blob: ae9b066684cfb93335a69b6c07264ce64a780053 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000018#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "llvm/Support/Debug.h"
20#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000021#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000022#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include <limits>
24#include <cstring>
25#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026using namespace llvm;
27
28/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000030inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
35}
36
37/// A utility function for allocating memory and checking for allocation
38/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000039inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
43}
44
Chris Lattneree5417c2009-01-21 18:09:24 +000045void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000046 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051}
52
Chris Lattnera1f63bb2008-10-11 22:07:19 +000053void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
56}
57
58
Chris Lattneree5417c2009-01-21 18:09:24 +000059APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000060 : BitWidth(numBits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000061 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
64 VAL = bigVal[0];
65 else {
66 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000069 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
72 }
73 // Make sure unused high bits are cleared
74 clearUnusedBits();
75}
76
Chris Lattneree5417c2009-01-21 18:09:24 +000077APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 uint8_t radix)
79 : BitWidth(numbits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000080 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081 fromString(numbits, StrStart, slen, radix);
82}
83
Chris Lattner84886852008-08-20 17:02:31 +000084APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
88
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +000090 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 return *this;
94 }
95
Chris Lattner84886852008-08-20 17:02:31 +000096 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
106 VAL = RHS.VAL;
107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
111 }
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
114}
115
116APInt& APInt::operator=(uint64_t RHS) {
117 if (isSingleWord())
118 VAL = RHS;
119 else {
120 pVal[0] = RHS;
121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
122 }
123 return clearUnusedBits();
124}
125
Ted Kremenek109de0d2008-01-19 04:23:33 +0000126/// Profile - This method 'profiles' an APInt for use with FoldingSet.
127void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000128 ID.AddInteger(BitWidth);
129
Ted Kremenek109de0d2008-01-19 04:23:33 +0000130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
133 }
134
Chris Lattneree5417c2009-01-21 18:09:24 +0000135 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
138}
139
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140/// add_1 - This function adds a single "digit" integer, y, to the multiple
141/// "digit" integer array, x[]. x[] is modified to reflect the addition and
142/// 1 is returned if there is a carry out, otherwise 0 is returned.
143/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000144static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 dest[i] = y + x[i];
147 if (dest[i] < y)
148 y = 1; // Carry one to next digit.
149 else {
150 y = 0; // No need to carry so exit early
151 break;
152 }
153 }
154 return y;
155}
156
157/// @brief Prefix increment operator. Increments the APInt by one.
158APInt& APInt::operator++() {
159 if (isSingleWord())
160 ++VAL;
161 else
162 add_1(pVal, pVal, getNumWords(), 1);
163 return clearUnusedBits();
164}
165
166/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167/// the multi-digit integer array, x[], propagating the borrowed 1 value until
168/// no further borrowing is neeeded or it runs out of "digits" in x. The result
169/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170/// In other words, if y > x then this function returns 1, otherwise 0.
171/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000172static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174 uint64_t X = x[i];
175 x[i] -= y;
176 if (y > X)
177 y = 1; // We have to "borrow 1" from next "digit"
178 else {
179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
181 }
182 }
183 return bool(y);
184}
185
186/// @brief Prefix decrement operator. Decrements the APInt by one.
187APInt& APInt::operator--() {
188 if (isSingleWord())
189 --VAL;
190 else
191 sub_1(pVal, getNumWords(), 1);
192 return clearUnusedBits();
193}
194
195/// add - This function adds the integer array x to the integer array Y and
196/// places the result in dest.
197/// @returns the carry out from the addition
198/// @brief General addition of 64-bit integer arrays
199static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000200 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000202 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
204 dest[i] = x[i] + y[i] + carry;
205 carry = dest[i] < limit || (carry && dest[i] == limit);
206 }
207 return carry;
208}
209
210/// Adds the RHS APint to this APInt.
211/// @returns this, after addition of RHS.
212/// @brief Addition assignment operator.
213APInt& APInt::operator+=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 VAL += RHS.VAL;
217 else {
218 add(pVal, pVal, RHS.pVal, getNumWords());
219 }
220 return clearUnusedBits();
221}
222
223/// Subtracts the integer array y from the integer array x
224/// @returns returns the borrow out.
225/// @brief Generalized subtraction of 64-bit integer arrays.
226static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000227 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
233 }
234 return borrow;
235}
236
237/// Subtracts the RHS APInt from this APInt
238/// @returns this, after subtraction
239/// @brief Subtraction assignment operator.
240APInt& APInt::operator-=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
246 return clearUnusedBits();
247}
248
249/// Multiplies an integer array, x by a a uint64_t integer and places the result
250/// into dest.
251/// @returns the carry out of the multiplication.
252/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000253static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
256 uint64_t carry = 0;
257
258 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000259 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
275
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
280 }
281 return carry;
282}
283
284/// Multiplies integer array x by integer array y and stores the result into
285/// the integer array dest. Note that dest's size must be >= xlen + ylen.
286/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000287static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000290 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
292 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000293 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
305
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
312 }
313 dest[i+xlen] = carry;
314 }
315}
316
317APInt& APInt::operator*=(const APInt& RHS) {
318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
319 if (isSingleWord()) {
320 VAL *= RHS.VAL;
321 clearUnusedBits();
322 return *this;
323 }
324
325 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
331
332 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
339 }
340
341 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000342 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 uint64_t *dest = getMemory(destWords);
344
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
347
348 // Copy result back into *this
349 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
352
353 // delete dest array and return
354 delete[] dest;
355 return *this;
356}
357
358APInt& APInt::operator&=(const APInt& RHS) {
359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
360 if (isSingleWord()) {
361 VAL &= RHS.VAL;
362 return *this;
363 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 pVal[i] &= RHS.pVal[i];
367 return *this;
368}
369
370APInt& APInt::operator|=(const APInt& RHS) {
371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
372 if (isSingleWord()) {
373 VAL |= RHS.VAL;
374 return *this;
375 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000378 pVal[i] |= RHS.pVal[i];
379 return *this;
380}
381
382APInt& APInt::operator^=(const APInt& RHS) {
383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
384 if (isSingleWord()) {
385 VAL ^= RHS.VAL;
386 this->clearUnusedBits();
387 return *this;
388 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391 pVal[i] ^= RHS.pVal[i];
392 return clearUnusedBits();
393}
394
Chris Lattner84886852008-08-20 17:02:31 +0000395APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000396 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000398 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
401}
402
Chris Lattner84886852008-08-20 17:02:31 +0000403APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000404 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000406 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
409}
410
Chris Lattner84886852008-08-20 17:02:31 +0000411APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000412 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000414 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 val[i] = pVal[i] ^ RHS.pVal[i];
416
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
419}
420
421bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
424
Chris Lattneree5417c2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 if (pVal[i])
427 return false;
428 return true;
429}
430
431APInt APInt::operator*(const APInt& RHS) const {
432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
433 if (isSingleWord())
434 return APInt(BitWidth, VAL * RHS.VAL);
435 APInt Result(*this);
436 Result *= RHS;
437 return Result.clearUnusedBits();
438}
439
440APInt APInt::operator+(const APInt& RHS) const {
441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442 if (isSingleWord())
443 return APInt(BitWidth, VAL + RHS.VAL);
444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
446 return Result.clearUnusedBits();
447}
448
449APInt APInt::operator-(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(BitWidth, VAL - RHS.VAL);
453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
455 return Result.clearUnusedBits();
456}
457
Chris Lattneree5417c2009-01-21 18:09:24 +0000458bool APInt::operator[](unsigned bitPosition) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
461}
462
Chris Lattner84886852008-08-20 17:02:31 +0000463bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467
468 // If the number of bits isn't the same, they aren't equal
469 if (n1 != n2)
470 return false;
471
472 // If the number of bits fits in a word, we only need to compare the low word.
473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
475
476 // Otherwise, compare everything
477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
480 return true;
481}
482
Chris Lattner84886852008-08-20 17:02:31 +0000483bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000484 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
489}
490
491bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
495
496 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
503
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
507
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
511
512 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000513 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 for (int i = topWord; i >= 0; --i) {
515 if (pVal[i] > RHS.pVal[i])
516 return false;
517 if (pVal[i] < RHS.pVal[i])
518 return true;
519 }
520 return false;
521}
522
523bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
529 }
530
531 APInt lhs(*this);
532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
537 lhs.flip();
538 lhs++;
539 }
540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
542 rhs.flip();
543 rhs++;
544 }
545
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
551 else
552 return true;
553 else if (rhsNeg)
554 return false;
555 else
556 return lhs.ult(rhs);
557}
558
Chris Lattneree5417c2009-01-21 18:09:24 +0000559APInt& APInt::set(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
564 return *this;
565}
566
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567/// Set the given bit to 0 whose position is given as "bitPosition".
568/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000569APInt& APInt::clear(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
574 return *this;
575}
576
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000577/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578
579/// Toggle a given bit to its opposite value whose position is given
580/// as "bitPosition".
581/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000582APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
587}
588
Chris Lattneree5417c2009-01-21 18:09:24 +0000589unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
592
593 // Each computation below needs to know if its negative
Chris Lattneree5417c2009-01-21 18:09:24 +0000594 unsigned isNegative = str[0] == '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000595 if (isNegative) {
596 slen--;
597 str++;
598 }
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
607
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
610
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
614
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
Chris Lattneree5417c2009-01-21 18:09:24 +0000617 unsigned sufficient = slen*64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
621
622 // Compute how many bits are required.
623 return isNegative + tmp.logBase2() + 1;
624}
625
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000626// From http://www.burtleburtle.net, byBob Jenkins.
627// When targeting x86, both GCC and LLVM seem to recognize this as a
628// rotate instruction.
629#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000631// From http://www.burtleburtle.net, by Bob Jenkins.
632#define mix(a,b,c) \
633 { \
634 a -= c; a ^= rot(c, 4); c += b; \
635 b -= a; b ^= rot(a, 6); a += c; \
636 c -= b; c ^= rot(b, 8); b += a; \
637 a -= c; a ^= rot(c,16); c += b; \
638 b -= a; b ^= rot(a,19); a += c; \
639 c -= b; c ^= rot(b, 4); b += a; \
640 }
641
642// From http://www.burtleburtle.net, by Bob Jenkins.
643#define final(a,b,c) \
644 { \
645 c ^= b; c -= rot(b,14); \
646 a ^= c; a -= rot(c,11); \
647 b ^= a; b -= rot(a,25); \
648 c ^= b; c -= rot(b,16); \
649 a ^= c; a -= rot(c,4); \
650 b ^= a; b -= rot(a,14); \
651 c ^= b; c -= rot(b,24); \
652 }
653
654// hashword() was adapted from http://www.burtleburtle.net, by Bob
655// Jenkins. k is a pointer to an array of uint32_t values; length is
656// the length of the key, in 32-bit chunks. This version only handles
657// keys that are a multiple of 32 bits in size.
658static inline uint32_t hashword(const uint64_t *k64, size_t length)
659{
660 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
661 uint32_t a,b,c;
662
663 /* Set up the internal state */
664 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
665
666 /*------------------------------------------------- handle most of the key */
667 while (length > 3)
668 {
669 a += k[0];
670 b += k[1];
671 c += k[2];
672 mix(a,b,c);
673 length -= 3;
674 k += 3;
675 }
676
677 /*------------------------------------------- handle the last 3 uint32_t's */
678 switch(length) /* all the case statements fall through */
679 {
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
684 case 0: /* case 0: nothing left to add */
685 break;
686 }
687 /*------------------------------------------------------ report the result */
688 return c;
689}
690
691// hashword8() was adapted from http://www.burtleburtle.net, by Bob
692// Jenkins. This computes a 32-bit hash from one 64-bit word. When
693// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694// function into about 35 instructions when inlined.
695static inline uint32_t hashword8(const uint64_t k64)
696{
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
703}
704#undef final
705#undef mix
706#undef rot
707
708uint64_t APInt::getHashValue() const {
709 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000711 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000713 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 return hash;
715}
716
717/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000718APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 return APIntOps::lshr(*this, BitWidth - numBits);
720}
721
722/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000723APInt APInt::getLoBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
726}
727
728bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
730}
731
Chris Lattneree5417c2009-01-21 18:09:24 +0000732unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 }
741 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000745 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746}
747
Chris Lattneree5417c2009-01-21 18:09:24 +0000748static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
755 }
756 return Count;
757}
758
Chris Lattneree5417c2009-01-21 18:09:24 +0000759unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
762
Chris Lattneree5417c2009-01-21 18:09:24 +0000763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
770 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
780 }
781 }
782 }
783 return Count;
784}
785
Chris Lattneree5417c2009-01-21 18:09:24 +0000786unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000795 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796}
797
Chris Lattneree5417c2009-01-21 18:09:24 +0000798unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
806}
807
Chris Lattneree5417c2009-01-21 18:09:24 +0000808unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 Count += CountPopulation_64(pVal[i]);
812 return Count;
813}
814
815APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
819 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000822 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 Tmp1 = ByteSwap_32(Tmp1);
824 uint16_t Tmp2 = uint16_t(VAL);
825 Tmp2 = ByteSwap_16(Tmp2);
826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
827 } else if (BitWidth == 64)
828 return APInt(BitWidth, ByteSwap_64(VAL));
829 else {
830 APInt Result(BitWidth, 0);
831 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000833 char Tmp = pByte[i];
834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
836 }
837 return Result;
838 }
839}
840
841APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
846 B = APIntOps::urem(A, B);
847 A = T;
848 }
849 return A;
850}
851
Chris Lattneree5417c2009-01-21 18:09:24 +0000852APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
858
859 // Get the sign bit from the highest order bit
860 bool isNeg = T.I >> 63;
861
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
864
865 // If the exponent is negative, the value is < 0 so just return 0.
866 if (exp < 0)
867 return APInt(width, 0u);
868
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
871
872 // If the exponent doesn't shift all bits out of the mantissa
873 if (exp < 52)
874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
876
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
881
882 // Otherwise, we have to shift the mantissa bits up to the right location
883 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000884 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000885 return isNeg ? -Tmp : Tmp;
886}
887
888/// RoundToDouble - This function convert this APInt to a double.
889/// The layout for double is as following (IEEE Standard 754):
890/// --------------------------------------
891/// | Sign Exponent Fraction Bias |
892/// |-------------------------------------- |
893/// | 1[63] 11[62-52] 52[51-00] 1023 |
894/// --------------------------------------
895double APInt::roundToDouble(bool isSigned) const {
896
897 // Handle the simple case where the value is contained in one uint64_t.
898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
900 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
901 return double(sext);
902 } else
903 return double(VAL);
904 }
905
906 // Determine if the value is negative.
907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
908
909 // Construct the absolute value if we're negative.
910 APInt Tmp(isNeg ? -(*this) : (*this));
911
912 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000913 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914
915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
919
920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
923 return std::numeric_limits<double>::infinity();
924 else
925 return -std::numeric_limits<double>::infinity();
926 }
927 exp += 1023; // Increment for 1023 bias
928
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
931 uint64_t mantissa;
932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
942 }
943
944 // The leading bit of mantissa is implicit, so get rid of it.
945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
952}
953
954// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000955APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +0000957 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +0000958 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000960 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
965 delete [] tmp;
966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +0000968 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 newVal[i] = pVal[i];
970 delete [] pVal;
971 pVal = newVal;
972 }
973 }
974 return clearUnusedBits();
975}
976
977// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000978APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 // If the sign bit isn't set, this is the same as zext.
981 if (!isNegative()) {
982 zext(width);
983 return *this;
984 }
985
986 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +0000987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000990 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995 // The extension is contained to the wordsBefore-1th word.
996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
1000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
1004 return clearUnusedBits();
1005 }
1006
1007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001012 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1015 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
1019 delete [] pVal;
1020 pVal = newVal;
1021 return clearUnusedBits();
1022}
1023
1024// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001025APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001027 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001029 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001035 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
1038 delete [] pVal;
1039 pVal = newVal;
1040 }
1041 return *this;
1042}
1043
Chris Lattneree5417c2009-01-21 18:09:24 +00001044APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1050}
1051
Chris Lattneree5417c2009-01-21 18:09:24 +00001052APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1058}
1059
1060/// Arithmetic right-shift this APInt by shiftAmt.
1061/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001062APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001064}
1065
1066/// Arithmetic right-shift this APInt by shiftAmt.
1067/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001068APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1073
1074 // Handle single word shifts with built-in ashr
1075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
1077 return APInt(BitWidth, 0); // undefined
1078 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080 return APInt(BitWidth,
1081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1082 }
1083 }
1084
1085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
1088 if (shiftAmt == BitWidth) {
1089 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001090 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 else
1092 return APInt(BitWidth, 0);
1093 }
1094
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1097
1098 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
1105
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
1108 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001109 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 val[i] = pVal[i+offset]; // move whole word
1111
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001118 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1123 }
1124
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1128
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
1131 if (isNegative()) {
1132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1139 }
1140 }
1141
1142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001145 val[i] = fillValue;
1146 return APInt(val, BitWidth).clearUnusedBits();
1147}
1148
1149/// Logical right-shift this APInt by shiftAmt.
1150/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001151APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001153}
1154
1155/// Logical right-shift this APInt by shiftAmt.
1156/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001157APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1163 }
1164
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1170
1171 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001172 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1176
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1179
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1186 }
1187 return APInt(val, BitWidth).clearUnusedBits();
1188 }
1189
1190 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001193
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001197 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1201 }
1202
1203 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1210
1211 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1215}
1216
1217/// Left-shift this APInt by shiftAmt.
1218/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001219APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001220 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001222}
1223
Chris Lattneree5417c2009-01-21 18:09:24 +00001224APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1230
1231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1236
1237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1239
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001243 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1246 }
1247 return APInt(val, BitWidth).clearUnusedBits();
1248 }
1249
1250 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001253
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001256 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001258 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 val[i] = pVal[i-offset];
1260 return APInt(val,BitWidth).clearUnusedBits();
1261 }
1262
1263 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001264 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1268 val[offset] = pVal[0] << wordShift;
1269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
1271 return APInt(val, BitWidth).clearUnusedBits();
1272}
1273
Dan Gohman625ff8d2008-02-29 01:40:47 +00001274APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001276}
1277
Chris Lattneree5417c2009-01-21 18:09:24 +00001278APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 if (rotateAmt == 0)
1280 return *this;
1281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1287}
1288
Dan Gohman625ff8d2008-02-29 01:40:47 +00001289APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001291}
1292
Chris Lattneree5417c2009-01-21 18:09:24 +00001293APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001294 if (rotateAmt == 0)
1295 return *this;
1296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1302}
1303
1304// Square Root - this method computes and returns the square root of "this".
1305// Three mechanisms are used for computation. For small values (<= 5 bits),
1306// a table lookup is done. This gets some performance for common cases. For
1307// values using less than 52 bits, the value is converted to double and then
1308// the libc sqrt function is called. The result is rounded and then converted
1309// back to a uint64_t which is then used to construct the result. Finally,
1310// the Babylonian method for computing square roots is used.
1311APInt APInt::sqrt() const {
1312
1313 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001314 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001315
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
1319 static const uint8_t results[32] = {
1320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1327 };
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1329 }
1330
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
1335 if (magnitude < 52) {
1336#ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340#else
1341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1343#endif
1344 }
1345
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001351 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1356
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1362 }
1363
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1370 }
1371
1372 // Make sure we return the closest approximation
1373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
1378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
1382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
1386 return x_old;
1387 else
1388 return x_old + 1;
1389 } else
1390 assert(0 && "Error in APInt::sqrt computation");
1391 return x_old + 1;
1392}
1393
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001394/// Computes the multiplicative inverse of this APInt for a given modulo. The
1395/// iterative extended Euclidean algorithm is used to solve for this value,
1396/// however we simplify it to speed up calculating only the inverse, and take
1397/// advantage of div+rem calculations. We also use some tricks to avoid copying
1398/// (potentially large) APInts around.
1399APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1401
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1409
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1413
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1422 }
1423
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1430
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001434 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001435 return t[i].isNegative() ? t[i] + modulo : t[i];
1436}
1437
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1439/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1440/// variables here have the same names as in the algorithm. Comments explain
1441/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001442static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1443 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444 assert(u && "Must provide dividend");
1445 assert(v && "Must provide divisor");
1446 assert(q && "Must provide quotient");
1447 assert(u != v && u != q && v != q && "Must us different memory");
1448 assert(n>1 && "n must be > 1");
1449
1450 // Knuth uses the value b as the base of the number system. In our case b
1451 // is 2^31 so we just set it to -1u.
1452 uint64_t b = uint64_t(1) << 32;
1453
Chris Lattner89b36582008-08-17 07:19:36 +00001454#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001455 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1456 DEBUG(cerr << "KnuthDiv: original:");
1457 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1458 DEBUG(cerr << " by");
1459 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1460 DEBUG(cerr << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001461#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001462 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1463 // u and v by d. Note that we have taken Knuth's advice here to use a power
1464 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1465 // 2 allows us to shift instead of multiply and it is easy to determine the
1466 // shift amount from the leading zeros. We are basically normalizing the u
1467 // and v so that its high bits are shifted to the top of v's range without
1468 // overflow. Note that this can require an extra word in u so that u must
1469 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001470 unsigned shift = CountLeadingZeros_32(v[n-1]);
1471 unsigned v_carry = 0;
1472 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001474 for (unsigned i = 0; i < m+n; ++i) {
1475 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476 u[i] = (u[i] << shift) | u_carry;
1477 u_carry = u_tmp;
1478 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001479 for (unsigned i = 0; i < n; ++i) {
1480 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001481 v[i] = (v[i] << shift) | v_carry;
1482 v_carry = v_tmp;
1483 }
1484 }
1485 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001486#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001487 DEBUG(cerr << "KnuthDiv: normal:");
1488 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1489 DEBUG(cerr << " by");
1490 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1491 DEBUG(cerr << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001492#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001493
1494 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1495 int j = m;
1496 do {
1497 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1498 // D3. [Calculate q'.].
1499 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1500 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1501 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1502 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1503 // on v[n-2] determines at high speed most of the cases in which the trial
1504 // value qp is one too large, and it eliminates all cases where qp is two
1505 // too large.
1506 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1507 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1508 uint64_t qp = dividend / v[n-1];
1509 uint64_t rp = dividend % v[n-1];
1510 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1511 qp--;
1512 rp += v[n-1];
1513 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1514 qp--;
1515 }
1516 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1517
1518 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1519 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1520 // consists of a simple multiplication by a one-place number, combined with
1521 // a subtraction.
1522 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001523 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001524 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1525 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1526 bool borrow = subtrahend > u_tmp;
1527 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1528 << ", subtrahend == " << subtrahend
1529 << ", borrow = " << borrow << '\n');
1530
1531 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001532 unsigned k = j + i;
1533 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1534 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001535 while (borrow && k <= m+n) { // deal with borrow to the left
1536 borrow = u[k] == 0;
1537 u[k]--;
1538 k++;
1539 }
1540 isNeg |= borrow;
1541 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1542 u[j+i+1] << '\n');
1543 }
1544 DEBUG(cerr << "KnuthDiv: after subtraction:");
1545 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1546 DEBUG(cerr << '\n');
1547 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1548 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1549 // true value plus b**(n+1), namely as the b's complement of
1550 // the true value, and a "borrow" to the left should be remembered.
1551 //
1552 if (isNeg) {
1553 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001554 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001555 u[i] = ~u[i] + carry; // b's complement
1556 carry = carry && u[i] == 0;
1557 }
1558 }
1559 DEBUG(cerr << "KnuthDiv: after complement:");
1560 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1561 DEBUG(cerr << '\n');
1562
1563 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1564 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001565 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001566 if (isNeg) {
1567 // D6. [Add back]. The probability that this step is necessary is very
1568 // small, on the order of only 2/b. Make sure that test data accounts for
1569 // this possibility. Decrease q[j] by 1
1570 q[j]--;
1571 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1572 // A carry will occur to the left of u[j+n], and it should be ignored
1573 // since it cancels with the borrow that occurred in D4.
1574 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001575 for (unsigned i = 0; i < n; i++) {
1576 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001577 u[j+i] += v[i] + carry;
1578 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1579 }
1580 u[j+n] += carry;
1581 }
1582 DEBUG(cerr << "KnuthDiv: after correction:");
1583 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1584 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1585
1586 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1587 } while (--j >= 0);
1588
1589 DEBUG(cerr << "KnuthDiv: quotient:");
1590 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1591 DEBUG(cerr << '\n');
1592
1593 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1594 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1595 // compute the remainder (urem uses this).
1596 if (r) {
1597 // The value d is expressed by the "shift" value above since we avoided
1598 // multiplication by d by using a shift left. So, all we have to do is
1599 // shift right here. In order to mak
1600 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001601 unsigned carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602 DEBUG(cerr << "KnuthDiv: remainder:");
1603 for (int i = n-1; i >= 0; i--) {
1604 r[i] = (u[i] >> shift) | carry;
1605 carry = u[i] << (32 - shift);
1606 DEBUG(cerr << " " << r[i]);
1607 }
1608 } else {
1609 for (int i = n-1; i >= 0; i--) {
1610 r[i] = u[i];
1611 DEBUG(cerr << " " << r[i]);
1612 }
1613 }
1614 DEBUG(cerr << '\n');
1615 }
Chris Lattner89b36582008-08-17 07:19:36 +00001616#if 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001617 DEBUG(cerr << std::setbase(10) << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001618#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001619}
1620
Chris Lattneree5417c2009-01-21 18:09:24 +00001621void APInt::divide(const APInt LHS, unsigned lhsWords,
1622 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623 APInt *Quotient, APInt *Remainder)
1624{
1625 assert(lhsWords >= rhsWords && "Fractional result");
1626
1627 // First, compose the values into an array of 32-bit words instead of
1628 // 64-bit words. This is a necessity of both the "short division" algorithm
1629 // and the the Knuth "classical algorithm" which requires there to be native
1630 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1631 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsf3a74072009-03-19 11:37:15 +00001632 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001633 // work on large-endian machines.
Chris Lattneree5417c2009-01-21 18:09:24 +00001634 uint64_t mask = ~0ull >> (sizeof(unsigned)*8);
1635 unsigned n = rhsWords * 2;
1636 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001637
1638 // Allocate space for the temporary values we need either on the stack, if
1639 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001640 unsigned SPACE[128];
1641 unsigned *U = 0;
1642 unsigned *V = 0;
1643 unsigned *Q = 0;
1644 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001645 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1646 U = &SPACE[0];
1647 V = &SPACE[m+n+1];
1648 Q = &SPACE[(m+n+1) + n];
1649 if (Remainder)
1650 R = &SPACE[(m+n+1) + n + (m+n)];
1651 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001652 U = new unsigned[m + n + 1];
1653 V = new unsigned[n];
1654 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001655 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001656 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001657 }
1658
1659 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001660 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 for (unsigned i = 0; i < lhsWords; ++i) {
1662 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001663 U[i * 2] = (unsigned)(tmp & mask);
1664 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001665 }
1666 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1667
1668 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001669 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001670 for (unsigned i = 0; i < rhsWords; ++i) {
1671 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001672 V[i * 2] = (unsigned)(tmp & mask);
1673 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674 }
1675
1676 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001677 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001678 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001679 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001680
1681 // Now, adjust m and n for the Knuth division. n is the number of words in
1682 // the divisor. m is the number of words by which the dividend exceeds the
1683 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1684 // contain any zero words or the Knuth algorithm fails.
1685 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1686 n--;
1687 m++;
1688 }
1689 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1690 m--;
1691
1692 // If we're left with only a single word for the divisor, Knuth doesn't work
1693 // so we implement the short division algorithm here. This is much simpler
1694 // and faster because we are certain that we can divide a 64-bit quantity
1695 // by a 32-bit quantity at hardware speed and short division is simply a
1696 // series of such operations. This is just like doing short division but we
1697 // are using base 2^32 instead of base 10.
1698 assert(n != 0 && "Divide by zero?");
1699 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001700 unsigned divisor = V[0];
1701 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001702 for (int i = m+n-1; i >= 0; i--) {
1703 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1704 if (partial_dividend == 0) {
1705 Q[i] = 0;
1706 remainder = 0;
1707 } else if (partial_dividend < divisor) {
1708 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001709 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001710 } else if (partial_dividend == divisor) {
1711 Q[i] = 1;
1712 remainder = 0;
1713 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001714 Q[i] = (unsigned)(partial_dividend / divisor);
1715 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001716 }
1717 }
1718 if (R)
1719 R[0] = remainder;
1720 } else {
1721 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1722 // case n > 1.
1723 KnuthDiv(U, V, Q, R, m, n);
1724 }
1725
1726 // If the caller wants the quotient
1727 if (Quotient) {
1728 // Set up the Quotient value's memory.
1729 if (Quotient->BitWidth != LHS.BitWidth) {
1730 if (Quotient->isSingleWord())
1731 Quotient->VAL = 0;
1732 else
1733 delete [] Quotient->pVal;
1734 Quotient->BitWidth = LHS.BitWidth;
1735 if (!Quotient->isSingleWord())
1736 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1737 } else
1738 Quotient->clear();
1739
1740 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1741 // order words.
1742 if (lhsWords == 1) {
1743 uint64_t tmp =
1744 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1745 if (Quotient->isSingleWord())
1746 Quotient->VAL = tmp;
1747 else
1748 Quotient->pVal[0] = tmp;
1749 } else {
1750 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1751 for (unsigned i = 0; i < lhsWords; ++i)
1752 Quotient->pVal[i] =
1753 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1754 }
1755 }
1756
1757 // If the caller wants the remainder
1758 if (Remainder) {
1759 // Set up the Remainder value's memory.
1760 if (Remainder->BitWidth != RHS.BitWidth) {
1761 if (Remainder->isSingleWord())
1762 Remainder->VAL = 0;
1763 else
1764 delete [] Remainder->pVal;
1765 Remainder->BitWidth = RHS.BitWidth;
1766 if (!Remainder->isSingleWord())
1767 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1768 } else
1769 Remainder->clear();
1770
1771 // The remainder is in R. Reconstitute the remainder into Remainder's low
1772 // order words.
1773 if (rhsWords == 1) {
1774 uint64_t tmp =
1775 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1776 if (Remainder->isSingleWord())
1777 Remainder->VAL = tmp;
1778 else
1779 Remainder->pVal[0] = tmp;
1780 } else {
1781 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1782 for (unsigned i = 0; i < rhsWords; ++i)
1783 Remainder->pVal[i] =
1784 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1785 }
1786 }
1787
1788 // Clean up the memory we allocated.
1789 if (U != &SPACE[0]) {
1790 delete [] U;
1791 delete [] V;
1792 delete [] Q;
1793 delete [] R;
1794 }
1795}
1796
1797APInt APInt::udiv(const APInt& RHS) const {
1798 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1799
1800 // First, deal with the easy case
1801 if (isSingleWord()) {
1802 assert(RHS.VAL != 0 && "Divide by zero?");
1803 return APInt(BitWidth, VAL / RHS.VAL);
1804 }
1805
1806 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001807 unsigned rhsBits = RHS.getActiveBits();
1808 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001810 unsigned lhsBits = this->getActiveBits();
1811 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001812
1813 // Deal with some degenerate cases
1814 if (!lhsWords)
1815 // 0 / X ===> 0
1816 return APInt(BitWidth, 0);
1817 else if (lhsWords < rhsWords || this->ult(RHS)) {
1818 // X / Y ===> 0, iff X < Y
1819 return APInt(BitWidth, 0);
1820 } else if (*this == RHS) {
1821 // X / X ===> 1
1822 return APInt(BitWidth, 1);
1823 } else if (lhsWords == 1 && rhsWords == 1) {
1824 // All high words are zero, just use native divide
1825 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1826 }
1827
1828 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1829 APInt Quotient(1,0); // to hold result.
1830 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1831 return Quotient;
1832}
1833
1834APInt APInt::urem(const APInt& RHS) const {
1835 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1836 if (isSingleWord()) {
1837 assert(RHS.VAL != 0 && "Remainder by zero?");
1838 return APInt(BitWidth, VAL % RHS.VAL);
1839 }
1840
1841 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001842 unsigned lhsBits = getActiveBits();
1843 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001844
1845 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001846 unsigned rhsBits = RHS.getActiveBits();
1847 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001848 assert(rhsWords && "Performing remainder operation by zero ???");
1849
1850 // Check the degenerate cases
1851 if (lhsWords == 0) {
1852 // 0 % Y ===> 0
1853 return APInt(BitWidth, 0);
1854 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1855 // X % Y ===> X, iff X < Y
1856 return *this;
1857 } else if (*this == RHS) {
1858 // X % X == 0;
1859 return APInt(BitWidth, 0);
1860 } else if (lhsWords == 1) {
1861 // All high words are zero, just use native remainder
1862 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1863 }
1864
1865 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1866 APInt Remainder(1,0);
1867 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1868 return Remainder;
1869}
1870
1871void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1872 APInt &Quotient, APInt &Remainder) {
1873 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001874 unsigned lhsBits = LHS.getActiveBits();
1875 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1876 unsigned rhsBits = RHS.getActiveBits();
1877 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001878
1879 // Check the degenerate cases
1880 if (lhsWords == 0) {
1881 Quotient = 0; // 0 / Y ===> 0
1882 Remainder = 0; // 0 % Y ===> 0
1883 return;
1884 }
1885
1886 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1887 Quotient = 0; // X / Y ===> 0, iff X < Y
1888 Remainder = LHS; // X % Y ===> X, iff X < Y
1889 return;
1890 }
1891
1892 if (LHS == RHS) {
1893 Quotient = 1; // X / X ===> 1
1894 Remainder = 0; // X % X ===> 0;
1895 return;
1896 }
1897
1898 if (lhsWords == 1 && rhsWords == 1) {
1899 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001900 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1901 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1902 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1903 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904 return;
1905 }
1906
1907 // Okay, lets do it the long way
1908 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1909}
1910
Chris Lattneree5417c2009-01-21 18:09:24 +00001911void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912 uint8_t radix) {
1913 // Check our assumptions here
1914 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1915 "Radix should be 2, 8, 10, or 16!");
1916 assert(str && "String is null?");
1917 bool isNeg = str[0] == '-';
1918 if (isNeg)
1919 str++, slen--;
1920 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1921 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1922 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1923 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1924
1925 // Allocate memory
1926 if (!isSingleWord())
1927 pVal = getClearedMemory(getNumWords());
1928
1929 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00001930 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931
1932 // Set up an APInt for the digit to add outside the loop so we don't
1933 // constantly construct/destruct it.
1934 APInt apdigit(getBitWidth(), 0);
1935 APInt apradix(getBitWidth(), radix);
1936
1937 // Enter digit traversal loop
1938 for (unsigned i = 0; i < slen; i++) {
1939 // Get a digit
Chris Lattneree5417c2009-01-21 18:09:24 +00001940 unsigned digit = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001941 char cdigit = str[i];
1942 if (radix == 16) {
1943 if (!isxdigit(cdigit))
1944 assert(0 && "Invalid hex digit in string");
1945 if (isdigit(cdigit))
1946 digit = cdigit - '0';
1947 else if (cdigit >= 'a')
1948 digit = cdigit - 'a' + 10;
1949 else if (cdigit >= 'A')
1950 digit = cdigit - 'A' + 10;
1951 else
1952 assert(0 && "huh? we shouldn't get here");
1953 } else if (isdigit(cdigit)) {
1954 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00001955 assert((radix == 10 ||
1956 (radix == 8 && digit != 8 && digit != 9) ||
1957 (radix == 2 && (digit == 0 || digit == 1))) &&
1958 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001959 } else {
1960 assert(0 && "Invalid character in digit string");
1961 }
1962
1963 // Shift or multiply the value by the radix
1964 if (shift)
1965 *this <<= shift;
1966 else
1967 *this *= apradix;
1968
1969 // Add in the digit we just interpreted
1970 if (apdigit.isSingleWord())
1971 apdigit.VAL = digit;
1972 else
1973 apdigit.pVal[0] = digit;
1974 *this += apdigit;
1975 }
1976 // If its negative, put it in two's complement form
1977 if (isNeg) {
1978 (*this)--;
1979 this->flip();
1980 }
1981}
1982
Chris Lattner89b36582008-08-17 07:19:36 +00001983void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
1984 bool Signed) const {
1985 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001986 "Radix should be 2, 8, 10, or 16!");
Chris Lattner89b36582008-08-17 07:19:36 +00001987
1988 // First, check for a zero value and just short circuit the logic below.
1989 if (*this == 0) {
1990 Str.push_back('0');
1991 return;
1992 }
1993
1994 static const char Digits[] = "0123456789ABCDEF";
1995
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001996 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00001997 char Buffer[65];
1998 char *BufPtr = Buffer+65;
1999
2000 uint64_t N;
2001 if (Signed) {
2002 int64_t I = getSExtValue();
2003 if (I < 0) {
2004 Str.push_back('-');
2005 I = -I;
2006 }
2007 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002008 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002009 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002010 }
Chris Lattner89b36582008-08-17 07:19:36 +00002011
2012 while (N) {
2013 *--BufPtr = Digits[N % Radix];
2014 N /= Radix;
2015 }
2016 Str.append(BufPtr, Buffer+65);
2017 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002018 }
2019
Chris Lattner89b36582008-08-17 07:19:36 +00002020 APInt Tmp(*this);
2021
2022 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002023 // They want to print the signed version and it is a negative value
2024 // Flip the bits and add one to turn it into the equivalent positive
2025 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002026 Tmp.flip();
2027 Tmp++;
2028 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002029 }
Chris Lattner89b36582008-08-17 07:19:36 +00002030
2031 // We insert the digits backward, then reverse them to get the right order.
2032 unsigned StartDig = Str.size();
2033
2034 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2035 // because the number of bits per digit (1, 3 and 4 respectively) divides
2036 // equaly. We just shift until the value is zero.
2037 if (Radix != 10) {
2038 // Just shift tmp right for each digit width until it becomes zero
2039 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2040 unsigned MaskAmt = Radix - 1;
2041
2042 while (Tmp != 0) {
2043 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2044 Str.push_back(Digits[Digit]);
2045 Tmp = Tmp.lshr(ShiftAmt);
2046 }
2047 } else {
2048 APInt divisor(4, 10);
2049 while (Tmp != 0) {
2050 APInt APdigit(1, 0);
2051 APInt tmp2(Tmp.getBitWidth(), 0);
2052 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2053 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002054 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002055 assert(Digit < Radix && "divide failed");
2056 Str.push_back(Digits[Digit]);
2057 Tmp = tmp2;
2058 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002059 }
Chris Lattner89b36582008-08-17 07:19:36 +00002060
2061 // Reverse the digits before returning.
2062 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002063}
2064
Chris Lattner89b36582008-08-17 07:19:36 +00002065/// toString - This returns the APInt as a std::string. Note that this is an
2066/// inefficient method. It is better to pass in a SmallVector/SmallString
2067/// to the methods above.
2068std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2069 SmallString<40> S;
2070 toString(S, Radix, Signed);
2071 return S.c_str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002072}
Chris Lattner73cde982007-08-16 15:56:55 +00002073
Chris Lattner89b36582008-08-17 07:19:36 +00002074
2075void APInt::dump() const {
2076 SmallString<40> S, U;
2077 this->toStringUnsigned(U);
2078 this->toStringSigned(S);
2079 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2080}
2081
Chris Lattner1fefaac2008-08-23 22:23:09 +00002082void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002083 SmallString<40> S;
2084 this->toString(S, 10, isSigned);
2085 OS << S.c_str();
2086}
2087
Chris Lattner73cde982007-08-16 15:56:55 +00002088// This implements a variety of operations on a representation of
2089// arbitrary precision, two's-complement, bignum integer values.
2090
2091/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2092 and unrestricting assumption. */
Chris Lattner12e44312008-08-17 04:58:58 +00002093#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002094COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002095
2096/* Some handy functions local to this file. */
2097namespace {
2098
Chris Lattnerdb80e212007-08-20 22:49:32 +00002099 /* Returns the integer part with the least significant BITS set.
2100 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002101 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002102 lowBitMask(unsigned int bits)
2103 {
2104 assert (bits != 0 && bits <= integerPartWidth);
2105
2106 return ~(integerPart) 0 >> (integerPartWidth - bits);
2107 }
2108
Neil Booth58ffb232007-10-06 00:43:45 +00002109 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002110 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002111 lowHalf(integerPart part)
2112 {
2113 return part & lowBitMask(integerPartWidth / 2);
2114 }
2115
Neil Booth58ffb232007-10-06 00:43:45 +00002116 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002117 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002118 highHalf(integerPart part)
2119 {
2120 return part >> (integerPartWidth / 2);
2121 }
2122
Neil Booth58ffb232007-10-06 00:43:45 +00002123 /* Returns the bit number of the most significant set bit of a part.
2124 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002125 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002126 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002127 {
2128 unsigned int n, msb;
2129
2130 if (value == 0)
2131 return -1U;
2132
2133 n = integerPartWidth / 2;
2134
2135 msb = 0;
2136 do {
2137 if (value >> n) {
2138 value >>= n;
2139 msb += n;
2140 }
2141
2142 n >>= 1;
2143 } while (n);
2144
2145 return msb;
2146 }
2147
Neil Booth58ffb232007-10-06 00:43:45 +00002148 /* Returns the bit number of the least significant set bit of a
2149 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002150 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002151 partLSB(integerPart value)
2152 {
2153 unsigned int n, lsb;
2154
2155 if (value == 0)
2156 return -1U;
2157
2158 lsb = integerPartWidth - 1;
2159 n = integerPartWidth / 2;
2160
2161 do {
2162 if (value << n) {
2163 value <<= n;
2164 lsb -= n;
2165 }
2166
2167 n >>= 1;
2168 } while (n);
2169
2170 return lsb;
2171 }
2172}
2173
2174/* Sets the least significant part of a bignum to the input value, and
2175 zeroes out higher parts. */
2176void
2177APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2178{
2179 unsigned int i;
2180
Neil Bootha0f524a2007-10-08 13:47:12 +00002181 assert (parts > 0);
2182
Chris Lattner73cde982007-08-16 15:56:55 +00002183 dst[0] = part;
2184 for(i = 1; i < parts; i++)
2185 dst[i] = 0;
2186}
2187
2188/* Assign one bignum to another. */
2189void
2190APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2191{
2192 unsigned int i;
2193
2194 for(i = 0; i < parts; i++)
2195 dst[i] = src[i];
2196}
2197
2198/* Returns true if a bignum is zero, false otherwise. */
2199bool
2200APInt::tcIsZero(const integerPart *src, unsigned int parts)
2201{
2202 unsigned int i;
2203
2204 for(i = 0; i < parts; i++)
2205 if (src[i])
2206 return false;
2207
2208 return true;
2209}
2210
2211/* Extract the given bit of a bignum; returns 0 or 1. */
2212int
2213APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2214{
2215 return(parts[bit / integerPartWidth]
2216 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2217}
2218
2219/* Set the given bit of a bignum. */
2220void
2221APInt::tcSetBit(integerPart *parts, unsigned int bit)
2222{
2223 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2224}
2225
Neil Booth58ffb232007-10-06 00:43:45 +00002226/* Returns the bit number of the least significant set bit of a
2227 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002228unsigned int
2229APInt::tcLSB(const integerPart *parts, unsigned int n)
2230{
2231 unsigned int i, lsb;
2232
2233 for(i = 0; i < n; i++) {
2234 if (parts[i] != 0) {
2235 lsb = partLSB(parts[i]);
2236
2237 return lsb + i * integerPartWidth;
2238 }
2239 }
2240
2241 return -1U;
2242}
2243
Neil Booth58ffb232007-10-06 00:43:45 +00002244/* Returns the bit number of the most significant set bit of a number.
2245 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002246unsigned int
2247APInt::tcMSB(const integerPart *parts, unsigned int n)
2248{
2249 unsigned int msb;
2250
2251 do {
2252 --n;
2253
2254 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002255 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002256
2257 return msb + n * integerPartWidth;
2258 }
2259 } while (n);
2260
2261 return -1U;
2262}
2263
Neil Bootha0f524a2007-10-08 13:47:12 +00002264/* Copy the bit vector of width srcBITS from SRC, starting at bit
2265 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2266 the least significant bit of DST. All high bits above srcBITS in
2267 DST are zero-filled. */
2268void
2269APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2270 unsigned int srcBits, unsigned int srcLSB)
2271{
2272 unsigned int firstSrcPart, dstParts, shift, n;
2273
2274 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2275 assert (dstParts <= dstCount);
2276
2277 firstSrcPart = srcLSB / integerPartWidth;
2278 tcAssign (dst, src + firstSrcPart, dstParts);
2279
2280 shift = srcLSB % integerPartWidth;
2281 tcShiftRight (dst, dstParts, shift);
2282
2283 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2284 in DST. If this is less that srcBits, append the rest, else
2285 clear the high bits. */
2286 n = dstParts * integerPartWidth - shift;
2287 if (n < srcBits) {
2288 integerPart mask = lowBitMask (srcBits - n);
2289 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2290 << n % integerPartWidth);
2291 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002292 if (srcBits % integerPartWidth)
2293 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002294 }
2295
2296 /* Clear high parts. */
2297 while (dstParts < dstCount)
2298 dst[dstParts++] = 0;
2299}
2300
Chris Lattner73cde982007-08-16 15:56:55 +00002301/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2302integerPart
2303APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2304 integerPart c, unsigned int parts)
2305{
2306 unsigned int i;
2307
2308 assert(c <= 1);
2309
2310 for(i = 0; i < parts; i++) {
2311 integerPart l;
2312
2313 l = dst[i];
2314 if (c) {
2315 dst[i] += rhs[i] + 1;
2316 c = (dst[i] <= l);
2317 } else {
2318 dst[i] += rhs[i];
2319 c = (dst[i] < l);
2320 }
2321 }
2322
2323 return c;
2324}
2325
2326/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2327integerPart
2328APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2329 integerPart c, unsigned int parts)
2330{
2331 unsigned int i;
2332
2333 assert(c <= 1);
2334
2335 for(i = 0; i < parts; i++) {
2336 integerPart l;
2337
2338 l = dst[i];
2339 if (c) {
2340 dst[i] -= rhs[i] + 1;
2341 c = (dst[i] >= l);
2342 } else {
2343 dst[i] -= rhs[i];
2344 c = (dst[i] > l);
2345 }
2346 }
2347
2348 return c;
2349}
2350
2351/* Negate a bignum in-place. */
2352void
2353APInt::tcNegate(integerPart *dst, unsigned int parts)
2354{
2355 tcComplement(dst, parts);
2356 tcIncrement(dst, parts);
2357}
2358
Neil Booth58ffb232007-10-06 00:43:45 +00002359/* DST += SRC * MULTIPLIER + CARRY if add is true
2360 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002361
2362 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2363 they must start at the same point, i.e. DST == SRC.
2364
2365 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2366 returned. Otherwise DST is filled with the least significant
2367 DSTPARTS parts of the result, and if all of the omitted higher
2368 parts were zero return zero, otherwise overflow occurred and
2369 return one. */
2370int
2371APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2372 integerPart multiplier, integerPart carry,
2373 unsigned int srcParts, unsigned int dstParts,
2374 bool add)
2375{
2376 unsigned int i, n;
2377
2378 /* Otherwise our writes of DST kill our later reads of SRC. */
2379 assert(dst <= src || dst >= src + srcParts);
2380 assert(dstParts <= srcParts + 1);
2381
2382 /* N loops; minimum of dstParts and srcParts. */
2383 n = dstParts < srcParts ? dstParts: srcParts;
2384
2385 for(i = 0; i < n; i++) {
2386 integerPart low, mid, high, srcPart;
2387
2388 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2389
2390 This cannot overflow, because
2391
2392 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2393
2394 which is less than n^2. */
2395
2396 srcPart = src[i];
2397
2398 if (multiplier == 0 || srcPart == 0) {
2399 low = carry;
2400 high = 0;
2401 } else {
2402 low = lowHalf(srcPart) * lowHalf(multiplier);
2403 high = highHalf(srcPart) * highHalf(multiplier);
2404
2405 mid = lowHalf(srcPart) * highHalf(multiplier);
2406 high += highHalf(mid);
2407 mid <<= integerPartWidth / 2;
2408 if (low + mid < low)
2409 high++;
2410 low += mid;
2411
2412 mid = highHalf(srcPart) * lowHalf(multiplier);
2413 high += highHalf(mid);
2414 mid <<= integerPartWidth / 2;
2415 if (low + mid < low)
2416 high++;
2417 low += mid;
2418
2419 /* Now add carry. */
2420 if (low + carry < low)
2421 high++;
2422 low += carry;
2423 }
2424
2425 if (add) {
2426 /* And now DST[i], and store the new low part there. */
2427 if (low + dst[i] < low)
2428 high++;
2429 dst[i] += low;
2430 } else
2431 dst[i] = low;
2432
2433 carry = high;
2434 }
2435
2436 if (i < dstParts) {
2437 /* Full multiplication, there is no overflow. */
2438 assert(i + 1 == dstParts);
2439 dst[i] = carry;
2440 return 0;
2441 } else {
2442 /* We overflowed if there is carry. */
2443 if (carry)
2444 return 1;
2445
2446 /* We would overflow if any significant unwritten parts would be
2447 non-zero. This is true if any remaining src parts are non-zero
2448 and the multiplier is non-zero. */
2449 if (multiplier)
2450 for(; i < srcParts; i++)
2451 if (src[i])
2452 return 1;
2453
2454 /* We fitted in the narrow destination. */
2455 return 0;
2456 }
2457}
2458
2459/* DST = LHS * RHS, where DST has the same width as the operands and
2460 is filled with the least significant parts of the result. Returns
2461 one if overflow occurred, otherwise zero. DST must be disjoint
2462 from both operands. */
2463int
2464APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2465 const integerPart *rhs, unsigned int parts)
2466{
2467 unsigned int i;
2468 int overflow;
2469
2470 assert(dst != lhs && dst != rhs);
2471
2472 overflow = 0;
2473 tcSet(dst, 0, parts);
2474
2475 for(i = 0; i < parts; i++)
2476 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2477 parts - i, true);
2478
2479 return overflow;
2480}
2481
Neil Booth004e9f42007-10-06 00:24:48 +00002482/* DST = LHS * RHS, where DST has width the sum of the widths of the
2483 operands. No overflow occurs. DST must be disjoint from both
2484 operands. Returns the number of parts required to hold the
2485 result. */
2486unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002487APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002488 const integerPart *rhs, unsigned int lhsParts,
2489 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002490{
Neil Booth004e9f42007-10-06 00:24:48 +00002491 /* Put the narrower number on the LHS for less loops below. */
2492 if (lhsParts > rhsParts) {
2493 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2494 } else {
2495 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002496
Neil Booth004e9f42007-10-06 00:24:48 +00002497 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002498
Neil Booth004e9f42007-10-06 00:24:48 +00002499 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002500
Neil Booth004e9f42007-10-06 00:24:48 +00002501 for(n = 0; n < lhsParts; n++)
2502 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002503
Neil Booth004e9f42007-10-06 00:24:48 +00002504 n = lhsParts + rhsParts;
2505
2506 return n - (dst[n - 1] == 0);
2507 }
Chris Lattner73cde982007-08-16 15:56:55 +00002508}
2509
2510/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2511 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2512 set REMAINDER to the remainder, return zero. i.e.
2513
2514 OLD_LHS = RHS * LHS + REMAINDER
2515
2516 SCRATCH is a bignum of the same size as the operands and result for
2517 use by the routine; its contents need not be initialized and are
2518 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2519*/
2520int
2521APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2522 integerPart *remainder, integerPart *srhs,
2523 unsigned int parts)
2524{
2525 unsigned int n, shiftCount;
2526 integerPart mask;
2527
2528 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2529
Chris Lattnerdb80e212007-08-20 22:49:32 +00002530 shiftCount = tcMSB(rhs, parts) + 1;
2531 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002532 return true;
2533
Chris Lattnerdb80e212007-08-20 22:49:32 +00002534 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002535 n = shiftCount / integerPartWidth;
2536 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2537
2538 tcAssign(srhs, rhs, parts);
2539 tcShiftLeft(srhs, parts, shiftCount);
2540 tcAssign(remainder, lhs, parts);
2541 tcSet(lhs, 0, parts);
2542
2543 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2544 the total. */
2545 for(;;) {
2546 int compare;
2547
2548 compare = tcCompare(remainder, srhs, parts);
2549 if (compare >= 0) {
2550 tcSubtract(remainder, srhs, 0, parts);
2551 lhs[n] |= mask;
2552 }
2553
2554 if (shiftCount == 0)
2555 break;
2556 shiftCount--;
2557 tcShiftRight(srhs, parts, 1);
2558 if ((mask >>= 1) == 0)
2559 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2560 }
2561
2562 return false;
2563}
2564
2565/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2566 There are no restrictions on COUNT. */
2567void
2568APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2569{
Neil Bootha0f524a2007-10-08 13:47:12 +00002570 if (count) {
2571 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002572
Neil Bootha0f524a2007-10-08 13:47:12 +00002573 /* Jump is the inter-part jump; shift is is intra-part shift. */
2574 jump = count / integerPartWidth;
2575 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002576
Neil Bootha0f524a2007-10-08 13:47:12 +00002577 while (parts > jump) {
2578 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002579
Neil Bootha0f524a2007-10-08 13:47:12 +00002580 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002581
Neil Bootha0f524a2007-10-08 13:47:12 +00002582 /* dst[i] comes from the two parts src[i - jump] and, if we have
2583 an intra-part shift, src[i - jump - 1]. */
2584 part = dst[parts - jump];
2585 if (shift) {
2586 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002587 if (parts >= jump + 1)
2588 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2589 }
2590
Neil Bootha0f524a2007-10-08 13:47:12 +00002591 dst[parts] = part;
2592 }
Chris Lattner73cde982007-08-16 15:56:55 +00002593
Neil Bootha0f524a2007-10-08 13:47:12 +00002594 while (parts > 0)
2595 dst[--parts] = 0;
2596 }
Chris Lattner73cde982007-08-16 15:56:55 +00002597}
2598
2599/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2600 zero. There are no restrictions on COUNT. */
2601void
2602APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2603{
Neil Bootha0f524a2007-10-08 13:47:12 +00002604 if (count) {
2605 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002606
Neil Bootha0f524a2007-10-08 13:47:12 +00002607 /* Jump is the inter-part jump; shift is is intra-part shift. */
2608 jump = count / integerPartWidth;
2609 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002610
Neil Bootha0f524a2007-10-08 13:47:12 +00002611 /* Perform the shift. This leaves the most significant COUNT bits
2612 of the result at zero. */
2613 for(i = 0; i < parts; i++) {
2614 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002615
Neil Bootha0f524a2007-10-08 13:47:12 +00002616 if (i + jump >= parts) {
2617 part = 0;
2618 } else {
2619 part = dst[i + jump];
2620 if (shift) {
2621 part >>= shift;
2622 if (i + jump + 1 < parts)
2623 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2624 }
Chris Lattner73cde982007-08-16 15:56:55 +00002625 }
Chris Lattner73cde982007-08-16 15:56:55 +00002626
Neil Bootha0f524a2007-10-08 13:47:12 +00002627 dst[i] = part;
2628 }
Chris Lattner73cde982007-08-16 15:56:55 +00002629 }
2630}
2631
2632/* Bitwise and of two bignums. */
2633void
2634APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2635{
2636 unsigned int i;
2637
2638 for(i = 0; i < parts; i++)
2639 dst[i] &= rhs[i];
2640}
2641
2642/* Bitwise inclusive or of two bignums. */
2643void
2644APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2645{
2646 unsigned int i;
2647
2648 for(i = 0; i < parts; i++)
2649 dst[i] |= rhs[i];
2650}
2651
2652/* Bitwise exclusive or of two bignums. */
2653void
2654APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2655{
2656 unsigned int i;
2657
2658 for(i = 0; i < parts; i++)
2659 dst[i] ^= rhs[i];
2660}
2661
2662/* Complement a bignum in-place. */
2663void
2664APInt::tcComplement(integerPart *dst, unsigned int parts)
2665{
2666 unsigned int i;
2667
2668 for(i = 0; i < parts; i++)
2669 dst[i] = ~dst[i];
2670}
2671
2672/* Comparison (unsigned) of two bignums. */
2673int
2674APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2675 unsigned int parts)
2676{
2677 while (parts) {
2678 parts--;
2679 if (lhs[parts] == rhs[parts])
2680 continue;
2681
2682 if (lhs[parts] > rhs[parts])
2683 return 1;
2684 else
2685 return -1;
2686 }
2687
2688 return 0;
2689}
2690
2691/* Increment a bignum in-place, return the carry flag. */
2692integerPart
2693APInt::tcIncrement(integerPart *dst, unsigned int parts)
2694{
2695 unsigned int i;
2696
2697 for(i = 0; i < parts; i++)
2698 if (++dst[i] != 0)
2699 break;
2700
2701 return i == parts;
2702}
2703
2704/* Set the least significant BITS bits of a bignum, clear the
2705 rest. */
2706void
2707APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2708 unsigned int bits)
2709{
2710 unsigned int i;
2711
2712 i = 0;
2713 while (bits > integerPartWidth) {
2714 dst[i++] = ~(integerPart) 0;
2715 bits -= integerPartWidth;
2716 }
2717
2718 if (bits)
2719 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2720
2721 while (i < parts)
2722 dst[i++] = 0;
2723}