {
455 // Otherwise, we might also have a problem if a previously reused
456 // value aliases the new register. If so, codegen the previous reload
457 // and use this one.
458 unsigned PRRU = Op.PhysRegReused;
459 const TargetRegisterInfo *TRI = Spills.getRegInfo();
460 if (TRI->areAliases(PRRU, PhysReg)) {
461 // Okay, we found out that an alias of a reused register
462 // was used. This isn't good because it means we have
463 // to undo a previous reuse.
464 MachineBasicBlock *MBB = MI->getParent();
465 const TargetRegisterClass *AliasRC =
466 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
467
468 // Copy Op out of the vector and remove it, we're going to insert an
469 // explicit load for it.
470 ReusedOp NewOp = Op;
471 Reuses.erase(Reuses.begin()+ro);
472
473 // Ok, we're going to try to reload the assigned physreg into the
474 // slot that we were supposed to in the first place. However, that
475 // register could hold a reuse. Check to see if it conflicts or
476 // would prefer us to use a different register.
477 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
478 MI, Spills, MaybeDeadStores,
479 Rejected, RegKills, KillOps, VRM);
480
481 MachineBasicBlock::iterator MII = MI;
482 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
483 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
484 } else {
485 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
486 NewOp.StackSlotOrReMat, AliasRC);
487 MachineInstr *LoadMI = prior(MII);
488 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
489 // Any stores to this stack slot are not dead anymore.
490 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
491 ++NumLoads;
492 }
493 Spills.ClobberPhysReg(NewPhysReg);
494 Spills.ClobberPhysReg(NewOp.PhysRegReused);
495
496 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
497 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
498 MI->getOperand(NewOp.Operand).setReg(RReg);
499
500 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
501 --MII;
502 UpdateKills(*MII, RegKills, KillOps, TRI);
503 DOUT << '\t' << *MII;
504
505 DOUT << "Reuse undone!\n";
506 --NumReused;
507
508 // Finally, PhysReg is now available, go ahead and use it.
509 return PhysReg;
510 }
511 }
512 }
513 return PhysReg;
514}
515
516// ***************************** //
517// Local Spiller Implementation //
518// ***************************** //
519
520bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
521 RegInfo = &MF.getRegInfo();
522 TRI = MF.getTarget().getRegisterInfo();
523 TII = MF.getTarget().getInstrInfo();
524 DOUT << "\n**** Local spiller rewriting function '"
525 << MF.getFunction()->getName() << "':\n";
526 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
527 " ****\n";
528 DEBUG(MF.dump());
529
530 // Spills - Keep track of which spilled values are available in physregs
531 // so that we can choose to reuse the physregs instead of emitting
532 // reloads. This is usually refreshed per basic block.
533 AvailableSpills Spills(TRI, TII);
534
535 // Keep track of kill information.
536 BitVector RegKills(TRI->getNumRegs());
537 std::vector<MachineOperand*> KillOps;
538 KillOps.resize(TRI->getNumRegs(), NULL);
539
540 // SingleEntrySuccs - Successor blocks which have a single predecessor.
541 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
542 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
543
544 // Traverse the basic blocks depth first.
545 MachineBasicBlock *Entry = MF.begin();
546 SmallPtrSet<MachineBasicBlock*,16> Visited;
547 for (df_ext_iterator<MachineBasicBlock*,
548 SmallPtrSet<MachineBasicBlock*,16> >
549 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
550 DFI != E; ++DFI) {
551 MachineBasicBlock *MBB = *DFI;
552 if (!EarlyVisited.count(MBB))
553 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
554
555 // If this MBB is the only predecessor of a successor. Keep the
556 // availability information and visit it next.
557 do {
558 // Keep visiting single predecessor successor as long as possible.
559 SinglePredSuccs.clear();
560 findSinglePredSuccessor(MBB, SinglePredSuccs);
561 if (SinglePredSuccs.empty())
562 MBB = 0;
563 else {
564 // FIXME: More than one successors, each of which has MBB has
565 // the only predecessor.
566 MBB = SinglePredSuccs[0];
567 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
568 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
569 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
570 }
571 }
572 } while (MBB);
573
574 // Clear the availability info.
575 Spills.clear();
576 }
577
578 DOUT << "**** Post Machine Instrs ****\n";
579 DEBUG(MF.dump());
580
581 // Mark unused spill slots.
582 MachineFrameInfo *MFI = MF.getFrameInfo();
583 int SS = VRM.getLowSpillSlot();
584 if (SS != VirtRegMap::NO_STACK_SLOT)
585 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
586 if (!VRM.isSpillSlotUsed(SS)) {
587 MFI->RemoveStackObject(SS);
588 ++NumDSS;
589 }
590
591 return true;
592}
593
594
595/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
596/// instruction. e.g.
597/// xorl %edi, %eax
598/// movl %eax, -32(%ebp)
599/// movl -36(%ebp), %eax
600/// orl %eax, -32(%ebp)
601/// ==>
602/// xorl %edi, %eax
603/// orl -36(%ebp), %eax
604/// mov %eax, -32(%ebp)
605/// This enables unfolding optimization for a subsequent instruction which will
606/// also eliminate the newly introduced store instruction.
607bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
608 MachineBasicBlock::iterator &MII,
609 std::vector<MachineInstr*> &MaybeDeadStores,
610 AvailableSpills &Spills,
611 BitVector &RegKills,
612 std::vector<MachineOperand*> &KillOps,
613 VirtRegMap &VRM) {
614 MachineFunction &MF = *MBB.getParent();
615 MachineInstr &MI = *MII;
616 unsigned UnfoldedOpc = 0;
617 unsigned UnfoldPR = 0;
618 unsigned UnfoldVR = 0;
619 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
620 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
621 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
622 // Only transform a MI that folds a single register.
623 if (UnfoldedOpc)
624 return false;
625 UnfoldVR = I->second.first;
626 VirtRegMap::ModRef MR = I->second.second;
627 // MI2VirtMap be can updated which invalidate the iterator.
628 // Increment the iterator first.
629 ++I;
630 if (VRM.isAssignedReg(UnfoldVR))
631 continue;
632 // If this reference is not a use, any previous store is now dead.
633 // Otherwise, the store to this stack slot is not dead anymore.
634 FoldedSS = VRM.getStackSlot(UnfoldVR);
635 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
636 if (DeadStore && (MR & VirtRegMap::isModRef)) {
637 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
638 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
639 continue;
640 UnfoldPR = PhysReg;
641 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
642 false, true);
643 }
644 }
645
646 if (!UnfoldedOpc)
647 return false;
648
649 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
650 MachineOperand &MO = MI.getOperand(i);
651 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
652 continue;
653 unsigned VirtReg = MO.getReg();
654 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
655 continue;
656 if (VRM.isAssignedReg(VirtReg)) {
657 unsigned PhysReg = VRM.getPhys(VirtReg);
658 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
659 return false;
660 } else if (VRM.isReMaterialized(VirtReg))
661 continue;
662 int SS = VRM.getStackSlot(VirtReg);
663 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
664 if (PhysReg) {
665 if (TRI->regsOverlap(PhysReg, UnfoldPR))
666 return false;
667 continue;
668 }
669 if (VRM.hasPhys(VirtReg)) {
670 PhysReg = VRM.getPhys(VirtReg);
671 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
672 continue;
673 }
674
675 // Ok, we'll need to reload the value into a register which makes
676 // it impossible to perform the store unfolding optimization later.
677 // Let's see if it is possible to fold the load if the store is
678 // unfolded. This allows us to perform the store unfolding
679 // optimization.
680 SmallVector<MachineInstr*, 4> NewMIs;
681 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
682 assert(NewMIs.size() == 1);
683 MachineInstr *NewMI = NewMIs.back();
684 NewMIs.clear();
685 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
686 assert(Idx != -1);
687 SmallVector<unsigned, 1> Ops;
688 Ops.push_back(Idx);
689 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
690 if (FoldedMI) {
691 VRM.addSpillSlotUse(SS, FoldedMI);
692 if (!VRM.hasPhys(UnfoldVR))
693 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
694 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
695 MII = MBB.insert(MII, FoldedMI);
696 InvalidateKills(MI, RegKills, KillOps);
697 VRM.RemoveMachineInstrFromMaps(&MI);
698 MBB.erase(&MI);
699 MF.DeleteMachineInstr(NewMI);
700 return true;
701 }
702 MF.DeleteMachineInstr(NewMI);
703 }
704 }
705 return false;
706}
707
708/// CommuteToFoldReload -
709/// Look for
710/// r1 = load fi#1
711/// r1 = op r1, r2<kill>
712/// store r1, fi#1
713///
714/// If op is commutable and r2 is killed, then we can xform these to
715/// r2 = op r2, fi#1
716/// store r2, fi#1
717bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
718 MachineBasicBlock::iterator &MII,
719 unsigned VirtReg, unsigned SrcReg, int SS,
720 AvailableSpills &Spills,
721 BitVector &RegKills,
722 std::vector<MachineOperand*> &KillOps,
723 const TargetRegisterInfo *TRI,
724 VirtRegMap &VRM) {
725 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
726 return false;
727
728 MachineFunction &MF = *MBB.getParent();
729 MachineInstr &MI = *MII;
730 MachineBasicBlock::iterator DefMII = prior(MII);
731 MachineInstr *DefMI = DefMII;
732 const TargetInstrDesc &TID = DefMI->getDesc();
733 unsigned NewDstIdx;
734 if (DefMII != MBB.begin() &&
735 TID.isCommutable() &&
736 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
737 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
738 unsigned NewReg = NewDstMO.getReg();
739 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
740 return false;
741 MachineInstr *ReloadMI = prior(DefMII);
742 int FrameIdx;
743 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
744 if (DestReg != SrcReg || FrameIdx != SS)
745 return false;
746 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
747 if (UseIdx == -1)
748 return false;
Evan Chenga24752f2009-03-19 20:30:06 +0000749 unsigned DefIdx;
750 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
Owen Anderson1ed5b712009-03-11 22:31:21 +0000751 return false;
752 assert(DefMI->getOperand(DefIdx).isReg() &&
753 DefMI->getOperand(DefIdx).getReg() == SrcReg);
754
755 // Now commute def instruction.
756 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
757 if (!CommutedMI)
758 return false;
759 SmallVector<unsigned, 1> Ops;
760 Ops.push_back(NewDstIdx);
761 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
762 // Not needed since foldMemoryOperand returns new MI.
763 MF.DeleteMachineInstr(CommutedMI);
764 if (!FoldedMI)
765 return false;
766
767 VRM.addSpillSlotUse(SS, FoldedMI);
768 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
769 // Insert new def MI and spill MI.
770 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
771 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
772 MII = prior(MII);
773 MachineInstr *StoreMI = MII;
774 VRM.addSpillSlotUse(SS, StoreMI);
775 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
776 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
777
778 // Delete all 3 old instructions.
779 InvalidateKills(*ReloadMI, RegKills, KillOps);
780 VRM.RemoveMachineInstrFromMaps(ReloadMI);
781 MBB.erase(ReloadMI);
782 InvalidateKills(*DefMI, RegKills, KillOps);
783 VRM.RemoveMachineInstrFromMaps(DefMI);
784 MBB.erase(DefMI);
785 InvalidateKills(MI, RegKills, KillOps);
786 VRM.RemoveMachineInstrFromMaps(&MI);
787 MBB.erase(&MI);
788
789 // If NewReg was previously holding value of some SS, it's now clobbered.
790 // This has to be done now because it's a physical register. When this
791 // instruction is re-visited, it's ignored.
792 Spills.ClobberPhysReg(NewReg);
793
794 ++NumCommutes;
795 return true;
796 }
797
798 return false;
799}
800
801/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
802/// the last store to the same slot is now dead. If so, remove the last store.
Bill Wendlinge67f5e42009-03-31 08:41:31 +0000803void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
Owen Anderson1ed5b712009-03-11 22:31:21 +0000804 MachineBasicBlock::iterator &MII,
805 int Idx, unsigned PhysReg, int StackSlot,
806 const TargetRegisterClass *RC,
807 bool isAvailable, MachineInstr *&LastStore,
808 AvailableSpills &Spills,
809 SmallSet<MachineInstr*, 4> &ReMatDefs,
810 BitVector &RegKills,
811 std::vector<MachineOperand*> &KillOps,
812 VirtRegMap &VRM) {
813 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
814 MachineInstr *StoreMI = next(MII);
815 VRM.addSpillSlotUse(StackSlot, StoreMI);
816 DOUT << "Store:\t" << *StoreMI;
817
818 // If there is a dead store to this stack slot, nuke it now.
Bill Wendlinge67f5e42009-03-31 08:41:31 +0000819 if (LastStore) {
820 DOUT << "Removed dead store:\t" << *LastStore;
821 ++NumDSE;
822 SmallVector<unsigned, 2> KillRegs;
823 InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
824 MachineBasicBlock::iterator PrevMII = LastStore;
825 bool CheckDef = PrevMII != MBB.begin();
826 if (CheckDef)
827 --PrevMII;
828 VRM.RemoveMachineInstrFromMaps(LastStore);
829 MBB.erase(LastStore);
830 if (CheckDef) {
831 // Look at defs of killed registers on the store. Mark the defs
832 // as dead since the store has been deleted and they aren't
833 // being reused.
834 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
835 bool HasOtherDef = false;
836 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
837 MachineInstr *DeadDef = PrevMII;
838 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
839 // FIXME: This assumes a remat def does not have side
840 // effects.
841 VRM.RemoveMachineInstrFromMaps(DeadDef);
842 MBB.erase(DeadDef);
843 ++NumDRM;
844 }
845 }
846 }
847 }
848 }
Owen Anderson1ed5b712009-03-11 22:31:21 +0000849
850 LastStore = next(MII);
851
852 // If the stack slot value was previously available in some other
853 // register, change it now. Otherwise, make the register available,
854 // in PhysReg.
855 Spills.ModifyStackSlotOrReMat(StackSlot);
856 Spills.ClobberPhysReg(PhysReg);
857 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
858 ++NumStores;
859}
860
861/// TransferDeadness - A identity copy definition is dead and it's being
862/// removed. Find the last def or use and mark it as dead / kill.
863void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
864 unsigned Reg, BitVector &RegKills,
865 std::vector<MachineOperand*> &KillOps) {
866 int LastUDDist = -1;
867 MachineInstr *LastUDMI = NULL;
868 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
869 RE = RegInfo->reg_end(); RI != RE; ++RI) {
870 MachineInstr *UDMI = &*RI;
871 if (UDMI->getParent() != MBB)
872 continue;
873 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
874 if (DI == DistanceMap.end() || DI->second > CurDist)
875 continue;
876 if ((int)DI->second < LastUDDist)
877 continue;
878 LastUDDist = DI->second;
879 LastUDMI = UDMI;
880 }
881
882 if (LastUDMI) {
Owen Anderson1ed5b712009-03-11 22:31:21 +0000883 MachineOperand *LastUD = NULL;
884 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
885 MachineOperand &MO = LastUDMI->getOperand(i);
886 if (!MO.isReg() || MO.getReg() != Reg)
887 continue;
888 if (!LastUD || (LastUD->isUse() && MO.isDef()))
889 LastUD = &MO;
Evan Chenga24752f2009-03-19 20:30:06 +0000890 if (LastUDMI->isRegTiedToDefOperand(i))
Owen Anderson1ed5b712009-03-11 22:31:21 +0000891 return;
892 }
893 if (LastUD->isDef())
894 LastUD->setIsDead();
895 else {
896 LastUD->setIsKill();
897 RegKills.set(Reg);
898 KillOps[Reg] = LastUD;
899 }
900 }
901}
902
903/// rewriteMBB - Keep track of which spills are available even after the
904/// register allocator is done with them. If possible, avid reloading vregs.
905void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
906 AvailableSpills &Spills, BitVector &RegKills,
907 std::vector<MachineOperand*> &KillOps) {
908 DOUT << "\n**** Local spiller rewriting MBB '"
Bill Wendlingfd302b72009-03-30 20:32:22 +0000909 << MBB.getBasicBlock()->getName() << "':\n";
Owen Anderson1ed5b712009-03-11 22:31:21 +0000910
911 MachineFunction &MF = *MBB.getParent();
912
913 // MaybeDeadStores - When we need to write a value back into a stack slot,
914 // keep track of the inserted store. If the stack slot value is never read
915 // (because the value was used from some available register, for example), and
916 // subsequently stored to, the original store is dead. This map keeps track
917 // of inserted stores that are not used. If we see a subsequent store to the
918 // same stack slot, the original store is deleted.
919 std::vector<MachineInstr*> MaybeDeadStores;
920 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
921
922 // ReMatDefs - These are rematerializable def MIs which are not deleted.
923 SmallSet<MachineInstr*, 4> ReMatDefs;
924
925 // Clear kill info.
926 SmallSet<unsigned, 2> KilledMIRegs;
927 RegKills.reset();
928 KillOps.clear();
929 KillOps.resize(TRI->getNumRegs(), NULL);
930
931 unsigned Dist = 0;
932 DistanceMap.clear();
933 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
934 MII != E; ) {
935 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
936
937 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
938 bool Erased = false;
939 bool BackTracked = false;
940 if (PrepForUnfoldOpti(MBB, MII,
941 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
942 NextMII = next(MII);
943
944 MachineInstr &MI = *MII;
Owen Anderson1ed5b712009-03-11 22:31:21 +0000945
946 if (VRM.hasEmergencySpills(&MI)) {
947 // Spill physical register(s) in the rare case the allocator has run out
948 // of registers to allocate.
949 SmallSet<int, 4> UsedSS;
950 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
951 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
952 unsigned PhysReg = EmSpills[i];
953 const TargetRegisterClass *RC =
954 TRI->getPhysicalRegisterRegClass(PhysReg);
955 assert(RC && "Unable to determine register class!");
956 int SS = VRM.getEmergencySpillSlot(RC);
957 if (UsedSS.count(SS))
958 assert(0 && "Need to spill more than one physical registers!");
959 UsedSS.insert(SS);
960 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
961 MachineInstr *StoreMI = prior(MII);
962 VRM.addSpillSlotUse(SS, StoreMI);
963 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
964 MachineInstr *LoadMI = next(MII);
965 VRM.addSpillSlotUse(SS, LoadMI);
966 ++NumPSpills;
967 }
968 NextMII = next(MII);
969 }
970
971 // Insert restores here if asked to.
972 if (VRM.isRestorePt(&MI)) {
973 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
974 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
975 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
976 if (!VRM.getPreSplitReg(VirtReg))
977 continue; // Split interval spilled again.
978 unsigned Phys = VRM.getPhys(VirtReg);
979 RegInfo->setPhysRegUsed(Phys);
980
981 // Check if the value being restored if available. If so, it must be
982 // from a predecessor BB that fallthrough into this BB. We do not
983 // expect:
984 // BB1:
985 // r1 = load fi#1
986 // ...
987 // = r1<kill>
988 // ... # r1 not clobbered
989 // ...
990 // = load fi#1
991 bool DoReMat = VRM.isReMaterialized(VirtReg);
992 int SSorRMId = DoReMat
993 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
994 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
995 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
996 if (InReg == Phys) {
997 // If the value is already available in the expected register, save
998 // a reload / remat.
999 if (SSorRMId)
1000 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1001 else
1002 DOUT << "Reusing SS#" << SSorRMId;
1003 DOUT << " from physreg "
1004 << TRI->getName(InReg) << " for vreg"
1005 << VirtReg <<" instead of reloading into physreg "
1006 << TRI->getName(Phys) << "\n";
1007 ++NumOmitted;
1008 continue;
1009 } else if (InReg && InReg != Phys) {
1010 if (SSorRMId)
1011 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1012 else
1013 DOUT << "Reusing SS#" << SSorRMId;
1014 DOUT << " from physreg "
1015 << TRI->getName(InReg) << " for vreg"
1016 << VirtReg <<" by copying it into physreg "
1017 << TRI->getName(Phys) << "\n";
1018
1019 // If the reloaded / remat value is available in another register,
1020 // copy it to the desired register.
1021 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1022
1023 // This invalidates Phys.
1024 Spills.ClobberPhysReg(Phys);
1025 // Remember it's available.
1026 Spills.addAvailable(SSorRMId, Phys);
1027
1028 // Mark is killed.
1029 MachineInstr *CopyMI = prior(MII);
1030 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1031 KillOpnd->setIsKill();
1032 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1033
1034 DOUT << '\t' << *CopyMI;
1035 ++NumCopified;
1036 continue;
1037 }
1038
1039 if (VRM.isReMaterialized(VirtReg)) {
1040 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1041 } else {
1042 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1043 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1044 MachineInstr *LoadMI = prior(MII);
1045 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1046 ++NumLoads;
1047 }
1048
1049 // This invalidates Phys.
1050 Spills.ClobberPhysReg(Phys);
1051 // Remember it's available.
1052 Spills.addAvailable(SSorRMId, Phys);
1053
1054 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1055 DOUT << '\t' << *prior(MII);
1056 }
1057 }
1058
1059 // Insert spills here if asked to.
1060 if (VRM.isSpillPt(&MI)) {
1061 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1062 VRM.getSpillPtSpills(&MI);
1063 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1064 unsigned VirtReg = SpillRegs[i].first;
1065 bool isKill = SpillRegs[i].second;
1066 if (!VRM.getPreSplitReg(VirtReg))
1067 continue; // Split interval spilled again.
1068 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1069 unsigned Phys = VRM.getPhys(VirtReg);
1070 int StackSlot = VRM.getStackSlot(VirtReg);
1071 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1072 MachineInstr *StoreMI = next(MII);
1073 VRM.addSpillSlotUse(StackSlot, StoreMI);
1074 DOUT << "Store:\t" << *StoreMI;
1075 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1076 }
1077 NextMII = next(MII);
1078 }
1079
1080 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1081 /// reuse.
1082 ReuseInfo ReusedOperands(MI, TRI);
1083 SmallVector<unsigned, 4> VirtUseOps;
1084 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1085 MachineOperand &MO = MI.getOperand(i);
1086 if (!MO.isReg() || MO.getReg() == 0)
1087 continue; // Ignore non-register operands.
1088
1089 unsigned VirtReg = MO.getReg();
1090 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1091 // Ignore physregs for spilling, but remember that it is used by this
1092 // function.
1093 RegInfo->setPhysRegUsed(VirtReg);
1094 continue;
1095 }
1096
1097 // We want to process implicit virtual register uses first.
1098 if (MO.isImplicit())
1099 // If the virtual register is implicitly defined, emit a implicit_def
1100 // before so scavenger knows it's "defined".
1101 VirtUseOps.insert(VirtUseOps.begin(), i);
1102 else
1103 VirtUseOps.push_back(i);
1104 }
1105
1106 // Process all of the spilled uses and all non spilled reg references.
1107 SmallVector<int, 2> PotentialDeadStoreSlots;
1108 KilledMIRegs.clear();
1109 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1110 unsigned i = VirtUseOps[j];
1111 MachineOperand &MO = MI.getOperand(i);
1112 unsigned VirtReg = MO.getReg();
1113 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1114 "Not a virtual register?");
1115
1116 unsigned SubIdx = MO.getSubReg();
1117 if (VRM.isAssignedReg(VirtReg)) {
1118 // This virtual register was assigned a physreg!
1119 unsigned Phys = VRM.getPhys(VirtReg);
1120 RegInfo->setPhysRegUsed(Phys);
1121 if (MO.isDef())
1122 ReusedOperands.markClobbered(Phys);
1123 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1124 MI.getOperand(i).setReg(RReg);
1125 if (VRM.isImplicitlyDefined(VirtReg))
1126 BuildMI(MBB, &MI, MI.getDebugLoc(),
1127 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1128 continue;
1129 }
1130
1131 // This virtual register is now known to be a spilled value.
1132 if (!MO.isUse())
1133 continue; // Handle defs in the loop below (handle use&def here though)
1134
1135 bool DoReMat = VRM.isReMaterialized(VirtReg);
1136 int SSorRMId = DoReMat
1137 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1138 int ReuseSlot = SSorRMId;
1139
1140 // Check to see if this stack slot is available.
1141 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1142
1143 // If this is a sub-register use, make sure the reuse register is in the
1144 // right register class. For example, for x86 not all of the 32-bit
1145 // registers have accessible sub-registers.
1146 // Similarly so for EXTRACT_SUBREG. Consider this:
1147 // EDI = op
1148 // MOV32_mr fi#1, EDI
1149 // ...
1150 // = EXTRACT_SUBREG fi#1
1151 // fi#1 is available in EDI, but it cannot be reused because it's not in
1152 // the right register file.
1153 if (PhysReg &&
1154 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1155 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1156 if (!RC->contains(PhysReg))
1157 PhysReg = 0;
1158 }
1159
1160 if (PhysReg) {
1161 // This spilled operand might be part of a two-address operand. If this
1162 // is the case, then changing it will necessarily require changing the
1163 // def part of the instruction as well. However, in some cases, we
1164 // aren't allowed to modify the reused register. If none of these cases
1165 // apply, reuse it.
1166 bool CanReuse = true;
Evan Chenga24752f2009-03-19 20:30:06 +00001167 bool isTied = MI.isRegTiedToDefOperand(i);
1168 if (isTied) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001169 // Okay, we have a two address operand. We can reuse this physreg as
1170 // long as we are allowed to clobber the value and there isn't an
1171 // earlier def that has already clobbered the physreg.
Evan Chenge47b0082009-03-17 01:23:09 +00001172 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1173 Spills.canClobberPhysReg(PhysReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001174 }
1175
1176 if (CanReuse) {
1177 // If this stack slot value is already available, reuse it!
1178 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1179 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1180 else
1181 DOUT << "Reusing SS#" << ReuseSlot;
1182 DOUT << " from physreg "
1183 << TRI->getName(PhysReg) << " for vreg"
1184 << VirtReg <<" instead of reloading into physreg "
1185 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1186 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1187 MI.getOperand(i).setReg(RReg);
1188
1189 // The only technical detail we have is that we don't know that
1190 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1191 // later in the instruction. In particular, consider 'op V1, V2'.
1192 // If V1 is available in physreg R0, we would choose to reuse it
1193 // here, instead of reloading it into the register the allocator
1194 // indicated (say R1). However, V2 might have to be reloaded
1195 // later, and it might indicate that it needs to live in R0. When
1196 // this occurs, we need to have information available that
1197 // indicates it is safe to use R1 for the reload instead of R0.
1198 //
1199 // To further complicate matters, we might conflict with an alias,
1200 // or R0 and R1 might not be compatible with each other. In this
1201 // case, we actually insert a reload for V1 in R1, ensuring that
1202 // we can get at R0 or its alias.
1203 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1204 VRM.getPhys(VirtReg), VirtReg);
Evan Chenga24752f2009-03-19 20:30:06 +00001205 if (isTied)
Owen Anderson1ed5b712009-03-11 22:31:21 +00001206 // Only mark it clobbered if this is a use&def operand.
1207 ReusedOperands.markClobbered(PhysReg);
1208 ++NumReused;
1209
1210 if (MI.getOperand(i).isKill() &&
1211 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1212
1213 // The store of this spilled value is potentially dead, but we
1214 // won't know for certain until we've confirmed that the re-use
1215 // above is valid, which means waiting until the other operands
1216 // are processed. For now we just track the spill slot, we'll
1217 // remove it after the other operands are processed if valid.
1218
1219 PotentialDeadStoreSlots.push_back(ReuseSlot);
1220 }
1221
1222 // Mark is isKill if it's there no other uses of the same virtual
1223 // register and it's not a two-address operand. IsKill will be
1224 // unset if reg is reused.
Evan Chenga24752f2009-03-19 20:30:06 +00001225 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001226 MI.getOperand(i).setIsKill();
1227 KilledMIRegs.insert(VirtReg);
1228 }
1229
1230 continue;
1231 } // CanReuse
1232
1233 // Otherwise we have a situation where we have a two-address instruction
1234 // whose mod/ref operand needs to be reloaded. This reload is already
1235 // available in some register "PhysReg", but if we used PhysReg as the
1236 // operand to our 2-addr instruction, the instruction would modify
1237 // PhysReg. This isn't cool if something later uses PhysReg and expects
1238 // to get its initial value.
1239 //
1240 // To avoid this problem, and to avoid doing a load right after a store,
1241 // we emit a copy from PhysReg into the designated register for this
1242 // operand.
1243 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1244 assert(DesignatedReg && "Must map virtreg to physreg!");
1245
1246 // Note that, if we reused a register for a previous operand, the
1247 // register we want to reload into might not actually be
1248 // available. If this occurs, use the register indicated by the
1249 // reuser.
1250 if (ReusedOperands.hasReuses())
1251 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1252 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1253
1254 // If the mapped designated register is actually the physreg we have
1255 // incoming, we don't need to inserted a dead copy.
1256 if (DesignatedReg == PhysReg) {
1257 // If this stack slot value is already available, reuse it!
1258 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1259 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1260 else
1261 DOUT << "Reusing SS#" << ReuseSlot;
1262 DOUT << " from physreg " << TRI->getName(PhysReg)
1263 << " for vreg" << VirtReg
1264 << " instead of reloading into same physreg.\n";
1265 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1266 MI.getOperand(i).setReg(RReg);
1267 ReusedOperands.markClobbered(RReg);
1268 ++NumReused;
1269 continue;
1270 }
1271
1272 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1273 RegInfo->setPhysRegUsed(DesignatedReg);
1274 ReusedOperands.markClobbered(DesignatedReg);
1275 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1276
1277 MachineInstr *CopyMI = prior(MII);
1278 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1279
1280 // This invalidates DesignatedReg.
1281 Spills.ClobberPhysReg(DesignatedReg);
1282
1283 Spills.addAvailable(ReuseSlot, DesignatedReg);
1284 unsigned RReg =
1285 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1286 MI.getOperand(i).setReg(RReg);
1287 DOUT << '\t' << *prior(MII);
1288 ++NumReused;
1289 continue;
1290 } // if (PhysReg)
1291
1292 // Otherwise, reload it and remember that we have it.
1293 PhysReg = VRM.getPhys(VirtReg);
1294 assert(PhysReg && "Must map virtreg to physreg!");
1295
1296 // Note that, if we reused a register for a previous operand, the
1297 // register we want to reload into might not actually be
1298 // available. If this occurs, use the register indicated by the
1299 // reuser.
1300 if (ReusedOperands.hasReuses())
1301 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1302 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1303
1304 RegInfo->setPhysRegUsed(PhysReg);
1305 ReusedOperands.markClobbered(PhysReg);
1306 if (DoReMat) {
1307 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1308 } else {
1309 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1310 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1311 MachineInstr *LoadMI = prior(MII);
1312 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1313 ++NumLoads;
1314 }
1315 // This invalidates PhysReg.
1316 Spills.ClobberPhysReg(PhysReg);
1317
1318 // Any stores to this stack slot are not dead anymore.
1319 if (!DoReMat)
1320 MaybeDeadStores[SSorRMId] = NULL;
1321 Spills.addAvailable(SSorRMId, PhysReg);
1322 // Assumes this is the last use. IsKill will be unset if reg is reused
1323 // unless it's a two-address operand.
Evan Chenga24752f2009-03-19 20:30:06 +00001324 if (!MI.isRegTiedToDefOperand(i) &&
Owen Anderson1ed5b712009-03-11 22:31:21 +00001325 KilledMIRegs.count(VirtReg) == 0) {
1326 MI.getOperand(i).setIsKill();
1327 KilledMIRegs.insert(VirtReg);
1328 }
1329 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1330 MI.getOperand(i).setReg(RReg);
1331 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1332 DOUT << '\t' << *prior(MII);
1333 }
1334
1335 // Ok - now we can remove stores that have been confirmed dead.
1336 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1337 // This was the last use and the spilled value is still available
1338 // for reuse. That means the spill was unnecessary!
1339 int PDSSlot = PotentialDeadStoreSlots[j];
1340 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1341 if (DeadStore) {
1342 DOUT << "Removed dead store:\t" << *DeadStore;
1343 InvalidateKills(*DeadStore, RegKills, KillOps);
1344 VRM.RemoveMachineInstrFromMaps(DeadStore);
1345 MBB.erase(DeadStore);
1346 MaybeDeadStores[PDSSlot] = NULL;
1347 ++NumDSE;
1348 }
1349 }
1350
1351
1352 DOUT << '\t' << MI;
1353
1354
1355 // If we have folded references to memory operands, make sure we clear all
1356 // physical registers that may contain the value of the spilled virtual
1357 // register
1358 SmallSet<int, 2> FoldedSS;
1359 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1360 unsigned VirtReg = I->second.first;
1361 VirtRegMap::ModRef MR = I->second.second;
1362 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1363
1364 // MI2VirtMap be can updated which invalidate the iterator.
1365 // Increment the iterator first.
1366 ++I;
1367 int SS = VRM.getStackSlot(VirtReg);
1368 if (SS == VirtRegMap::NO_STACK_SLOT)
1369 continue;
1370 FoldedSS.insert(SS);
1371 DOUT << " - StackSlot: " << SS << "\n";
1372
1373 // If this folded instruction is just a use, check to see if it's a
1374 // straight load from the virt reg slot.
1375 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1376 int FrameIdx;
1377 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1378 if (DestReg && FrameIdx == SS) {
1379 // If this spill slot is available, turn it into a copy (or nothing)
1380 // instead of leaving it as a load!
1381 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1382 DOUT << "Promoted Load To Copy: " << MI;
1383 if (DestReg != InReg) {
1384 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1385 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1386 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1387 unsigned SubIdx = DefMO->getSubReg();
1388 // Revisit the copy so we make sure to notice the effects of the
1389 // operation on the destreg (either needing to RA it if it's
1390 // virtual or needing to clobber any values if it's physical).
1391 NextMII = &MI;
1392 --NextMII; // backtrack to the copy.
1393 // Propagate the sub-register index over.
1394 if (SubIdx) {
1395 DefMO = NextMII->findRegisterDefOperand(DestReg);
1396 DefMO->setSubReg(SubIdx);
1397 }
1398
1399 // Mark is killed.
1400 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1401 KillOpnd->setIsKill();
1402
1403 BackTracked = true;
1404 } else {
1405 DOUT << "Removing now-noop copy: " << MI;
1406 // Unset last kill since it's being reused.
1407 InvalidateKill(InReg, RegKills, KillOps);
Evan Chenge47b0082009-03-17 01:23:09 +00001408 Spills.disallowClobberPhysReg(InReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001409 }
1410
1411 InvalidateKills(MI, RegKills, KillOps);
1412 VRM.RemoveMachineInstrFromMaps(&MI);
1413 MBB.erase(&MI);
1414 Erased = true;
1415 goto ProcessNextInst;
1416 }
1417 } else {
1418 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1419 SmallVector<MachineInstr*, 4> NewMIs;
1420 if (PhysReg &&
1421 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1422 MBB.insert(MII, NewMIs[0]);
1423 InvalidateKills(MI, RegKills, KillOps);
1424 VRM.RemoveMachineInstrFromMaps(&MI);
1425 MBB.erase(&MI);
1426 Erased = true;
1427 --NextMII; // backtrack to the unfolded instruction.
1428 BackTracked = true;
1429 goto ProcessNextInst;
1430 }
1431 }
1432 }
1433
1434 // If this reference is not a use, any previous store is now dead.
1435 // Otherwise, the store to this stack slot is not dead anymore.
1436 MachineInstr* DeadStore = MaybeDeadStores[SS];
1437 if (DeadStore) {
1438 bool isDead = !(MR & VirtRegMap::isRef);
1439 MachineInstr *NewStore = NULL;
1440 if (MR & VirtRegMap::isModRef) {
1441 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1442 SmallVector<MachineInstr*, 4> NewMIs;
1443 // We can reuse this physreg as long as we are allowed to clobber
1444 // the value and there isn't an earlier def that has already clobbered
1445 // the physreg.
1446 if (PhysReg &&
Evan Chenge47b0082009-03-17 01:23:09 +00001447 !ReusedOperands.isClobbered(PhysReg) &&
1448 Spills.canClobberPhysReg(PhysReg) &&
Owen Anderson1ed5b712009-03-11 22:31:21 +00001449 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1450 MachineOperand *KillOpnd =
1451 DeadStore->findRegisterUseOperand(PhysReg, true);
1452 // Note, if the store is storing a sub-register, it's possible the
1453 // super-register is needed below.
1454 if (KillOpnd && !KillOpnd->getSubReg() &&
1455 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
Evan Chenge47b0082009-03-17 01:23:09 +00001456 MBB.insert(MII, NewMIs[0]);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001457 NewStore = NewMIs[1];
1458 MBB.insert(MII, NewStore);
1459 VRM.addSpillSlotUse(SS, NewStore);
1460 InvalidateKills(MI, RegKills, KillOps);
1461 VRM.RemoveMachineInstrFromMaps(&MI);
1462 MBB.erase(&MI);
1463 Erased = true;
1464 --NextMII;
1465 --NextMII; // backtrack to the unfolded instruction.
1466 BackTracked = true;
1467 isDead = true;
Evan Chenge47b0082009-03-17 01:23:09 +00001468 ++NumSUnfold;
Owen Anderson1ed5b712009-03-11 22:31:21 +00001469 }
1470 }
1471 }
1472
1473 if (isDead) { // Previous store is dead.
1474 // If we get here, the store is dead, nuke it now.
1475 DOUT << "Removed dead store:\t" << *DeadStore;
1476 InvalidateKills(*DeadStore, RegKills, KillOps);
1477 VRM.RemoveMachineInstrFromMaps(DeadStore);
1478 MBB.erase(DeadStore);
1479 if (!NewStore)
1480 ++NumDSE;
1481 }
1482
1483 MaybeDeadStores[SS] = NULL;
1484 if (NewStore) {
1485 // Treat this store as a spill merged into a copy. That makes the
1486 // stack slot value available.
1487 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1488 goto ProcessNextInst;
1489 }
1490 }
1491
1492 // If the spill slot value is available, and this is a new definition of
1493 // the value, the value is not available anymore.
1494 if (MR & VirtRegMap::isMod) {
1495 // Notice that the value in this stack slot has been modified.
1496 Spills.ModifyStackSlotOrReMat(SS);
1497
1498 // If this is *just* a mod of the value, check to see if this is just a
1499 // store to the spill slot (i.e. the spill got merged into the copy). If
1500 // so, realize that the vreg is available now, and add the store to the
1501 // MaybeDeadStore info.
1502 int StackSlot;
1503 if (!(MR & VirtRegMap::isRef)) {
1504 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1505 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1506 "Src hasn't been allocated yet?");
1507
1508 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1509 Spills, RegKills, KillOps, TRI, VRM)) {
1510 NextMII = next(MII);
1511 BackTracked = true;
1512 goto ProcessNextInst;
1513 }
1514
1515 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
1516 // this as a potentially dead store in case there is a subsequent
1517 // store into the stack slot without a read from it.
1518 MaybeDeadStores[StackSlot] = &MI;
1519
1520 // If the stack slot value was previously available in some other
1521 // register, change it now. Otherwise, make the register
1522 // available in PhysReg.
Evan Chenge47b0082009-03-17 01:23:09 +00001523 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
Owen Anderson1ed5b712009-03-11 22:31:21 +00001524 }
1525 }
1526 }
1527 }
1528
1529 // Process all of the spilled defs.
1530 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1531 MachineOperand &MO = MI.getOperand(i);
1532 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1533 continue;
1534
1535 unsigned VirtReg = MO.getReg();
1536 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1537 // Check to see if this is a noop copy. If so, eliminate the
1538 // instruction before considering the dest reg to be changed.
1539 unsigned Src, Dst, SrcSR, DstSR;
1540 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1541 ++NumDCE;
1542 DOUT << "Removing now-noop copy: " << MI;
1543 SmallVector<unsigned, 2> KillRegs;
1544 InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1545 if (MO.isDead() && !KillRegs.empty()) {
1546 // Source register or an implicit super/sub-register use is killed.
1547 assert(KillRegs[0] == Dst ||
1548 TRI->isSubRegister(KillRegs[0], Dst) ||
1549 TRI->isSuperRegister(KillRegs[0], Dst));
1550 // Last def is now dead.
1551 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1552 }
1553 VRM.RemoveMachineInstrFromMaps(&MI);
1554 MBB.erase(&MI);
1555 Erased = true;
1556 Spills.disallowClobberPhysReg(VirtReg);
1557 goto ProcessNextInst;
1558 }
1559
1560 // If it's not a no-op copy, it clobbers the value in the destreg.
1561 Spills.ClobberPhysReg(VirtReg);
1562 ReusedOperands.markClobbered(VirtReg);
1563
1564 // Check to see if this instruction is a load from a stack slot into
1565 // a register. If so, this provides the stack slot value in the reg.
1566 int FrameIdx;
1567 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1568 assert(DestReg == VirtReg && "Unknown load situation!");
1569
1570 // If it is a folded reference, then it's not safe to clobber.
1571 bool Folded = FoldedSS.count(FrameIdx);
1572 // Otherwise, if it wasn't available, remember that it is now!
1573 Spills.addAvailable(FrameIdx, DestReg, !Folded);
1574 goto ProcessNextInst;
1575 }
1576
1577 continue;
1578 }
1579
1580 unsigned SubIdx = MO.getSubReg();
1581 bool DoReMat = VRM.isReMaterialized(VirtReg);
1582 if (DoReMat)
1583 ReMatDefs.insert(&MI);
1584
1585 // The only vregs left are stack slot definitions.
1586 int StackSlot = VRM.getStackSlot(VirtReg);
1587 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1588
1589 // If this def is part of a two-address operand, make sure to execute
1590 // the store from the correct physical register.
1591 unsigned PhysReg;
Bob Wilsond9df5012009-04-09 17:16:43 +00001592 unsigned TiedOp;
1593 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
Owen Anderson1ed5b712009-03-11 22:31:21 +00001594 PhysReg = MI.getOperand(TiedOp).getReg();
1595 if (SubIdx) {
1596 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1597 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1598 "Can't find corresponding super-register!");
1599 PhysReg = SuperReg;
1600 }
1601 } else {
1602 PhysReg = VRM.getPhys(VirtReg);
1603 if (ReusedOperands.isClobbered(PhysReg)) {
1604 // Another def has taken the assigned physreg. It must have been a
1605 // use&def which got it due to reuse. Undo the reuse!
1606 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1607 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1608 }
1609 }
1610
1611 assert(PhysReg && "VR not assigned a physical register?");
1612 RegInfo->setPhysRegUsed(PhysReg);
1613 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1614 ReusedOperands.markClobbered(RReg);
1615 MI.getOperand(i).setReg(RReg);
1616
1617 if (!MO.isDead()) {
1618 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1619 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1620 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1621 NextMII = next(MII);
1622
1623 // Check to see if this is a noop copy. If so, eliminate the
1624 // instruction before considering the dest reg to be changed.
1625 {
1626 unsigned Src, Dst, SrcSR, DstSR;
1627 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1628 ++NumDCE;
1629 DOUT << "Removing now-noop copy: " << MI;
1630 InvalidateKills(MI, RegKills, KillOps);
1631 VRM.RemoveMachineInstrFromMaps(&MI);
1632 MBB.erase(&MI);
1633 Erased = true;
1634 UpdateKills(*LastStore, RegKills, KillOps, TRI);
1635 goto ProcessNextInst;
1636 }
1637 }
1638 }
1639 }
1640 ProcessNextInst:
1641 DistanceMap.insert(std::make_pair(&MI, Dist++));
1642 if (!Erased && !BackTracked) {
1643 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1644 UpdateKills(*II, RegKills, KillOps, TRI);
1645 }
1646 MII = NextMII;
1647 }
1648
1649}
1650
1651llvm::Spiller* llvm::createSpiller() {
1652 switch (SpillerOpt) {
1653 default: assert(0 && "Unreachable!");
1654 case local:
1655 return new LocalSpiller();
1656 case simple:
1657 return new SimpleSpiller();
1658 }
Daniel Dunbarcfbf05e2009-03-14 01:53:05 +00001659}