blob: 0b46ba58ec559f40a171126ac7aa23ed5a20e21b [file] [log] [blame]
Chris Lattner00c992d2007-11-03 08:55:29 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
7 construction</title>
8 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
9 <meta name="author" content="Chris Lattner">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
16
Chris Lattner128eb862007-11-05 19:06:59 +000017<ul>
Chris Lattner0e555b12007-11-05 20:04:56 +000018<li><a href="index.html">Up to Tutorial Index</a></li>
Chris Lattner128eb862007-11-05 19:06:59 +000019<li>Chapter 7
20 <ol>
21 <li><a href="#intro">Chapter 7 Introduction</a></li>
22 <li><a href="#why">Why is this a hard problem?</a></li>
23 <li><a href="#memory">Memory in LLVM</a></li>
24 <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
25 <li><a href="#adjustments">Adjusting Existing Variables for
26 Mutation</a></li>
27 <li><a href="#assignment">New Assignment Operator</a></li>
28 <li><a href="#localvars">User-defined Local Variables</a></li>
29 <li><a href="#code">Full Code Listing</a></li>
30 </ol>
31</li>
Chris Lattner0e555b12007-11-05 20:04:56 +000032<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
33 tidbits</li>
Chris Lattner128eb862007-11-05 19:06:59 +000034</ul>
35
Chris Lattner00c992d2007-11-03 08:55:29 +000036<div class="doc_author">
37 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
38</div>
39
40<!-- *********************************************************************** -->
Chris Lattner128eb862007-11-05 19:06:59 +000041<div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
Chris Lattner00c992d2007-11-03 08:55:29 +000042<!-- *********************************************************************** -->
43
44<div class="doc_text">
45
Chris Lattner128eb862007-11-05 19:06:59 +000046<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
47with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very
48respectable, albeit simple, <a
Chris Lattner00c992d2007-11-03 08:55:29 +000049href="http://en.wikipedia.org/wiki/Functional_programming">functional
50programming language</a>. In our journey, we learned some parsing techniques,
51how to build and represent an AST, how to build LLVM IR, and how to optimize
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +000052the resultant code as well as JIT compile it.</p>
Chris Lattner00c992d2007-11-03 08:55:29 +000053
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +000054<p>While Kaleidoscope is interesting as a functional language, the fact that it
55is functional makes it "too easy" to generate LLVM IR for it. In particular, a
56functional language makes it very easy to build LLVM IR directly in <a
Chris Lattner00c992d2007-11-03 08:55:29 +000057href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
58Since LLVM requires that the input code be in SSA form, this is a very nice
59property and it is often unclear to newcomers how to generate code for an
60imperative language with mutable variables.</p>
61
62<p>The short (and happy) summary of this chapter is that there is no need for
63your front-end to build SSA form: LLVM provides highly tuned and well tested
64support for this, though the way it works is a bit unexpected for some.</p>
65
66</div>
67
68<!-- *********************************************************************** -->
69<div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
70<!-- *********************************************************************** -->
71
72<div class="doc_text">
73
74<p>
75To understand why mutable variables cause complexities in SSA construction,
76consider this extremely simple C example:
77</p>
78
79<div class="doc_code">
80<pre>
81int G, H;
82int test(_Bool Condition) {
83 int X;
84 if (Condition)
85 X = G;
86 else
87 X = H;
88 return X;
89}
90</pre>
91</div>
92
93<p>In this case, we have the variable "X", whose value depends on the path
94executed in the program. Because there are two different possible values for X
95before the return instruction, a PHI node is inserted to merge the two values.
96The LLVM IR that we want for this example looks like this:</p>
97
98<div class="doc_code">
99<pre>
100@G = weak global i32 0 ; type of @G is i32*
101@H = weak global i32 0 ; type of @H is i32*
102
103define i32 @test(i1 %Condition) {
104entry:
105 br i1 %Condition, label %cond_true, label %cond_false
106
107cond_true:
108 %X.0 = load i32* @G
109 br label %cond_next
110
111cond_false:
112 %X.1 = load i32* @H
113 br label %cond_next
114
115cond_next:
116 %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
117 ret i32 %X.2
118}
119</pre>
120</div>
121
122<p>In this example, the loads from the G and H global variables are explicit in
123the LLVM IR, and they live in the then/else branches of the if statement
124(cond_true/cond_false). In order to merge the incoming values, the X.2 phi node
125in the cond_next block selects the right value to use based on where control
126flow is coming from: if control flow comes from the cond_false block, X.2 gets
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000127the value of X.1. Alternatively, if control flow comes from cond_true, it gets
Chris Lattner00c992d2007-11-03 08:55:29 +0000128the value of X.0. The intent of this chapter is not to explain the details of
129SSA form. For more information, see one of the many <a
130href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
131references</a>.</p>
132
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000133<p>The question for this article is "who places the phi nodes when lowering
Chris Lattner00c992d2007-11-03 08:55:29 +0000134assignments to mutable variables?". The issue here is that LLVM
135<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
136However, SSA construction requires non-trivial algorithms and data structures,
137so it is inconvenient and wasteful for every front-end to have to reproduce this
138logic.</p>
139
140</div>
141
142<!-- *********************************************************************** -->
143<div class="doc_section"><a name="memory">Memory in LLVM</a></div>
144<!-- *********************************************************************** -->
145
146<div class="doc_text">
147
148<p>The 'trick' here is that while LLVM does require all register values to be
149in SSA form, it does not require (or permit) memory objects to be in SSA form.
150In the example above, note that the loads from G and H are direct accesses to
151G and H: they are not renamed or versioned. This differs from some other
Chris Lattner2e5d07e2007-11-04 19:42:13 +0000152compiler systems, which do try to version memory objects. In LLVM, instead of
Chris Lattner00c992d2007-11-03 08:55:29 +0000153encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
154href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
155demand.</p>
156
157<p>
158With this in mind, the high-level idea is that we want to make a stack variable
159(which lives in memory, because it is on the stack) for each mutable object in
160a function. To take advantage of this trick, we need to talk about how LLVM
161represents stack variables.
162</p>
163
164<p>In LLVM, all memory accesses are explicit with load/store instructions, and
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000165it is carefully designed not to have (or need) an "address-of" operator. Notice
Chris Lattner00c992d2007-11-03 08:55:29 +0000166how the type of the @G/@H global variables is actually "i32*" even though the
167variable is defined as "i32". What this means is that @G defines <em>space</em>
168for an i32 in the global data area, but its <em>name</em> actually refers to the
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000169address for that space. Stack variables work the same way, except that instead of
170being declared with global variable definitions, they are declared with the
Chris Lattner00c992d2007-11-03 08:55:29 +0000171<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
172
173<div class="doc_code">
174<pre>
Chris Lattner1e46a6c2007-11-07 06:34:39 +0000175define i32 @example() {
Chris Lattner00c992d2007-11-03 08:55:29 +0000176entry:
177 %X = alloca i32 ; type of %X is i32*.
178 ...
179 %tmp = load i32* %X ; load the stack value %X from the stack.
180 %tmp2 = add i32 %tmp, 1 ; increment it
181 store i32 %tmp2, i32* %X ; store it back
182 ...
183</pre>
184</div>
185
186<p>This code shows an example of how you can declare and manipulate a stack
187variable in the LLVM IR. Stack memory allocated with the alloca instruction is
188fully general: you can pass the address of the stack slot to functions, you can
189store it in other variables, etc. In our example above, we could rewrite the
190example to use the alloca technique to avoid using a PHI node:</p>
191
192<div class="doc_code">
193<pre>
194@G = weak global i32 0 ; type of @G is i32*
195@H = weak global i32 0 ; type of @H is i32*
196
197define i32 @test(i1 %Condition) {
198entry:
199 %X = alloca i32 ; type of %X is i32*.
200 br i1 %Condition, label %cond_true, label %cond_false
201
202cond_true:
203 %X.0 = load i32* @G
204 store i32 %X.0, i32* %X ; Update X
205 br label %cond_next
206
207cond_false:
208 %X.1 = load i32* @H
209 store i32 %X.1, i32* %X ; Update X
210 br label %cond_next
211
212cond_next:
213 %X.2 = load i32* %X ; Read X
214 ret i32 %X.2
215}
216</pre>
217</div>
218
219<p>With this, we have discovered a way to handle arbitrary mutable variables
220without the need to create Phi nodes at all:</p>
221
222<ol>
223<li>Each mutable variable becomes a stack allocation.</li>
224<li>Each read of the variable becomes a load from the stack.</li>
225<li>Each update of the variable becomes a store to the stack.</li>
226<li>Taking the address of a variable just uses the stack address directly.</li>
227</ol>
228
229<p>While this solution has solved our immediate problem, it introduced another
230one: we have now apparently introduced a lot of stack traffic for very simple
231and common operations, a major performance problem. Fortunately for us, the
232LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
233this case, promoting allocas like this into SSA registers, inserting Phi nodes
234as appropriate. If you run this example through the pass, for example, you'll
235get:</p>
236
237<div class="doc_code">
238<pre>
239$ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
240@G = weak global i32 0
241@H = weak global i32 0
242
243define i32 @test(i1 %Condition) {
244entry:
245 br i1 %Condition, label %cond_true, label %cond_false
246
247cond_true:
248 %X.0 = load i32* @G
249 br label %cond_next
250
251cond_false:
252 %X.1 = load i32* @H
253 br label %cond_next
254
255cond_next:
256 %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
257 ret i32 %X.01
258}
259</pre>
Chris Lattnere7198312007-11-03 22:22:30 +0000260</div>
Chris Lattner00c992d2007-11-03 08:55:29 +0000261
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000262<p>The mem2reg pass implements the standard "iterated dominance frontier"
Chris Lattnere7198312007-11-03 22:22:30 +0000263algorithm for constructing SSA form and has a number of optimizations that speed
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000264up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing
265with mutable variables, and we highly recommend that you depend on it. Note that
Chris Lattnere7198312007-11-03 22:22:30 +0000266mem2reg only works on variables in certain circumstances:</p>
Chris Lattner00c992d2007-11-03 08:55:29 +0000267
Chris Lattnere7198312007-11-03 22:22:30 +0000268<ol>
269<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
270promotes them. It does not apply to global variables or heap allocations.</li>
Chris Lattner00c992d2007-11-03 08:55:29 +0000271
Chris Lattnere7198312007-11-03 22:22:30 +0000272<li>mem2reg only looks for alloca instructions in the entry block of the
273function. Being in the entry block guarantees that the alloca is only executed
274once, which makes analysis simpler.</li>
Chris Lattner00c992d2007-11-03 08:55:29 +0000275
Chris Lattnere7198312007-11-03 22:22:30 +0000276<li>mem2reg only promotes allocas whose uses are direct loads and stores. If
277the address of the stack object is passed to a function, or if any funny pointer
278arithmetic is involved, the alloca will not be promoted.</li>
279
Chris Lattnera56b22d2007-11-05 17:45:54 +0000280<li>mem2reg only works on allocas of <a
281href="../LangRef.html#t_classifications">first class</a>
282values (such as pointers, scalars and vectors), and only if the array size
Chris Lattnere7198312007-11-03 22:22:30 +0000283of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of
284promoting structs or arrays to registers. Note that the "scalarrepl" pass is
285more powerful and can promote structs, "unions", and arrays in many cases.</li>
286
287</ol>
288
289<p>
290All of these properties are easy to satisfy for most imperative languages, and
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000291we'll illustrate it below with Kaleidoscope. The final question you may be
Chris Lattnere7198312007-11-03 22:22:30 +0000292asking is: should I bother with this nonsense for my front-end? Wouldn't it be
293better if I just did SSA construction directly, avoiding use of the mem2reg
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000294optimization pass? In short, we strongly recommend that you use this technique
Chris Lattnere7198312007-11-03 22:22:30 +0000295for building SSA form, unless there is an extremely good reason not to. Using
296this technique is:</p>
297
298<ul>
299<li>Proven and well tested: llvm-gcc and clang both use this technique for local
300mutable variables. As such, the most common clients of LLVM are using this to
301handle a bulk of their variables. You can be sure that bugs are found fast and
302fixed early.</li>
303
304<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
305common cases as well as fully general. For example, it has fast-paths for
306variables that are only used in a single block, variables that only have one
307assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
308</li>
309
310<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
311Debug information in LLVM</a> relies on having the address of the variable
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000312exposed so that debug info can be attached to it. This technique dovetails
313very naturally with this style of debug info.</li>
Chris Lattnere7198312007-11-03 22:22:30 +0000314</ul>
315
316<p>If nothing else, this makes it much easier to get your front-end up and
317running, and is very simple to implement. Lets extend Kaleidoscope with mutable
318variables now!
Chris Lattner00c992d2007-11-03 08:55:29 +0000319</p>
Chris Lattner62a709d2007-11-05 00:23:57 +0000320
Chris Lattner00c992d2007-11-03 08:55:29 +0000321</div>
322
Chris Lattner62a709d2007-11-05 00:23:57 +0000323<!-- *********************************************************************** -->
324<div class="doc_section"><a name="kalvars">Mutable Variables in
325Kaleidoscope</a></div>
326<!-- *********************************************************************** -->
327
328<div class="doc_text">
329
330<p>Now that we know the sort of problem we want to tackle, lets see what this
331looks like in the context of our little Kaleidoscope language. We're going to
332add two features:</p>
333
334<ol>
335<li>The ability to mutate variables with the '=' operator.</li>
336<li>The ability to define new variables.</li>
337</ol>
338
339<p>While the first item is really what this is about, we only have variables
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000340for incoming arguments as well as for induction variables, and redefining those only
Chris Lattner62a709d2007-11-05 00:23:57 +0000341goes so far :). Also, the ability to define new variables is a
342useful thing regardless of whether you will be mutating them. Here's a
343motivating example that shows how we could use these:</p>
344
345<div class="doc_code">
346<pre>
347# Define ':' for sequencing: as a low-precedence operator that ignores operands
348# and just returns the RHS.
349def binary : 1 (x y) y;
350
351# Recursive fib, we could do this before.
352def fib(x)
353 if (x &lt; 3) then
354 1
355 else
356 fib(x-1)+fib(x-2);
357
358# Iterative fib.
359def fibi(x)
360 <b>var a = 1, b = 1, c in</b>
Chris Lattner1e46a6c2007-11-07 06:34:39 +0000361 (for i = 3, i &lt; x in
Chris Lattner62a709d2007-11-05 00:23:57 +0000362 <b>c = a + b</b> :
363 <b>a = b</b> :
364 <b>b = c</b>) :
365 b;
366
367# Call it.
368fibi(10);
369</pre>
370</div>
371
372<p>
373In order to mutate variables, we have to change our existing variables to use
374the "alloca trick". Once we have that, we'll add our new operator, then extend
375Kaleidoscope to support new variable definitions.
376</p>
377
378</div>
379
380<!-- *********************************************************************** -->
381<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
382Mutation</a></div>
383<!-- *********************************************************************** -->
384
385<div class="doc_text">
386
387<p>
388The symbol table in Kaleidoscope is managed at code generation time by the
389'<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*"
390that holds the double value for the named variable. In order to support
391mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
392the <em>memory location</em> of the variable in question. Note that this
393change is a refactoring: it changes the structure of the code, but does not
394(by itself) change the behavior of the compiler. All of these changes are
395isolated in the Kaleidoscope code generator.</p>
396
397<p>
398At this point in Kaleidoscope's development, it only supports variables for two
399things: incoming arguments to functions and the induction variable of 'for'
400loops. For consistency, we'll allow mutation of these variables in addition to
401other user-defined variables. This means that these will both need memory
402locations.
403</p>
404
405<p>To start our transformation of Kaleidoscope, we'll change the NamedValues
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000406map so that it maps to AllocaInst* instead of Value*. Once we do this, the C++
407compiler will tell us what parts of the code we need to update:</p>
Chris Lattner62a709d2007-11-05 00:23:57 +0000408
409<div class="doc_code">
410<pre>
411static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
412</pre>
413</div>
414
415<p>Also, since we will need to create these alloca's, we'll use a helper
416function that ensures that the allocas are created in the entry block of the
417function:</p>
418
419<div class="doc_code">
420<pre>
421/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
422/// the function. This is used for mutable variables etc.
423static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
424 const std::string &amp;VarName) {
Gabor Greifd6c1ed02009-03-11 19:51:07 +0000425 IRBuilder&lt;&gt; TmpB(&amp;TheFunction-&gt;getEntryBlock(),
Duncan Sands89f6d882008-04-13 06:22:09 +0000426 TheFunction-&gt;getEntryBlock().begin());
Nick Lewycky422094c2009-09-13 21:38:54 +0000427 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
428 VarName.c_str());
Chris Lattner62a709d2007-11-05 00:23:57 +0000429}
430</pre>
431</div>
432
Duncan Sands89f6d882008-04-13 06:22:09 +0000433<p>This funny looking code creates an IRBuilder object that is pointing at
Chris Lattner62a709d2007-11-05 00:23:57 +0000434the first instruction (.begin()) of the entry block. It then creates an alloca
435with the expected name and returns it. Because all values in Kaleidoscope are
436doubles, there is no need to pass in a type to use.</p>
437
438<p>With this in place, the first functionality change we want to make is to
439variable references. In our new scheme, variables live on the stack, so code
440generating a reference to them actually needs to produce a load from the stack
441slot:</p>
442
443<div class="doc_code">
444<pre>
445Value *VariableExprAST::Codegen() {
446 // Look this variable up in the function.
447 Value *V = NamedValues[Name];
448 if (V == 0) return ErrorV("Unknown variable name");
449
Chris Lattner1e46a6c2007-11-07 06:34:39 +0000450 <b>// Load the value.
451 return Builder.CreateLoad(V, Name.c_str());</b>
Chris Lattner62a709d2007-11-05 00:23:57 +0000452}
453</pre>
454</div>
455
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000456<p>As you can see, this is pretty straightforward. Now we need to update the
Chris Lattner62a709d2007-11-05 00:23:57 +0000457things that define the variables to set up the alloca. We'll start with
458<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
459the unabridged code):</p>
460
461<div class="doc_code">
462<pre>
463 Function *TheFunction = Builder.GetInsertBlock()->getParent();
464
465 <b>// Create an alloca for the variable in the entry block.
466 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
467
468 // Emit the start code first, without 'variable' in scope.
469 Value *StartVal = Start-&gt;Codegen();
470 if (StartVal == 0) return 0;
471
472 <b>// Store the value into the alloca.
473 Builder.CreateStore(StartVal, Alloca);</b>
474 ...
475
476 // Compute the end condition.
477 Value *EndCond = End-&gt;Codegen();
478 if (EndCond == 0) return EndCond;
479
480 <b>// Reload, increment, and restore the alloca. This handles the case where
481 // the body of the loop mutates the variable.
482 Value *CurVar = Builder.CreateLoad(Alloca);
483 Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
484 Builder.CreateStore(NextVar, Alloca);</b>
485 ...
486</pre>
487</div>
488
489<p>This code is virtually identical to the code <a
490href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The
491big difference is that we no longer have to construct a PHI node, and we use
492load/store to access the variable as needed.</p>
493
494<p>To support mutable argument variables, we need to also make allocas for them.
495The code for this is also pretty simple:</p>
496
497<div class="doc_code">
498<pre>
499/// CreateArgumentAllocas - Create an alloca for each argument and register the
500/// argument in the symbol table so that references to it will succeed.
501void PrototypeAST::CreateArgumentAllocas(Function *F) {
502 Function::arg_iterator AI = F-&gt;arg_begin();
503 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
504 // Create an alloca for this variable.
505 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
506
507 // Store the initial value into the alloca.
508 Builder.CreateStore(AI, Alloca);
509
510 // Add arguments to variable symbol table.
511 NamedValues[Args[Idx]] = Alloca;
512 }
513}
514</pre>
515</div>
516
517<p>For each argument, we make an alloca, store the input value to the function
518into the alloca, and register the alloca as the memory location for the
519argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
520it sets up the entry block for the function.</p>
521
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000522<p>The final missing piece is adding the mem2reg pass, which allows us to get
Chris Lattner62a709d2007-11-05 00:23:57 +0000523good codegen once again:</p>
524
525<div class="doc_code">
526<pre>
527 // Set up the optimizer pipeline. Start with registering info about how the
528 // target lays out data structures.
529 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
530 <b>// Promote allocas to registers.
531 OurFPM.add(createPromoteMemoryToRegisterPass());</b>
532 // Do simple "peephole" optimizations and bit-twiddling optzns.
533 OurFPM.add(createInstructionCombiningPass());
534 // Reassociate expressions.
535 OurFPM.add(createReassociatePass());
536</pre>
537</div>
538
539<p>It is interesting to see what the code looks like before and after the
540mem2reg optimization runs. For example, this is the before/after code for our
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000541recursive fib function. Before the optimization:</p>
Chris Lattner62a709d2007-11-05 00:23:57 +0000542
543<div class="doc_code">
544<pre>
545define double @fib(double %x) {
546entry:
547 <b>%x1 = alloca double
548 store double %x, double* %x1
549 %x2 = load double* %x1</b>
Chris Lattner71155212007-11-06 01:39:12 +0000550 %cmptmp = fcmp ult double %x2, 3.000000e+00
551 %booltmp = uitofp i1 %cmptmp to double
Chris Lattner62a709d2007-11-05 00:23:57 +0000552 %ifcond = fcmp one double %booltmp, 0.000000e+00
553 br i1 %ifcond, label %then, label %else
554
555then: ; preds = %entry
556 br label %ifcont
557
558else: ; preds = %entry
559 <b>%x3 = load double* %x1</b>
Dan Gohmana9445e12010-03-02 01:11:08 +0000560 %subtmp = fsub double %x3, 1.000000e+00
Chris Lattner62a709d2007-11-05 00:23:57 +0000561 %calltmp = call double @fib( double %subtmp )
562 <b>%x4 = load double* %x1</b>
Dan Gohmana9445e12010-03-02 01:11:08 +0000563 %subtmp5 = fsub double %x4, 2.000000e+00
Chris Lattner62a709d2007-11-05 00:23:57 +0000564 %calltmp6 = call double @fib( double %subtmp5 )
Dan Gohmana9445e12010-03-02 01:11:08 +0000565 %addtmp = fadd double %calltmp, %calltmp6
Chris Lattner62a709d2007-11-05 00:23:57 +0000566 br label %ifcont
567
568ifcont: ; preds = %else, %then
569 %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
570 ret double %iftmp
571}
572</pre>
573</div>
574
575<p>Here there is only one variable (x, the input argument) but you can still
576see the extremely simple-minded code generation strategy we are using. In the
577entry block, an alloca is created, and the initial input value is stored into
578it. Each reference to the variable does a reload from the stack. Also, note
579that we didn't modify the if/then/else expression, so it still inserts a PHI
580node. While we could make an alloca for it, it is actually easier to create a
581PHI node for it, so we still just make the PHI.</p>
582
583<p>Here is the code after the mem2reg pass runs:</p>
584
585<div class="doc_code">
586<pre>
587define double @fib(double %x) {
588entry:
Chris Lattner71155212007-11-06 01:39:12 +0000589 %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
590 %booltmp = uitofp i1 %cmptmp to double
Chris Lattner62a709d2007-11-05 00:23:57 +0000591 %ifcond = fcmp one double %booltmp, 0.000000e+00
592 br i1 %ifcond, label %then, label %else
593
594then:
595 br label %ifcont
596
597else:
Dan Gohmana9445e12010-03-02 01:11:08 +0000598 %subtmp = fsub double <b>%x</b>, 1.000000e+00
Chris Lattner62a709d2007-11-05 00:23:57 +0000599 %calltmp = call double @fib( double %subtmp )
Dan Gohmana9445e12010-03-02 01:11:08 +0000600 %subtmp5 = fsub double <b>%x</b>, 2.000000e+00
Chris Lattner62a709d2007-11-05 00:23:57 +0000601 %calltmp6 = call double @fib( double %subtmp5 )
Dan Gohmana9445e12010-03-02 01:11:08 +0000602 %addtmp = fadd double %calltmp, %calltmp6
Chris Lattner62a709d2007-11-05 00:23:57 +0000603 br label %ifcont
604
605ifcont: ; preds = %else, %then
606 %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
607 ret double %iftmp
608}
609</pre>
610</div>
611
612<p>This is a trivial case for mem2reg, since there are no redefinitions of the
613variable. The point of showing this is to calm your tension about inserting
614such blatent inefficiencies :).</p>
615
616<p>After the rest of the optimizers run, we get:</p>
617
618<div class="doc_code">
619<pre>
620define double @fib(double %x) {
621entry:
Chris Lattner71155212007-11-06 01:39:12 +0000622 %cmptmp = fcmp ult double %x, 3.000000e+00
623 %booltmp = uitofp i1 %cmptmp to double
Chris Lattner62a709d2007-11-05 00:23:57 +0000624 %ifcond = fcmp ueq double %booltmp, 0.000000e+00
625 br i1 %ifcond, label %else, label %ifcont
626
627else:
Dan Gohmana9445e12010-03-02 01:11:08 +0000628 %subtmp = fsub double %x, 1.000000e+00
Chris Lattner62a709d2007-11-05 00:23:57 +0000629 %calltmp = call double @fib( double %subtmp )
Dan Gohmana9445e12010-03-02 01:11:08 +0000630 %subtmp5 = fsub double %x, 2.000000e+00
Chris Lattner62a709d2007-11-05 00:23:57 +0000631 %calltmp6 = call double @fib( double %subtmp5 )
Dan Gohmana9445e12010-03-02 01:11:08 +0000632 %addtmp = fadd double %calltmp, %calltmp6
Chris Lattner62a709d2007-11-05 00:23:57 +0000633 ret double %addtmp
634
635ifcont:
636 ret double 1.000000e+00
637}
638</pre>
639</div>
640
641<p>Here we see that the simplifycfg pass decided to clone the return instruction
642into the end of the 'else' block. This allowed it to eliminate some branches
643and the PHI node.</p>
644
645<p>Now that all symbol table references are updated to use stack variables,
646we'll add the assignment operator.</p>
647
648</div>
649
650<!-- *********************************************************************** -->
651<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
652<!-- *********************************************************************** -->
653
654<div class="doc_text">
655
656<p>With our current framework, adding a new assignment operator is really
657simple. We will parse it just like any other binary operator, but handle it
658internally (instead of allowing the user to define it). The first step is to
659set a precedence:</p>
660
661<div class="doc_code">
662<pre>
663 int main() {
664 // Install standard binary operators.
665 // 1 is lowest precedence.
666 <b>BinopPrecedence['='] = 2;</b>
667 BinopPrecedence['&lt;'] = 10;
668 BinopPrecedence['+'] = 20;
669 BinopPrecedence['-'] = 20;
670</pre>
671</div>
672
673<p>Now that the parser knows the precedence of the binary operator, it takes
674care of all the parsing and AST generation. We just need to implement codegen
675for the assignment operator. This looks like:</p>
676
677<div class="doc_code">
678<pre>
679Value *BinaryExprAST::Codegen() {
680 // Special case '=' because we don't want to emit the LHS as an expression.
681 if (Op == '=') {
682 // Assignment requires the LHS to be an identifier.
683 VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
684 if (!LHSE)
685 return ErrorV("destination of '=' must be a variable");
686</pre>
687</div>
688
689<p>Unlike the rest of the binary operators, our assignment operator doesn't
690follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
691as a special case before the other binary operators are handled. The other
Chris Lattner1e46a6c2007-11-07 06:34:39 +0000692strange thing is that it requires the LHS to be a variable. It is invalid to
693have "(x+1) = expr" - only things like "x = expr" are allowed.
Chris Lattner62a709d2007-11-05 00:23:57 +0000694</p>
695
696<div class="doc_code">
697<pre>
698 // Codegen the RHS.
699 Value *Val = RHS-&gt;Codegen();
700 if (Val == 0) return 0;
701
702 // Look up the name.
703 Value *Variable = NamedValues[LHSE-&gt;getName()];
704 if (Variable == 0) return ErrorV("Unknown variable name");
705
706 Builder.CreateStore(Val, Variable);
707 return Val;
708 }
709 ...
710</pre>
711</div>
712
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000713<p>Once we have the variable, codegen'ing the assignment is straightforward:
Chris Lattner62a709d2007-11-05 00:23:57 +0000714we emit the RHS of the assignment, create a store, and return the computed
715value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
716
717<p>Now that we have an assignment operator, we can mutate loop variables and
718arguments. For example, we can now run code like this:</p>
719
720<div class="doc_code">
721<pre>
722# Function to print a double.
723extern printd(x);
724
725# Define ':' for sequencing: as a low-precedence operator that ignores operands
726# and just returns the RHS.
727def binary : 1 (x y) y;
728
729def test(x)
730 printd(x) :
731 x = 4 :
732 printd(x);
733
734test(123);
735</pre>
736</div>
737
738<p>When run, this example prints "123" and then "4", showing that we did
739actually mutate the value! Okay, we have now officially implemented our goal:
740getting this to work requires SSA construction in the general case. However,
741to be really useful, we want the ability to define our own local variables, lets
742add this next!
743</p>
744
745</div>
746
747<!-- *********************************************************************** -->
748<div class="doc_section"><a name="localvars">User-defined Local
749Variables</a></div>
750<!-- *********************************************************************** -->
751
752<div class="doc_text">
753
754<p>Adding var/in is just like any other other extensions we made to
755Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
756The first step for adding our new 'var/in' construct is to extend the lexer.
757As before, this is pretty trivial, the code looks like this:</p>
758
759<div class="doc_code">
760<pre>
761enum Token {
762 ...
763 <b>// var definition
764 tok_var = -13</b>
765...
766}
767...
768static int gettok() {
769...
770 if (IdentifierStr == "in") return tok_in;
771 if (IdentifierStr == "binary") return tok_binary;
772 if (IdentifierStr == "unary") return tok_unary;
773 <b>if (IdentifierStr == "var") return tok_var;</b>
774 return tok_identifier;
775...
776</pre>
777</div>
778
779<p>The next step is to define the AST node that we will construct. For var/in,
Chris Lattner1e46a6c2007-11-07 06:34:39 +0000780it looks like this:</p>
Chris Lattner62a709d2007-11-05 00:23:57 +0000781
782<div class="doc_code">
783<pre>
784/// VarExprAST - Expression class for var/in
785class VarExprAST : public ExprAST {
786 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
787 ExprAST *Body;
788public:
789 VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
790 ExprAST *body)
791 : VarNames(varnames), Body(body) {}
792
793 virtual Value *Codegen();
794};
795</pre>
796</div>
797
798<p>var/in allows a list of names to be defined all at once, and each name can
799optionally have an initializer value. As such, we capture this information in
800the VarNames vector. Also, var/in has a body, this body is allowed to access
Chris Lattner1e46a6c2007-11-07 06:34:39 +0000801the variables defined by the var/in.</p>
Chris Lattner62a709d2007-11-05 00:23:57 +0000802
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000803<p>With this in place, we can define the parser pieces. The first thing we do is add
Chris Lattner62a709d2007-11-05 00:23:57 +0000804it as a primary expression:</p>
805
806<div class="doc_code">
807<pre>
808/// primary
809/// ::= identifierexpr
810/// ::= numberexpr
811/// ::= parenexpr
812/// ::= ifexpr
813/// ::= forexpr
814<b>/// ::= varexpr</b>
815static ExprAST *ParsePrimary() {
816 switch (CurTok) {
817 default: return Error("unknown token when expecting an expression");
818 case tok_identifier: return ParseIdentifierExpr();
819 case tok_number: return ParseNumberExpr();
820 case '(': return ParseParenExpr();
821 case tok_if: return ParseIfExpr();
822 case tok_for: return ParseForExpr();
823 <b>case tok_var: return ParseVarExpr();</b>
824 }
825}
826</pre>
827</div>
828
829<p>Next we define ParseVarExpr:</p>
830
831<div class="doc_code">
832<pre>
Chris Lattner20a0c802007-11-05 17:54:34 +0000833/// varexpr ::= 'var' identifier ('=' expression)?
834// (',' identifier ('=' expression)?)* 'in' expression
Chris Lattner62a709d2007-11-05 00:23:57 +0000835static ExprAST *ParseVarExpr() {
836 getNextToken(); // eat the var.
837
838 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
839
840 // At least one variable name is required.
841 if (CurTok != tok_identifier)
842 return Error("expected identifier after var");
843</pre>
844</div>
845
846<p>The first part of this code parses the list of identifier/expr pairs into the
847local <tt>VarNames</tt> vector.
848
849<div class="doc_code">
850<pre>
851 while (1) {
852 std::string Name = IdentifierStr;
Chris Lattner20a0c802007-11-05 17:54:34 +0000853 getNextToken(); // eat identifier.
Chris Lattner62a709d2007-11-05 00:23:57 +0000854
855 // Read the optional initializer.
856 ExprAST *Init = 0;
857 if (CurTok == '=') {
858 getNextToken(); // eat the '='.
859
860 Init = ParseExpression();
861 if (Init == 0) return 0;
862 }
863
864 VarNames.push_back(std::make_pair(Name, Init));
865
866 // End of var list, exit loop.
867 if (CurTok != ',') break;
868 getNextToken(); // eat the ','.
869
870 if (CurTok != tok_identifier)
871 return Error("expected identifier list after var");
872 }
873</pre>
874</div>
875
876<p>Once all the variables are parsed, we then parse the body and create the
877AST node:</p>
878
879<div class="doc_code">
880<pre>
881 // At this point, we have to have 'in'.
882 if (CurTok != tok_in)
883 return Error("expected 'in' keyword after 'var'");
884 getNextToken(); // eat 'in'.
885
886 ExprAST *Body = ParseExpression();
887 if (Body == 0) return 0;
888
889 return new VarExprAST(VarNames, Body);
890}
891</pre>
892</div>
893
894<p>Now that we can parse and represent the code, we need to support emission of
895LLVM IR for it. This code starts out with:</p>
896
897<div class="doc_code">
898<pre>
899Value *VarExprAST::Codegen() {
900 std::vector&lt;AllocaInst *&gt; OldBindings;
901
902 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
903
904 // Register all variables and emit their initializer.
905 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
906 const std::string &amp;VarName = VarNames[i].first;
907 ExprAST *Init = VarNames[i].second;
908</pre>
909</div>
910
911<p>Basically it loops over all the variables, installing them one at a time.
912For each variable we put into the symbol table, we remember the previous value
913that we replace in OldBindings.</p>
914
915<div class="doc_code">
916<pre>
917 // Emit the initializer before adding the variable to scope, this prevents
918 // the initializer from referencing the variable itself, and permits stuff
919 // like this:
920 // var a = 1 in
921 // var a = a in ... # refers to outer 'a'.
922 Value *InitVal;
923 if (Init) {
924 InitVal = Init-&gt;Codegen();
925 if (InitVal == 0) return 0;
926 } else { // If not specified, use 0.0.
Owen Anderson6f83c9c2009-07-27 20:59:43 +0000927 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
Chris Lattner62a709d2007-11-05 00:23:57 +0000928 }
929
930 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
931 Builder.CreateStore(InitVal, Alloca);
932
933 // Remember the old variable binding so that we can restore the binding when
934 // we unrecurse.
935 OldBindings.push_back(NamedValues[VarName]);
936
937 // Remember this binding.
938 NamedValues[VarName] = Alloca;
939 }
940</pre>
941</div>
942
943<p>There are more comments here than code. The basic idea is that we emit the
944initializer, create the alloca, then update the symbol table to point to it.
945Once all the variables are installed in the symbol table, we evaluate the body
946of the var/in expression:</p>
947
948<div class="doc_code">
949<pre>
950 // Codegen the body, now that all vars are in scope.
951 Value *BodyVal = Body-&gt;Codegen();
952 if (BodyVal == 0) return 0;
953</pre>
954</div>
955
956<p>Finally, before returning, we restore the previous variable bindings:</p>
957
958<div class="doc_code">
959<pre>
960 // Pop all our variables from scope.
961 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
962 NamedValues[VarNames[i].first] = OldBindings[i];
963
964 // Return the body computation.
965 return BodyVal;
966}
967</pre>
968</div>
969
970<p>The end result of all of this is that we get properly scoped variable
971definitions, and we even (trivially) allow mutation of them :).</p>
972
973<p>With this, we completed what we set out to do. Our nice iterative fib
974example from the intro compiles and runs just fine. The mem2reg pass optimizes
975all of our stack variables into SSA registers, inserting PHI nodes where needed,
Chris Lattnerb7e6b1a2007-11-15 04:51:31 +0000976and our front-end remains simple: no "iterated dominance frontier" computation
Chris Lattner62a709d2007-11-05 00:23:57 +0000977anywhere in sight.</p>
978
979</div>
Chris Lattner00c992d2007-11-03 08:55:29 +0000980
981<!-- *********************************************************************** -->
982<div class="doc_section"><a name="code">Full Code Listing</a></div>
983<!-- *********************************************************************** -->
984
985<div class="doc_text">
986
987<p>
Chris Lattner62a709d2007-11-05 00:23:57 +0000988Here is the complete code listing for our running example, enhanced with mutable
989variables and var/in support. To build this example, use:
Chris Lattner00c992d2007-11-03 08:55:29 +0000990</p>
991
992<div class="doc_code">
993<pre>
994 # Compile
995 g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
996 # Run
997 ./toy
998</pre>
999</div>
1000
1001<p>Here is the code:</p>
1002
1003<div class="doc_code">
1004<pre>
Chris Lattner62a709d2007-11-05 00:23:57 +00001005#include "llvm/DerivedTypes.h"
1006#include "llvm/ExecutionEngine/ExecutionEngine.h"
Nick Lewycky422094c2009-09-13 21:38:54 +00001007#include "llvm/ExecutionEngine/JIT.h"
Owen Andersond1fbd142009-07-08 20:50:47 +00001008#include "llvm/LLVMContext.h"
Chris Lattner62a709d2007-11-05 00:23:57 +00001009#include "llvm/Module.h"
Chris Lattner62a709d2007-11-05 00:23:57 +00001010#include "llvm/PassManager.h"
1011#include "llvm/Analysis/Verifier.h"
1012#include "llvm/Target/TargetData.h"
Nick Lewycky422094c2009-09-13 21:38:54 +00001013#include "llvm/Target/TargetSelect.h"
Chris Lattner62a709d2007-11-05 00:23:57 +00001014#include "llvm/Transforms/Scalar.h"
Duncan Sands89f6d882008-04-13 06:22:09 +00001015#include "llvm/Support/IRBuilder.h"
Chris Lattner62a709d2007-11-05 00:23:57 +00001016#include &lt;cstdio&gt;
1017#include &lt;string&gt;
1018#include &lt;map&gt;
1019#include &lt;vector&gt;
1020using namespace llvm;
1021
1022//===----------------------------------------------------------------------===//
1023// Lexer
1024//===----------------------------------------------------------------------===//
1025
1026// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
1027// of these for known things.
1028enum Token {
1029 tok_eof = -1,
1030
1031 // commands
1032 tok_def = -2, tok_extern = -3,
1033
1034 // primary
1035 tok_identifier = -4, tok_number = -5,
1036
1037 // control
1038 tok_if = -6, tok_then = -7, tok_else = -8,
1039 tok_for = -9, tok_in = -10,
1040
1041 // operators
1042 tok_binary = -11, tok_unary = -12,
1043
1044 // var definition
1045 tok_var = -13
1046};
1047
1048static std::string IdentifierStr; // Filled in if tok_identifier
1049static double NumVal; // Filled in if tok_number
1050
1051/// gettok - Return the next token from standard input.
1052static int gettok() {
1053 static int LastChar = ' ';
1054
1055 // Skip any whitespace.
1056 while (isspace(LastChar))
1057 LastChar = getchar();
1058
1059 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
1060 IdentifierStr = LastChar;
1061 while (isalnum((LastChar = getchar())))
1062 IdentifierStr += LastChar;
1063
1064 if (IdentifierStr == "def") return tok_def;
1065 if (IdentifierStr == "extern") return tok_extern;
1066 if (IdentifierStr == "if") return tok_if;
1067 if (IdentifierStr == "then") return tok_then;
1068 if (IdentifierStr == "else") return tok_else;
1069 if (IdentifierStr == "for") return tok_for;
1070 if (IdentifierStr == "in") return tok_in;
1071 if (IdentifierStr == "binary") return tok_binary;
1072 if (IdentifierStr == "unary") return tok_unary;
1073 if (IdentifierStr == "var") return tok_var;
1074 return tok_identifier;
1075 }
1076
1077 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
1078 std::string NumStr;
1079 do {
1080 NumStr += LastChar;
1081 LastChar = getchar();
1082 } while (isdigit(LastChar) || LastChar == '.');
1083
1084 NumVal = strtod(NumStr.c_str(), 0);
1085 return tok_number;
1086 }
1087
1088 if (LastChar == '#') {
1089 // Comment until end of line.
1090 do LastChar = getchar();
Chris Lattnerc80c23f2007-12-02 22:46:01 +00001091 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
Chris Lattner62a709d2007-11-05 00:23:57 +00001092
1093 if (LastChar != EOF)
1094 return gettok();
1095 }
1096
1097 // Check for end of file. Don't eat the EOF.
1098 if (LastChar == EOF)
1099 return tok_eof;
1100
1101 // Otherwise, just return the character as its ascii value.
1102 int ThisChar = LastChar;
1103 LastChar = getchar();
1104 return ThisChar;
1105}
1106
1107//===----------------------------------------------------------------------===//
1108// Abstract Syntax Tree (aka Parse Tree)
1109//===----------------------------------------------------------------------===//
1110
1111/// ExprAST - Base class for all expression nodes.
1112class ExprAST {
1113public:
1114 virtual ~ExprAST() {}
1115 virtual Value *Codegen() = 0;
1116};
1117
1118/// NumberExprAST - Expression class for numeric literals like "1.0".
1119class NumberExprAST : public ExprAST {
1120 double Val;
1121public:
1122 NumberExprAST(double val) : Val(val) {}
1123 virtual Value *Codegen();
1124};
1125
1126/// VariableExprAST - Expression class for referencing a variable, like "a".
1127class VariableExprAST : public ExprAST {
1128 std::string Name;
1129public:
1130 VariableExprAST(const std::string &amp;name) : Name(name) {}
1131 const std::string &amp;getName() const { return Name; }
1132 virtual Value *Codegen();
1133};
1134
1135/// UnaryExprAST - Expression class for a unary operator.
1136class UnaryExprAST : public ExprAST {
1137 char Opcode;
1138 ExprAST *Operand;
1139public:
1140 UnaryExprAST(char opcode, ExprAST *operand)
1141 : Opcode(opcode), Operand(operand) {}
1142 virtual Value *Codegen();
1143};
1144
1145/// BinaryExprAST - Expression class for a binary operator.
1146class BinaryExprAST : public ExprAST {
1147 char Op;
1148 ExprAST *LHS, *RHS;
1149public:
1150 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
1151 : Op(op), LHS(lhs), RHS(rhs) {}
1152 virtual Value *Codegen();
1153};
1154
1155/// CallExprAST - Expression class for function calls.
1156class CallExprAST : public ExprAST {
1157 std::string Callee;
1158 std::vector&lt;ExprAST*&gt; Args;
1159public:
1160 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
1161 : Callee(callee), Args(args) {}
1162 virtual Value *Codegen();
1163};
1164
1165/// IfExprAST - Expression class for if/then/else.
1166class IfExprAST : public ExprAST {
1167 ExprAST *Cond, *Then, *Else;
1168public:
1169 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
1170 : Cond(cond), Then(then), Else(_else) {}
1171 virtual Value *Codegen();
1172};
1173
1174/// ForExprAST - Expression class for for/in.
1175class ForExprAST : public ExprAST {
1176 std::string VarName;
1177 ExprAST *Start, *End, *Step, *Body;
1178public:
1179 ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
1180 ExprAST *step, ExprAST *body)
1181 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
1182 virtual Value *Codegen();
1183};
1184
1185/// VarExprAST - Expression class for var/in
1186class VarExprAST : public ExprAST {
1187 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
1188 ExprAST *Body;
1189public:
1190 VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
1191 ExprAST *body)
1192 : VarNames(varnames), Body(body) {}
1193
1194 virtual Value *Codegen();
1195};
1196
1197/// PrototypeAST - This class represents the "prototype" for a function,
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001198/// which captures its name, and its argument names (thus implicitly the number
1199/// of arguments the function takes), as well as if it is an operator.
Chris Lattner62a709d2007-11-05 00:23:57 +00001200class PrototypeAST {
1201 std::string Name;
1202 std::vector&lt;std::string&gt; Args;
1203 bool isOperator;
1204 unsigned Precedence; // Precedence if a binary op.
1205public:
1206 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args,
1207 bool isoperator = false, unsigned prec = 0)
1208 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
1209
1210 bool isUnaryOp() const { return isOperator &amp;&amp; Args.size() == 1; }
1211 bool isBinaryOp() const { return isOperator &amp;&amp; Args.size() == 2; }
1212
1213 char getOperatorName() const {
1214 assert(isUnaryOp() || isBinaryOp());
1215 return Name[Name.size()-1];
1216 }
1217
1218 unsigned getBinaryPrecedence() const { return Precedence; }
1219
1220 Function *Codegen();
1221
1222 void CreateArgumentAllocas(Function *F);
1223};
1224
1225/// FunctionAST - This class represents a function definition itself.
1226class FunctionAST {
1227 PrototypeAST *Proto;
1228 ExprAST *Body;
1229public:
1230 FunctionAST(PrototypeAST *proto, ExprAST *body)
1231 : Proto(proto), Body(body) {}
1232
1233 Function *Codegen();
1234};
1235
1236//===----------------------------------------------------------------------===//
1237// Parser
1238//===----------------------------------------------------------------------===//
1239
1240/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001241/// token the parser is looking at. getNextToken reads another token from the
Chris Lattner62a709d2007-11-05 00:23:57 +00001242/// lexer and updates CurTok with its results.
1243static int CurTok;
1244static int getNextToken() {
1245 return CurTok = gettok();
1246}
1247
1248/// BinopPrecedence - This holds the precedence for each binary operator that is
1249/// defined.
1250static std::map&lt;char, int&gt; BinopPrecedence;
1251
1252/// GetTokPrecedence - Get the precedence of the pending binary operator token.
1253static int GetTokPrecedence() {
1254 if (!isascii(CurTok))
1255 return -1;
1256
1257 // Make sure it's a declared binop.
1258 int TokPrec = BinopPrecedence[CurTok];
1259 if (TokPrec &lt;= 0) return -1;
1260 return TokPrec;
1261}
1262
1263/// Error* - These are little helper functions for error handling.
1264ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
1265PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
1266FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
1267
1268static ExprAST *ParseExpression();
1269
1270/// identifierexpr
Chris Lattner20a0c802007-11-05 17:54:34 +00001271/// ::= identifier
1272/// ::= identifier '(' expression* ')'
Chris Lattner62a709d2007-11-05 00:23:57 +00001273static ExprAST *ParseIdentifierExpr() {
1274 std::string IdName = IdentifierStr;
1275
Chris Lattner20a0c802007-11-05 17:54:34 +00001276 getNextToken(); // eat identifier.
Chris Lattner62a709d2007-11-05 00:23:57 +00001277
1278 if (CurTok != '(') // Simple variable ref.
1279 return new VariableExprAST(IdName);
1280
1281 // Call.
1282 getNextToken(); // eat (
1283 std::vector&lt;ExprAST*&gt; Args;
1284 if (CurTok != ')') {
1285 while (1) {
1286 ExprAST *Arg = ParseExpression();
1287 if (!Arg) return 0;
1288 Args.push_back(Arg);
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001289
Chris Lattner62a709d2007-11-05 00:23:57 +00001290 if (CurTok == ')') break;
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001291
Chris Lattner62a709d2007-11-05 00:23:57 +00001292 if (CurTok != ',')
Chris Lattner6c4be9c2008-04-14 16:44:41 +00001293 return Error("Expected ')' or ',' in argument list");
Chris Lattner62a709d2007-11-05 00:23:57 +00001294 getNextToken();
1295 }
1296 }
1297
1298 // Eat the ')'.
1299 getNextToken();
1300
1301 return new CallExprAST(IdName, Args);
1302}
1303
1304/// numberexpr ::= number
1305static ExprAST *ParseNumberExpr() {
1306 ExprAST *Result = new NumberExprAST(NumVal);
1307 getNextToken(); // consume the number
1308 return Result;
1309}
1310
1311/// parenexpr ::= '(' expression ')'
1312static ExprAST *ParseParenExpr() {
1313 getNextToken(); // eat (.
1314 ExprAST *V = ParseExpression();
1315 if (!V) return 0;
1316
1317 if (CurTok != ')')
1318 return Error("expected ')'");
1319 getNextToken(); // eat ).
1320 return V;
1321}
1322
1323/// ifexpr ::= 'if' expression 'then' expression 'else' expression
1324static ExprAST *ParseIfExpr() {
1325 getNextToken(); // eat the if.
1326
1327 // condition.
1328 ExprAST *Cond = ParseExpression();
1329 if (!Cond) return 0;
1330
1331 if (CurTok != tok_then)
1332 return Error("expected then");
1333 getNextToken(); // eat the then
1334
1335 ExprAST *Then = ParseExpression();
1336 if (Then == 0) return 0;
1337
1338 if (CurTok != tok_else)
1339 return Error("expected else");
1340
1341 getNextToken();
1342
1343 ExprAST *Else = ParseExpression();
1344 if (!Else) return 0;
1345
1346 return new IfExprAST(Cond, Then, Else);
1347}
1348
Chris Lattner20a0c802007-11-05 17:54:34 +00001349/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
Chris Lattner62a709d2007-11-05 00:23:57 +00001350static ExprAST *ParseForExpr() {
1351 getNextToken(); // eat the for.
1352
1353 if (CurTok != tok_identifier)
1354 return Error("expected identifier after for");
1355
1356 std::string IdName = IdentifierStr;
Chris Lattner20a0c802007-11-05 17:54:34 +00001357 getNextToken(); // eat identifier.
Chris Lattner62a709d2007-11-05 00:23:57 +00001358
1359 if (CurTok != '=')
1360 return Error("expected '=' after for");
1361 getNextToken(); // eat '='.
1362
1363
1364 ExprAST *Start = ParseExpression();
1365 if (Start == 0) return 0;
1366 if (CurTok != ',')
1367 return Error("expected ',' after for start value");
1368 getNextToken();
1369
1370 ExprAST *End = ParseExpression();
1371 if (End == 0) return 0;
1372
1373 // The step value is optional.
1374 ExprAST *Step = 0;
1375 if (CurTok == ',') {
1376 getNextToken();
1377 Step = ParseExpression();
1378 if (Step == 0) return 0;
1379 }
1380
1381 if (CurTok != tok_in)
1382 return Error("expected 'in' after for");
1383 getNextToken(); // eat 'in'.
1384
1385 ExprAST *Body = ParseExpression();
1386 if (Body == 0) return 0;
1387
1388 return new ForExprAST(IdName, Start, End, Step, Body);
1389}
1390
Chris Lattner20a0c802007-11-05 17:54:34 +00001391/// varexpr ::= 'var' identifier ('=' expression)?
1392// (',' identifier ('=' expression)?)* 'in' expression
Chris Lattner62a709d2007-11-05 00:23:57 +00001393static ExprAST *ParseVarExpr() {
1394 getNextToken(); // eat the var.
1395
1396 std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
1397
1398 // At least one variable name is required.
1399 if (CurTok != tok_identifier)
1400 return Error("expected identifier after var");
1401
1402 while (1) {
1403 std::string Name = IdentifierStr;
Chris Lattner20a0c802007-11-05 17:54:34 +00001404 getNextToken(); // eat identifier.
Chris Lattner62a709d2007-11-05 00:23:57 +00001405
1406 // Read the optional initializer.
1407 ExprAST *Init = 0;
1408 if (CurTok == '=') {
1409 getNextToken(); // eat the '='.
1410
1411 Init = ParseExpression();
1412 if (Init == 0) return 0;
1413 }
1414
1415 VarNames.push_back(std::make_pair(Name, Init));
1416
1417 // End of var list, exit loop.
1418 if (CurTok != ',') break;
1419 getNextToken(); // eat the ','.
1420
1421 if (CurTok != tok_identifier)
1422 return Error("expected identifier list after var");
1423 }
1424
1425 // At this point, we have to have 'in'.
1426 if (CurTok != tok_in)
1427 return Error("expected 'in' keyword after 'var'");
1428 getNextToken(); // eat 'in'.
1429
1430 ExprAST *Body = ParseExpression();
1431 if (Body == 0) return 0;
1432
1433 return new VarExprAST(VarNames, Body);
1434}
1435
Chris Lattner62a709d2007-11-05 00:23:57 +00001436/// primary
1437/// ::= identifierexpr
1438/// ::= numberexpr
1439/// ::= parenexpr
1440/// ::= ifexpr
1441/// ::= forexpr
1442/// ::= varexpr
1443static ExprAST *ParsePrimary() {
1444 switch (CurTok) {
1445 default: return Error("unknown token when expecting an expression");
1446 case tok_identifier: return ParseIdentifierExpr();
1447 case tok_number: return ParseNumberExpr();
1448 case '(': return ParseParenExpr();
1449 case tok_if: return ParseIfExpr();
1450 case tok_for: return ParseForExpr();
1451 case tok_var: return ParseVarExpr();
1452 }
1453}
1454
1455/// unary
1456/// ::= primary
1457/// ::= '!' unary
1458static ExprAST *ParseUnary() {
1459 // If the current token is not an operator, it must be a primary expr.
1460 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
1461 return ParsePrimary();
1462
1463 // If this is a unary operator, read it.
1464 int Opc = CurTok;
1465 getNextToken();
1466 if (ExprAST *Operand = ParseUnary())
1467 return new UnaryExprAST(Opc, Operand);
1468 return 0;
1469}
1470
1471/// binoprhs
1472/// ::= ('+' unary)*
1473static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
1474 // If this is a binop, find its precedence.
1475 while (1) {
1476 int TokPrec = GetTokPrecedence();
1477
1478 // If this is a binop that binds at least as tightly as the current binop,
1479 // consume it, otherwise we are done.
1480 if (TokPrec &lt; ExprPrec)
1481 return LHS;
1482
1483 // Okay, we know this is a binop.
1484 int BinOp = CurTok;
1485 getNextToken(); // eat binop
1486
1487 // Parse the unary expression after the binary operator.
1488 ExprAST *RHS = ParseUnary();
1489 if (!RHS) return 0;
1490
1491 // If BinOp binds less tightly with RHS than the operator after RHS, let
1492 // the pending operator take RHS as its LHS.
1493 int NextPrec = GetTokPrecedence();
1494 if (TokPrec &lt; NextPrec) {
1495 RHS = ParseBinOpRHS(TokPrec+1, RHS);
1496 if (RHS == 0) return 0;
1497 }
1498
1499 // Merge LHS/RHS.
1500 LHS = new BinaryExprAST(BinOp, LHS, RHS);
1501 }
1502}
1503
1504/// expression
1505/// ::= unary binoprhs
1506///
1507static ExprAST *ParseExpression() {
1508 ExprAST *LHS = ParseUnary();
1509 if (!LHS) return 0;
1510
1511 return ParseBinOpRHS(0, LHS);
1512}
1513
1514/// prototype
1515/// ::= id '(' id* ')'
1516/// ::= binary LETTER number? (id, id)
1517/// ::= unary LETTER (id)
1518static PrototypeAST *ParsePrototype() {
1519 std::string FnName;
1520
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001521 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
Chris Lattner62a709d2007-11-05 00:23:57 +00001522 unsigned BinaryPrecedence = 30;
1523
1524 switch (CurTok) {
1525 default:
1526 return ErrorP("Expected function name in prototype");
1527 case tok_identifier:
1528 FnName = IdentifierStr;
1529 Kind = 0;
1530 getNextToken();
1531 break;
1532 case tok_unary:
1533 getNextToken();
1534 if (!isascii(CurTok))
1535 return ErrorP("Expected unary operator");
1536 FnName = "unary";
1537 FnName += (char)CurTok;
1538 Kind = 1;
1539 getNextToken();
1540 break;
1541 case tok_binary:
1542 getNextToken();
1543 if (!isascii(CurTok))
1544 return ErrorP("Expected binary operator");
1545 FnName = "binary";
1546 FnName += (char)CurTok;
1547 Kind = 2;
1548 getNextToken();
1549
1550 // Read the precedence if present.
1551 if (CurTok == tok_number) {
1552 if (NumVal &lt; 1 || NumVal &gt; 100)
1553 return ErrorP("Invalid precedecnce: must be 1..100");
1554 BinaryPrecedence = (unsigned)NumVal;
1555 getNextToken();
1556 }
1557 break;
1558 }
1559
1560 if (CurTok != '(')
1561 return ErrorP("Expected '(' in prototype");
1562
1563 std::vector&lt;std::string&gt; ArgNames;
1564 while (getNextToken() == tok_identifier)
1565 ArgNames.push_back(IdentifierStr);
1566 if (CurTok != ')')
1567 return ErrorP("Expected ')' in prototype");
1568
1569 // success.
1570 getNextToken(); // eat ')'.
1571
1572 // Verify right number of names for operator.
1573 if (Kind &amp;&amp; ArgNames.size() != Kind)
1574 return ErrorP("Invalid number of operands for operator");
1575
1576 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
1577}
1578
1579/// definition ::= 'def' prototype expression
1580static FunctionAST *ParseDefinition() {
1581 getNextToken(); // eat def.
1582 PrototypeAST *Proto = ParsePrototype();
1583 if (Proto == 0) return 0;
1584
1585 if (ExprAST *E = ParseExpression())
1586 return new FunctionAST(Proto, E);
1587 return 0;
1588}
1589
1590/// toplevelexpr ::= expression
1591static FunctionAST *ParseTopLevelExpr() {
1592 if (ExprAST *E = ParseExpression()) {
1593 // Make an anonymous proto.
1594 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
1595 return new FunctionAST(Proto, E);
1596 }
1597 return 0;
1598}
1599
1600/// external ::= 'extern' prototype
1601static PrototypeAST *ParseExtern() {
1602 getNextToken(); // eat extern.
1603 return ParsePrototype();
1604}
1605
1606//===----------------------------------------------------------------------===//
1607// Code Generation
1608//===----------------------------------------------------------------------===//
1609
1610static Module *TheModule;
Owen Andersond1fbd142009-07-08 20:50:47 +00001611static IRBuilder&lt;&gt; Builder(getGlobalContext());
Chris Lattner62a709d2007-11-05 00:23:57 +00001612static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
1613static FunctionPassManager *TheFPM;
1614
1615Value *ErrorV(const char *Str) { Error(Str); return 0; }
1616
1617/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1618/// the function. This is used for mutable variables etc.
1619static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
1620 const std::string &amp;VarName) {
Gabor Greifd6c1ed02009-03-11 19:51:07 +00001621 IRBuilder&lt;&gt; TmpB(&amp;TheFunction-&gt;getEntryBlock(),
Duncan Sands89f6d882008-04-13 06:22:09 +00001622 TheFunction-&gt;getEntryBlock().begin());
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001623 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
1624 VarName.c_str());
Chris Lattner62a709d2007-11-05 00:23:57 +00001625}
1626
Chris Lattner62a709d2007-11-05 00:23:57 +00001627Value *NumberExprAST::Codegen() {
Owen Anderson6f83c9c2009-07-27 20:59:43 +00001628 return ConstantFP::get(getGlobalContext(), APFloat(Val));
Chris Lattner62a709d2007-11-05 00:23:57 +00001629}
1630
1631Value *VariableExprAST::Codegen() {
1632 // Look this variable up in the function.
1633 Value *V = NamedValues[Name];
1634 if (V == 0) return ErrorV("Unknown variable name");
1635
1636 // Load the value.
1637 return Builder.CreateLoad(V, Name.c_str());
1638}
1639
1640Value *UnaryExprAST::Codegen() {
1641 Value *OperandV = Operand-&gt;Codegen();
1642 if (OperandV == 0) return 0;
1643
1644 Function *F = TheModule-&gt;getFunction(std::string("unary")+Opcode);
1645 if (F == 0)
1646 return ErrorV("Unknown unary operator");
1647
1648 return Builder.CreateCall(F, OperandV, "unop");
1649}
1650
Chris Lattner62a709d2007-11-05 00:23:57 +00001651Value *BinaryExprAST::Codegen() {
1652 // Special case '=' because we don't want to emit the LHS as an expression.
1653 if (Op == '=') {
1654 // Assignment requires the LHS to be an identifier.
1655 VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
1656 if (!LHSE)
1657 return ErrorV("destination of '=' must be a variable");
1658 // Codegen the RHS.
1659 Value *Val = RHS-&gt;Codegen();
1660 if (Val == 0) return 0;
1661
1662 // Look up the name.
1663 Value *Variable = NamedValues[LHSE-&gt;getName()];
1664 if (Variable == 0) return ErrorV("Unknown variable name");
1665
1666 Builder.CreateStore(Val, Variable);
1667 return Val;
1668 }
1669
Chris Lattner62a709d2007-11-05 00:23:57 +00001670 Value *L = LHS-&gt;Codegen();
1671 Value *R = RHS-&gt;Codegen();
1672 if (L == 0 || R == 0) return 0;
1673
1674 switch (Op) {
1675 case '+': return Builder.CreateAdd(L, R, "addtmp");
1676 case '-': return Builder.CreateSub(L, R, "subtmp");
1677 case '*': return Builder.CreateMul(L, R, "multmp");
1678 case '&lt;':
Chris Lattner71155212007-11-06 01:39:12 +00001679 L = Builder.CreateFCmpULT(L, R, "cmptmp");
Chris Lattner62a709d2007-11-05 00:23:57 +00001680 // Convert bool 0/1 to double 0.0 or 1.0
Nick Lewycky422094c2009-09-13 21:38:54 +00001681 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1682 "booltmp");
Chris Lattner62a709d2007-11-05 00:23:57 +00001683 default: break;
1684 }
1685
1686 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1687 // a call to it.
1688 Function *F = TheModule-&gt;getFunction(std::string("binary")+Op);
1689 assert(F &amp;&amp; "binary operator not found!");
1690
1691 Value *Ops[] = { L, R };
1692 return Builder.CreateCall(F, Ops, Ops+2, "binop");
1693}
1694
1695Value *CallExprAST::Codegen() {
1696 // Look up the name in the global module table.
1697 Function *CalleeF = TheModule-&gt;getFunction(Callee);
1698 if (CalleeF == 0)
1699 return ErrorV("Unknown function referenced");
1700
1701 // If argument mismatch error.
1702 if (CalleeF-&gt;arg_size() != Args.size())
1703 return ErrorV("Incorrect # arguments passed");
1704
1705 std::vector&lt;Value*&gt; ArgsV;
1706 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1707 ArgsV.push_back(Args[i]-&gt;Codegen());
1708 if (ArgsV.back() == 0) return 0;
1709 }
1710
1711 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
1712}
1713
1714Value *IfExprAST::Codegen() {
1715 Value *CondV = Cond-&gt;Codegen();
1716 if (CondV == 0) return 0;
1717
1718 // Convert condition to a bool by comparing equal to 0.0.
1719 CondV = Builder.CreateFCmpONE(CondV,
Owen Anderson6f83c9c2009-07-27 20:59:43 +00001720 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
Chris Lattner62a709d2007-11-05 00:23:57 +00001721 "ifcond");
1722
1723 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1724
1725 // Create blocks for the then and else cases. Insert the 'then' block at the
1726 // end of the function.
Owen Anderson1d0be152009-08-13 21:58:54 +00001727 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1728 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1729 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
Chris Lattner62a709d2007-11-05 00:23:57 +00001730
1731 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1732
1733 // Emit then value.
1734 Builder.SetInsertPoint(ThenBB);
1735
1736 Value *ThenV = Then-&gt;Codegen();
1737 if (ThenV == 0) return 0;
1738
1739 Builder.CreateBr(MergeBB);
1740 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1741 ThenBB = Builder.GetInsertBlock();
1742
1743 // Emit else block.
1744 TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
1745 Builder.SetInsertPoint(ElseBB);
1746
1747 Value *ElseV = Else-&gt;Codegen();
1748 if (ElseV == 0) return 0;
1749
1750 Builder.CreateBr(MergeBB);
1751 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1752 ElseBB = Builder.GetInsertBlock();
1753
1754 // Emit merge block.
1755 TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
1756 Builder.SetInsertPoint(MergeBB);
Nick Lewycky422094c2009-09-13 21:38:54 +00001757 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
1758 "iftmp");
Chris Lattner62a709d2007-11-05 00:23:57 +00001759
1760 PN-&gt;addIncoming(ThenV, ThenBB);
1761 PN-&gt;addIncoming(ElseV, ElseBB);
1762 return PN;
1763}
1764
1765Value *ForExprAST::Codegen() {
1766 // Output this as:
1767 // var = alloca double
1768 // ...
1769 // start = startexpr
1770 // store start -&gt; var
1771 // goto loop
1772 // loop:
1773 // ...
1774 // bodyexpr
1775 // ...
1776 // loopend:
1777 // step = stepexpr
1778 // endcond = endexpr
1779 //
1780 // curvar = load var
1781 // nextvar = curvar + step
1782 // store nextvar -&gt; var
1783 // br endcond, loop, endloop
1784 // outloop:
1785
1786 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1787
1788 // Create an alloca for the variable in the entry block.
1789 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1790
1791 // Emit the start code first, without 'variable' in scope.
1792 Value *StartVal = Start-&gt;Codegen();
1793 if (StartVal == 0) return 0;
1794
1795 // Store the value into the alloca.
1796 Builder.CreateStore(StartVal, Alloca);
1797
1798 // Make the new basic block for the loop header, inserting after current
1799 // block.
Owen Anderson1d0be152009-08-13 21:58:54 +00001800 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
Chris Lattner62a709d2007-11-05 00:23:57 +00001801
1802 // Insert an explicit fall through from the current block to the LoopBB.
1803 Builder.CreateBr(LoopBB);
1804
1805 // Start insertion in LoopBB.
1806 Builder.SetInsertPoint(LoopBB);
1807
1808 // Within the loop, the variable is defined equal to the PHI node. If it
1809 // shadows an existing variable, we have to restore it, so save it now.
1810 AllocaInst *OldVal = NamedValues[VarName];
1811 NamedValues[VarName] = Alloca;
1812
1813 // Emit the body of the loop. This, like any other expr, can change the
1814 // current BB. Note that we ignore the value computed by the body, but don't
1815 // allow an error.
1816 if (Body-&gt;Codegen() == 0)
1817 return 0;
1818
1819 // Emit the step value.
1820 Value *StepVal;
1821 if (Step) {
1822 StepVal = Step-&gt;Codegen();
1823 if (StepVal == 0) return 0;
1824 } else {
1825 // If not specified, use 1.0.
Owen Anderson6f83c9c2009-07-27 20:59:43 +00001826 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
Chris Lattner62a709d2007-11-05 00:23:57 +00001827 }
1828
1829 // Compute the end condition.
1830 Value *EndCond = End-&gt;Codegen();
1831 if (EndCond == 0) return EndCond;
1832
1833 // Reload, increment, and restore the alloca. This handles the case where
1834 // the body of the loop mutates the variable.
1835 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1836 Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
1837 Builder.CreateStore(NextVar, Alloca);
1838
1839 // Convert condition to a bool by comparing equal to 0.0.
1840 EndCond = Builder.CreateFCmpONE(EndCond,
Owen Anderson6f83c9c2009-07-27 20:59:43 +00001841 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
Chris Lattner62a709d2007-11-05 00:23:57 +00001842 "loopcond");
1843
1844 // Create the "after loop" block and insert it.
Owen Anderson1d0be152009-08-13 21:58:54 +00001845 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
Chris Lattner62a709d2007-11-05 00:23:57 +00001846
1847 // Insert the conditional branch into the end of LoopEndBB.
1848 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1849
1850 // Any new code will be inserted in AfterBB.
1851 Builder.SetInsertPoint(AfterBB);
1852
1853 // Restore the unshadowed variable.
1854 if (OldVal)
1855 NamedValues[VarName] = OldVal;
1856 else
1857 NamedValues.erase(VarName);
1858
1859
1860 // for expr always returns 0.0.
Owen Anderson1d0be152009-08-13 21:58:54 +00001861 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
Chris Lattner62a709d2007-11-05 00:23:57 +00001862}
1863
1864Value *VarExprAST::Codegen() {
1865 std::vector&lt;AllocaInst *&gt; OldBindings;
1866
1867 Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
1868
1869 // Register all variables and emit their initializer.
1870 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1871 const std::string &amp;VarName = VarNames[i].first;
1872 ExprAST *Init = VarNames[i].second;
1873
1874 // Emit the initializer before adding the variable to scope, this prevents
1875 // the initializer from referencing the variable itself, and permits stuff
1876 // like this:
1877 // var a = 1 in
1878 // var a = a in ... # refers to outer 'a'.
1879 Value *InitVal;
1880 if (Init) {
1881 InitVal = Init-&gt;Codegen();
1882 if (InitVal == 0) return 0;
1883 } else { // If not specified, use 0.0.
Owen Anderson6f83c9c2009-07-27 20:59:43 +00001884 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
Chris Lattner62a709d2007-11-05 00:23:57 +00001885 }
1886
1887 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1888 Builder.CreateStore(InitVal, Alloca);
1889
1890 // Remember the old variable binding so that we can restore the binding when
1891 // we unrecurse.
1892 OldBindings.push_back(NamedValues[VarName]);
1893
1894 // Remember this binding.
1895 NamedValues[VarName] = Alloca;
1896 }
1897
1898 // Codegen the body, now that all vars are in scope.
1899 Value *BodyVal = Body-&gt;Codegen();
1900 if (BodyVal == 0) return 0;
1901
1902 // Pop all our variables from scope.
1903 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1904 NamedValues[VarNames[i].first] = OldBindings[i];
1905
1906 // Return the body computation.
1907 return BodyVal;
1908}
1909
Chris Lattner62a709d2007-11-05 00:23:57 +00001910Function *PrototypeAST::Codegen() {
1911 // Make the function type: double(double,double) etc.
Nick Lewycky422094c2009-09-13 21:38:54 +00001912 std::vector&lt;const Type*&gt; Doubles(Args.size(),
1913 Type::getDoubleTy(getGlobalContext()));
1914 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1915 Doubles, false);
Chris Lattner62a709d2007-11-05 00:23:57 +00001916
Gabor Greifdf7d2b42008-04-19 22:25:09 +00001917 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
Chris Lattner62a709d2007-11-05 00:23:57 +00001918
1919 // If F conflicted, there was already something named 'Name'. If it has a
1920 // body, don't allow redefinition or reextern.
1921 if (F-&gt;getName() != Name) {
1922 // Delete the one we just made and get the existing one.
1923 F-&gt;eraseFromParent();
1924 F = TheModule-&gt;getFunction(Name);
1925
1926 // If F already has a body, reject this.
1927 if (!F-&gt;empty()) {
1928 ErrorF("redefinition of function");
1929 return 0;
1930 }
1931
1932 // If F took a different number of args, reject.
1933 if (F-&gt;arg_size() != Args.size()) {
1934 ErrorF("redefinition of function with different # args");
1935 return 0;
1936 }
1937 }
1938
1939 // Set names for all arguments.
1940 unsigned Idx = 0;
1941 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
1942 ++AI, ++Idx)
1943 AI-&gt;setName(Args[Idx]);
1944
1945 return F;
1946}
1947
1948/// CreateArgumentAllocas - Create an alloca for each argument and register the
1949/// argument in the symbol table so that references to it will succeed.
1950void PrototypeAST::CreateArgumentAllocas(Function *F) {
1951 Function::arg_iterator AI = F-&gt;arg_begin();
1952 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1953 // Create an alloca for this variable.
1954 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1955
1956 // Store the initial value into the alloca.
1957 Builder.CreateStore(AI, Alloca);
1958
1959 // Add arguments to variable symbol table.
1960 NamedValues[Args[Idx]] = Alloca;
1961 }
1962}
1963
Chris Lattner62a709d2007-11-05 00:23:57 +00001964Function *FunctionAST::Codegen() {
1965 NamedValues.clear();
1966
1967 Function *TheFunction = Proto-&gt;Codegen();
1968 if (TheFunction == 0)
1969 return 0;
1970
1971 // If this is an operator, install it.
1972 if (Proto-&gt;isBinaryOp())
1973 BinopPrecedence[Proto-&gt;getOperatorName()] = Proto-&gt;getBinaryPrecedence();
1974
1975 // Create a new basic block to start insertion into.
Owen Anderson1d0be152009-08-13 21:58:54 +00001976 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
Chris Lattner62a709d2007-11-05 00:23:57 +00001977 Builder.SetInsertPoint(BB);
1978
1979 // Add all arguments to the symbol table and create their allocas.
1980 Proto-&gt;CreateArgumentAllocas(TheFunction);
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00001981
Chris Lattner62a709d2007-11-05 00:23:57 +00001982 if (Value *RetVal = Body-&gt;Codegen()) {
1983 // Finish off the function.
1984 Builder.CreateRet(RetVal);
1985
1986 // Validate the generated code, checking for consistency.
1987 verifyFunction(*TheFunction);
1988
1989 // Optimize the function.
1990 TheFPM-&gt;run(*TheFunction);
1991
1992 return TheFunction;
1993 }
1994
1995 // Error reading body, remove function.
1996 TheFunction-&gt;eraseFromParent();
1997
1998 if (Proto-&gt;isBinaryOp())
1999 BinopPrecedence.erase(Proto-&gt;getOperatorName());
2000 return 0;
2001}
2002
2003//===----------------------------------------------------------------------===//
2004// Top-Level parsing and JIT Driver
2005//===----------------------------------------------------------------------===//
2006
2007static ExecutionEngine *TheExecutionEngine;
2008
2009static void HandleDefinition() {
2010 if (FunctionAST *F = ParseDefinition()) {
2011 if (Function *LF = F-&gt;Codegen()) {
2012 fprintf(stderr, "Read function definition:");
2013 LF-&gt;dump();
2014 }
2015 } else {
2016 // Skip token for error recovery.
2017 getNextToken();
2018 }
2019}
2020
2021static void HandleExtern() {
2022 if (PrototypeAST *P = ParseExtern()) {
2023 if (Function *F = P-&gt;Codegen()) {
2024 fprintf(stderr, "Read extern: ");
2025 F-&gt;dump();
2026 }
2027 } else {
2028 // Skip token for error recovery.
2029 getNextToken();
2030 }
2031}
2032
2033static void HandleTopLevelExpression() {
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00002034 // Evaluate a top-level expression into an anonymous function.
Chris Lattner62a709d2007-11-05 00:23:57 +00002035 if (FunctionAST *F = ParseTopLevelExpr()) {
2036 if (Function *LF = F-&gt;Codegen()) {
2037 // JIT the function, returning a function pointer.
2038 void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
2039
2040 // Cast it to the right type (takes no arguments, returns a double) so we
2041 // can call it as a native function.
Nick Lewycky422094c2009-09-13 21:38:54 +00002042 double (*FP)() = (double (*)())(intptr_t)FPtr;
Chris Lattner62a709d2007-11-05 00:23:57 +00002043 fprintf(stderr, "Evaluated to %f\n", FP());
2044 }
2045 } else {
2046 // Skip token for error recovery.
2047 getNextToken();
2048 }
2049}
2050
2051/// top ::= definition | external | expression | ';'
2052static void MainLoop() {
2053 while (1) {
2054 fprintf(stderr, "ready&gt; ");
2055 switch (CurTok) {
2056 case tok_eof: return;
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00002057 case ';': getNextToken(); break; // ignore top-level semicolons.
Chris Lattner62a709d2007-11-05 00:23:57 +00002058 case tok_def: HandleDefinition(); break;
2059 case tok_extern: HandleExtern(); break;
2060 default: HandleTopLevelExpression(); break;
2061 }
2062 }
2063}
2064
Chris Lattner62a709d2007-11-05 00:23:57 +00002065//===----------------------------------------------------------------------===//
2066// "Library" functions that can be "extern'd" from user code.
2067//===----------------------------------------------------------------------===//
2068
2069/// putchard - putchar that takes a double and returns 0.
2070extern "C"
2071double putchard(double X) {
2072 putchar((char)X);
2073 return 0;
2074}
2075
2076/// printd - printf that takes a double prints it as "%f\n", returning 0.
2077extern "C"
2078double printd(double X) {
2079 printf("%f\n", X);
2080 return 0;
2081}
2082
2083//===----------------------------------------------------------------------===//
2084// Main driver code.
2085//===----------------------------------------------------------------------===//
2086
2087int main() {
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00002088 InitializeNativeTarget();
2089 LLVMContext &amp;Context = getGlobalContext();
2090
Chris Lattner62a709d2007-11-05 00:23:57 +00002091 // Install standard binary operators.
2092 // 1 is lowest precedence.
2093 BinopPrecedence['='] = 2;
2094 BinopPrecedence['&lt;'] = 10;
2095 BinopPrecedence['+'] = 20;
2096 BinopPrecedence['-'] = 20;
2097 BinopPrecedence['*'] = 40; // highest.
2098
2099 // Prime the first token.
2100 fprintf(stderr, "ready&gt; ");
2101 getNextToken();
2102
2103 // Make the module, which holds all the code.
Erick Tryzelaarfd1ec5e2009-09-22 21:14:49 +00002104 TheModule = new Module("my cool jit", Context);
Chris Lattner62a709d2007-11-05 00:23:57 +00002105
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +00002106 // Create the JIT. This takes ownership of the module.
Jeffrey Yasskin42fc5582010-02-11 19:15:20 +00002107 std::string ErrStr;
2108 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
2109 if (!TheExecutionEngine) {
2110 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
2111 exit(1);
2112 }
Chris Lattner62a709d2007-11-05 00:23:57 +00002113
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +00002114 FunctionPassManager OurFPM(TheModule);
Reid Kleckner60130f02009-08-26 20:58:25 +00002115
2116 // Set up the optimizer pipeline. Start with registering info about how the
2117 // target lays out data structures.
2118 OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
Nick Lewycky422094c2009-09-13 21:38:54 +00002119 // Promote allocas to registers.
2120 OurFPM.add(createPromoteMemoryToRegisterPass());
Reid Kleckner60130f02009-08-26 20:58:25 +00002121 // Do simple "peephole" optimizations and bit-twiddling optzns.
2122 OurFPM.add(createInstructionCombiningPass());
2123 // Reassociate expressions.
2124 OurFPM.add(createReassociatePass());
2125 // Eliminate Common SubExpressions.
2126 OurFPM.add(createGVNPass());
2127 // Simplify the control flow graph (deleting unreachable blocks, etc).
2128 OurFPM.add(createCFGSimplificationPass());
2129
Nick Lewycky422094c2009-09-13 21:38:54 +00002130 OurFPM.doInitialization();
2131
Reid Kleckner60130f02009-08-26 20:58:25 +00002132 // Set the global so the code gen can use this.
2133 TheFPM = &amp;OurFPM;
2134
2135 // Run the main "interpreter loop" now.
2136 MainLoop();
2137
2138 TheFPM = 0;
2139
2140 // Print out all of the generated code.
2141 TheModule-&gt;dump();
2142
Chris Lattner62a709d2007-11-05 00:23:57 +00002143 return 0;
2144}
Chris Lattner00c992d2007-11-03 08:55:29 +00002145</pre>
2146</div>
2147
Chris Lattner729eb142008-02-10 19:11:04 +00002148<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
Chris Lattner00c992d2007-11-03 08:55:29 +00002149</div>
2150
2151<!-- *********************************************************************** -->
2152<hr>
2153<address>
2154 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2155 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2156 <a href="http://validator.w3.org/check/referer"><img
2157 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
2158
2159 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2160 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Dan Gohman523e3922010-02-03 17:27:31 +00002161 Last modified: $Date$
Chris Lattner00c992d2007-11-03 08:55:29 +00002162</address>
2163</body>
2164</html>