blob: 1004ebcac2f5c878e969783e967d48ed3d7f20bb [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Dan Gohman24371272010-12-15 20:10:26 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner173234a2008-06-02 01:18:21 +000017#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000019#include "llvm/GlobalVariable.h"
Dan Gohman307a7c42009-09-15 16:14:44 +000020#include "llvm/GlobalAlias.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000022#include "llvm/LLVMContext.h"
Rafael Espindola7c7121e2012-03-30 15:52:11 +000023#include "llvm/Metadata.h"
Dan Gohmanca178902009-07-17 20:47:02 +000024#include "llvm/Operator.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000025#include "llvm/Target/TargetData.h"
Rafael Espindola7c7121e2012-03-30 15:52:11 +000026#include "llvm/Support/ConstantRange.h"
Chris Lattner173234a2008-06-02 01:18:21 +000027#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000029#include "llvm/Support/PatternMatch.h"
Eric Christopher25ec4832010-03-05 06:58:57 +000030#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000031#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000032using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000033using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0). For vector types, returns the element type's bitwidth.
Chris Lattnerdb125cf2011-07-18 04:54:35 +000039static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +000040 if (unsigned BitWidth = Ty->getScalarSizeInBits())
41 return BitWidth;
42 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43 return TD ? TD->getPointerSizeInBits() : 0;
44}
Chris Lattner173234a2008-06-02 01:18:21 +000045
Nick Lewycky00cbccc2012-03-09 09:23:50 +000046static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
Nick Lewycky00cbccc2012-03-09 09:23:50 +000047 APInt &KnownZero, APInt &KnownOne,
48 APInt &KnownZero2, APInt &KnownOne2,
49 const TargetData *TD, unsigned Depth) {
50 if (!Add) {
51 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52 // We know that the top bits of C-X are clear if X contains less bits
53 // than C (i.e. no wrap-around can happen). For example, 20-X is
54 // positive if we can prove that X is >= 0 and < 16.
55 if (!CLHS->getValue().isNegative()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000056 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000057 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58 // NLZ can't be BitWidth with no sign bit
59 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000060 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000061
62 // If all of the MaskV bits are known to be zero, then we know the
63 // output top bits are zero, because we now know that the output is
64 // from [0-C].
65 if ((KnownZero2 & MaskV) == MaskV) {
66 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67 // Top bits known zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000068 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000069 }
70 }
71 }
72 }
73
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000074 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewycky00cbccc2012-03-09 09:23:50 +000075
76 // If one of the operands has trailing zeros, then the bits that the
77 // other operand has in those bit positions will be preserved in the
78 // result. For an add, this works with either operand. For a subtract,
79 // this only works if the known zeros are in the right operand.
80 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000081 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000082 assert((LHSKnownZero & LHSKnownOne) == 0 &&
83 "Bits known to be one AND zero?");
84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
Rafael Espindola26c8dcc2012-04-04 12:51:34 +000086 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewycky00cbccc2012-03-09 09:23:50 +000087 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90 // Determine which operand has more trailing zeros, and use that
91 // many bits from the other operand.
92 if (LHSKnownZeroOut > RHSKnownZeroOut) {
93 if (Add) {
94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95 KnownZero |= KnownZero2 & Mask;
96 KnownOne |= KnownOne2 & Mask;
97 } else {
98 // If the known zeros are in the left operand for a subtract,
99 // fall back to the minimum known zeros in both operands.
100 KnownZero |= APInt::getLowBitsSet(BitWidth,
101 std::min(LHSKnownZeroOut,
102 RHSKnownZeroOut));
103 }
104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106 KnownZero |= LHSKnownZero & Mask;
107 KnownOne |= LHSKnownOne & Mask;
108 }
109
110 // Are we still trying to solve for the sign bit?
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000112 if (NSW) {
113 if (Add) {
114 // Adding two positive numbers can't wrap into negative
115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116 KnownZero |= APInt::getSignBit(BitWidth);
117 // and adding two negative numbers can't wrap into positive.
118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119 KnownOne |= APInt::getSignBit(BitWidth);
120 } else {
121 // Subtracting a negative number from a positive one can't wrap
122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123 KnownZero |= APInt::getSignBit(BitWidth);
124 // neither can subtracting a positive number from a negative one.
125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126 KnownOne |= APInt::getSignBit(BitWidth);
127 }
128 }
129 }
130}
131
Nick Lewyckyf201a062012-03-18 23:28:48 +0000132static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000133 APInt &KnownZero, APInt &KnownOne,
134 APInt &KnownZero2, APInt &KnownOne2,
135 const TargetData *TD, unsigned Depth) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000136 unsigned BitWidth = KnownZero.getBitWidth();
137 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142 bool isKnownNegative = false;
143 bool isKnownNonNegative = false;
144 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000145 if (NSW) {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000146 if (Op0 == Op1) {
147 // The product of a number with itself is non-negative.
148 isKnownNonNegative = true;
149 } else {
150 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152 bool isKnownNegativeOp1 = KnownOne.isNegative();
153 bool isKnownNegativeOp0 = KnownOne2.isNegative();
154 // The product of two numbers with the same sign is non-negative.
155 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157 // The product of a negative number and a non-negative number is either
158 // negative or zero.
159 if (!isKnownNonNegative)
160 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161 isKnownNonZero(Op0, TD, Depth)) ||
162 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163 isKnownNonZero(Op1, TD, Depth));
164 }
165 }
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clearAllBits();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000182
183 // Only make use of no-wrap flags if we failed to compute the sign bit
184 // directly. This matters if the multiplication always overflows, in
185 // which case we prefer to follow the result of the direct computation,
186 // though as the program is invoking undefined behaviour we can choose
187 // whatever we like here.
188 if (isKnownNonNegative && !KnownOne.isNegative())
189 KnownZero.setBit(BitWidth - 1);
190 else if (isKnownNegative && !KnownZero.isNegative())
191 KnownOne.setBit(BitWidth - 1);
192}
193
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000194void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000196 unsigned NumRanges = Ranges.getNumOperands() / 2;
197 assert(NumRanges >= 1);
198
199 // Use the high end of the ranges to find leading zeros.
200 unsigned MinLeadingZeros = BitWidth;
201 for (unsigned i = 0; i < NumRanges; ++i) {
202 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204 ConstantRange Range(Lower->getValue(), Upper->getValue());
205 if (Range.isWrappedSet())
206 MinLeadingZeros = 0; // -1 has no zeros
207 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209 }
210
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000211 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000212}
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000213/// ComputeMaskedBits - Determine which of the bits are known to be either zero
214/// or one and return them in the KnownZero/KnownOne bit sets.
215///
Chris Lattner173234a2008-06-02 01:18:21 +0000216/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero. If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000225/// where V is a vector, known zero, and known one values are the
Chris Lattnercf5128e2009-09-08 00:06:16 +0000226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000228void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Dan Gohman846a2f22009-08-27 17:51:25 +0000229 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000230 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +0000231 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000232 unsigned BitWidth = KnownZero.getBitWidth();
233
Nadav Rotem16087692011-12-05 06:29:09 +0000234 assert((V->getType()->isIntOrIntVectorTy() ||
235 V->getType()->getScalarType()->isPointerTy()) &&
236 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000237 assert((!TD ||
238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000239 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +0000240 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem16087692011-12-05 06:29:09 +0000241 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner173234a2008-06-02 01:18:21 +0000242 KnownOne.getBitWidth() == BitWidth &&
243 "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246 // We know all of the bits for a constant!
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000247 KnownOne = CI->getValue();
248 KnownZero = ~KnownOne;
Chris Lattner173234a2008-06-02 01:18:21 +0000249 return;
250 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000251 // Null and aggregate-zero are all-zeros.
252 if (isa<ConstantPointerNull>(V) ||
253 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000254 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000255 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000256 return;
257 }
Dan Gohman6de29f82009-06-15 22:12:54 +0000258 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner7302d802012-02-06 21:56:39 +0000259 // each element. There is no real need to handle ConstantVector here, because
260 // we don't handle undef in any particularly useful way.
Chris Lattnerdf390282012-01-24 07:54:10 +0000261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262 // We know that CDS must be a vector of integers. Take the intersection of
263 // each element.
264 KnownZero.setAllBits(); KnownOne.setAllBits();
265 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner0f193b82012-01-25 01:27:20 +0000266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerdf390282012-01-24 07:54:10 +0000267 Elt = CDS->getElementAsInteger(i);
268 KnownZero &= ~Elt;
269 KnownOne &= Elt;
270 }
271 return;
272 }
273
Chris Lattner173234a2008-06-02 01:18:21 +0000274 // The address of an aligned GlobalValue has trailing zeros.
275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 unsigned Align = GV->getAlignment();
Nick Lewycky891495e2012-03-07 02:27:53 +0000277 if (Align == 0 && TD) {
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky891495e2012-03-07 02:27:53 +0000280 if (ObjectType->isSized()) {
281 // If the object is defined in the current Module, we'll be giving
282 // it the preferred alignment. Otherwise, we have to assume that it
283 // may only have the minimum ABI alignment.
284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285 Align = TD->getPreferredAlignment(GVar);
286 else
287 Align = TD->getABITypeAlignment(ObjectType);
288 }
Eli Friedmanc4c2a022011-11-28 22:48:22 +0000289 }
Dan Gohman00407252009-08-11 15:50:03 +0000290 }
Chris Lattner173234a2008-06-02 01:18:21 +0000291 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000292 KnownZero = APInt::getLowBitsSet(BitWidth,
293 CountTrailingZeros_32(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000294 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000295 KnownZero.clearAllBits();
296 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000297 return;
298 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300 // the bits of its aliasee.
301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000303 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000304 } else {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000305 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
Dan Gohman307a7c42009-09-15 16:14:44 +0000306 }
307 return;
308 }
Chris Lattnerb3f06732011-05-23 00:03:39 +0000309
310 if (Argument *A = dyn_cast<Argument>(V)) {
Duncan Sandsffcf6df2012-10-04 13:36:31 +0000311 unsigned Align = 0;
312
313 if (A->hasByValAttr()) {
314 // Get alignment information off byval arguments if specified in the IR.
315 Align = A->getParamAlignment();
316 } else if (TD && A->hasStructRetAttr()) {
317 // An sret parameter has at least the ABI alignment of the return type.
318 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319 if (EltTy->isSized())
320 Align = TD->getABITypeAlignment(EltTy);
321 }
322
323 if (Align)
324 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
Chris Lattnerb3f06732011-05-23 00:03:39 +0000325 return;
326 }
Chris Lattner173234a2008-06-02 01:18:21 +0000327
Chris Lattnerb3f06732011-05-23 00:03:39 +0000328 // Start out not knowing anything.
329 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000330
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000331 if (Depth == MaxDepth)
Chris Lattner173234a2008-06-02 01:18:21 +0000332 return; // Limit search depth.
333
Dan Gohmanca178902009-07-17 20:47:02 +0000334 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000335 if (!I) return;
336
337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000338 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000339 default: break;
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000340 case Instruction::Load:
341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000342 computeMaskedBitsLoad(*MD, KnownZero);
Rafael Espindola7c7121e2012-03-30 15:52:11 +0000343 return;
Chris Lattner173234a2008-06-02 01:18:21 +0000344 case Instruction::And: {
345 // If either the LHS or the RHS are Zero, the result is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000346 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000348 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351 // Output known-1 bits are only known if set in both the LHS & RHS.
352 KnownOne &= KnownOne2;
353 // Output known-0 are known to be clear if zero in either the LHS | RHS.
354 KnownZero |= KnownZero2;
355 return;
356 }
357 case Instruction::Or: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000358 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000360 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
363 // Output known-0 bits are only known if clear in both the LHS & RHS.
364 KnownZero &= KnownZero2;
365 // Output known-1 are known to be set if set in either the LHS | RHS.
366 KnownOne |= KnownOne2;
367 return;
368 }
369 case Instruction::Xor: {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000370 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000372 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
375 // Output known-0 bits are known if clear or set in both the LHS & RHS.
376 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377 // Output known-1 are known to be set if set in only one of the LHS, RHS.
378 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379 KnownZero = KnownZeroOut;
380 return;
381 }
382 case Instruction::Mul: {
Nick Lewyckyf201a062012-03-18 23:28:48 +0000383 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000385 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyf201a062012-03-18 23:28:48 +0000386 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000387 }
388 case Instruction::UDiv: {
389 // For the purposes of computing leading zeros we can conservatively
390 // treat a udiv as a logical right shift by the power of 2 known to
391 // be less than the denominator.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000392 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000393 unsigned LeadZ = KnownZero2.countLeadingOnes();
394
Jay Foad7a874dd2010-12-01 08:53:58 +0000395 KnownOne2.clearAllBits();
396 KnownZero2.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000397 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000398 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399 if (RHSUnknownLeadingOnes != BitWidth)
400 LeadZ = std::min(BitWidth,
401 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000403 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000404 return;
405 }
406 case Instruction::Select:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000407 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000409 Depth+1);
410 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413 // Only known if known in both the LHS and RHS.
414 KnownOne &= KnownOne2;
415 KnownZero &= KnownZero2;
416 return;
417 case Instruction::FPTrunc:
418 case Instruction::FPExt:
419 case Instruction::FPToUI:
420 case Instruction::FPToSI:
421 case Instruction::SIToFP:
422 case Instruction::UIToFP:
423 return; // Can't work with floating point.
424 case Instruction::PtrToInt:
425 case Instruction::IntToPtr:
426 // We can't handle these if we don't know the pointer size.
427 if (!TD) return;
428 // FALL THROUGH and handle them the same as zext/trunc.
429 case Instruction::ZExt:
430 case Instruction::Trunc: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000431 Type *SrcTy = I->getOperand(0)->getType();
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000432
433 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000434 // Note that we handle pointer operands here because of inttoptr/ptrtoint
435 // which fall through here.
Duncan Sands1df98592010-02-16 11:11:14 +0000436 if (SrcTy->isPointerTy())
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000437 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
438 else
439 SrcBitWidth = SrcTy->getScalarSizeInBits();
440
Jay Foad40f8f622010-12-07 08:25:19 +0000441 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
442 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000443 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000444 KnownZero = KnownZero.zextOrTrunc(BitWidth);
445 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000446 // Any top bits are known to be zero.
447 if (BitWidth > SrcBitWidth)
448 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
449 return;
450 }
451 case Instruction::BitCast: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000452 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000453 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000454 // TODO: For now, not handling conversions like:
455 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000456 !I->getType()->isVectorTy()) {
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000457 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000458 return;
459 }
460 break;
461 }
462 case Instruction::SExt: {
463 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000464 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000465
Jay Foad40f8f622010-12-07 08:25:19 +0000466 KnownZero = KnownZero.trunc(SrcBitWidth);
467 KnownOne = KnownOne.trunc(SrcBitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000468 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000469 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000470 KnownZero = KnownZero.zext(BitWidth);
471 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000472
473 // If the sign bit of the input is known set or clear, then we know the
474 // top bits of the result.
475 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
476 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
477 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
478 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
479 return;
480 }
481 case Instruction::Shl:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000482 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000483 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
484 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000485 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000486 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
487 KnownZero <<= ShiftAmt;
488 KnownOne <<= ShiftAmt;
489 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
490 return;
491 }
492 break;
493 case Instruction::LShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000494 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000495 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
496 // Compute the new bits that are at the top now.
497 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
498
499 // Unsigned shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000500 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000501 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000502 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
503 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
504 // high bits known zero.
505 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
506 return;
507 }
508 break;
509 case Instruction::AShr:
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000510 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner173234a2008-06-02 01:18:21 +0000511 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
512 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000513 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner173234a2008-06-02 01:18:21 +0000514
515 // Signed shift right.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000516 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000517 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000518 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
519 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
520
521 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
522 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
523 KnownZero |= HighBits;
524 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
525 KnownOne |= HighBits;
526 return;
527 }
528 break;
529 case Instruction::Sub: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000530 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
531 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000532 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
533 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000534 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000535 }
Chris Lattner173234a2008-06-02 01:18:21 +0000536 case Instruction::Add: {
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000537 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
538 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000539 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
540 Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000541 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000542 }
543 case Instruction::SRem:
544 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000545 APInt RA = Rem->getValue().abs();
546 if (RA.isPowerOf2()) {
547 APInt LowBits = RA - 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000548 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000549
Duncan Sandscfd54182010-01-29 06:18:37 +0000550 // The low bits of the first operand are unchanged by the srem.
551 KnownZero = KnownZero2 & LowBits;
552 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000553
Duncan Sandscfd54182010-01-29 06:18:37 +0000554 // If the first operand is non-negative or has all low bits zero, then
555 // the upper bits are all zero.
556 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
557 KnownZero |= ~LowBits;
558
559 // If the first operand is negative and not all low bits are zero, then
560 // the upper bits are all one.
561 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
562 KnownOne |= ~LowBits;
563
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000564 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000565 }
566 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000567
568 // The sign bit is the LHS's sign bit, except when the result of the
569 // remainder is zero.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000570 if (KnownZero.isNonNegative()) {
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000571 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000572 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000573 Depth+1);
574 // If it's known zero, our sign bit is also zero.
575 if (LHSKnownZero.isNegative())
Duncan Sands5ff30e72012-04-30 11:56:58 +0000576 KnownZero.setBit(BitWidth - 1);
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000577 }
578
Chris Lattner173234a2008-06-02 01:18:21 +0000579 break;
580 case Instruction::URem: {
581 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
582 APInt RA = Rem->getValue();
583 if (RA.isPowerOf2()) {
584 APInt LowBits = (RA - 1);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000585 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000586 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000587 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000588 KnownZero |= ~LowBits;
589 KnownOne &= LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000590 break;
591 }
592 }
593
594 // Since the result is less than or equal to either operand, any leading
595 // zero bits in either operand must also exist in the result.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000596 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
597 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000598
Chris Lattner79abedb2009-01-20 18:22:57 +0000599 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000600 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000601 KnownOne.clearAllBits();
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000602 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner173234a2008-06-02 01:18:21 +0000603 break;
604 }
605
Victor Hernandeza276c602009-10-17 01:18:07 +0000606 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000607 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000608 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000609 if (Align == 0 && TD)
610 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000611
612 if (Align > 0)
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000613 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
Chris Lattner173234a2008-06-02 01:18:21 +0000614 break;
615 }
616 case Instruction::GetElementPtr: {
617 // Analyze all of the subscripts of this getelementptr instruction
618 // to determine if we can prove known low zero bits.
Chris Lattner173234a2008-06-02 01:18:21 +0000619 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000620 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
621 Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000622 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
623
624 gep_type_iterator GTI = gep_type_begin(I);
625 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
626 Value *Index = I->getOperand(i);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000627 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000628 // Handle struct member offset arithmetic.
629 if (!TD) return;
630 const StructLayout *SL = TD->getStructLayout(STy);
631 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
632 uint64_t Offset = SL->getElementOffset(Idx);
633 TrailZ = std::min(TrailZ,
634 CountTrailingZeros_64(Offset));
635 } else {
636 // Handle array index arithmetic.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000637 Type *IndexedTy = GTI.getIndexedType();
Chris Lattner173234a2008-06-02 01:18:21 +0000638 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000639 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000640 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000641 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000642 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +0000643 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000644 unsigned(CountTrailingZeros_64(TypeSize) +
645 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000646 }
647 }
648
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000649 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner173234a2008-06-02 01:18:21 +0000650 break;
651 }
652 case Instruction::PHI: {
653 PHINode *P = cast<PHINode>(I);
654 // Handle the case of a simple two-predecessor recurrence PHI.
655 // There's a lot more that could theoretically be done here, but
656 // this is sufficient to catch some interesting cases.
657 if (P->getNumIncomingValues() == 2) {
658 for (unsigned i = 0; i != 2; ++i) {
659 Value *L = P->getIncomingValue(i);
660 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000661 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000662 if (!LU)
663 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000664 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000665 // Check for operations that have the property that if
666 // both their operands have low zero bits, the result
667 // will have low zero bits.
668 if (Opcode == Instruction::Add ||
669 Opcode == Instruction::Sub ||
670 Opcode == Instruction::And ||
671 Opcode == Instruction::Or ||
672 Opcode == Instruction::Mul) {
673 Value *LL = LU->getOperand(0);
674 Value *LR = LU->getOperand(1);
675 // Find a recurrence.
676 if (LL == I)
677 L = LR;
678 else if (LR == I)
679 L = LL;
680 else
681 break;
682 // Ok, we have a PHI of the form L op= R. Check for low
683 // zero bits.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000684 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000685
686 // We need to take the minimum number of known bits
687 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000688 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
David Greenec714f132008-10-27 23:24:03 +0000689
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000690 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000691 std::min(KnownZero2.countTrailingOnes(),
692 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000693 break;
694 }
695 }
696 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000697
Nick Lewycky3b739d22011-02-10 23:54:10 +0000698 // Unreachable blocks may have zero-operand PHI nodes.
699 if (P->getNumIncomingValues() == 0)
700 return;
701
Dan Gohman9004c8a2009-05-21 02:28:33 +0000702 // Otherwise take the unions of the known bit sets of the operands,
703 // taking conservative care to avoid excessive recursion.
704 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000705 // Skip if every incoming value references to ourself.
Nuno Lopes0fd518b2012-07-03 21:15:40 +0000706 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands606199f2011-03-08 12:39:03 +0000707 break;
708
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000709 KnownZero = APInt::getAllOnesValue(BitWidth);
710 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000711 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
712 // Skip direct self references.
713 if (P->getIncomingValue(i) == P) continue;
714
715 KnownZero2 = APInt(BitWidth, 0);
716 KnownOne2 = APInt(BitWidth, 0);
717 // Recurse, but cap the recursion to one level, because we don't
718 // want to waste time spinning around in loops.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000719 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
720 MaxDepth-1);
Dan Gohman9004c8a2009-05-21 02:28:33 +0000721 KnownZero &= KnownZero2;
722 KnownOne &= KnownOne2;
723 // If all bits have been ruled out, there's no need to check
724 // more operands.
725 if (!KnownZero && !KnownOne)
726 break;
727 }
728 }
Chris Lattner173234a2008-06-02 01:18:21 +0000729 break;
730 }
731 case Instruction::Call:
732 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
733 switch (II->getIntrinsicID()) {
734 default: break;
Chris Lattner173234a2008-06-02 01:18:21 +0000735 case Intrinsic::ctlz:
736 case Intrinsic::cttz: {
737 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer009da052011-12-24 17:31:46 +0000738 // If this call is undefined for 0, the result will be less than 2^n.
739 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
740 LowBits -= 1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000741 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer009da052011-12-24 17:31:46 +0000742 break;
743 }
744 case Intrinsic::ctpop: {
745 unsigned LowBits = Log2_32(BitWidth)+1;
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000746 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner173234a2008-06-02 01:18:21 +0000747 break;
748 }
Chad Rosier62660312011-05-26 23:13:19 +0000749 case Intrinsic::x86_sse42_crc32_64_8:
750 case Intrinsic::x86_sse42_crc32_64_64:
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000751 KnownZero = APInt::getHighBitsSet(64, 32);
Evan Chengcb559c12011-05-22 18:25:30 +0000752 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000753 }
754 }
755 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000756 case Instruction::ExtractValue:
757 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
758 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
759 if (EVI->getNumIndices() != 1) break;
760 if (EVI->getIndices()[0] == 0) {
761 switch (II->getIntrinsicID()) {
762 default: break;
763 case Intrinsic::uadd_with_overflow:
764 case Intrinsic::sadd_with_overflow:
765 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000766 II->getArgOperand(1), false, KnownZero,
767 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000768 break;
769 case Intrinsic::usub_with_overflow:
770 case Intrinsic::ssub_with_overflow:
771 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000772 II->getArgOperand(1), false, KnownZero,
773 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000774 break;
Nick Lewyckyf201a062012-03-18 23:28:48 +0000775 case Intrinsic::umul_with_overflow:
776 case Intrinsic::smul_with_overflow:
777 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000778 false, KnownZero, KnownOne,
Nick Lewyckyf201a062012-03-18 23:28:48 +0000779 KnownZero2, KnownOne2, TD, Depth);
780 break;
Nick Lewycky00cbccc2012-03-09 09:23:50 +0000781 }
782 }
783 }
Chris Lattner173234a2008-06-02 01:18:21 +0000784 }
785}
786
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000787/// ComputeSignBit - Determine whether the sign bit is known to be zero or
788/// one. Convenience wrapper around ComputeMaskedBits.
789void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
790 const TargetData *TD, unsigned Depth) {
791 unsigned BitWidth = getBitWidth(V->getType(), TD);
792 if (!BitWidth) {
793 KnownZero = false;
794 KnownOne = false;
795 return;
796 }
797 APInt ZeroBits(BitWidth, 0);
798 APInt OneBits(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000799 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000800 KnownOne = OneBits[BitWidth - 1];
801 KnownZero = ZeroBits[BitWidth - 1];
802}
803
804/// isPowerOfTwo - Return true if the given value is known to have exactly one
805/// bit set when defined. For vectors return true if every element is known to
806/// be a power of two when defined. Supports values with integer or pointer
807/// types and vectors of integers.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000808bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
809 unsigned Depth) {
810 if (Constant *C = dyn_cast<Constant>(V)) {
811 if (C->isNullValue())
812 return OrZero;
813 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
814 return CI->getValue().isPowerOf2();
815 // TODO: Handle vector constants.
816 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000817
818 // 1 << X is clearly a power of two if the one is not shifted off the end. If
819 // it is shifted off the end then the result is undefined.
820 if (match(V, m_Shl(m_One(), m_Value())))
821 return true;
822
823 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
824 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000825 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000826 return true;
827
828 // The remaining tests are all recursive, so bail out if we hit the limit.
829 if (Depth++ == MaxDepth)
830 return false;
831
Duncan Sands4604fc72011-10-28 18:30:05 +0000832 Value *X = 0, *Y = 0;
833 // A shift of a power of two is a power of two or zero.
834 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
835 match(V, m_Shr(m_Value(X), m_Value()))))
836 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
837
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000838 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000839 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000840
841 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000842 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
843 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
844
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000845 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
846 // A power of two and'd with anything is a power of two or zero.
847 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
848 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
849 return true;
850 // X & (-X) is always a power of two or zero.
851 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
852 return true;
853 return false;
854 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000855
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000856 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewycky1f7bc702011-03-21 21:40:32 +0000857 // is a power of two only if the first operand is a power of two and not
858 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000859 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
860 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
861 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000862 }
863
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000864 return false;
865}
866
867/// isKnownNonZero - Return true if the given value is known to be non-zero
868/// when defined. For vectors return true if every element is known to be
869/// non-zero when defined. Supports values with integer or pointer type and
870/// vectors of integers.
871bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
872 if (Constant *C = dyn_cast<Constant>(V)) {
873 if (C->isNullValue())
874 return false;
875 if (isa<ConstantInt>(C))
876 // Must be non-zero due to null test above.
877 return true;
878 // TODO: Handle vectors
879 return false;
880 }
881
882 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000883 if (Depth++ >= MaxDepth)
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000884 return false;
885
886 unsigned BitWidth = getBitWidth(V->getType(), TD);
887
888 // X | Y != 0 if X != 0 or Y != 0.
889 Value *X = 0, *Y = 0;
890 if (match(V, m_Or(m_Value(X), m_Value(Y))))
891 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
892
893 // ext X != 0 if X != 0.
894 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
895 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
896
Duncan Sands91367822011-01-29 13:27:00 +0000897 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000898 // if the lowest bit is shifted off the end.
899 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000900 // shl nuw can't remove any non-zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000901 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000902 if (BO->hasNoUnsignedWrap())
903 return isKnownNonZero(X, TD, Depth);
904
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000905 APInt KnownZero(BitWidth, 0);
906 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000907 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000908 if (KnownOne[0])
909 return true;
910 }
Duncan Sands91367822011-01-29 13:27:00 +0000911 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000912 // defined if the sign bit is shifted off the end.
913 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000914 // shr exact can only shift out zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000915 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000916 if (BO->isExact())
917 return isKnownNonZero(X, TD, Depth);
918
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000919 bool XKnownNonNegative, XKnownNegative;
920 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
921 if (XKnownNegative)
922 return true;
923 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000924 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000925 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
926 return isKnownNonZero(X, TD, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000927 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000928 // X + Y.
929 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
930 bool XKnownNonNegative, XKnownNegative;
931 bool YKnownNonNegative, YKnownNegative;
932 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
933 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
934
935 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +0000936 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000937 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +0000938 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
939 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000940
941 // If X and Y are both negative (as signed values) then their sum is not
942 // zero unless both X and Y equal INT_MIN.
943 if (BitWidth && XKnownNegative && YKnownNegative) {
944 APInt KnownZero(BitWidth, 0);
945 APInt KnownOne(BitWidth, 0);
946 APInt Mask = APInt::getSignedMaxValue(BitWidth);
947 // The sign bit of X is set. If some other bit is set then X is not equal
948 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000949 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000950 if ((KnownOne & Mask) != 0)
951 return true;
952 // The sign bit of Y is set. If some other bit is set then Y is not equal
953 // to INT_MIN.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000954 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000955 if ((KnownOne & Mask) != 0)
956 return true;
957 }
958
959 // The sum of a non-negative number and a power of two is not zero.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000960 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000961 return true;
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000962 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000963 return true;
964 }
Duncan Sands32a43cc2011-10-27 19:16:21 +0000965 // X * Y.
966 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
967 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
968 // If X and Y are non-zero then so is X * Y as long as the multiplication
969 // does not overflow.
970 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
971 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
972 return true;
973 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000974 // (C ? X : Y) != 0 if X != 0 and Y != 0.
975 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
976 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
977 isKnownNonZero(SI->getFalseValue(), TD, Depth))
978 return true;
979 }
980
981 if (!BitWidth) return false;
982 APInt KnownZero(BitWidth, 0);
983 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +0000984 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000985 return KnownOne != 0;
986}
987
Chris Lattner173234a2008-06-02 01:18:21 +0000988/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
989/// this predicate to simplify operations downstream. Mask is known to be zero
990/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000991///
992/// This function is defined on values with integer type, values with pointer
993/// type (but only if TD is non-null), and vectors of integers. In the case
994/// where V is a vector, the mask, known zero, and known one values are the
995/// same width as the vector element, and the bit is set only if it is true
996/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +0000997bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Dan Gohman846a2f22009-08-27 17:51:25 +0000998 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000999 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001000 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Chris Lattner173234a2008-06-02 01:18:21 +00001001 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1002 return (KnownZero & Mask) == Mask;
1003}
1004
1005
1006
1007/// ComputeNumSignBits - Return the number of times the sign bit of the
1008/// register is replicated into the other bits. We know that at least 1 bit
1009/// is always equal to the sign bit (itself), but other cases can give us
1010/// information. For example, immediately after an "ashr X, 2", we know that
1011/// the top 3 bits are all equal to each other, so we return 3.
1012///
1013/// 'Op' must have a scalar integer type.
1014///
Dan Gohman846a2f22009-08-27 17:51:25 +00001015unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
1016 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001017 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001018 "ComputeNumSignBits requires a TargetData object to operate "
1019 "on non-integer values!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001020 Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +00001021 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1022 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001023 unsigned Tmp, Tmp2;
1024 unsigned FirstAnswer = 1;
1025
Chris Lattnerd82e5112008-06-02 18:39:07 +00001026 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1027 // below.
1028
Chris Lattner173234a2008-06-02 01:18:21 +00001029 if (Depth == 6)
1030 return 1; // Limit search depth.
1031
Dan Gohmanca178902009-07-17 20:47:02 +00001032 Operator *U = dyn_cast<Operator>(V);
1033 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +00001034 default: break;
1035 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +00001036 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +00001037 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1038
Chris Lattner6b0dc922012-01-26 21:37:55 +00001039 case Instruction::AShr: {
Chris Lattner173234a2008-06-02 01:18:21 +00001040 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001041 // ashr X, C -> adds C sign bits. Vectors too.
1042 const APInt *ShAmt;
1043 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1044 Tmp += ShAmt->getZExtValue();
Chris Lattner173234a2008-06-02 01:18:21 +00001045 if (Tmp > TyBits) Tmp = TyBits;
1046 }
1047 return Tmp;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001048 }
1049 case Instruction::Shl: {
1050 const APInt *ShAmt;
1051 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner173234a2008-06-02 01:18:21 +00001052 // shl destroys sign bits.
1053 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner6b0dc922012-01-26 21:37:55 +00001054 Tmp2 = ShAmt->getZExtValue();
1055 if (Tmp2 >= TyBits || // Bad shift.
1056 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1057 return Tmp - Tmp2;
Chris Lattner173234a2008-06-02 01:18:21 +00001058 }
1059 break;
Chris Lattner6b0dc922012-01-26 21:37:55 +00001060 }
Chris Lattner173234a2008-06-02 01:18:21 +00001061 case Instruction::And:
1062 case Instruction::Or:
1063 case Instruction::Xor: // NOT is handled here.
1064 // Logical binary ops preserve the number of sign bits at the worst.
1065 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1066 if (Tmp != 1) {
1067 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1068 FirstAnswer = std::min(Tmp, Tmp2);
1069 // We computed what we know about the sign bits as our first
1070 // answer. Now proceed to the generic code that uses
1071 // ComputeMaskedBits, and pick whichever answer is better.
1072 }
1073 break;
1074
1075 case Instruction::Select:
1076 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1077 if (Tmp == 1) return 1; // Early out.
1078 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1079 return std::min(Tmp, Tmp2);
1080
1081 case Instruction::Add:
1082 // Add can have at most one carry bit. Thus we know that the output
1083 // is, at worst, one more bit than the inputs.
1084 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1085 if (Tmp == 1) return 1; // Early out.
1086
1087 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +00001088 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +00001089 if (CRHS->isAllOnesValue()) {
1090 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001091 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +00001092
1093 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1094 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001095 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001096 return TyBits;
1097
1098 // If we are subtracting one from a positive number, there is no carry
1099 // out of the result.
1100 if (KnownZero.isNegative())
1101 return Tmp;
1102 }
1103
1104 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1105 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001106 return std::min(Tmp, Tmp2)-1;
Chris Lattner173234a2008-06-02 01:18:21 +00001107
1108 case Instruction::Sub:
1109 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1110 if (Tmp2 == 1) return 1;
1111
1112 // Handle NEG.
1113 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1114 if (CLHS->isNullValue()) {
1115 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001116 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner173234a2008-06-02 01:18:21 +00001117 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1118 // sign bits set.
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001119 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner173234a2008-06-02 01:18:21 +00001120 return TyBits;
1121
1122 // If the input is known to be positive (the sign bit is known clear),
1123 // the output of the NEG has the same number of sign bits as the input.
1124 if (KnownZero.isNegative())
1125 return Tmp2;
1126
1127 // Otherwise, we treat this like a SUB.
1128 }
1129
1130 // Sub can have at most one carry bit. Thus we know that the output
1131 // is, at worst, one more bit than the inputs.
1132 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1133 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001134 return std::min(Tmp, Tmp2)-1;
1135
1136 case Instruction::PHI: {
1137 PHINode *PN = cast<PHINode>(U);
1138 // Don't analyze large in-degree PHIs.
1139 if (PN->getNumIncomingValues() > 4) break;
1140
1141 // Take the minimum of all incoming values. This can't infinitely loop
1142 // because of our depth threshold.
1143 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1144 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1145 if (Tmp == 1) return Tmp;
1146 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001147 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001148 }
1149 return Tmp;
1150 }
1151
Chris Lattner173234a2008-06-02 01:18:21 +00001152 case Instruction::Trunc:
1153 // FIXME: it's tricky to do anything useful for this, but it is an important
1154 // case for targets like X86.
1155 break;
1156 }
1157
1158 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1159 // use this information.
1160 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001161 APInt Mask;
1162 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
Chris Lattner173234a2008-06-02 01:18:21 +00001163
1164 if (KnownZero.isNegative()) { // sign bit is 0
1165 Mask = KnownZero;
1166 } else if (KnownOne.isNegative()) { // sign bit is 1;
1167 Mask = KnownOne;
1168 } else {
1169 // Nothing known.
1170 return FirstAnswer;
1171 }
1172
1173 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1174 // the number of identical bits in the top of the input value.
1175 Mask = ~Mask;
1176 Mask <<= Mask.getBitWidth()-TyBits;
1177 // Return # leading zeros. We use 'min' here in case Val was zero before
1178 // shifting. We don't want to return '64' as for an i32 "0".
1179 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1180}
Chris Lattner833f25d2008-06-02 01:29:46 +00001181
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001182/// ComputeMultiple - This function computes the integer multiple of Base that
1183/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001184/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001185/// through SExt instructions only if LookThroughSExt is true.
1186bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001187 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001188 const unsigned MaxDepth = 6;
1189
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001190 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001191 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001192 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001193
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001194 Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001195
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001196 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001197
1198 if (Base == 0)
1199 return false;
1200
1201 if (Base == 1) {
1202 Multiple = V;
1203 return true;
1204 }
1205
1206 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1207 Constant *BaseVal = ConstantInt::get(T, Base);
1208 if (CO && CO == BaseVal) {
1209 // Multiple is 1.
1210 Multiple = ConstantInt::get(T, 1);
1211 return true;
1212 }
1213
1214 if (CI && CI->getZExtValue() % Base == 0) {
1215 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1216 return true;
1217 }
1218
1219 if (Depth == MaxDepth) return false; // Limit search depth.
1220
1221 Operator *I = dyn_cast<Operator>(V);
1222 if (!I) return false;
1223
1224 switch (I->getOpcode()) {
1225 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001226 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001227 if (!LookThroughSExt) return false;
1228 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001229 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001230 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1231 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001232 case Instruction::Shl:
1233 case Instruction::Mul: {
1234 Value *Op0 = I->getOperand(0);
1235 Value *Op1 = I->getOperand(1);
1236
1237 if (I->getOpcode() == Instruction::Shl) {
1238 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1239 if (!Op1CI) return false;
1240 // Turn Op0 << Op1 into Op0 * 2^Op1
1241 APInt Op1Int = Op1CI->getValue();
1242 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001243 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001244 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001245 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001246 }
1247
1248 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001249 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1250 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1251 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1252 if (Op1C->getType()->getPrimitiveSizeInBits() <
1253 MulC->getType()->getPrimitiveSizeInBits())
1254 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1255 if (Op1C->getType()->getPrimitiveSizeInBits() >
1256 MulC->getType()->getPrimitiveSizeInBits())
1257 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1258
1259 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1260 Multiple = ConstantExpr::getMul(MulC, Op1C);
1261 return true;
1262 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001263
1264 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1265 if (Mul0CI->getValue() == 1) {
1266 // V == Base * Op1, so return Op1
1267 Multiple = Op1;
1268 return true;
1269 }
1270 }
1271
Chris Lattnere9711312010-09-05 17:20:46 +00001272 Value *Mul1 = NULL;
1273 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1274 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1275 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1276 if (Op0C->getType()->getPrimitiveSizeInBits() <
1277 MulC->getType()->getPrimitiveSizeInBits())
1278 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1279 if (Op0C->getType()->getPrimitiveSizeInBits() >
1280 MulC->getType()->getPrimitiveSizeInBits())
1281 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1282
1283 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1284 Multiple = ConstantExpr::getMul(MulC, Op0C);
1285 return true;
1286 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001287
1288 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1289 if (Mul1CI->getValue() == 1) {
1290 // V == Base * Op0, so return Op0
1291 Multiple = Op0;
1292 return true;
1293 }
1294 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001295 }
1296 }
1297
1298 // We could not determine if V is a multiple of Base.
1299 return false;
1300}
1301
Chris Lattner833f25d2008-06-02 01:29:46 +00001302/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1303/// value is never equal to -0.0.
1304///
1305/// NOTE: this function will need to be revisited when we support non-default
1306/// rounding modes!
1307///
1308bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1309 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1310 return !CFP->getValueAPF().isNegZero();
1311
1312 if (Depth == 6)
1313 return 1; // Limit search depth.
1314
Dan Gohmanca178902009-07-17 20:47:02 +00001315 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001316 if (I == 0) return false;
1317
1318 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +00001319 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +00001320 isa<ConstantFP>(I->getOperand(1)) &&
1321 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1322 return true;
1323
1324 // sitofp and uitofp turn into +0.0 for zero.
1325 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1326 return true;
1327
1328 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1329 // sqrt(-0.0) = -0.0, no other negative results are possible.
1330 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001331 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001332
1333 if (const CallInst *CI = dyn_cast<CallInst>(I))
1334 if (const Function *F = CI->getCalledFunction()) {
1335 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001336 // abs(x) != -0.0
1337 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001338 // fabs[lf](x) != -0.0
1339 if (F->getName() == "fabs") return true;
1340 if (F->getName() == "fabsf") return true;
1341 if (F->getName() == "fabsl") return true;
1342 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1343 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001344 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001345 }
1346 }
1347
1348 return false;
1349}
1350
Chris Lattnerbb897102010-12-26 20:15:01 +00001351/// isBytewiseValue - If the specified value can be set by repeating the same
1352/// byte in memory, return the i8 value that it is represented with. This is
1353/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1354/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1355/// byte store (e.g. i16 0x1234), return null.
1356Value *llvm::isBytewiseValue(Value *V) {
1357 // All byte-wide stores are splatable, even of arbitrary variables.
1358 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001359
1360 // Handle 'null' ConstantArrayZero etc.
1361 if (Constant *C = dyn_cast<Constant>(V))
1362 if (C->isNullValue())
1363 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Chris Lattnerbb897102010-12-26 20:15:01 +00001364
1365 // Constant float and double values can be handled as integer values if the
1366 // corresponding integer value is "byteable". An important case is 0.0.
1367 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1368 if (CFP->getType()->isFloatTy())
1369 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1370 if (CFP->getType()->isDoubleTy())
1371 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1372 // Don't handle long double formats, which have strange constraints.
1373 }
1374
1375 // We can handle constant integers that are power of two in size and a
1376 // multiple of 8 bits.
1377 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1378 unsigned Width = CI->getBitWidth();
1379 if (isPowerOf2_32(Width) && Width > 8) {
1380 // We can handle this value if the recursive binary decomposition is the
1381 // same at all levels.
1382 APInt Val = CI->getValue();
1383 APInt Val2;
1384 while (Val.getBitWidth() != 8) {
1385 unsigned NextWidth = Val.getBitWidth()/2;
1386 Val2 = Val.lshr(NextWidth);
1387 Val2 = Val2.trunc(Val.getBitWidth()/2);
1388 Val = Val.trunc(Val.getBitWidth()/2);
1389
1390 // If the top/bottom halves aren't the same, reject it.
1391 if (Val != Val2)
1392 return 0;
1393 }
1394 return ConstantInt::get(V->getContext(), Val);
1395 }
1396 }
1397
Chris Lattner18c7f802012-02-05 02:29:43 +00001398 // A ConstantDataArray/Vector is splatable if all its members are equal and
1399 // also splatable.
1400 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1401 Value *Elt = CA->getElementAsConstant(0);
1402 Value *Val = isBytewiseValue(Elt);
Chris Lattnerbb897102010-12-26 20:15:01 +00001403 if (!Val)
1404 return 0;
1405
Chris Lattner18c7f802012-02-05 02:29:43 +00001406 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1407 if (CA->getElementAsConstant(I) != Elt)
Chris Lattnerbb897102010-12-26 20:15:01 +00001408 return 0;
1409
1410 return Val;
1411 }
Chad Rosierdce42b72011-12-06 00:19:08 +00001412
Chris Lattnerbb897102010-12-26 20:15:01 +00001413 // Conceptually, we could handle things like:
1414 // %a = zext i8 %X to i16
1415 // %b = shl i16 %a, 8
1416 // %c = or i16 %a, %b
1417 // but until there is an example that actually needs this, it doesn't seem
1418 // worth worrying about.
1419 return 0;
1420}
1421
1422
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001423// This is the recursive version of BuildSubAggregate. It takes a few different
1424// arguments. Idxs is the index within the nested struct From that we are
1425// looking at now (which is of type IndexedType). IdxSkip is the number of
1426// indices from Idxs that should be left out when inserting into the resulting
1427// struct. To is the result struct built so far, new insertvalue instructions
1428// build on that.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001429static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Dan Gohman7db949d2009-08-07 01:32:21 +00001430 SmallVector<unsigned, 10> &Idxs,
1431 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001432 Instruction *InsertBefore) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001433 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001434 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001435 // Save the original To argument so we can modify it
1436 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001437 // General case, the type indexed by Idxs is a struct
1438 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1439 // Process each struct element recursively
1440 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001441 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001442 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001443 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001444 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001445 if (!To) {
1446 // Couldn't find any inserted value for this index? Cleanup
1447 while (PrevTo != OrigTo) {
1448 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1449 PrevTo = Del->getAggregateOperand();
1450 Del->eraseFromParent();
1451 }
1452 // Stop processing elements
1453 break;
1454 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001455 }
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001456 // If we successfully found a value for each of our subaggregates
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001457 if (To)
1458 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001459 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001460 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1461 // the struct's elements had a value that was inserted directly. In the latter
1462 // case, perhaps we can't determine each of the subelements individually, but
1463 // we might be able to find the complete struct somewhere.
1464
1465 // Find the value that is at that particular spot
Jay Foadfc6d3a42011-07-13 10:26:04 +00001466 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001467
1468 if (!V)
1469 return NULL;
1470
1471 // Insert the value in the new (sub) aggregrate
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001472 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001473 "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001474}
1475
1476// This helper takes a nested struct and extracts a part of it (which is again a
1477// struct) into a new value. For example, given the struct:
1478// { a, { b, { c, d }, e } }
1479// and the indices "1, 1" this returns
1480// { c, d }.
1481//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001482// It does this by inserting an insertvalue for each element in the resulting
1483// struct, as opposed to just inserting a single struct. This will only work if
1484// each of the elements of the substruct are known (ie, inserted into From by an
1485// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001486//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001487// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foadfc6d3a42011-07-13 10:26:04 +00001488static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohman7db949d2009-08-07 01:32:21 +00001489 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001490 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001491 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001492 idx_range);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001493 Value *To = UndefValue::get(IndexedType);
Jay Foadfc6d3a42011-07-13 10:26:04 +00001494 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001495 unsigned IdxSkip = Idxs.size();
1496
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001497 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001498}
1499
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001500/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1501/// the scalar value indexed is already around as a register, for example if it
1502/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001503///
1504/// If InsertBefore is not null, this function will duplicate (modified)
1505/// insertvalues when a part of a nested struct is extracted.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001506Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1507 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001508 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerdf390282012-01-24 07:54:10 +00001509 // recursion).
Jay Foadfc6d3a42011-07-13 10:26:04 +00001510 if (idx_range.empty())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001511 return V;
Chris Lattnerdf390282012-01-24 07:54:10 +00001512 // We have indices, so V should have an indexable type.
1513 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1514 "Not looking at a struct or array?");
1515 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1516 "Invalid indices for type?");
Owen Anderson76f600b2009-07-06 22:37:39 +00001517
Chris Lattnera1f00f42012-01-25 06:48:06 +00001518 if (Constant *C = dyn_cast<Constant>(V)) {
1519 C = C->getAggregateElement(idx_range[0]);
1520 if (C == 0) return 0;
1521 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1522 }
Chris Lattnerdf390282012-01-24 07:54:10 +00001523
1524 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001525 // Loop the indices for the insertvalue instruction in parallel with the
1526 // requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001527 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001528 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1529 i != e; ++i, ++req_idx) {
Jay Foadfc6d3a42011-07-13 10:26:04 +00001530 if (req_idx == idx_range.end()) {
Chris Lattnerdf390282012-01-24 07:54:10 +00001531 // We can't handle this without inserting insertvalues
1532 if (!InsertBefore)
Matthijs Kooijman97728912008-06-16 13:28:31 +00001533 return 0;
Chris Lattnerdf390282012-01-24 07:54:10 +00001534
1535 // The requested index identifies a part of a nested aggregate. Handle
1536 // this specially. For example,
1537 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1538 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1539 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1540 // This can be changed into
1541 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1542 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1543 // which allows the unused 0,0 element from the nested struct to be
1544 // removed.
1545 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1546 InsertBefore);
Duncan Sands9954c762008-06-19 08:47:31 +00001547 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001548
1549 // This insert value inserts something else than what we are looking for.
1550 // See if the (aggregrate) value inserted into has the value we are
1551 // looking for, then.
1552 if (*req_idx != *i)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001553 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001554 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001555 }
1556 // If we end up here, the indices of the insertvalue match with those
1557 // requested (though possibly only partially). Now we recursively look at
1558 // the inserted value, passing any remaining indices.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001559 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001560 makeArrayRef(req_idx, idx_range.end()),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001561 InsertBefore);
Chris Lattnerdf390282012-01-24 07:54:10 +00001562 }
1563
1564 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001565 // If we're extracting a value from an aggregrate that was extracted from
1566 // something else, we can extract from that something else directly instead.
1567 // However, we will need to chain I's indices with the requested indices.
1568
1569 // Calculate the number of indices required
Jay Foadfc6d3a42011-07-13 10:26:04 +00001570 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001571 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001572 SmallVector<unsigned, 5> Idxs;
1573 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001574 // Add indices from the extract value instruction
Jay Foadfc6d3a42011-07-13 10:26:04 +00001575 Idxs.append(I->idx_begin(), I->idx_end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001576
1577 // Add requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001578 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001579
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001580 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001581 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001582
Jay Foadfc6d3a42011-07-13 10:26:04 +00001583 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001584 }
1585 // Otherwise, we don't know (such as, extracting from a function return value
1586 // or load instruction)
1587 return 0;
1588}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001589
Chris Lattnered58a6f2010-11-30 22:25:26 +00001590/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1591/// it can be expressed as a base pointer plus a constant offset. Return the
1592/// base and offset to the caller.
1593Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1594 const TargetData &TD) {
1595 Operator *PtrOp = dyn_cast<Operator>(Ptr);
Nadav Rotem16087692011-12-05 06:29:09 +00001596 if (PtrOp == 0 || Ptr->getType()->isVectorTy())
1597 return Ptr;
Chris Lattnered58a6f2010-11-30 22:25:26 +00001598
1599 // Just look through bitcasts.
1600 if (PtrOp->getOpcode() == Instruction::BitCast)
1601 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1602
1603 // If this is a GEP with constant indices, we can look through it.
1604 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1605 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1606
1607 gep_type_iterator GTI = gep_type_begin(GEP);
1608 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1609 ++I, ++GTI) {
1610 ConstantInt *OpC = cast<ConstantInt>(*I);
1611 if (OpC->isZero()) continue;
1612
1613 // Handle a struct and array indices which add their offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001614 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattnered58a6f2010-11-30 22:25:26 +00001615 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1616 } else {
1617 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1618 Offset += OpC->getSExtValue()*Size;
1619 }
1620 }
1621
1622 // Re-sign extend from the pointer size if needed to get overflow edge cases
1623 // right.
1624 unsigned PtrSize = TD.getPointerSizeInBits();
1625 if (PtrSize < 64)
Richard Smith1144af32012-08-24 23:29:28 +00001626 Offset = SignExtend64(Offset, PtrSize);
Chris Lattnered58a6f2010-11-30 22:25:26 +00001627
1628 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1629}
1630
1631
Chris Lattner18c7f802012-02-05 02:29:43 +00001632/// getConstantStringInfo - This function computes the length of a
Evan Cheng0ff39b32008-06-30 07:31:25 +00001633/// null-terminated C string pointed to by V. If successful, it returns true
1634/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattner18c7f802012-02-05 02:29:43 +00001635bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1636 uint64_t Offset, bool TrimAtNul) {
1637 assert(V);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001638
Chris Lattner18c7f802012-02-05 02:29:43 +00001639 // Look through bitcast instructions and geps.
1640 V = V->stripPointerCasts();
Bill Wendling0582ae92009-03-13 04:39:26 +00001641
Chris Lattner18c7f802012-02-05 02:29:43 +00001642 // If the value is a GEP instructionor constant expression, treat it as an
1643 // offset.
1644 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001645 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001646 if (GEP->getNumOperands() != 3)
1647 return false;
1648
Evan Cheng0ff39b32008-06-30 07:31:25 +00001649 // Make sure the index-ee is a pointer to array of i8.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001650 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1651 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001652 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001653 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001654
1655 // Check to make sure that the first operand of the GEP is an integer and
1656 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001657 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001658 if (FirstIdx == 0 || !FirstIdx->isZero())
1659 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001660
1661 // If the second index isn't a ConstantInt, then this is a variable index
1662 // into the array. If this occurs, we can't say anything meaningful about
1663 // the string.
1664 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001665 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001666 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001667 else
1668 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001669 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001670 }
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001671
Evan Cheng0ff39b32008-06-30 07:31:25 +00001672 // The GEP instruction, constant or instruction, must reference a global
1673 // variable that is a constant and is initialized. The referenced constant
1674 // initializer is the array that we'll use for optimization.
Chris Lattner18c7f802012-02-05 02:29:43 +00001675 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001676 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001677 return false;
Chris Lattner18c7f802012-02-05 02:29:43 +00001678
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001679 // Handle the all-zeros case
Chris Lattner18c7f802012-02-05 02:29:43 +00001680 if (GV->getInitializer()->isNullValue()) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001681 // This is a degenerate case. The initializer is constant zero so the
1682 // length of the string must be zero.
Chris Lattner18c7f802012-02-05 02:29:43 +00001683 Str = "";
Bill Wendling0582ae92009-03-13 04:39:26 +00001684 return true;
1685 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001686
1687 // Must be a Constant Array
Chris Lattner18c7f802012-02-05 02:29:43 +00001688 const ConstantDataArray *Array =
1689 dyn_cast<ConstantDataArray>(GV->getInitializer());
1690 if (Array == 0 || !Array->isString())
Bill Wendling0582ae92009-03-13 04:39:26 +00001691 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001692
1693 // Get the number of elements in the array
Chris Lattner18c7f802012-02-05 02:29:43 +00001694 uint64_t NumElts = Array->getType()->getArrayNumElements();
1695
1696 // Start out with the entire array in the StringRef.
1697 Str = Array->getAsString();
1698
Bill Wendling0582ae92009-03-13 04:39:26 +00001699 if (Offset > NumElts)
1700 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001701
Chris Lattner18c7f802012-02-05 02:29:43 +00001702 // Skip over 'offset' bytes.
1703 Str = Str.substr(Offset);
Argyrios Kyrtzidis91766fe2012-02-01 04:51:17 +00001704
Chris Lattner18c7f802012-02-05 02:29:43 +00001705 if (TrimAtNul) {
1706 // Trim off the \0 and anything after it. If the array is not nul
1707 // terminated, we just return the whole end of string. The client may know
1708 // some other way that the string is length-bound.
1709 Str = Str.substr(0, Str.find('\0'));
1710 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001711 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001712}
Eric Christopher25ec4832010-03-05 06:58:57 +00001713
1714// These next two are very similar to the above, but also look through PHI
1715// nodes.
1716// TODO: See if we can integrate these two together.
1717
1718/// GetStringLengthH - If we can compute the length of the string pointed to by
1719/// the specified pointer, return 'len+1'. If we can't, return 0.
1720static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1721 // Look through noop bitcast instructions.
Chris Lattner18c7f802012-02-05 02:29:43 +00001722 V = V->stripPointerCasts();
Eric Christopher25ec4832010-03-05 06:58:57 +00001723
1724 // If this is a PHI node, there are two cases: either we have already seen it
1725 // or we haven't.
1726 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1727 if (!PHIs.insert(PN))
1728 return ~0ULL; // already in the set.
1729
1730 // If it was new, see if all the input strings are the same length.
1731 uint64_t LenSoFar = ~0ULL;
1732 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1733 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1734 if (Len == 0) return 0; // Unknown length -> unknown.
1735
1736 if (Len == ~0ULL) continue;
1737
1738 if (Len != LenSoFar && LenSoFar != ~0ULL)
1739 return 0; // Disagree -> unknown.
1740 LenSoFar = Len;
1741 }
1742
1743 // Success, all agree.
1744 return LenSoFar;
1745 }
1746
1747 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1748 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1749 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1750 if (Len1 == 0) return 0;
1751 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1752 if (Len2 == 0) return 0;
1753 if (Len1 == ~0ULL) return Len2;
1754 if (Len2 == ~0ULL) return Len1;
1755 if (Len1 != Len2) return 0;
1756 return Len1;
1757 }
Chris Lattner18c7f802012-02-05 02:29:43 +00001758
1759 // Otherwise, see if we can read the string.
1760 StringRef StrData;
1761 if (!getConstantStringInfo(V, StrData))
Eric Christopher25ec4832010-03-05 06:58:57 +00001762 return 0;
1763
Chris Lattner18c7f802012-02-05 02:29:43 +00001764 return StrData.size()+1;
Eric Christopher25ec4832010-03-05 06:58:57 +00001765}
1766
1767/// GetStringLength - If we can compute the length of the string pointed to by
1768/// the specified pointer, return 'len+1'. If we can't, return 0.
1769uint64_t llvm::GetStringLength(Value *V) {
1770 if (!V->getType()->isPointerTy()) return 0;
1771
1772 SmallPtrSet<PHINode*, 32> PHIs;
1773 uint64_t Len = GetStringLengthH(V, PHIs);
1774 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1775 // an empty string as a length.
1776 return Len == ~0ULL ? 1 : Len;
1777}
Dan Gohman5034dd32010-12-15 20:02:24 +00001778
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001779Value *
1780llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001781 if (!V->getType()->isPointerTy())
1782 return V;
1783 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1784 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1785 V = GEP->getPointerOperand();
1786 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1787 V = cast<Operator>(V)->getOperand(0);
1788 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1789 if (GA->mayBeOverridden())
1790 return V;
1791 V = GA->getAliasee();
1792 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001793 // See if InstructionSimplify knows any relevant tricks.
1794 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001795 // TODO: Acquire a DominatorTree and use it.
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001796 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001797 V = Simplified;
1798 continue;
1799 }
1800
Dan Gohman5034dd32010-12-15 20:02:24 +00001801 return V;
1802 }
1803 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1804 }
1805 return V;
1806}
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001807
Dan Gohmanb401e3b2012-05-10 18:57:38 +00001808void
1809llvm::GetUnderlyingObjects(Value *V,
1810 SmallVectorImpl<Value *> &Objects,
1811 const TargetData *TD,
1812 unsigned MaxLookup) {
1813 SmallPtrSet<Value *, 4> Visited;
1814 SmallVector<Value *, 4> Worklist;
1815 Worklist.push_back(V);
1816 do {
1817 Value *P = Worklist.pop_back_val();
1818 P = GetUnderlyingObject(P, TD, MaxLookup);
1819
1820 if (!Visited.insert(P))
1821 continue;
1822
1823 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1824 Worklist.push_back(SI->getTrueValue());
1825 Worklist.push_back(SI->getFalseValue());
1826 continue;
1827 }
1828
1829 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1830 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1831 Worklist.push_back(PN->getIncomingValue(i));
1832 continue;
1833 }
1834
1835 Objects.push_back(P);
1836 } while (!Worklist.empty());
1837}
1838
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001839/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1840/// are lifetime markers.
1841///
1842bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1843 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1844 UI != UE; ++UI) {
1845 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1846 if (!II) return false;
1847
1848 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1849 II->getIntrinsicID() != Intrinsic::lifetime_end)
1850 return false;
1851 }
1852 return true;
1853}
Dan Gohmanf0426602011-12-14 23:49:11 +00001854
Dan Gohmanfebaf842012-01-04 23:01:09 +00001855bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Dan Gohmanf0426602011-12-14 23:49:11 +00001856 const TargetData *TD) {
Dan Gohmanfebaf842012-01-04 23:01:09 +00001857 const Operator *Inst = dyn_cast<Operator>(V);
1858 if (!Inst)
1859 return false;
1860
Dan Gohmanf0426602011-12-14 23:49:11 +00001861 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1862 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1863 if (C->canTrap())
1864 return false;
1865
1866 switch (Inst->getOpcode()) {
1867 default:
1868 return true;
1869 case Instruction::UDiv:
1870 case Instruction::URem:
1871 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1872 return isKnownNonZero(Inst->getOperand(1), TD);
1873 case Instruction::SDiv:
1874 case Instruction::SRem: {
1875 Value *Op = Inst->getOperand(1);
1876 // x / y is undefined if y == 0
1877 if (!isKnownNonZero(Op, TD))
1878 return false;
1879 // x / y might be undefined if y == -1
1880 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1881 if (BitWidth == 0)
1882 return false;
1883 APInt KnownZero(BitWidth, 0);
1884 APInt KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001885 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
Dan Gohmanf0426602011-12-14 23:49:11 +00001886 return !!KnownZero;
1887 }
1888 case Instruction::Load: {
1889 const LoadInst *LI = cast<LoadInst>(Inst);
1890 if (!LI->isUnordered())
1891 return false;
1892 return LI->getPointerOperand()->isDereferenceablePointer();
1893 }
Nick Lewycky83696872011-12-21 05:52:02 +00001894 case Instruction::Call: {
1895 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1896 switch (II->getIntrinsicID()) {
Chandler Carruthc0d18b62012-04-07 19:22:18 +00001897 // These synthetic intrinsics have no side-effects, and just mark
1898 // information about their operands.
1899 // FIXME: There are other no-op synthetic instructions that potentially
1900 // should be considered at least *safe* to speculate...
1901 case Intrinsic::dbg_declare:
1902 case Intrinsic::dbg_value:
1903 return true;
1904
Nick Lewycky83696872011-12-21 05:52:02 +00001905 case Intrinsic::bswap:
1906 case Intrinsic::ctlz:
1907 case Intrinsic::ctpop:
1908 case Intrinsic::cttz:
1909 case Intrinsic::objectsize:
1910 case Intrinsic::sadd_with_overflow:
1911 case Intrinsic::smul_with_overflow:
1912 case Intrinsic::ssub_with_overflow:
1913 case Intrinsic::uadd_with_overflow:
1914 case Intrinsic::umul_with_overflow:
1915 case Intrinsic::usub_with_overflow:
1916 return true;
1917 // TODO: some fp intrinsics are marked as having the same error handling
1918 // as libm. They're safe to speculate when they won't error.
1919 // TODO: are convert_{from,to}_fp16 safe?
1920 // TODO: can we list target-specific intrinsics here?
1921 default: break;
1922 }
1923 }
Dan Gohmanf0426602011-12-14 23:49:11 +00001924 return false; // The called function could have undefined behavior or
Nick Lewycky83696872011-12-21 05:52:02 +00001925 // side-effects, even if marked readnone nounwind.
1926 }
Dan Gohmanf0426602011-12-14 23:49:11 +00001927 case Instruction::VAArg:
1928 case Instruction::Alloca:
1929 case Instruction::Invoke:
1930 case Instruction::PHI:
1931 case Instruction::Store:
1932 case Instruction::Ret:
1933 case Instruction::Br:
1934 case Instruction::IndirectBr:
1935 case Instruction::Switch:
Dan Gohmanf0426602011-12-14 23:49:11 +00001936 case Instruction::Unreachable:
1937 case Instruction::Fence:
1938 case Instruction::LandingPad:
1939 case Instruction::AtomicRMW:
1940 case Instruction::AtomicCmpXchg:
1941 case Instruction::Resume:
1942 return false; // Misc instructions which have effects
1943 }
1944}