blob: 10fb2e6a6c7b6209b3eeee42dabb5c0ee58b4a79 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000194 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000195 <ol>
196 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000197 </ol>
198 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000199 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000200 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000201 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000202 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Reid Spencerb043f672007-07-20 19:59:11 +0000203 </ol>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000204 <ol>
205 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000206 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000207 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 </li>
209 </ol>
210 </li>
211</ol>
212
213<div class="doc_author">
214 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
215 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
216</div>
217
218<!-- *********************************************************************** -->
219<div class="doc_section"> <a name="abstract">Abstract </a></div>
220<!-- *********************************************************************** -->
221
222<div class="doc_text">
223<p>This document is a reference manual for the LLVM assembly language.
224LLVM is an SSA based representation that provides type safety,
225low-level operations, flexibility, and the capability of representing
226'all' high-level languages cleanly. It is the common code
227representation used throughout all phases of the LLVM compilation
228strategy.</p>
229</div>
230
231<!-- *********************************************************************** -->
232<div class="doc_section"> <a name="introduction">Introduction</a> </div>
233<!-- *********************************************************************** -->
234
235<div class="doc_text">
236
237<p>The LLVM code representation is designed to be used in three
238different forms: as an in-memory compiler IR, as an on-disk bitcode
239representation (suitable for fast loading by a Just-In-Time compiler),
240and as a human readable assembly language representation. This allows
241LLVM to provide a powerful intermediate representation for efficient
242compiler transformations and analysis, while providing a natural means
243to debug and visualize the transformations. The three different forms
244of LLVM are all equivalent. This document describes the human readable
245representation and notation.</p>
246
247<p>The LLVM representation aims to be light-weight and low-level
248while being expressive, typed, and extensible at the same time. It
249aims to be a "universal IR" of sorts, by being at a low enough level
250that high-level ideas may be cleanly mapped to it (similar to how
251microprocessors are "universal IR's", allowing many source languages to
252be mapped to them). By providing type information, LLVM can be used as
253the target of optimizations: for example, through pointer analysis, it
254can be proven that a C automatic variable is never accessed outside of
255the current function... allowing it to be promoted to a simple SSA
256value instead of a memory location.</p>
257
258</div>
259
260<!-- _______________________________________________________________________ -->
261<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
262
263<div class="doc_text">
264
265<p>It is important to note that this document describes 'well formed'
266LLVM assembly language. There is a difference between what the parser
267accepts and what is considered 'well formed'. For example, the
268following instruction is syntactically okay, but not well formed:</p>
269
270<div class="doc_code">
271<pre>
272%x = <a href="#i_add">add</a> i32 1, %x
273</pre>
274</div>
275
276<p>...because the definition of <tt>%x</tt> does not dominate all of
277its uses. The LLVM infrastructure provides a verification pass that may
278be used to verify that an LLVM module is well formed. This pass is
279automatically run by the parser after parsing input assembly and by
280the optimizer before it outputs bitcode. The violations pointed out
281by the verifier pass indicate bugs in transformation passes or input to
282the parser.</p>
283</div>
284
Chris Lattnera83fdc02007-10-03 17:34:29 +0000285<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287<!-- *********************************************************************** -->
288<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
289<!-- *********************************************************************** -->
290
291<div class="doc_text">
292
Reid Spencerc8245b02007-08-07 14:34:28 +0000293 <p>LLVM identifiers come in two basic types: global and local. Global
294 identifiers (functions, global variables) begin with the @ character. Local
295 identifiers (register names, types) begin with the % character. Additionally,
296 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297
298<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000299 <li>Named values are represented as a string of characters with their prefix.
300 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
301 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000303 with quotes. In this way, anything except a <tt>&quot;</tt> character can
304 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305
Reid Spencerc8245b02007-08-07 14:34:28 +0000306 <li>Unnamed values are represented as an unsigned numeric value with their
307 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
309 <li>Constants, which are described in a <a href="#constants">section about
310 constants</a>, below.</li>
311</ol>
312
Reid Spencerc8245b02007-08-07 14:34:28 +0000313<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314don't need to worry about name clashes with reserved words, and the set of
315reserved words may be expanded in the future without penalty. Additionally,
316unnamed identifiers allow a compiler to quickly come up with a temporary
317variable without having to avoid symbol table conflicts.</p>
318
319<p>Reserved words in LLVM are very similar to reserved words in other
320languages. There are keywords for different opcodes
321('<tt><a href="#i_add">add</a></tt>',
322 '<tt><a href="#i_bitcast">bitcast</a></tt>',
323 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
324href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
325and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000326none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327
328<p>Here is an example of LLVM code to multiply the integer variable
329'<tt>%X</tt>' by 8:</p>
330
331<p>The easy way:</p>
332
333<div class="doc_code">
334<pre>
335%result = <a href="#i_mul">mul</a> i32 %X, 8
336</pre>
337</div>
338
339<p>After strength reduction:</p>
340
341<div class="doc_code">
342<pre>
343%result = <a href="#i_shl">shl</a> i32 %X, i8 3
344</pre>
345</div>
346
347<p>And the hard way:</p>
348
349<div class="doc_code">
350<pre>
351<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
352<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
353%result = <a href="#i_add">add</a> i32 %1, %1
354</pre>
355</div>
356
357<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
358important lexical features of LLVM:</p>
359
360<ol>
361
362 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
363 line.</li>
364
365 <li>Unnamed temporaries are created when the result of a computation is not
366 assigned to a named value.</li>
367
368 <li>Unnamed temporaries are numbered sequentially</li>
369
370</ol>
371
372<p>...and it also shows a convention that we follow in this document. When
373demonstrating instructions, we will follow an instruction with a comment that
374defines the type and name of value produced. Comments are shown in italic
375text.</p>
376
377</div>
378
379<!-- *********************************************************************** -->
380<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
381<!-- *********************************************************************** -->
382
383<!-- ======================================================================= -->
384<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
385</div>
386
387<div class="doc_text">
388
389<p>LLVM programs are composed of "Module"s, each of which is a
390translation unit of the input programs. Each module consists of
391functions, global variables, and symbol table entries. Modules may be
392combined together with the LLVM linker, which merges function (and
393global variable) definitions, resolves forward declarations, and merges
394symbol table entries. Here is an example of the "hello world" module:</p>
395
396<div class="doc_code">
397<pre><i>; Declare the string constant as a global constant...</i>
398<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
399 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
400
401<i>; External declaration of the puts function</i>
402<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
403
404<i>; Definition of main function</i>
405define i32 @main() { <i>; i32()* </i>
406 <i>; Convert [13x i8 ]* to i8 *...</i>
407 %cast210 = <a
408 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
409
410 <i>; Call puts function to write out the string to stdout...</i>
411 <a
412 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
413 <a
414 href="#i_ret">ret</a> i32 0<br>}<br>
415</pre>
416</div>
417
418<p>This example is made up of a <a href="#globalvars">global variable</a>
419named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
420function, and a <a href="#functionstructure">function definition</a>
421for "<tt>main</tt>".</p>
422
423<p>In general, a module is made up of a list of global values,
424where both functions and global variables are global values. Global values are
425represented by a pointer to a memory location (in this case, a pointer to an
426array of char, and a pointer to a function), and have one of the following <a
427href="#linkage">linkage types</a>.</p>
428
429</div>
430
431<!-- ======================================================================= -->
432<div class="doc_subsection">
433 <a name="linkage">Linkage Types</a>
434</div>
435
436<div class="doc_text">
437
438<p>
439All Global Variables and Functions have one of the following types of linkage:
440</p>
441
442<dl>
443
444 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
445
446 <dd>Global values with internal linkage are only directly accessible by
447 objects in the current module. In particular, linking code into a module with
448 an internal global value may cause the internal to be renamed as necessary to
449 avoid collisions. Because the symbol is internal to the module, all
450 references can be updated. This corresponds to the notion of the
451 '<tt>static</tt>' keyword in C.
452 </dd>
453
454 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
455
456 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
457 the same name when linkage occurs. This is typically used to implement
458 inline functions, templates, or other code which must be generated in each
459 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
460 allowed to be discarded.
461 </dd>
462
463 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
464
465 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
466 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
467 used for globals that may be emitted in multiple translation units, but that
468 are not guaranteed to be emitted into every translation unit that uses them.
469 One example of this are common globals in C, such as "<tt>int X;</tt>" at
470 global scope.
471 </dd>
472
473 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
474
475 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
476 pointer to array type. When two global variables with appending linkage are
477 linked together, the two global arrays are appended together. This is the
478 LLVM, typesafe, equivalent of having the system linker append together
479 "sections" with identical names when .o files are linked.
480 </dd>
481
482 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
483 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
484 until linked, if not linked, the symbol becomes null instead of being an
485 undefined reference.
486 </dd>
487
488 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
489
490 <dd>If none of the above identifiers are used, the global is externally
491 visible, meaning that it participates in linkage and can be used to resolve
492 external symbol references.
493 </dd>
494</dl>
495
496 <p>
497 The next two types of linkage are targeted for Microsoft Windows platform
498 only. They are designed to support importing (exporting) symbols from (to)
499 DLLs.
500 </p>
501
502 <dl>
503 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
504
505 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
506 or variable via a global pointer to a pointer that is set up by the DLL
507 exporting the symbol. On Microsoft Windows targets, the pointer name is
508 formed by combining <code>_imp__</code> and the function or variable name.
509 </dd>
510
511 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
512
513 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
514 pointer to a pointer in a DLL, so that it can be referenced with the
515 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
516 name is formed by combining <code>_imp__</code> and the function or variable
517 name.
518 </dd>
519
520</dl>
521
522<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
523variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
524variable and was linked with this one, one of the two would be renamed,
525preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
526external (i.e., lacking any linkage declarations), they are accessible
527outside of the current module.</p>
528<p>It is illegal for a function <i>declaration</i>
529to have any linkage type other than "externally visible", <tt>dllimport</tt>,
530or <tt>extern_weak</tt>.</p>
531<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
532linkages.
533</div>
534
535<!-- ======================================================================= -->
536<div class="doc_subsection">
537 <a name="callingconv">Calling Conventions</a>
538</div>
539
540<div class="doc_text">
541
542<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
543and <a href="#i_invoke">invokes</a> can all have an optional calling convention
544specified for the call. The calling convention of any pair of dynamic
545caller/callee must match, or the behavior of the program is undefined. The
546following calling conventions are supported by LLVM, and more may be added in
547the future:</p>
548
549<dl>
550 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
551
552 <dd>This calling convention (the default if no other calling convention is
553 specified) matches the target C calling conventions. This calling convention
554 supports varargs function calls and tolerates some mismatch in the declared
555 prototype and implemented declaration of the function (as does normal C).
556 </dd>
557
558 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
559
560 <dd>This calling convention attempts to make calls as fast as possible
561 (e.g. by passing things in registers). This calling convention allows the
562 target to use whatever tricks it wants to produce fast code for the target,
563 without having to conform to an externally specified ABI. Implementations of
564 this convention should allow arbitrary tail call optimization to be supported.
565 This calling convention does not support varargs and requires the prototype of
566 all callees to exactly match the prototype of the function definition.
567 </dd>
568
569 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
570
571 <dd>This calling convention attempts to make code in the caller as efficient
572 as possible under the assumption that the call is not commonly executed. As
573 such, these calls often preserve all registers so that the call does not break
574 any live ranges in the caller side. This calling convention does not support
575 varargs and requires the prototype of all callees to exactly match the
576 prototype of the function definition.
577 </dd>
578
579 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
580
581 <dd>Any calling convention may be specified by number, allowing
582 target-specific calling conventions to be used. Target specific calling
583 conventions start at 64.
584 </dd>
585</dl>
586
587<p>More calling conventions can be added/defined on an as-needed basis, to
588support pascal conventions or any other well-known target-independent
589convention.</p>
590
591</div>
592
593<!-- ======================================================================= -->
594<div class="doc_subsection">
595 <a name="visibility">Visibility Styles</a>
596</div>
597
598<div class="doc_text">
599
600<p>
601All Global Variables and Functions have one of the following visibility styles:
602</p>
603
604<dl>
605 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
606
607 <dd>On ELF, default visibility means that the declaration is visible to other
608 modules and, in shared libraries, means that the declared entity may be
609 overridden. On Darwin, default visibility means that the declaration is
610 visible to other modules. Default visibility corresponds to "external
611 linkage" in the language.
612 </dd>
613
614 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
615
616 <dd>Two declarations of an object with hidden visibility refer to the same
617 object if they are in the same shared object. Usually, hidden visibility
618 indicates that the symbol will not be placed into the dynamic symbol table,
619 so no other module (executable or shared library) can reference it
620 directly.
621 </dd>
622
623 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
624
625 <dd>On ELF, protected visibility indicates that the symbol will be placed in
626 the dynamic symbol table, but that references within the defining module will
627 bind to the local symbol. That is, the symbol cannot be overridden by another
628 module.
629 </dd>
630</dl>
631
632</div>
633
634<!-- ======================================================================= -->
635<div class="doc_subsection">
636 <a name="globalvars">Global Variables</a>
637</div>
638
639<div class="doc_text">
640
641<p>Global variables define regions of memory allocated at compilation time
642instead of run-time. Global variables may optionally be initialized, may have
643an explicit section to be placed in, and may have an optional explicit alignment
644specified. A variable may be defined as "thread_local", which means that it
645will not be shared by threads (each thread will have a separated copy of the
646variable). A variable may be defined as a global "constant," which indicates
647that the contents of the variable will <b>never</b> be modified (enabling better
648optimization, allowing the global data to be placed in the read-only section of
649an executable, etc). Note that variables that need runtime initialization
650cannot be marked "constant" as there is a store to the variable.</p>
651
652<p>
653LLVM explicitly allows <em>declarations</em> of global variables to be marked
654constant, even if the final definition of the global is not. This capability
655can be used to enable slightly better optimization of the program, but requires
656the language definition to guarantee that optimizations based on the
657'constantness' are valid for the translation units that do not include the
658definition.
659</p>
660
661<p>As SSA values, global variables define pointer values that are in
662scope (i.e. they dominate) all basic blocks in the program. Global
663variables always define a pointer to their "content" type because they
664describe a region of memory, and all memory objects in LLVM are
665accessed through pointers.</p>
666
667<p>LLVM allows an explicit section to be specified for globals. If the target
668supports it, it will emit globals to the section specified.</p>
669
670<p>An explicit alignment may be specified for a global. If not present, or if
671the alignment is set to zero, the alignment of the global is set by the target
672to whatever it feels convenient. If an explicit alignment is specified, the
673global is forced to have at least that much alignment. All alignments must be
674a power of 2.</p>
675
676<p>For example, the following defines a global with an initializer, section,
677 and alignment:</p>
678
679<div class="doc_code">
680<pre>
681@G = constant float 1.0, section "foo", align 4
682</pre>
683</div>
684
685</div>
686
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
690 <a name="functionstructure">Functions</a>
691</div>
692
693<div class="doc_text">
694
695<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
696an optional <a href="#linkage">linkage type</a>, an optional
697<a href="#visibility">visibility style</a>, an optional
698<a href="#callingconv">calling convention</a>, a return type, an optional
699<a href="#paramattrs">parameter attribute</a> for the return type, a function
700name, a (possibly empty) argument list (each with optional
701<a href="#paramattrs">parameter attributes</a>), an optional section, an
702optional alignment, an opening curly brace, a list of basic blocks, and a
703closing curly brace.
704
705LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
706optional <a href="#linkage">linkage type</a>, an optional
707<a href="#visibility">visibility style</a>, an optional
708<a href="#callingconv">calling convention</a>, a return type, an optional
709<a href="#paramattrs">parameter attribute</a> for the return type, a function
710name, a possibly empty list of arguments, and an optional alignment.</p>
711
712<p>A function definition contains a list of basic blocks, forming the CFG for
713the function. Each basic block may optionally start with a label (giving the
714basic block a symbol table entry), contains a list of instructions, and ends
715with a <a href="#terminators">terminator</a> instruction (such as a branch or
716function return).</p>
717
718<p>The first basic block in a function is special in two ways: it is immediately
719executed on entrance to the function, and it is not allowed to have predecessor
720basic blocks (i.e. there can not be any branches to the entry block of a
721function). Because the block can have no predecessors, it also cannot have any
722<a href="#i_phi">PHI nodes</a>.</p>
723
724<p>LLVM allows an explicit section to be specified for functions. If the target
725supports it, it will emit functions to the section specified.</p>
726
727<p>An explicit alignment may be specified for a function. If not present, or if
728the alignment is set to zero, the alignment of the function is set by the target
729to whatever it feels convenient. If an explicit alignment is specified, the
730function is forced to have at least that much alignment. All alignments must be
731a power of 2.</p>
732
733</div>
734
735
736<!-- ======================================================================= -->
737<div class="doc_subsection">
738 <a name="aliasstructure">Aliases</a>
739</div>
740<div class="doc_text">
741 <p>Aliases act as "second name" for the aliasee value (which can be either
742 function or global variable or bitcast of global value). Aliases may have an
743 optional <a href="#linkage">linkage type</a>, and an
744 optional <a href="#visibility">visibility style</a>.</p>
745
746 <h5>Syntax:</h5>
747
748<div class="doc_code">
749<pre>
750@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
751</pre>
752</div>
753
754</div>
755
756
757
758<!-- ======================================================================= -->
759<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
760<div class="doc_text">
761 <p>The return type and each parameter of a function type may have a set of
762 <i>parameter attributes</i> associated with them. Parameter attributes are
763 used to communicate additional information about the result or parameters of
764 a function. Parameter attributes are considered to be part of the function
765 type so two functions types that differ only by the parameter attributes
766 are different function types.</p>
767
768 <p>Parameter attributes are simple keywords that follow the type specified. If
769 multiple parameter attributes are needed, they are space separated. For
770 example:</p>
771
772<div class="doc_code">
773<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000774%someFunc = i16 (i8 signext %someParam) zeroext
775%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776</pre>
777</div>
778
779 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000780 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
781 the second). Also note that the attribute for the function result
782 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000783
784 <p>Currently, only the following parameter attributes are defined:</p>
785 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000786 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 <dd>This indicates that the parameter should be zero extended just before
788 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000789 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 <dd>This indicates that the parameter should be sign extended just before
791 a call to this function.</dd>
792 <dt><tt>inreg</tt></dt>
793 <dd>This indicates that the parameter should be placed in register (if
794 possible) during assembling function call. Support for this attribute is
795 target-specific</dd>
796 <dt><tt>sret</tt></dt>
797 <dd>This indicates that the parameter specifies the address of a structure
798 that is the return value of the function in the source program.</dd>
799 <dt><tt>noalias</tt></dt>
800 <dd>This indicates that the parameter not alias any other object or any
801 other "noalias" objects during the function call.
802 <dt><tt>noreturn</tt></dt>
803 <dd>This function attribute indicates that the function never returns. This
804 indicates to LLVM that every call to this function should be treated as if
805 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
806 <dt><tt>nounwind</tt></dt>
807 <dd>This function attribute indicates that the function type does not use
808 the unwind instruction and does not allow stack unwinding to propagate
809 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000810 <dt><tt>nest</tt></dt>
811 <dd>This indicates that the parameter can be excised using the
812 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000813 </dl>
814
815</div>
816
817<!-- ======================================================================= -->
818<div class="doc_subsection">
819 <a name="moduleasm">Module-Level Inline Assembly</a>
820</div>
821
822<div class="doc_text">
823<p>
824Modules may contain "module-level inline asm" blocks, which corresponds to the
825GCC "file scope inline asm" blocks. These blocks are internally concatenated by
826LLVM and treated as a single unit, but may be separated in the .ll file if
827desired. The syntax is very simple:
828</p>
829
830<div class="doc_code">
831<pre>
832module asm "inline asm code goes here"
833module asm "more can go here"
834</pre>
835</div>
836
837<p>The strings can contain any character by escaping non-printable characters.
838 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
839 for the number.
840</p>
841
842<p>
843 The inline asm code is simply printed to the machine code .s file when
844 assembly code is generated.
845</p>
846</div>
847
848<!-- ======================================================================= -->
849<div class="doc_subsection">
850 <a name="datalayout">Data Layout</a>
851</div>
852
853<div class="doc_text">
854<p>A module may specify a target specific data layout string that specifies how
855data is to be laid out in memory. The syntax for the data layout is simply:</p>
856<pre> target datalayout = "<i>layout specification</i>"</pre>
857<p>The <i>layout specification</i> consists of a list of specifications
858separated by the minus sign character ('-'). Each specification starts with a
859letter and may include other information after the letter to define some
860aspect of the data layout. The specifications accepted are as follows: </p>
861<dl>
862 <dt><tt>E</tt></dt>
863 <dd>Specifies that the target lays out data in big-endian form. That is, the
864 bits with the most significance have the lowest address location.</dd>
865 <dt><tt>e</tt></dt>
866 <dd>Specifies that hte target lays out data in little-endian form. That is,
867 the bits with the least significance have the lowest address location.</dd>
868 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
869 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
870 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
871 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
872 too.</dd>
873 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
874 <dd>This specifies the alignment for an integer type of a given bit
875 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
876 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
877 <dd>This specifies the alignment for a vector type of a given bit
878 <i>size</i>.</dd>
879 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
880 <dd>This specifies the alignment for a floating point type of a given bit
881 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
882 (double).</dd>
883 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
884 <dd>This specifies the alignment for an aggregate type of a given bit
885 <i>size</i>.</dd>
886</dl>
887<p>When constructing the data layout for a given target, LLVM starts with a
888default set of specifications which are then (possibly) overriden by the
889specifications in the <tt>datalayout</tt> keyword. The default specifications
890are given in this list:</p>
891<ul>
892 <li><tt>E</tt> - big endian</li>
893 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
894 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
895 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
896 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
897 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
898 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
899 alignment of 64-bits</li>
900 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
901 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
902 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
903 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
904 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
905</ul>
906<p>When llvm is determining the alignment for a given type, it uses the
907following rules:
908<ol>
909 <li>If the type sought is an exact match for one of the specifications, that
910 specification is used.</li>
911 <li>If no match is found, and the type sought is an integer type, then the
912 smallest integer type that is larger than the bitwidth of the sought type is
913 used. If none of the specifications are larger than the bitwidth then the the
914 largest integer type is used. For example, given the default specifications
915 above, the i7 type will use the alignment of i8 (next largest) while both
916 i65 and i256 will use the alignment of i64 (largest specified).</li>
917 <li>If no match is found, and the type sought is a vector type, then the
918 largest vector type that is smaller than the sought vector type will be used
919 as a fall back. This happens because <128 x double> can be implemented in
920 terms of 64 <2 x double>, for example.</li>
921</ol>
922</div>
923
924<!-- *********************************************************************** -->
925<div class="doc_section"> <a name="typesystem">Type System</a> </div>
926<!-- *********************************************************************** -->
927
928<div class="doc_text">
929
930<p>The LLVM type system is one of the most important features of the
931intermediate representation. Being typed enables a number of
932optimizations to be performed on the IR directly, without having to do
933extra analyses on the side before the transformation. A strong type
934system makes it easier to read the generated code and enables novel
935analyses and transformations that are not feasible to perform on normal
936three address code representations.</p>
937
938</div>
939
940<!-- ======================================================================= -->
941<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
942<div class="doc_text">
943<p>The primitive types are the fundamental building blocks of the LLVM
944system. The current set of primitive types is as follows:</p>
945
946<table class="layout">
947 <tr class="layout">
948 <td class="left">
949 <table>
950 <tbody>
951 <tr><th>Type</th><th>Description</th></tr>
952 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
953 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
954 </tbody>
955 </table>
956 </td>
957 <td class="right">
958 <table>
959 <tbody>
960 <tr><th>Type</th><th>Description</th></tr>
961 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
962 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
963 </tbody>
964 </table>
965 </td>
966 </tr>
967</table>
968</div>
969
970<!-- _______________________________________________________________________ -->
971<div class="doc_subsubsection"> <a name="t_classifications">Type
972Classifications</a> </div>
973<div class="doc_text">
974<p>These different primitive types fall into a few useful
975classifications:</p>
976
977<table border="1" cellspacing="0" cellpadding="4">
978 <tbody>
979 <tr><th>Classification</th><th>Types</th></tr>
980 <tr>
981 <td><a name="t_integer">integer</a></td>
982 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
983 </tr>
984 <tr>
985 <td><a name="t_floating">floating point</a></td>
986 <td><tt>float, double</tt></td>
987 </tr>
988 <tr>
989 <td><a name="t_firstclass">first class</a></td>
990 <td><tt>i1, ..., float, double, <br/>
991 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
992 </td>
993 </tr>
994 </tbody>
995</table>
996
997<p>The <a href="#t_firstclass">first class</a> types are perhaps the
998most important. Values of these types are the only ones which can be
999produced by instructions, passed as arguments, or used as operands to
1000instructions. This means that all structures and arrays must be
1001manipulated either by pointer or by component.</p>
1002</div>
1003
1004<!-- ======================================================================= -->
1005<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1006
1007<div class="doc_text">
1008
1009<p>The real power in LLVM comes from the derived types in the system.
1010This is what allows a programmer to represent arrays, functions,
1011pointers, and other useful types. Note that these derived types may be
1012recursive: For example, it is possible to have a two dimensional array.</p>
1013
1014</div>
1015
1016<!-- _______________________________________________________________________ -->
1017<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1018
1019<div class="doc_text">
1020
1021<h5>Overview:</h5>
1022<p>The integer type is a very simple derived type that simply specifies an
1023arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10242^23-1 (about 8 million) can be specified.</p>
1025
1026<h5>Syntax:</h5>
1027
1028<pre>
1029 iN
1030</pre>
1031
1032<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1033value.</p>
1034
1035<h5>Examples:</h5>
1036<table class="layout">
1037 <tr class="layout">
1038 <td class="left">
1039 <tt>i1</tt><br/>
1040 <tt>i4</tt><br/>
1041 <tt>i8</tt><br/>
1042 <tt>i16</tt><br/>
1043 <tt>i32</tt><br/>
1044 <tt>i42</tt><br/>
1045 <tt>i64</tt><br/>
1046 <tt>i1942652</tt><br/>
1047 </td>
1048 <td class="left">
1049 A boolean integer of 1 bit<br/>
1050 A nibble sized integer of 4 bits.<br/>
1051 A byte sized integer of 8 bits.<br/>
1052 A half word sized integer of 16 bits.<br/>
1053 A word sized integer of 32 bits.<br/>
1054 An integer whose bit width is the answer. <br/>
1055 A double word sized integer of 64 bits.<br/>
1056 A really big integer of over 1 million bits.<br/>
1057 </td>
1058 </tr>
1059</table>
1060</div>
1061
1062<!-- _______________________________________________________________________ -->
1063<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1064
1065<div class="doc_text">
1066
1067<h5>Overview:</h5>
1068
1069<p>The array type is a very simple derived type that arranges elements
1070sequentially in memory. The array type requires a size (number of
1071elements) and an underlying data type.</p>
1072
1073<h5>Syntax:</h5>
1074
1075<pre>
1076 [&lt;# elements&gt; x &lt;elementtype&gt;]
1077</pre>
1078
1079<p>The number of elements is a constant integer value; elementtype may
1080be any type with a size.</p>
1081
1082<h5>Examples:</h5>
1083<table class="layout">
1084 <tr class="layout">
1085 <td class="left">
1086 <tt>[40 x i32 ]</tt><br/>
1087 <tt>[41 x i32 ]</tt><br/>
1088 <tt>[40 x i8]</tt><br/>
1089 </td>
1090 <td class="left">
1091 Array of 40 32-bit integer values.<br/>
1092 Array of 41 32-bit integer values.<br/>
1093 Array of 40 8-bit integer values.<br/>
1094 </td>
1095 </tr>
1096</table>
1097<p>Here are some examples of multidimensional arrays:</p>
1098<table class="layout">
1099 <tr class="layout">
1100 <td class="left">
1101 <tt>[3 x [4 x i32]]</tt><br/>
1102 <tt>[12 x [10 x float]]</tt><br/>
1103 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1104 </td>
1105 <td class="left">
1106 3x4 array of 32-bit integer values.<br/>
1107 12x10 array of single precision floating point values.<br/>
1108 2x3x4 array of 16-bit integer values.<br/>
1109 </td>
1110 </tr>
1111</table>
1112
1113<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1114length array. Normally, accesses past the end of an array are undefined in
1115LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1116As a special case, however, zero length arrays are recognized to be variable
1117length. This allows implementation of 'pascal style arrays' with the LLVM
1118type "{ i32, [0 x float]}", for example.</p>
1119
1120</div>
1121
1122<!-- _______________________________________________________________________ -->
1123<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1124<div class="doc_text">
1125<h5>Overview:</h5>
1126<p>The function type can be thought of as a function signature. It
1127consists of a return type and a list of formal parameter types.
1128Function types are usually used to build virtual function tables
1129(which are structures of pointers to functions), for indirect function
1130calls, and when defining a function.</p>
1131<p>
1132The return type of a function type cannot be an aggregate type.
1133</p>
1134<h5>Syntax:</h5>
1135<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1136<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1137specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1138which indicates that the function takes a variable number of arguments.
1139Variable argument functions can access their arguments with the <a
1140 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1141<h5>Examples:</h5>
1142<table class="layout">
1143 <tr class="layout">
1144 <td class="left"><tt>i32 (i32)</tt></td>
1145 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1146 </td>
1147 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001148 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149 </tt></td>
1150 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1151 an <tt>i16</tt> that should be sign extended and a
1152 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1153 <tt>float</tt>.
1154 </td>
1155 </tr><tr class="layout">
1156 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1157 <td class="left">A vararg function that takes at least one
1158 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1159 which returns an integer. This is the signature for <tt>printf</tt> in
1160 LLVM.
1161 </td>
1162 </tr>
1163</table>
1164
1165</div>
1166<!-- _______________________________________________________________________ -->
1167<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1168<div class="doc_text">
1169<h5>Overview:</h5>
1170<p>The structure type is used to represent a collection of data members
1171together in memory. The packing of the field types is defined to match
1172the ABI of the underlying processor. The elements of a structure may
1173be any type that has a size.</p>
1174<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1175and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1176field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1177instruction.</p>
1178<h5>Syntax:</h5>
1179<pre> { &lt;type list&gt; }<br></pre>
1180<h5>Examples:</h5>
1181<table class="layout">
1182 <tr class="layout">
1183 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1184 <td class="left">A triple of three <tt>i32</tt> values</td>
1185 </tr><tr class="layout">
1186 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1187 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1188 second element is a <a href="#t_pointer">pointer</a> to a
1189 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1190 an <tt>i32</tt>.</td>
1191 </tr>
1192</table>
1193</div>
1194
1195<!-- _______________________________________________________________________ -->
1196<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1197</div>
1198<div class="doc_text">
1199<h5>Overview:</h5>
1200<p>The packed structure type is used to represent a collection of data members
1201together in memory. There is no padding between fields. Further, the alignment
1202of a packed structure is 1 byte. The elements of a packed structure may
1203be any type that has a size.</p>
1204<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1205and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1206field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1207instruction.</p>
1208<h5>Syntax:</h5>
1209<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1210<h5>Examples:</h5>
1211<table class="layout">
1212 <tr class="layout">
1213 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1214 <td class="left">A triple of three <tt>i32</tt> values</td>
1215 </tr><tr class="layout">
1216 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1217 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1218 second element is a <a href="#t_pointer">pointer</a> to a
1219 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1220 an <tt>i32</tt>.</td>
1221 </tr>
1222</table>
1223</div>
1224
1225<!-- _______________________________________________________________________ -->
1226<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1227<div class="doc_text">
1228<h5>Overview:</h5>
1229<p>As in many languages, the pointer type represents a pointer or
1230reference to another object, which must live in memory.</p>
1231<h5>Syntax:</h5>
1232<pre> &lt;type&gt; *<br></pre>
1233<h5>Examples:</h5>
1234<table class="layout">
1235 <tr class="layout">
1236 <td class="left">
1237 <tt>[4x i32]*</tt><br/>
1238 <tt>i32 (i32 *) *</tt><br/>
1239 </td>
1240 <td class="left">
1241 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1242 four <tt>i32</tt> values<br/>
1243 A <a href="#t_pointer">pointer</a> to a <a
1244 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1245 <tt>i32</tt>.<br/>
1246 </td>
1247 </tr>
1248</table>
1249</div>
1250
1251<!-- _______________________________________________________________________ -->
1252<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1253<div class="doc_text">
1254
1255<h5>Overview:</h5>
1256
1257<p>A vector type is a simple derived type that represents a vector
1258of elements. Vector types are used when multiple primitive data
1259are operated in parallel using a single instruction (SIMD).
1260A vector type requires a size (number of
1261elements) and an underlying primitive data type. Vectors must have a power
1262of two length (1, 2, 4, 8, 16 ...). Vector types are
1263considered <a href="#t_firstclass">first class</a>.</p>
1264
1265<h5>Syntax:</h5>
1266
1267<pre>
1268 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1269</pre>
1270
1271<p>The number of elements is a constant integer value; elementtype may
1272be any integer or floating point type.</p>
1273
1274<h5>Examples:</h5>
1275
1276<table class="layout">
1277 <tr class="layout">
1278 <td class="left">
1279 <tt>&lt;4 x i32&gt;</tt><br/>
1280 <tt>&lt;8 x float&gt;</tt><br/>
1281 <tt>&lt;2 x i64&gt;</tt><br/>
1282 </td>
1283 <td class="left">
1284 Vector of 4 32-bit integer values.<br/>
1285 Vector of 8 floating-point values.<br/>
1286 Vector of 2 64-bit integer values.<br/>
1287 </td>
1288 </tr>
1289</table>
1290</div>
1291
1292<!-- _______________________________________________________________________ -->
1293<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1294<div class="doc_text">
1295
1296<h5>Overview:</h5>
1297
1298<p>Opaque types are used to represent unknown types in the system. This
1299corresponds (for example) to the C notion of a foward declared structure type.
1300In LLVM, opaque types can eventually be resolved to any type (not just a
1301structure type).</p>
1302
1303<h5>Syntax:</h5>
1304
1305<pre>
1306 opaque
1307</pre>
1308
1309<h5>Examples:</h5>
1310
1311<table class="layout">
1312 <tr class="layout">
1313 <td class="left">
1314 <tt>opaque</tt>
1315 </td>
1316 <td class="left">
1317 An opaque type.<br/>
1318 </td>
1319 </tr>
1320</table>
1321</div>
1322
1323
1324<!-- *********************************************************************** -->
1325<div class="doc_section"> <a name="constants">Constants</a> </div>
1326<!-- *********************************************************************** -->
1327
1328<div class="doc_text">
1329
1330<p>LLVM has several different basic types of constants. This section describes
1331them all and their syntax.</p>
1332
1333</div>
1334
1335<!-- ======================================================================= -->
1336<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1337
1338<div class="doc_text">
1339
1340<dl>
1341 <dt><b>Boolean constants</b></dt>
1342
1343 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1344 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1345 </dd>
1346
1347 <dt><b>Integer constants</b></dt>
1348
1349 <dd>Standard integers (such as '4') are constants of the <a
1350 href="#t_integer">integer</a> type. Negative numbers may be used with
1351 integer types.
1352 </dd>
1353
1354 <dt><b>Floating point constants</b></dt>
1355
1356 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1357 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1358 notation (see below). Floating point constants must have a <a
1359 href="#t_floating">floating point</a> type. </dd>
1360
1361 <dt><b>Null pointer constants</b></dt>
1362
1363 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1364 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1365
1366</dl>
1367
1368<p>The one non-intuitive notation for constants is the optional hexadecimal form
1369of floating point constants. For example, the form '<tt>double
13700x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13714.5e+15</tt>'. The only time hexadecimal floating point constants are required
1372(and the only time that they are generated by the disassembler) is when a
1373floating point constant must be emitted but it cannot be represented as a
1374decimal floating point number. For example, NaN's, infinities, and other
1375special values are represented in their IEEE hexadecimal format so that
1376assembly and disassembly do not cause any bits to change in the constants.</p>
1377
1378</div>
1379
1380<!-- ======================================================================= -->
1381<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1382</div>
1383
1384<div class="doc_text">
1385<p>Aggregate constants arise from aggregation of simple constants
1386and smaller aggregate constants.</p>
1387
1388<dl>
1389 <dt><b>Structure constants</b></dt>
1390
1391 <dd>Structure constants are represented with notation similar to structure
1392 type definitions (a comma separated list of elements, surrounded by braces
1393 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1394 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1395 must have <a href="#t_struct">structure type</a>, and the number and
1396 types of elements must match those specified by the type.
1397 </dd>
1398
1399 <dt><b>Array constants</b></dt>
1400
1401 <dd>Array constants are represented with notation similar to array type
1402 definitions (a comma separated list of elements, surrounded by square brackets
1403 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1404 constants must have <a href="#t_array">array type</a>, and the number and
1405 types of elements must match those specified by the type.
1406 </dd>
1407
1408 <dt><b>Vector constants</b></dt>
1409
1410 <dd>Vector constants are represented with notation similar to vector type
1411 definitions (a comma separated list of elements, surrounded by
1412 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1413 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1414 href="#t_vector">vector type</a>, and the number and types of elements must
1415 match those specified by the type.
1416 </dd>
1417
1418 <dt><b>Zero initialization</b></dt>
1419
1420 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1421 value to zero of <em>any</em> type, including scalar and aggregate types.
1422 This is often used to avoid having to print large zero initializers (e.g. for
1423 large arrays) and is always exactly equivalent to using explicit zero
1424 initializers.
1425 </dd>
1426</dl>
1427
1428</div>
1429
1430<!-- ======================================================================= -->
1431<div class="doc_subsection">
1432 <a name="globalconstants">Global Variable and Function Addresses</a>
1433</div>
1434
1435<div class="doc_text">
1436
1437<p>The addresses of <a href="#globalvars">global variables</a> and <a
1438href="#functionstructure">functions</a> are always implicitly valid (link-time)
1439constants. These constants are explicitly referenced when the <a
1440href="#identifiers">identifier for the global</a> is used and always have <a
1441href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1442file:</p>
1443
1444<div class="doc_code">
1445<pre>
1446@X = global i32 17
1447@Y = global i32 42
1448@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1449</pre>
1450</div>
1451
1452</div>
1453
1454<!-- ======================================================================= -->
1455<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1456<div class="doc_text">
1457 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1458 no specific value. Undefined values may be of any type and be used anywhere
1459 a constant is permitted.</p>
1460
1461 <p>Undefined values indicate to the compiler that the program is well defined
1462 no matter what value is used, giving the compiler more freedom to optimize.
1463 </p>
1464</div>
1465
1466<!-- ======================================================================= -->
1467<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1468</div>
1469
1470<div class="doc_text">
1471
1472<p>Constant expressions are used to allow expressions involving other constants
1473to be used as constants. Constant expressions may be of any <a
1474href="#t_firstclass">first class</a> type and may involve any LLVM operation
1475that does not have side effects (e.g. load and call are not supported). The
1476following is the syntax for constant expressions:</p>
1477
1478<dl>
1479 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1480 <dd>Truncate a constant to another type. The bit size of CST must be larger
1481 than the bit size of TYPE. Both types must be integers.</dd>
1482
1483 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1484 <dd>Zero extend a constant to another type. The bit size of CST must be
1485 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1486
1487 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1488 <dd>Sign extend a constant to another type. The bit size of CST must be
1489 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1490
1491 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1492 <dd>Truncate a floating point constant to another floating point type. The
1493 size of CST must be larger than the size of TYPE. Both types must be
1494 floating point.</dd>
1495
1496 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1497 <dd>Floating point extend a constant to another type. The size of CST must be
1498 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1499
Reid Spencere6adee82007-07-31 14:40:14 +00001500 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501 <dd>Convert a floating point constant to the corresponding unsigned integer
1502 constant. TYPE must be an integer type. CST must be floating point. If the
1503 value won't fit in the integer type, the results are undefined.</dd>
1504
1505 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1506 <dd>Convert a floating point constant to the corresponding signed integer
1507 constant. TYPE must be an integer type. CST must be floating point. If the
1508 value won't fit in the integer type, the results are undefined.</dd>
1509
1510 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1511 <dd>Convert an unsigned integer constant to the corresponding floating point
1512 constant. TYPE must be floating point. CST must be of integer type. If the
1513 value won't fit in the floating point type, the results are undefined.</dd>
1514
1515 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1516 <dd>Convert a signed integer constant to the corresponding floating point
1517 constant. TYPE must be floating point. CST must be of integer type. If the
1518 value won't fit in the floating point type, the results are undefined.</dd>
1519
1520 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1521 <dd>Convert a pointer typed constant to the corresponding integer constant
1522 TYPE must be an integer type. CST must be of pointer type. The CST value is
1523 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1524
1525 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1526 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1527 pointer type. CST must be of integer type. The CST value is zero extended,
1528 truncated, or unchanged to make it fit in a pointer size. This one is
1529 <i>really</i> dangerous!</dd>
1530
1531 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1532 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1533 identical (same number of bits). The conversion is done as if the CST value
1534 was stored to memory and read back as TYPE. In other words, no bits change
1535 with this operator, just the type. This can be used for conversion of
1536 vector types to any other type, as long as they have the same bit width. For
1537 pointers it is only valid to cast to another pointer type.
1538 </dd>
1539
1540 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1541
1542 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1543 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1544 instruction, the index list may have zero or more indexes, which are required
1545 to make sense for the type of "CSTPTR".</dd>
1546
1547 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1548
1549 <dd>Perform the <a href="#i_select">select operation</a> on
1550 constants.</dd>
1551
1552 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1553 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1554
1555 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1556 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1557
1558 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1559
1560 <dd>Perform the <a href="#i_extractelement">extractelement
1561 operation</a> on constants.
1562
1563 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1564
1565 <dd>Perform the <a href="#i_insertelement">insertelement
1566 operation</a> on constants.</dd>
1567
1568
1569 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1570
1571 <dd>Perform the <a href="#i_shufflevector">shufflevector
1572 operation</a> on constants.</dd>
1573
1574 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1575
1576 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1577 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1578 binary</a> operations. The constraints on operands are the same as those for
1579 the corresponding instruction (e.g. no bitwise operations on floating point
1580 values are allowed).</dd>
1581</dl>
1582</div>
1583
1584<!-- *********************************************************************** -->
1585<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1586<!-- *********************************************************************** -->
1587
1588<!-- ======================================================================= -->
1589<div class="doc_subsection">
1590<a name="inlineasm">Inline Assembler Expressions</a>
1591</div>
1592
1593<div class="doc_text">
1594
1595<p>
1596LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1597Module-Level Inline Assembly</a>) through the use of a special value. This
1598value represents the inline assembler as a string (containing the instructions
1599to emit), a list of operand constraints (stored as a string), and a flag that
1600indicates whether or not the inline asm expression has side effects. An example
1601inline assembler expression is:
1602</p>
1603
1604<div class="doc_code">
1605<pre>
1606i32 (i32) asm "bswap $0", "=r,r"
1607</pre>
1608</div>
1609
1610<p>
1611Inline assembler expressions may <b>only</b> be used as the callee operand of
1612a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1613</p>
1614
1615<div class="doc_code">
1616<pre>
1617%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1618</pre>
1619</div>
1620
1621<p>
1622Inline asms with side effects not visible in the constraint list must be marked
1623as having side effects. This is done through the use of the
1624'<tt>sideeffect</tt>' keyword, like so:
1625</p>
1626
1627<div class="doc_code">
1628<pre>
1629call void asm sideeffect "eieio", ""()
1630</pre>
1631</div>
1632
1633<p>TODO: The format of the asm and constraints string still need to be
1634documented here. Constraints on what can be done (e.g. duplication, moving, etc
1635need to be documented).
1636</p>
1637
1638</div>
1639
1640<!-- *********************************************************************** -->
1641<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1642<!-- *********************************************************************** -->
1643
1644<div class="doc_text">
1645
1646<p>The LLVM instruction set consists of several different
1647classifications of instructions: <a href="#terminators">terminator
1648instructions</a>, <a href="#binaryops">binary instructions</a>,
1649<a href="#bitwiseops">bitwise binary instructions</a>, <a
1650 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1651instructions</a>.</p>
1652
1653</div>
1654
1655<!-- ======================================================================= -->
1656<div class="doc_subsection"> <a name="terminators">Terminator
1657Instructions</a> </div>
1658
1659<div class="doc_text">
1660
1661<p>As mentioned <a href="#functionstructure">previously</a>, every
1662basic block in a program ends with a "Terminator" instruction, which
1663indicates which block should be executed after the current block is
1664finished. These terminator instructions typically yield a '<tt>void</tt>'
1665value: they produce control flow, not values (the one exception being
1666the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1667<p>There are six different terminator instructions: the '<a
1668 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1669instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1670the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1671 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1672 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1673
1674</div>
1675
1676<!-- _______________________________________________________________________ -->
1677<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1678Instruction</a> </div>
1679<div class="doc_text">
1680<h5>Syntax:</h5>
1681<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1682 ret void <i>; Return from void function</i>
1683</pre>
1684<h5>Overview:</h5>
1685<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1686value) from a function back to the caller.</p>
1687<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1688returns a value and then causes control flow, and one that just causes
1689control flow to occur.</p>
1690<h5>Arguments:</h5>
1691<p>The '<tt>ret</tt>' instruction may return any '<a
1692 href="#t_firstclass">first class</a>' type. Notice that a function is
1693not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1694instruction inside of the function that returns a value that does not
1695match the return type of the function.</p>
1696<h5>Semantics:</h5>
1697<p>When the '<tt>ret</tt>' instruction is executed, control flow
1698returns back to the calling function's context. If the caller is a "<a
1699 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1700the instruction after the call. If the caller was an "<a
1701 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1702at the beginning of the "normal" destination block. If the instruction
1703returns a value, that value shall set the call or invoke instruction's
1704return value.</p>
1705<h5>Example:</h5>
1706<pre> ret i32 5 <i>; Return an integer value of 5</i>
1707 ret void <i>; Return from a void function</i>
1708</pre>
1709</div>
1710<!-- _______________________________________________________________________ -->
1711<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1712<div class="doc_text">
1713<h5>Syntax:</h5>
1714<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1715</pre>
1716<h5>Overview:</h5>
1717<p>The '<tt>br</tt>' instruction is used to cause control flow to
1718transfer to a different basic block in the current function. There are
1719two forms of this instruction, corresponding to a conditional branch
1720and an unconditional branch.</p>
1721<h5>Arguments:</h5>
1722<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1723single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1724unconditional form of the '<tt>br</tt>' instruction takes a single
1725'<tt>label</tt>' value as a target.</p>
1726<h5>Semantics:</h5>
1727<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1728argument is evaluated. If the value is <tt>true</tt>, control flows
1729to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1730control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1731<h5>Example:</h5>
1732<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1733 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1734</div>
1735<!-- _______________________________________________________________________ -->
1736<div class="doc_subsubsection">
1737 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1738</div>
1739
1740<div class="doc_text">
1741<h5>Syntax:</h5>
1742
1743<pre>
1744 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1745</pre>
1746
1747<h5>Overview:</h5>
1748
1749<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1750several different places. It is a generalization of the '<tt>br</tt>'
1751instruction, allowing a branch to occur to one of many possible
1752destinations.</p>
1753
1754
1755<h5>Arguments:</h5>
1756
1757<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1758comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1759an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1760table is not allowed to contain duplicate constant entries.</p>
1761
1762<h5>Semantics:</h5>
1763
1764<p>The <tt>switch</tt> instruction specifies a table of values and
1765destinations. When the '<tt>switch</tt>' instruction is executed, this
1766table is searched for the given value. If the value is found, control flow is
1767transfered to the corresponding destination; otherwise, control flow is
1768transfered to the default destination.</p>
1769
1770<h5>Implementation:</h5>
1771
1772<p>Depending on properties of the target machine and the particular
1773<tt>switch</tt> instruction, this instruction may be code generated in different
1774ways. For example, it could be generated as a series of chained conditional
1775branches or with a lookup table.</p>
1776
1777<h5>Example:</h5>
1778
1779<pre>
1780 <i>; Emulate a conditional br instruction</i>
1781 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1782 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1783
1784 <i>; Emulate an unconditional br instruction</i>
1785 switch i32 0, label %dest [ ]
1786
1787 <i>; Implement a jump table:</i>
1788 switch i32 %val, label %otherwise [ i32 0, label %onzero
1789 i32 1, label %onone
1790 i32 2, label %ontwo ]
1791</pre>
1792</div>
1793
1794<!-- _______________________________________________________________________ -->
1795<div class="doc_subsubsection">
1796 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1797</div>
1798
1799<div class="doc_text">
1800
1801<h5>Syntax:</h5>
1802
1803<pre>
1804 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1805 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1806</pre>
1807
1808<h5>Overview:</h5>
1809
1810<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1811function, with the possibility of control flow transfer to either the
1812'<tt>normal</tt>' label or the
1813'<tt>exception</tt>' label. If the callee function returns with the
1814"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1815"normal" label. If the callee (or any indirect callees) returns with the "<a
1816href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1817continued at the dynamically nearest "exception" label.</p>
1818
1819<h5>Arguments:</h5>
1820
1821<p>This instruction requires several arguments:</p>
1822
1823<ol>
1824 <li>
1825 The optional "cconv" marker indicates which <a href="#callingconv">calling
1826 convention</a> the call should use. If none is specified, the call defaults
1827 to using C calling conventions.
1828 </li>
1829 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1830 function value being invoked. In most cases, this is a direct function
1831 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1832 an arbitrary pointer to function value.
1833 </li>
1834
1835 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1836 function to be invoked. </li>
1837
1838 <li>'<tt>function args</tt>': argument list whose types match the function
1839 signature argument types. If the function signature indicates the function
1840 accepts a variable number of arguments, the extra arguments can be
1841 specified. </li>
1842
1843 <li>'<tt>normal label</tt>': the label reached when the called function
1844 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1845
1846 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1847 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1848
1849</ol>
1850
1851<h5>Semantics:</h5>
1852
1853<p>This instruction is designed to operate as a standard '<tt><a
1854href="#i_call">call</a></tt>' instruction in most regards. The primary
1855difference is that it establishes an association with a label, which is used by
1856the runtime library to unwind the stack.</p>
1857
1858<p>This instruction is used in languages with destructors to ensure that proper
1859cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1860exception. Additionally, this is important for implementation of
1861'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1862
1863<h5>Example:</h5>
1864<pre>
1865 %retval = invoke i32 %Test(i32 15) to label %Continue
1866 unwind label %TestCleanup <i>; {i32}:retval set</i>
1867 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1868 unwind label %TestCleanup <i>; {i32}:retval set</i>
1869</pre>
1870</div>
1871
1872
1873<!-- _______________________________________________________________________ -->
1874
1875<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1876Instruction</a> </div>
1877
1878<div class="doc_text">
1879
1880<h5>Syntax:</h5>
1881<pre>
1882 unwind
1883</pre>
1884
1885<h5>Overview:</h5>
1886
1887<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1888at the first callee in the dynamic call stack which used an <a
1889href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1890primarily used to implement exception handling.</p>
1891
1892<h5>Semantics:</h5>
1893
1894<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1895immediately halt. The dynamic call stack is then searched for the first <a
1896href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1897execution continues at the "exceptional" destination block specified by the
1898<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1899dynamic call chain, undefined behavior results.</p>
1900</div>
1901
1902<!-- _______________________________________________________________________ -->
1903
1904<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1905Instruction</a> </div>
1906
1907<div class="doc_text">
1908
1909<h5>Syntax:</h5>
1910<pre>
1911 unreachable
1912</pre>
1913
1914<h5>Overview:</h5>
1915
1916<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1917instruction is used to inform the optimizer that a particular portion of the
1918code is not reachable. This can be used to indicate that the code after a
1919no-return function cannot be reached, and other facts.</p>
1920
1921<h5>Semantics:</h5>
1922
1923<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1924</div>
1925
1926
1927
1928<!-- ======================================================================= -->
1929<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1930<div class="doc_text">
1931<p>Binary operators are used to do most of the computation in a
1932program. They require two operands, execute an operation on them, and
1933produce a single value. The operands might represent
1934multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1935The result value of a binary operator is not
1936necessarily the same type as its operands.</p>
1937<p>There are several different binary operators:</p>
1938</div>
1939<!-- _______________________________________________________________________ -->
1940<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1941Instruction</a> </div>
1942<div class="doc_text">
1943<h5>Syntax:</h5>
1944<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1945</pre>
1946<h5>Overview:</h5>
1947<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1948<h5>Arguments:</h5>
1949<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1950 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1951 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1952Both arguments must have identical types.</p>
1953<h5>Semantics:</h5>
1954<p>The value produced is the integer or floating point sum of the two
1955operands.</p>
1956<h5>Example:</h5>
1957<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1958</pre>
1959</div>
1960<!-- _______________________________________________________________________ -->
1961<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1962Instruction</a> </div>
1963<div class="doc_text">
1964<h5>Syntax:</h5>
1965<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1966</pre>
1967<h5>Overview:</h5>
1968<p>The '<tt>sub</tt>' instruction returns the difference of its two
1969operands.</p>
1970<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1971instruction present in most other intermediate representations.</p>
1972<h5>Arguments:</h5>
1973<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1974 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1975values.
1976This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1977Both arguments must have identical types.</p>
1978<h5>Semantics:</h5>
1979<p>The value produced is the integer or floating point difference of
1980the two operands.</p>
1981<h5>Example:</h5>
1982<pre>
1983 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1984 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1985</pre>
1986</div>
1987<!-- _______________________________________________________________________ -->
1988<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1989Instruction</a> </div>
1990<div class="doc_text">
1991<h5>Syntax:</h5>
1992<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1993</pre>
1994<h5>Overview:</h5>
1995<p>The '<tt>mul</tt>' instruction returns the product of its two
1996operands.</p>
1997<h5>Arguments:</h5>
1998<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
1999 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2000values.
2001This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2002Both arguments must have identical types.</p>
2003<h5>Semantics:</h5>
2004<p>The value produced is the integer or floating point product of the
2005two operands.</p>
2006<p>Because the operands are the same width, the result of an integer
2007multiplication is the same whether the operands should be deemed unsigned or
2008signed.</p>
2009<h5>Example:</h5>
2010<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2011</pre>
2012</div>
2013<!-- _______________________________________________________________________ -->
2014<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2015</a></div>
2016<div class="doc_text">
2017<h5>Syntax:</h5>
2018<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2019</pre>
2020<h5>Overview:</h5>
2021<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2022operands.</p>
2023<h5>Arguments:</h5>
2024<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2025<a href="#t_integer">integer</a> values. Both arguments must have identical
2026types. This instruction can also take <a href="#t_vector">vector</a> versions
2027of the values in which case the elements must be integers.</p>
2028<h5>Semantics:</h5>
2029<p>The value produced is the unsigned integer quotient of the two operands. This
2030instruction always performs an unsigned division operation, regardless of
2031whether the arguments are unsigned or not.</p>
2032<h5>Example:</h5>
2033<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2034</pre>
2035</div>
2036<!-- _______________________________________________________________________ -->
2037<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2038</a> </div>
2039<div class="doc_text">
2040<h5>Syntax:</h5>
2041<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2042</pre>
2043<h5>Overview:</h5>
2044<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2045operands.</p>
2046<h5>Arguments:</h5>
2047<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2048<a href="#t_integer">integer</a> values. Both arguments must have identical
2049types. This instruction can also take <a href="#t_vector">vector</a> versions
2050of the values in which case the elements must be integers.</p>
2051<h5>Semantics:</h5>
2052<p>The value produced is the signed integer quotient of the two operands. This
2053instruction always performs a signed division operation, regardless of whether
2054the arguments are signed or not.</p>
2055<h5>Example:</h5>
2056<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2057</pre>
2058</div>
2059<!-- _______________________________________________________________________ -->
2060<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2061Instruction</a> </div>
2062<div class="doc_text">
2063<h5>Syntax:</h5>
2064<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2065</pre>
2066<h5>Overview:</h5>
2067<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2068operands.</p>
2069<h5>Arguments:</h5>
2070<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2071<a href="#t_floating">floating point</a> values. Both arguments must have
2072identical types. This instruction can also take <a href="#t_vector">vector</a>
2073versions of floating point values.</p>
2074<h5>Semantics:</h5>
2075<p>The value produced is the floating point quotient of the two operands.</p>
2076<h5>Example:</h5>
2077<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2078</pre>
2079</div>
2080<!-- _______________________________________________________________________ -->
2081<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2082</div>
2083<div class="doc_text">
2084<h5>Syntax:</h5>
2085<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2086</pre>
2087<h5>Overview:</h5>
2088<p>The '<tt>urem</tt>' instruction returns the remainder from the
2089unsigned division of its two arguments.</p>
2090<h5>Arguments:</h5>
2091<p>The two arguments to the '<tt>urem</tt>' instruction must be
2092<a href="#t_integer">integer</a> values. Both arguments must have identical
2093types.</p>
2094<h5>Semantics:</h5>
2095<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2096This instruction always performs an unsigned division to get the remainder,
2097regardless of whether the arguments are unsigned or not.</p>
2098<h5>Example:</h5>
2099<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2100</pre>
2101
2102</div>
2103<!-- _______________________________________________________________________ -->
2104<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2105Instruction</a> </div>
2106<div class="doc_text">
2107<h5>Syntax:</h5>
2108<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2109</pre>
2110<h5>Overview:</h5>
2111<p>The '<tt>srem</tt>' instruction returns the remainder from the
2112signed division of its two operands.</p>
2113<h5>Arguments:</h5>
2114<p>The two arguments to the '<tt>srem</tt>' instruction must be
2115<a href="#t_integer">integer</a> values. Both arguments must have identical
2116types.</p>
2117<h5>Semantics:</h5>
2118<p>This instruction returns the <i>remainder</i> of a division (where the result
2119has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2120operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2121a value. For more information about the difference, see <a
2122 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2123Math Forum</a>. For a table of how this is implemented in various languages,
2124please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2125Wikipedia: modulo operation</a>.</p>
2126<h5>Example:</h5>
2127<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2128</pre>
2129
2130</div>
2131<!-- _______________________________________________________________________ -->
2132<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2133Instruction</a> </div>
2134<div class="doc_text">
2135<h5>Syntax:</h5>
2136<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2137</pre>
2138<h5>Overview:</h5>
2139<p>The '<tt>frem</tt>' instruction returns the remainder from the
2140division of its two operands.</p>
2141<h5>Arguments:</h5>
2142<p>The two arguments to the '<tt>frem</tt>' instruction must be
2143<a href="#t_floating">floating point</a> values. Both arguments must have
2144identical types.</p>
2145<h5>Semantics:</h5>
2146<p>This instruction returns the <i>remainder</i> of a division.</p>
2147<h5>Example:</h5>
2148<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2149</pre>
2150</div>
2151
2152<!-- ======================================================================= -->
2153<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2154Operations</a> </div>
2155<div class="doc_text">
2156<p>Bitwise binary operators are used to do various forms of
2157bit-twiddling in a program. They are generally very efficient
2158instructions and can commonly be strength reduced from other
2159instructions. They require two operands, execute an operation on them,
2160and produce a single value. The resulting value of the bitwise binary
2161operators is always the same type as its first operand.</p>
2162</div>
2163
2164<!-- _______________________________________________________________________ -->
2165<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2166Instruction</a> </div>
2167<div class="doc_text">
2168<h5>Syntax:</h5>
2169<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2170</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002171
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002172<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002173
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002174<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2175the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002176
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002177<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002178
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002179<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2180 href="#t_integer">integer</a> type.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002181
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002182<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002183
2184<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>. If
2185<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2186of bits in <tt>var1</tt>, the result is undefined.</p>
2187
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002188<h5>Example:</h5><pre>
2189 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2190 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2191 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002192 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193</pre>
2194</div>
2195<!-- _______________________________________________________________________ -->
2196<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2197Instruction</a> </div>
2198<div class="doc_text">
2199<h5>Syntax:</h5>
2200<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2201</pre>
2202
2203<h5>Overview:</h5>
2204<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2205operand shifted to the right a specified number of bits with zero fill.</p>
2206
2207<h5>Arguments:</h5>
2208<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2209<a href="#t_integer">integer</a> type.</p>
2210
2211<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002212
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213<p>This instruction always performs a logical shift right operation. The most
2214significant bits of the result will be filled with zero bits after the
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002215shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2216the number of bits in <tt>var1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217
2218<h5>Example:</h5>
2219<pre>
2220 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2221 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2222 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2223 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002224 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225</pre>
2226</div>
2227
2228<!-- _______________________________________________________________________ -->
2229<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2230Instruction</a> </div>
2231<div class="doc_text">
2232
2233<h5>Syntax:</h5>
2234<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2235</pre>
2236
2237<h5>Overview:</h5>
2238<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2239operand shifted to the right a specified number of bits with sign extension.</p>
2240
2241<h5>Arguments:</h5>
2242<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2243<a href="#t_integer">integer</a> type.</p>
2244
2245<h5>Semantics:</h5>
2246<p>This instruction always performs an arithmetic shift right operation,
2247The most significant bits of the result will be filled with the sign bit
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002248of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2249larger than the number of bits in <tt>var1</tt>, the result is undefined.
2250</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251
2252<h5>Example:</h5>
2253<pre>
2254 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2255 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2256 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2257 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002258 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002259</pre>
2260</div>
2261
2262<!-- _______________________________________________________________________ -->
2263<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2264Instruction</a> </div>
2265<div class="doc_text">
2266<h5>Syntax:</h5>
2267<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2268</pre>
2269<h5>Overview:</h5>
2270<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2271its two operands.</p>
2272<h5>Arguments:</h5>
2273<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2274 href="#t_integer">integer</a> values. Both arguments must have
2275identical types.</p>
2276<h5>Semantics:</h5>
2277<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2278<p> </p>
2279<div style="align: center">
2280<table border="1" cellspacing="0" cellpadding="4">
2281 <tbody>
2282 <tr>
2283 <td>In0</td>
2284 <td>In1</td>
2285 <td>Out</td>
2286 </tr>
2287 <tr>
2288 <td>0</td>
2289 <td>0</td>
2290 <td>0</td>
2291 </tr>
2292 <tr>
2293 <td>0</td>
2294 <td>1</td>
2295 <td>0</td>
2296 </tr>
2297 <tr>
2298 <td>1</td>
2299 <td>0</td>
2300 <td>0</td>
2301 </tr>
2302 <tr>
2303 <td>1</td>
2304 <td>1</td>
2305 <td>1</td>
2306 </tr>
2307 </tbody>
2308</table>
2309</div>
2310<h5>Example:</h5>
2311<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2312 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2313 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2314</pre>
2315</div>
2316<!-- _______________________________________________________________________ -->
2317<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2318<div class="doc_text">
2319<h5>Syntax:</h5>
2320<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2321</pre>
2322<h5>Overview:</h5>
2323<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2324or of its two operands.</p>
2325<h5>Arguments:</h5>
2326<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2327 href="#t_integer">integer</a> values. Both arguments must have
2328identical types.</p>
2329<h5>Semantics:</h5>
2330<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2331<p> </p>
2332<div style="align: center">
2333<table border="1" cellspacing="0" cellpadding="4">
2334 <tbody>
2335 <tr>
2336 <td>In0</td>
2337 <td>In1</td>
2338 <td>Out</td>
2339 </tr>
2340 <tr>
2341 <td>0</td>
2342 <td>0</td>
2343 <td>0</td>
2344 </tr>
2345 <tr>
2346 <td>0</td>
2347 <td>1</td>
2348 <td>1</td>
2349 </tr>
2350 <tr>
2351 <td>1</td>
2352 <td>0</td>
2353 <td>1</td>
2354 </tr>
2355 <tr>
2356 <td>1</td>
2357 <td>1</td>
2358 <td>1</td>
2359 </tr>
2360 </tbody>
2361</table>
2362</div>
2363<h5>Example:</h5>
2364<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2365 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2366 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2367</pre>
2368</div>
2369<!-- _______________________________________________________________________ -->
2370<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2371Instruction</a> </div>
2372<div class="doc_text">
2373<h5>Syntax:</h5>
2374<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2375</pre>
2376<h5>Overview:</h5>
2377<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2378or of its two operands. The <tt>xor</tt> is used to implement the
2379"one's complement" operation, which is the "~" operator in C.</p>
2380<h5>Arguments:</h5>
2381<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2382 href="#t_integer">integer</a> values. Both arguments must have
2383identical types.</p>
2384<h5>Semantics:</h5>
2385<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2386<p> </p>
2387<div style="align: center">
2388<table border="1" cellspacing="0" cellpadding="4">
2389 <tbody>
2390 <tr>
2391 <td>In0</td>
2392 <td>In1</td>
2393 <td>Out</td>
2394 </tr>
2395 <tr>
2396 <td>0</td>
2397 <td>0</td>
2398 <td>0</td>
2399 </tr>
2400 <tr>
2401 <td>0</td>
2402 <td>1</td>
2403 <td>1</td>
2404 </tr>
2405 <tr>
2406 <td>1</td>
2407 <td>0</td>
2408 <td>1</td>
2409 </tr>
2410 <tr>
2411 <td>1</td>
2412 <td>1</td>
2413 <td>0</td>
2414 </tr>
2415 </tbody>
2416</table>
2417</div>
2418<p> </p>
2419<h5>Example:</h5>
2420<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2421 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2422 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2423 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2424</pre>
2425</div>
2426
2427<!-- ======================================================================= -->
2428<div class="doc_subsection">
2429 <a name="vectorops">Vector Operations</a>
2430</div>
2431
2432<div class="doc_text">
2433
2434<p>LLVM supports several instructions to represent vector operations in a
2435target-independent manner. These instructions cover the element-access and
2436vector-specific operations needed to process vectors effectively. While LLVM
2437does directly support these vector operations, many sophisticated algorithms
2438will want to use target-specific intrinsics to take full advantage of a specific
2439target.</p>
2440
2441</div>
2442
2443<!-- _______________________________________________________________________ -->
2444<div class="doc_subsubsection">
2445 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2446</div>
2447
2448<div class="doc_text">
2449
2450<h5>Syntax:</h5>
2451
2452<pre>
2453 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2454</pre>
2455
2456<h5>Overview:</h5>
2457
2458<p>
2459The '<tt>extractelement</tt>' instruction extracts a single scalar
2460element from a vector at a specified index.
2461</p>
2462
2463
2464<h5>Arguments:</h5>
2465
2466<p>
2467The first operand of an '<tt>extractelement</tt>' instruction is a
2468value of <a href="#t_vector">vector</a> type. The second operand is
2469an index indicating the position from which to extract the element.
2470The index may be a variable.</p>
2471
2472<h5>Semantics:</h5>
2473
2474<p>
2475The result is a scalar of the same type as the element type of
2476<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2477<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2478results are undefined.
2479</p>
2480
2481<h5>Example:</h5>
2482
2483<pre>
2484 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2485</pre>
2486</div>
2487
2488
2489<!-- _______________________________________________________________________ -->
2490<div class="doc_subsubsection">
2491 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2492</div>
2493
2494<div class="doc_text">
2495
2496<h5>Syntax:</h5>
2497
2498<pre>
2499 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2500</pre>
2501
2502<h5>Overview:</h5>
2503
2504<p>
2505The '<tt>insertelement</tt>' instruction inserts a scalar
2506element into a vector at a specified index.
2507</p>
2508
2509
2510<h5>Arguments:</h5>
2511
2512<p>
2513The first operand of an '<tt>insertelement</tt>' instruction is a
2514value of <a href="#t_vector">vector</a> type. The second operand is a
2515scalar value whose type must equal the element type of the first
2516operand. The third operand is an index indicating the position at
2517which to insert the value. The index may be a variable.</p>
2518
2519<h5>Semantics:</h5>
2520
2521<p>
2522The result is a vector of the same type as <tt>val</tt>. Its
2523element values are those of <tt>val</tt> except at position
2524<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2525exceeds the length of <tt>val</tt>, the results are undefined.
2526</p>
2527
2528<h5>Example:</h5>
2529
2530<pre>
2531 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2532</pre>
2533</div>
2534
2535<!-- _______________________________________________________________________ -->
2536<div class="doc_subsubsection">
2537 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2538</div>
2539
2540<div class="doc_text">
2541
2542<h5>Syntax:</h5>
2543
2544<pre>
2545 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2546</pre>
2547
2548<h5>Overview:</h5>
2549
2550<p>
2551The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2552from two input vectors, returning a vector of the same type.
2553</p>
2554
2555<h5>Arguments:</h5>
2556
2557<p>
2558The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2559with types that match each other and types that match the result of the
2560instruction. The third argument is a shuffle mask, which has the same number
2561of elements as the other vector type, but whose element type is always 'i32'.
2562</p>
2563
2564<p>
2565The shuffle mask operand is required to be a constant vector with either
2566constant integer or undef values.
2567</p>
2568
2569<h5>Semantics:</h5>
2570
2571<p>
2572The elements of the two input vectors are numbered from left to right across
2573both of the vectors. The shuffle mask operand specifies, for each element of
2574the result vector, which element of the two input registers the result element
2575gets. The element selector may be undef (meaning "don't care") and the second
2576operand may be undef if performing a shuffle from only one vector.
2577</p>
2578
2579<h5>Example:</h5>
2580
2581<pre>
2582 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2583 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2584 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2585 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2586</pre>
2587</div>
2588
2589
2590<!-- ======================================================================= -->
2591<div class="doc_subsection">
2592 <a name="memoryops">Memory Access and Addressing Operations</a>
2593</div>
2594
2595<div class="doc_text">
2596
2597<p>A key design point of an SSA-based representation is how it
2598represents memory. In LLVM, no memory locations are in SSA form, which
2599makes things very simple. This section describes how to read, write,
2600allocate, and free memory in LLVM.</p>
2601
2602</div>
2603
2604<!-- _______________________________________________________________________ -->
2605<div class="doc_subsubsection">
2606 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2607</div>
2608
2609<div class="doc_text">
2610
2611<h5>Syntax:</h5>
2612
2613<pre>
2614 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2615</pre>
2616
2617<h5>Overview:</h5>
2618
2619<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2620heap and returns a pointer to it.</p>
2621
2622<h5>Arguments:</h5>
2623
2624<p>The '<tt>malloc</tt>' instruction allocates
2625<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2626bytes of memory from the operating system and returns a pointer of the
2627appropriate type to the program. If "NumElements" is specified, it is the
2628number of elements allocated. If an alignment is specified, the value result
2629of the allocation is guaranteed to be aligned to at least that boundary. If
2630not specified, or if zero, the target can choose to align the allocation on any
2631convenient boundary.</p>
2632
2633<p>'<tt>type</tt>' must be a sized type.</p>
2634
2635<h5>Semantics:</h5>
2636
2637<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2638a pointer is returned.</p>
2639
2640<h5>Example:</h5>
2641
2642<pre>
2643 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2644
2645 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2646 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2647 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2648 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2649 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2650</pre>
2651</div>
2652
2653<!-- _______________________________________________________________________ -->
2654<div class="doc_subsubsection">
2655 <a name="i_free">'<tt>free</tt>' Instruction</a>
2656</div>
2657
2658<div class="doc_text">
2659
2660<h5>Syntax:</h5>
2661
2662<pre>
2663 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2664</pre>
2665
2666<h5>Overview:</h5>
2667
2668<p>The '<tt>free</tt>' instruction returns memory back to the unused
2669memory heap to be reallocated in the future.</p>
2670
2671<h5>Arguments:</h5>
2672
2673<p>'<tt>value</tt>' shall be a pointer value that points to a value
2674that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2675instruction.</p>
2676
2677<h5>Semantics:</h5>
2678
2679<p>Access to the memory pointed to by the pointer is no longer defined
2680after this instruction executes.</p>
2681
2682<h5>Example:</h5>
2683
2684<pre>
2685 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2686 free [4 x i8]* %array
2687</pre>
2688</div>
2689
2690<!-- _______________________________________________________________________ -->
2691<div class="doc_subsubsection">
2692 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2693</div>
2694
2695<div class="doc_text">
2696
2697<h5>Syntax:</h5>
2698
2699<pre>
2700 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2701</pre>
2702
2703<h5>Overview:</h5>
2704
2705<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2706currently executing function, to be automatically released when this function
2707returns to its caller.</p>
2708
2709<h5>Arguments:</h5>
2710
2711<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2712bytes of memory on the runtime stack, returning a pointer of the
2713appropriate type to the program. If "NumElements" is specified, it is the
2714number of elements allocated. If an alignment is specified, the value result
2715of the allocation is guaranteed to be aligned to at least that boundary. If
2716not specified, or if zero, the target can choose to align the allocation on any
2717convenient boundary.</p>
2718
2719<p>'<tt>type</tt>' may be any sized type.</p>
2720
2721<h5>Semantics:</h5>
2722
2723<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2724memory is automatically released when the function returns. The '<tt>alloca</tt>'
2725instruction is commonly used to represent automatic variables that must
2726have an address available. When the function returns (either with the <tt><a
2727 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2728instructions), the memory is reclaimed.</p>
2729
2730<h5>Example:</h5>
2731
2732<pre>
2733 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2734 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2735 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2736 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2737</pre>
2738</div>
2739
2740<!-- _______________________________________________________________________ -->
2741<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2742Instruction</a> </div>
2743<div class="doc_text">
2744<h5>Syntax:</h5>
2745<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2746<h5>Overview:</h5>
2747<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2748<h5>Arguments:</h5>
2749<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2750address from which to load. The pointer must point to a <a
2751 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2752marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2753the number or order of execution of this <tt>load</tt> with other
2754volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2755instructions. </p>
2756<h5>Semantics:</h5>
2757<p>The location of memory pointed to is loaded.</p>
2758<h5>Examples:</h5>
2759<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2760 <a
2761 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2762 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2763</pre>
2764</div>
2765<!-- _______________________________________________________________________ -->
2766<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2767Instruction</a> </div>
2768<div class="doc_text">
2769<h5>Syntax:</h5>
2770<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2771 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2772</pre>
2773<h5>Overview:</h5>
2774<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2775<h5>Arguments:</h5>
2776<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2777to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2778operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2779operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2780optimizer is not allowed to modify the number or order of execution of
2781this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2782 href="#i_store">store</a></tt> instructions.</p>
2783<h5>Semantics:</h5>
2784<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2785at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2786<h5>Example:</h5>
2787<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2788 <a
2789 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2790 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2791</pre>
2792</div>
2793
2794<!-- _______________________________________________________________________ -->
2795<div class="doc_subsubsection">
2796 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2797</div>
2798
2799<div class="doc_text">
2800<h5>Syntax:</h5>
2801<pre>
2802 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2803</pre>
2804
2805<h5>Overview:</h5>
2806
2807<p>
2808The '<tt>getelementptr</tt>' instruction is used to get the address of a
2809subelement of an aggregate data structure.</p>
2810
2811<h5>Arguments:</h5>
2812
2813<p>This instruction takes a list of integer operands that indicate what
2814elements of the aggregate object to index to. The actual types of the arguments
2815provided depend on the type of the first pointer argument. The
2816'<tt>getelementptr</tt>' instruction is used to index down through the type
2817levels of a structure or to a specific index in an array. When indexing into a
2818structure, only <tt>i32</tt> integer constants are allowed. When indexing
2819into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2820be sign extended to 64-bit values.</p>
2821
2822<p>For example, let's consider a C code fragment and how it gets
2823compiled to LLVM:</p>
2824
2825<div class="doc_code">
2826<pre>
2827struct RT {
2828 char A;
2829 int B[10][20];
2830 char C;
2831};
2832struct ST {
2833 int X;
2834 double Y;
2835 struct RT Z;
2836};
2837
2838int *foo(struct ST *s) {
2839 return &amp;s[1].Z.B[5][13];
2840}
2841</pre>
2842</div>
2843
2844<p>The LLVM code generated by the GCC frontend is:</p>
2845
2846<div class="doc_code">
2847<pre>
2848%RT = type { i8 , [10 x [20 x i32]], i8 }
2849%ST = type { i32, double, %RT }
2850
2851define i32* %foo(%ST* %s) {
2852entry:
2853 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2854 ret i32* %reg
2855}
2856</pre>
2857</div>
2858
2859<h5>Semantics:</h5>
2860
2861<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2862on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2863and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2864<a href="#t_integer">integer</a> type but the value will always be sign extended
2865to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2866<b>constants</b>.</p>
2867
2868<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2869type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2870}</tt>' type, a structure. The second index indexes into the third element of
2871the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2872i8 }</tt>' type, another structure. The third index indexes into the second
2873element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2874array. The two dimensions of the array are subscripted into, yielding an
2875'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2876to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2877
2878<p>Note that it is perfectly legal to index partially through a
2879structure, returning a pointer to an inner element. Because of this,
2880the LLVM code for the given testcase is equivalent to:</p>
2881
2882<pre>
2883 define i32* %foo(%ST* %s) {
2884 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2885 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2886 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2887 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2888 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2889 ret i32* %t5
2890 }
2891</pre>
2892
2893<p>Note that it is undefined to access an array out of bounds: array and
2894pointer indexes must always be within the defined bounds of the array type.
2895The one exception for this rules is zero length arrays. These arrays are
2896defined to be accessible as variable length arrays, which requires access
2897beyond the zero'th element.</p>
2898
2899<p>The getelementptr instruction is often confusing. For some more insight
2900into how it works, see <a href="GetElementPtr.html">the getelementptr
2901FAQ</a>.</p>
2902
2903<h5>Example:</h5>
2904
2905<pre>
2906 <i>; yields [12 x i8]*:aptr</i>
2907 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2908</pre>
2909</div>
2910
2911<!-- ======================================================================= -->
2912<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2913</div>
2914<div class="doc_text">
2915<p>The instructions in this category are the conversion instructions (casting)
2916which all take a single operand and a type. They perform various bit conversions
2917on the operand.</p>
2918</div>
2919
2920<!-- _______________________________________________________________________ -->
2921<div class="doc_subsubsection">
2922 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2923</div>
2924<div class="doc_text">
2925
2926<h5>Syntax:</h5>
2927<pre>
2928 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2929</pre>
2930
2931<h5>Overview:</h5>
2932<p>
2933The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2934</p>
2935
2936<h5>Arguments:</h5>
2937<p>
2938The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2939be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2940and type of the result, which must be an <a href="#t_integer">integer</a>
2941type. The bit size of <tt>value</tt> must be larger than the bit size of
2942<tt>ty2</tt>. Equal sized types are not allowed.</p>
2943
2944<h5>Semantics:</h5>
2945<p>
2946The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2947and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2948larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2949It will always truncate bits.</p>
2950
2951<h5>Example:</h5>
2952<pre>
2953 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2954 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2955 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2956</pre>
2957</div>
2958
2959<!-- _______________________________________________________________________ -->
2960<div class="doc_subsubsection">
2961 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2962</div>
2963<div class="doc_text">
2964
2965<h5>Syntax:</h5>
2966<pre>
2967 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2968</pre>
2969
2970<h5>Overview:</h5>
2971<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2972<tt>ty2</tt>.</p>
2973
2974
2975<h5>Arguments:</h5>
2976<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2977<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2978also be of <a href="#t_integer">integer</a> type. The bit size of the
2979<tt>value</tt> must be smaller than the bit size of the destination type,
2980<tt>ty2</tt>.</p>
2981
2982<h5>Semantics:</h5>
2983<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2984bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2985
2986<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2987
2988<h5>Example:</h5>
2989<pre>
2990 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2991 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2992</pre>
2993</div>
2994
2995<!-- _______________________________________________________________________ -->
2996<div class="doc_subsubsection">
2997 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2998</div>
2999<div class="doc_text">
3000
3001<h5>Syntax:</h5>
3002<pre>
3003 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3004</pre>
3005
3006<h5>Overview:</h5>
3007<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3008
3009<h5>Arguments:</h5>
3010<p>
3011The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3012<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3013also be of <a href="#t_integer">integer</a> type. The bit size of the
3014<tt>value</tt> must be smaller than the bit size of the destination type,
3015<tt>ty2</tt>.</p>
3016
3017<h5>Semantics:</h5>
3018<p>
3019The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3020bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3021the type <tt>ty2</tt>.</p>
3022
3023<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3024
3025<h5>Example:</h5>
3026<pre>
3027 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3028 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3029</pre>
3030</div>
3031
3032<!-- _______________________________________________________________________ -->
3033<div class="doc_subsubsection">
3034 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3035</div>
3036
3037<div class="doc_text">
3038
3039<h5>Syntax:</h5>
3040
3041<pre>
3042 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3043</pre>
3044
3045<h5>Overview:</h5>
3046<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3047<tt>ty2</tt>.</p>
3048
3049
3050<h5>Arguments:</h5>
3051<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3052 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3053cast it to. The size of <tt>value</tt> must be larger than the size of
3054<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3055<i>no-op cast</i>.</p>
3056
3057<h5>Semantics:</h5>
3058<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3059<a href="#t_floating">floating point</a> type to a smaller
3060<a href="#t_floating">floating point</a> type. If the value cannot fit within
3061the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3062
3063<h5>Example:</h5>
3064<pre>
3065 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3066 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3067</pre>
3068</div>
3069
3070<!-- _______________________________________________________________________ -->
3071<div class="doc_subsubsection">
3072 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3073</div>
3074<div class="doc_text">
3075
3076<h5>Syntax:</h5>
3077<pre>
3078 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3079</pre>
3080
3081<h5>Overview:</h5>
3082<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3083floating point value.</p>
3084
3085<h5>Arguments:</h5>
3086<p>The '<tt>fpext</tt>' instruction takes a
3087<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3088and a <a href="#t_floating">floating point</a> type to cast it to. The source
3089type must be smaller than the destination type.</p>
3090
3091<h5>Semantics:</h5>
3092<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3093<a href="#t_floating">floating point</a> type to a larger
3094<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3095used to make a <i>no-op cast</i> because it always changes bits. Use
3096<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3097
3098<h5>Example:</h5>
3099<pre>
3100 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3101 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3102</pre>
3103</div>
3104
3105<!-- _______________________________________________________________________ -->
3106<div class="doc_subsubsection">
3107 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3108</div>
3109<div class="doc_text">
3110
3111<h5>Syntax:</h5>
3112<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003113 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003114</pre>
3115
3116<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003117<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003118unsigned integer equivalent of type <tt>ty2</tt>.
3119</p>
3120
3121<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003122<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003123<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3124must be an <a href="#t_integer">integer</a> type.</p>
3125
3126<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003127<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003128<a href="#t_floating">floating point</a> operand into the nearest (rounding
3129towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3130the results are undefined.</p>
3131
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003132<h5>Example:</h5>
3133<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003134 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003135 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003136 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003137</pre>
3138</div>
3139
3140<!-- _______________________________________________________________________ -->
3141<div class="doc_subsubsection">
3142 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3143</div>
3144<div class="doc_text">
3145
3146<h5>Syntax:</h5>
3147<pre>
3148 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3149</pre>
3150
3151<h5>Overview:</h5>
3152<p>The '<tt>fptosi</tt>' instruction converts
3153<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3154</p>
3155
3156
3157<h5>Arguments:</h5>
3158<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3159<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3160must also be an <a href="#t_integer">integer</a> type.</p>
3161
3162<h5>Semantics:</h5>
3163<p>The '<tt>fptosi</tt>' instruction converts its
3164<a href="#t_floating">floating point</a> operand into the nearest (rounding
3165towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3166the results are undefined.</p>
3167
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003168<h5>Example:</h5>
3169<pre>
3170 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003171 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3173</pre>
3174</div>
3175
3176<!-- _______________________________________________________________________ -->
3177<div class="doc_subsubsection">
3178 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3179</div>
3180<div class="doc_text">
3181
3182<h5>Syntax:</h5>
3183<pre>
3184 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3185</pre>
3186
3187<h5>Overview:</h5>
3188<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3189integer and converts that value to the <tt>ty2</tt> type.</p>
3190
3191
3192<h5>Arguments:</h5>
3193<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3194<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3195be a <a href="#t_floating">floating point</a> type.</p>
3196
3197<h5>Semantics:</h5>
3198<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3199integer quantity and converts it to the corresponding floating point value. If
3200the value cannot fit in the floating point value, the results are undefined.</p>
3201
3202
3203<h5>Example:</h5>
3204<pre>
3205 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3206 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3207</pre>
3208</div>
3209
3210<!-- _______________________________________________________________________ -->
3211<div class="doc_subsubsection">
3212 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3213</div>
3214<div class="doc_text">
3215
3216<h5>Syntax:</h5>
3217<pre>
3218 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3219</pre>
3220
3221<h5>Overview:</h5>
3222<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3223integer and converts that value to the <tt>ty2</tt> type.</p>
3224
3225<h5>Arguments:</h5>
3226<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3227<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3228a <a href="#t_floating">floating point</a> type.</p>
3229
3230<h5>Semantics:</h5>
3231<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3232integer quantity and converts it to the corresponding floating point value. If
3233the value cannot fit in the floating point value, the results are undefined.</p>
3234
3235<h5>Example:</h5>
3236<pre>
3237 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3238 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3239</pre>
3240</div>
3241
3242<!-- _______________________________________________________________________ -->
3243<div class="doc_subsubsection">
3244 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3245</div>
3246<div class="doc_text">
3247
3248<h5>Syntax:</h5>
3249<pre>
3250 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3251</pre>
3252
3253<h5>Overview:</h5>
3254<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3255the integer type <tt>ty2</tt>.</p>
3256
3257<h5>Arguments:</h5>
3258<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3259must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3260<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3261
3262<h5>Semantics:</h5>
3263<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3264<tt>ty2</tt> by interpreting the pointer value as an integer and either
3265truncating or zero extending that value to the size of the integer type. If
3266<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3267<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3268are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3269change.</p>
3270
3271<h5>Example:</h5>
3272<pre>
3273 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3274 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3275</pre>
3276</div>
3277
3278<!-- _______________________________________________________________________ -->
3279<div class="doc_subsubsection">
3280 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3281</div>
3282<div class="doc_text">
3283
3284<h5>Syntax:</h5>
3285<pre>
3286 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3287</pre>
3288
3289<h5>Overview:</h5>
3290<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3291a pointer type, <tt>ty2</tt>.</p>
3292
3293<h5>Arguments:</h5>
3294<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3295value to cast, and a type to cast it to, which must be a
3296<a href="#t_pointer">pointer</a> type.
3297
3298<h5>Semantics:</h5>
3299<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3300<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3301the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3302size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3303the size of a pointer then a zero extension is done. If they are the same size,
3304nothing is done (<i>no-op cast</i>).</p>
3305
3306<h5>Example:</h5>
3307<pre>
3308 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3309 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3310 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3311</pre>
3312</div>
3313
3314<!-- _______________________________________________________________________ -->
3315<div class="doc_subsubsection">
3316 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3317</div>
3318<div class="doc_text">
3319
3320<h5>Syntax:</h5>
3321<pre>
3322 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3323</pre>
3324
3325<h5>Overview:</h5>
3326<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3327<tt>ty2</tt> without changing any bits.</p>
3328
3329<h5>Arguments:</h5>
3330<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3331a first class value, and a type to cast it to, which must also be a <a
3332 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3333and the destination type, <tt>ty2</tt>, must be identical. If the source
3334type is a pointer, the destination type must also be a pointer.</p>
3335
3336<h5>Semantics:</h5>
3337<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3338<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3339this conversion. The conversion is done as if the <tt>value</tt> had been
3340stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3341converted to other pointer types with this instruction. To convert pointers to
3342other types, use the <a href="#i_inttoptr">inttoptr</a> or
3343<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3344
3345<h5>Example:</h5>
3346<pre>
3347 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3348 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3349 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3350</pre>
3351</div>
3352
3353<!-- ======================================================================= -->
3354<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3355<div class="doc_text">
3356<p>The instructions in this category are the "miscellaneous"
3357instructions, which defy better classification.</p>
3358</div>
3359
3360<!-- _______________________________________________________________________ -->
3361<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3362</div>
3363<div class="doc_text">
3364<h5>Syntax:</h5>
3365<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3366</pre>
3367<h5>Overview:</h5>
3368<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3369of its two integer operands.</p>
3370<h5>Arguments:</h5>
3371<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3372the condition code indicating the kind of comparison to perform. It is not
3373a value, just a keyword. The possible condition code are:
3374<ol>
3375 <li><tt>eq</tt>: equal</li>
3376 <li><tt>ne</tt>: not equal </li>
3377 <li><tt>ugt</tt>: unsigned greater than</li>
3378 <li><tt>uge</tt>: unsigned greater or equal</li>
3379 <li><tt>ult</tt>: unsigned less than</li>
3380 <li><tt>ule</tt>: unsigned less or equal</li>
3381 <li><tt>sgt</tt>: signed greater than</li>
3382 <li><tt>sge</tt>: signed greater or equal</li>
3383 <li><tt>slt</tt>: signed less than</li>
3384 <li><tt>sle</tt>: signed less or equal</li>
3385</ol>
3386<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3387<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3388<h5>Semantics:</h5>
3389<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3390the condition code given as <tt>cond</tt>. The comparison performed always
3391yields a <a href="#t_primitive">i1</a> result, as follows:
3392<ol>
3393 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3394 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3395 </li>
3396 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3397 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3398 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3399 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3400 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3401 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3402 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3403 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3404 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3405 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3406 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3407 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3408 <li><tt>sge</tt>: interprets the operands as signed values and yields
3409 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3410 <li><tt>slt</tt>: interprets the operands as signed values and yields
3411 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3412 <li><tt>sle</tt>: interprets the operands as signed values and yields
3413 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3414</ol>
3415<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3416values are compared as if they were integers.</p>
3417
3418<h5>Example:</h5>
3419<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3420 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3421 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3422 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3423 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3424 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3425</pre>
3426</div>
3427
3428<!-- _______________________________________________________________________ -->
3429<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3430</div>
3431<div class="doc_text">
3432<h5>Syntax:</h5>
3433<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3434</pre>
3435<h5>Overview:</h5>
3436<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3437of its floating point operands.</p>
3438<h5>Arguments:</h5>
3439<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3440the condition code indicating the kind of comparison to perform. It is not
3441a value, just a keyword. The possible condition code are:
3442<ol>
3443 <li><tt>false</tt>: no comparison, always returns false</li>
3444 <li><tt>oeq</tt>: ordered and equal</li>
3445 <li><tt>ogt</tt>: ordered and greater than </li>
3446 <li><tt>oge</tt>: ordered and greater than or equal</li>
3447 <li><tt>olt</tt>: ordered and less than </li>
3448 <li><tt>ole</tt>: ordered and less than or equal</li>
3449 <li><tt>one</tt>: ordered and not equal</li>
3450 <li><tt>ord</tt>: ordered (no nans)</li>
3451 <li><tt>ueq</tt>: unordered or equal</li>
3452 <li><tt>ugt</tt>: unordered or greater than </li>
3453 <li><tt>uge</tt>: unordered or greater than or equal</li>
3454 <li><tt>ult</tt>: unordered or less than </li>
3455 <li><tt>ule</tt>: unordered or less than or equal</li>
3456 <li><tt>une</tt>: unordered or not equal</li>
3457 <li><tt>uno</tt>: unordered (either nans)</li>
3458 <li><tt>true</tt>: no comparison, always returns true</li>
3459</ol>
3460<p><i>Ordered</i> means that neither operand is a QNAN while
3461<i>unordered</i> means that either operand may be a QNAN.</p>
3462<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3463<a href="#t_floating">floating point</a> typed. They must have identical
3464types.</p>
3465<h5>Semantics:</h5>
3466<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3467the condition code given as <tt>cond</tt>. The comparison performed always
3468yields a <a href="#t_primitive">i1</a> result, as follows:
3469<ol>
3470 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3471 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3472 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3473 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3474 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3475 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3476 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3477 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3478 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3479 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3480 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3481 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3482 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3483 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3484 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3485 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3486 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3487 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3488 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3489 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3490 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3491 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3492 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3493 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3494 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3495 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3496 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3497 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3498</ol>
3499
3500<h5>Example:</h5>
3501<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3502 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3503 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3504 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3505</pre>
3506</div>
3507
3508<!-- _______________________________________________________________________ -->
3509<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3510Instruction</a> </div>
3511<div class="doc_text">
3512<h5>Syntax:</h5>
3513<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3514<h5>Overview:</h5>
3515<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3516the SSA graph representing the function.</p>
3517<h5>Arguments:</h5>
3518<p>The type of the incoming values is specified with the first type
3519field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3520as arguments, with one pair for each predecessor basic block of the
3521current block. Only values of <a href="#t_firstclass">first class</a>
3522type may be used as the value arguments to the PHI node. Only labels
3523may be used as the label arguments.</p>
3524<p>There must be no non-phi instructions between the start of a basic
3525block and the PHI instructions: i.e. PHI instructions must be first in
3526a basic block.</p>
3527<h5>Semantics:</h5>
3528<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3529specified by the pair corresponding to the predecessor basic block that executed
3530just prior to the current block.</p>
3531<h5>Example:</h5>
3532<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3533</div>
3534
3535<!-- _______________________________________________________________________ -->
3536<div class="doc_subsubsection">
3537 <a name="i_select">'<tt>select</tt>' Instruction</a>
3538</div>
3539
3540<div class="doc_text">
3541
3542<h5>Syntax:</h5>
3543
3544<pre>
3545 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3546</pre>
3547
3548<h5>Overview:</h5>
3549
3550<p>
3551The '<tt>select</tt>' instruction is used to choose one value based on a
3552condition, without branching.
3553</p>
3554
3555
3556<h5>Arguments:</h5>
3557
3558<p>
3559The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3560</p>
3561
3562<h5>Semantics:</h5>
3563
3564<p>
3565If the boolean condition evaluates to true, the instruction returns the first
3566value argument; otherwise, it returns the second value argument.
3567</p>
3568
3569<h5>Example:</h5>
3570
3571<pre>
3572 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3573</pre>
3574</div>
3575
3576
3577<!-- _______________________________________________________________________ -->
3578<div class="doc_subsubsection">
3579 <a name="i_call">'<tt>call</tt>' Instruction</a>
3580</div>
3581
3582<div class="doc_text">
3583
3584<h5>Syntax:</h5>
3585<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003586 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003587</pre>
3588
3589<h5>Overview:</h5>
3590
3591<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3592
3593<h5>Arguments:</h5>
3594
3595<p>This instruction requires several arguments:</p>
3596
3597<ol>
3598 <li>
3599 <p>The optional "tail" marker indicates whether the callee function accesses
3600 any allocas or varargs in the caller. If the "tail" marker is present, the
3601 function call is eligible for tail call optimization. Note that calls may
3602 be marked "tail" even if they do not occur before a <a
3603 href="#i_ret"><tt>ret</tt></a> instruction.
3604 </li>
3605 <li>
3606 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3607 convention</a> the call should use. If none is specified, the call defaults
3608 to using C calling conventions.
3609 </li>
3610 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003611 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3612 the type of the return value. Functions that return no value are marked
3613 <tt><a href="#t_void">void</a></tt>.</p>
3614 </li>
3615 <li>
3616 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3617 value being invoked. The argument types must match the types implied by
3618 this signature. This type can be omitted if the function is not varargs
3619 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003620 </li>
3621 <li>
3622 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3623 be invoked. In most cases, this is a direct function invocation, but
3624 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3625 to function value.</p>
3626 </li>
3627 <li>
3628 <p>'<tt>function args</tt>': argument list whose types match the
3629 function signature argument types. All arguments must be of
3630 <a href="#t_firstclass">first class</a> type. If the function signature
3631 indicates the function accepts a variable number of arguments, the extra
3632 arguments can be specified.</p>
3633 </li>
3634</ol>
3635
3636<h5>Semantics:</h5>
3637
3638<p>The '<tt>call</tt>' instruction is used to cause control flow to
3639transfer to a specified function, with its incoming arguments bound to
3640the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3641instruction in the called function, control flow continues with the
3642instruction after the function call, and the return value of the
3643function is bound to the result argument. This is a simpler case of
3644the <a href="#i_invoke">invoke</a> instruction.</p>
3645
3646<h5>Example:</h5>
3647
3648<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003649 %retval = call i32 @test(i32 %argc)
3650 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3651 %X = tail call i32 @foo()
3652 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3653 %Z = call void %foo(i8 97 signext)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003654</pre>
3655
3656</div>
3657
3658<!-- _______________________________________________________________________ -->
3659<div class="doc_subsubsection">
3660 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3661</div>
3662
3663<div class="doc_text">
3664
3665<h5>Syntax:</h5>
3666
3667<pre>
3668 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3669</pre>
3670
3671<h5>Overview:</h5>
3672
3673<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3674the "variable argument" area of a function call. It is used to implement the
3675<tt>va_arg</tt> macro in C.</p>
3676
3677<h5>Arguments:</h5>
3678
3679<p>This instruction takes a <tt>va_list*</tt> value and the type of
3680the argument. It returns a value of the specified argument type and
3681increments the <tt>va_list</tt> to point to the next argument. The
3682actual type of <tt>va_list</tt> is target specific.</p>
3683
3684<h5>Semantics:</h5>
3685
3686<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3687type from the specified <tt>va_list</tt> and causes the
3688<tt>va_list</tt> to point to the next argument. For more information,
3689see the variable argument handling <a href="#int_varargs">Intrinsic
3690Functions</a>.</p>
3691
3692<p>It is legal for this instruction to be called in a function which does not
3693take a variable number of arguments, for example, the <tt>vfprintf</tt>
3694function.</p>
3695
3696<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3697href="#intrinsics">intrinsic function</a> because it takes a type as an
3698argument.</p>
3699
3700<h5>Example:</h5>
3701
3702<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3703
3704</div>
3705
3706<!-- *********************************************************************** -->
3707<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3708<!-- *********************************************************************** -->
3709
3710<div class="doc_text">
3711
3712<p>LLVM supports the notion of an "intrinsic function". These functions have
3713well known names and semantics and are required to follow certain restrictions.
3714Overall, these intrinsics represent an extension mechanism for the LLVM
3715language that does not require changing all of the transformations in LLVM when
3716adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3717
3718<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3719prefix is reserved in LLVM for intrinsic names; thus, function names may not
3720begin with this prefix. Intrinsic functions must always be external functions:
3721you cannot define the body of intrinsic functions. Intrinsic functions may
3722only be used in call or invoke instructions: it is illegal to take the address
3723of an intrinsic function. Additionally, because intrinsic functions are part
3724of the LLVM language, it is required if any are added that they be documented
3725here.</p>
3726
Chandler Carrutha228e392007-08-04 01:51:18 +00003727<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3728a family of functions that perform the same operation but on different data
3729types. Because LLVM can represent over 8 million different integer types,
3730overloading is used commonly to allow an intrinsic function to operate on any
3731integer type. One or more of the argument types or the result type can be
3732overloaded to accept any integer type. Argument types may also be defined as
3733exactly matching a previous argument's type or the result type. This allows an
3734intrinsic function which accepts multiple arguments, but needs all of them to
3735be of the same type, to only be overloaded with respect to a single argument or
3736the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003737
Chandler Carrutha228e392007-08-04 01:51:18 +00003738<p>Overloaded intrinsics will have the names of its overloaded argument types
3739encoded into its function name, each preceded by a period. Only those types
3740which are overloaded result in a name suffix. Arguments whose type is matched
3741against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3742take an integer of any width and returns an integer of exactly the same integer
3743width. This leads to a family of functions such as
3744<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3745Only one type, the return type, is overloaded, and only one type suffix is
3746required. Because the argument's type is matched against the return type, it
3747does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748
3749<p>To learn how to add an intrinsic function, please see the
3750<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3751</p>
3752
3753</div>
3754
3755<!-- ======================================================================= -->
3756<div class="doc_subsection">
3757 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3758</div>
3759
3760<div class="doc_text">
3761
3762<p>Variable argument support is defined in LLVM with the <a
3763 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3764intrinsic functions. These functions are related to the similarly
3765named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3766
3767<p>All of these functions operate on arguments that use a
3768target-specific value type "<tt>va_list</tt>". The LLVM assembly
3769language reference manual does not define what this type is, so all
3770transformations should be prepared to handle these functions regardless of
3771the type used.</p>
3772
3773<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3774instruction and the variable argument handling intrinsic functions are
3775used.</p>
3776
3777<div class="doc_code">
3778<pre>
3779define i32 @test(i32 %X, ...) {
3780 ; Initialize variable argument processing
3781 %ap = alloca i8*
3782 %ap2 = bitcast i8** %ap to i8*
3783 call void @llvm.va_start(i8* %ap2)
3784
3785 ; Read a single integer argument
3786 %tmp = va_arg i8** %ap, i32
3787
3788 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3789 %aq = alloca i8*
3790 %aq2 = bitcast i8** %aq to i8*
3791 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3792 call void @llvm.va_end(i8* %aq2)
3793
3794 ; Stop processing of arguments.
3795 call void @llvm.va_end(i8* %ap2)
3796 ret i32 %tmp
3797}
3798
3799declare void @llvm.va_start(i8*)
3800declare void @llvm.va_copy(i8*, i8*)
3801declare void @llvm.va_end(i8*)
3802</pre>
3803</div>
3804
3805</div>
3806
3807<!-- _______________________________________________________________________ -->
3808<div class="doc_subsubsection">
3809 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3810</div>
3811
3812
3813<div class="doc_text">
3814<h5>Syntax:</h5>
3815<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3816<h5>Overview:</h5>
3817<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3818<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3819href="#i_va_arg">va_arg</a></tt>.</p>
3820
3821<h5>Arguments:</h5>
3822
3823<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3824
3825<h5>Semantics:</h5>
3826
3827<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3828macro available in C. In a target-dependent way, it initializes the
3829<tt>va_list</tt> element to which the argument points, so that the next call to
3830<tt>va_arg</tt> will produce the first variable argument passed to the function.
3831Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3832last argument of the function as the compiler can figure that out.</p>
3833
3834</div>
3835
3836<!-- _______________________________________________________________________ -->
3837<div class="doc_subsubsection">
3838 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3839</div>
3840
3841<div class="doc_text">
3842<h5>Syntax:</h5>
3843<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3844<h5>Overview:</h5>
3845
3846<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3847which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3848or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3849
3850<h5>Arguments:</h5>
3851
3852<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3853
3854<h5>Semantics:</h5>
3855
3856<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3857macro available in C. In a target-dependent way, it destroys the
3858<tt>va_list</tt> element to which the argument points. Calls to <a
3859href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3860<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3861<tt>llvm.va_end</tt>.</p>
3862
3863</div>
3864
3865<!-- _______________________________________________________________________ -->
3866<div class="doc_subsubsection">
3867 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3868</div>
3869
3870<div class="doc_text">
3871
3872<h5>Syntax:</h5>
3873
3874<pre>
3875 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3876</pre>
3877
3878<h5>Overview:</h5>
3879
3880<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3881from the source argument list to the destination argument list.</p>
3882
3883<h5>Arguments:</h5>
3884
3885<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3886The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3887
3888
3889<h5>Semantics:</h5>
3890
3891<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3892macro available in C. In a target-dependent way, it copies the source
3893<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3894intrinsic is necessary because the <tt><a href="#int_va_start">
3895llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3896example, memory allocation.</p>
3897
3898</div>
3899
3900<!-- ======================================================================= -->
3901<div class="doc_subsection">
3902 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3903</div>
3904
3905<div class="doc_text">
3906
3907<p>
3908LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3909Collection</a> requires the implementation and generation of these intrinsics.
3910These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3911stack</a>, as well as garbage collector implementations that require <a
3912href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3913Front-ends for type-safe garbage collected languages should generate these
3914intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3915href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3916</p>
3917</div>
3918
3919<!-- _______________________________________________________________________ -->
3920<div class="doc_subsubsection">
3921 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3922</div>
3923
3924<div class="doc_text">
3925
3926<h5>Syntax:</h5>
3927
3928<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003929 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003930</pre>
3931
3932<h5>Overview:</h5>
3933
3934<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3935the code generator, and allows some metadata to be associated with it.</p>
3936
3937<h5>Arguments:</h5>
3938
3939<p>The first argument specifies the address of a stack object that contains the
3940root pointer. The second pointer (which must be either a constant or a global
3941value address) contains the meta-data to be associated with the root.</p>
3942
3943<h5>Semantics:</h5>
3944
3945<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3946location. At compile-time, the code generator generates information to allow
3947the runtime to find the pointer at GC safe points.
3948</p>
3949
3950</div>
3951
3952
3953<!-- _______________________________________________________________________ -->
3954<div class="doc_subsubsection">
3955 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3956</div>
3957
3958<div class="doc_text">
3959
3960<h5>Syntax:</h5>
3961
3962<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003963 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964</pre>
3965
3966<h5>Overview:</h5>
3967
3968<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3969locations, allowing garbage collector implementations that require read
3970barriers.</p>
3971
3972<h5>Arguments:</h5>
3973
3974<p>The second argument is the address to read from, which should be an address
3975allocated from the garbage collector. The first object is a pointer to the
3976start of the referenced object, if needed by the language runtime (otherwise
3977null).</p>
3978
3979<h5>Semantics:</h5>
3980
3981<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3982instruction, but may be replaced with substantially more complex code by the
3983garbage collector runtime, as needed.</p>
3984
3985</div>
3986
3987
3988<!-- _______________________________________________________________________ -->
3989<div class="doc_subsubsection">
3990 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3991</div>
3992
3993<div class="doc_text">
3994
3995<h5>Syntax:</h5>
3996
3997<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003998 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003999</pre>
4000
4001<h5>Overview:</h5>
4002
4003<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4004locations, allowing garbage collector implementations that require write
4005barriers (such as generational or reference counting collectors).</p>
4006
4007<h5>Arguments:</h5>
4008
4009<p>The first argument is the reference to store, the second is the start of the
4010object to store it to, and the third is the address of the field of Obj to
4011store to. If the runtime does not require a pointer to the object, Obj may be
4012null.</p>
4013
4014<h5>Semantics:</h5>
4015
4016<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4017instruction, but may be replaced with substantially more complex code by the
4018garbage collector runtime, as needed.</p>
4019
4020</div>
4021
4022
4023
4024<!-- ======================================================================= -->
4025<div class="doc_subsection">
4026 <a name="int_codegen">Code Generator Intrinsics</a>
4027</div>
4028
4029<div class="doc_text">
4030<p>
4031These intrinsics are provided by LLVM to expose special features that may only
4032be implemented with code generator support.
4033</p>
4034
4035</div>
4036
4037<!-- _______________________________________________________________________ -->
4038<div class="doc_subsubsection">
4039 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4040</div>
4041
4042<div class="doc_text">
4043
4044<h5>Syntax:</h5>
4045<pre>
4046 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4047</pre>
4048
4049<h5>Overview:</h5>
4050
4051<p>
4052The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4053target-specific value indicating the return address of the current function
4054or one of its callers.
4055</p>
4056
4057<h5>Arguments:</h5>
4058
4059<p>
4060The argument to this intrinsic indicates which function to return the address
4061for. Zero indicates the calling function, one indicates its caller, etc. The
4062argument is <b>required</b> to be a constant integer value.
4063</p>
4064
4065<h5>Semantics:</h5>
4066
4067<p>
4068The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4069the return address of the specified call frame, or zero if it cannot be
4070identified. The value returned by this intrinsic is likely to be incorrect or 0
4071for arguments other than zero, so it should only be used for debugging purposes.
4072</p>
4073
4074<p>
4075Note that calling this intrinsic does not prevent function inlining or other
4076aggressive transformations, so the value returned may not be that of the obvious
4077source-language caller.
4078</p>
4079</div>
4080
4081
4082<!-- _______________________________________________________________________ -->
4083<div class="doc_subsubsection">
4084 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4085</div>
4086
4087<div class="doc_text">
4088
4089<h5>Syntax:</h5>
4090<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004091 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004092</pre>
4093
4094<h5>Overview:</h5>
4095
4096<p>
4097The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4098target-specific frame pointer value for the specified stack frame.
4099</p>
4100
4101<h5>Arguments:</h5>
4102
4103<p>
4104The argument to this intrinsic indicates which function to return the frame
4105pointer for. Zero indicates the calling function, one indicates its caller,
4106etc. The argument is <b>required</b> to be a constant integer value.
4107</p>
4108
4109<h5>Semantics:</h5>
4110
4111<p>
4112The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4113the frame address of the specified call frame, or zero if it cannot be
4114identified. The value returned by this intrinsic is likely to be incorrect or 0
4115for arguments other than zero, so it should only be used for debugging purposes.
4116</p>
4117
4118<p>
4119Note that calling this intrinsic does not prevent function inlining or other
4120aggressive transformations, so the value returned may not be that of the obvious
4121source-language caller.
4122</p>
4123</div>
4124
4125<!-- _______________________________________________________________________ -->
4126<div class="doc_subsubsection">
4127 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4128</div>
4129
4130<div class="doc_text">
4131
4132<h5>Syntax:</h5>
4133<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004134 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004135</pre>
4136
4137<h5>Overview:</h5>
4138
4139<p>
4140The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4141the function stack, for use with <a href="#int_stackrestore">
4142<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4143features like scoped automatic variable sized arrays in C99.
4144</p>
4145
4146<h5>Semantics:</h5>
4147
4148<p>
4149This intrinsic returns a opaque pointer value that can be passed to <a
4150href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4151<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4152<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4153state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4154practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4155that were allocated after the <tt>llvm.stacksave</tt> was executed.
4156</p>
4157
4158</div>
4159
4160<!-- _______________________________________________________________________ -->
4161<div class="doc_subsubsection">
4162 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4163</div>
4164
4165<div class="doc_text">
4166
4167<h5>Syntax:</h5>
4168<pre>
4169 declare void @llvm.stackrestore(i8 * %ptr)
4170</pre>
4171
4172<h5>Overview:</h5>
4173
4174<p>
4175The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4176the function stack to the state it was in when the corresponding <a
4177href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4178useful for implementing language features like scoped automatic variable sized
4179arrays in C99.
4180</p>
4181
4182<h5>Semantics:</h5>
4183
4184<p>
4185See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4186</p>
4187
4188</div>
4189
4190
4191<!-- _______________________________________________________________________ -->
4192<div class="doc_subsubsection">
4193 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4194</div>
4195
4196<div class="doc_text">
4197
4198<h5>Syntax:</h5>
4199<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004200 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004201</pre>
4202
4203<h5>Overview:</h5>
4204
4205
4206<p>
4207The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4208a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4209no
4210effect on the behavior of the program but can change its performance
4211characteristics.
4212</p>
4213
4214<h5>Arguments:</h5>
4215
4216<p>
4217<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4218determining if the fetch should be for a read (0) or write (1), and
4219<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4220locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4221<tt>locality</tt> arguments must be constant integers.
4222</p>
4223
4224<h5>Semantics:</h5>
4225
4226<p>
4227This intrinsic does not modify the behavior of the program. In particular,
4228prefetches cannot trap and do not produce a value. On targets that support this
4229intrinsic, the prefetch can provide hints to the processor cache for better
4230performance.
4231</p>
4232
4233</div>
4234
4235<!-- _______________________________________________________________________ -->
4236<div class="doc_subsubsection">
4237 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4238</div>
4239
4240<div class="doc_text">
4241
4242<h5>Syntax:</h5>
4243<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004244 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004245</pre>
4246
4247<h5>Overview:</h5>
4248
4249
4250<p>
4251The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4252(PC) in a region of
4253code to simulators and other tools. The method is target specific, but it is
4254expected that the marker will use exported symbols to transmit the PC of the marker.
4255The marker makes no guarantees that it will remain with any specific instruction
4256after optimizations. It is possible that the presence of a marker will inhibit
4257optimizations. The intended use is to be inserted after optimizations to allow
4258correlations of simulation runs.
4259</p>
4260
4261<h5>Arguments:</h5>
4262
4263<p>
4264<tt>id</tt> is a numerical id identifying the marker.
4265</p>
4266
4267<h5>Semantics:</h5>
4268
4269<p>
4270This intrinsic does not modify the behavior of the program. Backends that do not
4271support this intrinisic may ignore it.
4272</p>
4273
4274</div>
4275
4276<!-- _______________________________________________________________________ -->
4277<div class="doc_subsubsection">
4278 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4279</div>
4280
4281<div class="doc_text">
4282
4283<h5>Syntax:</h5>
4284<pre>
4285 declare i64 @llvm.readcyclecounter( )
4286</pre>
4287
4288<h5>Overview:</h5>
4289
4290
4291<p>
4292The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4293counter register (or similar low latency, high accuracy clocks) on those targets
4294that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4295As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4296should only be used for small timings.
4297</p>
4298
4299<h5>Semantics:</h5>
4300
4301<p>
4302When directly supported, reading the cycle counter should not modify any memory.
4303Implementations are allowed to either return a application specific value or a
4304system wide value. On backends without support, this is lowered to a constant 0.
4305</p>
4306
4307</div>
4308
4309<!-- ======================================================================= -->
4310<div class="doc_subsection">
4311 <a name="int_libc">Standard C Library Intrinsics</a>
4312</div>
4313
4314<div class="doc_text">
4315<p>
4316LLVM provides intrinsics for a few important standard C library functions.
4317These intrinsics allow source-language front-ends to pass information about the
4318alignment of the pointer arguments to the code generator, providing opportunity
4319for more efficient code generation.
4320</p>
4321
4322</div>
4323
4324<!-- _______________________________________________________________________ -->
4325<div class="doc_subsubsection">
4326 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4327</div>
4328
4329<div class="doc_text">
4330
4331<h5>Syntax:</h5>
4332<pre>
4333 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4334 i32 &lt;len&gt;, i32 &lt;align&gt;)
4335 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4336 i64 &lt;len&gt;, i32 &lt;align&gt;)
4337</pre>
4338
4339<h5>Overview:</h5>
4340
4341<p>
4342The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4343location to the destination location.
4344</p>
4345
4346<p>
4347Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4348intrinsics do not return a value, and takes an extra alignment argument.
4349</p>
4350
4351<h5>Arguments:</h5>
4352
4353<p>
4354The first argument is a pointer to the destination, the second is a pointer to
4355the source. The third argument is an integer argument
4356specifying the number of bytes to copy, and the fourth argument is the alignment
4357of the source and destination locations.
4358</p>
4359
4360<p>
4361If the call to this intrinisic has an alignment value that is not 0 or 1, then
4362the caller guarantees that both the source and destination pointers are aligned
4363to that boundary.
4364</p>
4365
4366<h5>Semantics:</h5>
4367
4368<p>
4369The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4370location to the destination location, which are not allowed to overlap. It
4371copies "len" bytes of memory over. If the argument is known to be aligned to
4372some boundary, this can be specified as the fourth argument, otherwise it should
4373be set to 0 or 1.
4374</p>
4375</div>
4376
4377
4378<!-- _______________________________________________________________________ -->
4379<div class="doc_subsubsection">
4380 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4381</div>
4382
4383<div class="doc_text">
4384
4385<h5>Syntax:</h5>
4386<pre>
4387 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4388 i32 &lt;len&gt;, i32 &lt;align&gt;)
4389 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4390 i64 &lt;len&gt;, i32 &lt;align&gt;)
4391</pre>
4392
4393<h5>Overview:</h5>
4394
4395<p>
4396The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4397location to the destination location. It is similar to the
4398'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4399</p>
4400
4401<p>
4402Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4403intrinsics do not return a value, and takes an extra alignment argument.
4404</p>
4405
4406<h5>Arguments:</h5>
4407
4408<p>
4409The first argument is a pointer to the destination, the second is a pointer to
4410the source. The third argument is an integer argument
4411specifying the number of bytes to copy, and the fourth argument is the alignment
4412of the source and destination locations.
4413</p>
4414
4415<p>
4416If the call to this intrinisic has an alignment value that is not 0 or 1, then
4417the caller guarantees that the source and destination pointers are aligned to
4418that boundary.
4419</p>
4420
4421<h5>Semantics:</h5>
4422
4423<p>
4424The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4425location to the destination location, which may overlap. It
4426copies "len" bytes of memory over. If the argument is known to be aligned to
4427some boundary, this can be specified as the fourth argument, otherwise it should
4428be set to 0 or 1.
4429</p>
4430</div>
4431
4432
4433<!-- _______________________________________________________________________ -->
4434<div class="doc_subsubsection">
4435 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4436</div>
4437
4438<div class="doc_text">
4439
4440<h5>Syntax:</h5>
4441<pre>
4442 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4443 i32 &lt;len&gt;, i32 &lt;align&gt;)
4444 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4445 i64 &lt;len&gt;, i32 &lt;align&gt;)
4446</pre>
4447
4448<h5>Overview:</h5>
4449
4450<p>
4451The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4452byte value.
4453</p>
4454
4455<p>
4456Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4457does not return a value, and takes an extra alignment argument.
4458</p>
4459
4460<h5>Arguments:</h5>
4461
4462<p>
4463The first argument is a pointer to the destination to fill, the second is the
4464byte value to fill it with, the third argument is an integer
4465argument specifying the number of bytes to fill, and the fourth argument is the
4466known alignment of destination location.
4467</p>
4468
4469<p>
4470If the call to this intrinisic has an alignment value that is not 0 or 1, then
4471the caller guarantees that the destination pointer is aligned to that boundary.
4472</p>
4473
4474<h5>Semantics:</h5>
4475
4476<p>
4477The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4478the
4479destination location. If the argument is known to be aligned to some boundary,
4480this can be specified as the fourth argument, otherwise it should be set to 0 or
44811.
4482</p>
4483</div>
4484
4485
4486<!-- _______________________________________________________________________ -->
4487<div class="doc_subsubsection">
4488 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4489</div>
4490
4491<div class="doc_text">
4492
4493<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004494<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
4495floating point type. Not all targets support all types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004496<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004497 declare float @llvm.sqrt.f32(float %Val)
4498 declare double @llvm.sqrt.f64(double %Val)
4499 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4500 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4501 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004502</pre>
4503
4504<h5>Overview:</h5>
4505
4506<p>
4507The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4508returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4509<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4510negative numbers (which allows for better optimization).
4511</p>
4512
4513<h5>Arguments:</h5>
4514
4515<p>
4516The argument and return value are floating point numbers of the same type.
4517</p>
4518
4519<h5>Semantics:</h5>
4520
4521<p>
4522This function returns the sqrt of the specified operand if it is a nonnegative
4523floating point number.
4524</p>
4525</div>
4526
4527<!-- _______________________________________________________________________ -->
4528<div class="doc_subsubsection">
4529 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4530</div>
4531
4532<div class="doc_text">
4533
4534<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004535<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
4536floating point type. Not all targets support all types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004537<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004538 declare float @llvm.powi.f32(float %Val, i32 %power)
4539 declare double @llvm.powi.f64(double %Val, i32 %power)
4540 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4541 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4542 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004543</pre>
4544
4545<h5>Overview:</h5>
4546
4547<p>
4548The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4549specified (positive or negative) power. The order of evaluation of
4550multiplications is not defined.
4551</p>
4552
4553<h5>Arguments:</h5>
4554
4555<p>
4556The second argument is an integer power, and the first is a value to raise to
4557that power.
4558</p>
4559
4560<h5>Semantics:</h5>
4561
4562<p>
4563This function returns the first value raised to the second power with an
4564unspecified sequence of rounding operations.</p>
4565</div>
4566
4567
4568<!-- ======================================================================= -->
4569<div class="doc_subsection">
4570 <a name="int_manip">Bit Manipulation Intrinsics</a>
4571</div>
4572
4573<div class="doc_text">
4574<p>
4575LLVM provides intrinsics for a few important bit manipulation operations.
4576These allow efficient code generation for some algorithms.
4577</p>
4578
4579</div>
4580
4581<!-- _______________________________________________________________________ -->
4582<div class="doc_subsubsection">
4583 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4584</div>
4585
4586<div class="doc_text">
4587
4588<h5>Syntax:</h5>
4589<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004590type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004591<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004592 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4593 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4594 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004595</pre>
4596
4597<h5>Overview:</h5>
4598
4599<p>
4600The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4601values with an even number of bytes (positive multiple of 16 bits). These are
4602useful for performing operations on data that is not in the target's native
4603byte order.
4604</p>
4605
4606<h5>Semantics:</h5>
4607
4608<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004609The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004610and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4611intrinsic returns an i32 value that has the four bytes of the input i32
4612swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004613i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4614<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004615additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4616</p>
4617
4618</div>
4619
4620<!-- _______________________________________________________________________ -->
4621<div class="doc_subsubsection">
4622 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4623</div>
4624
4625<div class="doc_text">
4626
4627<h5>Syntax:</h5>
4628<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4629width. Not all targets support all bit widths however.
4630<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004631 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4632 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004634 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4635 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004636</pre>
4637
4638<h5>Overview:</h5>
4639
4640<p>
4641The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4642value.
4643</p>
4644
4645<h5>Arguments:</h5>
4646
4647<p>
4648The only argument is the value to be counted. The argument may be of any
4649integer type. The return type must match the argument type.
4650</p>
4651
4652<h5>Semantics:</h5>
4653
4654<p>
4655The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4656</p>
4657</div>
4658
4659<!-- _______________________________________________________________________ -->
4660<div class="doc_subsubsection">
4661 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4662</div>
4663
4664<div class="doc_text">
4665
4666<h5>Syntax:</h5>
4667<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4668integer bit width. Not all targets support all bit widths however.
4669<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004670 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4671 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004672 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004673 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4674 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004675</pre>
4676
4677<h5>Overview:</h5>
4678
4679<p>
4680The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4681leading zeros in a variable.
4682</p>
4683
4684<h5>Arguments:</h5>
4685
4686<p>
4687The only argument is the value to be counted. The argument may be of any
4688integer type. The return type must match the argument type.
4689</p>
4690
4691<h5>Semantics:</h5>
4692
4693<p>
4694The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4695in a variable. If the src == 0 then the result is the size in bits of the type
4696of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4697</p>
4698</div>
4699
4700
4701
4702<!-- _______________________________________________________________________ -->
4703<div class="doc_subsubsection">
4704 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4705</div>
4706
4707<div class="doc_text">
4708
4709<h5>Syntax:</h5>
4710<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4711integer bit width. Not all targets support all bit widths however.
4712<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004713 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4714 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004715 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004716 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4717 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004718</pre>
4719
4720<h5>Overview:</h5>
4721
4722<p>
4723The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4724trailing zeros.
4725</p>
4726
4727<h5>Arguments:</h5>
4728
4729<p>
4730The only argument is the value to be counted. The argument may be of any
4731integer type. The return type must match the argument type.
4732</p>
4733
4734<h5>Semantics:</h5>
4735
4736<p>
4737The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4738in a variable. If the src == 0 then the result is the size in bits of the type
4739of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4740</p>
4741</div>
4742
4743<!-- _______________________________________________________________________ -->
4744<div class="doc_subsubsection">
4745 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4746</div>
4747
4748<div class="doc_text">
4749
4750<h5>Syntax:</h5>
4751<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4752on any integer bit width.
4753<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004754 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4755 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004756</pre>
4757
4758<h5>Overview:</h5>
4759<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4760range of bits from an integer value and returns them in the same bit width as
4761the original value.</p>
4762
4763<h5>Arguments:</h5>
4764<p>The first argument, <tt>%val</tt> and the result may be integer types of
4765any bit width but they must have the same bit width. The second and third
4766arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4767
4768<h5>Semantics:</h5>
4769<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4770of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4771<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4772operates in forward mode.</p>
4773<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4774right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4775only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4776<ol>
4777 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4778 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4779 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4780 to determine the number of bits to retain.</li>
4781 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4782 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4783</ol>
4784<p>In reverse mode, a similar computation is made except that the bits are
4785returned in the reverse order. So, for example, if <tt>X</tt> has the value
4786<tt>i16 0x0ACF (101011001111)</tt> and we apply
4787<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4788<tt>i16 0x0026 (000000100110)</tt>.</p>
4789</div>
4790
4791<div class="doc_subsubsection">
4792 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4793</div>
4794
4795<div class="doc_text">
4796
4797<h5>Syntax:</h5>
4798<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4799on any integer bit width.
4800<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004801 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4802 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004803</pre>
4804
4805<h5>Overview:</h5>
4806<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4807of bits in an integer value with another integer value. It returns the integer
4808with the replaced bits.</p>
4809
4810<h5>Arguments:</h5>
4811<p>The first argument, <tt>%val</tt> and the result may be integer types of
4812any bit width but they must have the same bit width. <tt>%val</tt> is the value
4813whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4814integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4815type since they specify only a bit index.</p>
4816
4817<h5>Semantics:</h5>
4818<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4819of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4820<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4821operates in forward mode.</p>
4822<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4823truncating it down to the size of the replacement area or zero extending it
4824up to that size.</p>
4825<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4826are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4827in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4828to the <tt>%hi</tt>th bit.
4829<p>In reverse mode, a similar computation is made except that the bits are
4830reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4831<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4832<h5>Examples:</h5>
4833<pre>
4834 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4835 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4836 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4837 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4838 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4839</pre>
4840</div>
4841
4842<!-- ======================================================================= -->
4843<div class="doc_subsection">
4844 <a name="int_debugger">Debugger Intrinsics</a>
4845</div>
4846
4847<div class="doc_text">
4848<p>
4849The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4850are described in the <a
4851href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4852Debugging</a> document.
4853</p>
4854</div>
4855
4856
4857<!-- ======================================================================= -->
4858<div class="doc_subsection">
4859 <a name="int_eh">Exception Handling Intrinsics</a>
4860</div>
4861
4862<div class="doc_text">
4863<p> The LLVM exception handling intrinsics (which all start with
4864<tt>llvm.eh.</tt> prefix), are described in the <a
4865href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4866Handling</a> document. </p>
4867</div>
4868
4869<!-- ======================================================================= -->
4870<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00004871 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00004872</div>
4873
4874<div class="doc_text">
4875<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004876 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00004877 the <tt>nest</tt> attribute, from a function. The result is a callable
4878 function pointer lacking the nest parameter - the caller does not need
4879 to provide a value for it. Instead, the value to use is stored in
4880 advance in a "trampoline", a block of memory usually allocated
4881 on the stack, which also contains code to splice the nest value into the
4882 argument list. This is used to implement the GCC nested function address
4883 extension.
4884</p>
4885<p>
4886 For example, if the function is
4887 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00004888 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00004889<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004890 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
4891 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
4892 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
4893 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00004894</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00004895 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
4896 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00004897</div>
4898
4899<!-- _______________________________________________________________________ -->
4900<div class="doc_subsubsection">
4901 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
4902</div>
4903<div class="doc_text">
4904<h5>Syntax:</h5>
4905<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004906declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00004907</pre>
4908<h5>Overview:</h5>
4909<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004910 This fills the memory pointed to by <tt>tramp</tt> with code
4911 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00004912</p>
4913<h5>Arguments:</h5>
4914<p>
4915 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
4916 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
4917 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00004918 intrinsic. Note that the size and the alignment are target-specific - LLVM
4919 currently provides no portable way of determining them, so a front-end that
4920 generates this intrinsic needs to have some target-specific knowledge.
4921 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00004922</p>
4923<h5>Semantics:</h5>
4924<p>
4925 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00004926 dependent code, turning it into a function. A pointer to this function is
4927 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00004928 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00004929 before being called. The new function's signature is the same as that of
4930 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
4931 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
4932 of pointer type. Calling the new function is equivalent to calling
4933 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
4934 missing <tt>nest</tt> argument. If, after calling
4935 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
4936 modified, then the effect of any later call to the returned function pointer is
4937 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00004938</p>
4939</div>
4940
4941<!-- ======================================================================= -->
4942<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004943 <a name="int_general">General Intrinsics</a>
4944</div>
4945
4946<div class="doc_text">
4947<p> This class of intrinsics is designed to be generic and has
4948no specific purpose. </p>
4949</div>
4950
4951<!-- _______________________________________________________________________ -->
4952<div class="doc_subsubsection">
4953 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
4954</div>
4955
4956<div class="doc_text">
4957
4958<h5>Syntax:</h5>
4959<pre>
4960 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4961</pre>
4962
4963<h5>Overview:</h5>
4964
4965<p>
4966The '<tt>llvm.var.annotation</tt>' intrinsic
4967</p>
4968
4969<h5>Arguments:</h5>
4970
4971<p>
4972The first argument is a pointer to a value, the second is a pointer to a
4973global string, the third is a pointer to a global string which is the source
4974file name, and the last argument is the line number.
4975</p>
4976
4977<h5>Semantics:</h5>
4978
4979<p>
4980This intrinsic allows annotation of local variables with arbitrary strings.
4981This can be useful for special purpose optimizations that want to look for these
4982 annotations. These have no other defined use, they are ignored by code
4983 generation and optimization.
4984</div>
4985
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004986<!-- _______________________________________________________________________ -->
4987<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00004988 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004989</div>
4990
4991<div class="doc_text">
4992
4993<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00004994<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
4995any integer bit width.
4996</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00004997<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00004998 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4999 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5000 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5001 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5002 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005003</pre>
5004
5005<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005006
5007<p>
5008The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005009</p>
5010
5011<h5>Arguments:</h5>
5012
5013<p>
5014The first argument is an integer value (result of some expression),
5015the second is a pointer to a global string, the third is a pointer to a global
5016string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00005017It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005018</p>
5019
5020<h5>Semantics:</h5>
5021
5022<p>
5023This intrinsic allows annotations to be put on arbitrary expressions
5024with arbitrary strings. This can be useful for special purpose optimizations
5025that want to look for these annotations. These have no other defined use, they
5026are ignored by code generation and optimization.
5027</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005028
5029<!-- *********************************************************************** -->
5030<hr>
5031<address>
5032 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5033 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5034 <a href="http://validator.w3.org/check/referer"><img
5035 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5036
5037 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5038 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5039 Last modified: $Date$
5040</address>
5041</body>
5042</html>