Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1 | //===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #define DEBUG_TYPE "spiller" |
| 11 | #include "Spiller.h" |
Owen Anderson | 0ff4e21 | 2009-03-12 06:58:19 +0000 | [diff] [blame] | 12 | #include "llvm/Support/Compiler.h" |
| 13 | #include "llvm/ADT/DepthFirstIterator.h" |
| 14 | #include "llvm/ADT/Statistic.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 16 | #include <algorithm> |
| 17 | using namespace llvm; |
| 18 | |
| 19 | STATISTIC(NumDSE , "Number of dead stores elided"); |
| 20 | STATISTIC(NumDSS , "Number of dead spill slots removed"); |
| 21 | STATISTIC(NumCommutes, "Number of instructions commuted"); |
| 22 | STATISTIC(NumDRM , "Number of re-materializable defs elided"); |
| 23 | STATISTIC(NumStores , "Number of stores added"); |
| 24 | STATISTIC(NumPSpills , "Number of physical register spills"); |
| 25 | STATISTIC(NumOmitted , "Number of reloads omited"); |
| 26 | STATISTIC(NumCopified, "Number of available reloads turned into copies"); |
| 27 | STATISTIC(NumReMats , "Number of re-materialization"); |
| 28 | STATISTIC(NumLoads , "Number of loads added"); |
| 29 | STATISTIC(NumReused , "Number of values reused"); |
| 30 | STATISTIC(NumDCE , "Number of copies elided"); |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 31 | STATISTIC(NumSUnfold , "Number of stores unfolded"); |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 32 | |
| 33 | namespace { |
| 34 | enum SpillerName { simple, local }; |
| 35 | } |
| 36 | |
| 37 | static cl::opt<SpillerName> |
| 38 | SpillerOpt("spiller", |
| 39 | cl::desc("Spiller to use: (default: local)"), |
| 40 | cl::Prefix, |
| 41 | cl::values(clEnumVal(simple, "simple spiller"), |
| 42 | clEnumVal(local, "local spiller"), |
| 43 | clEnumValEnd), |
| 44 | cl::init(local)); |
| 45 | |
| 46 | // ****************************** // |
| 47 | // Simple Spiller Implementation // |
| 48 | // ****************************** // |
| 49 | |
| 50 | Spiller::~Spiller() {} |
| 51 | |
| 52 | bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { |
| 53 | DOUT << "********** REWRITE MACHINE CODE **********\n"; |
| 54 | DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; |
| 55 | const TargetMachine &TM = MF.getTarget(); |
| 56 | const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| 57 | const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| 58 | |
| 59 | |
| 60 | // LoadedRegs - Keep track of which vregs are loaded, so that we only load |
| 61 | // each vreg once (in the case where a spilled vreg is used by multiple |
| 62 | // operands). This is always smaller than the number of operands to the |
| 63 | // current machine instr, so it should be small. |
| 64 | std::vector<unsigned> LoadedRegs; |
| 65 | |
| 66 | for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); |
| 67 | MBBI != E; ++MBBI) { |
| 68 | DOUT << MBBI->getBasicBlock()->getName() << ":\n"; |
| 69 | MachineBasicBlock &MBB = *MBBI; |
| 70 | for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); |
| 71 | MII != E; ++MII) { |
| 72 | MachineInstr &MI = *MII; |
| 73 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 74 | MachineOperand &MO = MI.getOperand(i); |
| 75 | if (MO.isReg() && MO.getReg()) { |
| 76 | if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { |
| 77 | unsigned VirtReg = MO.getReg(); |
| 78 | unsigned SubIdx = MO.getSubReg(); |
| 79 | unsigned PhysReg = VRM.getPhys(VirtReg); |
| 80 | unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg; |
| 81 | if (!VRM.isAssignedReg(VirtReg)) { |
| 82 | int StackSlot = VRM.getStackSlot(VirtReg); |
| 83 | const TargetRegisterClass* RC = |
| 84 | MF.getRegInfo().getRegClass(VirtReg); |
| 85 | |
| 86 | if (MO.isUse() && |
| 87 | std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) |
| 88 | == LoadedRegs.end()) { |
| 89 | TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); |
| 90 | MachineInstr *LoadMI = prior(MII); |
| 91 | VRM.addSpillSlotUse(StackSlot, LoadMI); |
| 92 | LoadedRegs.push_back(VirtReg); |
| 93 | ++NumLoads; |
| 94 | DOUT << '\t' << *LoadMI; |
| 95 | } |
| 96 | |
| 97 | if (MO.isDef()) { |
| 98 | TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true, |
| 99 | StackSlot, RC); |
| 100 | MachineInstr *StoreMI = next(MII); |
| 101 | VRM.addSpillSlotUse(StackSlot, StoreMI); |
| 102 | ++NumStores; |
| 103 | } |
| 104 | } |
| 105 | MF.getRegInfo().setPhysRegUsed(RReg); |
| 106 | MI.getOperand(i).setReg(RReg); |
| 107 | } else { |
| 108 | MF.getRegInfo().setPhysRegUsed(MO.getReg()); |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | DOUT << '\t' << MI; |
| 114 | LoadedRegs.clear(); |
| 115 | } |
| 116 | } |
| 117 | return true; |
| 118 | } |
| 119 | |
| 120 | // ****************** // |
| 121 | // Utility Functions // |
| 122 | // ****************** // |
| 123 | |
| 124 | /// InvalidateKill - A MI that defines the specified register is being deleted, |
| 125 | /// invalidate the register kill information. |
| 126 | static void InvalidateKill(unsigned Reg, BitVector &RegKills, |
| 127 | std::vector<MachineOperand*> &KillOps) { |
| 128 | if (RegKills[Reg]) { |
| 129 | KillOps[Reg]->setIsKill(false); |
| 130 | KillOps[Reg] = NULL; |
| 131 | RegKills.reset(Reg); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | /// findSinglePredSuccessor - Return via reference a vector of machine basic |
| 136 | /// blocks each of which is a successor of the specified BB and has no other |
| 137 | /// predecessor. |
| 138 | static void findSinglePredSuccessor(MachineBasicBlock *MBB, |
| 139 | SmallVectorImpl<MachineBasicBlock *> &Succs) { |
| 140 | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| 141 | SE = MBB->succ_end(); SI != SE; ++SI) { |
| 142 | MachineBasicBlock *SuccMBB = *SI; |
| 143 | if (SuccMBB->pred_size() == 1) |
| 144 | Succs.push_back(SuccMBB); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /// InvalidateKills - MI is going to be deleted. If any of its operands are |
| 149 | /// marked kill, then invalidate the information. |
| 150 | static void InvalidateKills(MachineInstr &MI, BitVector &RegKills, |
| 151 | std::vector<MachineOperand*> &KillOps, |
| 152 | SmallVector<unsigned, 2> *KillRegs = NULL) { |
| 153 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 154 | MachineOperand &MO = MI.getOperand(i); |
| 155 | if (!MO.isReg() || !MO.isUse() || !MO.isKill()) |
| 156 | continue; |
| 157 | unsigned Reg = MO.getReg(); |
| 158 | if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| 159 | continue; |
| 160 | if (KillRegs) |
| 161 | KillRegs->push_back(Reg); |
| 162 | assert(Reg < KillOps.size()); |
| 163 | if (KillOps[Reg] == &MO) { |
| 164 | RegKills.reset(Reg); |
| 165 | KillOps[Reg] = NULL; |
| 166 | } |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | /// InvalidateRegDef - If the def operand of the specified def MI is now dead |
| 171 | /// (since it's spill instruction is removed), mark it isDead. Also checks if |
| 172 | /// the def MI has other definition operands that are not dead. Returns it by |
| 173 | /// reference. |
| 174 | static bool InvalidateRegDef(MachineBasicBlock::iterator I, |
| 175 | MachineInstr &NewDef, unsigned Reg, |
| 176 | bool &HasLiveDef) { |
| 177 | // Due to remat, it's possible this reg isn't being reused. That is, |
| 178 | // the def of this reg (by prev MI) is now dead. |
| 179 | MachineInstr *DefMI = I; |
| 180 | MachineOperand *DefOp = NULL; |
| 181 | for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { |
| 182 | MachineOperand &MO = DefMI->getOperand(i); |
| 183 | if (MO.isReg() && MO.isDef()) { |
| 184 | if (MO.getReg() == Reg) |
| 185 | DefOp = &MO; |
| 186 | else if (!MO.isDead()) |
| 187 | HasLiveDef = true; |
| 188 | } |
| 189 | } |
| 190 | if (!DefOp) |
| 191 | return false; |
| 192 | |
| 193 | bool FoundUse = false, Done = false; |
| 194 | MachineBasicBlock::iterator E = &NewDef; |
| 195 | ++I; ++E; |
| 196 | for (; !Done && I != E; ++I) { |
| 197 | MachineInstr *NMI = I; |
| 198 | for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { |
| 199 | MachineOperand &MO = NMI->getOperand(j); |
| 200 | if (!MO.isReg() || MO.getReg() != Reg) |
| 201 | continue; |
| 202 | if (MO.isUse()) |
| 203 | FoundUse = true; |
| 204 | Done = true; // Stop after scanning all the operands of this MI. |
| 205 | } |
| 206 | } |
| 207 | if (!FoundUse) { |
| 208 | // Def is dead! |
| 209 | DefOp->setIsDead(); |
| 210 | return true; |
| 211 | } |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | /// UpdateKills - Track and update kill info. If a MI reads a register that is |
| 216 | /// marked kill, then it must be due to register reuse. Transfer the kill info |
| 217 | /// over. |
| 218 | static void UpdateKills(MachineInstr &MI, BitVector &RegKills, |
| 219 | std::vector<MachineOperand*> &KillOps, |
| 220 | const TargetRegisterInfo* TRI) { |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 221 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 222 | MachineOperand &MO = MI.getOperand(i); |
| 223 | if (!MO.isReg() || !MO.isUse()) |
| 224 | continue; |
| 225 | unsigned Reg = MO.getReg(); |
| 226 | if (Reg == 0) |
| 227 | continue; |
| 228 | |
| 229 | if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { |
| 230 | // That can't be right. Register is killed but not re-defined and it's |
| 231 | // being reused. Let's fix that. |
| 232 | KillOps[Reg]->setIsKill(false); |
| 233 | KillOps[Reg] = NULL; |
| 234 | RegKills.reset(Reg); |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 235 | if (!MI.isRegTiedToDefOperand(i)) |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 236 | // Unless it's a two-address operand, this is the new kill. |
| 237 | MO.setIsKill(); |
| 238 | } |
| 239 | if (MO.isKill()) { |
| 240 | RegKills.set(Reg); |
| 241 | KillOps[Reg] = &MO; |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 246 | const MachineOperand &MO = MI.getOperand(i); |
| 247 | if (!MO.isReg() || !MO.isDef()) |
| 248 | continue; |
| 249 | unsigned Reg = MO.getReg(); |
| 250 | RegKills.reset(Reg); |
| 251 | KillOps[Reg] = NULL; |
| 252 | // It also defines (or partially define) aliases. |
| 253 | for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { |
| 254 | RegKills.reset(*AS); |
| 255 | KillOps[*AS] = NULL; |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | /// ReMaterialize - Re-materialize definition for Reg targetting DestReg. |
| 261 | /// |
| 262 | static void ReMaterialize(MachineBasicBlock &MBB, |
| 263 | MachineBasicBlock::iterator &MII, |
| 264 | unsigned DestReg, unsigned Reg, |
| 265 | const TargetInstrInfo *TII, |
| 266 | const TargetRegisterInfo *TRI, |
| 267 | VirtRegMap &VRM) { |
| 268 | TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg)); |
| 269 | MachineInstr *NewMI = prior(MII); |
| 270 | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { |
| 271 | MachineOperand &MO = NewMI->getOperand(i); |
| 272 | if (!MO.isReg() || MO.getReg() == 0) |
| 273 | continue; |
| 274 | unsigned VirtReg = MO.getReg(); |
| 275 | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) |
| 276 | continue; |
| 277 | assert(MO.isUse()); |
| 278 | unsigned SubIdx = MO.getSubReg(); |
| 279 | unsigned Phys = VRM.getPhys(VirtReg); |
| 280 | assert(Phys); |
| 281 | unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; |
| 282 | MO.setReg(RReg); |
| 283 | } |
| 284 | ++NumReMats; |
| 285 | } |
| 286 | |
| 287 | /// findSuperReg - Find the SubReg's super-register of given register class |
| 288 | /// where its SubIdx sub-register is SubReg. |
| 289 | static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, |
| 290 | unsigned SubIdx, const TargetRegisterInfo *TRI) { |
| 291 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 292 | I != E; ++I) { |
| 293 | unsigned Reg = *I; |
| 294 | if (TRI->getSubReg(Reg, SubIdx) == SubReg) |
| 295 | return Reg; |
| 296 | } |
| 297 | return 0; |
| 298 | } |
| 299 | |
| 300 | // ******************************** // |
| 301 | // Available Spills Implementation // |
| 302 | // ******************************** // |
| 303 | |
| 304 | /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified |
| 305 | /// stackslot register. The register is still available but is no longer |
| 306 | /// allowed to be modifed. |
| 307 | void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { |
| 308 | std::multimap<unsigned, int>::iterator I = |
| 309 | PhysRegsAvailable.lower_bound(PhysReg); |
| 310 | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| 311 | int SlotOrReMat = I->second; |
| 312 | I++; |
| 313 | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && |
| 314 | "Bidirectional map mismatch!"); |
| 315 | SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; |
| 316 | DOUT << "PhysReg " << TRI->getName(PhysReg) |
| 317 | << " copied, it is available for use but can no longer be modified\n"; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified |
| 322 | /// stackslot register and its aliases. The register and its aliases may |
| 323 | /// still available but is no longer allowed to be modifed. |
| 324 | void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { |
| 325 | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) |
| 326 | disallowClobberPhysRegOnly(*AS); |
| 327 | disallowClobberPhysRegOnly(PhysReg); |
| 328 | } |
| 329 | |
| 330 | /// ClobberPhysRegOnly - This is called when the specified physreg changes |
| 331 | /// value. We use this to invalidate any info about stuff we thing lives in it. |
| 332 | void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { |
| 333 | std::multimap<unsigned, int>::iterator I = |
| 334 | PhysRegsAvailable.lower_bound(PhysReg); |
| 335 | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| 336 | int SlotOrReMat = I->second; |
| 337 | PhysRegsAvailable.erase(I++); |
| 338 | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && |
| 339 | "Bidirectional map mismatch!"); |
| 340 | SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); |
| 341 | DOUT << "PhysReg " << TRI->getName(PhysReg) |
| 342 | << " clobbered, invalidating "; |
| 343 | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) |
| 344 | DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n"; |
| 345 | else |
| 346 | DOUT << "SS#" << SlotOrReMat << "\n"; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | /// ClobberPhysReg - This is called when the specified physreg changes |
| 351 | /// value. We use this to invalidate any info about stuff we thing lives in |
| 352 | /// it and any of its aliases. |
| 353 | void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { |
| 354 | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) |
| 355 | ClobberPhysRegOnly(*AS); |
| 356 | ClobberPhysRegOnly(PhysReg); |
| 357 | } |
| 358 | |
| 359 | /// AddAvailableRegsToLiveIn - Availability information is being kept coming |
| 360 | /// into the specified MBB. Add available physical registers as potential |
| 361 | /// live-in's. If they are reused in the MBB, they will be added to the |
| 362 | /// live-in set to make register scavenger and post-allocation scheduler. |
| 363 | void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, |
| 364 | BitVector &RegKills, |
| 365 | std::vector<MachineOperand*> &KillOps) { |
| 366 | std::set<unsigned> NotAvailable; |
| 367 | for (std::multimap<unsigned, int>::iterator |
| 368 | I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); |
| 369 | I != E; ++I) { |
| 370 | unsigned Reg = I->first; |
| 371 | const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg); |
| 372 | // FIXME: A temporary workaround. We can't reuse available value if it's |
| 373 | // not safe to move the def of the virtual register's class. e.g. |
| 374 | // X86::RFP* register classes. Do not add it as a live-in. |
| 375 | if (!TII->isSafeToMoveRegClassDefs(RC)) |
| 376 | // This is no longer available. |
| 377 | NotAvailable.insert(Reg); |
| 378 | else { |
| 379 | MBB.addLiveIn(Reg); |
| 380 | InvalidateKill(Reg, RegKills, KillOps); |
| 381 | } |
| 382 | |
| 383 | // Skip over the same register. |
| 384 | std::multimap<unsigned, int>::iterator NI = next(I); |
| 385 | while (NI != E && NI->first == Reg) { |
| 386 | ++I; |
| 387 | ++NI; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | for (std::set<unsigned>::iterator I = NotAvailable.begin(), |
| 392 | E = NotAvailable.end(); I != E; ++I) { |
| 393 | ClobberPhysReg(*I); |
| 394 | for (const unsigned *SubRegs = TRI->getSubRegisters(*I); |
| 395 | *SubRegs; ++SubRegs) |
| 396 | ClobberPhysReg(*SubRegs); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /// ModifyStackSlotOrReMat - This method is called when the value in a stack |
| 401 | /// slot changes. This removes information about which register the previous |
| 402 | /// value for this slot lives in (as the previous value is dead now). |
| 403 | void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { |
| 404 | std::map<int, unsigned>::iterator It = |
| 405 | SpillSlotsOrReMatsAvailable.find(SlotOrReMat); |
| 406 | if (It == SpillSlotsOrReMatsAvailable.end()) return; |
| 407 | unsigned Reg = It->second >> 1; |
| 408 | SpillSlotsOrReMatsAvailable.erase(It); |
| 409 | |
| 410 | // This register may hold the value of multiple stack slots, only remove this |
| 411 | // stack slot from the set of values the register contains. |
| 412 | std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); |
| 413 | for (; ; ++I) { |
| 414 | assert(I != PhysRegsAvailable.end() && I->first == Reg && |
| 415 | "Map inverse broken!"); |
| 416 | if (I->second == SlotOrReMat) break; |
| 417 | } |
| 418 | PhysRegsAvailable.erase(I); |
| 419 | } |
| 420 | |
| 421 | // ************************** // |
| 422 | // Reuse Info Implementation // |
| 423 | // ************************** // |
| 424 | |
| 425 | /// GetRegForReload - We are about to emit a reload into PhysReg. If there |
| 426 | /// is some other operand that is using the specified register, either pick |
| 427 | /// a new register to use, or evict the previous reload and use this reg. |
| 428 | unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI, |
| 429 | AvailableSpills &Spills, |
| 430 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 431 | SmallSet<unsigned, 8> &Rejected, |
| 432 | BitVector &RegKills, |
| 433 | std::vector<MachineOperand*> &KillOps, |
| 434 | VirtRegMap &VRM) { |
| 435 | const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget() |
| 436 | .getInstrInfo(); |
| 437 | |
| 438 | if (Reuses.empty()) return PhysReg; // This is most often empty. |
| 439 | |
| 440 | for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { |
| 441 | ReusedOp &Op = Reuses[ro]; |
| 442 | // If we find some other reuse that was supposed to use this register |
| 443 | // exactly for its reload, we can change this reload to use ITS reload |
| 444 | // register. That is, unless its reload register has already been |
| 445 | // considered and subsequently rejected because it has also been reused |
| 446 | // by another operand. |
| 447 | if (Op.PhysRegReused == PhysReg && |
| 448 | Rejected.count(Op.AssignedPhysReg) == 0) { |
| 449 | // Yup, use the reload register that we didn't use before. |
| 450 | unsigned NewReg = Op.AssignedPhysReg; |
| 451 | Rejected.insert(PhysReg); |
| 452 | return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected, |
| 453 | RegKills, KillOps, VRM); |
| 454 | } else { |
| 455 | // Otherwise, we might also have a problem if a previously reused |
| 456 | // value aliases the new register. If so, codegen the previous reload |
| 457 | // and use this one. |
| 458 | unsigned PRRU = Op.PhysRegReused; |
| 459 | const TargetRegisterInfo *TRI = Spills.getRegInfo(); |
| 460 | if (TRI->areAliases(PRRU, PhysReg)) { |
| 461 | // Okay, we found out that an alias of a reused register |
| 462 | // was used. This isn't good because it means we have |
| 463 | // to undo a previous reuse. |
| 464 | MachineBasicBlock *MBB = MI->getParent(); |
| 465 | const TargetRegisterClass *AliasRC = |
| 466 | MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); |
| 467 | |
| 468 | // Copy Op out of the vector and remove it, we're going to insert an |
| 469 | // explicit load for it. |
| 470 | ReusedOp NewOp = Op; |
| 471 | Reuses.erase(Reuses.begin()+ro); |
| 472 | |
| 473 | // Ok, we're going to try to reload the assigned physreg into the |
| 474 | // slot that we were supposed to in the first place. However, that |
| 475 | // register could hold a reuse. Check to see if it conflicts or |
| 476 | // would prefer us to use a different register. |
| 477 | unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, |
| 478 | MI, Spills, MaybeDeadStores, |
| 479 | Rejected, RegKills, KillOps, VRM); |
| 480 | |
| 481 | MachineBasicBlock::iterator MII = MI; |
| 482 | if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) { |
| 483 | ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM); |
| 484 | } else { |
| 485 | TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg, |
| 486 | NewOp.StackSlotOrReMat, AliasRC); |
| 487 | MachineInstr *LoadMI = prior(MII); |
| 488 | VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); |
| 489 | // Any stores to this stack slot are not dead anymore. |
| 490 | MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; |
| 491 | ++NumLoads; |
| 492 | } |
| 493 | Spills.ClobberPhysReg(NewPhysReg); |
| 494 | Spills.ClobberPhysReg(NewOp.PhysRegReused); |
| 495 | |
| 496 | unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg(); |
| 497 | unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg; |
| 498 | MI->getOperand(NewOp.Operand).setReg(RReg); |
| 499 | |
| 500 | Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); |
| 501 | --MII; |
| 502 | UpdateKills(*MII, RegKills, KillOps, TRI); |
| 503 | DOUT << '\t' << *MII; |
| 504 | |
| 505 | DOUT << "Reuse undone!\n"; |
| 506 | --NumReused; |
| 507 | |
| 508 | // Finally, PhysReg is now available, go ahead and use it. |
| 509 | return PhysReg; |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | return PhysReg; |
| 514 | } |
| 515 | |
| 516 | // ***************************** // |
| 517 | // Local Spiller Implementation // |
| 518 | // ***************************** // |
| 519 | |
| 520 | bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { |
| 521 | RegInfo = &MF.getRegInfo(); |
| 522 | TRI = MF.getTarget().getRegisterInfo(); |
| 523 | TII = MF.getTarget().getInstrInfo(); |
| 524 | DOUT << "\n**** Local spiller rewriting function '" |
| 525 | << MF.getFunction()->getName() << "':\n"; |
| 526 | DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)" |
| 527 | " ****\n"; |
| 528 | DEBUG(MF.dump()); |
| 529 | |
| 530 | // Spills - Keep track of which spilled values are available in physregs |
| 531 | // so that we can choose to reuse the physregs instead of emitting |
| 532 | // reloads. This is usually refreshed per basic block. |
| 533 | AvailableSpills Spills(TRI, TII); |
| 534 | |
| 535 | // Keep track of kill information. |
| 536 | BitVector RegKills(TRI->getNumRegs()); |
| 537 | std::vector<MachineOperand*> KillOps; |
| 538 | KillOps.resize(TRI->getNumRegs(), NULL); |
| 539 | |
| 540 | // SingleEntrySuccs - Successor blocks which have a single predecessor. |
| 541 | SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; |
| 542 | SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; |
| 543 | |
| 544 | // Traverse the basic blocks depth first. |
| 545 | MachineBasicBlock *Entry = MF.begin(); |
| 546 | SmallPtrSet<MachineBasicBlock*,16> Visited; |
| 547 | for (df_ext_iterator<MachineBasicBlock*, |
| 548 | SmallPtrSet<MachineBasicBlock*,16> > |
| 549 | DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); |
| 550 | DFI != E; ++DFI) { |
| 551 | MachineBasicBlock *MBB = *DFI; |
| 552 | if (!EarlyVisited.count(MBB)) |
| 553 | RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps); |
| 554 | |
| 555 | // If this MBB is the only predecessor of a successor. Keep the |
| 556 | // availability information and visit it next. |
| 557 | do { |
| 558 | // Keep visiting single predecessor successor as long as possible. |
| 559 | SinglePredSuccs.clear(); |
| 560 | findSinglePredSuccessor(MBB, SinglePredSuccs); |
| 561 | if (SinglePredSuccs.empty()) |
| 562 | MBB = 0; |
| 563 | else { |
| 564 | // FIXME: More than one successors, each of which has MBB has |
| 565 | // the only predecessor. |
| 566 | MBB = SinglePredSuccs[0]; |
| 567 | if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { |
| 568 | Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); |
| 569 | RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps); |
| 570 | } |
| 571 | } |
| 572 | } while (MBB); |
| 573 | |
| 574 | // Clear the availability info. |
| 575 | Spills.clear(); |
| 576 | } |
| 577 | |
| 578 | DOUT << "**** Post Machine Instrs ****\n"; |
| 579 | DEBUG(MF.dump()); |
| 580 | |
| 581 | // Mark unused spill slots. |
| 582 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 583 | int SS = VRM.getLowSpillSlot(); |
| 584 | if (SS != VirtRegMap::NO_STACK_SLOT) |
| 585 | for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS) |
| 586 | if (!VRM.isSpillSlotUsed(SS)) { |
| 587 | MFI->RemoveStackObject(SS); |
| 588 | ++NumDSS; |
| 589 | } |
| 590 | |
| 591 | return true; |
| 592 | } |
| 593 | |
| 594 | |
| 595 | /// PrepForUnfoldOpti - Turn a store folding instruction into a load folding |
| 596 | /// instruction. e.g. |
| 597 | /// xorl %edi, %eax |
| 598 | /// movl %eax, -32(%ebp) |
| 599 | /// movl -36(%ebp), %eax |
| 600 | /// orl %eax, -32(%ebp) |
| 601 | /// ==> |
| 602 | /// xorl %edi, %eax |
| 603 | /// orl -36(%ebp), %eax |
| 604 | /// mov %eax, -32(%ebp) |
| 605 | /// This enables unfolding optimization for a subsequent instruction which will |
| 606 | /// also eliminate the newly introduced store instruction. |
| 607 | bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB, |
| 608 | MachineBasicBlock::iterator &MII, |
| 609 | std::vector<MachineInstr*> &MaybeDeadStores, |
| 610 | AvailableSpills &Spills, |
| 611 | BitVector &RegKills, |
| 612 | std::vector<MachineOperand*> &KillOps, |
| 613 | VirtRegMap &VRM) { |
| 614 | MachineFunction &MF = *MBB.getParent(); |
| 615 | MachineInstr &MI = *MII; |
| 616 | unsigned UnfoldedOpc = 0; |
| 617 | unsigned UnfoldPR = 0; |
| 618 | unsigned UnfoldVR = 0; |
| 619 | int FoldedSS = VirtRegMap::NO_STACK_SLOT; |
| 620 | VirtRegMap::MI2VirtMapTy::const_iterator I, End; |
| 621 | for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { |
| 622 | // Only transform a MI that folds a single register. |
| 623 | if (UnfoldedOpc) |
| 624 | return false; |
| 625 | UnfoldVR = I->second.first; |
| 626 | VirtRegMap::ModRef MR = I->second.second; |
| 627 | // MI2VirtMap be can updated which invalidate the iterator. |
| 628 | // Increment the iterator first. |
| 629 | ++I; |
| 630 | if (VRM.isAssignedReg(UnfoldVR)) |
| 631 | continue; |
| 632 | // If this reference is not a use, any previous store is now dead. |
| 633 | // Otherwise, the store to this stack slot is not dead anymore. |
| 634 | FoldedSS = VRM.getStackSlot(UnfoldVR); |
| 635 | MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; |
| 636 | if (DeadStore && (MR & VirtRegMap::isModRef)) { |
| 637 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); |
| 638 | if (!PhysReg || !DeadStore->readsRegister(PhysReg)) |
| 639 | continue; |
| 640 | UnfoldPR = PhysReg; |
| 641 | UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), |
| 642 | false, true); |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | if (!UnfoldedOpc) |
| 647 | return false; |
| 648 | |
| 649 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 650 | MachineOperand &MO = MI.getOperand(i); |
| 651 | if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) |
| 652 | continue; |
| 653 | unsigned VirtReg = MO.getReg(); |
| 654 | if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) |
| 655 | continue; |
| 656 | if (VRM.isAssignedReg(VirtReg)) { |
| 657 | unsigned PhysReg = VRM.getPhys(VirtReg); |
| 658 | if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) |
| 659 | return false; |
| 660 | } else if (VRM.isReMaterialized(VirtReg)) |
| 661 | continue; |
| 662 | int SS = VRM.getStackSlot(VirtReg); |
| 663 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| 664 | if (PhysReg) { |
| 665 | if (TRI->regsOverlap(PhysReg, UnfoldPR)) |
| 666 | return false; |
| 667 | continue; |
| 668 | } |
| 669 | if (VRM.hasPhys(VirtReg)) { |
| 670 | PhysReg = VRM.getPhys(VirtReg); |
| 671 | if (!TRI->regsOverlap(PhysReg, UnfoldPR)) |
| 672 | continue; |
| 673 | } |
| 674 | |
| 675 | // Ok, we'll need to reload the value into a register which makes |
| 676 | // it impossible to perform the store unfolding optimization later. |
| 677 | // Let's see if it is possible to fold the load if the store is |
| 678 | // unfolded. This allows us to perform the store unfolding |
| 679 | // optimization. |
| 680 | SmallVector<MachineInstr*, 4> NewMIs; |
| 681 | if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { |
| 682 | assert(NewMIs.size() == 1); |
| 683 | MachineInstr *NewMI = NewMIs.back(); |
| 684 | NewMIs.clear(); |
| 685 | int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); |
| 686 | assert(Idx != -1); |
| 687 | SmallVector<unsigned, 1> Ops; |
| 688 | Ops.push_back(Idx); |
| 689 | MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); |
| 690 | if (FoldedMI) { |
| 691 | VRM.addSpillSlotUse(SS, FoldedMI); |
| 692 | if (!VRM.hasPhys(UnfoldVR)) |
| 693 | VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); |
| 694 | VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); |
| 695 | MII = MBB.insert(MII, FoldedMI); |
| 696 | InvalidateKills(MI, RegKills, KillOps); |
| 697 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 698 | MBB.erase(&MI); |
| 699 | MF.DeleteMachineInstr(NewMI); |
| 700 | return true; |
| 701 | } |
| 702 | MF.DeleteMachineInstr(NewMI); |
| 703 | } |
| 704 | } |
| 705 | return false; |
| 706 | } |
| 707 | |
| 708 | /// CommuteToFoldReload - |
| 709 | /// Look for |
| 710 | /// r1 = load fi#1 |
| 711 | /// r1 = op r1, r2<kill> |
| 712 | /// store r1, fi#1 |
| 713 | /// |
| 714 | /// If op is commutable and r2 is killed, then we can xform these to |
| 715 | /// r2 = op r2, fi#1 |
| 716 | /// store r2, fi#1 |
| 717 | bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB, |
| 718 | MachineBasicBlock::iterator &MII, |
| 719 | unsigned VirtReg, unsigned SrcReg, int SS, |
| 720 | AvailableSpills &Spills, |
| 721 | BitVector &RegKills, |
| 722 | std::vector<MachineOperand*> &KillOps, |
| 723 | const TargetRegisterInfo *TRI, |
| 724 | VirtRegMap &VRM) { |
| 725 | if (MII == MBB.begin() || !MII->killsRegister(SrcReg)) |
| 726 | return false; |
| 727 | |
| 728 | MachineFunction &MF = *MBB.getParent(); |
| 729 | MachineInstr &MI = *MII; |
| 730 | MachineBasicBlock::iterator DefMII = prior(MII); |
| 731 | MachineInstr *DefMI = DefMII; |
| 732 | const TargetInstrDesc &TID = DefMI->getDesc(); |
| 733 | unsigned NewDstIdx; |
| 734 | if (DefMII != MBB.begin() && |
| 735 | TID.isCommutable() && |
| 736 | TII->CommuteChangesDestination(DefMI, NewDstIdx)) { |
| 737 | MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); |
| 738 | unsigned NewReg = NewDstMO.getReg(); |
| 739 | if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) |
| 740 | return false; |
| 741 | MachineInstr *ReloadMI = prior(DefMII); |
| 742 | int FrameIdx; |
| 743 | unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); |
| 744 | if (DestReg != SrcReg || FrameIdx != SS) |
| 745 | return false; |
| 746 | int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); |
| 747 | if (UseIdx == -1) |
| 748 | return false; |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 749 | unsigned DefIdx; |
| 750 | if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 751 | return false; |
| 752 | assert(DefMI->getOperand(DefIdx).isReg() && |
| 753 | DefMI->getOperand(DefIdx).getReg() == SrcReg); |
| 754 | |
| 755 | // Now commute def instruction. |
| 756 | MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); |
| 757 | if (!CommutedMI) |
| 758 | return false; |
| 759 | SmallVector<unsigned, 1> Ops; |
| 760 | Ops.push_back(NewDstIdx); |
| 761 | MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS); |
| 762 | // Not needed since foldMemoryOperand returns new MI. |
| 763 | MF.DeleteMachineInstr(CommutedMI); |
| 764 | if (!FoldedMI) |
| 765 | return false; |
| 766 | |
| 767 | VRM.addSpillSlotUse(SS, FoldedMI); |
| 768 | VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); |
| 769 | // Insert new def MI and spill MI. |
| 770 | const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); |
| 771 | TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC); |
| 772 | MII = prior(MII); |
| 773 | MachineInstr *StoreMI = MII; |
| 774 | VRM.addSpillSlotUse(SS, StoreMI); |
| 775 | VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| 776 | MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack. |
| 777 | |
| 778 | // Delete all 3 old instructions. |
| 779 | InvalidateKills(*ReloadMI, RegKills, KillOps); |
| 780 | VRM.RemoveMachineInstrFromMaps(ReloadMI); |
| 781 | MBB.erase(ReloadMI); |
| 782 | InvalidateKills(*DefMI, RegKills, KillOps); |
| 783 | VRM.RemoveMachineInstrFromMaps(DefMI); |
| 784 | MBB.erase(DefMI); |
| 785 | InvalidateKills(MI, RegKills, KillOps); |
| 786 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 787 | MBB.erase(&MI); |
| 788 | |
| 789 | // If NewReg was previously holding value of some SS, it's now clobbered. |
| 790 | // This has to be done now because it's a physical register. When this |
| 791 | // instruction is re-visited, it's ignored. |
| 792 | Spills.ClobberPhysReg(NewReg); |
| 793 | |
| 794 | ++NumCommutes; |
| 795 | return true; |
| 796 | } |
| 797 | |
| 798 | return false; |
| 799 | } |
| 800 | |
| 801 | /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if |
| 802 | /// the last store to the same slot is now dead. If so, remove the last store. |
Bill Wendling | e67f5e4 | 2009-03-31 08:41:31 +0000 | [diff] [blame] | 803 | void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB, |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 804 | MachineBasicBlock::iterator &MII, |
| 805 | int Idx, unsigned PhysReg, int StackSlot, |
| 806 | const TargetRegisterClass *RC, |
| 807 | bool isAvailable, MachineInstr *&LastStore, |
| 808 | AvailableSpills &Spills, |
| 809 | SmallSet<MachineInstr*, 4> &ReMatDefs, |
| 810 | BitVector &RegKills, |
| 811 | std::vector<MachineOperand*> &KillOps, |
| 812 | VirtRegMap &VRM) { |
| 813 | TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC); |
| 814 | MachineInstr *StoreMI = next(MII); |
| 815 | VRM.addSpillSlotUse(StackSlot, StoreMI); |
| 816 | DOUT << "Store:\t" << *StoreMI; |
| 817 | |
| 818 | // If there is a dead store to this stack slot, nuke it now. |
Bill Wendling | e67f5e4 | 2009-03-31 08:41:31 +0000 | [diff] [blame] | 819 | if (LastStore) { |
| 820 | DOUT << "Removed dead store:\t" << *LastStore; |
| 821 | ++NumDSE; |
| 822 | SmallVector<unsigned, 2> KillRegs; |
| 823 | InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs); |
| 824 | MachineBasicBlock::iterator PrevMII = LastStore; |
| 825 | bool CheckDef = PrevMII != MBB.begin(); |
| 826 | if (CheckDef) |
| 827 | --PrevMII; |
| 828 | VRM.RemoveMachineInstrFromMaps(LastStore); |
| 829 | MBB.erase(LastStore); |
| 830 | if (CheckDef) { |
| 831 | // Look at defs of killed registers on the store. Mark the defs |
| 832 | // as dead since the store has been deleted and they aren't |
| 833 | // being reused. |
| 834 | for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { |
| 835 | bool HasOtherDef = false; |
| 836 | if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { |
| 837 | MachineInstr *DeadDef = PrevMII; |
| 838 | if (ReMatDefs.count(DeadDef) && !HasOtherDef) { |
| 839 | // FIXME: This assumes a remat def does not have side |
| 840 | // effects. |
| 841 | VRM.RemoveMachineInstrFromMaps(DeadDef); |
| 842 | MBB.erase(DeadDef); |
| 843 | ++NumDRM; |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | } |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 849 | |
| 850 | LastStore = next(MII); |
| 851 | |
| 852 | // If the stack slot value was previously available in some other |
| 853 | // register, change it now. Otherwise, make the register available, |
| 854 | // in PhysReg. |
| 855 | Spills.ModifyStackSlotOrReMat(StackSlot); |
| 856 | Spills.ClobberPhysReg(PhysReg); |
| 857 | Spills.addAvailable(StackSlot, PhysReg, isAvailable); |
| 858 | ++NumStores; |
| 859 | } |
| 860 | |
| 861 | /// TransferDeadness - A identity copy definition is dead and it's being |
| 862 | /// removed. Find the last def or use and mark it as dead / kill. |
| 863 | void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, |
| 864 | unsigned Reg, BitVector &RegKills, |
| 865 | std::vector<MachineOperand*> &KillOps) { |
| 866 | int LastUDDist = -1; |
| 867 | MachineInstr *LastUDMI = NULL; |
| 868 | for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg), |
| 869 | RE = RegInfo->reg_end(); RI != RE; ++RI) { |
| 870 | MachineInstr *UDMI = &*RI; |
| 871 | if (UDMI->getParent() != MBB) |
| 872 | continue; |
| 873 | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); |
| 874 | if (DI == DistanceMap.end() || DI->second > CurDist) |
| 875 | continue; |
| 876 | if ((int)DI->second < LastUDDist) |
| 877 | continue; |
| 878 | LastUDDist = DI->second; |
| 879 | LastUDMI = UDMI; |
| 880 | } |
| 881 | |
| 882 | if (LastUDMI) { |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 883 | MachineOperand *LastUD = NULL; |
| 884 | for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { |
| 885 | MachineOperand &MO = LastUDMI->getOperand(i); |
| 886 | if (!MO.isReg() || MO.getReg() != Reg) |
| 887 | continue; |
| 888 | if (!LastUD || (LastUD->isUse() && MO.isDef())) |
| 889 | LastUD = &MO; |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 890 | if (LastUDMI->isRegTiedToDefOperand(i)) |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 891 | return; |
| 892 | } |
| 893 | if (LastUD->isDef()) |
| 894 | LastUD->setIsDead(); |
| 895 | else { |
| 896 | LastUD->setIsKill(); |
| 897 | RegKills.set(Reg); |
| 898 | KillOps[Reg] = LastUD; |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | /// rewriteMBB - Keep track of which spills are available even after the |
| 904 | /// register allocator is done with them. If possible, avid reloading vregs. |
| 905 | void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, |
| 906 | AvailableSpills &Spills, BitVector &RegKills, |
| 907 | std::vector<MachineOperand*> &KillOps) { |
| 908 | DOUT << "\n**** Local spiller rewriting MBB '" |
Bill Wendling | fd302b7 | 2009-03-30 20:32:22 +0000 | [diff] [blame] | 909 | << MBB.getBasicBlock()->getName() << "':\n"; |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 910 | |
| 911 | MachineFunction &MF = *MBB.getParent(); |
| 912 | |
| 913 | // MaybeDeadStores - When we need to write a value back into a stack slot, |
| 914 | // keep track of the inserted store. If the stack slot value is never read |
| 915 | // (because the value was used from some available register, for example), and |
| 916 | // subsequently stored to, the original store is dead. This map keeps track |
| 917 | // of inserted stores that are not used. If we see a subsequent store to the |
| 918 | // same stack slot, the original store is deleted. |
| 919 | std::vector<MachineInstr*> MaybeDeadStores; |
| 920 | MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); |
| 921 | |
| 922 | // ReMatDefs - These are rematerializable def MIs which are not deleted. |
| 923 | SmallSet<MachineInstr*, 4> ReMatDefs; |
| 924 | |
| 925 | // Clear kill info. |
| 926 | SmallSet<unsigned, 2> KilledMIRegs; |
| 927 | RegKills.reset(); |
| 928 | KillOps.clear(); |
| 929 | KillOps.resize(TRI->getNumRegs(), NULL); |
| 930 | |
| 931 | unsigned Dist = 0; |
| 932 | DistanceMap.clear(); |
| 933 | for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); |
| 934 | MII != E; ) { |
| 935 | MachineBasicBlock::iterator NextMII = MII; ++NextMII; |
| 936 | |
| 937 | VirtRegMap::MI2VirtMapTy::const_iterator I, End; |
| 938 | bool Erased = false; |
| 939 | bool BackTracked = false; |
| 940 | if (PrepForUnfoldOpti(MBB, MII, |
| 941 | MaybeDeadStores, Spills, RegKills, KillOps, VRM)) |
| 942 | NextMII = next(MII); |
| 943 | |
| 944 | MachineInstr &MI = *MII; |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 945 | |
| 946 | if (VRM.hasEmergencySpills(&MI)) { |
| 947 | // Spill physical register(s) in the rare case the allocator has run out |
| 948 | // of registers to allocate. |
| 949 | SmallSet<int, 4> UsedSS; |
| 950 | std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI); |
| 951 | for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { |
| 952 | unsigned PhysReg = EmSpills[i]; |
| 953 | const TargetRegisterClass *RC = |
| 954 | TRI->getPhysicalRegisterRegClass(PhysReg); |
| 955 | assert(RC && "Unable to determine register class!"); |
| 956 | int SS = VRM.getEmergencySpillSlot(RC); |
| 957 | if (UsedSS.count(SS)) |
| 958 | assert(0 && "Need to spill more than one physical registers!"); |
| 959 | UsedSS.insert(SS); |
| 960 | TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC); |
| 961 | MachineInstr *StoreMI = prior(MII); |
| 962 | VRM.addSpillSlotUse(SS, StoreMI); |
| 963 | TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC); |
| 964 | MachineInstr *LoadMI = next(MII); |
| 965 | VRM.addSpillSlotUse(SS, LoadMI); |
| 966 | ++NumPSpills; |
| 967 | } |
| 968 | NextMII = next(MII); |
| 969 | } |
| 970 | |
| 971 | // Insert restores here if asked to. |
| 972 | if (VRM.isRestorePt(&MI)) { |
| 973 | std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI); |
| 974 | for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { |
| 975 | unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. |
| 976 | if (!VRM.getPreSplitReg(VirtReg)) |
| 977 | continue; // Split interval spilled again. |
| 978 | unsigned Phys = VRM.getPhys(VirtReg); |
| 979 | RegInfo->setPhysRegUsed(Phys); |
| 980 | |
| 981 | // Check if the value being restored if available. If so, it must be |
| 982 | // from a predecessor BB that fallthrough into this BB. We do not |
| 983 | // expect: |
| 984 | // BB1: |
| 985 | // r1 = load fi#1 |
| 986 | // ... |
| 987 | // = r1<kill> |
| 988 | // ... # r1 not clobbered |
| 989 | // ... |
| 990 | // = load fi#1 |
| 991 | bool DoReMat = VRM.isReMaterialized(VirtReg); |
| 992 | int SSorRMId = DoReMat |
| 993 | ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); |
| 994 | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); |
| 995 | unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); |
| 996 | if (InReg == Phys) { |
| 997 | // If the value is already available in the expected register, save |
| 998 | // a reload / remat. |
| 999 | if (SSorRMId) |
| 1000 | DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; |
| 1001 | else |
| 1002 | DOUT << "Reusing SS#" << SSorRMId; |
| 1003 | DOUT << " from physreg " |
| 1004 | << TRI->getName(InReg) << " for vreg" |
| 1005 | << VirtReg <<" instead of reloading into physreg " |
| 1006 | << TRI->getName(Phys) << "\n"; |
| 1007 | ++NumOmitted; |
| 1008 | continue; |
| 1009 | } else if (InReg && InReg != Phys) { |
| 1010 | if (SSorRMId) |
| 1011 | DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; |
| 1012 | else |
| 1013 | DOUT << "Reusing SS#" << SSorRMId; |
| 1014 | DOUT << " from physreg " |
| 1015 | << TRI->getName(InReg) << " for vreg" |
| 1016 | << VirtReg <<" by copying it into physreg " |
| 1017 | << TRI->getName(Phys) << "\n"; |
| 1018 | |
| 1019 | // If the reloaded / remat value is available in another register, |
| 1020 | // copy it to the desired register. |
| 1021 | TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC); |
| 1022 | |
| 1023 | // This invalidates Phys. |
| 1024 | Spills.ClobberPhysReg(Phys); |
| 1025 | // Remember it's available. |
| 1026 | Spills.addAvailable(SSorRMId, Phys); |
| 1027 | |
| 1028 | // Mark is killed. |
| 1029 | MachineInstr *CopyMI = prior(MII); |
| 1030 | MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg); |
| 1031 | KillOpnd->setIsKill(); |
| 1032 | UpdateKills(*CopyMI, RegKills, KillOps, TRI); |
| 1033 | |
| 1034 | DOUT << '\t' << *CopyMI; |
| 1035 | ++NumCopified; |
| 1036 | continue; |
| 1037 | } |
| 1038 | |
| 1039 | if (VRM.isReMaterialized(VirtReg)) { |
| 1040 | ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM); |
| 1041 | } else { |
| 1042 | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); |
| 1043 | TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC); |
| 1044 | MachineInstr *LoadMI = prior(MII); |
| 1045 | VRM.addSpillSlotUse(SSorRMId, LoadMI); |
| 1046 | ++NumLoads; |
| 1047 | } |
| 1048 | |
| 1049 | // This invalidates Phys. |
| 1050 | Spills.ClobberPhysReg(Phys); |
| 1051 | // Remember it's available. |
| 1052 | Spills.addAvailable(SSorRMId, Phys); |
| 1053 | |
| 1054 | UpdateKills(*prior(MII), RegKills, KillOps, TRI); |
| 1055 | DOUT << '\t' << *prior(MII); |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | // Insert spills here if asked to. |
| 1060 | if (VRM.isSpillPt(&MI)) { |
| 1061 | std::vector<std::pair<unsigned,bool> > &SpillRegs = |
| 1062 | VRM.getSpillPtSpills(&MI); |
| 1063 | for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { |
| 1064 | unsigned VirtReg = SpillRegs[i].first; |
| 1065 | bool isKill = SpillRegs[i].second; |
| 1066 | if (!VRM.getPreSplitReg(VirtReg)) |
| 1067 | continue; // Split interval spilled again. |
| 1068 | const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); |
| 1069 | unsigned Phys = VRM.getPhys(VirtReg); |
| 1070 | int StackSlot = VRM.getStackSlot(VirtReg); |
| 1071 | TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC); |
| 1072 | MachineInstr *StoreMI = next(MII); |
| 1073 | VRM.addSpillSlotUse(StackSlot, StoreMI); |
| 1074 | DOUT << "Store:\t" << *StoreMI; |
| 1075 | VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| 1076 | } |
| 1077 | NextMII = next(MII); |
| 1078 | } |
| 1079 | |
| 1080 | /// ReusedOperands - Keep track of operand reuse in case we need to undo |
| 1081 | /// reuse. |
| 1082 | ReuseInfo ReusedOperands(MI, TRI); |
| 1083 | SmallVector<unsigned, 4> VirtUseOps; |
| 1084 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 1085 | MachineOperand &MO = MI.getOperand(i); |
| 1086 | if (!MO.isReg() || MO.getReg() == 0) |
| 1087 | continue; // Ignore non-register operands. |
| 1088 | |
| 1089 | unsigned VirtReg = MO.getReg(); |
| 1090 | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { |
| 1091 | // Ignore physregs for spilling, but remember that it is used by this |
| 1092 | // function. |
| 1093 | RegInfo->setPhysRegUsed(VirtReg); |
| 1094 | continue; |
| 1095 | } |
| 1096 | |
| 1097 | // We want to process implicit virtual register uses first. |
| 1098 | if (MO.isImplicit()) |
| 1099 | // If the virtual register is implicitly defined, emit a implicit_def |
| 1100 | // before so scavenger knows it's "defined". |
| 1101 | VirtUseOps.insert(VirtUseOps.begin(), i); |
| 1102 | else |
| 1103 | VirtUseOps.push_back(i); |
| 1104 | } |
| 1105 | |
| 1106 | // Process all of the spilled uses and all non spilled reg references. |
| 1107 | SmallVector<int, 2> PotentialDeadStoreSlots; |
| 1108 | KilledMIRegs.clear(); |
| 1109 | for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { |
| 1110 | unsigned i = VirtUseOps[j]; |
| 1111 | MachineOperand &MO = MI.getOperand(i); |
| 1112 | unsigned VirtReg = MO.getReg(); |
| 1113 | assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| 1114 | "Not a virtual register?"); |
| 1115 | |
| 1116 | unsigned SubIdx = MO.getSubReg(); |
| 1117 | if (VRM.isAssignedReg(VirtReg)) { |
| 1118 | // This virtual register was assigned a physreg! |
| 1119 | unsigned Phys = VRM.getPhys(VirtReg); |
| 1120 | RegInfo->setPhysRegUsed(Phys); |
| 1121 | if (MO.isDef()) |
| 1122 | ReusedOperands.markClobbered(Phys); |
| 1123 | unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; |
| 1124 | MI.getOperand(i).setReg(RReg); |
| 1125 | if (VRM.isImplicitlyDefined(VirtReg)) |
| 1126 | BuildMI(MBB, &MI, MI.getDebugLoc(), |
| 1127 | TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg); |
| 1128 | continue; |
| 1129 | } |
| 1130 | |
| 1131 | // This virtual register is now known to be a spilled value. |
| 1132 | if (!MO.isUse()) |
| 1133 | continue; // Handle defs in the loop below (handle use&def here though) |
| 1134 | |
| 1135 | bool DoReMat = VRM.isReMaterialized(VirtReg); |
| 1136 | int SSorRMId = DoReMat |
| 1137 | ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); |
| 1138 | int ReuseSlot = SSorRMId; |
| 1139 | |
| 1140 | // Check to see if this stack slot is available. |
| 1141 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); |
| 1142 | |
| 1143 | // If this is a sub-register use, make sure the reuse register is in the |
| 1144 | // right register class. For example, for x86 not all of the 32-bit |
| 1145 | // registers have accessible sub-registers. |
| 1146 | // Similarly so for EXTRACT_SUBREG. Consider this: |
| 1147 | // EDI = op |
| 1148 | // MOV32_mr fi#1, EDI |
| 1149 | // ... |
| 1150 | // = EXTRACT_SUBREG fi#1 |
| 1151 | // fi#1 is available in EDI, but it cannot be reused because it's not in |
| 1152 | // the right register file. |
| 1153 | if (PhysReg && |
| 1154 | (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { |
| 1155 | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); |
| 1156 | if (!RC->contains(PhysReg)) |
| 1157 | PhysReg = 0; |
| 1158 | } |
| 1159 | |
| 1160 | if (PhysReg) { |
| 1161 | // This spilled operand might be part of a two-address operand. If this |
| 1162 | // is the case, then changing it will necessarily require changing the |
| 1163 | // def part of the instruction as well. However, in some cases, we |
| 1164 | // aren't allowed to modify the reused register. If none of these cases |
| 1165 | // apply, reuse it. |
| 1166 | bool CanReuse = true; |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 1167 | bool isTied = MI.isRegTiedToDefOperand(i); |
| 1168 | if (isTied) { |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1169 | // Okay, we have a two address operand. We can reuse this physreg as |
| 1170 | // long as we are allowed to clobber the value and there isn't an |
| 1171 | // earlier def that has already clobbered the physreg. |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 1172 | CanReuse = !ReusedOperands.isClobbered(PhysReg) && |
| 1173 | Spills.canClobberPhysReg(PhysReg); |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1174 | } |
| 1175 | |
| 1176 | if (CanReuse) { |
| 1177 | // If this stack slot value is already available, reuse it! |
| 1178 | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) |
| 1179 | DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; |
| 1180 | else |
| 1181 | DOUT << "Reusing SS#" << ReuseSlot; |
| 1182 | DOUT << " from physreg " |
| 1183 | << TRI->getName(PhysReg) << " for vreg" |
| 1184 | << VirtReg <<" instead of reloading into physreg " |
| 1185 | << TRI->getName(VRM.getPhys(VirtReg)) << "\n"; |
| 1186 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 1187 | MI.getOperand(i).setReg(RReg); |
| 1188 | |
| 1189 | // The only technical detail we have is that we don't know that |
| 1190 | // PhysReg won't be clobbered by a reloaded stack slot that occurs |
| 1191 | // later in the instruction. In particular, consider 'op V1, V2'. |
| 1192 | // If V1 is available in physreg R0, we would choose to reuse it |
| 1193 | // here, instead of reloading it into the register the allocator |
| 1194 | // indicated (say R1). However, V2 might have to be reloaded |
| 1195 | // later, and it might indicate that it needs to live in R0. When |
| 1196 | // this occurs, we need to have information available that |
| 1197 | // indicates it is safe to use R1 for the reload instead of R0. |
| 1198 | // |
| 1199 | // To further complicate matters, we might conflict with an alias, |
| 1200 | // or R0 and R1 might not be compatible with each other. In this |
| 1201 | // case, we actually insert a reload for V1 in R1, ensuring that |
| 1202 | // we can get at R0 or its alias. |
| 1203 | ReusedOperands.addReuse(i, ReuseSlot, PhysReg, |
| 1204 | VRM.getPhys(VirtReg), VirtReg); |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 1205 | if (isTied) |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1206 | // Only mark it clobbered if this is a use&def operand. |
| 1207 | ReusedOperands.markClobbered(PhysReg); |
| 1208 | ++NumReused; |
| 1209 | |
| 1210 | if (MI.getOperand(i).isKill() && |
| 1211 | ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { |
| 1212 | |
| 1213 | // The store of this spilled value is potentially dead, but we |
| 1214 | // won't know for certain until we've confirmed that the re-use |
| 1215 | // above is valid, which means waiting until the other operands |
| 1216 | // are processed. For now we just track the spill slot, we'll |
| 1217 | // remove it after the other operands are processed if valid. |
| 1218 | |
| 1219 | PotentialDeadStoreSlots.push_back(ReuseSlot); |
| 1220 | } |
| 1221 | |
| 1222 | // Mark is isKill if it's there no other uses of the same virtual |
| 1223 | // register and it's not a two-address operand. IsKill will be |
| 1224 | // unset if reg is reused. |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 1225 | if (!isTied && KilledMIRegs.count(VirtReg) == 0) { |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1226 | MI.getOperand(i).setIsKill(); |
| 1227 | KilledMIRegs.insert(VirtReg); |
| 1228 | } |
| 1229 | |
| 1230 | continue; |
| 1231 | } // CanReuse |
| 1232 | |
| 1233 | // Otherwise we have a situation where we have a two-address instruction |
| 1234 | // whose mod/ref operand needs to be reloaded. This reload is already |
| 1235 | // available in some register "PhysReg", but if we used PhysReg as the |
| 1236 | // operand to our 2-addr instruction, the instruction would modify |
| 1237 | // PhysReg. This isn't cool if something later uses PhysReg and expects |
| 1238 | // to get its initial value. |
| 1239 | // |
| 1240 | // To avoid this problem, and to avoid doing a load right after a store, |
| 1241 | // we emit a copy from PhysReg into the designated register for this |
| 1242 | // operand. |
| 1243 | unsigned DesignatedReg = VRM.getPhys(VirtReg); |
| 1244 | assert(DesignatedReg && "Must map virtreg to physreg!"); |
| 1245 | |
| 1246 | // Note that, if we reused a register for a previous operand, the |
| 1247 | // register we want to reload into might not actually be |
| 1248 | // available. If this occurs, use the register indicated by the |
| 1249 | // reuser. |
| 1250 | if (ReusedOperands.hasReuses()) |
| 1251 | DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, |
| 1252 | Spills, MaybeDeadStores, RegKills, KillOps, VRM); |
| 1253 | |
| 1254 | // If the mapped designated register is actually the physreg we have |
| 1255 | // incoming, we don't need to inserted a dead copy. |
| 1256 | if (DesignatedReg == PhysReg) { |
| 1257 | // If this stack slot value is already available, reuse it! |
| 1258 | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) |
| 1259 | DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; |
| 1260 | else |
| 1261 | DOUT << "Reusing SS#" << ReuseSlot; |
| 1262 | DOUT << " from physreg " << TRI->getName(PhysReg) |
| 1263 | << " for vreg" << VirtReg |
| 1264 | << " instead of reloading into same physreg.\n"; |
| 1265 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 1266 | MI.getOperand(i).setReg(RReg); |
| 1267 | ReusedOperands.markClobbered(RReg); |
| 1268 | ++NumReused; |
| 1269 | continue; |
| 1270 | } |
| 1271 | |
| 1272 | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); |
| 1273 | RegInfo->setPhysRegUsed(DesignatedReg); |
| 1274 | ReusedOperands.markClobbered(DesignatedReg); |
| 1275 | TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC); |
| 1276 | |
| 1277 | MachineInstr *CopyMI = prior(MII); |
| 1278 | UpdateKills(*CopyMI, RegKills, KillOps, TRI); |
| 1279 | |
| 1280 | // This invalidates DesignatedReg. |
| 1281 | Spills.ClobberPhysReg(DesignatedReg); |
| 1282 | |
| 1283 | Spills.addAvailable(ReuseSlot, DesignatedReg); |
| 1284 | unsigned RReg = |
| 1285 | SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; |
| 1286 | MI.getOperand(i).setReg(RReg); |
| 1287 | DOUT << '\t' << *prior(MII); |
| 1288 | ++NumReused; |
| 1289 | continue; |
| 1290 | } // if (PhysReg) |
| 1291 | |
| 1292 | // Otherwise, reload it and remember that we have it. |
| 1293 | PhysReg = VRM.getPhys(VirtReg); |
| 1294 | assert(PhysReg && "Must map virtreg to physreg!"); |
| 1295 | |
| 1296 | // Note that, if we reused a register for a previous operand, the |
| 1297 | // register we want to reload into might not actually be |
| 1298 | // available. If this occurs, use the register indicated by the |
| 1299 | // reuser. |
| 1300 | if (ReusedOperands.hasReuses()) |
| 1301 | PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, |
| 1302 | Spills, MaybeDeadStores, RegKills, KillOps, VRM); |
| 1303 | |
| 1304 | RegInfo->setPhysRegUsed(PhysReg); |
| 1305 | ReusedOperands.markClobbered(PhysReg); |
| 1306 | if (DoReMat) { |
| 1307 | ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM); |
| 1308 | } else { |
| 1309 | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); |
| 1310 | TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC); |
| 1311 | MachineInstr *LoadMI = prior(MII); |
| 1312 | VRM.addSpillSlotUse(SSorRMId, LoadMI); |
| 1313 | ++NumLoads; |
| 1314 | } |
| 1315 | // This invalidates PhysReg. |
| 1316 | Spills.ClobberPhysReg(PhysReg); |
| 1317 | |
| 1318 | // Any stores to this stack slot are not dead anymore. |
| 1319 | if (!DoReMat) |
| 1320 | MaybeDeadStores[SSorRMId] = NULL; |
| 1321 | Spills.addAvailable(SSorRMId, PhysReg); |
| 1322 | // Assumes this is the last use. IsKill will be unset if reg is reused |
| 1323 | // unless it's a two-address operand. |
Evan Cheng | a24752f | 2009-03-19 20:30:06 +0000 | [diff] [blame] | 1324 | if (!MI.isRegTiedToDefOperand(i) && |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1325 | KilledMIRegs.count(VirtReg) == 0) { |
| 1326 | MI.getOperand(i).setIsKill(); |
| 1327 | KilledMIRegs.insert(VirtReg); |
| 1328 | } |
| 1329 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 1330 | MI.getOperand(i).setReg(RReg); |
| 1331 | UpdateKills(*prior(MII), RegKills, KillOps, TRI); |
| 1332 | DOUT << '\t' << *prior(MII); |
| 1333 | } |
| 1334 | |
| 1335 | // Ok - now we can remove stores that have been confirmed dead. |
| 1336 | for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { |
| 1337 | // This was the last use and the spilled value is still available |
| 1338 | // for reuse. That means the spill was unnecessary! |
| 1339 | int PDSSlot = PotentialDeadStoreSlots[j]; |
| 1340 | MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; |
| 1341 | if (DeadStore) { |
| 1342 | DOUT << "Removed dead store:\t" << *DeadStore; |
| 1343 | InvalidateKills(*DeadStore, RegKills, KillOps); |
| 1344 | VRM.RemoveMachineInstrFromMaps(DeadStore); |
| 1345 | MBB.erase(DeadStore); |
| 1346 | MaybeDeadStores[PDSSlot] = NULL; |
| 1347 | ++NumDSE; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | |
| 1352 | DOUT << '\t' << MI; |
| 1353 | |
| 1354 | |
| 1355 | // If we have folded references to memory operands, make sure we clear all |
| 1356 | // physical registers that may contain the value of the spilled virtual |
| 1357 | // register |
| 1358 | SmallSet<int, 2> FoldedSS; |
| 1359 | for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { |
| 1360 | unsigned VirtReg = I->second.first; |
| 1361 | VirtRegMap::ModRef MR = I->second.second; |
| 1362 | DOUT << "Folded vreg: " << VirtReg << " MR: " << MR; |
| 1363 | |
| 1364 | // MI2VirtMap be can updated which invalidate the iterator. |
| 1365 | // Increment the iterator first. |
| 1366 | ++I; |
| 1367 | int SS = VRM.getStackSlot(VirtReg); |
| 1368 | if (SS == VirtRegMap::NO_STACK_SLOT) |
| 1369 | continue; |
| 1370 | FoldedSS.insert(SS); |
| 1371 | DOUT << " - StackSlot: " << SS << "\n"; |
| 1372 | |
| 1373 | // If this folded instruction is just a use, check to see if it's a |
| 1374 | // straight load from the virt reg slot. |
| 1375 | if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { |
| 1376 | int FrameIdx; |
| 1377 | unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); |
| 1378 | if (DestReg && FrameIdx == SS) { |
| 1379 | // If this spill slot is available, turn it into a copy (or nothing) |
| 1380 | // instead of leaving it as a load! |
| 1381 | if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { |
| 1382 | DOUT << "Promoted Load To Copy: " << MI; |
| 1383 | if (DestReg != InReg) { |
| 1384 | const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); |
| 1385 | TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); |
| 1386 | MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); |
| 1387 | unsigned SubIdx = DefMO->getSubReg(); |
| 1388 | // Revisit the copy so we make sure to notice the effects of the |
| 1389 | // operation on the destreg (either needing to RA it if it's |
| 1390 | // virtual or needing to clobber any values if it's physical). |
| 1391 | NextMII = &MI; |
| 1392 | --NextMII; // backtrack to the copy. |
| 1393 | // Propagate the sub-register index over. |
| 1394 | if (SubIdx) { |
| 1395 | DefMO = NextMII->findRegisterDefOperand(DestReg); |
| 1396 | DefMO->setSubReg(SubIdx); |
| 1397 | } |
| 1398 | |
| 1399 | // Mark is killed. |
| 1400 | MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg); |
| 1401 | KillOpnd->setIsKill(); |
| 1402 | |
| 1403 | BackTracked = true; |
| 1404 | } else { |
| 1405 | DOUT << "Removing now-noop copy: " << MI; |
| 1406 | // Unset last kill since it's being reused. |
| 1407 | InvalidateKill(InReg, RegKills, KillOps); |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 1408 | Spills.disallowClobberPhysReg(InReg); |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1409 | } |
| 1410 | |
| 1411 | InvalidateKills(MI, RegKills, KillOps); |
| 1412 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 1413 | MBB.erase(&MI); |
| 1414 | Erased = true; |
| 1415 | goto ProcessNextInst; |
| 1416 | } |
| 1417 | } else { |
| 1418 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| 1419 | SmallVector<MachineInstr*, 4> NewMIs; |
| 1420 | if (PhysReg && |
| 1421 | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { |
| 1422 | MBB.insert(MII, NewMIs[0]); |
| 1423 | InvalidateKills(MI, RegKills, KillOps); |
| 1424 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 1425 | MBB.erase(&MI); |
| 1426 | Erased = true; |
| 1427 | --NextMII; // backtrack to the unfolded instruction. |
| 1428 | BackTracked = true; |
| 1429 | goto ProcessNextInst; |
| 1430 | } |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | // If this reference is not a use, any previous store is now dead. |
| 1435 | // Otherwise, the store to this stack slot is not dead anymore. |
| 1436 | MachineInstr* DeadStore = MaybeDeadStores[SS]; |
| 1437 | if (DeadStore) { |
| 1438 | bool isDead = !(MR & VirtRegMap::isRef); |
| 1439 | MachineInstr *NewStore = NULL; |
| 1440 | if (MR & VirtRegMap::isModRef) { |
| 1441 | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| 1442 | SmallVector<MachineInstr*, 4> NewMIs; |
| 1443 | // We can reuse this physreg as long as we are allowed to clobber |
| 1444 | // the value and there isn't an earlier def that has already clobbered |
| 1445 | // the physreg. |
| 1446 | if (PhysReg && |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 1447 | !ReusedOperands.isClobbered(PhysReg) && |
| 1448 | Spills.canClobberPhysReg(PhysReg) && |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1449 | !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! |
| 1450 | MachineOperand *KillOpnd = |
| 1451 | DeadStore->findRegisterUseOperand(PhysReg, true); |
| 1452 | // Note, if the store is storing a sub-register, it's possible the |
| 1453 | // super-register is needed below. |
| 1454 | if (KillOpnd && !KillOpnd->getSubReg() && |
| 1455 | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 1456 | MBB.insert(MII, NewMIs[0]); |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1457 | NewStore = NewMIs[1]; |
| 1458 | MBB.insert(MII, NewStore); |
| 1459 | VRM.addSpillSlotUse(SS, NewStore); |
| 1460 | InvalidateKills(MI, RegKills, KillOps); |
| 1461 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 1462 | MBB.erase(&MI); |
| 1463 | Erased = true; |
| 1464 | --NextMII; |
| 1465 | --NextMII; // backtrack to the unfolded instruction. |
| 1466 | BackTracked = true; |
| 1467 | isDead = true; |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 1468 | ++NumSUnfold; |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1469 | } |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | if (isDead) { // Previous store is dead. |
| 1474 | // If we get here, the store is dead, nuke it now. |
| 1475 | DOUT << "Removed dead store:\t" << *DeadStore; |
| 1476 | InvalidateKills(*DeadStore, RegKills, KillOps); |
| 1477 | VRM.RemoveMachineInstrFromMaps(DeadStore); |
| 1478 | MBB.erase(DeadStore); |
| 1479 | if (!NewStore) |
| 1480 | ++NumDSE; |
| 1481 | } |
| 1482 | |
| 1483 | MaybeDeadStores[SS] = NULL; |
| 1484 | if (NewStore) { |
| 1485 | // Treat this store as a spill merged into a copy. That makes the |
| 1486 | // stack slot value available. |
| 1487 | VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); |
| 1488 | goto ProcessNextInst; |
| 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | // If the spill slot value is available, and this is a new definition of |
| 1493 | // the value, the value is not available anymore. |
| 1494 | if (MR & VirtRegMap::isMod) { |
| 1495 | // Notice that the value in this stack slot has been modified. |
| 1496 | Spills.ModifyStackSlotOrReMat(SS); |
| 1497 | |
| 1498 | // If this is *just* a mod of the value, check to see if this is just a |
| 1499 | // store to the spill slot (i.e. the spill got merged into the copy). If |
| 1500 | // so, realize that the vreg is available now, and add the store to the |
| 1501 | // MaybeDeadStore info. |
| 1502 | int StackSlot; |
| 1503 | if (!(MR & VirtRegMap::isRef)) { |
| 1504 | if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { |
| 1505 | assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && |
| 1506 | "Src hasn't been allocated yet?"); |
| 1507 | |
| 1508 | if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot, |
| 1509 | Spills, RegKills, KillOps, TRI, VRM)) { |
| 1510 | NextMII = next(MII); |
| 1511 | BackTracked = true; |
| 1512 | goto ProcessNextInst; |
| 1513 | } |
| 1514 | |
| 1515 | // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark |
| 1516 | // this as a potentially dead store in case there is a subsequent |
| 1517 | // store into the stack slot without a read from it. |
| 1518 | MaybeDeadStores[StackSlot] = &MI; |
| 1519 | |
| 1520 | // If the stack slot value was previously available in some other |
| 1521 | // register, change it now. Otherwise, make the register |
| 1522 | // available in PhysReg. |
Evan Cheng | e47b008 | 2009-03-17 01:23:09 +0000 | [diff] [blame] | 1523 | Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1524 | } |
| 1525 | } |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | // Process all of the spilled defs. |
| 1530 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 1531 | MachineOperand &MO = MI.getOperand(i); |
| 1532 | if (!(MO.isReg() && MO.getReg() && MO.isDef())) |
| 1533 | continue; |
| 1534 | |
| 1535 | unsigned VirtReg = MO.getReg(); |
| 1536 | if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { |
| 1537 | // Check to see if this is a noop copy. If so, eliminate the |
| 1538 | // instruction before considering the dest reg to be changed. |
| 1539 | unsigned Src, Dst, SrcSR, DstSR; |
| 1540 | if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { |
| 1541 | ++NumDCE; |
| 1542 | DOUT << "Removing now-noop copy: " << MI; |
| 1543 | SmallVector<unsigned, 2> KillRegs; |
| 1544 | InvalidateKills(MI, RegKills, KillOps, &KillRegs); |
| 1545 | if (MO.isDead() && !KillRegs.empty()) { |
| 1546 | // Source register or an implicit super/sub-register use is killed. |
| 1547 | assert(KillRegs[0] == Dst || |
| 1548 | TRI->isSubRegister(KillRegs[0], Dst) || |
| 1549 | TRI->isSuperRegister(KillRegs[0], Dst)); |
| 1550 | // Last def is now dead. |
| 1551 | TransferDeadness(&MBB, Dist, Src, RegKills, KillOps); |
| 1552 | } |
| 1553 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 1554 | MBB.erase(&MI); |
| 1555 | Erased = true; |
| 1556 | Spills.disallowClobberPhysReg(VirtReg); |
| 1557 | goto ProcessNextInst; |
| 1558 | } |
| 1559 | |
| 1560 | // If it's not a no-op copy, it clobbers the value in the destreg. |
| 1561 | Spills.ClobberPhysReg(VirtReg); |
| 1562 | ReusedOperands.markClobbered(VirtReg); |
| 1563 | |
| 1564 | // Check to see if this instruction is a load from a stack slot into |
| 1565 | // a register. If so, this provides the stack slot value in the reg. |
| 1566 | int FrameIdx; |
| 1567 | if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { |
| 1568 | assert(DestReg == VirtReg && "Unknown load situation!"); |
| 1569 | |
| 1570 | // If it is a folded reference, then it's not safe to clobber. |
| 1571 | bool Folded = FoldedSS.count(FrameIdx); |
| 1572 | // Otherwise, if it wasn't available, remember that it is now! |
| 1573 | Spills.addAvailable(FrameIdx, DestReg, !Folded); |
| 1574 | goto ProcessNextInst; |
| 1575 | } |
| 1576 | |
| 1577 | continue; |
| 1578 | } |
| 1579 | |
| 1580 | unsigned SubIdx = MO.getSubReg(); |
| 1581 | bool DoReMat = VRM.isReMaterialized(VirtReg); |
| 1582 | if (DoReMat) |
| 1583 | ReMatDefs.insert(&MI); |
| 1584 | |
| 1585 | // The only vregs left are stack slot definitions. |
| 1586 | int StackSlot = VRM.getStackSlot(VirtReg); |
| 1587 | const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); |
| 1588 | |
| 1589 | // If this def is part of a two-address operand, make sure to execute |
| 1590 | // the store from the correct physical register. |
| 1591 | unsigned PhysReg; |
Bob Wilson | d9df501 | 2009-04-09 17:16:43 +0000 | [diff] [blame^] | 1592 | unsigned TiedOp; |
| 1593 | if (MI.isRegTiedToUseOperand(i, &TiedOp)) { |
Owen Anderson | 1ed5b71 | 2009-03-11 22:31:21 +0000 | [diff] [blame] | 1594 | PhysReg = MI.getOperand(TiedOp).getReg(); |
| 1595 | if (SubIdx) { |
| 1596 | unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); |
| 1597 | assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && |
| 1598 | "Can't find corresponding super-register!"); |
| 1599 | PhysReg = SuperReg; |
| 1600 | } |
| 1601 | } else { |
| 1602 | PhysReg = VRM.getPhys(VirtReg); |
| 1603 | if (ReusedOperands.isClobbered(PhysReg)) { |
| 1604 | // Another def has taken the assigned physreg. It must have been a |
| 1605 | // use&def which got it due to reuse. Undo the reuse! |
| 1606 | PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, |
| 1607 | Spills, MaybeDeadStores, RegKills, KillOps, VRM); |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | assert(PhysReg && "VR not assigned a physical register?"); |
| 1612 | RegInfo->setPhysRegUsed(PhysReg); |
| 1613 | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| 1614 | ReusedOperands.markClobbered(RReg); |
| 1615 | MI.getOperand(i).setReg(RReg); |
| 1616 | |
| 1617 | if (!MO.isDead()) { |
| 1618 | MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; |
| 1619 | SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true, |
| 1620 | LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); |
| 1621 | NextMII = next(MII); |
| 1622 | |
| 1623 | // Check to see if this is a noop copy. If so, eliminate the |
| 1624 | // instruction before considering the dest reg to be changed. |
| 1625 | { |
| 1626 | unsigned Src, Dst, SrcSR, DstSR; |
| 1627 | if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { |
| 1628 | ++NumDCE; |
| 1629 | DOUT << "Removing now-noop copy: " << MI; |
| 1630 | InvalidateKills(MI, RegKills, KillOps); |
| 1631 | VRM.RemoveMachineInstrFromMaps(&MI); |
| 1632 | MBB.erase(&MI); |
| 1633 | Erased = true; |
| 1634 | UpdateKills(*LastStore, RegKills, KillOps, TRI); |
| 1635 | goto ProcessNextInst; |
| 1636 | } |
| 1637 | } |
| 1638 | } |
| 1639 | } |
| 1640 | ProcessNextInst: |
| 1641 | DistanceMap.insert(std::make_pair(&MI, Dist++)); |
| 1642 | if (!Erased && !BackTracked) { |
| 1643 | for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) |
| 1644 | UpdateKills(*II, RegKills, KillOps, TRI); |
| 1645 | } |
| 1646 | MII = NextMII; |
| 1647 | } |
| 1648 | |
| 1649 | } |
| 1650 | |
| 1651 | llvm::Spiller* llvm::createSpiller() { |
| 1652 | switch (SpillerOpt) { |
| 1653 | default: assert(0 && "Unreachable!"); |
| 1654 | case local: |
| 1655 | return new LocalSpiller(); |
| 1656 | case simple: |
| 1657 | return new SimpleSpiller(); |
| 1658 | } |
Daniel Dunbar | cfbf05e | 2009-03-14 01:53:05 +0000 | [diff] [blame] | 1659 | } |