blob: e77fcdbdd242025353c306bf355f1465b733db30 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000018#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000019#include "llvm/Support/Debug.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000020#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000021#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000022#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000023#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000024#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000025#include <cstdlib>
26using namespace llvm;
27
Reid Spencer5d0d05c2007-02-25 19:32:03 +000028/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000030inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000031 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000035}
36
Reid Spencer5d0d05c2007-02-25 19:32:03 +000037/// A utility function for allocating memory and checking for allocation
38/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000039inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000040 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
43}
44
Chris Lattner455e9ab2009-01-21 18:09:24 +000045void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000046 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000051}
52
Chris Lattner119c30b2008-10-11 22:07:19 +000053void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
56}
57
58
Chris Lattner455e9ab2009-01-21 18:09:24 +000059APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner944fac72008-08-23 22:23:09 +000060 : BitWidth(numBits), VAL(0) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000061 assert(BitWidth && "bitwidth too small");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000062 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000064 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000065 else {
Reid Spencer610fad82007-02-24 10:01:42 +000066 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
Chris Lattner455e9ab2009-01-21 18:09:24 +000069 unsigned words = std::min<unsigned>(numWords, getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000070 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +000072 }
Reid Spencer610fad82007-02-24 10:01:42 +000073 // Make sure unused high bits are cleared
74 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +000075}
76
Chris Lattner455e9ab2009-01-21 18:09:24 +000077APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
Reid Spencer9c0696f2007-02-20 08:51:03 +000078 uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000079 : BitWidth(numbits), VAL(0) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000080 assert(BitWidth && "bitwidth too small");
Reid Spencere81d2da2007-02-16 22:36:51 +000081 fromString(numbits, StrStart, slen, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +000082}
83
Chris Lattner98f8ccf2008-08-20 17:02:31 +000084APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +000085 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
88
Reid Spencer9ac44112007-02-26 23:38:21 +000089 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000090 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +000093 return *this;
94 }
95
Chris Lattner98f8ccf2008-08-20 17:02:31 +000096 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000106 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
111 }
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000114}
115
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000116APInt& APInt::operator=(uint64_t RHS) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000117 if (isSingleWord())
118 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000119 else {
120 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000122 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000123 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000124}
125
Ted Kremeneke420deb2008-01-19 04:23:33 +0000126/// Profile - This method 'profiles' an APInt for use with FoldingSet.
127void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000128 ID.AddInteger(BitWidth);
129
Ted Kremeneke420deb2008-01-19 04:23:33 +0000130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
133 }
134
Chris Lattner455e9ab2009-01-21 18:09:24 +0000135 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
138}
139
Reid Spenceraf0e9562007-02-18 18:38:44 +0000140/// add_1 - This function adds a single "digit" integer, y, to the multiple
141/// "digit" integer array, x[]. x[] is modified to reflect the addition and
142/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000143/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000144static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000146 dest[i] = y + x[i];
147 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000148 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000149 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000150 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000151 break;
152 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000153 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000154 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000155}
156
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000157/// @brief Prefix increment operator. Increments the APInt by one.
158APInt& APInt::operator++() {
Reid Spencere81d2da2007-02-16 22:36:51 +0000159 if (isSingleWord())
160 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000161 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000162 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000163 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000164}
165
Reid Spenceraf0e9562007-02-18 18:38:44 +0000166/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167/// the multi-digit integer array, x[], propagating the borrowed 1 value until
168/// no further borrowing is neeeded or it runs out of "digits" in x. The result
169/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000171/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000172static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000174 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000175 x[i] -= y;
176 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000177 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000178 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000181 }
182 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000183 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000184}
185
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000186/// @brief Prefix decrement operator. Decrements the APInt by one.
187APInt& APInt::operator--() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000188 if (isSingleWord())
189 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000190 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000191 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000192 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000193}
194
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000195/// add - This function adds the integer array x to the integer array Y and
196/// places the result in dest.
197/// @returns the carry out from the addition
198/// @brief General addition of 64-bit integer arrays
Reid Spencer9d6c9192007-02-24 03:58:46 +0000199static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000200 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000201 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000202 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000204 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000205 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000206 }
207 return carry;
208}
209
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000210/// Adds the RHS APint to this APInt.
211/// @returns this, after addition of RHS.
212/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000213APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000215 if (isSingleWord())
216 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000217 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000218 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000219 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000220 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000221}
222
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000223/// Subtracts the integer array y from the integer array x
224/// @returns returns the borrow out.
225/// @brief Generalized subtraction of 64-bit integer arrays.
Reid Spencer9d6c9192007-02-24 03:58:46 +0000226static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000227 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000228 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000233 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000234 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000235}
236
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000237/// Subtracts the RHS APInt from this APInt
238/// @returns this, after subtraction
239/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000240APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000242 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000246 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000247}
248
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000249/// Multiplies an integer array, x by a a uint64_t integer and places the result
250/// into dest.
251/// @returns the carry out of the multiplication.
252/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000253static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000256 uint64_t carry = 0;
257
258 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000259 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
275
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
280 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000281 return carry;
282}
283
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000284/// Multiplies integer array x by integer array y and stores the result into
285/// the integer array dest. Note that dest's size must be >= xlen + ylen.
286/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000287static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000290 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000292 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000293 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
305
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
312 }
313 dest[i+xlen] = carry;
314 }
315}
316
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000317APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000319 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000320 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000321 clearUnusedBits();
322 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000323 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000324
325 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
331
332 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
339 }
340
341 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000342 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000343 uint64_t *dest = getMemory(destWords);
344
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
347
348 // Copy result back into *this
349 clear();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
352
353 // delete dest array and return
354 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000355 return *this;
356}
357
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000358APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000360 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000361 VAL &= RHS.VAL;
362 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000363 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000366 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000367 return *this;
368}
369
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000370APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000372 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000373 VAL |= RHS.VAL;
374 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000375 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000378 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000379 return *this;
380}
381
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000382APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000384 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000385 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000386 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000387 return *this;
388 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000391 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000392 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000393}
394
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000395APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000396 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000397 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000398 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000401}
402
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000403APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000404 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000405 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000406 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000409}
410
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000411APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000412 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000413 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000414 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000415 val[i] = pVal[i] ^ RHS.pVal[i];
416
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000419}
420
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000421bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000424
Chris Lattner455e9ab2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < getNumWords(); ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000426 if (pVal[i])
427 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000428 return true;
429}
430
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000431APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000433 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000434 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000435 APInt Result(*this);
436 Result *= RHS;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000437 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000438}
439
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000440APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000442 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000443 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000446 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000447}
448
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000449APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000451 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000452 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000455 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000456}
457
Chris Lattner455e9ab2009-01-21 18:09:24 +0000458bool APInt::operator[](unsigned bitPosition) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000461}
462
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000463bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000464 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000467
468 // If the number of bits isn't the same, they aren't equal
Reid Spencer54362ca2007-02-20 23:40:25 +0000469 if (n1 != n2)
470 return false;
471
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000472 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
475
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000476 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000480 return true;
481}
482
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000483bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000484 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000489}
490
Reid Spencere81d2da2007-02-16 22:36:51 +0000491bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000495
496 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000499
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
503
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
507
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
511
512 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000513 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000514 for (int i = topWord; i >= 0; --i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000515 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000516 return false;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000517 if (pVal[i] < RHS.pVal[i])
518 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000519 }
520 return false;
521}
522
Reid Spencere81d2da2007-02-16 22:36:51 +0000523bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000529 }
Reid Spencera58f0582007-02-18 20:09:41 +0000530
531 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000537 lhs.flip();
538 lhs++;
539 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000542 rhs.flip();
543 rhs++;
544 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000545
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000551 else
552 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000553 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000554 return false;
555 else
556 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000557}
558
Chris Lattner455e9ab2009-01-21 18:09:24 +0000559APInt& APInt::set(unsigned bitPosition) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000564 return *this;
565}
566
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000567/// Set the given bit to 0 whose position is given as "bitPosition".
568/// @brief Set a given bit to 0.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000569APInt& APInt::clear(unsigned bitPosition) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000574 return *this;
575}
576
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000577/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000578
579/// Toggle a given bit to its opposite value whose position is given
580/// as "bitPosition".
581/// @brief Toggles a given bit to its opposite value.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000582APInt& APInt::flip(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
587}
588
Chris Lattner455e9ab2009-01-21 18:09:24 +0000589unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
Reid Spencer57ae4f52007-04-13 19:19:07 +0000590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
592
593 // Each computation below needs to know if its negative
Chris Lattner455e9ab2009-01-21 18:09:24 +0000594 unsigned isNegative = str[0] == '-';
Reid Spencer57ae4f52007-04-13 19:19:07 +0000595 if (isNegative) {
596 slen--;
597 str++;
598 }
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
607
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
610
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
614
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000617 unsigned sufficient = slen*64/18;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000618
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
621
622 // Compute how many bits are required.
Reid Spencer0468ab32007-04-14 00:00:10 +0000623 return isNegative + tmp.logBase2() + 1;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000624}
625
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000626// From http://www.burtleburtle.net, byBob Jenkins.
627// When targeting x86, both GCC and LLVM seem to recognize this as a
628// rotate instruction.
629#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000630
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000631// From http://www.burtleburtle.net, by Bob Jenkins.
632#define mix(a,b,c) \
633 { \
634 a -= c; a ^= rot(c, 4); c += b; \
635 b -= a; b ^= rot(a, 6); a += c; \
636 c -= b; c ^= rot(b, 8); b += a; \
637 a -= c; a ^= rot(c,16); c += b; \
638 b -= a; b ^= rot(a,19); a += c; \
639 c -= b; c ^= rot(b, 4); b += a; \
640 }
641
642// From http://www.burtleburtle.net, by Bob Jenkins.
643#define final(a,b,c) \
644 { \
645 c ^= b; c -= rot(b,14); \
646 a ^= c; a -= rot(c,11); \
647 b ^= a; b -= rot(a,25); \
648 c ^= b; c -= rot(b,16); \
649 a ^= c; a -= rot(c,4); \
650 b ^= a; b -= rot(a,14); \
651 c ^= b; c -= rot(b,24); \
652 }
653
654// hashword() was adapted from http://www.burtleburtle.net, by Bob
655// Jenkins. k is a pointer to an array of uint32_t values; length is
656// the length of the key, in 32-bit chunks. This version only handles
657// keys that are a multiple of 32 bits in size.
658static inline uint32_t hashword(const uint64_t *k64, size_t length)
659{
660 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
661 uint32_t a,b,c;
662
663 /* Set up the internal state */
664 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
665
666 /*------------------------------------------------- handle most of the key */
667 while (length > 3)
668 {
669 a += k[0];
670 b += k[1];
671 c += k[2];
672 mix(a,b,c);
673 length -= 3;
674 k += 3;
675 }
676
677 /*------------------------------------------- handle the last 3 uint32_t's */
678 switch(length) /* all the case statements fall through */
679 {
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
684 case 0: /* case 0: nothing left to add */
685 break;
686 }
687 /*------------------------------------------------------ report the result */
688 return c;
689}
690
691// hashword8() was adapted from http://www.burtleburtle.net, by Bob
692// Jenkins. This computes a 32-bit hash from one 64-bit word. When
693// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694// function into about 35 instructions when inlined.
695static inline uint32_t hashword8(const uint64_t k64)
696{
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
703}
704#undef final
705#undef mix
706#undef rot
707
708uint64_t APInt::getHashValue() const {
709 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000710 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000711 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000712 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000713 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000714 return hash;
715}
716
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000717/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000718APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000719 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000720}
721
722/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000723APInt APInt::getLoBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000726}
727
Reid Spencere81d2da2007-02-16 22:36:51 +0000728bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
730}
731
Chris Lattner455e9ab2009-01-21 18:09:24 +0000732unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
Reid Spencere549c492007-02-21 00:29:48 +0000740 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000741 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Reid Spencerab2b2c82007-02-22 00:22:00 +0000743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner9e513ac2007-11-23 22:42:31 +0000745 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000746}
747
Chris Lattner455e9ab2009-01-21 18:09:24 +0000748static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
755 }
756 return Count;
757}
758
Chris Lattner455e9ab2009-01-21 18:09:24 +0000759unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
762
Chris Lattner455e9ab2009-01-21 18:09:24 +0000763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
770 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000771 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
780 }
781 }
782 }
783 return Count;
784}
785
Chris Lattner455e9ab2009-01-21 18:09:24 +0000786unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000787 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000795 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000796}
797
Chris Lattner455e9ab2009-01-21 18:09:24 +0000798unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
806}
807
Chris Lattner455e9ab2009-01-21 18:09:24 +0000808unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000811 Count += CountPopulation_64(pVal[i]);
812 return Count;
813}
814
Reid Spencere81d2da2007-02-16 22:36:51 +0000815APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000819 else if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000821 else if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000822 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000823 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000824 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000825 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000827 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000828 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000829 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000830 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000831 char *pByte = (char*)Result.pVal;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000833 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000836 }
837 return Result;
838 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000839}
840
Zhou Sheng0b706b12007-02-08 14:35:19 +0000841APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000846 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000847 A = T;
848 }
849 return A;
850}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000851
Chris Lattner455e9ab2009-01-21 18:09:24 +0000852APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000858
859 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000860 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000861
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000864
865 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000866 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000867 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000868
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
871
872 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000873 if (exp < 52)
Reid Spencer1fa111e2007-02-27 18:23:40 +0000874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
876
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000881
882 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000883 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000884 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000885 return isNeg ? -Tmp : Tmp;
886}
887
Reid Spencerdb3faa62007-02-13 22:41:58 +0000888/// RoundToDouble - This function convert this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000889/// The layout for double is as following (IEEE Standard 754):
890/// --------------------------------------
891/// | Sign Exponent Fraction Bias |
892/// |-------------------------------------- |
893/// | 1[63] 11[62-52] 52[51-00] 1023 |
894/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000895double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000896
897 // Handle the simple case where the value is contained in one uint64_t.
Reid Spencera58f0582007-02-18 20:09:41 +0000898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
900 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
901 return double(sext);
902 } else
903 return double(VAL);
904 }
905
Reid Spencer9c0696f2007-02-20 08:51:03 +0000906 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000908
909 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000910 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000911
912 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000913 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000914
Reid Spencer9c0696f2007-02-20 08:51:03 +0000915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000919
Reid Spencer9c0696f2007-02-20 08:51:03 +0000920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000923 return std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000924 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000925 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000926 }
927 exp += 1023; // Increment for 1023 bias
928
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000931 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
942 }
943
Zhou Shengd93f00c2007-02-12 20:02:55 +0000944 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
952}
953
Reid Spencere81d2da2007-02-16 22:36:51 +0000954// Truncate to new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000955APInt &APInt::trunc(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000956 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000957 assert(width && "Can't truncate to 0 bits");
Chris Lattner455e9ab2009-01-21 18:09:24 +0000958 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000959 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000960 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
Reid Spencer9ac44112007-02-26 23:38:21 +0000965 delete [] tmp;
Reid Spencer9eec2412007-02-25 23:44:53 +0000966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000968 for (unsigned i = 0; i < wordsAfter; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +0000969 newVal[i] = pVal[i];
Reid Spencer9ac44112007-02-26 23:38:21 +0000970 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +0000971 pVal = newVal;
972 }
973 }
Reid Spencer94900772007-02-28 17:34:32 +0000974 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +0000975}
976
977// Sign extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000978APInt &APInt::sext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000979 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencer9eec2412007-02-25 23:44:53 +0000980 // If the sign bit isn't set, this is the same as zext.
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000981 if (!isNegative()) {
Reid Spencer9eec2412007-02-25 23:44:53 +0000982 zext(width);
Reid Spencer94900772007-02-28 17:34:32 +0000983 return *this;
Reid Spencer9eec2412007-02-25 23:44:53 +0000984 }
985
986 // The sign bit is set. First, get some facts
Chris Lattner455e9ab2009-01-21 18:09:24 +0000987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +0000989 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000990 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000991
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +0000995 // The extension is contained to the wordsBefore-1th word.
Reid Spencer36184ed2007-03-02 01:19:42 +0000996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
Reid Spencer295e40a2007-03-01 23:30:25 +00001004 return clearUnusedBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00001005 }
1006
Reid Spencerf30b1882007-02-25 23:54:00 +00001007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001012 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1015 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Reid Spencer9eec2412007-02-25 23:44:53 +00001017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001019 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001020 pVal = newVal;
Reid Spencer94900772007-02-28 17:34:32 +00001021 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001022}
1023
1024// Zero extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001025APInt &APInt::zext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001027 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001028 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001029 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
Chris Lattner455e9ab2009-01-21 18:09:24 +00001035 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001038 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001039 pVal = newVal;
1040 }
Reid Spencer94900772007-02-28 17:34:32 +00001041 return *this;
Reid Spencere81d2da2007-02-16 22:36:51 +00001042}
1043
Chris Lattner455e9ab2009-01-21 18:09:24 +00001044APInt &APInt::zextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1050}
1051
Chris Lattner455e9ab2009-01-21 18:09:24 +00001052APInt &APInt::sextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1058}
1059
Zhou Shengff4304f2007-02-09 07:48:24 +00001060/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001061/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001062APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001064}
1065
1066/// Arithmetic right-shift this APInt by shiftAmt.
1067/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001068APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1073
1074 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001077 return APInt(BitWidth, 0); // undefined
1078 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001080 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1082 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001083 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001084
Reid Spencer46f9c942007-03-02 22:39:11 +00001085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001088 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001089 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001090 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001091 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001092 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001093 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001094
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1097
Reid Spencer46f9c942007-03-02 22:39:11 +00001098 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001105
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001108 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001109 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001110 val[i] = pVal[i+offset]; // move whole word
1111
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001118 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1123 }
1124
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1128
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001131 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001139 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001140 }
1141
Reid Spencer46f9c942007-03-02 22:39:11 +00001142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001145 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001146 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001147}
1148
Zhou Shengff4304f2007-02-09 07:48:24 +00001149/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001150/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001151APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001153}
1154
1155/// Logical right-shift this APInt by shiftAmt.
1156/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001157APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001158 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001163 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001164
Reid Spencerba81c2b2007-02-26 01:19:48 +00001165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1170
Reid Spencer02ae8b72007-05-17 06:26:29 +00001171 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky4bd47872009-01-19 17:42:33 +00001172 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1176
Reid Spencerba81c2b2007-02-26 01:19:48 +00001177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1179
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spenceraf8fb192007-03-01 05:39:56 +00001184 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1186 }
1187 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001188 }
1189
Reid Spencerba81c2b2007-02-26 01:19:48 +00001190 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001193
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001197 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1201 }
1202
1203 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1210
1211 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001215}
1216
Zhou Shengff4304f2007-02-09 07:48:24 +00001217/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001218/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001219APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001220 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001222}
1223
Chris Lattner455e9ab2009-01-21 18:09:24 +00001224APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1230
Reid Spencer92c72832007-05-12 18:01:57 +00001231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1236
Reid Spencer87553802007-02-25 00:56:44 +00001237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1239
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001243 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1246 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001247 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001248 }
1249
Reid Spencer87553802007-02-25 00:56:44 +00001250 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001253
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001256 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001257 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001258 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001259 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001260 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001261 }
Reid Spencer87553802007-02-25 00:56:44 +00001262
1263 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001264 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001268 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001271 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001272}
1273
Dan Gohmancf609572008-02-29 01:40:47 +00001274APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001276}
1277
Chris Lattner455e9ab2009-01-21 18:09:24 +00001278APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001279 if (rotateAmt == 0)
1280 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1287}
1288
Dan Gohmancf609572008-02-29 01:40:47 +00001289APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001291}
1292
Chris Lattner455e9ab2009-01-21 18:09:24 +00001293APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001294 if (rotateAmt == 0)
1295 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1302}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001303
1304// Square Root - this method computes and returns the square root of "this".
1305// Three mechanisms are used for computation. For small values (<= 5 bits),
1306// a table lookup is done. This gets some performance for common cases. For
1307// values using less than 52 bits, the value is converted to double and then
1308// the libc sqrt function is called. The result is rounded and then converted
1309// back to a uint64_t which is then used to construct the result. Finally,
1310// the Babylonian method for computing square roots is used.
1311APInt APInt::sqrt() const {
1312
1313 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001314 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001315
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001319 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1327 };
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001329 }
1330
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001335 if (magnitude < 52) {
1336#ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340#else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenca5183d2007-03-05 00:00:42 +00001343#endif
1344 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001345
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001351 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1356
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1362 }
1363
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1370 }
1371
1372 // Make sure we return the closest approximation
Reid Spencerf09aef72007-03-02 04:21:55 +00001373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001386 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001387 else
1388 return x_old + 1;
1389 } else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001390 assert(0 && "Error in APInt::sqrt computation");
1391 return x_old + 1;
1392}
1393
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001394/// Computes the multiplicative inverse of this APInt for a given modulo. The
1395/// iterative extended Euclidean algorithm is used to solve for this value,
1396/// however we simplify it to speed up calculating only the inverse, and take
1397/// advantage of div+rem calculations. We also use some tricks to avoid copying
1398/// (potentially large) APInts around.
1399APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1401
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1409
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1413
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1422 }
1423
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1430
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001434 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001435 return t[i].isNegative() ? t[i] + modulo : t[i];
1436}
1437
Jay Foad4e5ea552009-04-30 10:15:35 +00001438/// Calculate the magic numbers required to implement a signed integer division
1439/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1440/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1441/// Warren, Jr., chapter 10.
1442APInt::ms APInt::magic() const {
1443 const APInt& d = *this;
1444 unsigned p;
1445 APInt ad, anc, delta, q1, r1, q2, r2, t;
1446 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1447 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1448 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1449 struct ms mag;
1450
1451 ad = d.abs();
1452 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1453 anc = t - 1 - t.urem(ad); // absolute value of nc
1454 p = d.getBitWidth() - 1; // initialize p
1455 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1456 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1457 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1458 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1459 do {
1460 p = p + 1;
1461 q1 = q1<<1; // update q1 = 2p/abs(nc)
1462 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1463 if (r1.uge(anc)) { // must be unsigned comparison
1464 q1 = q1 + 1;
1465 r1 = r1 - anc;
1466 }
1467 q2 = q2<<1; // update q2 = 2p/abs(d)
1468 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1469 if (r2.uge(ad)) { // must be unsigned comparison
1470 q2 = q2 + 1;
1471 r2 = r2 - ad;
1472 }
1473 delta = ad - r2;
1474 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1475
1476 mag.m = q2 + 1;
1477 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1478 mag.s = p - d.getBitWidth(); // resulting shift
1479 return mag;
1480}
1481
1482/// Calculate the magic numbers required to implement an unsigned integer
1483/// division by a constant as a sequence of multiplies, adds and shifts.
1484/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1485/// S. Warren, Jr., chapter 10.
1486APInt::mu APInt::magicu() const {
1487 const APInt& d = *this;
1488 unsigned p;
1489 APInt nc, delta, q1, r1, q2, r2;
1490 struct mu magu;
1491 magu.a = 0; // initialize "add" indicator
1492 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1493 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1494 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1495
1496 nc = allOnes - (-d).urem(d);
1497 p = d.getBitWidth() - 1; // initialize p
1498 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1499 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1500 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1501 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1502 do {
1503 p = p + 1;
1504 if (r1.uge(nc - r1)) {
1505 q1 = q1 + q1 + 1; // update q1
1506 r1 = r1 + r1 - nc; // update r1
1507 }
1508 else {
1509 q1 = q1+q1; // update q1
1510 r1 = r1+r1; // update r1
1511 }
1512 if ((r2 + 1).uge(d - r2)) {
1513 if (q2.uge(signedMax)) magu.a = 1;
1514 q2 = q2+q2 + 1; // update q2
1515 r2 = r2+r2 + 1 - d; // update r2
1516 }
1517 else {
1518 if (q2.uge(signedMin)) magu.a = 1;
1519 q2 = q2+q2; // update q2
1520 r2 = r2+r2 + 1; // update r2
1521 }
1522 delta = d - 1 - r2;
1523 } while (p < d.getBitWidth()*2 &&
1524 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1525 magu.m = q2 + 1; // resulting magic number
1526 magu.s = p - d.getBitWidth(); // resulting shift
1527 return magu;
1528}
1529
Reid Spencer9c0696f2007-02-20 08:51:03 +00001530/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1531/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1532/// variables here have the same names as in the algorithm. Comments explain
1533/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001534static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1535 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001536 assert(u && "Must provide dividend");
1537 assert(v && "Must provide divisor");
1538 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001539 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001540 assert(n>1 && "n must be > 1");
1541
1542 // Knuth uses the value b as the base of the number system. In our case b
1543 // is 2^31 so we just set it to -1u.
1544 uint64_t b = uint64_t(1) << 32;
1545
Chris Lattnerfad86b02008-08-17 07:19:36 +00001546#if 0
Reid Spencer9d6c9192007-02-24 03:58:46 +00001547 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1548 DEBUG(cerr << "KnuthDiv: original:");
1549 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1550 DEBUG(cerr << " by");
1551 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1552 DEBUG(cerr << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001553#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001554 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1555 // u and v by d. Note that we have taken Knuth's advice here to use a power
1556 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1557 // 2 allows us to shift instead of multiply and it is easy to determine the
1558 // shift amount from the leading zeros. We are basically normalizing the u
1559 // and v so that its high bits are shifted to the top of v's range without
1560 // overflow. Note that this can require an extra word in u so that u must
1561 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001562 unsigned shift = CountLeadingZeros_32(v[n-1]);
1563 unsigned v_carry = 0;
1564 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001565 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001566 for (unsigned i = 0; i < m+n; ++i) {
1567 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001568 u[i] = (u[i] << shift) | u_carry;
1569 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001570 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001571 for (unsigned i = 0; i < n; ++i) {
1572 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001573 v[i] = (v[i] << shift) | v_carry;
1574 v_carry = v_tmp;
1575 }
1576 }
1577 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001578#if 0
Reid Spencer9d6c9192007-02-24 03:58:46 +00001579 DEBUG(cerr << "KnuthDiv: normal:");
1580 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1581 DEBUG(cerr << " by");
1582 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1583 DEBUG(cerr << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001584#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001585
1586 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1587 int j = m;
1588 do {
Reid Spencer9d6c9192007-02-24 03:58:46 +00001589 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001590 // D3. [Calculate q'.].
1591 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1592 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1593 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1594 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1595 // on v[n-2] determines at high speed most of the cases in which the trial
1596 // value qp is one too large, and it eliminates all cases where qp is two
1597 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001598 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001599 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001600 uint64_t qp = dividend / v[n-1];
1601 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001602 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1603 qp--;
1604 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001605 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001606 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001607 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001608 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001609
Reid Spencer92904632007-02-23 01:57:13 +00001610 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1611 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1612 // consists of a simple multiplication by a one-place number, combined with
Reid Spencer610fad82007-02-24 10:01:42 +00001613 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001614 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001615 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001616 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001617 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001618 bool borrow = subtrahend > u_tmp;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001619 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
Reid Spencer610fad82007-02-24 10:01:42 +00001620 << ", subtrahend == " << subtrahend
1621 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001622
Reid Spencer610fad82007-02-24 10:01:42 +00001623 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001624 unsigned k = j + i;
1625 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1626 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001627 while (borrow && k <= m+n) { // deal with borrow to the left
1628 borrow = u[k] == 0;
1629 u[k]--;
1630 k++;
1631 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001632 isNeg |= borrow;
Reid Spencer610fad82007-02-24 10:01:42 +00001633 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1634 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001635 }
1636 DEBUG(cerr << "KnuthDiv: after subtraction:");
1637 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1638 DEBUG(cerr << '\n');
Reid Spencer610fad82007-02-24 10:01:42 +00001639 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1640 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1641 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001642 // the true value, and a "borrow" to the left should be remembered.
1643 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001644 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001645 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001646 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001647 u[i] = ~u[i] + carry; // b's complement
1648 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001649 }
Reid Spencer92904632007-02-23 01:57:13 +00001650 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001651 DEBUG(cerr << "KnuthDiv: after complement:");
1652 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1653 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001654
1655 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1656 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001657 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001658 if (isNeg) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001659 // D6. [Add back]. The probability that this step is necessary is very
1660 // small, on the order of only 2/b. Make sure that test data accounts for
Reid Spencer92904632007-02-23 01:57:13 +00001661 // this possibility. Decrease q[j] by 1
1662 q[j]--;
1663 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1664 // A carry will occur to the left of u[j+n], and it should be ignored
1665 // since it cancels with the borrow that occurred in D4.
1666 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001667 for (unsigned i = 0; i < n; i++) {
1668 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001669 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001670 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001671 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001672 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001673 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001674 DEBUG(cerr << "KnuthDiv: after correction:");
1675 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1676 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001677
Reid Spencer92904632007-02-23 01:57:13 +00001678 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1679 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001680
Reid Spencer9d6c9192007-02-24 03:58:46 +00001681 DEBUG(cerr << "KnuthDiv: quotient:");
1682 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1683 DEBUG(cerr << '\n');
1684
Reid Spencer9c0696f2007-02-20 08:51:03 +00001685 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1686 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1687 // compute the remainder (urem uses this).
1688 if (r) {
1689 // The value d is expressed by the "shift" value above since we avoided
1690 // multiplication by d by using a shift left. So, all we have to do is
1691 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001692 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001693 unsigned carry = 0;
Reid Spencer1050ec52007-02-24 20:38:01 +00001694 DEBUG(cerr << "KnuthDiv: remainder:");
1695 for (int i = n-1; i >= 0; i--) {
1696 r[i] = (u[i] >> shift) | carry;
1697 carry = u[i] << (32 - shift);
1698 DEBUG(cerr << " " << r[i]);
1699 }
1700 } else {
1701 for (int i = n-1; i >= 0; i--) {
1702 r[i] = u[i];
1703 DEBUG(cerr << " " << r[i]);
1704 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001705 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001706 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001707 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001708#if 0
Reid Spencer9d6c9192007-02-24 03:58:46 +00001709 DEBUG(cerr << std::setbase(10) << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001710#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001711}
1712
Chris Lattner455e9ab2009-01-21 18:09:24 +00001713void APInt::divide(const APInt LHS, unsigned lhsWords,
1714 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001715 APInt *Quotient, APInt *Remainder)
1716{
1717 assert(lhsWords >= rhsWords && "Fractional result");
1718
1719 // First, compose the values into an array of 32-bit words instead of
1720 // 64-bit words. This is a necessity of both the "short division" algorithm
1721 // and the the Knuth "classical algorithm" which requires there to be native
1722 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1723 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsbf5836b2009-03-19 11:37:15 +00001724 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001725 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001726 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001727 unsigned n = rhsWords * 2;
1728 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001729
1730 // Allocate space for the temporary values we need either on the stack, if
1731 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001732 unsigned SPACE[128];
1733 unsigned *U = 0;
1734 unsigned *V = 0;
1735 unsigned *Q = 0;
1736 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001737 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1738 U = &SPACE[0];
1739 V = &SPACE[m+n+1];
1740 Q = &SPACE[(m+n+1) + n];
1741 if (Remainder)
1742 R = &SPACE[(m+n+1) + n + (m+n)];
1743 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001744 U = new unsigned[m + n + 1];
1745 V = new unsigned[n];
1746 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001747 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001748 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001749 }
1750
1751 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001752 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001753 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001754 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001755 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001756 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001757 }
1758 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1759
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001760 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001761 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001762 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001763 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001764 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001765 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001766 }
1767
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001768 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001769 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001770 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001771 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001772
1773 // Now, adjust m and n for the Knuth division. n is the number of words in
1774 // the divisor. m is the number of words by which the dividend exceeds the
1775 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1776 // contain any zero words or the Knuth algorithm fails.
1777 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1778 n--;
1779 m++;
1780 }
1781 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1782 m--;
1783
1784 // If we're left with only a single word for the divisor, Knuth doesn't work
1785 // so we implement the short division algorithm here. This is much simpler
1786 // and faster because we are certain that we can divide a 64-bit quantity
1787 // by a 32-bit quantity at hardware speed and short division is simply a
1788 // series of such operations. This is just like doing short division but we
1789 // are using base 2^32 instead of base 10.
1790 assert(n != 0 && "Divide by zero?");
1791 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001792 unsigned divisor = V[0];
1793 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001794 for (int i = m+n-1; i >= 0; i--) {
1795 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1796 if (partial_dividend == 0) {
1797 Q[i] = 0;
1798 remainder = 0;
1799 } else if (partial_dividend < divisor) {
1800 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001801 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001802 } else if (partial_dividend == divisor) {
1803 Q[i] = 1;
1804 remainder = 0;
1805 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001806 Q[i] = (unsigned)(partial_dividend / divisor);
1807 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001808 }
1809 }
1810 if (R)
1811 R[0] = remainder;
1812 } else {
1813 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1814 // case n > 1.
1815 KnuthDiv(U, V, Q, R, m, n);
1816 }
1817
1818 // If the caller wants the quotient
1819 if (Quotient) {
1820 // Set up the Quotient value's memory.
1821 if (Quotient->BitWidth != LHS.BitWidth) {
1822 if (Quotient->isSingleWord())
1823 Quotient->VAL = 0;
1824 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001825 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001826 Quotient->BitWidth = LHS.BitWidth;
1827 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001828 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001829 } else
1830 Quotient->clear();
1831
1832 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1833 // order words.
1834 if (lhsWords == 1) {
1835 uint64_t tmp =
1836 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1837 if (Quotient->isSingleWord())
1838 Quotient->VAL = tmp;
1839 else
1840 Quotient->pVal[0] = tmp;
1841 } else {
1842 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1843 for (unsigned i = 0; i < lhsWords; ++i)
1844 Quotient->pVal[i] =
1845 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1846 }
1847 }
1848
1849 // If the caller wants the remainder
1850 if (Remainder) {
1851 // Set up the Remainder value's memory.
1852 if (Remainder->BitWidth != RHS.BitWidth) {
1853 if (Remainder->isSingleWord())
1854 Remainder->VAL = 0;
1855 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001856 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001857 Remainder->BitWidth = RHS.BitWidth;
1858 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001859 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001860 } else
1861 Remainder->clear();
1862
1863 // The remainder is in R. Reconstitute the remainder into Remainder's low
1864 // order words.
1865 if (rhsWords == 1) {
1866 uint64_t tmp =
1867 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1868 if (Remainder->isSingleWord())
1869 Remainder->VAL = tmp;
1870 else
1871 Remainder->pVal[0] = tmp;
1872 } else {
1873 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1874 for (unsigned i = 0; i < rhsWords; ++i)
1875 Remainder->pVal[i] =
1876 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1877 }
1878 }
1879
1880 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001881 if (U != &SPACE[0]) {
1882 delete [] U;
1883 delete [] V;
1884 delete [] Q;
1885 delete [] R;
1886 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001887}
1888
Reid Spencere81d2da2007-02-16 22:36:51 +00001889APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001890 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001891
1892 // First, deal with the easy case
1893 if (isSingleWord()) {
1894 assert(RHS.VAL != 0 && "Divide by zero?");
1895 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001896 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001897
Reid Spencer71bd08f2007-02-17 02:07:07 +00001898 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001899 unsigned rhsBits = RHS.getActiveBits();
1900 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001901 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001902 unsigned lhsBits = this->getActiveBits();
1903 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001904
1905 // Deal with some degenerate cases
1906 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001907 // 0 / X ===> 0
1908 return APInt(BitWidth, 0);
1909 else if (lhsWords < rhsWords || this->ult(RHS)) {
1910 // X / Y ===> 0, iff X < Y
1911 return APInt(BitWidth, 0);
1912 } else if (*this == RHS) {
1913 // X / X ===> 1
1914 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001915 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001916 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001917 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001918 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001919
1920 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1921 APInt Quotient(1,0); // to hold result.
1922 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1923 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001924}
1925
Reid Spencere81d2da2007-02-16 22:36:51 +00001926APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001927 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001928 if (isSingleWord()) {
1929 assert(RHS.VAL != 0 && "Remainder by zero?");
1930 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001931 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001932
Reid Spencere0cdd332007-02-21 08:21:52 +00001933 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001934 unsigned lhsBits = getActiveBits();
1935 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001936
1937 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001938 unsigned rhsBits = RHS.getActiveBits();
1939 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001940 assert(rhsWords && "Performing remainder operation by zero ???");
1941
Reid Spencer71bd08f2007-02-17 02:07:07 +00001942 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001943 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001944 // 0 % Y ===> 0
1945 return APInt(BitWidth, 0);
1946 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1947 // X % Y ===> X, iff X < Y
1948 return *this;
1949 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001950 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001951 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001952 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001953 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00001954 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001955 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001956
Reid Spencer19dc32a2007-05-13 23:44:59 +00001957 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00001958 APInt Remainder(1,0);
1959 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1960 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001961}
Reid Spencer5e0a8512007-02-17 03:16:00 +00001962
Reid Spencer19dc32a2007-05-13 23:44:59 +00001963void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1964 APInt &Quotient, APInt &Remainder) {
1965 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001966 unsigned lhsBits = LHS.getActiveBits();
1967 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1968 unsigned rhsBits = RHS.getActiveBits();
1969 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001970
1971 // Check the degenerate cases
1972 if (lhsWords == 0) {
1973 Quotient = 0; // 0 / Y ===> 0
1974 Remainder = 0; // 0 % Y ===> 0
1975 return;
1976 }
1977
1978 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1979 Quotient = 0; // X / Y ===> 0, iff X < Y
1980 Remainder = LHS; // X % Y ===> X, iff X < Y
1981 return;
1982 }
1983
1984 if (LHS == RHS) {
1985 Quotient = 1; // X / X ===> 1
1986 Remainder = 0; // X % X ===> 0;
1987 return;
1988 }
1989
1990 if (lhsWords == 1 && rhsWords == 1) {
1991 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001992 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1993 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1994 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1995 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001996 return;
1997 }
1998
1999 // Okay, lets do it the long way
2000 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2001}
2002
Chris Lattner455e9ab2009-01-21 18:09:24 +00002003void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
Reid Spencer5e0a8512007-02-17 03:16:00 +00002004 uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002005 // Check our assumptions here
Reid Spencer5e0a8512007-02-17 03:16:00 +00002006 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2007 "Radix should be 2, 8, 10, or 16!");
Reid Spencer385f7542007-02-21 03:55:44 +00002008 assert(str && "String is null?");
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002009 bool isNeg = str[0] == '-';
2010 if (isNeg)
Reid Spencer9eec2412007-02-25 23:44:53 +00002011 str++, slen--;
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002012 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002013 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2014 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2015 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002016
2017 // Allocate memory
2018 if (!isSingleWord())
2019 pVal = getClearedMemory(getNumWords());
2020
2021 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002022 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002023
2024 // Set up an APInt for the digit to add outside the loop so we don't
2025 // constantly construct/destruct it.
2026 APInt apdigit(getBitWidth(), 0);
2027 APInt apradix(getBitWidth(), radix);
2028
2029 // Enter digit traversal loop
2030 for (unsigned i = 0; i < slen; i++) {
2031 // Get a digit
Chris Lattner455e9ab2009-01-21 18:09:24 +00002032 unsigned digit = 0;
Reid Spencer385f7542007-02-21 03:55:44 +00002033 char cdigit = str[i];
Reid Spencer6551dcd2007-05-16 19:18:22 +00002034 if (radix == 16) {
2035 if (!isxdigit(cdigit))
2036 assert(0 && "Invalid hex digit in string");
2037 if (isdigit(cdigit))
2038 digit = cdigit - '0';
2039 else if (cdigit >= 'a')
Reid Spencer385f7542007-02-21 03:55:44 +00002040 digit = cdigit - 'a' + 10;
2041 else if (cdigit >= 'A')
2042 digit = cdigit - 'A' + 10;
2043 else
Reid Spencer6551dcd2007-05-16 19:18:22 +00002044 assert(0 && "huh? we shouldn't get here");
2045 } else if (isdigit(cdigit)) {
2046 digit = cdigit - '0';
Bill Wendlingf7a91e62008-03-16 20:05:52 +00002047 assert((radix == 10 ||
2048 (radix == 8 && digit != 8 && digit != 9) ||
2049 (radix == 2 && (digit == 0 || digit == 1))) &&
2050 "Invalid digit in string for given radix");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002051 } else {
Reid Spencer385f7542007-02-21 03:55:44 +00002052 assert(0 && "Invalid character in digit string");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002053 }
Reid Spencer385f7542007-02-21 03:55:44 +00002054
Reid Spencer6551dcd2007-05-16 19:18:22 +00002055 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002056 if (slen > 1) {
2057 if (shift)
2058 *this <<= shift;
2059 else
2060 *this *= apradix;
2061 }
Reid Spencer385f7542007-02-21 03:55:44 +00002062
2063 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002064 if (apdigit.isSingleWord())
2065 apdigit.VAL = digit;
2066 else
2067 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002068 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002069 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002070 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002071 if (isNeg) {
2072 (*this)--;
Reid Spencer9eec2412007-02-25 23:44:53 +00002073 this->flip();
Reid Spencer9eec2412007-02-25 23:44:53 +00002074 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002075}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002076
Chris Lattnerfad86b02008-08-17 07:19:36 +00002077void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2078 bool Signed) const {
2079 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Reid Spencer9c0696f2007-02-20 08:51:03 +00002080 "Radix should be 2, 8, 10, or 16!");
Chris Lattnerfad86b02008-08-17 07:19:36 +00002081
2082 // First, check for a zero value and just short circuit the logic below.
2083 if (*this == 0) {
2084 Str.push_back('0');
2085 return;
2086 }
2087
2088 static const char Digits[] = "0123456789ABCDEF";
2089
Reid Spencer9c0696f2007-02-20 08:51:03 +00002090 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002091 char Buffer[65];
2092 char *BufPtr = Buffer+65;
2093
2094 uint64_t N;
2095 if (Signed) {
2096 int64_t I = getSExtValue();
2097 if (I < 0) {
2098 Str.push_back('-');
2099 I = -I;
2100 }
2101 N = I;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002102 } else {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002103 N = getZExtValue();
Reid Spencer9c0696f2007-02-20 08:51:03 +00002104 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002105
2106 while (N) {
2107 *--BufPtr = Digits[N % Radix];
2108 N /= Radix;
2109 }
2110 Str.append(BufPtr, Buffer+65);
2111 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002112 }
2113
Chris Lattnerfad86b02008-08-17 07:19:36 +00002114 APInt Tmp(*this);
2115
2116 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002117 // They want to print the signed version and it is a negative value
2118 // Flip the bits and add one to turn it into the equivalent positive
2119 // value and put a '-' in the result.
Chris Lattnerfad86b02008-08-17 07:19:36 +00002120 Tmp.flip();
2121 Tmp++;
2122 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002123 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002124
2125 // We insert the digits backward, then reverse them to get the right order.
2126 unsigned StartDig = Str.size();
2127
2128 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2129 // because the number of bits per digit (1, 3 and 4 respectively) divides
2130 // equaly. We just shift until the value is zero.
2131 if (Radix != 10) {
2132 // Just shift tmp right for each digit width until it becomes zero
2133 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2134 unsigned MaskAmt = Radix - 1;
2135
2136 while (Tmp != 0) {
2137 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2138 Str.push_back(Digits[Digit]);
2139 Tmp = Tmp.lshr(ShiftAmt);
2140 }
2141 } else {
2142 APInt divisor(4, 10);
2143 while (Tmp != 0) {
2144 APInt APdigit(1, 0);
2145 APInt tmp2(Tmp.getBitWidth(), 0);
2146 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2147 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002148 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002149 assert(Digit < Radix && "divide failed");
2150 Str.push_back(Digits[Digit]);
2151 Tmp = tmp2;
2152 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002153 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002154
2155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002157}
2158
Chris Lattnerfad86b02008-08-17 07:19:36 +00002159/// toString - This returns the APInt as a std::string. Note that this is an
2160/// inefficient method. It is better to pass in a SmallVector/SmallString
2161/// to the methods above.
2162std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2163 SmallString<40> S;
2164 toString(S, Radix, Signed);
2165 return S.c_str();
Reid Spencer385f7542007-02-21 03:55:44 +00002166}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002167
Chris Lattnerfad86b02008-08-17 07:19:36 +00002168
2169void APInt::dump() const {
2170 SmallString<40> S, U;
2171 this->toStringUnsigned(U);
2172 this->toStringSigned(S);
2173 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2174}
2175
Chris Lattner944fac72008-08-23 22:23:09 +00002176void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002177 SmallString<40> S;
2178 this->toString(S, 10, isSigned);
2179 OS << S.c_str();
2180}
2181
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002182// This implements a variety of operations on a representation of
2183// arbitrary precision, two's-complement, bignum integer values.
2184
2185/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2186 and unrestricting assumption. */
Chris Lattner9f17eb02008-08-17 04:58:58 +00002187#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002188COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002189
2190/* Some handy functions local to this file. */
2191namespace {
2192
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002193 /* Returns the integer part with the least significant BITS set.
2194 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002195 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002196 lowBitMask(unsigned int bits)
2197 {
2198 assert (bits != 0 && bits <= integerPartWidth);
2199
2200 return ~(integerPart) 0 >> (integerPartWidth - bits);
2201 }
2202
Neil Booth055c0b32007-10-06 00:43:45 +00002203 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002204 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002205 lowHalf(integerPart part)
2206 {
2207 return part & lowBitMask(integerPartWidth / 2);
2208 }
2209
Neil Booth055c0b32007-10-06 00:43:45 +00002210 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002211 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002212 highHalf(integerPart part)
2213 {
2214 return part >> (integerPartWidth / 2);
2215 }
2216
Neil Booth055c0b32007-10-06 00:43:45 +00002217 /* Returns the bit number of the most significant set bit of a part.
2218 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002219 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002220 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002221 {
2222 unsigned int n, msb;
2223
2224 if (value == 0)
2225 return -1U;
2226
2227 n = integerPartWidth / 2;
2228
2229 msb = 0;
2230 do {
2231 if (value >> n) {
2232 value >>= n;
2233 msb += n;
2234 }
2235
2236 n >>= 1;
2237 } while (n);
2238
2239 return msb;
2240 }
2241
Neil Booth055c0b32007-10-06 00:43:45 +00002242 /* Returns the bit number of the least significant set bit of a
2243 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002244 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002245 partLSB(integerPart value)
2246 {
2247 unsigned int n, lsb;
2248
2249 if (value == 0)
2250 return -1U;
2251
2252 lsb = integerPartWidth - 1;
2253 n = integerPartWidth / 2;
2254
2255 do {
2256 if (value << n) {
2257 value <<= n;
2258 lsb -= n;
2259 }
2260
2261 n >>= 1;
2262 } while (n);
2263
2264 return lsb;
2265 }
2266}
2267
2268/* Sets the least significant part of a bignum to the input value, and
2269 zeroes out higher parts. */
2270void
2271APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2272{
2273 unsigned int i;
2274
Neil Booth68e53ad2007-10-08 13:47:12 +00002275 assert (parts > 0);
2276
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002277 dst[0] = part;
2278 for(i = 1; i < parts; i++)
2279 dst[i] = 0;
2280}
2281
2282/* Assign one bignum to another. */
2283void
2284APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2285{
2286 unsigned int i;
2287
2288 for(i = 0; i < parts; i++)
2289 dst[i] = src[i];
2290}
2291
2292/* Returns true if a bignum is zero, false otherwise. */
2293bool
2294APInt::tcIsZero(const integerPart *src, unsigned int parts)
2295{
2296 unsigned int i;
2297
2298 for(i = 0; i < parts; i++)
2299 if (src[i])
2300 return false;
2301
2302 return true;
2303}
2304
2305/* Extract the given bit of a bignum; returns 0 or 1. */
2306int
2307APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2308{
2309 return(parts[bit / integerPartWidth]
2310 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2311}
2312
2313/* Set the given bit of a bignum. */
2314void
2315APInt::tcSetBit(integerPart *parts, unsigned int bit)
2316{
2317 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2318}
2319
Neil Booth055c0b32007-10-06 00:43:45 +00002320/* Returns the bit number of the least significant set bit of a
2321 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002322unsigned int
2323APInt::tcLSB(const integerPart *parts, unsigned int n)
2324{
2325 unsigned int i, lsb;
2326
2327 for(i = 0; i < n; i++) {
2328 if (parts[i] != 0) {
2329 lsb = partLSB(parts[i]);
2330
2331 return lsb + i * integerPartWidth;
2332 }
2333 }
2334
2335 return -1U;
2336}
2337
Neil Booth055c0b32007-10-06 00:43:45 +00002338/* Returns the bit number of the most significant set bit of a number.
2339 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002340unsigned int
2341APInt::tcMSB(const integerPart *parts, unsigned int n)
2342{
2343 unsigned int msb;
2344
2345 do {
2346 --n;
2347
2348 if (parts[n] != 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002349 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002350
2351 return msb + n * integerPartWidth;
2352 }
2353 } while (n);
2354
2355 return -1U;
2356}
2357
Neil Booth68e53ad2007-10-08 13:47:12 +00002358/* Copy the bit vector of width srcBITS from SRC, starting at bit
2359 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2360 the least significant bit of DST. All high bits above srcBITS in
2361 DST are zero-filled. */
2362void
2363APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2364 unsigned int srcBits, unsigned int srcLSB)
2365{
2366 unsigned int firstSrcPart, dstParts, shift, n;
2367
2368 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2369 assert (dstParts <= dstCount);
2370
2371 firstSrcPart = srcLSB / integerPartWidth;
2372 tcAssign (dst, src + firstSrcPart, dstParts);
2373
2374 shift = srcLSB % integerPartWidth;
2375 tcShiftRight (dst, dstParts, shift);
2376
2377 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2378 in DST. If this is less that srcBits, append the rest, else
2379 clear the high bits. */
2380 n = dstParts * integerPartWidth - shift;
2381 if (n < srcBits) {
2382 integerPart mask = lowBitMask (srcBits - n);
2383 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2384 << n % integerPartWidth);
2385 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002386 if (srcBits % integerPartWidth)
2387 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002388 }
2389
2390 /* Clear high parts. */
2391 while (dstParts < dstCount)
2392 dst[dstParts++] = 0;
2393}
2394
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002395/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2396integerPart
2397APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2398 integerPart c, unsigned int parts)
2399{
2400 unsigned int i;
2401
2402 assert(c <= 1);
2403
2404 for(i = 0; i < parts; i++) {
2405 integerPart l;
2406
2407 l = dst[i];
2408 if (c) {
2409 dst[i] += rhs[i] + 1;
2410 c = (dst[i] <= l);
2411 } else {
2412 dst[i] += rhs[i];
2413 c = (dst[i] < l);
2414 }
2415 }
2416
2417 return c;
2418}
2419
2420/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2421integerPart
2422APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2423 integerPart c, unsigned int parts)
2424{
2425 unsigned int i;
2426
2427 assert(c <= 1);
2428
2429 for(i = 0; i < parts; i++) {
2430 integerPart l;
2431
2432 l = dst[i];
2433 if (c) {
2434 dst[i] -= rhs[i] + 1;
2435 c = (dst[i] >= l);
2436 } else {
2437 dst[i] -= rhs[i];
2438 c = (dst[i] > l);
2439 }
2440 }
2441
2442 return c;
2443}
2444
2445/* Negate a bignum in-place. */
2446void
2447APInt::tcNegate(integerPart *dst, unsigned int parts)
2448{
2449 tcComplement(dst, parts);
2450 tcIncrement(dst, parts);
2451}
2452
Neil Booth055c0b32007-10-06 00:43:45 +00002453/* DST += SRC * MULTIPLIER + CARRY if add is true
2454 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002455
2456 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2457 they must start at the same point, i.e. DST == SRC.
2458
2459 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2460 returned. Otherwise DST is filled with the least significant
2461 DSTPARTS parts of the result, and if all of the omitted higher
2462 parts were zero return zero, otherwise overflow occurred and
2463 return one. */
2464int
2465APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2466 integerPart multiplier, integerPart carry,
2467 unsigned int srcParts, unsigned int dstParts,
2468 bool add)
2469{
2470 unsigned int i, n;
2471
2472 /* Otherwise our writes of DST kill our later reads of SRC. */
2473 assert(dst <= src || dst >= src + srcParts);
2474 assert(dstParts <= srcParts + 1);
2475
2476 /* N loops; minimum of dstParts and srcParts. */
2477 n = dstParts < srcParts ? dstParts: srcParts;
2478
2479 for(i = 0; i < n; i++) {
2480 integerPart low, mid, high, srcPart;
2481
2482 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2483
2484 This cannot overflow, because
2485
2486 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2487
2488 which is less than n^2. */
2489
2490 srcPart = src[i];
2491
2492 if (multiplier == 0 || srcPart == 0) {
2493 low = carry;
2494 high = 0;
2495 } else {
2496 low = lowHalf(srcPart) * lowHalf(multiplier);
2497 high = highHalf(srcPart) * highHalf(multiplier);
2498
2499 mid = lowHalf(srcPart) * highHalf(multiplier);
2500 high += highHalf(mid);
2501 mid <<= integerPartWidth / 2;
2502 if (low + mid < low)
2503 high++;
2504 low += mid;
2505
2506 mid = highHalf(srcPart) * lowHalf(multiplier);
2507 high += highHalf(mid);
2508 mid <<= integerPartWidth / 2;
2509 if (low + mid < low)
2510 high++;
2511 low += mid;
2512
2513 /* Now add carry. */
2514 if (low + carry < low)
2515 high++;
2516 low += carry;
2517 }
2518
2519 if (add) {
2520 /* And now DST[i], and store the new low part there. */
2521 if (low + dst[i] < low)
2522 high++;
2523 dst[i] += low;
2524 } else
2525 dst[i] = low;
2526
2527 carry = high;
2528 }
2529
2530 if (i < dstParts) {
2531 /* Full multiplication, there is no overflow. */
2532 assert(i + 1 == dstParts);
2533 dst[i] = carry;
2534 return 0;
2535 } else {
2536 /* We overflowed if there is carry. */
2537 if (carry)
2538 return 1;
2539
2540 /* We would overflow if any significant unwritten parts would be
2541 non-zero. This is true if any remaining src parts are non-zero
2542 and the multiplier is non-zero. */
2543 if (multiplier)
2544 for(; i < srcParts; i++)
2545 if (src[i])
2546 return 1;
2547
2548 /* We fitted in the narrow destination. */
2549 return 0;
2550 }
2551}
2552
2553/* DST = LHS * RHS, where DST has the same width as the operands and
2554 is filled with the least significant parts of the result. Returns
2555 one if overflow occurred, otherwise zero. DST must be disjoint
2556 from both operands. */
2557int
2558APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2559 const integerPart *rhs, unsigned int parts)
2560{
2561 unsigned int i;
2562 int overflow;
2563
2564 assert(dst != lhs && dst != rhs);
2565
2566 overflow = 0;
2567 tcSet(dst, 0, parts);
2568
2569 for(i = 0; i < parts; i++)
2570 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2571 parts - i, true);
2572
2573 return overflow;
2574}
2575
Neil Booth978661d2007-10-06 00:24:48 +00002576/* DST = LHS * RHS, where DST has width the sum of the widths of the
2577 operands. No overflow occurs. DST must be disjoint from both
2578 operands. Returns the number of parts required to hold the
2579 result. */
2580unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002581APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002582 const integerPart *rhs, unsigned int lhsParts,
2583 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002584{
Neil Booth978661d2007-10-06 00:24:48 +00002585 /* Put the narrower number on the LHS for less loops below. */
2586 if (lhsParts > rhsParts) {
2587 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2588 } else {
2589 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002590
Neil Booth978661d2007-10-06 00:24:48 +00002591 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002592
Neil Booth978661d2007-10-06 00:24:48 +00002593 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002594
Neil Booth978661d2007-10-06 00:24:48 +00002595 for(n = 0; n < lhsParts; n++)
2596 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002597
Neil Booth978661d2007-10-06 00:24:48 +00002598 n = lhsParts + rhsParts;
2599
2600 return n - (dst[n - 1] == 0);
2601 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002602}
2603
2604/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2605 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2606 set REMAINDER to the remainder, return zero. i.e.
2607
2608 OLD_LHS = RHS * LHS + REMAINDER
2609
2610 SCRATCH is a bignum of the same size as the operands and result for
2611 use by the routine; its contents need not be initialized and are
2612 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2613*/
2614int
2615APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2616 integerPart *remainder, integerPart *srhs,
2617 unsigned int parts)
2618{
2619 unsigned int n, shiftCount;
2620 integerPart mask;
2621
2622 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2623
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002624 shiftCount = tcMSB(rhs, parts) + 1;
2625 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002626 return true;
2627
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002628 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002629 n = shiftCount / integerPartWidth;
2630 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2631
2632 tcAssign(srhs, rhs, parts);
2633 tcShiftLeft(srhs, parts, shiftCount);
2634 tcAssign(remainder, lhs, parts);
2635 tcSet(lhs, 0, parts);
2636
2637 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2638 the total. */
2639 for(;;) {
2640 int compare;
2641
2642 compare = tcCompare(remainder, srhs, parts);
2643 if (compare >= 0) {
2644 tcSubtract(remainder, srhs, 0, parts);
2645 lhs[n] |= mask;
2646 }
2647
2648 if (shiftCount == 0)
2649 break;
2650 shiftCount--;
2651 tcShiftRight(srhs, parts, 1);
2652 if ((mask >>= 1) == 0)
2653 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2654 }
2655
2656 return false;
2657}
2658
2659/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2660 There are no restrictions on COUNT. */
2661void
2662APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2663{
Neil Booth68e53ad2007-10-08 13:47:12 +00002664 if (count) {
2665 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002666
Neil Booth68e53ad2007-10-08 13:47:12 +00002667 /* Jump is the inter-part jump; shift is is intra-part shift. */
2668 jump = count / integerPartWidth;
2669 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002670
Neil Booth68e53ad2007-10-08 13:47:12 +00002671 while (parts > jump) {
2672 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002673
Neil Booth68e53ad2007-10-08 13:47:12 +00002674 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002675
Neil Booth68e53ad2007-10-08 13:47:12 +00002676 /* dst[i] comes from the two parts src[i - jump] and, if we have
2677 an intra-part shift, src[i - jump - 1]. */
2678 part = dst[parts - jump];
2679 if (shift) {
2680 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002681 if (parts >= jump + 1)
2682 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2683 }
2684
Neil Booth68e53ad2007-10-08 13:47:12 +00002685 dst[parts] = part;
2686 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002687
Neil Booth68e53ad2007-10-08 13:47:12 +00002688 while (parts > 0)
2689 dst[--parts] = 0;
2690 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002691}
2692
2693/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2694 zero. There are no restrictions on COUNT. */
2695void
2696APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2697{
Neil Booth68e53ad2007-10-08 13:47:12 +00002698 if (count) {
2699 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002700
Neil Booth68e53ad2007-10-08 13:47:12 +00002701 /* Jump is the inter-part jump; shift is is intra-part shift. */
2702 jump = count / integerPartWidth;
2703 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002704
Neil Booth68e53ad2007-10-08 13:47:12 +00002705 /* Perform the shift. This leaves the most significant COUNT bits
2706 of the result at zero. */
2707 for(i = 0; i < parts; i++) {
2708 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002709
Neil Booth68e53ad2007-10-08 13:47:12 +00002710 if (i + jump >= parts) {
2711 part = 0;
2712 } else {
2713 part = dst[i + jump];
2714 if (shift) {
2715 part >>= shift;
2716 if (i + jump + 1 < parts)
2717 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2718 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002719 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002720
Neil Booth68e53ad2007-10-08 13:47:12 +00002721 dst[i] = part;
2722 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002723 }
2724}
2725
2726/* Bitwise and of two bignums. */
2727void
2728APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2729{
2730 unsigned int i;
2731
2732 for(i = 0; i < parts; i++)
2733 dst[i] &= rhs[i];
2734}
2735
2736/* Bitwise inclusive or of two bignums. */
2737void
2738APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2739{
2740 unsigned int i;
2741
2742 for(i = 0; i < parts; i++)
2743 dst[i] |= rhs[i];
2744}
2745
2746/* Bitwise exclusive or of two bignums. */
2747void
2748APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2749{
2750 unsigned int i;
2751
2752 for(i = 0; i < parts; i++)
2753 dst[i] ^= rhs[i];
2754}
2755
2756/* Complement a bignum in-place. */
2757void
2758APInt::tcComplement(integerPart *dst, unsigned int parts)
2759{
2760 unsigned int i;
2761
2762 for(i = 0; i < parts; i++)
2763 dst[i] = ~dst[i];
2764}
2765
2766/* Comparison (unsigned) of two bignums. */
2767int
2768APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2769 unsigned int parts)
2770{
2771 while (parts) {
2772 parts--;
2773 if (lhs[parts] == rhs[parts])
2774 continue;
2775
2776 if (lhs[parts] > rhs[parts])
2777 return 1;
2778 else
2779 return -1;
2780 }
2781
2782 return 0;
2783}
2784
2785/* Increment a bignum in-place, return the carry flag. */
2786integerPart
2787APInt::tcIncrement(integerPart *dst, unsigned int parts)
2788{
2789 unsigned int i;
2790
2791 for(i = 0; i < parts; i++)
2792 if (++dst[i] != 0)
2793 break;
2794
2795 return i == parts;
2796}
2797
2798/* Set the least significant BITS bits of a bignum, clear the
2799 rest. */
2800void
2801APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2802 unsigned int bits)
2803{
2804 unsigned int i;
2805
2806 i = 0;
2807 while (bits > integerPartWidth) {
2808 dst[i++] = ~(integerPart) 0;
2809 bits -= integerPartWidth;
2810 }
2811
2812 if (bits)
2813 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2814
2815 while (i < parts)
2816 dst[i++] = 0;
2817}