blob: 3bce3f3ed3f3049a067e3e91183669fce37a6c26 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/Support/Debug.h"
Edwin Török675d5622009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000024#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include <limits>
26#include <cstring>
27#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
37}
38
Eric Christopher017fc252009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000049 unsigned r;
50
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000051 if (radix == 16) {
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000063 }
64
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +000065 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
Erick Tryzelaar15a448f2009-08-21 03:15:28 +000070}
71
72
Chris Lattneree5417c2009-01-21 18:09:24 +000073void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000074 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
Eric Christopher017fc252009-08-21 04:06:45 +000076 if (isSigned && int64_t(val) < 0)
Chris Lattner84886852008-08-20 17:02:31 +000077 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079}
80
Chris Lattnera1f63bb2008-10-11 22:07:19 +000081void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
Chris Lattneree5417c2009-01-21 18:09:24 +000087APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000088 : BitWidth(numBits), VAL(0) {
Erick Tryzelaara3c44c92009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
92 VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000097 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
100 }
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
103}
104
Eric Christopher017fc252009-08-21 04:06:45 +0000105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000106 : BitWidth(numbits), VAL(0) {
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000107 assert(BitWidth && "Bitwidth too small");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000108 fromString(numbits, Str, radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109}
110
Chris Lattner84886852008-08-20 17:02:31 +0000111APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +0000117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 return *this;
121 }
122
Chris Lattner84886852008-08-20 17:02:31 +0000123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher017fc252009-08-21 04:06:45 +0000129 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
133 VAL = RHS.VAL;
134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
141}
142
143APInt& APInt::operator=(uint64_t RHS) {
Eric Christopher017fc252009-08-21 04:06:45 +0000144 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 VAL = RHS;
146 else {
147 pVal[0] = RHS;
148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
149 }
150 return clearUnusedBits();
151}
152
Ted Kremenek109de0d2008-01-19 04:23:33 +0000153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000155 ID.AddInteger(BitWidth);
Eric Christopher017fc252009-08-21 04:06:45 +0000156
Ted Kremenek109de0d2008-01-19 04:23:33 +0000157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
Chris Lattneree5417c2009-01-21 18:09:24 +0000162 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
Eric Christopher017fc252009-08-21 04:06:45 +0000167/// add_1 - This function adds a single "digit" integer, y, to the multiple
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
170/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173 dest[i] = y + x[i];
174 if (dest[i] < y)
175 y = 1; // Carry one to next digit.
176 else {
177 y = 0; // No need to carry so exit early
178 break;
179 }
180 }
181 return y;
182}
183
184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
Eric Christopher017fc252009-08-21 04:06:45 +0000186 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187 ++VAL;
188 else
189 add_1(pVal, pVal, getNumWords(), 1);
190 return clearUnusedBits();
191}
192
Eric Christopher017fc252009-08-21 04:06:45 +0000193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
198/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 uint64_t X = x[i];
202 x[i] -= y;
Eric Christopher017fc252009-08-21 04:06:45 +0000203 if (y > X)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204 y = 1; // We have to "borrow 1" from next "digit"
205 else {
206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
208 }
209 }
210 return bool(y);
211}
212
213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
Eric Christopher017fc252009-08-21 04:06:45 +0000215 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 --VAL;
217 else
218 sub_1(pVal, getNumWords(), 1);
219 return clearUnusedBits();
220}
221
222/// add - This function adds the integer array x to the integer array Y and
Eric Christopher017fc252009-08-21 04:06:45 +0000223/// places the result in dest.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
Eric Christopher017fc252009-08-21 04:06:45 +0000226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000227 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231 dest[i] = x[i] + y[i] + carry;
232 carry = dest[i] < limit || (carry && dest[i] == limit);
233 }
234 return carry;
235}
236
237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
Eric Christopher017fc252009-08-21 04:06:45 +0000239/// @brief Addition assignment operator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240APInt& APInt::operator+=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher017fc252009-08-21 04:06:45 +0000242 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 VAL += RHS.VAL;
244 else {
245 add(pVal, pVal, RHS.pVal, getNumWords());
246 }
247 return clearUnusedBits();
248}
249
Eric Christopher017fc252009-08-21 04:06:45 +0000250/// Subtracts the integer array y from the integer array x
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher017fc252009-08-21 04:06:45 +0000253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000254 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000256 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
260 }
261 return borrow;
262}
263
264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
Eric Christopher017fc252009-08-21 04:06:45 +0000266/// @brief Subtraction assignment operator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267APInt& APInt::operator-=(const APInt& RHS) {
268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher017fc252009-08-21 04:06:45 +0000269 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
273 return clearUnusedBits();
274}
275
Dan Gohmandf1a7ff2010-02-10 16:03:48 +0000276/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopher017fc252009-08-21 04:06:45 +0000277/// into dest.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283 uint64_t carry = 0;
284
285 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000286 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher017fc252009-08-21 04:06:45 +0000299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher017fc252009-08-21 04:06:45 +0000305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
308 return carry;
309}
310
Eric Christopher017fc252009-08-21 04:06:45 +0000311/// Multiplies integer array x by integer array y and stores the result into
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000317 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000320 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher017fc252009-08-21 04:06:45 +0000337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
344APInt& APInt::operator*=(const APInt& RHS) {
345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346 if (isSingleWord()) {
347 VAL *= RHS.VAL;
348 clearUnusedBits();
349 return *this;
350 }
351
352 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher017fc252009-08-21 04:06:45 +0000355 if (!lhsWords)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000369 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
382 return *this;
383}
384
385APInt& APInt::operator&=(const APInt& RHS) {
386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387 if (isSingleWord()) {
388 VAL &= RHS.VAL;
389 return *this;
390 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 pVal[i] &= RHS.pVal[i];
394 return *this;
395}
396
397APInt& APInt::operator|=(const APInt& RHS) {
398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399 if (isSingleWord()) {
400 VAL |= RHS.VAL;
401 return *this;
402 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 pVal[i] |= RHS.pVal[i];
406 return *this;
407}
408
409APInt& APInt::operator^=(const APInt& RHS) {
410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411 if (isSingleWord()) {
412 VAL ^= RHS.VAL;
413 this->clearUnusedBits();
414 return *this;
Eric Christopher017fc252009-08-21 04:06:45 +0000415 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 pVal[i] ^= RHS.pVal[i];
419 return clearUnusedBits();
420}
421
Chris Lattner84886852008-08-20 17:02:31 +0000422APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000423 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
428}
429
Chris Lattner84886852008-08-20 17:02:31 +0000430APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000431 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000433 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
436}
437
Chris Lattner84886852008-08-20 17:02:31 +0000438APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000439 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000441 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
446}
447
448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
451
Chris Lattneree5417c2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopher017fc252009-08-21 04:06:45 +0000453 if (pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 return false;
455 return true;
456}
457
458APInt APInt::operator*(const APInt& RHS) const {
459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460 if (isSingleWord())
461 return APInt(BitWidth, VAL * RHS.VAL);
462 APInt Result(*this);
463 Result *= RHS;
464 return Result.clearUnusedBits();
465}
466
467APInt APInt::operator+(const APInt& RHS) const {
468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469 if (isSingleWord())
470 return APInt(BitWidth, VAL + RHS.VAL);
471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473 return Result.clearUnusedBits();
474}
475
476APInt APInt::operator-(const APInt& RHS) const {
477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478 if (isSingleWord())
479 return APInt(BitWidth, VAL - RHS.VAL);
480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482 return Result.clearUnusedBits();
483}
484
Chris Lattneree5417c2009-01-21 18:09:24 +0000485bool APInt::operator[](unsigned bitPosition) const {
Eric Christopher017fc252009-08-21 04:06:45 +0000486 return (maskBit(bitPosition) &
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
488}
489
Chris Lattner84886852008-08-20 17:02:31 +0000490bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000494
495 // If the number of bits isn't the same, they aren't equal
Eric Christopher017fc252009-08-21 04:06:45 +0000496 if (n1 != n2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497 return false;
498
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
502
503 // Otherwise, compare everything
504 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopher017fc252009-08-21 04:06:45 +0000505 if (pVal[i] != RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 return false;
507 return true;
508}
509
Chris Lattner84886852008-08-20 17:02:31 +0000510bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000511 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
516}
517
518bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
522
523 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000526
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
530
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
534
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
538
539 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000540 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000541 for (int i = topWord; i >= 0; --i) {
Eric Christopher017fc252009-08-21 04:06:45 +0000542 if (pVal[i] > RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 return false;
Eric Christopher017fc252009-08-21 04:06:45 +0000544 if (pVal[i] < RHS.pVal[i])
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545 return true;
546 }
547 return false;
548}
549
550bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
556 }
557
558 APInt lhs(*this);
559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
564 lhs.flip();
565 lhs++;
566 }
567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
569 rhs.flip();
570 rhs++;
571 }
572
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
578 else
579 return true;
580 else if (rhsNeg)
581 return false;
Eric Christopher017fc252009-08-21 04:06:45 +0000582 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 return lhs.ult(rhs);
584}
585
Chris Lattneree5417c2009-01-21 18:09:24 +0000586APInt& APInt::set(unsigned bitPosition) {
Eric Christopher017fc252009-08-21 04:06:45 +0000587 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000588 VAL |= maskBit(bitPosition);
Eric Christopher017fc252009-08-21 04:06:45 +0000589 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
591 return *this;
592}
593
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000596APInt& APInt::clear(unsigned bitPosition) {
Eric Christopher017fc252009-08-21 04:06:45 +0000597 if (isSingleWord())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000598 VAL &= ~maskBit(bitPosition);
Eric Christopher017fc252009-08-21 04:06:45 +0000599 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
601 return *this;
602}
603
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000604/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000605
Eric Christopher017fc252009-08-21 04:06:45 +0000606/// Toggle a given bit to its opposite value whose position is given
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000609APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
614}
615
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000620
621 size_t slen = str.size();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000623 // Each computation below needs to know if it's negative.
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000624 StringRef::iterator p = str.begin();
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000625 unsigned isNegative = *p == '-';
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000626 if (*p == '-' || *p == '+') {
627 p++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 slen--;
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000629 assert(slen && "String is only a sign, needs a value.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630 }
Eric Christopher9a7fc4f2009-08-21 04:10:31 +0000631
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
640
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
644
645 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaar15a448f2009-08-21 03:15:28 +0000646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650
651 // Convert to the actual binary value.
Erick Tryzelaara3c44c92009-08-21 03:15:14 +0000652 APInt tmp(sufficient, StringRef(p, slen), radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653
Erick Tryzelaar15a448f2009-08-21 03:15:28 +0000654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000662}
663
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671 { \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
678 }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682 { \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
690 }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks. This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
700
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704 /*------------------------------------------------- handle most of the key */
705 while (length > 3)
706 {
707 a += k[0];
708 b += k[1];
709 c += k[2];
710 mix(a,b,c);
711 length -= 3;
712 k += 3;
713 }
714
715 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stump7134bb52009-05-13 23:23:20 +0000716 switch (length) { /* all the case statements fall through */
717 case 3 : c+=k[2];
718 case 2 : b+=k[1];
719 case 1 : a+=k[0];
720 final(a,b,c);
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000721 case 0: /* case 0: nothing left to add */
722 break;
723 }
724 /*------------------------------------------------------ report the result */
725 return c;
726}
727
728// hashword8() was adapted from http://www.burtleburtle.net, by Bob
729// Jenkins. This computes a 32-bit hash from one 64-bit word. When
730// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731// function into about 35 instructions when inlined.
732static inline uint32_t hashword8(const uint64_t k64)
733{
734 uint32_t a,b,c;
735 a = b = c = 0xdeadbeef + 4;
736 b += k64 >> 32;
737 a += k64 & 0xffffffff;
738 final(a,b,c);
739 return c;
740}
741#undef final
742#undef mix
743#undef rot
744
745uint64_t APInt::getHashValue() const {
746 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000748 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000750 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 return hash;
752}
753
754/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000755APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756 return APIntOps::lshr(*this, BitWidth - numBits);
757}
758
759/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000760APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopher017fc252009-08-21 04:06:45 +0000761 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 BitWidth - numBits);
763}
764
765bool APInt::isPowerOf2() const {
766 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
767}
768
Chris Lattneree5417c2009-01-21 18:09:24 +0000769unsigned APInt::countLeadingZerosSlowCase() const {
John McCall68bf2242010-02-03 03:42:44 +0000770 // Treat the most significand word differently because it might have
771 // meaningless bits set beyond the precision.
772 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
773 integerPart MSWMask;
774 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
775 else {
776 MSWMask = ~integerPart(0);
777 BitsInMSW = APINT_BITS_PER_WORD;
778 }
779
780 unsigned i = getNumWords();
781 integerPart MSW = pVal[i-1] & MSWMask;
782 if (MSW)
783 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
784
785 unsigned Count = BitsInMSW;
786 for (--i; i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000787 if (pVal[i-1] == 0)
788 Count += APINT_BITS_PER_WORD;
789 else {
790 Count += CountLeadingZeros_64(pVal[i-1]);
791 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792 }
793 }
John McCall68bf2242010-02-03 03:42:44 +0000794 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000795}
796
Chris Lattneree5417c2009-01-21 18:09:24 +0000797static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
798 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 if (skip)
800 V <<= skip;
801 while (V && (V & (1ULL << 63))) {
802 Count++;
803 V <<= 1;
804 }
805 return Count;
806}
807
Chris Lattneree5417c2009-01-21 18:09:24 +0000808unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 if (isSingleWord())
810 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
811
Chris Lattneree5417c2009-01-21 18:09:24 +0000812 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000813 unsigned shift;
814 if (!highWordBits) {
815 highWordBits = APINT_BITS_PER_WORD;
816 shift = 0;
817 } else {
818 shift = APINT_BITS_PER_WORD - highWordBits;
819 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000820 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000821 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822 if (Count == highWordBits) {
823 for (i--; i >= 0; --i) {
824 if (pVal[i] == -1ULL)
825 Count += APINT_BITS_PER_WORD;
826 else {
827 Count += countLeadingOnes_64(pVal[i], 0);
828 break;
829 }
830 }
831 }
832 return Count;
833}
834
Chris Lattneree5417c2009-01-21 18:09:24 +0000835unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000837 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
838 unsigned Count = 0;
839 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 for (; i < getNumWords() && pVal[i] == 0; ++i)
841 Count += APINT_BITS_PER_WORD;
842 if (i < getNumWords())
843 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000844 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000845}
846
Chris Lattneree5417c2009-01-21 18:09:24 +0000847unsigned APInt::countTrailingOnesSlowCase() const {
848 unsigned Count = 0;
849 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000850 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000851 Count += APINT_BITS_PER_WORD;
852 if (i < getNumWords())
853 Count += CountTrailingOnes_64(pVal[i]);
854 return std::min(Count, BitWidth);
855}
856
Chris Lattneree5417c2009-01-21 18:09:24 +0000857unsigned APInt::countPopulationSlowCase() const {
858 unsigned Count = 0;
859 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 Count += CountPopulation_64(pVal[i]);
861 return Count;
862}
863
864APInt APInt::byteSwap() const {
865 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
866 if (BitWidth == 16)
867 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
868 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000869 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000871 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000872 Tmp1 = ByteSwap_32(Tmp1);
873 uint16_t Tmp2 = uint16_t(VAL);
874 Tmp2 = ByteSwap_16(Tmp2);
875 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
876 } else if (BitWidth == 64)
877 return APInt(BitWidth, ByteSwap_64(VAL));
878 else {
879 APInt Result(BitWidth, 0);
880 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000881 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882 char Tmp = pByte[i];
883 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
884 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
885 }
886 return Result;
887 }
888}
889
Eric Christopher017fc252009-08-21 04:06:45 +0000890APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000891 const APInt& API2) {
892 APInt A = API1, B = API2;
893 while (!!B) {
894 APInt T = B;
895 B = APIntOps::urem(A, B);
896 A = T;
897 }
898 return A;
899}
900
Chris Lattneree5417c2009-01-21 18:09:24 +0000901APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000902 union {
903 double D;
904 uint64_t I;
905 } T;
906 T.D = Double;
907
908 // Get the sign bit from the highest order bit
909 bool isNeg = T.I >> 63;
910
911 // Get the 11-bit exponent and adjust for the 1023 bit bias
912 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
913
914 // If the exponent is negative, the value is < 0 so just return 0.
915 if (exp < 0)
916 return APInt(width, 0u);
917
918 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
919 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
920
921 // If the exponent doesn't shift all bits out of the mantissa
922 if (exp < 52)
Eric Christopher017fc252009-08-21 04:06:45 +0000923 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000924 APInt(width, mantissa >> (52 - exp));
925
926 // If the client didn't provide enough bits for us to shift the mantissa into
927 // then the result is undefined, just return 0
928 if (width <= exp - 52)
929 return APInt(width, 0);
930
931 // Otherwise, we have to shift the mantissa bits up to the right location
932 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000933 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 return isNeg ? -Tmp : Tmp;
935}
936
Dale Johannesene326f252009-08-12 18:04:11 +0000937/// RoundToDouble - This function converts this APInt to a double.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938/// The layout for double is as following (IEEE Standard 754):
939/// --------------------------------------
940/// | Sign Exponent Fraction Bias |
941/// |-------------------------------------- |
942/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher017fc252009-08-21 04:06:45 +0000943/// --------------------------------------
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944double APInt::roundToDouble(bool isSigned) const {
945
946 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesene326f252009-08-12 18:04:11 +0000947 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
949 if (isSigned) {
Dale Johannesen25210cd2009-08-12 17:42:34 +0000950 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951 return double(sext);
952 } else
Dale Johannesen25210cd2009-08-12 17:42:34 +0000953 return double(getWord(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 }
955
956 // Determine if the value is negative.
957 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
958
959 // Construct the absolute value if we're negative.
960 APInt Tmp(isNeg ? -(*this) : (*this));
961
962 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000963 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964
965 // The exponent (without bias normalization) is just the number of bits
966 // we are using. Note that the sign bit is gone since we constructed the
967 // absolute value.
968 uint64_t exp = n;
969
970 // Return infinity for exponent overflow
971 if (exp > 1023) {
972 if (!isSigned || !isNeg)
973 return std::numeric_limits<double>::infinity();
Eric Christopher017fc252009-08-21 04:06:45 +0000974 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975 return -std::numeric_limits<double>::infinity();
976 }
977 exp += 1023; // Increment for 1023 bias
978
979 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
980 // extract the high 52 bits from the correct words in pVal.
981 uint64_t mantissa;
982 unsigned hiWord = whichWord(n-1);
983 if (hiWord == 0) {
984 mantissa = Tmp.pVal[0];
985 if (n > 52)
986 mantissa >>= n - 52; // shift down, we want the top 52 bits.
987 } else {
988 assert(hiWord > 0 && "huh?");
989 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
990 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
991 mantissa = hibits | lobits;
992 }
993
994 // The leading bit of mantissa is implicit, so get rid of it.
995 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
996 union {
997 double D;
998 uint64_t I;
999 } T;
1000 T.I = sign | (exp << 52) | mantissa;
1001 return T.D;
1002}
1003
1004// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001005APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +00001007 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +00001008 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001010 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 if (wordsBefore != wordsAfter) {
1012 if (wordsAfter == 1) {
1013 uint64_t *tmp = pVal;
1014 VAL = pVal[0];
1015 delete [] tmp;
1016 } else {
1017 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +00001018 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 newVal[i] = pVal[i];
1020 delete [] pVal;
1021 pVal = newVal;
1022 }
1023 }
1024 return clearUnusedBits();
1025}
1026
1027// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001028APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 // If the sign bit isn't set, this is the same as zext.
1031 if (!isNegative()) {
1032 zext(width);
1033 return *this;
1034 }
1035
1036 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +00001037 unsigned wordsBefore = getNumWords();
1038 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001039 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001040 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041
1042 // Mask the high order word appropriately
1043 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001044 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 // The extension is contained to the wordsBefore-1th word.
1046 uint64_t mask = ~0ULL;
1047 if (newWordBits)
1048 mask >>= APINT_BITS_PER_WORD - newWordBits;
1049 mask <<= wordBits;
1050 if (wordsBefore == 1)
1051 VAL |= mask;
1052 else
1053 pVal[wordsBefore-1] |= mask;
1054 return clearUnusedBits();
1055 }
1056
1057 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1058 uint64_t *newVal = getMemory(wordsAfter);
1059 if (wordsBefore == 1)
1060 newVal[0] = VAL | mask;
1061 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001062 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001063 newVal[i] = pVal[i];
1064 newVal[wordsBefore-1] |= mask;
1065 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001066 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 newVal[i] = -1ULL;
1068 if (wordsBefore != 1)
1069 delete [] pVal;
1070 pVal = newVal;
1071 return clearUnusedBits();
1072}
1073
1074// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001075APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001077 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001078 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001079 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080 if (wordsBefore != wordsAfter) {
1081 uint64_t *newVal = getClearedMemory(wordsAfter);
1082 if (wordsBefore == 1)
1083 newVal[0] = VAL;
Eric Christopher017fc252009-08-21 04:06:45 +00001084 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001085 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001086 newVal[i] = pVal[i];
1087 if (wordsBefore != 1)
1088 delete [] pVal;
1089 pVal = newVal;
1090 }
1091 return *this;
1092}
1093
Chris Lattneree5417c2009-01-21 18:09:24 +00001094APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001095 if (BitWidth < width)
1096 return zext(width);
1097 if (BitWidth > width)
1098 return trunc(width);
1099 return *this;
1100}
1101
Chris Lattneree5417c2009-01-21 18:09:24 +00001102APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 if (BitWidth < width)
1104 return sext(width);
1105 if (BitWidth > width)
1106 return trunc(width);
1107 return *this;
1108}
1109
1110/// Arithmetic right-shift this APInt by shiftAmt.
1111/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001112APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001113 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001114}
1115
1116/// Arithmetic right-shift this APInt by shiftAmt.
1117/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001118APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1120 // Handle a degenerate case
1121 if (shiftAmt == 0)
1122 return *this;
1123
1124 // Handle single word shifts with built-in ashr
1125 if (isSingleWord()) {
1126 if (shiftAmt == BitWidth)
1127 return APInt(BitWidth, 0); // undefined
1128 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001129 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopher017fc252009-08-21 04:06:45 +00001130 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001131 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1132 }
1133 }
1134
1135 // If all the bits were shifted out, the result is, technically, undefined.
1136 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1137 // issues in the algorithm below.
1138 if (shiftAmt == BitWidth) {
1139 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001140 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001141 else
1142 return APInt(BitWidth, 0);
1143 }
1144
1145 // Create some space for the result.
1146 uint64_t * val = new uint64_t[getNumWords()];
1147
1148 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001149 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1150 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1151 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1152 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001153 if (bitsInWord == 0)
1154 bitsInWord = APINT_BITS_PER_WORD;
1155
1156 // If we are shifting whole words, just move whole words
1157 if (wordShift == 0) {
1158 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001159 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 val[i] = pVal[i+offset]; // move whole word
1161
1162 // Adjust the top significant word for sign bit fill, if negative
1163 if (isNegative())
1164 if (bitsInWord < APINT_BITS_PER_WORD)
1165 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1166 } else {
Eric Christopher017fc252009-08-21 04:06:45 +00001167 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001168 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001169 // This combines the shifted corresponding word with the low bits from
1170 // the next word (shifted into this word's high bits).
Eric Christopher017fc252009-08-21 04:06:45 +00001171 val[i] = (pVal[i+offset] >> wordShift) |
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001172 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1173 }
1174
1175 // Shift the break word. In this case there are no bits from the next word
1176 // to include in this word.
1177 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1178
1179 // Deal with sign extenstion in the break word, and possibly the word before
1180 // it.
1181 if (isNegative()) {
1182 if (wordShift > bitsInWord) {
1183 if (breakWord > 0)
Eric Christopher017fc252009-08-21 04:06:45 +00001184 val[breakWord-1] |=
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1186 val[breakWord] |= ~0ULL;
Eric Christopher017fc252009-08-21 04:06:45 +00001187 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001188 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1189 }
1190 }
1191
1192 // Remaining words are 0 or -1, just assign them.
1193 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001194 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 val[i] = fillValue;
1196 return APInt(val, BitWidth).clearUnusedBits();
1197}
1198
1199/// Logical right-shift this APInt by shiftAmt.
1200/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001201APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001202 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001203}
1204
1205/// Logical right-shift this APInt by shiftAmt.
1206/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001207APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 if (isSingleWord()) {
1209 if (shiftAmt == BitWidth)
1210 return APInt(BitWidth, 0);
Eric Christopher017fc252009-08-21 04:06:45 +00001211 else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001212 return APInt(BitWidth, this->VAL >> shiftAmt);
1213 }
1214
1215 // If all the bits were shifted out, the result is 0. This avoids issues
1216 // with shifting by the size of the integer type, which produces undefined
1217 // results. We define these "undefined results" to always be 0.
1218 if (shiftAmt == BitWidth)
1219 return APInt(BitWidth, 0);
1220
1221 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher017fc252009-08-21 04:06:45 +00001222 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223 // undefined results in the code below. This is also an optimization.
1224 if (shiftAmt == 0)
1225 return *this;
1226
1227 // Create some space for the result.
1228 uint64_t * val = new uint64_t[getNumWords()];
1229
1230 // If we are shifting less than a word, compute the shift with a simple carry
1231 if (shiftAmt < APINT_BITS_PER_WORD) {
1232 uint64_t carry = 0;
1233 for (int i = getNumWords()-1; i >= 0; --i) {
1234 val[i] = (pVal[i] >> shiftAmt) | carry;
1235 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1236 }
1237 return APInt(val, BitWidth).clearUnusedBits();
1238 }
1239
1240 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001241 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1242 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243
1244 // If we are shifting whole words, just move whole words
1245 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001246 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001248 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 val[i] = 0;
1250 return APInt(val,BitWidth).clearUnusedBits();
1251 }
1252
Eric Christopher017fc252009-08-21 04:06:45 +00001253 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001254 unsigned breakWord = getNumWords() - offset -1;
1255 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001256 val[i] = (pVal[i+offset] >> wordShift) |
1257 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1258 // Shift the break word.
1259 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1260
1261 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001262 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001263 val[i] = 0;
1264 return APInt(val, BitWidth).clearUnusedBits();
1265}
1266
1267/// Left-shift this APInt by shiftAmt.
1268/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001269APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001270 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001271 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001272}
1273
Chris Lattneree5417c2009-01-21 18:09:24 +00001274APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001275 // If all the bits were shifted out, the result is 0. This avoids issues
1276 // with shifting by the size of the integer type, which produces undefined
1277 // results. We define these "undefined results" to always be 0.
1278 if (shiftAmt == BitWidth)
1279 return APInt(BitWidth, 0);
1280
1281 // If none of the bits are shifted out, the result is *this. This avoids a
1282 // lshr by the words size in the loop below which can produce incorrect
1283 // results. It also avoids the expensive computation below for a common case.
1284 if (shiftAmt == 0)
1285 return *this;
1286
1287 // Create some space for the result.
1288 uint64_t * val = new uint64_t[getNumWords()];
1289
1290 // If we are shifting less than a word, do it the easy way
1291 if (shiftAmt < APINT_BITS_PER_WORD) {
1292 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001293 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001294 val[i] = pVal[i] << shiftAmt | carry;
1295 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1296 }
1297 return APInt(val, BitWidth).clearUnusedBits();
1298 }
1299
1300 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001301 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1302 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303
1304 // If we are shifting whole words, just move whole words
1305 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001306 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001307 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001308 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001309 val[i] = pVal[i-offset];
1310 return APInt(val,BitWidth).clearUnusedBits();
1311 }
1312
1313 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001314 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001315 for (; i > offset; --i)
1316 val[i] = pVal[i-offset] << wordShift |
1317 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1318 val[offset] = pVal[0] << wordShift;
1319 for (i = 0; i < offset; ++i)
1320 val[i] = 0;
1321 return APInt(val, BitWidth).clearUnusedBits();
1322}
1323
Dan Gohman625ff8d2008-02-29 01:40:47 +00001324APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001325 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001326}
1327
Chris Lattneree5417c2009-01-21 18:09:24 +00001328APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001329 if (rotateAmt == 0)
1330 return *this;
1331 // Don't get too fancy, just use existing shift/or facilities
1332 APInt hi(*this);
1333 APInt lo(*this);
1334 hi.shl(rotateAmt);
1335 lo.lshr(BitWidth - rotateAmt);
1336 return hi | lo;
1337}
1338
Dan Gohman625ff8d2008-02-29 01:40:47 +00001339APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001340 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001341}
1342
Chris Lattneree5417c2009-01-21 18:09:24 +00001343APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 if (rotateAmt == 0)
1345 return *this;
1346 // Don't get too fancy, just use existing shift/or facilities
1347 APInt hi(*this);
1348 APInt lo(*this);
1349 lo.lshr(rotateAmt);
1350 hi.shl(BitWidth - rotateAmt);
1351 return hi | lo;
1352}
1353
1354// Square Root - this method computes and returns the square root of "this".
1355// Three mechanisms are used for computation. For small values (<= 5 bits),
1356// a table lookup is done. This gets some performance for common cases. For
1357// values using less than 52 bits, the value is converted to double and then
1358// the libc sqrt function is called. The result is rounded and then converted
1359// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher017fc252009-08-21 04:06:45 +00001360// the Babylonian method for computing square roots is used.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361APInt APInt::sqrt() const {
1362
1363 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001364 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001365
1366 // Use a fast table for some small values. This also gets rid of some
1367 // rounding errors in libc sqrt for small values.
1368 if (magnitude <= 5) {
1369 static const uint8_t results[32] = {
1370 /* 0 */ 0,
1371 /* 1- 2 */ 1, 1,
Eric Christopher017fc252009-08-21 04:06:45 +00001372 /* 3- 6 */ 2, 2, 2, 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001373 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1374 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1375 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1376 /* 31 */ 6
1377 };
1378 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1379 }
1380
1381 // If the magnitude of the value fits in less than 52 bits (the precision of
1382 // an IEEE double precision floating point value), then we can use the
1383 // libc sqrt function which will probably use a hardware sqrt computation.
1384 // This should be faster than the algorithm below.
1385 if (magnitude < 52) {
1386#ifdef _MSC_VER
1387 // Amazingly, VC++ doesn't have round().
Eric Christopher017fc252009-08-21 04:06:45 +00001388 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001389 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1390#else
Eric Christopher017fc252009-08-21 04:06:45 +00001391 return APInt(BitWidth,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1393#endif
1394 }
1395
1396 // Okay, all the short cuts are exhausted. We must compute it. The following
1397 // is a classical Babylonian method for computing the square root. This code
1398 // was adapted to APINt from a wikipedia article on such computations.
1399 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher017fc252009-08-21 04:06:45 +00001400 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001401 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402 APInt testy(BitWidth, 16);
1403 APInt x_old(BitWidth, 1);
1404 APInt x_new(BitWidth, 0);
1405 APInt two(BitWidth, 2);
1406
1407 // Select a good starting value using binary logarithms.
Eric Christopher017fc252009-08-21 04:06:45 +00001408 for (;; i += 2, testy = testy.shl(2))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 if (i >= nbits || this->ule(testy)) {
1410 x_old = x_old.shl(i / 2);
1411 break;
1412 }
1413
Eric Christopher017fc252009-08-21 04:06:45 +00001414 // Use the Babylonian method to arrive at the integer square root:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001415 for (;;) {
1416 x_new = (this->udiv(x_old) + x_old).udiv(two);
1417 if (x_old.ule(x_new))
1418 break;
1419 x_old = x_new;
1420 }
1421
1422 // Make sure we return the closest approximation
Eric Christopher017fc252009-08-21 04:06:45 +00001423 // NOTE: The rounding calculation below is correct. It will produce an
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001424 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher017fc252009-08-21 04:06:45 +00001425 // determined to be a rounding issue with pari/gp as it begins to use a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001426 // floating point representation after 192 bits. There are no discrepancies
1427 // between this algorithm and pari/gp for bit widths < 192 bits.
1428 APInt square(x_old * x_old);
1429 APInt nextSquare((x_old + 1) * (x_old +1));
1430 if (this->ult(square))
1431 return x_old;
1432 else if (this->ule(nextSquare)) {
1433 APInt midpoint((nextSquare - square).udiv(two));
1434 APInt offset(*this - square);
1435 if (offset.ult(midpoint))
1436 return x_old;
1437 else
1438 return x_old + 1;
1439 } else
Edwin Törökbd448e32009-07-14 16:55:14 +00001440 llvm_unreachable("Error in APInt::sqrt computation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001441 return x_old + 1;
1442}
1443
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001444/// Computes the multiplicative inverse of this APInt for a given modulo. The
1445/// iterative extended Euclidean algorithm is used to solve for this value,
1446/// however we simplify it to speed up calculating only the inverse, and take
1447/// advantage of div+rem calculations. We also use some tricks to avoid copying
1448/// (potentially large) APInts around.
1449APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1450 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1451
1452 // Using the properties listed at the following web page (accessed 06/21/08):
1453 // http://www.numbertheory.org/php/euclid.html
1454 // (especially the properties numbered 3, 4 and 9) it can be proved that
1455 // BitWidth bits suffice for all the computations in the algorithm implemented
1456 // below. More precisely, this number of bits suffice if the multiplicative
1457 // inverse exists, but may not suffice for the general extended Euclidean
1458 // algorithm.
1459
1460 APInt r[2] = { modulo, *this };
1461 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1462 APInt q(BitWidth, 0);
Eric Christopher017fc252009-08-21 04:06:45 +00001463
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001464 unsigned i;
1465 for (i = 0; r[i^1] != 0; i ^= 1) {
1466 // An overview of the math without the confusing bit-flipping:
1467 // q = r[i-2] / r[i-1]
1468 // r[i] = r[i-2] % r[i-1]
1469 // t[i] = t[i-2] - t[i-1] * q
1470 udivrem(r[i], r[i^1], q, r[i]);
1471 t[i] -= t[i^1] * q;
1472 }
1473
1474 // If this APInt and the modulo are not coprime, there is no multiplicative
1475 // inverse, so return 0. We check this by looking at the next-to-last
1476 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1477 // algorithm.
1478 if (r[i] != 1)
1479 return APInt(BitWidth, 0);
1480
1481 // The next-to-last t is the multiplicative inverse. However, we are
1482 // interested in a positive inverse. Calcuate a positive one from a negative
1483 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001484 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001485 return t[i].isNegative() ? t[i] + modulo : t[i];
1486}
1487
Jay Foad56b11f92009-04-30 10:15:35 +00001488/// Calculate the magic numbers required to implement a signed integer division
1489/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1490/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1491/// Warren, Jr., chapter 10.
1492APInt::ms APInt::magic() const {
1493 const APInt& d = *this;
1494 unsigned p;
1495 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad56b11f92009-04-30 10:15:35 +00001496 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad56b11f92009-04-30 10:15:35 +00001497 struct ms mag;
Eric Christopher017fc252009-08-21 04:06:45 +00001498
Jay Foad56b11f92009-04-30 10:15:35 +00001499 ad = d.abs();
1500 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1501 anc = t - 1 - t.urem(ad); // absolute value of nc
1502 p = d.getBitWidth() - 1; // initialize p
1503 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1504 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1505 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1506 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1507 do {
1508 p = p + 1;
1509 q1 = q1<<1; // update q1 = 2p/abs(nc)
1510 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1511 if (r1.uge(anc)) { // must be unsigned comparison
1512 q1 = q1 + 1;
1513 r1 = r1 - anc;
1514 }
1515 q2 = q2<<1; // update q2 = 2p/abs(d)
1516 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1517 if (r2.uge(ad)) { // must be unsigned comparison
1518 q2 = q2 + 1;
1519 r2 = r2 - ad;
1520 }
1521 delta = ad - r2;
1522 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
Eric Christopher017fc252009-08-21 04:06:45 +00001523
Jay Foad56b11f92009-04-30 10:15:35 +00001524 mag.m = q2 + 1;
1525 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1526 mag.s = p - d.getBitWidth(); // resulting shift
1527 return mag;
1528}
1529
1530/// Calculate the magic numbers required to implement an unsigned integer
1531/// division by a constant as a sequence of multiplies, adds and shifts.
1532/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1533/// S. Warren, Jr., chapter 10.
1534APInt::mu APInt::magicu() const {
1535 const APInt& d = *this;
1536 unsigned p;
1537 APInt nc, delta, q1, r1, q2, r2;
1538 struct mu magu;
1539 magu.a = 0; // initialize "add" indicator
1540 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1541 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1542 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1543
1544 nc = allOnes - (-d).urem(d);
1545 p = d.getBitWidth() - 1; // initialize p
1546 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1547 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1548 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1549 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1550 do {
1551 p = p + 1;
1552 if (r1.uge(nc - r1)) {
1553 q1 = q1 + q1 + 1; // update q1
1554 r1 = r1 + r1 - nc; // update r1
1555 }
1556 else {
1557 q1 = q1+q1; // update q1
1558 r1 = r1+r1; // update r1
1559 }
1560 if ((r2 + 1).uge(d - r2)) {
1561 if (q2.uge(signedMax)) magu.a = 1;
1562 q2 = q2+q2 + 1; // update q2
1563 r2 = r2+r2 + 1 - d; // update r2
1564 }
1565 else {
1566 if (q2.uge(signedMin)) magu.a = 1;
1567 q2 = q2+q2; // update q2
1568 r2 = r2+r2 + 1; // update r2
1569 }
1570 delta = d - 1 - r2;
1571 } while (p < d.getBitWidth()*2 &&
1572 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1573 magu.m = q2 + 1; // resulting magic number
1574 magu.s = p - d.getBitWidth(); // resulting shift
1575 return magu;
1576}
1577
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001578/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1579/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1580/// variables here have the same names as in the algorithm. Comments explain
1581/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001582static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1583 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001584 assert(u && "Must provide dividend");
1585 assert(v && "Must provide divisor");
1586 assert(q && "Must provide quotient");
1587 assert(u != v && u != q && v != q && "Must us different memory");
1588 assert(n>1 && "n must be > 1");
1589
1590 // Knuth uses the value b as the base of the number system. In our case b
1591 // is 2^31 so we just set it to -1u.
1592 uint64_t b = uint64_t(1) << 32;
1593
Chris Lattner89b36582008-08-17 07:19:36 +00001594#if 0
David Greene1604d172010-01-05 01:28:52 +00001595 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1596 DEBUG(dbgs() << "KnuthDiv: original:");
1597 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1598 DEBUG(dbgs() << " by");
1599 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1600 DEBUG(dbgs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001601#endif
Eric Christopher017fc252009-08-21 04:06:45 +00001602 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1603 // u and v by d. Note that we have taken Knuth's advice here to use a power
1604 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1605 // 2 allows us to shift instead of multiply and it is easy to determine the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001606 // shift amount from the leading zeros. We are basically normalizing the u
1607 // and v so that its high bits are shifted to the top of v's range without
1608 // overflow. Note that this can require an extra word in u so that u must
1609 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001610 unsigned shift = CountLeadingZeros_32(v[n-1]);
1611 unsigned v_carry = 0;
1612 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001613 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001614 for (unsigned i = 0; i < m+n; ++i) {
1615 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001616 u[i] = (u[i] << shift) | u_carry;
1617 u_carry = u_tmp;
1618 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001619 for (unsigned i = 0; i < n; ++i) {
1620 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001621 v[i] = (v[i] << shift) | v_carry;
1622 v_carry = v_tmp;
1623 }
1624 }
1625 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001626#if 0
David Greene1604d172010-01-05 01:28:52 +00001627 DEBUG(dbgs() << "KnuthDiv: normal:");
1628 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1629 DEBUG(dbgs() << " by");
1630 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1631 DEBUG(dbgs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001632#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001633
1634 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1635 int j = m;
1636 do {
David Greene1604d172010-01-05 01:28:52 +00001637 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher017fc252009-08-21 04:06:45 +00001638 // D3. [Calculate q'.].
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001639 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1640 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1641 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1642 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1643 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher017fc252009-08-21 04:06:45 +00001644 // value qp is one too large, and it eliminates all cases where qp is two
1645 // too large.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001646 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greene1604d172010-01-05 01:28:52 +00001647 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001648 uint64_t qp = dividend / v[n-1];
1649 uint64_t rp = dividend % v[n-1];
1650 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1651 qp--;
1652 rp += v[n-1];
1653 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1654 qp--;
1655 }
David Greene1604d172010-01-05 01:28:52 +00001656 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001657
1658 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1659 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1660 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher017fc252009-08-21 04:06:45 +00001661 // a subtraction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001662 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001663 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1665 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1666 bool borrow = subtrahend > u_tmp;
David Greene1604d172010-01-05 01:28:52 +00001667 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001668 << ", subtrahend == " << subtrahend
1669 << ", borrow = " << borrow << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001670
1671 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001672 unsigned k = j + i;
1673 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1674 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001675 while (borrow && k <= m+n) { // deal with borrow to the left
1676 borrow = u[k] == 0;
1677 u[k]--;
1678 k++;
1679 }
1680 isNeg |= borrow;
David Greene1604d172010-01-05 01:28:52 +00001681 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopher017fc252009-08-21 04:06:45 +00001682 u[j+i+1] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001683 }
David Greene1604d172010-01-05 01:28:52 +00001684 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1685 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1686 DEBUG(dbgs() << '\n');
Eric Christopher017fc252009-08-21 04:06:45 +00001687 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1688 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 // true value plus b**(n+1), namely as the b's complement of
1690 // the true value, and a "borrow" to the left should be remembered.
1691 //
1692 if (isNeg) {
1693 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001694 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695 u[i] = ~u[i] + carry; // b's complement
1696 carry = carry && u[i] == 0;
1697 }
1698 }
David Greene1604d172010-01-05 01:28:52 +00001699 DEBUG(dbgs() << "KnuthDiv: after complement:");
1700 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1701 DEBUG(dbgs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001702
Eric Christopher017fc252009-08-21 04:06:45 +00001703 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001704 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001705 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001706 if (isNeg) {
Eric Christopher017fc252009-08-21 04:06:45 +00001707 // D6. [Add back]. The probability that this step is necessary is very
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001708 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher017fc252009-08-21 04:06:45 +00001709 // this possibility. Decrease q[j] by 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001710 q[j]--;
Eric Christopher017fc252009-08-21 04:06:45 +00001711 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1712 // A carry will occur to the left of u[j+n], and it should be ignored
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001713 // since it cancels with the borrow that occurred in D4.
1714 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001715 for (unsigned i = 0; i < n; i++) {
1716 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717 u[j+i] += v[i] + carry;
1718 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1719 }
1720 u[j+n] += carry;
1721 }
David Greene1604d172010-01-05 01:28:52 +00001722 DEBUG(dbgs() << "KnuthDiv: after correction:");
1723 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1724 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001725
1726 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1727 } while (--j >= 0);
1728
David Greene1604d172010-01-05 01:28:52 +00001729 DEBUG(dbgs() << "KnuthDiv: quotient:");
1730 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1731 DEBUG(dbgs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732
1733 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1734 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1735 // compute the remainder (urem uses this).
1736 if (r) {
1737 // The value d is expressed by the "shift" value above since we avoided
1738 // multiplication by d by using a shift left. So, all we have to do is
1739 // shift right here. In order to mak
1740 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001741 unsigned carry = 0;
David Greene1604d172010-01-05 01:28:52 +00001742 DEBUG(dbgs() << "KnuthDiv: remainder:");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001743 for (int i = n-1; i >= 0; i--) {
1744 r[i] = (u[i] >> shift) | carry;
1745 carry = u[i] << (32 - shift);
David Greene1604d172010-01-05 01:28:52 +00001746 DEBUG(dbgs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 }
1748 } else {
1749 for (int i = n-1; i >= 0; i--) {
1750 r[i] = u[i];
David Greene1604d172010-01-05 01:28:52 +00001751 DEBUG(dbgs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752 }
1753 }
David Greene1604d172010-01-05 01:28:52 +00001754 DEBUG(dbgs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001755 }
Chris Lattner89b36582008-08-17 07:19:36 +00001756#if 0
David Greene1604d172010-01-05 01:28:52 +00001757 DEBUG(dbgs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001758#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759}
1760
Chris Lattneree5417c2009-01-21 18:09:24 +00001761void APInt::divide(const APInt LHS, unsigned lhsWords,
1762 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763 APInt *Quotient, APInt *Remainder)
1764{
1765 assert(lhsWords >= rhsWords && "Fractional result");
1766
Eric Christopher017fc252009-08-21 04:06:45 +00001767 // First, compose the values into an array of 32-bit words instead of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohmandf1a7ff2010-02-10 16:03:48 +00001769 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher017fc252009-08-21 04:06:45 +00001770 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1771 // can't use 64-bit operands here because we don't have native results of
1772 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001773 // work on large-endian machines.
Dan Gohmand06cad62009-04-01 18:45:54 +00001774 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattneree5417c2009-01-21 18:09:24 +00001775 unsigned n = rhsWords * 2;
1776 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777
1778 // Allocate space for the temporary values we need either on the stack, if
1779 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001780 unsigned SPACE[128];
1781 unsigned *U = 0;
1782 unsigned *V = 0;
1783 unsigned *Q = 0;
1784 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1786 U = &SPACE[0];
1787 V = &SPACE[m+n+1];
1788 Q = &SPACE[(m+n+1) + n];
1789 if (Remainder)
1790 R = &SPACE[(m+n+1) + n + (m+n)];
1791 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001792 U = new unsigned[m + n + 1];
1793 V = new unsigned[n];
1794 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001796 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797 }
1798
1799 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001800 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 for (unsigned i = 0; i < lhsWords; ++i) {
1802 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001803 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001804 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805 }
1806 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1807
1808 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001809 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 for (unsigned i = 0; i < rhsWords; ++i) {
1811 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001812 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001813 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001814 }
1815
1816 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001817 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001818 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001819 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820
Eric Christopher017fc252009-08-21 04:06:45 +00001821 // Now, adjust m and n for the Knuth division. n is the number of words in
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001822 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher017fc252009-08-21 04:06:45 +00001823 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001824 // contain any zero words or the Knuth algorithm fails.
1825 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1826 n--;
1827 m++;
1828 }
1829 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1830 m--;
1831
1832 // If we're left with only a single word for the divisor, Knuth doesn't work
1833 // so we implement the short division algorithm here. This is much simpler
1834 // and faster because we are certain that we can divide a 64-bit quantity
1835 // by a 32-bit quantity at hardware speed and short division is simply a
1836 // series of such operations. This is just like doing short division but we
1837 // are using base 2^32 instead of base 10.
1838 assert(n != 0 && "Divide by zero?");
1839 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001840 unsigned divisor = V[0];
1841 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001842 for (int i = m+n-1; i >= 0; i--) {
1843 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1844 if (partial_dividend == 0) {
1845 Q[i] = 0;
1846 remainder = 0;
1847 } else if (partial_dividend < divisor) {
1848 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001849 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001850 } else if (partial_dividend == divisor) {
1851 Q[i] = 1;
1852 remainder = 0;
1853 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001854 Q[i] = (unsigned)(partial_dividend / divisor);
1855 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001856 }
1857 }
1858 if (R)
1859 R[0] = remainder;
1860 } else {
1861 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1862 // case n > 1.
1863 KnuthDiv(U, V, Q, R, m, n);
1864 }
1865
1866 // If the caller wants the quotient
1867 if (Quotient) {
1868 // Set up the Quotient value's memory.
1869 if (Quotient->BitWidth != LHS.BitWidth) {
1870 if (Quotient->isSingleWord())
1871 Quotient->VAL = 0;
1872 else
1873 delete [] Quotient->pVal;
1874 Quotient->BitWidth = LHS.BitWidth;
1875 if (!Quotient->isSingleWord())
1876 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1877 } else
1878 Quotient->clear();
1879
Eric Christopher017fc252009-08-21 04:06:45 +00001880 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 // order words.
1882 if (lhsWords == 1) {
Eric Christopher017fc252009-08-21 04:06:45 +00001883 uint64_t tmp =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001884 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1885 if (Quotient->isSingleWord())
1886 Quotient->VAL = tmp;
1887 else
1888 Quotient->pVal[0] = tmp;
1889 } else {
1890 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1891 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher017fc252009-08-21 04:06:45 +00001892 Quotient->pVal[i] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001893 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1894 }
1895 }
1896
1897 // If the caller wants the remainder
1898 if (Remainder) {
1899 // Set up the Remainder value's memory.
1900 if (Remainder->BitWidth != RHS.BitWidth) {
1901 if (Remainder->isSingleWord())
1902 Remainder->VAL = 0;
1903 else
1904 delete [] Remainder->pVal;
1905 Remainder->BitWidth = RHS.BitWidth;
1906 if (!Remainder->isSingleWord())
1907 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1908 } else
1909 Remainder->clear();
1910
1911 // The remainder is in R. Reconstitute the remainder into Remainder's low
1912 // order words.
1913 if (rhsWords == 1) {
Eric Christopher017fc252009-08-21 04:06:45 +00001914 uint64_t tmp =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001915 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1916 if (Remainder->isSingleWord())
1917 Remainder->VAL = tmp;
1918 else
1919 Remainder->pVal[0] = tmp;
1920 } else {
1921 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1922 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher017fc252009-08-21 04:06:45 +00001923 Remainder->pVal[i] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1925 }
1926 }
1927
1928 // Clean up the memory we allocated.
1929 if (U != &SPACE[0]) {
1930 delete [] U;
1931 delete [] V;
1932 delete [] Q;
1933 delete [] R;
1934 }
1935}
1936
1937APInt APInt::udiv(const APInt& RHS) const {
1938 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1939
1940 // First, deal with the easy case
1941 if (isSingleWord()) {
1942 assert(RHS.VAL != 0 && "Divide by zero?");
1943 return APInt(BitWidth, VAL / RHS.VAL);
1944 }
1945
1946 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001947 unsigned rhsBits = RHS.getActiveBits();
1948 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001949 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001950 unsigned lhsBits = this->getActiveBits();
1951 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952
1953 // Deal with some degenerate cases
Eric Christopher017fc252009-08-21 04:06:45 +00001954 if (!lhsWords)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955 // 0 / X ===> 0
Eric Christopher017fc252009-08-21 04:06:45 +00001956 return APInt(BitWidth, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957 else if (lhsWords < rhsWords || this->ult(RHS)) {
1958 // X / Y ===> 0, iff X < Y
1959 return APInt(BitWidth, 0);
1960 } else if (*this == RHS) {
1961 // X / X ===> 1
1962 return APInt(BitWidth, 1);
1963 } else if (lhsWords == 1 && rhsWords == 1) {
1964 // All high words are zero, just use native divide
1965 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1966 }
1967
1968 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1969 APInt Quotient(1,0); // to hold result.
1970 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1971 return Quotient;
1972}
1973
1974APInt APInt::urem(const APInt& RHS) const {
1975 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1976 if (isSingleWord()) {
1977 assert(RHS.VAL != 0 && "Remainder by zero?");
1978 return APInt(BitWidth, VAL % RHS.VAL);
1979 }
1980
1981 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001982 unsigned lhsBits = getActiveBits();
1983 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984
1985 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001986 unsigned rhsBits = RHS.getActiveBits();
1987 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988 assert(rhsWords && "Performing remainder operation by zero ???");
1989
1990 // Check the degenerate cases
1991 if (lhsWords == 0) {
1992 // 0 % Y ===> 0
1993 return APInt(BitWidth, 0);
1994 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1995 // X % Y ===> X, iff X < Y
1996 return *this;
1997 } else if (*this == RHS) {
1998 // X % X == 0;
1999 return APInt(BitWidth, 0);
2000 } else if (lhsWords == 1) {
2001 // All high words are zero, just use native remainder
2002 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
2003 }
2004
2005 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
2006 APInt Remainder(1,0);
2007 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2008 return Remainder;
2009}
2010
Eric Christopher017fc252009-08-21 04:06:45 +00002011void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002012 APInt &Quotient, APInt &Remainder) {
2013 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00002014 unsigned lhsBits = LHS.getActiveBits();
2015 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2016 unsigned rhsBits = RHS.getActiveBits();
2017 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002018
2019 // Check the degenerate cases
Eric Christopher017fc252009-08-21 04:06:45 +00002020 if (lhsWords == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021 Quotient = 0; // 0 / Y ===> 0
2022 Remainder = 0; // 0 % Y ===> 0
2023 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002024 }
2025
2026 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002027 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCall38768292009-12-24 08:52:06 +00002028 Quotient = 0; // X / Y ===> 0, iff X < Y
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002029 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002030 }
2031
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 if (LHS == RHS) {
2033 Quotient = 1; // X / X ===> 1
2034 Remainder = 0; // X % X ===> 0;
2035 return;
Eric Christopher017fc252009-08-21 04:06:45 +00002036 }
2037
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002038 if (lhsWords == 1 && rhsWords == 1) {
2039 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00002040 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2041 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2042 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2043 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002044 return;
2045 }
2046
2047 // Okay, lets do it the long way
2048 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2049}
2050
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002051void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002052 // Check our assumptions here
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002053 assert(!str.empty() && "Invalid string length");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002054 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2055 "Radix should be 2, 8, 10, or 16!");
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002056
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002057 StringRef::iterator p = str.begin();
2058 size_t slen = str.size();
2059 bool isNeg = *p == '-';
Erick Tryzelaara3c44c92009-08-21 03:15:14 +00002060 if (*p == '-' || *p == '+') {
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002061 p++;
2062 slen--;
Eric Christopher9a7fc4f2009-08-21 04:10:31 +00002063 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002064 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner981440e2009-04-25 18:34:04 +00002066 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2067 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Eric Christopher017fc252009-08-21 04:06:45 +00002068 assert((((slen-1)*64)/22 <= numbits || radix != 10)
Daniel Dunbar3be44e62009-09-20 02:20:51 +00002069 && "Insufficient bit width");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002070
2071 // Allocate memory
2072 if (!isSingleWord())
2073 pVal = getClearedMemory(getNumWords());
2074
2075 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00002076 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002077
2078 // Set up an APInt for the digit to add outside the loop so we don't
2079 // constantly construct/destruct it.
2080 APInt apdigit(getBitWidth(), 0);
2081 APInt apradix(getBitWidth(), radix);
2082
2083 // Enter digit traversal loop
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002084 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaar15a448f2009-08-21 03:15:28 +00002085 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar5c4ea882009-08-21 06:48:37 +00002086 assert(digit < radix && "Invalid character in digit string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002087
2088 // Shift or multiply the value by the radix
Chris Lattner981440e2009-04-25 18:34:04 +00002089 if (slen > 1) {
2090 if (shift)
2091 *this <<= shift;
2092 else
2093 *this *= apradix;
2094 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002095
2096 // Add in the digit we just interpreted
2097 if (apdigit.isSingleWord())
2098 apdigit.VAL = digit;
2099 else
2100 apdigit.pVal[0] = digit;
2101 *this += apdigit;
2102 }
2103 // If its negative, put it in two's complement form
2104 if (isNeg) {
2105 (*this)--;
2106 this->flip();
2107 }
2108}
2109
Chris Lattner89b36582008-08-17 07:19:36 +00002110void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2111 bool Signed) const {
2112 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002113 "Radix should be 2, 8, 10, or 16!");
Eric Christopher017fc252009-08-21 04:06:45 +00002114
Chris Lattner89b36582008-08-17 07:19:36 +00002115 // First, check for a zero value and just short circuit the logic below.
2116 if (*this == 0) {
2117 Str.push_back('0');
2118 return;
2119 }
Eric Christopher017fc252009-08-21 04:06:45 +00002120
Chris Lattner89b36582008-08-17 07:19:36 +00002121 static const char Digits[] = "0123456789ABCDEF";
Eric Christopher017fc252009-08-21 04:06:45 +00002122
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00002124 char Buffer[65];
2125 char *BufPtr = Buffer+65;
Eric Christopher017fc252009-08-21 04:06:45 +00002126
Chris Lattner89b36582008-08-17 07:19:36 +00002127 uint64_t N;
2128 if (Signed) {
2129 int64_t I = getSExtValue();
2130 if (I < 0) {
2131 Str.push_back('-');
2132 I = -I;
2133 }
2134 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002135 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002136 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002137 }
Eric Christopher017fc252009-08-21 04:06:45 +00002138
Chris Lattner89b36582008-08-17 07:19:36 +00002139 while (N) {
2140 *--BufPtr = Digits[N % Radix];
2141 N /= Radix;
2142 }
2143 Str.append(BufPtr, Buffer+65);
2144 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002145 }
2146
Chris Lattner89b36582008-08-17 07:19:36 +00002147 APInt Tmp(*this);
Eric Christopher017fc252009-08-21 04:06:45 +00002148
Chris Lattner89b36582008-08-17 07:19:36 +00002149 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002150 // They want to print the signed version and it is a negative value
2151 // Flip the bits and add one to turn it into the equivalent positive
2152 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002153 Tmp.flip();
2154 Tmp++;
2155 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002156 }
Eric Christopher017fc252009-08-21 04:06:45 +00002157
Chris Lattner89b36582008-08-17 07:19:36 +00002158 // We insert the digits backward, then reverse them to get the right order.
2159 unsigned StartDig = Str.size();
Eric Christopher017fc252009-08-21 04:06:45 +00002160
2161 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2162 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattner89b36582008-08-17 07:19:36 +00002163 // equaly. We just shift until the value is zero.
2164 if (Radix != 10) {
2165 // Just shift tmp right for each digit width until it becomes zero
2166 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2167 unsigned MaskAmt = Radix - 1;
Eric Christopher017fc252009-08-21 04:06:45 +00002168
Chris Lattner89b36582008-08-17 07:19:36 +00002169 while (Tmp != 0) {
2170 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2171 Str.push_back(Digits[Digit]);
2172 Tmp = Tmp.lshr(ShiftAmt);
2173 }
2174 } else {
2175 APInt divisor(4, 10);
2176 while (Tmp != 0) {
2177 APInt APdigit(1, 0);
2178 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher017fc252009-08-21 04:06:45 +00002179 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner89b36582008-08-17 07:19:36 +00002180 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002181 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002182 assert(Digit < Radix && "divide failed");
2183 Str.push_back(Digits[Digit]);
2184 Tmp = tmp2;
2185 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002186 }
Eric Christopher017fc252009-08-21 04:06:45 +00002187
Chris Lattner89b36582008-08-17 07:19:36 +00002188 // Reverse the digits before returning.
2189 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002190}
2191
Chris Lattner89b36582008-08-17 07:19:36 +00002192/// toString - This returns the APInt as a std::string. Note that this is an
2193/// inefficient method. It is better to pass in a SmallVector/SmallString
2194/// to the methods above.
2195std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2196 SmallString<40> S;
2197 toString(S, Radix, Signed);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002198 return S.str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002199}
Chris Lattner73cde982007-08-16 15:56:55 +00002200
Chris Lattner89b36582008-08-17 07:19:36 +00002201
2202void APInt::dump() const {
2203 SmallString<40> S, U;
2204 this->toStringUnsigned(U);
2205 this->toStringSigned(S);
David Greene1604d172010-01-05 01:28:52 +00002206 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002207 << U.str() << "u " << S.str() << "s)";
Chris Lattner89b36582008-08-17 07:19:36 +00002208}
2209
Chris Lattner1fefaac2008-08-23 22:23:09 +00002210void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002211 SmallString<40> S;
2212 this->toString(S, 10, isSigned);
Daniel Dunbar768e97d2009-08-19 20:07:03 +00002213 OS << S.str();
Chris Lattner89b36582008-08-17 07:19:36 +00002214}
2215
Chris Lattner73cde982007-08-16 15:56:55 +00002216// This implements a variety of operations on a representation of
2217// arbitrary precision, two's-complement, bignum integer values.
2218
Chris Lattnera8f744b2009-08-23 23:11:28 +00002219// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2220// and unrestricting assumption.
Chris Lattner12e44312008-08-17 04:58:58 +00002221#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002222COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002223
2224/* Some handy functions local to this file. */
2225namespace {
2226
Chris Lattnerdb80e212007-08-20 22:49:32 +00002227 /* Returns the integer part with the least significant BITS set.
2228 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002229 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002230 lowBitMask(unsigned int bits)
2231 {
2232 assert (bits != 0 && bits <= integerPartWidth);
2233
2234 return ~(integerPart) 0 >> (integerPartWidth - bits);
2235 }
2236
Neil Booth58ffb232007-10-06 00:43:45 +00002237 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002238 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002239 lowHalf(integerPart part)
2240 {
2241 return part & lowBitMask(integerPartWidth / 2);
2242 }
2243
Neil Booth58ffb232007-10-06 00:43:45 +00002244 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002245 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002246 highHalf(integerPart part)
2247 {
2248 return part >> (integerPartWidth / 2);
2249 }
2250
Neil Booth58ffb232007-10-06 00:43:45 +00002251 /* Returns the bit number of the most significant set bit of a part.
2252 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002253 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002254 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002255 {
2256 unsigned int n, msb;
2257
2258 if (value == 0)
2259 return -1U;
2260
2261 n = integerPartWidth / 2;
2262
2263 msb = 0;
2264 do {
2265 if (value >> n) {
2266 value >>= n;
2267 msb += n;
2268 }
2269
2270 n >>= 1;
2271 } while (n);
2272
2273 return msb;
2274 }
2275
Neil Booth58ffb232007-10-06 00:43:45 +00002276 /* Returns the bit number of the least significant set bit of a
2277 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002278 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002279 partLSB(integerPart value)
2280 {
2281 unsigned int n, lsb;
2282
2283 if (value == 0)
2284 return -1U;
2285
2286 lsb = integerPartWidth - 1;
2287 n = integerPartWidth / 2;
2288
2289 do {
2290 if (value << n) {
2291 value <<= n;
2292 lsb -= n;
2293 }
2294
2295 n >>= 1;
2296 } while (n);
2297
2298 return lsb;
2299 }
2300}
2301
2302/* Sets the least significant part of a bignum to the input value, and
2303 zeroes out higher parts. */
2304void
2305APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2306{
2307 unsigned int i;
2308
Neil Bootha0f524a2007-10-08 13:47:12 +00002309 assert (parts > 0);
2310
Chris Lattner73cde982007-08-16 15:56:55 +00002311 dst[0] = part;
2312 for(i = 1; i < parts; i++)
2313 dst[i] = 0;
2314}
2315
2316/* Assign one bignum to another. */
2317void
2318APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2319{
2320 unsigned int i;
2321
2322 for(i = 0; i < parts; i++)
2323 dst[i] = src[i];
2324}
2325
2326/* Returns true if a bignum is zero, false otherwise. */
2327bool
2328APInt::tcIsZero(const integerPart *src, unsigned int parts)
2329{
2330 unsigned int i;
2331
2332 for(i = 0; i < parts; i++)
2333 if (src[i])
2334 return false;
2335
2336 return true;
2337}
2338
2339/* Extract the given bit of a bignum; returns 0 or 1. */
2340int
2341APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2342{
2343 return(parts[bit / integerPartWidth]
2344 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2345}
2346
2347/* Set the given bit of a bignum. */
2348void
2349APInt::tcSetBit(integerPart *parts, unsigned int bit)
2350{
2351 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2352}
2353
Neil Booth58ffb232007-10-06 00:43:45 +00002354/* Returns the bit number of the least significant set bit of a
2355 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002356unsigned int
2357APInt::tcLSB(const integerPart *parts, unsigned int n)
2358{
2359 unsigned int i, lsb;
2360
2361 for(i = 0; i < n; i++) {
2362 if (parts[i] != 0) {
2363 lsb = partLSB(parts[i]);
2364
2365 return lsb + i * integerPartWidth;
2366 }
2367 }
2368
2369 return -1U;
2370}
2371
Neil Booth58ffb232007-10-06 00:43:45 +00002372/* Returns the bit number of the most significant set bit of a number.
2373 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002374unsigned int
2375APInt::tcMSB(const integerPart *parts, unsigned int n)
2376{
2377 unsigned int msb;
2378
2379 do {
2380 --n;
2381
2382 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002383 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002384
2385 return msb + n * integerPartWidth;
2386 }
2387 } while (n);
2388
2389 return -1U;
2390}
2391
Neil Bootha0f524a2007-10-08 13:47:12 +00002392/* Copy the bit vector of width srcBITS from SRC, starting at bit
2393 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2394 the least significant bit of DST. All high bits above srcBITS in
2395 DST are zero-filled. */
2396void
Evan Chengc257df32009-05-21 23:47:47 +00002397APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Bootha0f524a2007-10-08 13:47:12 +00002398 unsigned int srcBits, unsigned int srcLSB)
2399{
2400 unsigned int firstSrcPart, dstParts, shift, n;
2401
2402 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2403 assert (dstParts <= dstCount);
2404
2405 firstSrcPart = srcLSB / integerPartWidth;
2406 tcAssign (dst, src + firstSrcPart, dstParts);
2407
2408 shift = srcLSB % integerPartWidth;
2409 tcShiftRight (dst, dstParts, shift);
2410
2411 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2412 in DST. If this is less that srcBits, append the rest, else
2413 clear the high bits. */
2414 n = dstParts * integerPartWidth - shift;
2415 if (n < srcBits) {
2416 integerPart mask = lowBitMask (srcBits - n);
2417 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2418 << n % integerPartWidth);
2419 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002420 if (srcBits % integerPartWidth)
2421 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002422 }
2423
2424 /* Clear high parts. */
2425 while (dstParts < dstCount)
2426 dst[dstParts++] = 0;
2427}
2428
Chris Lattner73cde982007-08-16 15:56:55 +00002429/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2430integerPart
2431APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2432 integerPart c, unsigned int parts)
2433{
2434 unsigned int i;
2435
2436 assert(c <= 1);
2437
2438 for(i = 0; i < parts; i++) {
2439 integerPart l;
2440
2441 l = dst[i];
2442 if (c) {
2443 dst[i] += rhs[i] + 1;
2444 c = (dst[i] <= l);
2445 } else {
2446 dst[i] += rhs[i];
2447 c = (dst[i] < l);
2448 }
2449 }
2450
2451 return c;
2452}
2453
2454/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2455integerPart
2456APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2457 integerPart c, unsigned int parts)
2458{
2459 unsigned int i;
2460
2461 assert(c <= 1);
2462
2463 for(i = 0; i < parts; i++) {
2464 integerPart l;
2465
2466 l = dst[i];
2467 if (c) {
2468 dst[i] -= rhs[i] + 1;
2469 c = (dst[i] >= l);
2470 } else {
2471 dst[i] -= rhs[i];
2472 c = (dst[i] > l);
2473 }
2474 }
2475
2476 return c;
2477}
2478
2479/* Negate a bignum in-place. */
2480void
2481APInt::tcNegate(integerPart *dst, unsigned int parts)
2482{
2483 tcComplement(dst, parts);
2484 tcIncrement(dst, parts);
2485}
2486
Neil Booth58ffb232007-10-06 00:43:45 +00002487/* DST += SRC * MULTIPLIER + CARRY if add is true
2488 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002489
2490 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2491 they must start at the same point, i.e. DST == SRC.
2492
2493 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2494 returned. Otherwise DST is filled with the least significant
2495 DSTPARTS parts of the result, and if all of the omitted higher
2496 parts were zero return zero, otherwise overflow occurred and
2497 return one. */
2498int
2499APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2500 integerPart multiplier, integerPart carry,
2501 unsigned int srcParts, unsigned int dstParts,
2502 bool add)
2503{
2504 unsigned int i, n;
2505
2506 /* Otherwise our writes of DST kill our later reads of SRC. */
2507 assert(dst <= src || dst >= src + srcParts);
2508 assert(dstParts <= srcParts + 1);
2509
2510 /* N loops; minimum of dstParts and srcParts. */
2511 n = dstParts < srcParts ? dstParts: srcParts;
2512
2513 for(i = 0; i < n; i++) {
2514 integerPart low, mid, high, srcPart;
2515
2516 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2517
2518 This cannot overflow, because
2519
2520 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2521
2522 which is less than n^2. */
2523
2524 srcPart = src[i];
2525
2526 if (multiplier == 0 || srcPart == 0) {
2527 low = carry;
2528 high = 0;
2529 } else {
2530 low = lowHalf(srcPart) * lowHalf(multiplier);
2531 high = highHalf(srcPart) * highHalf(multiplier);
2532
2533 mid = lowHalf(srcPart) * highHalf(multiplier);
2534 high += highHalf(mid);
2535 mid <<= integerPartWidth / 2;
2536 if (low + mid < low)
2537 high++;
2538 low += mid;
2539
2540 mid = highHalf(srcPart) * lowHalf(multiplier);
2541 high += highHalf(mid);
2542 mid <<= integerPartWidth / 2;
2543 if (low + mid < low)
2544 high++;
2545 low += mid;
2546
2547 /* Now add carry. */
2548 if (low + carry < low)
2549 high++;
2550 low += carry;
2551 }
2552
2553 if (add) {
2554 /* And now DST[i], and store the new low part there. */
2555 if (low + dst[i] < low)
2556 high++;
2557 dst[i] += low;
2558 } else
2559 dst[i] = low;
2560
2561 carry = high;
2562 }
2563
2564 if (i < dstParts) {
2565 /* Full multiplication, there is no overflow. */
2566 assert(i + 1 == dstParts);
2567 dst[i] = carry;
2568 return 0;
2569 } else {
2570 /* We overflowed if there is carry. */
2571 if (carry)
2572 return 1;
2573
2574 /* We would overflow if any significant unwritten parts would be
2575 non-zero. This is true if any remaining src parts are non-zero
2576 and the multiplier is non-zero. */
2577 if (multiplier)
2578 for(; i < srcParts; i++)
2579 if (src[i])
2580 return 1;
2581
2582 /* We fitted in the narrow destination. */
2583 return 0;
2584 }
2585}
2586
2587/* DST = LHS * RHS, where DST has the same width as the operands and
2588 is filled with the least significant parts of the result. Returns
2589 one if overflow occurred, otherwise zero. DST must be disjoint
2590 from both operands. */
2591int
2592APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2593 const integerPart *rhs, unsigned int parts)
2594{
2595 unsigned int i;
2596 int overflow;
2597
2598 assert(dst != lhs && dst != rhs);
2599
2600 overflow = 0;
2601 tcSet(dst, 0, parts);
2602
2603 for(i = 0; i < parts; i++)
2604 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2605 parts - i, true);
2606
2607 return overflow;
2608}
2609
Neil Booth004e9f42007-10-06 00:24:48 +00002610/* DST = LHS * RHS, where DST has width the sum of the widths of the
2611 operands. No overflow occurs. DST must be disjoint from both
2612 operands. Returns the number of parts required to hold the
2613 result. */
2614unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002615APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002616 const integerPart *rhs, unsigned int lhsParts,
2617 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002618{
Neil Booth004e9f42007-10-06 00:24:48 +00002619 /* Put the narrower number on the LHS for less loops below. */
2620 if (lhsParts > rhsParts) {
2621 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2622 } else {
2623 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002624
Neil Booth004e9f42007-10-06 00:24:48 +00002625 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002626
Neil Booth004e9f42007-10-06 00:24:48 +00002627 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002628
Neil Booth004e9f42007-10-06 00:24:48 +00002629 for(n = 0; n < lhsParts; n++)
2630 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002631
Neil Booth004e9f42007-10-06 00:24:48 +00002632 n = lhsParts + rhsParts;
2633
2634 return n - (dst[n - 1] == 0);
2635 }
Chris Lattner73cde982007-08-16 15:56:55 +00002636}
2637
2638/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2639 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2640 set REMAINDER to the remainder, return zero. i.e.
2641
2642 OLD_LHS = RHS * LHS + REMAINDER
2643
2644 SCRATCH is a bignum of the same size as the operands and result for
2645 use by the routine; its contents need not be initialized and are
2646 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2647*/
2648int
2649APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2650 integerPart *remainder, integerPart *srhs,
2651 unsigned int parts)
2652{
2653 unsigned int n, shiftCount;
2654 integerPart mask;
2655
2656 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2657
Chris Lattnerdb80e212007-08-20 22:49:32 +00002658 shiftCount = tcMSB(rhs, parts) + 1;
2659 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002660 return true;
2661
Chris Lattnerdb80e212007-08-20 22:49:32 +00002662 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002663 n = shiftCount / integerPartWidth;
2664 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2665
2666 tcAssign(srhs, rhs, parts);
2667 tcShiftLeft(srhs, parts, shiftCount);
2668 tcAssign(remainder, lhs, parts);
2669 tcSet(lhs, 0, parts);
2670
2671 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2672 the total. */
2673 for(;;) {
2674 int compare;
2675
2676 compare = tcCompare(remainder, srhs, parts);
2677 if (compare >= 0) {
2678 tcSubtract(remainder, srhs, 0, parts);
2679 lhs[n] |= mask;
2680 }
2681
2682 if (shiftCount == 0)
2683 break;
2684 shiftCount--;
2685 tcShiftRight(srhs, parts, 1);
2686 if ((mask >>= 1) == 0)
2687 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2688 }
2689
2690 return false;
2691}
2692
2693/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2694 There are no restrictions on COUNT. */
2695void
2696APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2697{
Neil Bootha0f524a2007-10-08 13:47:12 +00002698 if (count) {
2699 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002700
Neil Bootha0f524a2007-10-08 13:47:12 +00002701 /* Jump is the inter-part jump; shift is is intra-part shift. */
2702 jump = count / integerPartWidth;
2703 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002704
Neil Bootha0f524a2007-10-08 13:47:12 +00002705 while (parts > jump) {
2706 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002707
Neil Bootha0f524a2007-10-08 13:47:12 +00002708 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002709
Neil Bootha0f524a2007-10-08 13:47:12 +00002710 /* dst[i] comes from the two parts src[i - jump] and, if we have
2711 an intra-part shift, src[i - jump - 1]. */
2712 part = dst[parts - jump];
2713 if (shift) {
2714 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002715 if (parts >= jump + 1)
2716 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2717 }
2718
Neil Bootha0f524a2007-10-08 13:47:12 +00002719 dst[parts] = part;
2720 }
Chris Lattner73cde982007-08-16 15:56:55 +00002721
Neil Bootha0f524a2007-10-08 13:47:12 +00002722 while (parts > 0)
2723 dst[--parts] = 0;
2724 }
Chris Lattner73cde982007-08-16 15:56:55 +00002725}
2726
2727/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2728 zero. There are no restrictions on COUNT. */
2729void
2730APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2731{
Neil Bootha0f524a2007-10-08 13:47:12 +00002732 if (count) {
2733 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002734
Neil Bootha0f524a2007-10-08 13:47:12 +00002735 /* Jump is the inter-part jump; shift is is intra-part shift. */
2736 jump = count / integerPartWidth;
2737 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002738
Neil Bootha0f524a2007-10-08 13:47:12 +00002739 /* Perform the shift. This leaves the most significant COUNT bits
2740 of the result at zero. */
2741 for(i = 0; i < parts; i++) {
2742 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002743
Neil Bootha0f524a2007-10-08 13:47:12 +00002744 if (i + jump >= parts) {
2745 part = 0;
2746 } else {
2747 part = dst[i + jump];
2748 if (shift) {
2749 part >>= shift;
2750 if (i + jump + 1 < parts)
2751 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2752 }
Chris Lattner73cde982007-08-16 15:56:55 +00002753 }
Chris Lattner73cde982007-08-16 15:56:55 +00002754
Neil Bootha0f524a2007-10-08 13:47:12 +00002755 dst[i] = part;
2756 }
Chris Lattner73cde982007-08-16 15:56:55 +00002757 }
2758}
2759
2760/* Bitwise and of two bignums. */
2761void
2762APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2763{
2764 unsigned int i;
2765
2766 for(i = 0; i < parts; i++)
2767 dst[i] &= rhs[i];
2768}
2769
2770/* Bitwise inclusive or of two bignums. */
2771void
2772APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2773{
2774 unsigned int i;
2775
2776 for(i = 0; i < parts; i++)
2777 dst[i] |= rhs[i];
2778}
2779
2780/* Bitwise exclusive or of two bignums. */
2781void
2782APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2783{
2784 unsigned int i;
2785
2786 for(i = 0; i < parts; i++)
2787 dst[i] ^= rhs[i];
2788}
2789
2790/* Complement a bignum in-place. */
2791void
2792APInt::tcComplement(integerPart *dst, unsigned int parts)
2793{
2794 unsigned int i;
2795
2796 for(i = 0; i < parts; i++)
2797 dst[i] = ~dst[i];
2798}
2799
2800/* Comparison (unsigned) of two bignums. */
2801int
2802APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2803 unsigned int parts)
2804{
2805 while (parts) {
2806 parts--;
2807 if (lhs[parts] == rhs[parts])
2808 continue;
2809
2810 if (lhs[parts] > rhs[parts])
2811 return 1;
2812 else
2813 return -1;
2814 }
2815
2816 return 0;
2817}
2818
2819/* Increment a bignum in-place, return the carry flag. */
2820integerPart
2821APInt::tcIncrement(integerPart *dst, unsigned int parts)
2822{
2823 unsigned int i;
2824
2825 for(i = 0; i < parts; i++)
2826 if (++dst[i] != 0)
2827 break;
2828
2829 return i == parts;
2830}
2831
2832/* Set the least significant BITS bits of a bignum, clear the
2833 rest. */
2834void
2835APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2836 unsigned int bits)
2837{
2838 unsigned int i;
2839
2840 i = 0;
2841 while (bits > integerPartWidth) {
2842 dst[i++] = ~(integerPart) 0;
2843 bits -= integerPartWidth;
2844 }
2845
2846 if (bits)
2847 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2848
2849 while (i < parts)
2850 dst[i++] = 0;
2851}