blob: 05f4e66f882ade69612267266398f4eab787bab9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruthc0470a82007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000206 </ol>
207 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000208 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000210 <li><a href="#int_var_annotation">
211 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
212 </ol>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000213 <ol>
214 <li><a href="#int_annotation">
215 <tt>llvm.annotation</tt>' Intrinsic</a></li>
216 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 </li>
218 </ol>
219 </li>
220</ol>
221
222<div class="doc_author">
223 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
224 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
225</div>
226
227<!-- *********************************************************************** -->
228<div class="doc_section"> <a name="abstract">Abstract </a></div>
229<!-- *********************************************************************** -->
230
231<div class="doc_text">
232<p>This document is a reference manual for the LLVM assembly language.
233LLVM is an SSA based representation that provides type safety,
234low-level operations, flexibility, and the capability of representing
235'all' high-level languages cleanly. It is the common code
236representation used throughout all phases of the LLVM compilation
237strategy.</p>
238</div>
239
240<!-- *********************************************************************** -->
241<div class="doc_section"> <a name="introduction">Introduction</a> </div>
242<!-- *********************************************************************** -->
243
244<div class="doc_text">
245
246<p>The LLVM code representation is designed to be used in three
247different forms: as an in-memory compiler IR, as an on-disk bitcode
248representation (suitable for fast loading by a Just-In-Time compiler),
249and as a human readable assembly language representation. This allows
250LLVM to provide a powerful intermediate representation for efficient
251compiler transformations and analysis, while providing a natural means
252to debug and visualize the transformations. The three different forms
253of LLVM are all equivalent. This document describes the human readable
254representation and notation.</p>
255
256<p>The LLVM representation aims to be light-weight and low-level
257while being expressive, typed, and extensible at the same time. It
258aims to be a "universal IR" of sorts, by being at a low enough level
259that high-level ideas may be cleanly mapped to it (similar to how
260microprocessors are "universal IR's", allowing many source languages to
261be mapped to them). By providing type information, LLVM can be used as
262the target of optimizations: for example, through pointer analysis, it
263can be proven that a C automatic variable is never accessed outside of
264the current function... allowing it to be promoted to a simple SSA
265value instead of a memory location.</p>
266
267</div>
268
269<!-- _______________________________________________________________________ -->
270<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
271
272<div class="doc_text">
273
274<p>It is important to note that this document describes 'well formed'
275LLVM assembly language. There is a difference between what the parser
276accepts and what is considered 'well formed'. For example, the
277following instruction is syntactically okay, but not well formed:</p>
278
279<div class="doc_code">
280<pre>
281%x = <a href="#i_add">add</a> i32 1, %x
282</pre>
283</div>
284
285<p>...because the definition of <tt>%x</tt> does not dominate all of
286its uses. The LLVM infrastructure provides a verification pass that may
287be used to verify that an LLVM module is well formed. This pass is
288automatically run by the parser after parsing input assembly and by
289the optimizer before it outputs bitcode. The violations pointed out
290by the verifier pass indicate bugs in transformation passes or input to
291the parser.</p>
292</div>
293
Reid Spencerb043f672007-07-20 19:59:11 +0000294<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295
296<!-- *********************************************************************** -->
297<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
298<!-- *********************************************************************** -->
299
300<div class="doc_text">
301
Reid Spencerc8245b02007-08-07 14:34:28 +0000302 <p>LLVM identifiers come in two basic types: global and local. Global
303 identifiers (functions, global variables) begin with the @ character. Local
304 identifiers (register names, types) begin with the % character. Additionally,
305 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306
307<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000308 <li>Named values are represented as a string of characters with their prefix.
309 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
310 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000311 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000312 with quotes. In this way, anything except a <tt>&quot;</tt> character can
313 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314
Reid Spencerc8245b02007-08-07 14:34:28 +0000315 <li>Unnamed values are represented as an unsigned numeric value with their
316 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317
318 <li>Constants, which are described in a <a href="#constants">section about
319 constants</a>, below.</li>
320</ol>
321
Reid Spencerc8245b02007-08-07 14:34:28 +0000322<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323don't need to worry about name clashes with reserved words, and the set of
324reserved words may be expanded in the future without penalty. Additionally,
325unnamed identifiers allow a compiler to quickly come up with a temporary
326variable without having to avoid symbol table conflicts.</p>
327
328<p>Reserved words in LLVM are very similar to reserved words in other
329languages. There are keywords for different opcodes
330('<tt><a href="#i_add">add</a></tt>',
331 '<tt><a href="#i_bitcast">bitcast</a></tt>',
332 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
333href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
334and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000335none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336
337<p>Here is an example of LLVM code to multiply the integer variable
338'<tt>%X</tt>' by 8:</p>
339
340<p>The easy way:</p>
341
342<div class="doc_code">
343<pre>
344%result = <a href="#i_mul">mul</a> i32 %X, 8
345</pre>
346</div>
347
348<p>After strength reduction:</p>
349
350<div class="doc_code">
351<pre>
352%result = <a href="#i_shl">shl</a> i32 %X, i8 3
353</pre>
354</div>
355
356<p>And the hard way:</p>
357
358<div class="doc_code">
359<pre>
360<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
361<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
362%result = <a href="#i_add">add</a> i32 %1, %1
363</pre>
364</div>
365
366<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
367important lexical features of LLVM:</p>
368
369<ol>
370
371 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
372 line.</li>
373
374 <li>Unnamed temporaries are created when the result of a computation is not
375 assigned to a named value.</li>
376
377 <li>Unnamed temporaries are numbered sequentially</li>
378
379</ol>
380
381<p>...and it also shows a convention that we follow in this document. When
382demonstrating instructions, we will follow an instruction with a comment that
383defines the type and name of value produced. Comments are shown in italic
384text.</p>
385
386</div>
387
388<!-- *********************************************************************** -->
389<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
390<!-- *********************************************************************** -->
391
392<!-- ======================================================================= -->
393<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
394</div>
395
396<div class="doc_text">
397
398<p>LLVM programs are composed of "Module"s, each of which is a
399translation unit of the input programs. Each module consists of
400functions, global variables, and symbol table entries. Modules may be
401combined together with the LLVM linker, which merges function (and
402global variable) definitions, resolves forward declarations, and merges
403symbol table entries. Here is an example of the "hello world" module:</p>
404
405<div class="doc_code">
406<pre><i>; Declare the string constant as a global constant...</i>
407<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
408 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
409
410<i>; External declaration of the puts function</i>
411<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
412
413<i>; Definition of main function</i>
414define i32 @main() { <i>; i32()* </i>
415 <i>; Convert [13x i8 ]* to i8 *...</i>
416 %cast210 = <a
417 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
418
419 <i>; Call puts function to write out the string to stdout...</i>
420 <a
421 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
422 <a
423 href="#i_ret">ret</a> i32 0<br>}<br>
424</pre>
425</div>
426
427<p>This example is made up of a <a href="#globalvars">global variable</a>
428named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
429function, and a <a href="#functionstructure">function definition</a>
430for "<tt>main</tt>".</p>
431
432<p>In general, a module is made up of a list of global values,
433where both functions and global variables are global values. Global values are
434represented by a pointer to a memory location (in this case, a pointer to an
435array of char, and a pointer to a function), and have one of the following <a
436href="#linkage">linkage types</a>.</p>
437
438</div>
439
440<!-- ======================================================================= -->
441<div class="doc_subsection">
442 <a name="linkage">Linkage Types</a>
443</div>
444
445<div class="doc_text">
446
447<p>
448All Global Variables and Functions have one of the following types of linkage:
449</p>
450
451<dl>
452
453 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
454
455 <dd>Global values with internal linkage are only directly accessible by
456 objects in the current module. In particular, linking code into a module with
457 an internal global value may cause the internal to be renamed as necessary to
458 avoid collisions. Because the symbol is internal to the module, all
459 references can be updated. This corresponds to the notion of the
460 '<tt>static</tt>' keyword in C.
461 </dd>
462
463 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
464
465 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
466 the same name when linkage occurs. This is typically used to implement
467 inline functions, templates, or other code which must be generated in each
468 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
469 allowed to be discarded.
470 </dd>
471
472 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
473
474 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
475 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
476 used for globals that may be emitted in multiple translation units, but that
477 are not guaranteed to be emitted into every translation unit that uses them.
478 One example of this are common globals in C, such as "<tt>int X;</tt>" at
479 global scope.
480 </dd>
481
482 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
483
484 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
485 pointer to array type. When two global variables with appending linkage are
486 linked together, the two global arrays are appended together. This is the
487 LLVM, typesafe, equivalent of having the system linker append together
488 "sections" with identical names when .o files are linked.
489 </dd>
490
491 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
492 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
493 until linked, if not linked, the symbol becomes null instead of being an
494 undefined reference.
495 </dd>
496
497 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
498
499 <dd>If none of the above identifiers are used, the global is externally
500 visible, meaning that it participates in linkage and can be used to resolve
501 external symbol references.
502 </dd>
503</dl>
504
505 <p>
506 The next two types of linkage are targeted for Microsoft Windows platform
507 only. They are designed to support importing (exporting) symbols from (to)
508 DLLs.
509 </p>
510
511 <dl>
512 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
513
514 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
515 or variable via a global pointer to a pointer that is set up by the DLL
516 exporting the symbol. On Microsoft Windows targets, the pointer name is
517 formed by combining <code>_imp__</code> and the function or variable name.
518 </dd>
519
520 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
521
522 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
523 pointer to a pointer in a DLL, so that it can be referenced with the
524 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
525 name is formed by combining <code>_imp__</code> and the function or variable
526 name.
527 </dd>
528
529</dl>
530
531<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
532variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
533variable and was linked with this one, one of the two would be renamed,
534preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
535external (i.e., lacking any linkage declarations), they are accessible
536outside of the current module.</p>
537<p>It is illegal for a function <i>declaration</i>
538to have any linkage type other than "externally visible", <tt>dllimport</tt>,
539or <tt>extern_weak</tt>.</p>
540<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
541linkages.
542</div>
543
544<!-- ======================================================================= -->
545<div class="doc_subsection">
546 <a name="callingconv">Calling Conventions</a>
547</div>
548
549<div class="doc_text">
550
551<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
552and <a href="#i_invoke">invokes</a> can all have an optional calling convention
553specified for the call. The calling convention of any pair of dynamic
554caller/callee must match, or the behavior of the program is undefined. The
555following calling conventions are supported by LLVM, and more may be added in
556the future:</p>
557
558<dl>
559 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
560
561 <dd>This calling convention (the default if no other calling convention is
562 specified) matches the target C calling conventions. This calling convention
563 supports varargs function calls and tolerates some mismatch in the declared
564 prototype and implemented declaration of the function (as does normal C).
565 </dd>
566
567 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
568
569 <dd>This calling convention attempts to make calls as fast as possible
570 (e.g. by passing things in registers). This calling convention allows the
571 target to use whatever tricks it wants to produce fast code for the target,
572 without having to conform to an externally specified ABI. Implementations of
573 this convention should allow arbitrary tail call optimization to be supported.
574 This calling convention does not support varargs and requires the prototype of
575 all callees to exactly match the prototype of the function definition.
576 </dd>
577
578 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
579
580 <dd>This calling convention attempts to make code in the caller as efficient
581 as possible under the assumption that the call is not commonly executed. As
582 such, these calls often preserve all registers so that the call does not break
583 any live ranges in the caller side. This calling convention does not support
584 varargs and requires the prototype of all callees to exactly match the
585 prototype of the function definition.
586 </dd>
587
588 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
589
590 <dd>Any calling convention may be specified by number, allowing
591 target-specific calling conventions to be used. Target specific calling
592 conventions start at 64.
593 </dd>
594</dl>
595
596<p>More calling conventions can be added/defined on an as-needed basis, to
597support pascal conventions or any other well-known target-independent
598convention.</p>
599
600</div>
601
602<!-- ======================================================================= -->
603<div class="doc_subsection">
604 <a name="visibility">Visibility Styles</a>
605</div>
606
607<div class="doc_text">
608
609<p>
610All Global Variables and Functions have one of the following visibility styles:
611</p>
612
613<dl>
614 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
615
616 <dd>On ELF, default visibility means that the declaration is visible to other
617 modules and, in shared libraries, means that the declared entity may be
618 overridden. On Darwin, default visibility means that the declaration is
619 visible to other modules. Default visibility corresponds to "external
620 linkage" in the language.
621 </dd>
622
623 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
624
625 <dd>Two declarations of an object with hidden visibility refer to the same
626 object if they are in the same shared object. Usually, hidden visibility
627 indicates that the symbol will not be placed into the dynamic symbol table,
628 so no other module (executable or shared library) can reference it
629 directly.
630 </dd>
631
632 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
633
634 <dd>On ELF, protected visibility indicates that the symbol will be placed in
635 the dynamic symbol table, but that references within the defining module will
636 bind to the local symbol. That is, the symbol cannot be overridden by another
637 module.
638 </dd>
639</dl>
640
641</div>
642
643<!-- ======================================================================= -->
644<div class="doc_subsection">
645 <a name="globalvars">Global Variables</a>
646</div>
647
648<div class="doc_text">
649
650<p>Global variables define regions of memory allocated at compilation time
651instead of run-time. Global variables may optionally be initialized, may have
652an explicit section to be placed in, and may have an optional explicit alignment
653specified. A variable may be defined as "thread_local", which means that it
654will not be shared by threads (each thread will have a separated copy of the
655variable). A variable may be defined as a global "constant," which indicates
656that the contents of the variable will <b>never</b> be modified (enabling better
657optimization, allowing the global data to be placed in the read-only section of
658an executable, etc). Note that variables that need runtime initialization
659cannot be marked "constant" as there is a store to the variable.</p>
660
661<p>
662LLVM explicitly allows <em>declarations</em> of global variables to be marked
663constant, even if the final definition of the global is not. This capability
664can be used to enable slightly better optimization of the program, but requires
665the language definition to guarantee that optimizations based on the
666'constantness' are valid for the translation units that do not include the
667definition.
668</p>
669
670<p>As SSA values, global variables define pointer values that are in
671scope (i.e. they dominate) all basic blocks in the program. Global
672variables always define a pointer to their "content" type because they
673describe a region of memory, and all memory objects in LLVM are
674accessed through pointers.</p>
675
676<p>LLVM allows an explicit section to be specified for globals. If the target
677supports it, it will emit globals to the section specified.</p>
678
679<p>An explicit alignment may be specified for a global. If not present, or if
680the alignment is set to zero, the alignment of the global is set by the target
681to whatever it feels convenient. If an explicit alignment is specified, the
682global is forced to have at least that much alignment. All alignments must be
683a power of 2.</p>
684
685<p>For example, the following defines a global with an initializer, section,
686 and alignment:</p>
687
688<div class="doc_code">
689<pre>
690@G = constant float 1.0, section "foo", align 4
691</pre>
692</div>
693
694</div>
695
696
697<!-- ======================================================================= -->
698<div class="doc_subsection">
699 <a name="functionstructure">Functions</a>
700</div>
701
702<div class="doc_text">
703
704<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
705an optional <a href="#linkage">linkage type</a>, an optional
706<a href="#visibility">visibility style</a>, an optional
707<a href="#callingconv">calling convention</a>, a return type, an optional
708<a href="#paramattrs">parameter attribute</a> for the return type, a function
709name, a (possibly empty) argument list (each with optional
710<a href="#paramattrs">parameter attributes</a>), an optional section, an
711optional alignment, an opening curly brace, a list of basic blocks, and a
712closing curly brace.
713
714LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
715optional <a href="#linkage">linkage type</a>, an optional
716<a href="#visibility">visibility style</a>, an optional
717<a href="#callingconv">calling convention</a>, a return type, an optional
718<a href="#paramattrs">parameter attribute</a> for the return type, a function
719name, a possibly empty list of arguments, and an optional alignment.</p>
720
721<p>A function definition contains a list of basic blocks, forming the CFG for
722the function. Each basic block may optionally start with a label (giving the
723basic block a symbol table entry), contains a list of instructions, and ends
724with a <a href="#terminators">terminator</a> instruction (such as a branch or
725function return).</p>
726
727<p>The first basic block in a function is special in two ways: it is immediately
728executed on entrance to the function, and it is not allowed to have predecessor
729basic blocks (i.e. there can not be any branches to the entry block of a
730function). Because the block can have no predecessors, it also cannot have any
731<a href="#i_phi">PHI nodes</a>.</p>
732
733<p>LLVM allows an explicit section to be specified for functions. If the target
734supports it, it will emit functions to the section specified.</p>
735
736<p>An explicit alignment may be specified for a function. If not present, or if
737the alignment is set to zero, the alignment of the function is set by the target
738to whatever it feels convenient. If an explicit alignment is specified, the
739function is forced to have at least that much alignment. All alignments must be
740a power of 2.</p>
741
742</div>
743
744
745<!-- ======================================================================= -->
746<div class="doc_subsection">
747 <a name="aliasstructure">Aliases</a>
748</div>
749<div class="doc_text">
750 <p>Aliases act as "second name" for the aliasee value (which can be either
751 function or global variable or bitcast of global value). Aliases may have an
752 optional <a href="#linkage">linkage type</a>, and an
753 optional <a href="#visibility">visibility style</a>.</p>
754
755 <h5>Syntax:</h5>
756
757<div class="doc_code">
758<pre>
759@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
760</pre>
761</div>
762
763</div>
764
765
766
767<!-- ======================================================================= -->
768<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
769<div class="doc_text">
770 <p>The return type and each parameter of a function type may have a set of
771 <i>parameter attributes</i> associated with them. Parameter attributes are
772 used to communicate additional information about the result or parameters of
773 a function. Parameter attributes are considered to be part of the function
774 type so two functions types that differ only by the parameter attributes
775 are different function types.</p>
776
777 <p>Parameter attributes are simple keywords that follow the type specified. If
778 multiple parameter attributes are needed, they are space separated. For
779 example:</p>
780
781<div class="doc_code">
782<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000783%someFunc = i16 (i8 signext %someParam) zeroext
784%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785</pre>
786</div>
787
788 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000789 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
790 the second). Also note that the attribute for the function result
791 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792
793 <p>Currently, only the following parameter attributes are defined:</p>
794 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000795 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796 <dd>This indicates that the parameter should be zero extended just before
797 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000798 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 <dd>This indicates that the parameter should be sign extended just before
800 a call to this function.</dd>
801 <dt><tt>inreg</tt></dt>
802 <dd>This indicates that the parameter should be placed in register (if
803 possible) during assembling function call. Support for this attribute is
804 target-specific</dd>
805 <dt><tt>sret</tt></dt>
806 <dd>This indicates that the parameter specifies the address of a structure
807 that is the return value of the function in the source program.</dd>
808 <dt><tt>noalias</tt></dt>
809 <dd>This indicates that the parameter not alias any other object or any
810 other "noalias" objects during the function call.
811 <dt><tt>noreturn</tt></dt>
812 <dd>This function attribute indicates that the function never returns. This
813 indicates to LLVM that every call to this function should be treated as if
814 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
815 <dt><tt>nounwind</tt></dt>
816 <dd>This function attribute indicates that the function type does not use
817 the unwind instruction and does not allow stack unwinding to propagate
818 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000819 <dt><tt>nest</tt></dt>
820 <dd>This indicates that the parameter can be excised using the
821 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822 </dl>
823
824</div>
825
826<!-- ======================================================================= -->
827<div class="doc_subsection">
828 <a name="moduleasm">Module-Level Inline Assembly</a>
829</div>
830
831<div class="doc_text">
832<p>
833Modules may contain "module-level inline asm" blocks, which corresponds to the
834GCC "file scope inline asm" blocks. These blocks are internally concatenated by
835LLVM and treated as a single unit, but may be separated in the .ll file if
836desired. The syntax is very simple:
837</p>
838
839<div class="doc_code">
840<pre>
841module asm "inline asm code goes here"
842module asm "more can go here"
843</pre>
844</div>
845
846<p>The strings can contain any character by escaping non-printable characters.
847 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
848 for the number.
849</p>
850
851<p>
852 The inline asm code is simply printed to the machine code .s file when
853 assembly code is generated.
854</p>
855</div>
856
857<!-- ======================================================================= -->
858<div class="doc_subsection">
859 <a name="datalayout">Data Layout</a>
860</div>
861
862<div class="doc_text">
863<p>A module may specify a target specific data layout string that specifies how
864data is to be laid out in memory. The syntax for the data layout is simply:</p>
865<pre> target datalayout = "<i>layout specification</i>"</pre>
866<p>The <i>layout specification</i> consists of a list of specifications
867separated by the minus sign character ('-'). Each specification starts with a
868letter and may include other information after the letter to define some
869aspect of the data layout. The specifications accepted are as follows: </p>
870<dl>
871 <dt><tt>E</tt></dt>
872 <dd>Specifies that the target lays out data in big-endian form. That is, the
873 bits with the most significance have the lowest address location.</dd>
874 <dt><tt>e</tt></dt>
875 <dd>Specifies that hte target lays out data in little-endian form. That is,
876 the bits with the least significance have the lowest address location.</dd>
877 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
878 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
879 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
880 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
881 too.</dd>
882 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
883 <dd>This specifies the alignment for an integer type of a given bit
884 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
885 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
886 <dd>This specifies the alignment for a vector type of a given bit
887 <i>size</i>.</dd>
888 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
889 <dd>This specifies the alignment for a floating point type of a given bit
890 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
891 (double).</dd>
892 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
893 <dd>This specifies the alignment for an aggregate type of a given bit
894 <i>size</i>.</dd>
895</dl>
896<p>When constructing the data layout for a given target, LLVM starts with a
897default set of specifications which are then (possibly) overriden by the
898specifications in the <tt>datalayout</tt> keyword. The default specifications
899are given in this list:</p>
900<ul>
901 <li><tt>E</tt> - big endian</li>
902 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
903 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
904 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
905 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
906 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
907 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
908 alignment of 64-bits</li>
909 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
910 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
911 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
912 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
913 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
914</ul>
915<p>When llvm is determining the alignment for a given type, it uses the
916following rules:
917<ol>
918 <li>If the type sought is an exact match for one of the specifications, that
919 specification is used.</li>
920 <li>If no match is found, and the type sought is an integer type, then the
921 smallest integer type that is larger than the bitwidth of the sought type is
922 used. If none of the specifications are larger than the bitwidth then the the
923 largest integer type is used. For example, given the default specifications
924 above, the i7 type will use the alignment of i8 (next largest) while both
925 i65 and i256 will use the alignment of i64 (largest specified).</li>
926 <li>If no match is found, and the type sought is a vector type, then the
927 largest vector type that is smaller than the sought vector type will be used
928 as a fall back. This happens because <128 x double> can be implemented in
929 terms of 64 <2 x double>, for example.</li>
930</ol>
931</div>
932
933<!-- *********************************************************************** -->
934<div class="doc_section"> <a name="typesystem">Type System</a> </div>
935<!-- *********************************************************************** -->
936
937<div class="doc_text">
938
939<p>The LLVM type system is one of the most important features of the
940intermediate representation. Being typed enables a number of
941optimizations to be performed on the IR directly, without having to do
942extra analyses on the side before the transformation. A strong type
943system makes it easier to read the generated code and enables novel
944analyses and transformations that are not feasible to perform on normal
945three address code representations.</p>
946
947</div>
948
949<!-- ======================================================================= -->
950<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
951<div class="doc_text">
952<p>The primitive types are the fundamental building blocks of the LLVM
953system. The current set of primitive types is as follows:</p>
954
955<table class="layout">
956 <tr class="layout">
957 <td class="left">
958 <table>
959 <tbody>
960 <tr><th>Type</th><th>Description</th></tr>
961 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
962 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
963 </tbody>
964 </table>
965 </td>
966 <td class="right">
967 <table>
968 <tbody>
969 <tr><th>Type</th><th>Description</th></tr>
970 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
971 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
972 </tbody>
973 </table>
974 </td>
975 </tr>
976</table>
977</div>
978
979<!-- _______________________________________________________________________ -->
980<div class="doc_subsubsection"> <a name="t_classifications">Type
981Classifications</a> </div>
982<div class="doc_text">
983<p>These different primitive types fall into a few useful
984classifications:</p>
985
986<table border="1" cellspacing="0" cellpadding="4">
987 <tbody>
988 <tr><th>Classification</th><th>Types</th></tr>
989 <tr>
990 <td><a name="t_integer">integer</a></td>
991 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
992 </tr>
993 <tr>
994 <td><a name="t_floating">floating point</a></td>
995 <td><tt>float, double</tt></td>
996 </tr>
997 <tr>
998 <td><a name="t_firstclass">first class</a></td>
999 <td><tt>i1, ..., float, double, <br/>
1000 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
1001 </td>
1002 </tr>
1003 </tbody>
1004</table>
1005
1006<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1007most important. Values of these types are the only ones which can be
1008produced by instructions, passed as arguments, or used as operands to
1009instructions. This means that all structures and arrays must be
1010manipulated either by pointer or by component.</p>
1011</div>
1012
1013<!-- ======================================================================= -->
1014<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1015
1016<div class="doc_text">
1017
1018<p>The real power in LLVM comes from the derived types in the system.
1019This is what allows a programmer to represent arrays, functions,
1020pointers, and other useful types. Note that these derived types may be
1021recursive: For example, it is possible to have a two dimensional array.</p>
1022
1023</div>
1024
1025<!-- _______________________________________________________________________ -->
1026<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1027
1028<div class="doc_text">
1029
1030<h5>Overview:</h5>
1031<p>The integer type is a very simple derived type that simply specifies an
1032arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10332^23-1 (about 8 million) can be specified.</p>
1034
1035<h5>Syntax:</h5>
1036
1037<pre>
1038 iN
1039</pre>
1040
1041<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1042value.</p>
1043
1044<h5>Examples:</h5>
1045<table class="layout">
1046 <tr class="layout">
1047 <td class="left">
1048 <tt>i1</tt><br/>
1049 <tt>i4</tt><br/>
1050 <tt>i8</tt><br/>
1051 <tt>i16</tt><br/>
1052 <tt>i32</tt><br/>
1053 <tt>i42</tt><br/>
1054 <tt>i64</tt><br/>
1055 <tt>i1942652</tt><br/>
1056 </td>
1057 <td class="left">
1058 A boolean integer of 1 bit<br/>
1059 A nibble sized integer of 4 bits.<br/>
1060 A byte sized integer of 8 bits.<br/>
1061 A half word sized integer of 16 bits.<br/>
1062 A word sized integer of 32 bits.<br/>
1063 An integer whose bit width is the answer. <br/>
1064 A double word sized integer of 64 bits.<br/>
1065 A really big integer of over 1 million bits.<br/>
1066 </td>
1067 </tr>
1068</table>
1069</div>
1070
1071<!-- _______________________________________________________________________ -->
1072<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1073
1074<div class="doc_text">
1075
1076<h5>Overview:</h5>
1077
1078<p>The array type is a very simple derived type that arranges elements
1079sequentially in memory. The array type requires a size (number of
1080elements) and an underlying data type.</p>
1081
1082<h5>Syntax:</h5>
1083
1084<pre>
1085 [&lt;# elements&gt; x &lt;elementtype&gt;]
1086</pre>
1087
1088<p>The number of elements is a constant integer value; elementtype may
1089be any type with a size.</p>
1090
1091<h5>Examples:</h5>
1092<table class="layout">
1093 <tr class="layout">
1094 <td class="left">
1095 <tt>[40 x i32 ]</tt><br/>
1096 <tt>[41 x i32 ]</tt><br/>
1097 <tt>[40 x i8]</tt><br/>
1098 </td>
1099 <td class="left">
1100 Array of 40 32-bit integer values.<br/>
1101 Array of 41 32-bit integer values.<br/>
1102 Array of 40 8-bit integer values.<br/>
1103 </td>
1104 </tr>
1105</table>
1106<p>Here are some examples of multidimensional arrays:</p>
1107<table class="layout">
1108 <tr class="layout">
1109 <td class="left">
1110 <tt>[3 x [4 x i32]]</tt><br/>
1111 <tt>[12 x [10 x float]]</tt><br/>
1112 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1113 </td>
1114 <td class="left">
1115 3x4 array of 32-bit integer values.<br/>
1116 12x10 array of single precision floating point values.<br/>
1117 2x3x4 array of 16-bit integer values.<br/>
1118 </td>
1119 </tr>
1120</table>
1121
1122<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1123length array. Normally, accesses past the end of an array are undefined in
1124LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1125As a special case, however, zero length arrays are recognized to be variable
1126length. This allows implementation of 'pascal style arrays' with the LLVM
1127type "{ i32, [0 x float]}", for example.</p>
1128
1129</div>
1130
1131<!-- _______________________________________________________________________ -->
1132<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1133<div class="doc_text">
1134<h5>Overview:</h5>
1135<p>The function type can be thought of as a function signature. It
1136consists of a return type and a list of formal parameter types.
1137Function types are usually used to build virtual function tables
1138(which are structures of pointers to functions), for indirect function
1139calls, and when defining a function.</p>
1140<p>
1141The return type of a function type cannot be an aggregate type.
1142</p>
1143<h5>Syntax:</h5>
1144<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1145<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1146specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1147which indicates that the function takes a variable number of arguments.
1148Variable argument functions can access their arguments with the <a
1149 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1150<h5>Examples:</h5>
1151<table class="layout">
1152 <tr class="layout">
1153 <td class="left"><tt>i32 (i32)</tt></td>
1154 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1155 </td>
1156 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001157 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 </tt></td>
1159 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1160 an <tt>i16</tt> that should be sign extended and a
1161 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1162 <tt>float</tt>.
1163 </td>
1164 </tr><tr class="layout">
1165 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1166 <td class="left">A vararg function that takes at least one
1167 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1168 which returns an integer. This is the signature for <tt>printf</tt> in
1169 LLVM.
1170 </td>
1171 </tr>
1172</table>
1173
1174</div>
1175<!-- _______________________________________________________________________ -->
1176<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1177<div class="doc_text">
1178<h5>Overview:</h5>
1179<p>The structure type is used to represent a collection of data members
1180together in memory. The packing of the field types is defined to match
1181the ABI of the underlying processor. The elements of a structure may
1182be any type that has a size.</p>
1183<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1184and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1185field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1186instruction.</p>
1187<h5>Syntax:</h5>
1188<pre> { &lt;type list&gt; }<br></pre>
1189<h5>Examples:</h5>
1190<table class="layout">
1191 <tr class="layout">
1192 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1193 <td class="left">A triple of three <tt>i32</tt> values</td>
1194 </tr><tr class="layout">
1195 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1196 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1197 second element is a <a href="#t_pointer">pointer</a> to a
1198 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1199 an <tt>i32</tt>.</td>
1200 </tr>
1201</table>
1202</div>
1203
1204<!-- _______________________________________________________________________ -->
1205<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1206</div>
1207<div class="doc_text">
1208<h5>Overview:</h5>
1209<p>The packed structure type is used to represent a collection of data members
1210together in memory. There is no padding between fields. Further, the alignment
1211of a packed structure is 1 byte. The elements of a packed structure may
1212be any type that has a size.</p>
1213<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1214and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1215field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1216instruction.</p>
1217<h5>Syntax:</h5>
1218<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1219<h5>Examples:</h5>
1220<table class="layout">
1221 <tr class="layout">
1222 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1223 <td class="left">A triple of three <tt>i32</tt> values</td>
1224 </tr><tr class="layout">
1225 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1226 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1227 second element is a <a href="#t_pointer">pointer</a> to a
1228 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1229 an <tt>i32</tt>.</td>
1230 </tr>
1231</table>
1232</div>
1233
1234<!-- _______________________________________________________________________ -->
1235<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1236<div class="doc_text">
1237<h5>Overview:</h5>
1238<p>As in many languages, the pointer type represents a pointer or
1239reference to another object, which must live in memory.</p>
1240<h5>Syntax:</h5>
1241<pre> &lt;type&gt; *<br></pre>
1242<h5>Examples:</h5>
1243<table class="layout">
1244 <tr class="layout">
1245 <td class="left">
1246 <tt>[4x i32]*</tt><br/>
1247 <tt>i32 (i32 *) *</tt><br/>
1248 </td>
1249 <td class="left">
1250 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1251 four <tt>i32</tt> values<br/>
1252 A <a href="#t_pointer">pointer</a> to a <a
1253 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1254 <tt>i32</tt>.<br/>
1255 </td>
1256 </tr>
1257</table>
1258</div>
1259
1260<!-- _______________________________________________________________________ -->
1261<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1262<div class="doc_text">
1263
1264<h5>Overview:</h5>
1265
1266<p>A vector type is a simple derived type that represents a vector
1267of elements. Vector types are used when multiple primitive data
1268are operated in parallel using a single instruction (SIMD).
1269A vector type requires a size (number of
1270elements) and an underlying primitive data type. Vectors must have a power
1271of two length (1, 2, 4, 8, 16 ...). Vector types are
1272considered <a href="#t_firstclass">first class</a>.</p>
1273
1274<h5>Syntax:</h5>
1275
1276<pre>
1277 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1278</pre>
1279
1280<p>The number of elements is a constant integer value; elementtype may
1281be any integer or floating point type.</p>
1282
1283<h5>Examples:</h5>
1284
1285<table class="layout">
1286 <tr class="layout">
1287 <td class="left">
1288 <tt>&lt;4 x i32&gt;</tt><br/>
1289 <tt>&lt;8 x float&gt;</tt><br/>
1290 <tt>&lt;2 x i64&gt;</tt><br/>
1291 </td>
1292 <td class="left">
1293 Vector of 4 32-bit integer values.<br/>
1294 Vector of 8 floating-point values.<br/>
1295 Vector of 2 64-bit integer values.<br/>
1296 </td>
1297 </tr>
1298</table>
1299</div>
1300
1301<!-- _______________________________________________________________________ -->
1302<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1303<div class="doc_text">
1304
1305<h5>Overview:</h5>
1306
1307<p>Opaque types are used to represent unknown types in the system. This
1308corresponds (for example) to the C notion of a foward declared structure type.
1309In LLVM, opaque types can eventually be resolved to any type (not just a
1310structure type).</p>
1311
1312<h5>Syntax:</h5>
1313
1314<pre>
1315 opaque
1316</pre>
1317
1318<h5>Examples:</h5>
1319
1320<table class="layout">
1321 <tr class="layout">
1322 <td class="left">
1323 <tt>opaque</tt>
1324 </td>
1325 <td class="left">
1326 An opaque type.<br/>
1327 </td>
1328 </tr>
1329</table>
1330</div>
1331
1332
1333<!-- *********************************************************************** -->
1334<div class="doc_section"> <a name="constants">Constants</a> </div>
1335<!-- *********************************************************************** -->
1336
1337<div class="doc_text">
1338
1339<p>LLVM has several different basic types of constants. This section describes
1340them all and their syntax.</p>
1341
1342</div>
1343
1344<!-- ======================================================================= -->
1345<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1346
1347<div class="doc_text">
1348
1349<dl>
1350 <dt><b>Boolean constants</b></dt>
1351
1352 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1353 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1354 </dd>
1355
1356 <dt><b>Integer constants</b></dt>
1357
1358 <dd>Standard integers (such as '4') are constants of the <a
1359 href="#t_integer">integer</a> type. Negative numbers may be used with
1360 integer types.
1361 </dd>
1362
1363 <dt><b>Floating point constants</b></dt>
1364
1365 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1366 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1367 notation (see below). Floating point constants must have a <a
1368 href="#t_floating">floating point</a> type. </dd>
1369
1370 <dt><b>Null pointer constants</b></dt>
1371
1372 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1373 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1374
1375</dl>
1376
1377<p>The one non-intuitive notation for constants is the optional hexadecimal form
1378of floating point constants. For example, the form '<tt>double
13790x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13804.5e+15</tt>'. The only time hexadecimal floating point constants are required
1381(and the only time that they are generated by the disassembler) is when a
1382floating point constant must be emitted but it cannot be represented as a
1383decimal floating point number. For example, NaN's, infinities, and other
1384special values are represented in their IEEE hexadecimal format so that
1385assembly and disassembly do not cause any bits to change in the constants.</p>
1386
1387</div>
1388
1389<!-- ======================================================================= -->
1390<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1391</div>
1392
1393<div class="doc_text">
1394<p>Aggregate constants arise from aggregation of simple constants
1395and smaller aggregate constants.</p>
1396
1397<dl>
1398 <dt><b>Structure constants</b></dt>
1399
1400 <dd>Structure constants are represented with notation similar to structure
1401 type definitions (a comma separated list of elements, surrounded by braces
1402 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1403 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1404 must have <a href="#t_struct">structure type</a>, and the number and
1405 types of elements must match those specified by the type.
1406 </dd>
1407
1408 <dt><b>Array constants</b></dt>
1409
1410 <dd>Array constants are represented with notation similar to array type
1411 definitions (a comma separated list of elements, surrounded by square brackets
1412 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1413 constants must have <a href="#t_array">array type</a>, and the number and
1414 types of elements must match those specified by the type.
1415 </dd>
1416
1417 <dt><b>Vector constants</b></dt>
1418
1419 <dd>Vector constants are represented with notation similar to vector type
1420 definitions (a comma separated list of elements, surrounded by
1421 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1422 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1423 href="#t_vector">vector type</a>, and the number and types of elements must
1424 match those specified by the type.
1425 </dd>
1426
1427 <dt><b>Zero initialization</b></dt>
1428
1429 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1430 value to zero of <em>any</em> type, including scalar and aggregate types.
1431 This is often used to avoid having to print large zero initializers (e.g. for
1432 large arrays) and is always exactly equivalent to using explicit zero
1433 initializers.
1434 </dd>
1435</dl>
1436
1437</div>
1438
1439<!-- ======================================================================= -->
1440<div class="doc_subsection">
1441 <a name="globalconstants">Global Variable and Function Addresses</a>
1442</div>
1443
1444<div class="doc_text">
1445
1446<p>The addresses of <a href="#globalvars">global variables</a> and <a
1447href="#functionstructure">functions</a> are always implicitly valid (link-time)
1448constants. These constants are explicitly referenced when the <a
1449href="#identifiers">identifier for the global</a> is used and always have <a
1450href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1451file:</p>
1452
1453<div class="doc_code">
1454<pre>
1455@X = global i32 17
1456@Y = global i32 42
1457@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1458</pre>
1459</div>
1460
1461</div>
1462
1463<!-- ======================================================================= -->
1464<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1465<div class="doc_text">
1466 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1467 no specific value. Undefined values may be of any type and be used anywhere
1468 a constant is permitted.</p>
1469
1470 <p>Undefined values indicate to the compiler that the program is well defined
1471 no matter what value is used, giving the compiler more freedom to optimize.
1472 </p>
1473</div>
1474
1475<!-- ======================================================================= -->
1476<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1477</div>
1478
1479<div class="doc_text">
1480
1481<p>Constant expressions are used to allow expressions involving other constants
1482to be used as constants. Constant expressions may be of any <a
1483href="#t_firstclass">first class</a> type and may involve any LLVM operation
1484that does not have side effects (e.g. load and call are not supported). The
1485following is the syntax for constant expressions:</p>
1486
1487<dl>
1488 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1489 <dd>Truncate a constant to another type. The bit size of CST must be larger
1490 than the bit size of TYPE. Both types must be integers.</dd>
1491
1492 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1493 <dd>Zero extend a constant to another type. The bit size of CST must be
1494 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1495
1496 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1497 <dd>Sign extend a constant to another type. The bit size of CST must be
1498 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1499
1500 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1501 <dd>Truncate a floating point constant to another floating point type. The
1502 size of CST must be larger than the size of TYPE. Both types must be
1503 floating point.</dd>
1504
1505 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1506 <dd>Floating point extend a constant to another type. The size of CST must be
1507 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1508
Reid Spencere6adee82007-07-31 14:40:14 +00001509 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 <dd>Convert a floating point constant to the corresponding unsigned integer
1511 constant. TYPE must be an integer type. CST must be floating point. If the
1512 value won't fit in the integer type, the results are undefined.</dd>
1513
1514 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1515 <dd>Convert a floating point constant to the corresponding signed integer
1516 constant. TYPE must be an integer type. CST must be floating point. If the
1517 value won't fit in the integer type, the results are undefined.</dd>
1518
1519 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1520 <dd>Convert an unsigned integer constant to the corresponding floating point
1521 constant. TYPE must be floating point. CST must be of integer type. If the
1522 value won't fit in the floating point type, the results are undefined.</dd>
1523
1524 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1525 <dd>Convert a signed integer constant to the corresponding floating point
1526 constant. TYPE must be floating point. CST must be of integer type. If the
1527 value won't fit in the floating point type, the results are undefined.</dd>
1528
1529 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1530 <dd>Convert a pointer typed constant to the corresponding integer constant
1531 TYPE must be an integer type. CST must be of pointer type. The CST value is
1532 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1533
1534 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1535 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1536 pointer type. CST must be of integer type. The CST value is zero extended,
1537 truncated, or unchanged to make it fit in a pointer size. This one is
1538 <i>really</i> dangerous!</dd>
1539
1540 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1541 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1542 identical (same number of bits). The conversion is done as if the CST value
1543 was stored to memory and read back as TYPE. In other words, no bits change
1544 with this operator, just the type. This can be used for conversion of
1545 vector types to any other type, as long as they have the same bit width. For
1546 pointers it is only valid to cast to another pointer type.
1547 </dd>
1548
1549 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1550
1551 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1552 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1553 instruction, the index list may have zero or more indexes, which are required
1554 to make sense for the type of "CSTPTR".</dd>
1555
1556 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1557
1558 <dd>Perform the <a href="#i_select">select operation</a> on
1559 constants.</dd>
1560
1561 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1562 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1563
1564 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1565 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1566
1567 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1568
1569 <dd>Perform the <a href="#i_extractelement">extractelement
1570 operation</a> on constants.
1571
1572 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1573
1574 <dd>Perform the <a href="#i_insertelement">insertelement
1575 operation</a> on constants.</dd>
1576
1577
1578 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1579
1580 <dd>Perform the <a href="#i_shufflevector">shufflevector
1581 operation</a> on constants.</dd>
1582
1583 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1584
1585 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1586 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1587 binary</a> operations. The constraints on operands are the same as those for
1588 the corresponding instruction (e.g. no bitwise operations on floating point
1589 values are allowed).</dd>
1590</dl>
1591</div>
1592
1593<!-- *********************************************************************** -->
1594<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1595<!-- *********************************************************************** -->
1596
1597<!-- ======================================================================= -->
1598<div class="doc_subsection">
1599<a name="inlineasm">Inline Assembler Expressions</a>
1600</div>
1601
1602<div class="doc_text">
1603
1604<p>
1605LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1606Module-Level Inline Assembly</a>) through the use of a special value. This
1607value represents the inline assembler as a string (containing the instructions
1608to emit), a list of operand constraints (stored as a string), and a flag that
1609indicates whether or not the inline asm expression has side effects. An example
1610inline assembler expression is:
1611</p>
1612
1613<div class="doc_code">
1614<pre>
1615i32 (i32) asm "bswap $0", "=r,r"
1616</pre>
1617</div>
1618
1619<p>
1620Inline assembler expressions may <b>only</b> be used as the callee operand of
1621a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1622</p>
1623
1624<div class="doc_code">
1625<pre>
1626%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1627</pre>
1628</div>
1629
1630<p>
1631Inline asms with side effects not visible in the constraint list must be marked
1632as having side effects. This is done through the use of the
1633'<tt>sideeffect</tt>' keyword, like so:
1634</p>
1635
1636<div class="doc_code">
1637<pre>
1638call void asm sideeffect "eieio", ""()
1639</pre>
1640</div>
1641
1642<p>TODO: The format of the asm and constraints string still need to be
1643documented here. Constraints on what can be done (e.g. duplication, moving, etc
1644need to be documented).
1645</p>
1646
1647</div>
1648
1649<!-- *********************************************************************** -->
1650<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1651<!-- *********************************************************************** -->
1652
1653<div class="doc_text">
1654
1655<p>The LLVM instruction set consists of several different
1656classifications of instructions: <a href="#terminators">terminator
1657instructions</a>, <a href="#binaryops">binary instructions</a>,
1658<a href="#bitwiseops">bitwise binary instructions</a>, <a
1659 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1660instructions</a>.</p>
1661
1662</div>
1663
1664<!-- ======================================================================= -->
1665<div class="doc_subsection"> <a name="terminators">Terminator
1666Instructions</a> </div>
1667
1668<div class="doc_text">
1669
1670<p>As mentioned <a href="#functionstructure">previously</a>, every
1671basic block in a program ends with a "Terminator" instruction, which
1672indicates which block should be executed after the current block is
1673finished. These terminator instructions typically yield a '<tt>void</tt>'
1674value: they produce control flow, not values (the one exception being
1675the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1676<p>There are six different terminator instructions: the '<a
1677 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1678instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1679the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1680 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1681 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1682
1683</div>
1684
1685<!-- _______________________________________________________________________ -->
1686<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1687Instruction</a> </div>
1688<div class="doc_text">
1689<h5>Syntax:</h5>
1690<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1691 ret void <i>; Return from void function</i>
1692</pre>
1693<h5>Overview:</h5>
1694<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1695value) from a function back to the caller.</p>
1696<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1697returns a value and then causes control flow, and one that just causes
1698control flow to occur.</p>
1699<h5>Arguments:</h5>
1700<p>The '<tt>ret</tt>' instruction may return any '<a
1701 href="#t_firstclass">first class</a>' type. Notice that a function is
1702not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1703instruction inside of the function that returns a value that does not
1704match the return type of the function.</p>
1705<h5>Semantics:</h5>
1706<p>When the '<tt>ret</tt>' instruction is executed, control flow
1707returns back to the calling function's context. If the caller is a "<a
1708 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1709the instruction after the call. If the caller was an "<a
1710 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1711at the beginning of the "normal" destination block. If the instruction
1712returns a value, that value shall set the call or invoke instruction's
1713return value.</p>
1714<h5>Example:</h5>
1715<pre> ret i32 5 <i>; Return an integer value of 5</i>
1716 ret void <i>; Return from a void function</i>
1717</pre>
1718</div>
1719<!-- _______________________________________________________________________ -->
1720<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1721<div class="doc_text">
1722<h5>Syntax:</h5>
1723<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1724</pre>
1725<h5>Overview:</h5>
1726<p>The '<tt>br</tt>' instruction is used to cause control flow to
1727transfer to a different basic block in the current function. There are
1728two forms of this instruction, corresponding to a conditional branch
1729and an unconditional branch.</p>
1730<h5>Arguments:</h5>
1731<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1732single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1733unconditional form of the '<tt>br</tt>' instruction takes a single
1734'<tt>label</tt>' value as a target.</p>
1735<h5>Semantics:</h5>
1736<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1737argument is evaluated. If the value is <tt>true</tt>, control flows
1738to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1739control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1740<h5>Example:</h5>
1741<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1742 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1743</div>
1744<!-- _______________________________________________________________________ -->
1745<div class="doc_subsubsection">
1746 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1747</div>
1748
1749<div class="doc_text">
1750<h5>Syntax:</h5>
1751
1752<pre>
1753 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1754</pre>
1755
1756<h5>Overview:</h5>
1757
1758<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1759several different places. It is a generalization of the '<tt>br</tt>'
1760instruction, allowing a branch to occur to one of many possible
1761destinations.</p>
1762
1763
1764<h5>Arguments:</h5>
1765
1766<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1767comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1768an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1769table is not allowed to contain duplicate constant entries.</p>
1770
1771<h5>Semantics:</h5>
1772
1773<p>The <tt>switch</tt> instruction specifies a table of values and
1774destinations. When the '<tt>switch</tt>' instruction is executed, this
1775table is searched for the given value. If the value is found, control flow is
1776transfered to the corresponding destination; otherwise, control flow is
1777transfered to the default destination.</p>
1778
1779<h5>Implementation:</h5>
1780
1781<p>Depending on properties of the target machine and the particular
1782<tt>switch</tt> instruction, this instruction may be code generated in different
1783ways. For example, it could be generated as a series of chained conditional
1784branches or with a lookup table.</p>
1785
1786<h5>Example:</h5>
1787
1788<pre>
1789 <i>; Emulate a conditional br instruction</i>
1790 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1791 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1792
1793 <i>; Emulate an unconditional br instruction</i>
1794 switch i32 0, label %dest [ ]
1795
1796 <i>; Implement a jump table:</i>
1797 switch i32 %val, label %otherwise [ i32 0, label %onzero
1798 i32 1, label %onone
1799 i32 2, label %ontwo ]
1800</pre>
1801</div>
1802
1803<!-- _______________________________________________________________________ -->
1804<div class="doc_subsubsection">
1805 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1806</div>
1807
1808<div class="doc_text">
1809
1810<h5>Syntax:</h5>
1811
1812<pre>
1813 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1814 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1815</pre>
1816
1817<h5>Overview:</h5>
1818
1819<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1820function, with the possibility of control flow transfer to either the
1821'<tt>normal</tt>' label or the
1822'<tt>exception</tt>' label. If the callee function returns with the
1823"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1824"normal" label. If the callee (or any indirect callees) returns with the "<a
1825href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1826continued at the dynamically nearest "exception" label.</p>
1827
1828<h5>Arguments:</h5>
1829
1830<p>This instruction requires several arguments:</p>
1831
1832<ol>
1833 <li>
1834 The optional "cconv" marker indicates which <a href="#callingconv">calling
1835 convention</a> the call should use. If none is specified, the call defaults
1836 to using C calling conventions.
1837 </li>
1838 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1839 function value being invoked. In most cases, this is a direct function
1840 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1841 an arbitrary pointer to function value.
1842 </li>
1843
1844 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1845 function to be invoked. </li>
1846
1847 <li>'<tt>function args</tt>': argument list whose types match the function
1848 signature argument types. If the function signature indicates the function
1849 accepts a variable number of arguments, the extra arguments can be
1850 specified. </li>
1851
1852 <li>'<tt>normal label</tt>': the label reached when the called function
1853 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1854
1855 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1856 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1857
1858</ol>
1859
1860<h5>Semantics:</h5>
1861
1862<p>This instruction is designed to operate as a standard '<tt><a
1863href="#i_call">call</a></tt>' instruction in most regards. The primary
1864difference is that it establishes an association with a label, which is used by
1865the runtime library to unwind the stack.</p>
1866
1867<p>This instruction is used in languages with destructors to ensure that proper
1868cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1869exception. Additionally, this is important for implementation of
1870'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1871
1872<h5>Example:</h5>
1873<pre>
1874 %retval = invoke i32 %Test(i32 15) to label %Continue
1875 unwind label %TestCleanup <i>; {i32}:retval set</i>
1876 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1877 unwind label %TestCleanup <i>; {i32}:retval set</i>
1878</pre>
1879</div>
1880
1881
1882<!-- _______________________________________________________________________ -->
1883
1884<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1885Instruction</a> </div>
1886
1887<div class="doc_text">
1888
1889<h5>Syntax:</h5>
1890<pre>
1891 unwind
1892</pre>
1893
1894<h5>Overview:</h5>
1895
1896<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1897at the first callee in the dynamic call stack which used an <a
1898href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1899primarily used to implement exception handling.</p>
1900
1901<h5>Semantics:</h5>
1902
1903<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1904immediately halt. The dynamic call stack is then searched for the first <a
1905href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1906execution continues at the "exceptional" destination block specified by the
1907<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1908dynamic call chain, undefined behavior results.</p>
1909</div>
1910
1911<!-- _______________________________________________________________________ -->
1912
1913<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1914Instruction</a> </div>
1915
1916<div class="doc_text">
1917
1918<h5>Syntax:</h5>
1919<pre>
1920 unreachable
1921</pre>
1922
1923<h5>Overview:</h5>
1924
1925<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1926instruction is used to inform the optimizer that a particular portion of the
1927code is not reachable. This can be used to indicate that the code after a
1928no-return function cannot be reached, and other facts.</p>
1929
1930<h5>Semantics:</h5>
1931
1932<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1933</div>
1934
1935
1936
1937<!-- ======================================================================= -->
1938<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1939<div class="doc_text">
1940<p>Binary operators are used to do most of the computation in a
1941program. They require two operands, execute an operation on them, and
1942produce a single value. The operands might represent
1943multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1944The result value of a binary operator is not
1945necessarily the same type as its operands.</p>
1946<p>There are several different binary operators:</p>
1947</div>
1948<!-- _______________________________________________________________________ -->
1949<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1950Instruction</a> </div>
1951<div class="doc_text">
1952<h5>Syntax:</h5>
1953<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1954</pre>
1955<h5>Overview:</h5>
1956<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1957<h5>Arguments:</h5>
1958<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1959 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1960 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1961Both arguments must have identical types.</p>
1962<h5>Semantics:</h5>
1963<p>The value produced is the integer or floating point sum of the two
1964operands.</p>
1965<h5>Example:</h5>
1966<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1967</pre>
1968</div>
1969<!-- _______________________________________________________________________ -->
1970<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1971Instruction</a> </div>
1972<div class="doc_text">
1973<h5>Syntax:</h5>
1974<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1975</pre>
1976<h5>Overview:</h5>
1977<p>The '<tt>sub</tt>' instruction returns the difference of its two
1978operands.</p>
1979<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1980instruction present in most other intermediate representations.</p>
1981<h5>Arguments:</h5>
1982<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1983 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1984values.
1985This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1986Both arguments must have identical types.</p>
1987<h5>Semantics:</h5>
1988<p>The value produced is the integer or floating point difference of
1989the two operands.</p>
1990<h5>Example:</h5>
1991<pre>
1992 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1993 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1994</pre>
1995</div>
1996<!-- _______________________________________________________________________ -->
1997<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1998Instruction</a> </div>
1999<div class="doc_text">
2000<h5>Syntax:</h5>
2001<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2002</pre>
2003<h5>Overview:</h5>
2004<p>The '<tt>mul</tt>' instruction returns the product of its two
2005operands.</p>
2006<h5>Arguments:</h5>
2007<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2008 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2009values.
2010This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2011Both arguments must have identical types.</p>
2012<h5>Semantics:</h5>
2013<p>The value produced is the integer or floating point product of the
2014two operands.</p>
2015<p>Because the operands are the same width, the result of an integer
2016multiplication is the same whether the operands should be deemed unsigned or
2017signed.</p>
2018<h5>Example:</h5>
2019<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2020</pre>
2021</div>
2022<!-- _______________________________________________________________________ -->
2023<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2024</a></div>
2025<div class="doc_text">
2026<h5>Syntax:</h5>
2027<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2028</pre>
2029<h5>Overview:</h5>
2030<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2031operands.</p>
2032<h5>Arguments:</h5>
2033<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2034<a href="#t_integer">integer</a> values. Both arguments must have identical
2035types. This instruction can also take <a href="#t_vector">vector</a> versions
2036of the values in which case the elements must be integers.</p>
2037<h5>Semantics:</h5>
2038<p>The value produced is the unsigned integer quotient of the two operands. This
2039instruction always performs an unsigned division operation, regardless of
2040whether the arguments are unsigned or not.</p>
2041<h5>Example:</h5>
2042<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2043</pre>
2044</div>
2045<!-- _______________________________________________________________________ -->
2046<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2047</a> </div>
2048<div class="doc_text">
2049<h5>Syntax:</h5>
2050<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2051</pre>
2052<h5>Overview:</h5>
2053<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2054operands.</p>
2055<h5>Arguments:</h5>
2056<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2057<a href="#t_integer">integer</a> values. Both arguments must have identical
2058types. This instruction can also take <a href="#t_vector">vector</a> versions
2059of the values in which case the elements must be integers.</p>
2060<h5>Semantics:</h5>
2061<p>The value produced is the signed integer quotient of the two operands. This
2062instruction always performs a signed division operation, regardless of whether
2063the arguments are signed or not.</p>
2064<h5>Example:</h5>
2065<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2066</pre>
2067</div>
2068<!-- _______________________________________________________________________ -->
2069<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2070Instruction</a> </div>
2071<div class="doc_text">
2072<h5>Syntax:</h5>
2073<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2074</pre>
2075<h5>Overview:</h5>
2076<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2077operands.</p>
2078<h5>Arguments:</h5>
2079<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2080<a href="#t_floating">floating point</a> values. Both arguments must have
2081identical types. This instruction can also take <a href="#t_vector">vector</a>
2082versions of floating point values.</p>
2083<h5>Semantics:</h5>
2084<p>The value produced is the floating point quotient of the two operands.</p>
2085<h5>Example:</h5>
2086<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2087</pre>
2088</div>
2089<!-- _______________________________________________________________________ -->
2090<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2091</div>
2092<div class="doc_text">
2093<h5>Syntax:</h5>
2094<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2095</pre>
2096<h5>Overview:</h5>
2097<p>The '<tt>urem</tt>' instruction returns the remainder from the
2098unsigned division of its two arguments.</p>
2099<h5>Arguments:</h5>
2100<p>The two arguments to the '<tt>urem</tt>' instruction must be
2101<a href="#t_integer">integer</a> values. Both arguments must have identical
2102types.</p>
2103<h5>Semantics:</h5>
2104<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2105This instruction always performs an unsigned division to get the remainder,
2106regardless of whether the arguments are unsigned or not.</p>
2107<h5>Example:</h5>
2108<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2109</pre>
2110
2111</div>
2112<!-- _______________________________________________________________________ -->
2113<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2114Instruction</a> </div>
2115<div class="doc_text">
2116<h5>Syntax:</h5>
2117<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2118</pre>
2119<h5>Overview:</h5>
2120<p>The '<tt>srem</tt>' instruction returns the remainder from the
2121signed division of its two operands.</p>
2122<h5>Arguments:</h5>
2123<p>The two arguments to the '<tt>srem</tt>' instruction must be
2124<a href="#t_integer">integer</a> values. Both arguments must have identical
2125types.</p>
2126<h5>Semantics:</h5>
2127<p>This instruction returns the <i>remainder</i> of a division (where the result
2128has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2129operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2130a value. For more information about the difference, see <a
2131 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2132Math Forum</a>. For a table of how this is implemented in various languages,
2133please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2134Wikipedia: modulo operation</a>.</p>
2135<h5>Example:</h5>
2136<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2137</pre>
2138
2139</div>
2140<!-- _______________________________________________________________________ -->
2141<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2142Instruction</a> </div>
2143<div class="doc_text">
2144<h5>Syntax:</h5>
2145<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2146</pre>
2147<h5>Overview:</h5>
2148<p>The '<tt>frem</tt>' instruction returns the remainder from the
2149division of its two operands.</p>
2150<h5>Arguments:</h5>
2151<p>The two arguments to the '<tt>frem</tt>' instruction must be
2152<a href="#t_floating">floating point</a> values. Both arguments must have
2153identical types.</p>
2154<h5>Semantics:</h5>
2155<p>This instruction returns the <i>remainder</i> of a division.</p>
2156<h5>Example:</h5>
2157<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2158</pre>
2159</div>
2160
2161<!-- ======================================================================= -->
2162<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2163Operations</a> </div>
2164<div class="doc_text">
2165<p>Bitwise binary operators are used to do various forms of
2166bit-twiddling in a program. They are generally very efficient
2167instructions and can commonly be strength reduced from other
2168instructions. They require two operands, execute an operation on them,
2169and produce a single value. The resulting value of the bitwise binary
2170operators is always the same type as its first operand.</p>
2171</div>
2172
2173<!-- _______________________________________________________________________ -->
2174<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2175Instruction</a> </div>
2176<div class="doc_text">
2177<h5>Syntax:</h5>
2178<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2179</pre>
2180<h5>Overview:</h5>
2181<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2182the left a specified number of bits.</p>
2183<h5>Arguments:</h5>
2184<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2185 href="#t_integer">integer</a> type.</p>
2186<h5>Semantics:</h5>
2187<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2188<h5>Example:</h5><pre>
2189 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2190 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2191 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2192</pre>
2193</div>
2194<!-- _______________________________________________________________________ -->
2195<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2196Instruction</a> </div>
2197<div class="doc_text">
2198<h5>Syntax:</h5>
2199<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2200</pre>
2201
2202<h5>Overview:</h5>
2203<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2204operand shifted to the right a specified number of bits with zero fill.</p>
2205
2206<h5>Arguments:</h5>
2207<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2208<a href="#t_integer">integer</a> type.</p>
2209
2210<h5>Semantics:</h5>
2211<p>This instruction always performs a logical shift right operation. The most
2212significant bits of the result will be filled with zero bits after the
2213shift.</p>
2214
2215<h5>Example:</h5>
2216<pre>
2217 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2218 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2219 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2220 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2221</pre>
2222</div>
2223
2224<!-- _______________________________________________________________________ -->
2225<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2226Instruction</a> </div>
2227<div class="doc_text">
2228
2229<h5>Syntax:</h5>
2230<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2231</pre>
2232
2233<h5>Overview:</h5>
2234<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2235operand shifted to the right a specified number of bits with sign extension.</p>
2236
2237<h5>Arguments:</h5>
2238<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2239<a href="#t_integer">integer</a> type.</p>
2240
2241<h5>Semantics:</h5>
2242<p>This instruction always performs an arithmetic shift right operation,
2243The most significant bits of the result will be filled with the sign bit
2244of <tt>var1</tt>.</p>
2245
2246<h5>Example:</h5>
2247<pre>
2248 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2249 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2250 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2251 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2252</pre>
2253</div>
2254
2255<!-- _______________________________________________________________________ -->
2256<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2257Instruction</a> </div>
2258<div class="doc_text">
2259<h5>Syntax:</h5>
2260<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2261</pre>
2262<h5>Overview:</h5>
2263<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2264its two operands.</p>
2265<h5>Arguments:</h5>
2266<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2267 href="#t_integer">integer</a> values. Both arguments must have
2268identical types.</p>
2269<h5>Semantics:</h5>
2270<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2271<p> </p>
2272<div style="align: center">
2273<table border="1" cellspacing="0" cellpadding="4">
2274 <tbody>
2275 <tr>
2276 <td>In0</td>
2277 <td>In1</td>
2278 <td>Out</td>
2279 </tr>
2280 <tr>
2281 <td>0</td>
2282 <td>0</td>
2283 <td>0</td>
2284 </tr>
2285 <tr>
2286 <td>0</td>
2287 <td>1</td>
2288 <td>0</td>
2289 </tr>
2290 <tr>
2291 <td>1</td>
2292 <td>0</td>
2293 <td>0</td>
2294 </tr>
2295 <tr>
2296 <td>1</td>
2297 <td>1</td>
2298 <td>1</td>
2299 </tr>
2300 </tbody>
2301</table>
2302</div>
2303<h5>Example:</h5>
2304<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2305 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2306 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2307</pre>
2308</div>
2309<!-- _______________________________________________________________________ -->
2310<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2311<div class="doc_text">
2312<h5>Syntax:</h5>
2313<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2314</pre>
2315<h5>Overview:</h5>
2316<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2317or of its two operands.</p>
2318<h5>Arguments:</h5>
2319<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2320 href="#t_integer">integer</a> values. Both arguments must have
2321identical types.</p>
2322<h5>Semantics:</h5>
2323<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2324<p> </p>
2325<div style="align: center">
2326<table border="1" cellspacing="0" cellpadding="4">
2327 <tbody>
2328 <tr>
2329 <td>In0</td>
2330 <td>In1</td>
2331 <td>Out</td>
2332 </tr>
2333 <tr>
2334 <td>0</td>
2335 <td>0</td>
2336 <td>0</td>
2337 </tr>
2338 <tr>
2339 <td>0</td>
2340 <td>1</td>
2341 <td>1</td>
2342 </tr>
2343 <tr>
2344 <td>1</td>
2345 <td>0</td>
2346 <td>1</td>
2347 </tr>
2348 <tr>
2349 <td>1</td>
2350 <td>1</td>
2351 <td>1</td>
2352 </tr>
2353 </tbody>
2354</table>
2355</div>
2356<h5>Example:</h5>
2357<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2358 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2359 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2360</pre>
2361</div>
2362<!-- _______________________________________________________________________ -->
2363<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2364Instruction</a> </div>
2365<div class="doc_text">
2366<h5>Syntax:</h5>
2367<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2368</pre>
2369<h5>Overview:</h5>
2370<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2371or of its two operands. The <tt>xor</tt> is used to implement the
2372"one's complement" operation, which is the "~" operator in C.</p>
2373<h5>Arguments:</h5>
2374<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2375 href="#t_integer">integer</a> values. Both arguments must have
2376identical types.</p>
2377<h5>Semantics:</h5>
2378<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2379<p> </p>
2380<div style="align: center">
2381<table border="1" cellspacing="0" cellpadding="4">
2382 <tbody>
2383 <tr>
2384 <td>In0</td>
2385 <td>In1</td>
2386 <td>Out</td>
2387 </tr>
2388 <tr>
2389 <td>0</td>
2390 <td>0</td>
2391 <td>0</td>
2392 </tr>
2393 <tr>
2394 <td>0</td>
2395 <td>1</td>
2396 <td>1</td>
2397 </tr>
2398 <tr>
2399 <td>1</td>
2400 <td>0</td>
2401 <td>1</td>
2402 </tr>
2403 <tr>
2404 <td>1</td>
2405 <td>1</td>
2406 <td>0</td>
2407 </tr>
2408 </tbody>
2409</table>
2410</div>
2411<p> </p>
2412<h5>Example:</h5>
2413<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2414 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2415 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2416 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2417</pre>
2418</div>
2419
2420<!-- ======================================================================= -->
2421<div class="doc_subsection">
2422 <a name="vectorops">Vector Operations</a>
2423</div>
2424
2425<div class="doc_text">
2426
2427<p>LLVM supports several instructions to represent vector operations in a
2428target-independent manner. These instructions cover the element-access and
2429vector-specific operations needed to process vectors effectively. While LLVM
2430does directly support these vector operations, many sophisticated algorithms
2431will want to use target-specific intrinsics to take full advantage of a specific
2432target.</p>
2433
2434</div>
2435
2436<!-- _______________________________________________________________________ -->
2437<div class="doc_subsubsection">
2438 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2439</div>
2440
2441<div class="doc_text">
2442
2443<h5>Syntax:</h5>
2444
2445<pre>
2446 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2447</pre>
2448
2449<h5>Overview:</h5>
2450
2451<p>
2452The '<tt>extractelement</tt>' instruction extracts a single scalar
2453element from a vector at a specified index.
2454</p>
2455
2456
2457<h5>Arguments:</h5>
2458
2459<p>
2460The first operand of an '<tt>extractelement</tt>' instruction is a
2461value of <a href="#t_vector">vector</a> type. The second operand is
2462an index indicating the position from which to extract the element.
2463The index may be a variable.</p>
2464
2465<h5>Semantics:</h5>
2466
2467<p>
2468The result is a scalar of the same type as the element type of
2469<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2470<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2471results are undefined.
2472</p>
2473
2474<h5>Example:</h5>
2475
2476<pre>
2477 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2478</pre>
2479</div>
2480
2481
2482<!-- _______________________________________________________________________ -->
2483<div class="doc_subsubsection">
2484 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2485</div>
2486
2487<div class="doc_text">
2488
2489<h5>Syntax:</h5>
2490
2491<pre>
2492 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2493</pre>
2494
2495<h5>Overview:</h5>
2496
2497<p>
2498The '<tt>insertelement</tt>' instruction inserts a scalar
2499element into a vector at a specified index.
2500</p>
2501
2502
2503<h5>Arguments:</h5>
2504
2505<p>
2506The first operand of an '<tt>insertelement</tt>' instruction is a
2507value of <a href="#t_vector">vector</a> type. The second operand is a
2508scalar value whose type must equal the element type of the first
2509operand. The third operand is an index indicating the position at
2510which to insert the value. The index may be a variable.</p>
2511
2512<h5>Semantics:</h5>
2513
2514<p>
2515The result is a vector of the same type as <tt>val</tt>. Its
2516element values are those of <tt>val</tt> except at position
2517<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2518exceeds the length of <tt>val</tt>, the results are undefined.
2519</p>
2520
2521<h5>Example:</h5>
2522
2523<pre>
2524 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2525</pre>
2526</div>
2527
2528<!-- _______________________________________________________________________ -->
2529<div class="doc_subsubsection">
2530 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2531</div>
2532
2533<div class="doc_text">
2534
2535<h5>Syntax:</h5>
2536
2537<pre>
2538 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2539</pre>
2540
2541<h5>Overview:</h5>
2542
2543<p>
2544The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2545from two input vectors, returning a vector of the same type.
2546</p>
2547
2548<h5>Arguments:</h5>
2549
2550<p>
2551The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2552with types that match each other and types that match the result of the
2553instruction. The third argument is a shuffle mask, which has the same number
2554of elements as the other vector type, but whose element type is always 'i32'.
2555</p>
2556
2557<p>
2558The shuffle mask operand is required to be a constant vector with either
2559constant integer or undef values.
2560</p>
2561
2562<h5>Semantics:</h5>
2563
2564<p>
2565The elements of the two input vectors are numbered from left to right across
2566both of the vectors. The shuffle mask operand specifies, for each element of
2567the result vector, which element of the two input registers the result element
2568gets. The element selector may be undef (meaning "don't care") and the second
2569operand may be undef if performing a shuffle from only one vector.
2570</p>
2571
2572<h5>Example:</h5>
2573
2574<pre>
2575 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2576 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2577 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2578 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2579</pre>
2580</div>
2581
2582
2583<!-- ======================================================================= -->
2584<div class="doc_subsection">
2585 <a name="memoryops">Memory Access and Addressing Operations</a>
2586</div>
2587
2588<div class="doc_text">
2589
2590<p>A key design point of an SSA-based representation is how it
2591represents memory. In LLVM, no memory locations are in SSA form, which
2592makes things very simple. This section describes how to read, write,
2593allocate, and free memory in LLVM.</p>
2594
2595</div>
2596
2597<!-- _______________________________________________________________________ -->
2598<div class="doc_subsubsection">
2599 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2600</div>
2601
2602<div class="doc_text">
2603
2604<h5>Syntax:</h5>
2605
2606<pre>
2607 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2608</pre>
2609
2610<h5>Overview:</h5>
2611
2612<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2613heap and returns a pointer to it.</p>
2614
2615<h5>Arguments:</h5>
2616
2617<p>The '<tt>malloc</tt>' instruction allocates
2618<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2619bytes of memory from the operating system and returns a pointer of the
2620appropriate type to the program. If "NumElements" is specified, it is the
2621number of elements allocated. If an alignment is specified, the value result
2622of the allocation is guaranteed to be aligned to at least that boundary. If
2623not specified, or if zero, the target can choose to align the allocation on any
2624convenient boundary.</p>
2625
2626<p>'<tt>type</tt>' must be a sized type.</p>
2627
2628<h5>Semantics:</h5>
2629
2630<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2631a pointer is returned.</p>
2632
2633<h5>Example:</h5>
2634
2635<pre>
2636 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2637
2638 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2639 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2640 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2641 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2642 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2643</pre>
2644</div>
2645
2646<!-- _______________________________________________________________________ -->
2647<div class="doc_subsubsection">
2648 <a name="i_free">'<tt>free</tt>' Instruction</a>
2649</div>
2650
2651<div class="doc_text">
2652
2653<h5>Syntax:</h5>
2654
2655<pre>
2656 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2657</pre>
2658
2659<h5>Overview:</h5>
2660
2661<p>The '<tt>free</tt>' instruction returns memory back to the unused
2662memory heap to be reallocated in the future.</p>
2663
2664<h5>Arguments:</h5>
2665
2666<p>'<tt>value</tt>' shall be a pointer value that points to a value
2667that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2668instruction.</p>
2669
2670<h5>Semantics:</h5>
2671
2672<p>Access to the memory pointed to by the pointer is no longer defined
2673after this instruction executes.</p>
2674
2675<h5>Example:</h5>
2676
2677<pre>
2678 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2679 free [4 x i8]* %array
2680</pre>
2681</div>
2682
2683<!-- _______________________________________________________________________ -->
2684<div class="doc_subsubsection">
2685 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2686</div>
2687
2688<div class="doc_text">
2689
2690<h5>Syntax:</h5>
2691
2692<pre>
2693 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2694</pre>
2695
2696<h5>Overview:</h5>
2697
2698<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2699currently executing function, to be automatically released when this function
2700returns to its caller.</p>
2701
2702<h5>Arguments:</h5>
2703
2704<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2705bytes of memory on the runtime stack, returning a pointer of the
2706appropriate type to the program. If "NumElements" is specified, it is the
2707number of elements allocated. If an alignment is specified, the value result
2708of the allocation is guaranteed to be aligned to at least that boundary. If
2709not specified, or if zero, the target can choose to align the allocation on any
2710convenient boundary.</p>
2711
2712<p>'<tt>type</tt>' may be any sized type.</p>
2713
2714<h5>Semantics:</h5>
2715
2716<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2717memory is automatically released when the function returns. The '<tt>alloca</tt>'
2718instruction is commonly used to represent automatic variables that must
2719have an address available. When the function returns (either with the <tt><a
2720 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2721instructions), the memory is reclaimed.</p>
2722
2723<h5>Example:</h5>
2724
2725<pre>
2726 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2727 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2728 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2729 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2730</pre>
2731</div>
2732
2733<!-- _______________________________________________________________________ -->
2734<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2735Instruction</a> </div>
2736<div class="doc_text">
2737<h5>Syntax:</h5>
2738<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2739<h5>Overview:</h5>
2740<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2741<h5>Arguments:</h5>
2742<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2743address from which to load. The pointer must point to a <a
2744 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2745marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2746the number or order of execution of this <tt>load</tt> with other
2747volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2748instructions. </p>
2749<h5>Semantics:</h5>
2750<p>The location of memory pointed to is loaded.</p>
2751<h5>Examples:</h5>
2752<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2753 <a
2754 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2755 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2756</pre>
2757</div>
2758<!-- _______________________________________________________________________ -->
2759<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2760Instruction</a> </div>
2761<div class="doc_text">
2762<h5>Syntax:</h5>
2763<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2764 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2765</pre>
2766<h5>Overview:</h5>
2767<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2768<h5>Arguments:</h5>
2769<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2770to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2771operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2772operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2773optimizer is not allowed to modify the number or order of execution of
2774this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2775 href="#i_store">store</a></tt> instructions.</p>
2776<h5>Semantics:</h5>
2777<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2778at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2779<h5>Example:</h5>
2780<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2781 <a
2782 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2783 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2784</pre>
2785</div>
2786
2787<!-- _______________________________________________________________________ -->
2788<div class="doc_subsubsection">
2789 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2790</div>
2791
2792<div class="doc_text">
2793<h5>Syntax:</h5>
2794<pre>
2795 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2796</pre>
2797
2798<h5>Overview:</h5>
2799
2800<p>
2801The '<tt>getelementptr</tt>' instruction is used to get the address of a
2802subelement of an aggregate data structure.</p>
2803
2804<h5>Arguments:</h5>
2805
2806<p>This instruction takes a list of integer operands that indicate what
2807elements of the aggregate object to index to. The actual types of the arguments
2808provided depend on the type of the first pointer argument. The
2809'<tt>getelementptr</tt>' instruction is used to index down through the type
2810levels of a structure or to a specific index in an array. When indexing into a
2811structure, only <tt>i32</tt> integer constants are allowed. When indexing
2812into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2813be sign extended to 64-bit values.</p>
2814
2815<p>For example, let's consider a C code fragment and how it gets
2816compiled to LLVM:</p>
2817
2818<div class="doc_code">
2819<pre>
2820struct RT {
2821 char A;
2822 int B[10][20];
2823 char C;
2824};
2825struct ST {
2826 int X;
2827 double Y;
2828 struct RT Z;
2829};
2830
2831int *foo(struct ST *s) {
2832 return &amp;s[1].Z.B[5][13];
2833}
2834</pre>
2835</div>
2836
2837<p>The LLVM code generated by the GCC frontend is:</p>
2838
2839<div class="doc_code">
2840<pre>
2841%RT = type { i8 , [10 x [20 x i32]], i8 }
2842%ST = type { i32, double, %RT }
2843
2844define i32* %foo(%ST* %s) {
2845entry:
2846 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2847 ret i32* %reg
2848}
2849</pre>
2850</div>
2851
2852<h5>Semantics:</h5>
2853
2854<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2855on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2856and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2857<a href="#t_integer">integer</a> type but the value will always be sign extended
2858to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2859<b>constants</b>.</p>
2860
2861<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2862type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2863}</tt>' type, a structure. The second index indexes into the third element of
2864the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2865i8 }</tt>' type, another structure. The third index indexes into the second
2866element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2867array. The two dimensions of the array are subscripted into, yielding an
2868'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2869to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2870
2871<p>Note that it is perfectly legal to index partially through a
2872structure, returning a pointer to an inner element. Because of this,
2873the LLVM code for the given testcase is equivalent to:</p>
2874
2875<pre>
2876 define i32* %foo(%ST* %s) {
2877 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2878 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2879 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2880 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2881 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2882 ret i32* %t5
2883 }
2884</pre>
2885
2886<p>Note that it is undefined to access an array out of bounds: array and
2887pointer indexes must always be within the defined bounds of the array type.
2888The one exception for this rules is zero length arrays. These arrays are
2889defined to be accessible as variable length arrays, which requires access
2890beyond the zero'th element.</p>
2891
2892<p>The getelementptr instruction is often confusing. For some more insight
2893into how it works, see <a href="GetElementPtr.html">the getelementptr
2894FAQ</a>.</p>
2895
2896<h5>Example:</h5>
2897
2898<pre>
2899 <i>; yields [12 x i8]*:aptr</i>
2900 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2901</pre>
2902</div>
2903
2904<!-- ======================================================================= -->
2905<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2906</div>
2907<div class="doc_text">
2908<p>The instructions in this category are the conversion instructions (casting)
2909which all take a single operand and a type. They perform various bit conversions
2910on the operand.</p>
2911</div>
2912
2913<!-- _______________________________________________________________________ -->
2914<div class="doc_subsubsection">
2915 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2916</div>
2917<div class="doc_text">
2918
2919<h5>Syntax:</h5>
2920<pre>
2921 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2922</pre>
2923
2924<h5>Overview:</h5>
2925<p>
2926The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2927</p>
2928
2929<h5>Arguments:</h5>
2930<p>
2931The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2932be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2933and type of the result, which must be an <a href="#t_integer">integer</a>
2934type. The bit size of <tt>value</tt> must be larger than the bit size of
2935<tt>ty2</tt>. Equal sized types are not allowed.</p>
2936
2937<h5>Semantics:</h5>
2938<p>
2939The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2940and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2941larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2942It will always truncate bits.</p>
2943
2944<h5>Example:</h5>
2945<pre>
2946 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2947 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2948 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2949</pre>
2950</div>
2951
2952<!-- _______________________________________________________________________ -->
2953<div class="doc_subsubsection">
2954 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2955</div>
2956<div class="doc_text">
2957
2958<h5>Syntax:</h5>
2959<pre>
2960 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2961</pre>
2962
2963<h5>Overview:</h5>
2964<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2965<tt>ty2</tt>.</p>
2966
2967
2968<h5>Arguments:</h5>
2969<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2970<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2971also be of <a href="#t_integer">integer</a> type. The bit size of the
2972<tt>value</tt> must be smaller than the bit size of the destination type,
2973<tt>ty2</tt>.</p>
2974
2975<h5>Semantics:</h5>
2976<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2977bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2978
2979<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2980
2981<h5>Example:</h5>
2982<pre>
2983 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2984 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2985</pre>
2986</div>
2987
2988<!-- _______________________________________________________________________ -->
2989<div class="doc_subsubsection">
2990 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2991</div>
2992<div class="doc_text">
2993
2994<h5>Syntax:</h5>
2995<pre>
2996 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2997</pre>
2998
2999<h5>Overview:</h5>
3000<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3001
3002<h5>Arguments:</h5>
3003<p>
3004The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3005<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3006also be of <a href="#t_integer">integer</a> type. The bit size of the
3007<tt>value</tt> must be smaller than the bit size of the destination type,
3008<tt>ty2</tt>.</p>
3009
3010<h5>Semantics:</h5>
3011<p>
3012The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3013bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3014the type <tt>ty2</tt>.</p>
3015
3016<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3017
3018<h5>Example:</h5>
3019<pre>
3020 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3021 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3022</pre>
3023</div>
3024
3025<!-- _______________________________________________________________________ -->
3026<div class="doc_subsubsection">
3027 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3028</div>
3029
3030<div class="doc_text">
3031
3032<h5>Syntax:</h5>
3033
3034<pre>
3035 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3036</pre>
3037
3038<h5>Overview:</h5>
3039<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3040<tt>ty2</tt>.</p>
3041
3042
3043<h5>Arguments:</h5>
3044<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3045 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3046cast it to. The size of <tt>value</tt> must be larger than the size of
3047<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3048<i>no-op cast</i>.</p>
3049
3050<h5>Semantics:</h5>
3051<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3052<a href="#t_floating">floating point</a> type to a smaller
3053<a href="#t_floating">floating point</a> type. If the value cannot fit within
3054the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3055
3056<h5>Example:</h5>
3057<pre>
3058 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3059 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3060</pre>
3061</div>
3062
3063<!-- _______________________________________________________________________ -->
3064<div class="doc_subsubsection">
3065 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3066</div>
3067<div class="doc_text">
3068
3069<h5>Syntax:</h5>
3070<pre>
3071 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3072</pre>
3073
3074<h5>Overview:</h5>
3075<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3076floating point value.</p>
3077
3078<h5>Arguments:</h5>
3079<p>The '<tt>fpext</tt>' instruction takes a
3080<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3081and a <a href="#t_floating">floating point</a> type to cast it to. The source
3082type must be smaller than the destination type.</p>
3083
3084<h5>Semantics:</h5>
3085<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3086<a href="#t_floating">floating point</a> type to a larger
3087<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3088used to make a <i>no-op cast</i> because it always changes bits. Use
3089<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3090
3091<h5>Example:</h5>
3092<pre>
3093 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3094 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3095</pre>
3096</div>
3097
3098<!-- _______________________________________________________________________ -->
3099<div class="doc_subsubsection">
3100 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3101</div>
3102<div class="doc_text">
3103
3104<h5>Syntax:</h5>
3105<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003106 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003107</pre>
3108
3109<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003110<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003111unsigned integer equivalent of type <tt>ty2</tt>.
3112</p>
3113
3114<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003115<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3117must be an <a href="#t_integer">integer</a> type.</p>
3118
3119<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003120<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121<a href="#t_floating">floating point</a> operand into the nearest (rounding
3122towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3123the results are undefined.</p>
3124
3125<p>When converting to i1, the conversion is done as a comparison against
3126zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3127If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3128
3129<h5>Example:</h5>
3130<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003131 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
3132 %Y = fptoui float 1.0E+300 to i1 <i>; yields i1:true</i>
3133 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134</pre>
3135</div>
3136
3137<!-- _______________________________________________________________________ -->
3138<div class="doc_subsubsection">
3139 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3140</div>
3141<div class="doc_text">
3142
3143<h5>Syntax:</h5>
3144<pre>
3145 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3146</pre>
3147
3148<h5>Overview:</h5>
3149<p>The '<tt>fptosi</tt>' instruction converts
3150<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3151</p>
3152
3153
3154<h5>Arguments:</h5>
3155<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3156<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3157must also be an <a href="#t_integer">integer</a> type.</p>
3158
3159<h5>Semantics:</h5>
3160<p>The '<tt>fptosi</tt>' instruction converts its
3161<a href="#t_floating">floating point</a> operand into the nearest (rounding
3162towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3163the results are undefined.</p>
3164
3165<p>When converting to i1, the conversion is done as a comparison against
3166zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3167If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3168
3169<h5>Example:</h5>
3170<pre>
3171 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3172 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3173 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3174</pre>
3175</div>
3176
3177<!-- _______________________________________________________________________ -->
3178<div class="doc_subsubsection">
3179 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3180</div>
3181<div class="doc_text">
3182
3183<h5>Syntax:</h5>
3184<pre>
3185 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3186</pre>
3187
3188<h5>Overview:</h5>
3189<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3190integer and converts that value to the <tt>ty2</tt> type.</p>
3191
3192
3193<h5>Arguments:</h5>
3194<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3195<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3196be a <a href="#t_floating">floating point</a> type.</p>
3197
3198<h5>Semantics:</h5>
3199<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3200integer quantity and converts it to the corresponding floating point value. If
3201the value cannot fit in the floating point value, the results are undefined.</p>
3202
3203
3204<h5>Example:</h5>
3205<pre>
3206 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3207 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3208</pre>
3209</div>
3210
3211<!-- _______________________________________________________________________ -->
3212<div class="doc_subsubsection">
3213 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3214</div>
3215<div class="doc_text">
3216
3217<h5>Syntax:</h5>
3218<pre>
3219 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3220</pre>
3221
3222<h5>Overview:</h5>
3223<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3224integer and converts that value to the <tt>ty2</tt> type.</p>
3225
3226<h5>Arguments:</h5>
3227<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3228<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3229a <a href="#t_floating">floating point</a> type.</p>
3230
3231<h5>Semantics:</h5>
3232<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3233integer quantity and converts it to the corresponding floating point value. If
3234the value cannot fit in the floating point value, the results are undefined.</p>
3235
3236<h5>Example:</h5>
3237<pre>
3238 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3239 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3240</pre>
3241</div>
3242
3243<!-- _______________________________________________________________________ -->
3244<div class="doc_subsubsection">
3245 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3246</div>
3247<div class="doc_text">
3248
3249<h5>Syntax:</h5>
3250<pre>
3251 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3252</pre>
3253
3254<h5>Overview:</h5>
3255<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3256the integer type <tt>ty2</tt>.</p>
3257
3258<h5>Arguments:</h5>
3259<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3260must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3261<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3262
3263<h5>Semantics:</h5>
3264<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3265<tt>ty2</tt> by interpreting the pointer value as an integer and either
3266truncating or zero extending that value to the size of the integer type. If
3267<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3268<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3269are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3270change.</p>
3271
3272<h5>Example:</h5>
3273<pre>
3274 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3275 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3276</pre>
3277</div>
3278
3279<!-- _______________________________________________________________________ -->
3280<div class="doc_subsubsection">
3281 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3282</div>
3283<div class="doc_text">
3284
3285<h5>Syntax:</h5>
3286<pre>
3287 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3288</pre>
3289
3290<h5>Overview:</h5>
3291<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3292a pointer type, <tt>ty2</tt>.</p>
3293
3294<h5>Arguments:</h5>
3295<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3296value to cast, and a type to cast it to, which must be a
3297<a href="#t_pointer">pointer</a> type.
3298
3299<h5>Semantics:</h5>
3300<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3301<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3302the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3303size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3304the size of a pointer then a zero extension is done. If they are the same size,
3305nothing is done (<i>no-op cast</i>).</p>
3306
3307<h5>Example:</h5>
3308<pre>
3309 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3310 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3311 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3312</pre>
3313</div>
3314
3315<!-- _______________________________________________________________________ -->
3316<div class="doc_subsubsection">
3317 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3318</div>
3319<div class="doc_text">
3320
3321<h5>Syntax:</h5>
3322<pre>
3323 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3324</pre>
3325
3326<h5>Overview:</h5>
3327<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3328<tt>ty2</tt> without changing any bits.</p>
3329
3330<h5>Arguments:</h5>
3331<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3332a first class value, and a type to cast it to, which must also be a <a
3333 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3334and the destination type, <tt>ty2</tt>, must be identical. If the source
3335type is a pointer, the destination type must also be a pointer.</p>
3336
3337<h5>Semantics:</h5>
3338<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3339<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3340this conversion. The conversion is done as if the <tt>value</tt> had been
3341stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3342converted to other pointer types with this instruction. To convert pointers to
3343other types, use the <a href="#i_inttoptr">inttoptr</a> or
3344<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3345
3346<h5>Example:</h5>
3347<pre>
3348 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3349 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3350 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3351</pre>
3352</div>
3353
3354<!-- ======================================================================= -->
3355<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3356<div class="doc_text">
3357<p>The instructions in this category are the "miscellaneous"
3358instructions, which defy better classification.</p>
3359</div>
3360
3361<!-- _______________________________________________________________________ -->
3362<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3363</div>
3364<div class="doc_text">
3365<h5>Syntax:</h5>
3366<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3367</pre>
3368<h5>Overview:</h5>
3369<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3370of its two integer operands.</p>
3371<h5>Arguments:</h5>
3372<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3373the condition code indicating the kind of comparison to perform. It is not
3374a value, just a keyword. The possible condition code are:
3375<ol>
3376 <li><tt>eq</tt>: equal</li>
3377 <li><tt>ne</tt>: not equal </li>
3378 <li><tt>ugt</tt>: unsigned greater than</li>
3379 <li><tt>uge</tt>: unsigned greater or equal</li>
3380 <li><tt>ult</tt>: unsigned less than</li>
3381 <li><tt>ule</tt>: unsigned less or equal</li>
3382 <li><tt>sgt</tt>: signed greater than</li>
3383 <li><tt>sge</tt>: signed greater or equal</li>
3384 <li><tt>slt</tt>: signed less than</li>
3385 <li><tt>sle</tt>: signed less or equal</li>
3386</ol>
3387<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3388<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3389<h5>Semantics:</h5>
3390<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3391the condition code given as <tt>cond</tt>. The comparison performed always
3392yields a <a href="#t_primitive">i1</a> result, as follows:
3393<ol>
3394 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3395 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3396 </li>
3397 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3398 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3399 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3400 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3401 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3402 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3403 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3404 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3405 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3406 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3407 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3408 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3409 <li><tt>sge</tt>: interprets the operands as signed values and yields
3410 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3411 <li><tt>slt</tt>: interprets the operands as signed values and yields
3412 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3413 <li><tt>sle</tt>: interprets the operands as signed values and yields
3414 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3415</ol>
3416<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3417values are compared as if they were integers.</p>
3418
3419<h5>Example:</h5>
3420<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3421 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3422 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3423 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3424 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3425 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3426</pre>
3427</div>
3428
3429<!-- _______________________________________________________________________ -->
3430<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3431</div>
3432<div class="doc_text">
3433<h5>Syntax:</h5>
3434<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3435</pre>
3436<h5>Overview:</h5>
3437<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3438of its floating point operands.</p>
3439<h5>Arguments:</h5>
3440<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3441the condition code indicating the kind of comparison to perform. It is not
3442a value, just a keyword. The possible condition code are:
3443<ol>
3444 <li><tt>false</tt>: no comparison, always returns false</li>
3445 <li><tt>oeq</tt>: ordered and equal</li>
3446 <li><tt>ogt</tt>: ordered and greater than </li>
3447 <li><tt>oge</tt>: ordered and greater than or equal</li>
3448 <li><tt>olt</tt>: ordered and less than </li>
3449 <li><tt>ole</tt>: ordered and less than or equal</li>
3450 <li><tt>one</tt>: ordered and not equal</li>
3451 <li><tt>ord</tt>: ordered (no nans)</li>
3452 <li><tt>ueq</tt>: unordered or equal</li>
3453 <li><tt>ugt</tt>: unordered or greater than </li>
3454 <li><tt>uge</tt>: unordered or greater than or equal</li>
3455 <li><tt>ult</tt>: unordered or less than </li>
3456 <li><tt>ule</tt>: unordered or less than or equal</li>
3457 <li><tt>une</tt>: unordered or not equal</li>
3458 <li><tt>uno</tt>: unordered (either nans)</li>
3459 <li><tt>true</tt>: no comparison, always returns true</li>
3460</ol>
3461<p><i>Ordered</i> means that neither operand is a QNAN while
3462<i>unordered</i> means that either operand may be a QNAN.</p>
3463<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3464<a href="#t_floating">floating point</a> typed. They must have identical
3465types.</p>
3466<h5>Semantics:</h5>
3467<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3468the condition code given as <tt>cond</tt>. The comparison performed always
3469yields a <a href="#t_primitive">i1</a> result, as follows:
3470<ol>
3471 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3472 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3473 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3474 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3475 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3476 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3477 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3478 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3479 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3480 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3481 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3482 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3483 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3484 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3485 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3486 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3487 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3488 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3489 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3490 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3491 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3492 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3493 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3494 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3495 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3496 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3497 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3498 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3499</ol>
3500
3501<h5>Example:</h5>
3502<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3503 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3504 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3505 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3506</pre>
3507</div>
3508
3509<!-- _______________________________________________________________________ -->
3510<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3511Instruction</a> </div>
3512<div class="doc_text">
3513<h5>Syntax:</h5>
3514<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3515<h5>Overview:</h5>
3516<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3517the SSA graph representing the function.</p>
3518<h5>Arguments:</h5>
3519<p>The type of the incoming values is specified with the first type
3520field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3521as arguments, with one pair for each predecessor basic block of the
3522current block. Only values of <a href="#t_firstclass">first class</a>
3523type may be used as the value arguments to the PHI node. Only labels
3524may be used as the label arguments.</p>
3525<p>There must be no non-phi instructions between the start of a basic
3526block and the PHI instructions: i.e. PHI instructions must be first in
3527a basic block.</p>
3528<h5>Semantics:</h5>
3529<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3530specified by the pair corresponding to the predecessor basic block that executed
3531just prior to the current block.</p>
3532<h5>Example:</h5>
3533<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3534</div>
3535
3536<!-- _______________________________________________________________________ -->
3537<div class="doc_subsubsection">
3538 <a name="i_select">'<tt>select</tt>' Instruction</a>
3539</div>
3540
3541<div class="doc_text">
3542
3543<h5>Syntax:</h5>
3544
3545<pre>
3546 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3547</pre>
3548
3549<h5>Overview:</h5>
3550
3551<p>
3552The '<tt>select</tt>' instruction is used to choose one value based on a
3553condition, without branching.
3554</p>
3555
3556
3557<h5>Arguments:</h5>
3558
3559<p>
3560The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3561</p>
3562
3563<h5>Semantics:</h5>
3564
3565<p>
3566If the boolean condition evaluates to true, the instruction returns the first
3567value argument; otherwise, it returns the second value argument.
3568</p>
3569
3570<h5>Example:</h5>
3571
3572<pre>
3573 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3574</pre>
3575</div>
3576
3577
3578<!-- _______________________________________________________________________ -->
3579<div class="doc_subsubsection">
3580 <a name="i_call">'<tt>call</tt>' Instruction</a>
3581</div>
3582
3583<div class="doc_text">
3584
3585<h5>Syntax:</h5>
3586<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003587 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003588</pre>
3589
3590<h5>Overview:</h5>
3591
3592<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3593
3594<h5>Arguments:</h5>
3595
3596<p>This instruction requires several arguments:</p>
3597
3598<ol>
3599 <li>
3600 <p>The optional "tail" marker indicates whether the callee function accesses
3601 any allocas or varargs in the caller. If the "tail" marker is present, the
3602 function call is eligible for tail call optimization. Note that calls may
3603 be marked "tail" even if they do not occur before a <a
3604 href="#i_ret"><tt>ret</tt></a> instruction.
3605 </li>
3606 <li>
3607 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3608 convention</a> the call should use. If none is specified, the call defaults
3609 to using C calling conventions.
3610 </li>
3611 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003612 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3613 the type of the return value. Functions that return no value are marked
3614 <tt><a href="#t_void">void</a></tt>.</p>
3615 </li>
3616 <li>
3617 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3618 value being invoked. The argument types must match the types implied by
3619 this signature. This type can be omitted if the function is not varargs
3620 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003621 </li>
3622 <li>
3623 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3624 be invoked. In most cases, this is a direct function invocation, but
3625 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3626 to function value.</p>
3627 </li>
3628 <li>
3629 <p>'<tt>function args</tt>': argument list whose types match the
3630 function signature argument types. All arguments must be of
3631 <a href="#t_firstclass">first class</a> type. If the function signature
3632 indicates the function accepts a variable number of arguments, the extra
3633 arguments can be specified.</p>
3634 </li>
3635</ol>
3636
3637<h5>Semantics:</h5>
3638
3639<p>The '<tt>call</tt>' instruction is used to cause control flow to
3640transfer to a specified function, with its incoming arguments bound to
3641the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3642instruction in the called function, control flow continues with the
3643instruction after the function call, and the return value of the
3644function is bound to the result argument. This is a simpler case of
3645the <a href="#i_invoke">invoke</a> instruction.</p>
3646
3647<h5>Example:</h5>
3648
3649<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003650 %retval = call i32 @test(i32 %argc)
3651 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3652 %X = tail call i32 @foo()
3653 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3654 %Z = call void %foo(i8 97 signext)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003655</pre>
3656
3657</div>
3658
3659<!-- _______________________________________________________________________ -->
3660<div class="doc_subsubsection">
3661 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3662</div>
3663
3664<div class="doc_text">
3665
3666<h5>Syntax:</h5>
3667
3668<pre>
3669 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3670</pre>
3671
3672<h5>Overview:</h5>
3673
3674<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3675the "variable argument" area of a function call. It is used to implement the
3676<tt>va_arg</tt> macro in C.</p>
3677
3678<h5>Arguments:</h5>
3679
3680<p>This instruction takes a <tt>va_list*</tt> value and the type of
3681the argument. It returns a value of the specified argument type and
3682increments the <tt>va_list</tt> to point to the next argument. The
3683actual type of <tt>va_list</tt> is target specific.</p>
3684
3685<h5>Semantics:</h5>
3686
3687<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3688type from the specified <tt>va_list</tt> and causes the
3689<tt>va_list</tt> to point to the next argument. For more information,
3690see the variable argument handling <a href="#int_varargs">Intrinsic
3691Functions</a>.</p>
3692
3693<p>It is legal for this instruction to be called in a function which does not
3694take a variable number of arguments, for example, the <tt>vfprintf</tt>
3695function.</p>
3696
3697<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3698href="#intrinsics">intrinsic function</a> because it takes a type as an
3699argument.</p>
3700
3701<h5>Example:</h5>
3702
3703<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3704
3705</div>
3706
3707<!-- *********************************************************************** -->
3708<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3709<!-- *********************************************************************** -->
3710
3711<div class="doc_text">
3712
3713<p>LLVM supports the notion of an "intrinsic function". These functions have
3714well known names and semantics and are required to follow certain restrictions.
3715Overall, these intrinsics represent an extension mechanism for the LLVM
3716language that does not require changing all of the transformations in LLVM when
3717adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3718
3719<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3720prefix is reserved in LLVM for intrinsic names; thus, function names may not
3721begin with this prefix. Intrinsic functions must always be external functions:
3722you cannot define the body of intrinsic functions. Intrinsic functions may
3723only be used in call or invoke instructions: it is illegal to take the address
3724of an intrinsic function. Additionally, because intrinsic functions are part
3725of the LLVM language, it is required if any are added that they be documented
3726here.</p>
3727
Chandler Carrutha228e392007-08-04 01:51:18 +00003728<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3729a family of functions that perform the same operation but on different data
3730types. Because LLVM can represent over 8 million different integer types,
3731overloading is used commonly to allow an intrinsic function to operate on any
3732integer type. One or more of the argument types or the result type can be
3733overloaded to accept any integer type. Argument types may also be defined as
3734exactly matching a previous argument's type or the result type. This allows an
3735intrinsic function which accepts multiple arguments, but needs all of them to
3736be of the same type, to only be overloaded with respect to a single argument or
3737the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003738
Chandler Carrutha228e392007-08-04 01:51:18 +00003739<p>Overloaded intrinsics will have the names of its overloaded argument types
3740encoded into its function name, each preceded by a period. Only those types
3741which are overloaded result in a name suffix. Arguments whose type is matched
3742against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3743take an integer of any width and returns an integer of exactly the same integer
3744width. This leads to a family of functions such as
3745<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3746Only one type, the return type, is overloaded, and only one type suffix is
3747required. Because the argument's type is matched against the return type, it
3748does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003749
3750<p>To learn how to add an intrinsic function, please see the
3751<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3752</p>
3753
3754</div>
3755
3756<!-- ======================================================================= -->
3757<div class="doc_subsection">
3758 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3759</div>
3760
3761<div class="doc_text">
3762
3763<p>Variable argument support is defined in LLVM with the <a
3764 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3765intrinsic functions. These functions are related to the similarly
3766named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3767
3768<p>All of these functions operate on arguments that use a
3769target-specific value type "<tt>va_list</tt>". The LLVM assembly
3770language reference manual does not define what this type is, so all
3771transformations should be prepared to handle these functions regardless of
3772the type used.</p>
3773
3774<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3775instruction and the variable argument handling intrinsic functions are
3776used.</p>
3777
3778<div class="doc_code">
3779<pre>
3780define i32 @test(i32 %X, ...) {
3781 ; Initialize variable argument processing
3782 %ap = alloca i8*
3783 %ap2 = bitcast i8** %ap to i8*
3784 call void @llvm.va_start(i8* %ap2)
3785
3786 ; Read a single integer argument
3787 %tmp = va_arg i8** %ap, i32
3788
3789 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3790 %aq = alloca i8*
3791 %aq2 = bitcast i8** %aq to i8*
3792 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3793 call void @llvm.va_end(i8* %aq2)
3794
3795 ; Stop processing of arguments.
3796 call void @llvm.va_end(i8* %ap2)
3797 ret i32 %tmp
3798}
3799
3800declare void @llvm.va_start(i8*)
3801declare void @llvm.va_copy(i8*, i8*)
3802declare void @llvm.va_end(i8*)
3803</pre>
3804</div>
3805
3806</div>
3807
3808<!-- _______________________________________________________________________ -->
3809<div class="doc_subsubsection">
3810 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3811</div>
3812
3813
3814<div class="doc_text">
3815<h5>Syntax:</h5>
3816<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3817<h5>Overview:</h5>
3818<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3819<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3820href="#i_va_arg">va_arg</a></tt>.</p>
3821
3822<h5>Arguments:</h5>
3823
3824<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3825
3826<h5>Semantics:</h5>
3827
3828<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3829macro available in C. In a target-dependent way, it initializes the
3830<tt>va_list</tt> element to which the argument points, so that the next call to
3831<tt>va_arg</tt> will produce the first variable argument passed to the function.
3832Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3833last argument of the function as the compiler can figure that out.</p>
3834
3835</div>
3836
3837<!-- _______________________________________________________________________ -->
3838<div class="doc_subsubsection">
3839 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3840</div>
3841
3842<div class="doc_text">
3843<h5>Syntax:</h5>
3844<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3845<h5>Overview:</h5>
3846
3847<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3848which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3849or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3850
3851<h5>Arguments:</h5>
3852
3853<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3854
3855<h5>Semantics:</h5>
3856
3857<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3858macro available in C. In a target-dependent way, it destroys the
3859<tt>va_list</tt> element to which the argument points. Calls to <a
3860href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3861<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3862<tt>llvm.va_end</tt>.</p>
3863
3864</div>
3865
3866<!-- _______________________________________________________________________ -->
3867<div class="doc_subsubsection">
3868 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3869</div>
3870
3871<div class="doc_text">
3872
3873<h5>Syntax:</h5>
3874
3875<pre>
3876 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3877</pre>
3878
3879<h5>Overview:</h5>
3880
3881<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3882from the source argument list to the destination argument list.</p>
3883
3884<h5>Arguments:</h5>
3885
3886<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3887The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3888
3889
3890<h5>Semantics:</h5>
3891
3892<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3893macro available in C. In a target-dependent way, it copies the source
3894<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3895intrinsic is necessary because the <tt><a href="#int_va_start">
3896llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3897example, memory allocation.</p>
3898
3899</div>
3900
3901<!-- ======================================================================= -->
3902<div class="doc_subsection">
3903 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3904</div>
3905
3906<div class="doc_text">
3907
3908<p>
3909LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3910Collection</a> requires the implementation and generation of these intrinsics.
3911These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3912stack</a>, as well as garbage collector implementations that require <a
3913href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3914Front-ends for type-safe garbage collected languages should generate these
3915intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3916href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3917</p>
3918</div>
3919
3920<!-- _______________________________________________________________________ -->
3921<div class="doc_subsubsection">
3922 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3923</div>
3924
3925<div class="doc_text">
3926
3927<h5>Syntax:</h5>
3928
3929<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003930 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003931</pre>
3932
3933<h5>Overview:</h5>
3934
3935<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3936the code generator, and allows some metadata to be associated with it.</p>
3937
3938<h5>Arguments:</h5>
3939
3940<p>The first argument specifies the address of a stack object that contains the
3941root pointer. The second pointer (which must be either a constant or a global
3942value address) contains the meta-data to be associated with the root.</p>
3943
3944<h5>Semantics:</h5>
3945
3946<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3947location. At compile-time, the code generator generates information to allow
3948the runtime to find the pointer at GC safe points.
3949</p>
3950
3951</div>
3952
3953
3954<!-- _______________________________________________________________________ -->
3955<div class="doc_subsubsection">
3956 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3957</div>
3958
3959<div class="doc_text">
3960
3961<h5>Syntax:</h5>
3962
3963<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003964 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003965</pre>
3966
3967<h5>Overview:</h5>
3968
3969<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3970locations, allowing garbage collector implementations that require read
3971barriers.</p>
3972
3973<h5>Arguments:</h5>
3974
3975<p>The second argument is the address to read from, which should be an address
3976allocated from the garbage collector. The first object is a pointer to the
3977start of the referenced object, if needed by the language runtime (otherwise
3978null).</p>
3979
3980<h5>Semantics:</h5>
3981
3982<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3983instruction, but may be replaced with substantially more complex code by the
3984garbage collector runtime, as needed.</p>
3985
3986</div>
3987
3988
3989<!-- _______________________________________________________________________ -->
3990<div class="doc_subsubsection">
3991 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3992</div>
3993
3994<div class="doc_text">
3995
3996<h5>Syntax:</h5>
3997
3998<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003999 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004000</pre>
4001
4002<h5>Overview:</h5>
4003
4004<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4005locations, allowing garbage collector implementations that require write
4006barriers (such as generational or reference counting collectors).</p>
4007
4008<h5>Arguments:</h5>
4009
4010<p>The first argument is the reference to store, the second is the start of the
4011object to store it to, and the third is the address of the field of Obj to
4012store to. If the runtime does not require a pointer to the object, Obj may be
4013null.</p>
4014
4015<h5>Semantics:</h5>
4016
4017<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4018instruction, but may be replaced with substantially more complex code by the
4019garbage collector runtime, as needed.</p>
4020
4021</div>
4022
4023
4024
4025<!-- ======================================================================= -->
4026<div class="doc_subsection">
4027 <a name="int_codegen">Code Generator Intrinsics</a>
4028</div>
4029
4030<div class="doc_text">
4031<p>
4032These intrinsics are provided by LLVM to expose special features that may only
4033be implemented with code generator support.
4034</p>
4035
4036</div>
4037
4038<!-- _______________________________________________________________________ -->
4039<div class="doc_subsubsection">
4040 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4041</div>
4042
4043<div class="doc_text">
4044
4045<h5>Syntax:</h5>
4046<pre>
4047 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4048</pre>
4049
4050<h5>Overview:</h5>
4051
4052<p>
4053The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4054target-specific value indicating the return address of the current function
4055or one of its callers.
4056</p>
4057
4058<h5>Arguments:</h5>
4059
4060<p>
4061The argument to this intrinsic indicates which function to return the address
4062for. Zero indicates the calling function, one indicates its caller, etc. The
4063argument is <b>required</b> to be a constant integer value.
4064</p>
4065
4066<h5>Semantics:</h5>
4067
4068<p>
4069The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4070the return address of the specified call frame, or zero if it cannot be
4071identified. The value returned by this intrinsic is likely to be incorrect or 0
4072for arguments other than zero, so it should only be used for debugging purposes.
4073</p>
4074
4075<p>
4076Note that calling this intrinsic does not prevent function inlining or other
4077aggressive transformations, so the value returned may not be that of the obvious
4078source-language caller.
4079</p>
4080</div>
4081
4082
4083<!-- _______________________________________________________________________ -->
4084<div class="doc_subsubsection">
4085 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4086</div>
4087
4088<div class="doc_text">
4089
4090<h5>Syntax:</h5>
4091<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004092 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004093</pre>
4094
4095<h5>Overview:</h5>
4096
4097<p>
4098The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4099target-specific frame pointer value for the specified stack frame.
4100</p>
4101
4102<h5>Arguments:</h5>
4103
4104<p>
4105The argument to this intrinsic indicates which function to return the frame
4106pointer for. Zero indicates the calling function, one indicates its caller,
4107etc. The argument is <b>required</b> to be a constant integer value.
4108</p>
4109
4110<h5>Semantics:</h5>
4111
4112<p>
4113The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4114the frame address of the specified call frame, or zero if it cannot be
4115identified. The value returned by this intrinsic is likely to be incorrect or 0
4116for arguments other than zero, so it should only be used for debugging purposes.
4117</p>
4118
4119<p>
4120Note that calling this intrinsic does not prevent function inlining or other
4121aggressive transformations, so the value returned may not be that of the obvious
4122source-language caller.
4123</p>
4124</div>
4125
4126<!-- _______________________________________________________________________ -->
4127<div class="doc_subsubsection">
4128 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4129</div>
4130
4131<div class="doc_text">
4132
4133<h5>Syntax:</h5>
4134<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004135 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004136</pre>
4137
4138<h5>Overview:</h5>
4139
4140<p>
4141The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4142the function stack, for use with <a href="#int_stackrestore">
4143<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4144features like scoped automatic variable sized arrays in C99.
4145</p>
4146
4147<h5>Semantics:</h5>
4148
4149<p>
4150This intrinsic returns a opaque pointer value that can be passed to <a
4151href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4152<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4153<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4154state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4155practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4156that were allocated after the <tt>llvm.stacksave</tt> was executed.
4157</p>
4158
4159</div>
4160
4161<!-- _______________________________________________________________________ -->
4162<div class="doc_subsubsection">
4163 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4164</div>
4165
4166<div class="doc_text">
4167
4168<h5>Syntax:</h5>
4169<pre>
4170 declare void @llvm.stackrestore(i8 * %ptr)
4171</pre>
4172
4173<h5>Overview:</h5>
4174
4175<p>
4176The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4177the function stack to the state it was in when the corresponding <a
4178href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4179useful for implementing language features like scoped automatic variable sized
4180arrays in C99.
4181</p>
4182
4183<h5>Semantics:</h5>
4184
4185<p>
4186See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4187</p>
4188
4189</div>
4190
4191
4192<!-- _______________________________________________________________________ -->
4193<div class="doc_subsubsection">
4194 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4195</div>
4196
4197<div class="doc_text">
4198
4199<h5>Syntax:</h5>
4200<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004201 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004202</pre>
4203
4204<h5>Overview:</h5>
4205
4206
4207<p>
4208The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4209a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4210no
4211effect on the behavior of the program but can change its performance
4212characteristics.
4213</p>
4214
4215<h5>Arguments:</h5>
4216
4217<p>
4218<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4219determining if the fetch should be for a read (0) or write (1), and
4220<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4221locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4222<tt>locality</tt> arguments must be constant integers.
4223</p>
4224
4225<h5>Semantics:</h5>
4226
4227<p>
4228This intrinsic does not modify the behavior of the program. In particular,
4229prefetches cannot trap and do not produce a value. On targets that support this
4230intrinsic, the prefetch can provide hints to the processor cache for better
4231performance.
4232</p>
4233
4234</div>
4235
4236<!-- _______________________________________________________________________ -->
4237<div class="doc_subsubsection">
4238 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4239</div>
4240
4241<div class="doc_text">
4242
4243<h5>Syntax:</h5>
4244<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004245 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004246</pre>
4247
4248<h5>Overview:</h5>
4249
4250
4251<p>
4252The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4253(PC) in a region of
4254code to simulators and other tools. The method is target specific, but it is
4255expected that the marker will use exported symbols to transmit the PC of the marker.
4256The marker makes no guarantees that it will remain with any specific instruction
4257after optimizations. It is possible that the presence of a marker will inhibit
4258optimizations. The intended use is to be inserted after optimizations to allow
4259correlations of simulation runs.
4260</p>
4261
4262<h5>Arguments:</h5>
4263
4264<p>
4265<tt>id</tt> is a numerical id identifying the marker.
4266</p>
4267
4268<h5>Semantics:</h5>
4269
4270<p>
4271This intrinsic does not modify the behavior of the program. Backends that do not
4272support this intrinisic may ignore it.
4273</p>
4274
4275</div>
4276
4277<!-- _______________________________________________________________________ -->
4278<div class="doc_subsubsection">
4279 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4280</div>
4281
4282<div class="doc_text">
4283
4284<h5>Syntax:</h5>
4285<pre>
4286 declare i64 @llvm.readcyclecounter( )
4287</pre>
4288
4289<h5>Overview:</h5>
4290
4291
4292<p>
4293The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4294counter register (or similar low latency, high accuracy clocks) on those targets
4295that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4296As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4297should only be used for small timings.
4298</p>
4299
4300<h5>Semantics:</h5>
4301
4302<p>
4303When directly supported, reading the cycle counter should not modify any memory.
4304Implementations are allowed to either return a application specific value or a
4305system wide value. On backends without support, this is lowered to a constant 0.
4306</p>
4307
4308</div>
4309
4310<!-- ======================================================================= -->
4311<div class="doc_subsection">
4312 <a name="int_libc">Standard C Library Intrinsics</a>
4313</div>
4314
4315<div class="doc_text">
4316<p>
4317LLVM provides intrinsics for a few important standard C library functions.
4318These intrinsics allow source-language front-ends to pass information about the
4319alignment of the pointer arguments to the code generator, providing opportunity
4320for more efficient code generation.
4321</p>
4322
4323</div>
4324
4325<!-- _______________________________________________________________________ -->
4326<div class="doc_subsubsection">
4327 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4328</div>
4329
4330<div class="doc_text">
4331
4332<h5>Syntax:</h5>
4333<pre>
4334 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4335 i32 &lt;len&gt;, i32 &lt;align&gt;)
4336 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4337 i64 &lt;len&gt;, i32 &lt;align&gt;)
4338</pre>
4339
4340<h5>Overview:</h5>
4341
4342<p>
4343The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4344location to the destination location.
4345</p>
4346
4347<p>
4348Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4349intrinsics do not return a value, and takes an extra alignment argument.
4350</p>
4351
4352<h5>Arguments:</h5>
4353
4354<p>
4355The first argument is a pointer to the destination, the second is a pointer to
4356the source. The third argument is an integer argument
4357specifying the number of bytes to copy, and the fourth argument is the alignment
4358of the source and destination locations.
4359</p>
4360
4361<p>
4362If the call to this intrinisic has an alignment value that is not 0 or 1, then
4363the caller guarantees that both the source and destination pointers are aligned
4364to that boundary.
4365</p>
4366
4367<h5>Semantics:</h5>
4368
4369<p>
4370The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4371location to the destination location, which are not allowed to overlap. It
4372copies "len" bytes of memory over. If the argument is known to be aligned to
4373some boundary, this can be specified as the fourth argument, otherwise it should
4374be set to 0 or 1.
4375</p>
4376</div>
4377
4378
4379<!-- _______________________________________________________________________ -->
4380<div class="doc_subsubsection">
4381 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4382</div>
4383
4384<div class="doc_text">
4385
4386<h5>Syntax:</h5>
4387<pre>
4388 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4389 i32 &lt;len&gt;, i32 &lt;align&gt;)
4390 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4391 i64 &lt;len&gt;, i32 &lt;align&gt;)
4392</pre>
4393
4394<h5>Overview:</h5>
4395
4396<p>
4397The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4398location to the destination location. It is similar to the
4399'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4400</p>
4401
4402<p>
4403Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4404intrinsics do not return a value, and takes an extra alignment argument.
4405</p>
4406
4407<h5>Arguments:</h5>
4408
4409<p>
4410The first argument is a pointer to the destination, the second is a pointer to
4411the source. The third argument is an integer argument
4412specifying the number of bytes to copy, and the fourth argument is the alignment
4413of the source and destination locations.
4414</p>
4415
4416<p>
4417If the call to this intrinisic has an alignment value that is not 0 or 1, then
4418the caller guarantees that the source and destination pointers are aligned to
4419that boundary.
4420</p>
4421
4422<h5>Semantics:</h5>
4423
4424<p>
4425The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4426location to the destination location, which may overlap. It
4427copies "len" bytes of memory over. If the argument is known to be aligned to
4428some boundary, this can be specified as the fourth argument, otherwise it should
4429be set to 0 or 1.
4430</p>
4431</div>
4432
4433
4434<!-- _______________________________________________________________________ -->
4435<div class="doc_subsubsection">
4436 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4437</div>
4438
4439<div class="doc_text">
4440
4441<h5>Syntax:</h5>
4442<pre>
4443 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4444 i32 &lt;len&gt;, i32 &lt;align&gt;)
4445 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4446 i64 &lt;len&gt;, i32 &lt;align&gt;)
4447</pre>
4448
4449<h5>Overview:</h5>
4450
4451<p>
4452The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4453byte value.
4454</p>
4455
4456<p>
4457Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4458does not return a value, and takes an extra alignment argument.
4459</p>
4460
4461<h5>Arguments:</h5>
4462
4463<p>
4464The first argument is a pointer to the destination to fill, the second is the
4465byte value to fill it with, the third argument is an integer
4466argument specifying the number of bytes to fill, and the fourth argument is the
4467known alignment of destination location.
4468</p>
4469
4470<p>
4471If the call to this intrinisic has an alignment value that is not 0 or 1, then
4472the caller guarantees that the destination pointer is aligned to that boundary.
4473</p>
4474
4475<h5>Semantics:</h5>
4476
4477<p>
4478The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4479the
4480destination location. If the argument is known to be aligned to some boundary,
4481this can be specified as the fourth argument, otherwise it should be set to 0 or
44821.
4483</p>
4484</div>
4485
4486
4487<!-- _______________________________________________________________________ -->
4488<div class="doc_subsubsection">
4489 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4490</div>
4491
4492<div class="doc_text">
4493
4494<h5>Syntax:</h5>
4495<pre>
4496 declare float @llvm.sqrt.f32(float %Val)
4497 declare double @llvm.sqrt.f64(double %Val)
4498</pre>
4499
4500<h5>Overview:</h5>
4501
4502<p>
4503The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4504returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4505<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4506negative numbers (which allows for better optimization).
4507</p>
4508
4509<h5>Arguments:</h5>
4510
4511<p>
4512The argument and return value are floating point numbers of the same type.
4513</p>
4514
4515<h5>Semantics:</h5>
4516
4517<p>
4518This function returns the sqrt of the specified operand if it is a nonnegative
4519floating point number.
4520</p>
4521</div>
4522
4523<!-- _______________________________________________________________________ -->
4524<div class="doc_subsubsection">
4525 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4526</div>
4527
4528<div class="doc_text">
4529
4530<h5>Syntax:</h5>
4531<pre>
4532 declare float @llvm.powi.f32(float %Val, i32 %power)
4533 declare double @llvm.powi.f64(double %Val, i32 %power)
4534</pre>
4535
4536<h5>Overview:</h5>
4537
4538<p>
4539The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4540specified (positive or negative) power. The order of evaluation of
4541multiplications is not defined.
4542</p>
4543
4544<h5>Arguments:</h5>
4545
4546<p>
4547The second argument is an integer power, and the first is a value to raise to
4548that power.
4549</p>
4550
4551<h5>Semantics:</h5>
4552
4553<p>
4554This function returns the first value raised to the second power with an
4555unspecified sequence of rounding operations.</p>
4556</div>
4557
4558
4559<!-- ======================================================================= -->
4560<div class="doc_subsection">
4561 <a name="int_manip">Bit Manipulation Intrinsics</a>
4562</div>
4563
4564<div class="doc_text">
4565<p>
4566LLVM provides intrinsics for a few important bit manipulation operations.
4567These allow efficient code generation for some algorithms.
4568</p>
4569
4570</div>
4571
4572<!-- _______________________________________________________________________ -->
4573<div class="doc_subsubsection">
4574 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4575</div>
4576
4577<div class="doc_text">
4578
4579<h5>Syntax:</h5>
4580<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004581type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004582<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004583 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4584 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4585 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004586</pre>
4587
4588<h5>Overview:</h5>
4589
4590<p>
4591The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4592values with an even number of bytes (positive multiple of 16 bits). These are
4593useful for performing operations on data that is not in the target's native
4594byte order.
4595</p>
4596
4597<h5>Semantics:</h5>
4598
4599<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004600The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004601and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4602intrinsic returns an i32 value that has the four bytes of the input i32
4603swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004604i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4605<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004606additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4607</p>
4608
4609</div>
4610
4611<!-- _______________________________________________________________________ -->
4612<div class="doc_subsubsection">
4613 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4614</div>
4615
4616<div class="doc_text">
4617
4618<h5>Syntax:</h5>
4619<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4620width. Not all targets support all bit widths however.
4621<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004622 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4623 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004624 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004625 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4626 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004627</pre>
4628
4629<h5>Overview:</h5>
4630
4631<p>
4632The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4633value.
4634</p>
4635
4636<h5>Arguments:</h5>
4637
4638<p>
4639The only argument is the value to be counted. The argument may be of any
4640integer type. The return type must match the argument type.
4641</p>
4642
4643<h5>Semantics:</h5>
4644
4645<p>
4646The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4647</p>
4648</div>
4649
4650<!-- _______________________________________________________________________ -->
4651<div class="doc_subsubsection">
4652 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4653</div>
4654
4655<div class="doc_text">
4656
4657<h5>Syntax:</h5>
4658<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4659integer bit width. Not all targets support all bit widths however.
4660<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004661 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4662 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004663 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004664 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4665 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004666</pre>
4667
4668<h5>Overview:</h5>
4669
4670<p>
4671The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4672leading zeros in a variable.
4673</p>
4674
4675<h5>Arguments:</h5>
4676
4677<p>
4678The only argument is the value to be counted. The argument may be of any
4679integer type. The return type must match the argument type.
4680</p>
4681
4682<h5>Semantics:</h5>
4683
4684<p>
4685The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4686in a variable. If the src == 0 then the result is the size in bits of the type
4687of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4688</p>
4689</div>
4690
4691
4692
4693<!-- _______________________________________________________________________ -->
4694<div class="doc_subsubsection">
4695 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4696</div>
4697
4698<div class="doc_text">
4699
4700<h5>Syntax:</h5>
4701<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4702integer bit width. Not all targets support all bit widths however.
4703<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004704 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4705 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004707 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4708 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004709</pre>
4710
4711<h5>Overview:</h5>
4712
4713<p>
4714The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4715trailing zeros.
4716</p>
4717
4718<h5>Arguments:</h5>
4719
4720<p>
4721The only argument is the value to be counted. The argument may be of any
4722integer type. The return type must match the argument type.
4723</p>
4724
4725<h5>Semantics:</h5>
4726
4727<p>
4728The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4729in a variable. If the src == 0 then the result is the size in bits of the type
4730of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4731</p>
4732</div>
4733
4734<!-- _______________________________________________________________________ -->
4735<div class="doc_subsubsection">
4736 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4737</div>
4738
4739<div class="doc_text">
4740
4741<h5>Syntax:</h5>
4742<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4743on any integer bit width.
4744<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004745 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4746 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004747</pre>
4748
4749<h5>Overview:</h5>
4750<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4751range of bits from an integer value and returns them in the same bit width as
4752the original value.</p>
4753
4754<h5>Arguments:</h5>
4755<p>The first argument, <tt>%val</tt> and the result may be integer types of
4756any bit width but they must have the same bit width. The second and third
4757arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4758
4759<h5>Semantics:</h5>
4760<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4761of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4762<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4763operates in forward mode.</p>
4764<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4765right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4766only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4767<ol>
4768 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4769 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4770 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4771 to determine the number of bits to retain.</li>
4772 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4773 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4774</ol>
4775<p>In reverse mode, a similar computation is made except that the bits are
4776returned in the reverse order. So, for example, if <tt>X</tt> has the value
4777<tt>i16 0x0ACF (101011001111)</tt> and we apply
4778<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4779<tt>i16 0x0026 (000000100110)</tt>.</p>
4780</div>
4781
4782<div class="doc_subsubsection">
4783 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4784</div>
4785
4786<div class="doc_text">
4787
4788<h5>Syntax:</h5>
4789<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4790on any integer bit width.
4791<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004792 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4793 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004794</pre>
4795
4796<h5>Overview:</h5>
4797<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4798of bits in an integer value with another integer value. It returns the integer
4799with the replaced bits.</p>
4800
4801<h5>Arguments:</h5>
4802<p>The first argument, <tt>%val</tt> and the result may be integer types of
4803any bit width but they must have the same bit width. <tt>%val</tt> is the value
4804whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4805integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4806type since they specify only a bit index.</p>
4807
4808<h5>Semantics:</h5>
4809<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4810of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4811<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4812operates in forward mode.</p>
4813<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4814truncating it down to the size of the replacement area or zero extending it
4815up to that size.</p>
4816<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4817are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4818in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4819to the <tt>%hi</tt>th bit.
4820<p>In reverse mode, a similar computation is made except that the bits are
4821reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4822<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4823<h5>Examples:</h5>
4824<pre>
4825 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4826 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4827 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4828 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4829 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4830</pre>
4831</div>
4832
4833<!-- ======================================================================= -->
4834<div class="doc_subsection">
4835 <a name="int_debugger">Debugger Intrinsics</a>
4836</div>
4837
4838<div class="doc_text">
4839<p>
4840The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4841are described in the <a
4842href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4843Debugging</a> document.
4844</p>
4845</div>
4846
4847
4848<!-- ======================================================================= -->
4849<div class="doc_subsection">
4850 <a name="int_eh">Exception Handling Intrinsics</a>
4851</div>
4852
4853<div class="doc_text">
4854<p> The LLVM exception handling intrinsics (which all start with
4855<tt>llvm.eh.</tt> prefix), are described in the <a
4856href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4857Handling</a> document. </p>
4858</div>
4859
4860<!-- ======================================================================= -->
4861<div class="doc_subsection">
Chandler Carruthc0470a82007-07-20 19:34:37 +00004862 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4863</div>
4864
4865<div class="doc_text">
4866<p>
4867 These intrinsic functions expand the "universal IR" of LLVM to represent
4868 hardware constructs for atomic operations and memory synchronization. This
4869 provides an interface to the hardware, not an interface to the programmer. It
4870 is aimed at a low enough level to allow any programming models or APIs which
4871 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004872 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruthc0470a82007-07-20 19:34:37 +00004873 languages, it also provides a starting point for developing a "universal"
4874 atomic operation and synchronization IR.
4875</p>
4876<p>
4877 These do <em>not</em> form an API such as high-level threading libraries,
4878 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencerb043f672007-07-20 19:59:11 +00004879 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruthc0470a82007-07-20 19:34:37 +00004880 application libraries. The hardware interface provided by LLVM should allow
4881 a clean implementation of all of these APIs and parallel programming models.
4882 No one model or paradigm should be selected above others unless the hardware
4883 itself ubiquitously does so.
4884</p>
4885</div>
4886
4887<!-- _______________________________________________________________________ -->
4888<div class="doc_subsubsection">
4889 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4890</div>
4891<div class="doc_text">
4892<h5>Syntax:</h5>
4893<p>
4894 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004895 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004896<pre>
4897declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4898declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4899declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4900declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4901</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004902<h5>Overview:</h5>
4903<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004904 This loads a value in memory and compares it to a given value. If they are
4905 equal, it stores a new value into the memory.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004906</p>
4907<h5>Arguments:</h5>
4908<p>
4909 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4910 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4911 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4912 this integer type. While any bit width integer may be used, targets may only
4913 lower representations they support in hardware.
4914</p>
4915<h5>Semantics:</h5>
4916<p>
4917 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004918 in memory pointed to by <tt>ptr</tt> and compares it with the value
4919 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4920 loaded value is yielded in all cases. This provides the equivalent of an
4921 atomic compare-and-swap operation within the SSA framework.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004922</p>
4923<h5>Examples:</h5>
4924<pre>
4925%ptr = malloc i32
4926 store i32 4, %ptr
4927
4928%val1 = add i32 4, 4
4929%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4930 <i>; yields {i32}:result1 = 4</i>
4931%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4932%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4933
4934%val2 = add i32 1, 1
4935%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4936 <i>; yields {i32}:result2 = 8</i>
4937%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4938%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4939</pre>
4940</div>
4941
4942<!-- _______________________________________________________________________ -->
4943<div class="doc_subsubsection">
4944 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4945</div>
4946<div class="doc_text">
4947<h5>Syntax:</h5>
4948<p>
4949 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004950 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004951<pre>
4952declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4953declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4954declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4955declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4956</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004957<h5>Overview:</h5>
4958<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004959 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4960 the value from memory. It then stores the value in <tt>val</tt> in the memory
4961 at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004962</p>
4963<h5>Arguments:</h5>
4964<p>
4965 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4966 <tt>val</tt> argument and the result must be integers of the same bit width.
4967 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4968 integer type. The targets may only lower integer representations they
4969 support.
4970</p>
4971<h5>Semantics:</h5>
4972<p>
4973 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4974 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4975 equivalent of an atomic swap operation within the SSA framework.
4976</p>
4977<h5>Examples:</h5>
4978<pre>
4979%ptr = malloc i32
4980 store i32 4, %ptr
4981
4982%val1 = add i32 4, 4
4983%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4984 <i>; yields {i32}:result1 = 4</i>
4985%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4986%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4987
4988%val2 = add i32 1, 1
4989%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4990 <i>; yields {i32}:result2 = 8</i>
4991%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4992%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4993</pre>
4994 </div>
4995
4996<!-- _______________________________________________________________________ -->
4997<div class="doc_subsubsection">
4998 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4999</div>
5000<div class="doc_text">
5001<h5>Syntax:</h5>
5002<p>
5003 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005004 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005005<pre>
5006declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5007declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5008declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5009declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5010</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005011<h5>Overview:</h5>
5012<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005013 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruthc0470a82007-07-20 19:34:37 +00005014 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5015</p>
5016<h5>Arguments:</h5>
5017<p>
5018 The intrinsic takes two arguments, the first a pointer to an integer value
5019 and the second an integer value. The result is also an integer value. These
5020 integer types can have any bit width, but they must all have the same bit
5021 width. The targets may only lower integer representations they support.
5022</p>
5023<h5>Semantics:</h5>
5024<p>
5025 This intrinsic does a series of operations atomically. It first loads the
5026 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5027 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5028</p>
5029<h5>Examples:</h5>
5030<pre>
5031%ptr = malloc i32
5032 store i32 4, %ptr
5033%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5034 <i>; yields {i32}:result1 = 4</i>
5035%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5036 <i>; yields {i32}:result2 = 8</i>
5037%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5038 <i>; yields {i32}:result3 = 10</i>
5039%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5040</pre>
5041</div>
5042
5043<!-- _______________________________________________________________________ -->
5044<div class="doc_subsubsection">
5045 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5046</div>
5047<div class="doc_text">
5048<h5>Syntax:</h5>
5049<p>
5050 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005051 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005052<pre>
5053declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5054declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5055declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5056declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5057</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005058<h5>Overview:</h5>
5059<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005060 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5061 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00005062</p>
5063<h5>Arguments:</h5>
5064<p>
5065 The intrinsic takes two arguments, the first a pointer to an integer value
5066 and the second an integer value. The result is also an integer value. These
5067 integer types can have any bit width, but they must all have the same bit
5068 width. The targets may only lower integer representations they support.
5069</p>
5070<h5>Semantics:</h5>
5071<p>
5072 This intrinsic does a series of operations atomically. It first loads the
5073 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5074 stores the result to <tt>ptr</tt>. It yields the original value stored
5075 at <tt>ptr</tt>.
5076</p>
5077<h5>Examples:</h5>
5078<pre>
5079%ptr = malloc i32
5080 store i32 32, %ptr
5081%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5082 <i>; yields {i32}:result1 = 32</i>
5083%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5084 <i>; yields {i32}:result2 = 28</i>
5085%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5086 <i>; yields {i32}:result3 = 26</i>
5087%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5088</pre>
5089</div>
5090
5091<!-- _______________________________________________________________________ -->
5092<div class="doc_subsubsection">
5093 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5094</div>
5095<div class="doc_text">
5096<h5>Syntax:</h5>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005097<pre>
5098declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5099</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005100<h5>Overview:</h5>
5101<p>
5102 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5103 specific pairs of memory access types.
5104</p>
5105<h5>Arguments:</h5>
5106<p>
5107 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5108 Each argument enables a specific barrier as listed below.
Reid Spencerc64165c2007-07-20 20:03:33 +00005109</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005110 <ul>
5111 <li><tt>ll</tt>: load-load barrier</li>
5112 <li><tt>ls</tt>: load-store barrier</li>
5113 <li><tt>sl</tt>: store-load barrier</li>
5114 <li><tt>ss</tt>: store-store barrier</li>
5115 </ul>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005116<h5>Semantics:</h5>
5117<p>
5118 This intrinsic causes the system to enforce some ordering constraints upon
5119 the loads and stores of the program. This barrier does not indicate
5120 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5121 which they occur. For any of the specified pairs of load and store operations
5122 (f.ex. load-load, or store-load), all of the first operations preceding the
5123 barrier will complete before any of the second operations succeeding the
5124 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencerc64165c2007-07-20 20:03:33 +00005125</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005126 <ul>
5127 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5128 after the barrier begins.</li>
5129 <li><tt>ls</tt>: All loads before the barrier must complete before any
5130 store after the barrier begins.</li>
5131 <li><tt>ss</tt>: All stores before the barrier must complete before any
5132 store after the barrier begins.</li>
5133 <li><tt>sl</tt>: All stores before the barrier must complete before any
5134 load after the barrier begins.</li>
5135 </ul>
Reid Spencerc64165c2007-07-20 20:03:33 +00005136<p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005137 These semantics are applied with a logical "and" behavior when more than one
5138 is enabled in a single memory barrier intrinsic.
5139</p>
5140<h5>Example:</h5>
5141<pre>
5142%ptr = malloc i32
5143 store i32 4, %ptr
5144
5145%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5146 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5147 <i>; guarantee the above finishes</i>
5148 store i32 8, %ptr <i>; before this begins</i>
5149</pre>
5150</div>
5151
5152<!-- ======================================================================= -->
5153<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005154 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005155</div>
5156
5157<div class="doc_text">
5158<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005159 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005160 the <tt>nest</tt> attribute, from a function. The result is a callable
5161 function pointer lacking the nest parameter - the caller does not need
5162 to provide a value for it. Instead, the value to use is stored in
5163 advance in a "trampoline", a block of memory usually allocated
5164 on the stack, which also contains code to splice the nest value into the
5165 argument list. This is used to implement the GCC nested function address
5166 extension.
5167</p>
5168<p>
5169 For example, if the function is
5170 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
5171 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:
5172<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005173 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5174 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5175 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5176 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005177</pre>
5178 The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
5179 <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
5180</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005181</div>
5182
5183<!-- _______________________________________________________________________ -->
5184<div class="doc_subsubsection">
5185 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5186</div>
5187<div class="doc_text">
5188<h5>Syntax:</h5>
5189<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005190declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005191</pre>
5192<h5>Overview:</h5>
5193<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005194 This fills the memory pointed to by <tt>tramp</tt> with code
5195 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005196</p>
5197<h5>Arguments:</h5>
5198<p>
5199 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5200 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5201 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005202 intrinsic. Note that the size and the alignment are target-specific - LLVM
5203 currently provides no portable way of determining them, so a front-end that
5204 generates this intrinsic needs to have some target-specific knowledge.
5205 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005206</p>
5207<h5>Semantics:</h5>
5208<p>
5209 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005210 dependent code, turning it into a function. A pointer to this function is
5211 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005212 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005213 before being called. The new function's signature is the same as that of
5214 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5215 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5216 of pointer type. Calling the new function is equivalent to calling
5217 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5218 missing <tt>nest</tt> argument. If, after calling
5219 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5220 modified, then the effect of any later call to the returned function pointer is
5221 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005222</p>
5223</div>
5224
5225<!-- ======================================================================= -->
5226<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005227 <a name="int_general">General Intrinsics</a>
5228</div>
5229
5230<div class="doc_text">
5231<p> This class of intrinsics is designed to be generic and has
5232no specific purpose. </p>
5233</div>
5234
5235<!-- _______________________________________________________________________ -->
5236<div class="doc_subsubsection">
5237 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5238</div>
5239
5240<div class="doc_text">
5241
5242<h5>Syntax:</h5>
5243<pre>
5244 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5245</pre>
5246
5247<h5>Overview:</h5>
5248
5249<p>
5250The '<tt>llvm.var.annotation</tt>' intrinsic
5251</p>
5252
5253<h5>Arguments:</h5>
5254
5255<p>
5256The first argument is a pointer to a value, the second is a pointer to a
5257global string, the third is a pointer to a global string which is the source
5258file name, and the last argument is the line number.
5259</p>
5260
5261<h5>Semantics:</h5>
5262
5263<p>
5264This intrinsic allows annotation of local variables with arbitrary strings.
5265This can be useful for special purpose optimizations that want to look for these
5266 annotations. These have no other defined use, they are ignored by code
5267 generation and optimization.
5268</div>
5269
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005270<!-- _______________________________________________________________________ -->
5271<div class="doc_subsubsection">
5272 <a name="int_annotation">'<tt>llvm.annotation</tt>' Intrinsic</a>
5273</div>
5274
5275<div class="doc_text">
5276
5277<h5>Syntax:</h5>
5278<pre>
5279 declare i32 @llvm.annotation(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5280</pre>
5281
5282<h5>Overview:</h5>
5283<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5284any integer bit width. Not all targets support all bit widths however.
5285</p>
5286
5287<h5>Arguments:</h5>
5288
5289<p>
5290The first argument is an integer value (result of some expression),
5291the second is a pointer to a global string, the third is a pointer to a global
5292string which is the source file name, and the last argument is the line number.
5293</p>
5294
5295<h5>Semantics:</h5>
5296
5297<p>
5298This intrinsic allows annotations to be put on arbitrary expressions
5299with arbitrary strings. This can be useful for special purpose optimizations
5300that want to look for these annotations. These have no other defined use, they
5301are ignored by code generation and optimization.
5302</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005303
5304<!-- *********************************************************************** -->
5305<hr>
5306<address>
5307 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5308 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5309 <a href="http://validator.w3.org/check/referer"><img
5310 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5311
5312 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5313 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5314 Last modified: $Date$
5315</address>
5316</body>
5317</html>