blob: f1be06022ca9939c94815d9791797ae0945244b6 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a very simple implementation of Andersen's interprocedural
11// alias analysis. This implementation does not include any of the fancy
12// features that make Andersen's reasonably efficient (like cycle elimination or
13// variable substitution), but it should be useful for getting precision
14// numbers and can be extended in the future.
15//
16// In pointer analysis terms, this is a subset-based, flow-insensitive,
17// field-insensitive, and context-insensitive algorithm pointer algorithm.
18//
19// This algorithm is implemented as three stages:
20// 1. Object identification.
21// 2. Inclusion constraint identification.
22// 3. Inclusion constraint solving.
23//
24// The object identification stage identifies all of the memory objects in the
25// program, which includes globals, heap allocated objects, and stack allocated
26// objects.
27//
28// The inclusion constraint identification stage finds all inclusion constraints
29// in the program by scanning the program, looking for pointer assignments and
30// other statements that effect the points-to graph. For a statement like "A =
31// B", this statement is processed to indicate that A can point to anything that
32// B can point to. Constraints can handle copies, loads, and stores.
33//
34// The inclusion constraint solving phase iteratively propagates the inclusion
35// constraints until a fixed point is reached. This is an O(N^3) algorithm.
36//
37// In the initial pass, all indirect function calls are completely ignored. As
38// the analysis discovers new targets of function pointers, it iteratively
39// resolves a precise (and conservative) call graph. Also related, this
40// analysis initially assumes that all internal functions have known incoming
41// pointers. If we find that an internal function's address escapes outside of
42// the program, we update this assumption.
43//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000044// Future Improvements:
45// This implementation of Andersen's algorithm is extremely slow. To make it
46// scale reasonably well, the inclusion constraints could be sorted (easy),
47// offline variable substitution would be a huge win (straight-forward), and
48// online cycle elimination (trickier) might help as well.
49//
Chris Lattnere995a2a2004-05-23 21:00:47 +000050//===----------------------------------------------------------------------===//
51
52#define DEBUG_TYPE "anders-aa"
53#include "llvm/Constants.h"
54#include "llvm/DerivedTypes.h"
55#include "llvm/Instructions.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/InstIterator.h"
59#include "llvm/Support/InstVisitor.h"
60#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000061#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000062#include "llvm/Support/Debug.h"
63#include "llvm/ADT/Statistic.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000064#include <set>
65using namespace llvm;
66
67namespace {
68 Statistic<>
69 NumIters("anders-aa", "Number of iterations to reach convergence");
70 Statistic<>
71 NumConstraints("anders-aa", "Number of constraints");
72 Statistic<>
73 NumNodes("anders-aa", "Number of nodes");
74 Statistic<>
75 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
76 Statistic<>
77 NumIndirectCallees("anders-aa", "Number of indirect callees found");
78
Chris Lattnerb12914b2004-09-20 04:48:05 +000079 class Andersens : public ModulePass, public AliasAnalysis,
Chris Lattnere995a2a2004-05-23 21:00:47 +000080 private InstVisitor<Andersens> {
81 /// Node class - This class is used to represent a memory object in the
82 /// program, and is the primitive used to build the points-to graph.
83 class Node {
84 std::vector<Node*> Pointees;
85 Value *Val;
86 public:
87 Node() : Val(0) {}
88 Node *setValue(Value *V) {
89 assert(Val == 0 && "Value already set for this node!");
90 Val = V;
91 return this;
92 }
93
94 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +000095 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +000096 Value *getValue() const { return Val; }
97
98 typedef std::vector<Node*>::const_iterator iterator;
99 iterator begin() const { return Pointees.begin(); }
100 iterator end() const { return Pointees.end(); }
101
102 /// addPointerTo - Add a pointer to the list of pointees of this node,
103 /// returning true if this caused a new pointer to be added, or false if
104 /// we already knew about the points-to relation.
105 bool addPointerTo(Node *N) {
106 std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
107 Pointees.end(),
108 N);
109 if (I != Pointees.end() && *I == N)
110 return false;
111 Pointees.insert(I, N);
112 return true;
113 }
114
115 /// intersects - Return true if the points-to set of this node intersects
116 /// with the points-to set of the specified node.
117 bool intersects(Node *N) const;
118
119 /// intersectsIgnoring - Return true if the points-to set of this node
120 /// intersects with the points-to set of the specified node on any nodes
121 /// except for the specified node to ignore.
122 bool intersectsIgnoring(Node *N, Node *Ignoring) const;
123
124 // Constraint application methods.
125 bool copyFrom(Node *N);
126 bool loadFrom(Node *N);
127 bool storeThrough(Node *N);
128 };
129
130 /// GraphNodes - This vector is populated as part of the object
131 /// identification stage of the analysis, which populates this vector with a
132 /// node for each memory object and fills in the ValueNodes map.
133 std::vector<Node> GraphNodes;
134
135 /// ValueNodes - This map indicates the Node that a particular Value* is
136 /// represented by. This contains entries for all pointers.
137 std::map<Value*, unsigned> ValueNodes;
138
139 /// ObjectNodes - This map contains entries for each memory object in the
140 /// program: globals, alloca's and mallocs.
141 std::map<Value*, unsigned> ObjectNodes;
142
143 /// ReturnNodes - This map contains an entry for each function in the
144 /// program that returns a value.
145 std::map<Function*, unsigned> ReturnNodes;
146
147 /// VarargNodes - This map contains the entry used to represent all pointers
148 /// passed through the varargs portion of a function call for a particular
149 /// function. An entry is not present in this map for functions that do not
150 /// take variable arguments.
151 std::map<Function*, unsigned> VarargNodes;
152
153 /// Constraint - Objects of this structure are used to represent the various
154 /// constraints identified by the algorithm. The constraints are 'copy',
155 /// for statements like "A = B", 'load' for statements like "A = *B", and
156 /// 'store' for statements like "*A = B".
157 struct Constraint {
158 enum ConstraintType { Copy, Load, Store } Type;
159 Node *Dest, *Src;
160
161 Constraint(ConstraintType Ty, Node *D, Node *S)
162 : Type(Ty), Dest(D), Src(S) {}
163 };
164
165 /// Constraints - This vector contains a list of all of the constraints
166 /// identified by the program.
167 std::vector<Constraint> Constraints;
168
169 /// EscapingInternalFunctions - This set contains all of the internal
170 /// functions that are found to escape from the program. If the address of
171 /// an internal function is passed to an external function or otherwise
172 /// escapes from the analyzed portion of the program, we must assume that
173 /// any pointer arguments can alias the universal node. This set keeps
174 /// track of those functions we are assuming to escape so far.
175 std::set<Function*> EscapingInternalFunctions;
176
177 /// IndirectCalls - This contains a list of all of the indirect call sites
178 /// in the program. Since the call graph is iteratively discovered, we may
179 /// need to add constraints to our graph as we find new targets of function
180 /// pointers.
181 std::vector<CallSite> IndirectCalls;
182
183 /// IndirectCallees - For each call site in the indirect calls list, keep
184 /// track of the callees that we have discovered so far. As the analysis
185 /// proceeds, more callees are discovered, until the call graph finally
186 /// stabilizes.
187 std::map<CallSite, std::vector<Function*> > IndirectCallees;
188
189 /// This enum defines the GraphNodes indices that correspond to important
190 /// fixed sets.
191 enum {
192 UniversalSet = 0,
193 NullPtr = 1,
194 NullObject = 2,
195 };
196
197 public:
Chris Lattnerb12914b2004-09-20 04:48:05 +0000198 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000199 InitializeAliasAnalysis(this);
200 IdentifyObjects(M);
201 CollectConstraints(M);
202 DEBUG(PrintConstraints());
203 SolveConstraints();
204 DEBUG(PrintPointsToGraph());
205
206 // Free the constraints list, as we don't need it to respond to alias
207 // requests.
208 ObjectNodes.clear();
209 ReturnNodes.clear();
210 VarargNodes.clear();
211 EscapingInternalFunctions.clear();
212 std::vector<Constraint>().swap(Constraints);
213 return false;
214 }
215
216 void releaseMemory() {
217 // FIXME: Until we have transitively required passes working correctly,
218 // this cannot be enabled! Otherwise, using -count-aa with the pass
219 // causes memory to be freed too early. :(
220#if 0
221 // The memory objects and ValueNodes data structures at the only ones that
222 // are still live after construction.
223 std::vector<Node>().swap(GraphNodes);
224 ValueNodes.clear();
225#endif
226 }
227
228 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
229 AliasAnalysis::getAnalysisUsage(AU);
230 AU.setPreservesAll(); // Does not transform code
231 }
232
233 //------------------------------------------------
234 // Implement the AliasAnalysis API
235 //
236 AliasResult alias(const Value *V1, unsigned V1Size,
237 const Value *V2, unsigned V2Size);
238 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
239 bool pointsToConstantMemory(const Value *P);
240
241 virtual void deleteValue(Value *V) {
242 ValueNodes.erase(V);
243 getAnalysis<AliasAnalysis>().deleteValue(V);
244 }
245
246 virtual void copyValue(Value *From, Value *To) {
247 ValueNodes[To] = ValueNodes[From];
248 getAnalysis<AliasAnalysis>().copyValue(From, To);
249 }
250
251 private:
252 /// getNode - Return the node corresponding to the specified pointer scalar.
253 ///
254 Node *getNode(Value *V) {
255 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000256 if (!isa<GlobalValue>(C))
257 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000258
259 std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
260 if (I == ValueNodes.end()) {
261 V->dump();
262 assert(I != ValueNodes.end() &&
263 "Value does not have a node in the points-to graph!");
264 }
265 return &GraphNodes[I->second];
266 }
267
268 /// getObject - Return the node corresponding to the memory object for the
269 /// specified global or allocation instruction.
270 Node *getObject(Value *V) {
271 std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
272 assert(I != ObjectNodes.end() &&
273 "Value does not have an object in the points-to graph!");
274 return &GraphNodes[I->second];
275 }
276
277 /// getReturnNode - Return the node representing the return value for the
278 /// specified function.
279 Node *getReturnNode(Function *F) {
280 std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
281 assert(I != ReturnNodes.end() && "Function does not return a value!");
282 return &GraphNodes[I->second];
283 }
284
285 /// getVarargNode - Return the node representing the variable arguments
286 /// formal for the specified function.
287 Node *getVarargNode(Function *F) {
288 std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
289 assert(I != VarargNodes.end() && "Function does not take var args!");
290 return &GraphNodes[I->second];
291 }
292
293 /// getNodeValue - Get the node for the specified LLVM value and set the
294 /// value for it to be the specified value.
295 Node *getNodeValue(Value &V) {
296 return getNode(&V)->setValue(&V);
297 }
298
299 void IdentifyObjects(Module &M);
300 void CollectConstraints(Module &M);
301 void SolveConstraints();
302
303 Node *getNodeForConstantPointer(Constant *C);
304 Node *getNodeForConstantPointerTarget(Constant *C);
305 void AddGlobalInitializerConstraints(Node *N, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000306
Chris Lattnere995a2a2004-05-23 21:00:47 +0000307 void AddConstraintsForNonInternalLinkage(Function *F);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000308 bool AddConstraintsForExternalFunction(Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000309 void AddConstraintsForCall(CallSite CS, Function *F);
310
311
312 void PrintNode(Node *N);
313 void PrintConstraints();
314 void PrintPointsToGraph();
315
316 //===------------------------------------------------------------------===//
317 // Instruction visitation methods for adding constraints
318 //
319 friend class InstVisitor<Andersens>;
320 void visitReturnInst(ReturnInst &RI);
321 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
322 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
323 void visitCallSite(CallSite CS);
324 void visitAllocationInst(AllocationInst &AI);
325 void visitLoadInst(LoadInst &LI);
326 void visitStoreInst(StoreInst &SI);
327 void visitGetElementPtrInst(GetElementPtrInst &GEP);
328 void visitPHINode(PHINode &PN);
329 void visitCastInst(CastInst &CI);
330 void visitSelectInst(SelectInst &SI);
331 void visitVANext(VANextInst &I);
332 void visitVAArg(VAArgInst &I);
333 void visitInstruction(Instruction &I);
334 };
335
336 RegisterOpt<Andersens> X("anders-aa",
337 "Andersen's Interprocedural Alias Analysis");
338 RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
339}
340
Jeff Cohen534927d2005-01-08 22:01:16 +0000341ModulePass *llvm::createAndersensPass() { return new Andersens(); }
342
Chris Lattnere995a2a2004-05-23 21:00:47 +0000343//===----------------------------------------------------------------------===//
344// AliasAnalysis Interface Implementation
345//===----------------------------------------------------------------------===//
346
347AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
348 const Value *V2, unsigned V2Size) {
349 Node *N1 = getNode((Value*)V1);
350 Node *N2 = getNode((Value*)V2);
351
352 // Check to see if the two pointers are known to not alias. They don't alias
353 // if their points-to sets do not intersect.
354 if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
355 return NoAlias;
356
357 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
358}
359
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000360
Chris Lattnere995a2a2004-05-23 21:00:47 +0000361/// getMustAlias - We can provide must alias information if we know that a
362/// pointer can only point to a specific function or the null pointer.
363/// Unfortunately we cannot determine must-alias information for global
364/// variables or any other memory memory objects because we do not track whether
365/// a pointer points to the beginning of an object or a field of it.
366void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
367 Node *N = getNode(P);
368 Node::iterator I = N->begin();
369 if (I != N->end()) {
370 // If there is exactly one element in the points-to set for the object...
371 ++I;
372 if (I == N->end()) {
373 Node *Pointee = *N->begin();
374
375 // If a function is the only object in the points-to set, then it must be
376 // the destination. Note that we can't handle global variables here,
377 // because we don't know if the pointer is actually pointing to a field of
378 // the global or to the beginning of it.
379 if (Value *V = Pointee->getValue()) {
380 if (Function *F = dyn_cast<Function>(V))
381 RetVals.push_back(F);
382 } else {
383 // If the object in the points-to set is the null object, then the null
384 // pointer is a must alias.
385 if (Pointee == &GraphNodes[NullObject])
386 RetVals.push_back(Constant::getNullValue(P->getType()));
387 }
388 }
389 }
390
391 AliasAnalysis::getMustAliases(P, RetVals);
392}
393
394/// pointsToConstantMemory - If we can determine that this pointer only points
395/// to constant memory, return true. In practice, this means that if the
396/// pointer can only point to constant globals, functions, or the null pointer,
397/// return true.
398///
399bool Andersens::pointsToConstantMemory(const Value *P) {
400 Node *N = getNode((Value*)P);
401 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
402 if (Value *V = (*I)->getValue()) {
403 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
404 !cast<GlobalVariable>(V)->isConstant()))
405 return AliasAnalysis::pointsToConstantMemory(P);
406 } else {
407 if (*I != &GraphNodes[NullObject])
408 return AliasAnalysis::pointsToConstantMemory(P);
409 }
410 }
411
412 return true;
413}
414
415//===----------------------------------------------------------------------===//
416// Object Identification Phase
417//===----------------------------------------------------------------------===//
418
419/// IdentifyObjects - This stage scans the program, adding an entry to the
420/// GraphNodes list for each memory object in the program (global stack or
421/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
422///
423void Andersens::IdentifyObjects(Module &M) {
424 unsigned NumObjects = 0;
425
426 // Object #0 is always the universal set: the object that we don't know
427 // anything about.
428 assert(NumObjects == UniversalSet && "Something changed!");
429 ++NumObjects;
430
431 // Object #1 always represents the null pointer.
432 assert(NumObjects == NullPtr && "Something changed!");
433 ++NumObjects;
434
435 // Object #2 always represents the null object (the object pointed to by null)
436 assert(NumObjects == NullObject && "Something changed!");
437 ++NumObjects;
438
439 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000440 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
441 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000442 ObjectNodes[I] = NumObjects++;
443 ValueNodes[I] = NumObjects++;
444 }
445
446 // Add nodes for all of the functions and the instructions inside of them.
447 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
448 // The function itself is a memory object.
449 ValueNodes[F] = NumObjects++;
450 ObjectNodes[F] = NumObjects++;
451 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
452 ReturnNodes[F] = NumObjects++;
453 if (F->getFunctionType()->isVarArg())
454 VarargNodes[F] = NumObjects++;
455
456 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000457 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
458 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000459 if (isa<PointerType>(I->getType()))
460 ValueNodes[I] = NumObjects++;
461
462 // Scan the function body, creating a memory object for each heap/stack
463 // allocation in the body of the function and a node to represent all
464 // pointer values defined by instructions and used as operands.
465 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
466 // If this is an heap or stack allocation, create a node for the memory
467 // object.
468 if (isa<PointerType>(II->getType())) {
469 ValueNodes[&*II] = NumObjects++;
470 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
471 ObjectNodes[AI] = NumObjects++;
472 }
473 }
474 }
475
476 // Now that we know how many objects to create, make them all now!
477 GraphNodes.resize(NumObjects);
478 NumNodes += NumObjects;
479}
480
481//===----------------------------------------------------------------------===//
482// Constraint Identification Phase
483//===----------------------------------------------------------------------===//
484
485/// getNodeForConstantPointer - Return the node corresponding to the constant
486/// pointer itself.
487Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
488 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
489
Chris Lattner267a1b02005-03-27 18:58:23 +0000490 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000491 return &GraphNodes[NullPtr];
Reid Spencere8404342004-07-18 00:18:30 +0000492 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
493 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000494 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
495 switch (CE->getOpcode()) {
496 case Instruction::GetElementPtr:
497 return getNodeForConstantPointer(CE->getOperand(0));
498 case Instruction::Cast:
499 if (isa<PointerType>(CE->getOperand(0)->getType()))
500 return getNodeForConstantPointer(CE->getOperand(0));
501 else
502 return &GraphNodes[UniversalSet];
503 default:
504 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
505 assert(0);
506 }
507 } else {
508 assert(0 && "Unknown constant pointer!");
509 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000510 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000511}
512
513/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
514/// specified constant pointer.
515Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
516 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
517
518 if (isa<ConstantPointerNull>(C))
519 return &GraphNodes[NullObject];
Reid Spencere8404342004-07-18 00:18:30 +0000520 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
521 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000522 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
523 switch (CE->getOpcode()) {
524 case Instruction::GetElementPtr:
525 return getNodeForConstantPointerTarget(CE->getOperand(0));
526 case Instruction::Cast:
527 if (isa<PointerType>(CE->getOperand(0)->getType()))
528 return getNodeForConstantPointerTarget(CE->getOperand(0));
529 else
530 return &GraphNodes[UniversalSet];
531 default:
532 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
533 assert(0);
534 }
535 } else {
536 assert(0 && "Unknown constant pointer!");
537 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000538 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000539}
540
541/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
542/// object N, which contains values indicated by C.
543void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
544 if (C->getType()->isFirstClassType()) {
545 if (isa<PointerType>(C->getType()))
546 N->addPointerTo(getNodeForConstantPointer(C));
547 } else if (C->isNullValue()) {
548 N->addPointerTo(&GraphNodes[NullObject]);
549 return;
550 } else {
551 // If this is an array or struct, include constraints for each element.
552 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
553 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
554 AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
555 }
556}
557
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000558/// AddConstraintsForNonInternalLinkage - If this function does not have
559/// internal linkage, realize that we can't trust anything passed into or
560/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000561void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000562 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000563 if (isa<PointerType>(I->getType()))
564 // If this is an argument of an externally accessible function, the
565 // incoming pointer might point to anything.
566 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
567 &GraphNodes[UniversalSet]));
568}
569
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000570/// AddConstraintsForExternalFunction - If this is a call to a "known" function,
Misha Brukmanbe5e2f42005-03-28 04:32:12 +0000571/// add the constraints and return false. If this is a call to an unknown
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000572/// function, return true.
573bool Andersens::AddConstraintsForExternalFunction(Function *F) {
574 assert(F->isExternal() && "Not an external function!");
575
576 // These functions don't induce any points-to constraints.
577 if (F->getName() == "printf" || F->getName() == "fprintf" ||
578 F->getName() == "open" || F->getName() == "fopen" ||
579 F->getName() == "atoi" ||
580 F->getName() == "llvm.memset" || F->getName() == "memcmp" ||
581 F->getName() == "read" || F->getName() == "write")
582 return false;
583
584 // These functions do induce points-to edges.
585 if (F->getName() == "llvm.memcpy" || F->getName() == "llvm.memmove") {
586 Function::arg_iterator Dst = F->arg_begin(), Src = Dst;
587 // Note: this is a poor approximation, this says Dest = Src, instead of
588 // *Dest = *Src.
589 ++Src;
590 Constraints.push_back(Constraint(Constraint::Copy, getNode(Dst),
591 getNode(Src)));
592 return false;
593 }
594
595 return true;
596}
597
598
Chris Lattnere995a2a2004-05-23 21:00:47 +0000599
600/// CollectConstraints - This stage scans the program, adding a constraint to
601/// the Constraints list for each instruction in the program that induces a
602/// constraint, and setting up the initial points-to graph.
603///
604void Andersens::CollectConstraints(Module &M) {
605 // First, the universal set points to itself.
606 GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
607
608 // Next, the null pointer points to the null object.
609 GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
610
611 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +0000612 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
613 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000614 // Associate the address of the global object as pointing to the memory for
615 // the global: &G = <G memory>
616 Node *Object = getObject(I);
617 Object->setValue(I);
618 getNodeValue(*I)->addPointerTo(Object);
619
620 if (I->hasInitializer()) {
621 AddGlobalInitializerConstraints(Object, I->getInitializer());
622 } else {
623 // If it doesn't have an initializer (i.e. it's defined in another
624 // translation unit), it points to the universal set.
625 Constraints.push_back(Constraint(Constraint::Copy, Object,
626 &GraphNodes[UniversalSet]));
627 }
628 }
629
630 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
631 // Make the function address point to the function object.
632 getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
633
634 // Set up the return value node.
635 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
636 getReturnNode(F)->setValue(F);
637 if (F->getFunctionType()->isVarArg())
638 getVarargNode(F)->setValue(F);
639
640 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +0000641 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
642 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000643 if (isa<PointerType>(I->getType()))
644 getNodeValue(*I);
645
646 if (!F->hasInternalLinkage())
647 AddConstraintsForNonInternalLinkage(F);
648
649 if (!F->isExternal()) {
650 // Scan the function body, creating a memory object for each heap/stack
651 // allocation in the body of the function and a node to represent all
652 // pointer values defined by instructions and used as operands.
653 visit(F);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000654 } else if (AddConstraintsForExternalFunction(F)) {
655 // If we don't "know" about this function, assume the worst.
656
Chris Lattnere995a2a2004-05-23 21:00:47 +0000657 // External functions that return pointers return the universal set.
658 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
659 Constraints.push_back(Constraint(Constraint::Copy,
660 getReturnNode(F),
661 &GraphNodes[UniversalSet]));
662
663 // Any pointers that are passed into the function have the universal set
664 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +0000665 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
666 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000667 if (isa<PointerType>(I->getType())) {
668 // Pointers passed into external functions could have anything stored
669 // through them.
670 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
671 &GraphNodes[UniversalSet]));
672 // Memory objects passed into external function calls can have the
673 // universal set point to them.
674 Constraints.push_back(Constraint(Constraint::Copy,
675 &GraphNodes[UniversalSet],
676 getNode(I)));
677 }
678
679 // If this is an external varargs function, it can also store pointers
680 // into any pointers passed through the varargs section.
681 if (F->getFunctionType()->isVarArg())
682 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
683 &GraphNodes[UniversalSet]));
684 }
685 }
686 NumConstraints += Constraints.size();
687}
688
689
690void Andersens::visitInstruction(Instruction &I) {
691#ifdef NDEBUG
692 return; // This function is just a big assert.
693#endif
694 if (isa<BinaryOperator>(I))
695 return;
696 // Most instructions don't have any effect on pointer values.
697 switch (I.getOpcode()) {
698 case Instruction::Br:
699 case Instruction::Switch:
700 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +0000701 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +0000702 case Instruction::Free:
703 case Instruction::Shl:
704 case Instruction::Shr:
705 return;
706 default:
707 // Is this something we aren't handling yet?
708 std::cerr << "Unknown instruction: " << I;
709 abort();
710 }
711}
712
713void Andersens::visitAllocationInst(AllocationInst &AI) {
714 getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
715}
716
717void Andersens::visitReturnInst(ReturnInst &RI) {
718 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
719 // return V --> <Copy/retval{F}/v>
720 Constraints.push_back(Constraint(Constraint::Copy,
721 getReturnNode(RI.getParent()->getParent()),
722 getNode(RI.getOperand(0))));
723}
724
725void Andersens::visitLoadInst(LoadInst &LI) {
726 if (isa<PointerType>(LI.getType()))
727 // P1 = load P2 --> <Load/P1/P2>
728 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
729 getNode(LI.getOperand(0))));
730}
731
732void Andersens::visitStoreInst(StoreInst &SI) {
733 if (isa<PointerType>(SI.getOperand(0)->getType()))
734 // store P1, P2 --> <Store/P2/P1>
735 Constraints.push_back(Constraint(Constraint::Store,
736 getNode(SI.getOperand(1)),
737 getNode(SI.getOperand(0))));
738}
739
740void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
741 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
742 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
743 getNode(GEP.getOperand(0))));
744}
745
746void Andersens::visitPHINode(PHINode &PN) {
747 if (isa<PointerType>(PN.getType())) {
748 Node *PNN = getNodeValue(PN);
749 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
750 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
751 Constraints.push_back(Constraint(Constraint::Copy, PNN,
752 getNode(PN.getIncomingValue(i))));
753 }
754}
755
756void Andersens::visitCastInst(CastInst &CI) {
757 Value *Op = CI.getOperand(0);
758 if (isa<PointerType>(CI.getType())) {
759 if (isa<PointerType>(Op->getType())) {
760 // P1 = cast P2 --> <Copy/P1/P2>
761 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
762 getNode(CI.getOperand(0))));
763 } else {
764 // P1 = cast int --> <Copy/P1/Univ>
765 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
766 &GraphNodes[UniversalSet]));
767 }
768 } else if (isa<PointerType>(Op->getType())) {
769 // int = cast P1 --> <Copy/Univ/P1>
770 Constraints.push_back(Constraint(Constraint::Copy,
771 &GraphNodes[UniversalSet],
772 getNode(CI.getOperand(0))));
773 }
774}
775
776void Andersens::visitSelectInst(SelectInst &SI) {
777 if (isa<PointerType>(SI.getType())) {
778 Node *SIN = getNodeValue(SI);
779 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
780 Constraints.push_back(Constraint(Constraint::Copy, SIN,
781 getNode(SI.getOperand(1))));
782 Constraints.push_back(Constraint(Constraint::Copy, SIN,
783 getNode(SI.getOperand(2))));
784 }
785}
786
787void Andersens::visitVANext(VANextInst &I) {
788 // FIXME: Implement
789 assert(0 && "vanext not handled yet!");
790}
791void Andersens::visitVAArg(VAArgInst &I) {
792 assert(0 && "vaarg not handled yet!");
793}
794
795/// AddConstraintsForCall - Add constraints for a call with actual arguments
796/// specified by CS to the function specified by F. Note that the types of
797/// arguments might not match up in the case where this is an indirect call and
798/// the function pointer has been casted. If this is the case, do something
799/// reasonable.
800void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
801 if (isa<PointerType>(CS.getType())) {
802 Node *CSN = getNode(CS.getInstruction());
803 if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
804 Constraints.push_back(Constraint(Constraint::Copy, CSN,
805 getReturnNode(F)));
806 } else {
807 // If the function returns a non-pointer value, handle this just like we
808 // treat a nonpointer cast to pointer.
809 Constraints.push_back(Constraint(Constraint::Copy, CSN,
810 &GraphNodes[UniversalSet]));
811 }
812 } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
813 Constraints.push_back(Constraint(Constraint::Copy,
814 &GraphNodes[UniversalSet],
815 getReturnNode(F)));
816 }
817
Chris Lattnere4d5c442005-03-15 04:54:21 +0000818 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000819 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
820 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
821 if (isa<PointerType>(AI->getType())) {
822 if (isa<PointerType>((*ArgI)->getType())) {
823 // Copy the actual argument into the formal argument.
824 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
825 getNode(*ArgI)));
826 } else {
827 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
828 &GraphNodes[UniversalSet]));
829 }
830 } else if (isa<PointerType>((*ArgI)->getType())) {
831 Constraints.push_back(Constraint(Constraint::Copy,
832 &GraphNodes[UniversalSet],
833 getNode(*ArgI)));
834 }
835
836 // Copy all pointers passed through the varargs section to the varargs node.
837 if (F->getFunctionType()->isVarArg())
838 for (; ArgI != ArgE; ++ArgI)
839 if (isa<PointerType>((*ArgI)->getType()))
840 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
841 getNode(*ArgI)));
842 // If more arguments are passed in than we track, just drop them on the floor.
843}
844
845void Andersens::visitCallSite(CallSite CS) {
846 if (isa<PointerType>(CS.getType()))
847 getNodeValue(*CS.getInstruction());
848
849 if (Function *F = CS.getCalledFunction()) {
850 AddConstraintsForCall(CS, F);
851 } else {
852 // We don't handle indirect call sites yet. Keep track of them for when we
853 // discover the call graph incrementally.
854 IndirectCalls.push_back(CS);
855 }
856}
857
858//===----------------------------------------------------------------------===//
859// Constraint Solving Phase
860//===----------------------------------------------------------------------===//
861
862/// intersects - Return true if the points-to set of this node intersects
863/// with the points-to set of the specified node.
864bool Andersens::Node::intersects(Node *N) const {
865 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
866 while (I1 != E1 && I2 != E2) {
867 if (*I1 == *I2) return true;
868 if (*I1 < *I2)
869 ++I1;
870 else
871 ++I2;
872 }
873 return false;
874}
875
876/// intersectsIgnoring - Return true if the points-to set of this node
877/// intersects with the points-to set of the specified node on any nodes
878/// except for the specified node to ignore.
879bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
880 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
881 while (I1 != E1 && I2 != E2) {
882 if (*I1 == *I2) {
883 if (*I1 != Ignoring) return true;
884 ++I1; ++I2;
885 } else if (*I1 < *I2)
886 ++I1;
887 else
888 ++I2;
889 }
890 return false;
891}
892
893// Copy constraint: all edges out of the source node get copied to the
894// destination node. This returns true if a change is made.
895bool Andersens::Node::copyFrom(Node *N) {
896 // Use a mostly linear-time merge since both of the lists are sorted.
897 bool Changed = false;
898 iterator I = N->begin(), E = N->end();
899 unsigned i = 0;
900 while (I != E && i != Pointees.size()) {
901 if (Pointees[i] < *I) {
902 ++i;
903 } else if (Pointees[i] == *I) {
904 ++i; ++I;
905 } else {
906 // We found a new element to copy over.
907 Changed = true;
908 Pointees.insert(Pointees.begin()+i, *I);
909 ++i; ++I;
910 }
911 }
912
913 if (I != E) {
914 Pointees.insert(Pointees.end(), I, E);
915 Changed = true;
916 }
917
918 return Changed;
919}
920
921bool Andersens::Node::loadFrom(Node *N) {
922 bool Changed = false;
923 for (iterator I = N->begin(), E = N->end(); I != E; ++I)
924 Changed |= copyFrom(*I);
925 return Changed;
926}
927
928bool Andersens::Node::storeThrough(Node *N) {
929 bool Changed = false;
930 for (iterator I = begin(), E = end(); I != E; ++I)
931 Changed |= (*I)->copyFrom(N);
932 return Changed;
933}
934
935
936/// SolveConstraints - This stage iteratively processes the constraints list
937/// propagating constraints (adding edges to the Nodes in the points-to graph)
938/// until a fixed point is reached.
939///
940void Andersens::SolveConstraints() {
941 bool Changed = true;
942 unsigned Iteration = 0;
943 while (Changed) {
944 Changed = false;
945 ++NumIters;
946 DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
947
948 // Loop over all of the constraints, applying them in turn.
949 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
950 Constraint &C = Constraints[i];
951 switch (C.Type) {
952 case Constraint::Copy:
953 Changed |= C.Dest->copyFrom(C.Src);
954 break;
955 case Constraint::Load:
956 Changed |= C.Dest->loadFrom(C.Src);
957 break;
958 case Constraint::Store:
959 Changed |= C.Dest->storeThrough(C.Src);
960 break;
961 default:
962 assert(0 && "Unknown constraint!");
963 }
964 }
965
966 if (Changed) {
967 // Check to see if any internal function's addresses have been passed to
968 // external functions. If so, we have to assume that their incoming
969 // arguments could be anything. If there are any internal functions in
970 // the universal node that we don't know about, we must iterate.
971 for (Node::iterator I = GraphNodes[UniversalSet].begin(),
972 E = GraphNodes[UniversalSet].end(); I != E; ++I)
973 if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
974 if (F->hasInternalLinkage() &&
975 EscapingInternalFunctions.insert(F).second) {
976 // We found a function that is just now escaping. Mark it as if it
977 // didn't have internal linkage.
978 AddConstraintsForNonInternalLinkage(F);
979 DEBUG(std::cerr << "Found escaping internal function: "
980 << F->getName() << "\n");
981 ++NumEscapingFunctions;
982 }
983
984 // Check to see if we have discovered any new callees of the indirect call
985 // sites. If so, add constraints to the analysis.
986 for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
987 CallSite CS = IndirectCalls[i];
988 std::vector<Function*> &KnownCallees = IndirectCallees[CS];
989 Node *CN = getNode(CS.getCalledValue());
990
991 for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
992 if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
993 std::vector<Function*>::iterator IP =
994 std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
995 if (IP == KnownCallees.end() || *IP != F) {
996 // Add the constraints for the call now.
997 AddConstraintsForCall(CS, F);
998 DEBUG(std::cerr << "Found actual callee '"
999 << F->getName() << "' for call: "
1000 << *CS.getInstruction() << "\n");
1001 ++NumIndirectCallees;
1002 KnownCallees.insert(IP, F);
1003 }
1004 }
1005 }
1006 }
1007 }
1008}
1009
1010
1011
1012//===----------------------------------------------------------------------===//
1013// Debugging Output
1014//===----------------------------------------------------------------------===//
1015
1016void Andersens::PrintNode(Node *N) {
1017 if (N == &GraphNodes[UniversalSet]) {
1018 std::cerr << "<universal>";
1019 return;
1020 } else if (N == &GraphNodes[NullPtr]) {
1021 std::cerr << "<nullptr>";
1022 return;
1023 } else if (N == &GraphNodes[NullObject]) {
1024 std::cerr << "<null>";
1025 return;
1026 }
1027
1028 assert(N->getValue() != 0 && "Never set node label!");
1029 Value *V = N->getValue();
1030 if (Function *F = dyn_cast<Function>(V)) {
1031 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
1032 N == getReturnNode(F)) {
1033 std::cerr << F->getName() << ":retval";
1034 return;
1035 } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
1036 std::cerr << F->getName() << ":vararg";
1037 return;
1038 }
1039 }
1040
1041 if (Instruction *I = dyn_cast<Instruction>(V))
1042 std::cerr << I->getParent()->getParent()->getName() << ":";
1043 else if (Argument *Arg = dyn_cast<Argument>(V))
1044 std::cerr << Arg->getParent()->getName() << ":";
1045
1046 if (V->hasName())
1047 std::cerr << V->getName();
1048 else
1049 std::cerr << "(unnamed)";
1050
1051 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
1052 if (N == getObject(V))
1053 std::cerr << "<mem>";
1054}
1055
1056void Andersens::PrintConstraints() {
1057 std::cerr << "Constraints:\n";
1058 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1059 std::cerr << " #" << i << ": ";
1060 Constraint &C = Constraints[i];
1061 if (C.Type == Constraint::Store)
1062 std::cerr << "*";
1063 PrintNode(C.Dest);
1064 std::cerr << " = ";
1065 if (C.Type == Constraint::Load)
1066 std::cerr << "*";
1067 PrintNode(C.Src);
1068 std::cerr << "\n";
1069 }
1070}
1071
1072void Andersens::PrintPointsToGraph() {
1073 std::cerr << "Points-to graph:\n";
1074 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
1075 Node *N = &GraphNodes[i];
1076 std::cerr << "[" << (N->end() - N->begin()) << "] ";
1077 PrintNode(N);
1078 std::cerr << "\t--> ";
1079 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
1080 if (I != N->begin()) std::cerr << ", ";
1081 PrintNode(*I);
1082 }
1083 std::cerr << "\n";
1084 }
1085}