blob: fb9bb488c97b809b72ffca652338a9ed127e603d [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
Leon Clarked91b9f72010-01-27 17:25:45 +000033// The original source code covered by the above license above has been
34// modified significantly by Google Inc.
35// Copyright 2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +000036
37#include "v8.h"
38
Leon Clarkef7060e22010-06-03 12:02:55 +010039#if defined(V8_TARGET_ARCH_ARM)
40
Steve Blocka7e24c12009-10-30 11:49:00 +000041#include "arm/assembler-arm-inl.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
Steve Blockd0582a62009-12-15 09:54:21 +000047// Safe default is no features.
48unsigned CpuFeatures::supported_ = 0;
49unsigned CpuFeatures::enabled_ = 0;
50unsigned CpuFeatures::found_by_runtime_probing_ = 0;
51
Andrei Popescu402d9372010-02-26 13:31:12 +000052
53#ifdef __arm__
54static uint64_t CpuFeaturesImpliedByCompiler() {
55 uint64_t answer = 0;
56#ifdef CAN_USE_ARMV7_INSTRUCTIONS
57 answer |= 1u << ARMv7;
58#endif // def CAN_USE_ARMV7_INSTRUCTIONS
59 // If the compiler is allowed to use VFP then we can use VFP too in our code
60 // generation even when generating snapshots. This won't work for cross
61 // compilation.
62#if defined(__VFP_FP__) && !defined(__SOFTFP__)
63 answer |= 1u << VFP3;
64#endif // defined(__VFP_FP__) && !defined(__SOFTFP__)
65#ifdef CAN_USE_VFP_INSTRUCTIONS
66 answer |= 1u << VFP3;
67#endif // def CAN_USE_VFP_INSTRUCTIONS
68 return answer;
69}
70#endif // def __arm__
71
72
Ben Murdochb0fe1622011-05-05 13:52:32 +010073void CpuFeatures::Probe(bool portable) {
Andrei Popescu402d9372010-02-26 13:31:12 +000074#ifndef __arm__
Andrei Popescu31002712010-02-23 13:46:05 +000075 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled.
76 if (FLAG_enable_vfp3) {
Steve Block6ded16b2010-05-10 14:33:55 +010077 supported_ |= 1u << VFP3;
Andrei Popescu31002712010-02-23 13:46:05 +000078 }
79 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
80 if (FLAG_enable_armv7) {
Steve Block6ded16b2010-05-10 14:33:55 +010081 supported_ |= 1u << ARMv7;
Andrei Popescu31002712010-02-23 13:46:05 +000082 }
Andrei Popescu402d9372010-02-26 13:31:12 +000083#else // def __arm__
Ben Murdochb0fe1622011-05-05 13:52:32 +010084 if (portable && Serializer::enabled()) {
Andrei Popescu402d9372010-02-26 13:31:12 +000085 supported_ |= OS::CpuFeaturesImpliedByPlatform();
86 supported_ |= CpuFeaturesImpliedByCompiler();
Steve Blockd0582a62009-12-15 09:54:21 +000087 return; // No features if we might serialize.
88 }
89
90 if (OS::ArmCpuHasFeature(VFP3)) {
91 // This implementation also sets the VFP flags if
92 // runtime detection of VFP returns true.
93 supported_ |= 1u << VFP3;
94 found_by_runtime_probing_ |= 1u << VFP3;
95 }
Andrei Popescu31002712010-02-23 13:46:05 +000096
97 if (OS::ArmCpuHasFeature(ARMv7)) {
98 supported_ |= 1u << ARMv7;
99 found_by_runtime_probing_ |= 1u << ARMv7;
100 }
Ben Murdochb0fe1622011-05-05 13:52:32 +0100101
102 if (!portable) found_by_runtime_probing_ = 0;
Steve Block6ded16b2010-05-10 14:33:55 +0100103#endif
Steve Blockd0582a62009-12-15 09:54:21 +0000104}
105
106
Steve Blocka7e24c12009-10-30 11:49:00 +0000107// -----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000108// Implementation of RelocInfo
109
110const int RelocInfo::kApplyMask = 0;
111
112
Leon Clarkef7060e22010-06-03 12:02:55 +0100113bool RelocInfo::IsCodedSpecially() {
114 // The deserializer needs to know whether a pointer is specially coded. Being
115 // specially coded on ARM means that it is a movw/movt instruction. We don't
116 // generate those yet.
117 return false;
118}
119
120
121
Steve Blocka7e24c12009-10-30 11:49:00 +0000122void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
123 // Patch the code at the current address with the supplied instructions.
124 Instr* pc = reinterpret_cast<Instr*>(pc_);
125 Instr* instr = reinterpret_cast<Instr*>(instructions);
126 for (int i = 0; i < instruction_count; i++) {
127 *(pc + i) = *(instr + i);
128 }
129
130 // Indicate that code has changed.
131 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
132}
133
134
135// Patch the code at the current PC with a call to the target address.
136// Additional guard instructions can be added if required.
137void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
138 // Patch the code at the current address with a call to the target.
139 UNIMPLEMENTED();
140}
141
142
143// -----------------------------------------------------------------------------
144// Implementation of Operand and MemOperand
145// See assembler-arm-inl.h for inlined constructors
146
147Operand::Operand(Handle<Object> handle) {
148 rm_ = no_reg;
149 // Verify all Objects referred by code are NOT in new space.
150 Object* obj = *handle;
151 ASSERT(!Heap::InNewSpace(obj));
152 if (obj->IsHeapObject()) {
153 imm32_ = reinterpret_cast<intptr_t>(handle.location());
154 rmode_ = RelocInfo::EMBEDDED_OBJECT;
155 } else {
156 // no relocation needed
157 imm32_ = reinterpret_cast<intptr_t>(obj);
158 rmode_ = RelocInfo::NONE;
159 }
160}
161
162
163Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
164 ASSERT(is_uint5(shift_imm));
165 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
166 rm_ = rm;
167 rs_ = no_reg;
168 shift_op_ = shift_op;
169 shift_imm_ = shift_imm & 31;
170 if (shift_op == RRX) {
171 // encoded as ROR with shift_imm == 0
172 ASSERT(shift_imm == 0);
173 shift_op_ = ROR;
174 shift_imm_ = 0;
175 }
176}
177
178
179Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
180 ASSERT(shift_op != RRX);
181 rm_ = rm;
182 rs_ = no_reg;
183 shift_op_ = shift_op;
184 rs_ = rs;
185}
186
187
188MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
189 rn_ = rn;
190 rm_ = no_reg;
191 offset_ = offset;
192 am_ = am;
193}
194
195MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
196 rn_ = rn;
197 rm_ = rm;
198 shift_op_ = LSL;
199 shift_imm_ = 0;
200 am_ = am;
201}
202
203
204MemOperand::MemOperand(Register rn, Register rm,
205 ShiftOp shift_op, int shift_imm, AddrMode am) {
206 ASSERT(is_uint5(shift_imm));
207 rn_ = rn;
208 rm_ = rm;
209 shift_op_ = shift_op;
210 shift_imm_ = shift_imm & 31;
211 am_ = am;
212}
213
214
215// -----------------------------------------------------------------------------
Steve Block1e0659c2011-05-24 12:43:12 +0100216// Specific instructions, constants, and masks.
Steve Blocka7e24c12009-10-30 11:49:00 +0000217
218// add(sp, sp, 4) instruction (aka Pop())
Steve Block1e0659c2011-05-24 12:43:12 +0100219const Instr kPopInstruction =
220 al | PostIndex | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
Steve Blocka7e24c12009-10-30 11:49:00 +0000221// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
222// register r is not encoded.
Steve Block1e0659c2011-05-24 12:43:12 +0100223const Instr kPushRegPattern =
Steve Blocka7e24c12009-10-30 11:49:00 +0000224 al | B26 | 4 | NegPreIndex | sp.code() * B16;
225// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
226// register r is not encoded.
Steve Block1e0659c2011-05-24 12:43:12 +0100227const Instr kPopRegPattern =
Steve Blocka7e24c12009-10-30 11:49:00 +0000228 al | B26 | L | 4 | PostIndex | sp.code() * B16;
229// mov lr, pc
Steve Block1e0659c2011-05-24 12:43:12 +0100230const Instr kMovLrPc = al | MOV | pc.code() | lr.code() * B12;
Steve Block6ded16b2010-05-10 14:33:55 +0100231// ldr rd, [pc, #offset]
Steve Block1e0659c2011-05-24 12:43:12 +0100232const Instr kLdrPCMask = kCondMask | 15 * B24 | 7 * B20 | 15 * B16;
Steve Block6ded16b2010-05-10 14:33:55 +0100233const Instr kLdrPCPattern = al | 5 * B24 | L | pc.code() * B16;
234// blxcc rm
235const Instr kBlxRegMask =
236 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
237const Instr kBlxRegPattern =
Steve Block1e0659c2011-05-24 12:43:12 +0100238 B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100239const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
240const Instr kMovMvnPattern = 0xd * B21;
241const Instr kMovMvnFlip = B22;
242const Instr kMovLeaveCCMask = 0xdff * B16;
243const Instr kMovLeaveCCPattern = 0x1a0 * B16;
244const Instr kMovwMask = 0xff * B20;
245const Instr kMovwPattern = 0x30 * B20;
246const Instr kMovwLeaveCCFlip = 0x5 * B21;
247const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
248const Instr kCmpCmnPattern = 0x15 * B20;
249const Instr kCmpCmnFlip = B21;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100250const Instr kAddSubFlip = 0x6 * B21;
251const Instr kAndBicFlip = 0xe * B21;
252
Leon Clarkef7060e22010-06-03 12:02:55 +0100253// A mask for the Rd register for push, pop, ldr, str instructions.
Steve Block1e0659c2011-05-24 12:43:12 +0100254const Instr kLdrRegFpOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100255 al | B26 | L | Offset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100256const Instr kStrRegFpOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100257 al | B26 | Offset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100258const Instr kLdrRegFpNegOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100259 al | B26 | L | NegOffset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100260const Instr kStrRegFpNegOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100261 al | B26 | NegOffset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100262const Instr kLdrStrInstrTypeMask = 0xffff0000;
263const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
264const Instr kLdrStrOffsetMask = 0x00000fff;
265
Steve Blocka7e24c12009-10-30 11:49:00 +0000266
Andrei Popescu31002712010-02-23 13:46:05 +0000267// Spare buffer.
Steve Blocka7e24c12009-10-30 11:49:00 +0000268static const int kMinimalBufferSize = 4*KB;
269static byte* spare_buffer_ = NULL;
270
Steve Block1e0659c2011-05-24 12:43:12 +0100271
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800272Assembler::Assembler(void* buffer, int buffer_size)
Ben Murdochb0fe1622011-05-05 13:52:32 +0100273 : positions_recorder_(this),
274 allow_peephole_optimization_(false) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100275 allow_peephole_optimization_ = FLAG_peephole_optimization;
Steve Blocka7e24c12009-10-30 11:49:00 +0000276 if (buffer == NULL) {
Andrei Popescu31002712010-02-23 13:46:05 +0000277 // Do our own buffer management.
Steve Blocka7e24c12009-10-30 11:49:00 +0000278 if (buffer_size <= kMinimalBufferSize) {
279 buffer_size = kMinimalBufferSize;
280
281 if (spare_buffer_ != NULL) {
282 buffer = spare_buffer_;
283 spare_buffer_ = NULL;
284 }
285 }
286 if (buffer == NULL) {
287 buffer_ = NewArray<byte>(buffer_size);
288 } else {
289 buffer_ = static_cast<byte*>(buffer);
290 }
291 buffer_size_ = buffer_size;
292 own_buffer_ = true;
293
294 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000295 // Use externally provided buffer instead.
Steve Blocka7e24c12009-10-30 11:49:00 +0000296 ASSERT(buffer_size > 0);
297 buffer_ = static_cast<byte*>(buffer);
298 buffer_size_ = buffer_size;
299 own_buffer_ = false;
300 }
301
Andrei Popescu31002712010-02-23 13:46:05 +0000302 // Setup buffer pointers.
Steve Blocka7e24c12009-10-30 11:49:00 +0000303 ASSERT(buffer_ != NULL);
304 pc_ = buffer_;
305 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
306 num_prinfo_ = 0;
307 next_buffer_check_ = 0;
Steve Block6ded16b2010-05-10 14:33:55 +0100308 const_pool_blocked_nesting_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000309 no_const_pool_before_ = 0;
310 last_const_pool_end_ = 0;
311 last_bound_pos_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000312}
313
314
315Assembler::~Assembler() {
Steve Block6ded16b2010-05-10 14:33:55 +0100316 ASSERT(const_pool_blocked_nesting_ == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000317 if (own_buffer_) {
318 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
319 spare_buffer_ = buffer_;
320 } else {
321 DeleteArray(buffer_);
322 }
323 }
324}
325
326
327void Assembler::GetCode(CodeDesc* desc) {
Andrei Popescu31002712010-02-23 13:46:05 +0000328 // Emit constant pool if necessary.
Steve Blocka7e24c12009-10-30 11:49:00 +0000329 CheckConstPool(true, false);
330 ASSERT(num_prinfo_ == 0);
331
Andrei Popescu31002712010-02-23 13:46:05 +0000332 // Setup code descriptor.
Steve Blocka7e24c12009-10-30 11:49:00 +0000333 desc->buffer = buffer_;
334 desc->buffer_size = buffer_size_;
335 desc->instr_size = pc_offset();
336 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
337}
338
339
340void Assembler::Align(int m) {
341 ASSERT(m >= 4 && IsPowerOf2(m));
342 while ((pc_offset() & (m - 1)) != 0) {
343 nop();
344 }
345}
346
347
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100348void Assembler::CodeTargetAlign() {
349 // Preferred alignment of jump targets on some ARM chips.
350 Align(8);
351}
352
353
Steve Block1e0659c2011-05-24 12:43:12 +0100354Condition Assembler::GetCondition(Instr instr) {
355 return Instruction::ConditionField(instr);
356}
357
358
Steve Block6ded16b2010-05-10 14:33:55 +0100359bool Assembler::IsBranch(Instr instr) {
360 return (instr & (B27 | B25)) == (B27 | B25);
361}
362
363
364int Assembler::GetBranchOffset(Instr instr) {
365 ASSERT(IsBranch(instr));
366 // Take the jump offset in the lower 24 bits, sign extend it and multiply it
367 // with 4 to get the offset in bytes.
Steve Block1e0659c2011-05-24 12:43:12 +0100368 return ((instr & kImm24Mask) << 8) >> 6;
Steve Block6ded16b2010-05-10 14:33:55 +0100369}
370
371
372bool Assembler::IsLdrRegisterImmediate(Instr instr) {
373 return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
374}
375
376
377int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
378 ASSERT(IsLdrRegisterImmediate(instr));
379 bool positive = (instr & B23) == B23;
Steve Block1e0659c2011-05-24 12:43:12 +0100380 int offset = instr & kOff12Mask; // Zero extended offset.
Steve Block6ded16b2010-05-10 14:33:55 +0100381 return positive ? offset : -offset;
382}
383
384
385Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
386 ASSERT(IsLdrRegisterImmediate(instr));
387 bool positive = offset >= 0;
388 if (!positive) offset = -offset;
389 ASSERT(is_uint12(offset));
390 // Set bit indicating whether the offset should be added.
391 instr = (instr & ~B23) | (positive ? B23 : 0);
392 // Set the actual offset.
Steve Block1e0659c2011-05-24 12:43:12 +0100393 return (instr & ~kOff12Mask) | offset;
Steve Block6ded16b2010-05-10 14:33:55 +0100394}
395
396
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100397bool Assembler::IsStrRegisterImmediate(Instr instr) {
398 return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
399}
400
401
402Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
403 ASSERT(IsStrRegisterImmediate(instr));
404 bool positive = offset >= 0;
405 if (!positive) offset = -offset;
406 ASSERT(is_uint12(offset));
407 // Set bit indicating whether the offset should be added.
408 instr = (instr & ~B23) | (positive ? B23 : 0);
409 // Set the actual offset.
Steve Block1e0659c2011-05-24 12:43:12 +0100410 return (instr & ~kOff12Mask) | offset;
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100411}
412
413
414bool Assembler::IsAddRegisterImmediate(Instr instr) {
415 return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
416}
417
418
419Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
420 ASSERT(IsAddRegisterImmediate(instr));
421 ASSERT(offset >= 0);
422 ASSERT(is_uint12(offset));
423 // Set the offset.
Steve Block1e0659c2011-05-24 12:43:12 +0100424 return (instr & ~kOff12Mask) | offset;
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100425}
426
427
Leon Clarkef7060e22010-06-03 12:02:55 +0100428Register Assembler::GetRd(Instr instr) {
429 Register reg;
Steve Block1e0659c2011-05-24 12:43:12 +0100430 reg.code_ = Instruction::RdValue(instr);
431 return reg;
432}
433
434
435Register Assembler::GetRn(Instr instr) {
436 Register reg;
437 reg.code_ = Instruction::RnValue(instr);
438 return reg;
439}
440
441
442Register Assembler::GetRm(Instr instr) {
443 Register reg;
444 reg.code_ = Instruction::RmValue(instr);
Leon Clarkef7060e22010-06-03 12:02:55 +0100445 return reg;
446}
447
448
449bool Assembler::IsPush(Instr instr) {
450 return ((instr & ~kRdMask) == kPushRegPattern);
451}
452
453
454bool Assembler::IsPop(Instr instr) {
455 return ((instr & ~kRdMask) == kPopRegPattern);
456}
457
458
459bool Assembler::IsStrRegFpOffset(Instr instr) {
460 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
461}
462
463
464bool Assembler::IsLdrRegFpOffset(Instr instr) {
465 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
466}
467
468
469bool Assembler::IsStrRegFpNegOffset(Instr instr) {
470 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
471}
472
473
474bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
475 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
476}
477
478
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800479bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
480 // Check the instruction is indeed a
481 // ldr<cond> <Rd>, [pc +/- offset_12].
Steve Block1e0659c2011-05-24 12:43:12 +0100482 return (instr & (kLdrPCMask & ~kCondMask)) == 0x051f0000;
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800483}
484
485
Steve Block1e0659c2011-05-24 12:43:12 +0100486bool Assembler::IsTstImmediate(Instr instr) {
487 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
488 (I | TST | S);
489}
490
491
492bool Assembler::IsCmpRegister(Instr instr) {
493 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
494 (CMP | S);
495}
496
497
498bool Assembler::IsCmpImmediate(Instr instr) {
499 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
500 (I | CMP | S);
501}
502
503
504Register Assembler::GetCmpImmediateRegister(Instr instr) {
505 ASSERT(IsCmpImmediate(instr));
506 return GetRn(instr);
507}
508
509
510int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
511 ASSERT(IsCmpImmediate(instr));
512 return instr & kOff12Mask;
513}
514
Steve Blocka7e24c12009-10-30 11:49:00 +0000515// Labels refer to positions in the (to be) generated code.
516// There are bound, linked, and unused labels.
517//
518// Bound labels refer to known positions in the already
519// generated code. pos() is the position the label refers to.
520//
521// Linked labels refer to unknown positions in the code
522// to be generated; pos() is the position of the last
523// instruction using the label.
524
525
526// The link chain is terminated by a negative code position (must be aligned)
527const int kEndOfChain = -4;
528
529
530int Assembler::target_at(int pos) {
531 Instr instr = instr_at(pos);
Steve Block1e0659c2011-05-24 12:43:12 +0100532 if ((instr & ~kImm24Mask) == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000533 // Emitted label constant, not part of a branch.
534 return instr - (Code::kHeaderSize - kHeapObjectTag);
535 }
536 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
Steve Block1e0659c2011-05-24 12:43:12 +0100537 int imm26 = ((instr & kImm24Mask) << 8) >> 6;
538 if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
539 ((instr & B24) != 0)) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000540 // blx uses bit 24 to encode bit 2 of imm26
541 imm26 += 2;
Steve Block6ded16b2010-05-10 14:33:55 +0100542 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000543 return pos + kPcLoadDelta + imm26;
544}
545
546
547void Assembler::target_at_put(int pos, int target_pos) {
548 Instr instr = instr_at(pos);
Steve Block1e0659c2011-05-24 12:43:12 +0100549 if ((instr & ~kImm24Mask) == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000550 ASSERT(target_pos == kEndOfChain || target_pos >= 0);
551 // Emitted label constant, not part of a branch.
552 // Make label relative to Code* of generated Code object.
553 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
554 return;
555 }
556 int imm26 = target_pos - (pos + kPcLoadDelta);
557 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
Steve Block1e0659c2011-05-24 12:43:12 +0100558 if (Instruction::ConditionField(instr) == kSpecialCondition) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000559 // blx uses bit 24 to encode bit 2 of imm26
560 ASSERT((imm26 & 1) == 0);
Steve Block1e0659c2011-05-24 12:43:12 +0100561 instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
Steve Blocka7e24c12009-10-30 11:49:00 +0000562 } else {
563 ASSERT((imm26 & 3) == 0);
Steve Block1e0659c2011-05-24 12:43:12 +0100564 instr &= ~kImm24Mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 }
566 int imm24 = imm26 >> 2;
567 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +0100568 instr_at_put(pos, instr | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +0000569}
570
571
572void Assembler::print(Label* L) {
573 if (L->is_unused()) {
574 PrintF("unused label\n");
575 } else if (L->is_bound()) {
576 PrintF("bound label to %d\n", L->pos());
577 } else if (L->is_linked()) {
578 Label l = *L;
579 PrintF("unbound label");
580 while (l.is_linked()) {
581 PrintF("@ %d ", l.pos());
582 Instr instr = instr_at(l.pos());
Steve Block1e0659c2011-05-24 12:43:12 +0100583 if ((instr & ~kImm24Mask) == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000584 PrintF("value\n");
585 } else {
586 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
Steve Block1e0659c2011-05-24 12:43:12 +0100587 Condition cond = Instruction::ConditionField(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000588 const char* b;
589 const char* c;
Steve Block1e0659c2011-05-24 12:43:12 +0100590 if (cond == kSpecialCondition) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000591 b = "blx";
592 c = "";
593 } else {
594 if ((instr & B24) != 0)
595 b = "bl";
596 else
597 b = "b";
598
599 switch (cond) {
600 case eq: c = "eq"; break;
601 case ne: c = "ne"; break;
602 case hs: c = "hs"; break;
603 case lo: c = "lo"; break;
604 case mi: c = "mi"; break;
605 case pl: c = "pl"; break;
606 case vs: c = "vs"; break;
607 case vc: c = "vc"; break;
608 case hi: c = "hi"; break;
609 case ls: c = "ls"; break;
610 case ge: c = "ge"; break;
611 case lt: c = "lt"; break;
612 case gt: c = "gt"; break;
613 case le: c = "le"; break;
614 case al: c = ""; break;
615 default:
616 c = "";
617 UNREACHABLE();
618 }
619 }
620 PrintF("%s%s\n", b, c);
621 }
622 next(&l);
623 }
624 } else {
625 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
626 }
627}
628
629
630void Assembler::bind_to(Label* L, int pos) {
631 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
632 while (L->is_linked()) {
633 int fixup_pos = L->pos();
634 next(L); // call next before overwriting link with target at fixup_pos
635 target_at_put(fixup_pos, pos);
636 }
637 L->bind_to(pos);
638
639 // Keep track of the last bound label so we don't eliminate any instructions
640 // before a bound label.
641 if (pos > last_bound_pos_)
642 last_bound_pos_ = pos;
643}
644
645
646void Assembler::link_to(Label* L, Label* appendix) {
647 if (appendix->is_linked()) {
648 if (L->is_linked()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000649 // Append appendix to L's list.
Steve Blocka7e24c12009-10-30 11:49:00 +0000650 int fixup_pos;
651 int link = L->pos();
652 do {
653 fixup_pos = link;
654 link = target_at(fixup_pos);
655 } while (link > 0);
656 ASSERT(link == kEndOfChain);
657 target_at_put(fixup_pos, appendix->pos());
658 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000659 // L is empty, simply use appendix.
Steve Blocka7e24c12009-10-30 11:49:00 +0000660 *L = *appendix;
661 }
662 }
663 appendix->Unuse(); // appendix should not be used anymore
664}
665
666
667void Assembler::bind(Label* L) {
668 ASSERT(!L->is_bound()); // label can only be bound once
669 bind_to(L, pc_offset());
670}
671
672
673void Assembler::next(Label* L) {
674 ASSERT(L->is_linked());
675 int link = target_at(L->pos());
676 if (link > 0) {
677 L->link_to(link);
678 } else {
679 ASSERT(link == kEndOfChain);
680 L->Unuse();
681 }
682}
683
684
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100685static Instr EncodeMovwImmediate(uint32_t immediate) {
686 ASSERT(immediate < 0x10000);
687 return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
688}
689
690
Andrei Popescu31002712010-02-23 13:46:05 +0000691// Low-level code emission routines depending on the addressing mode.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100692// If this returns true then you have to use the rotate_imm and immed_8
693// that it returns, because it may have already changed the instruction
694// to match them!
Steve Blocka7e24c12009-10-30 11:49:00 +0000695static bool fits_shifter(uint32_t imm32,
696 uint32_t* rotate_imm,
697 uint32_t* immed_8,
698 Instr* instr) {
Andrei Popescu31002712010-02-23 13:46:05 +0000699 // imm32 must be unsigned.
Steve Blocka7e24c12009-10-30 11:49:00 +0000700 for (int rot = 0; rot < 16; rot++) {
701 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
702 if ((imm8 <= 0xff)) {
703 *rotate_imm = rot;
704 *immed_8 = imm8;
705 return true;
706 }
707 }
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100708 // If the opcode is one with a complementary version and the complementary
709 // immediate fits, change the opcode.
710 if (instr != NULL) {
711 if ((*instr & kMovMvnMask) == kMovMvnPattern) {
712 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
713 *instr ^= kMovMvnFlip;
714 return true;
715 } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
716 if (CpuFeatures::IsSupported(ARMv7)) {
717 if (imm32 < 0x10000) {
718 *instr ^= kMovwLeaveCCFlip;
719 *instr |= EncodeMovwImmediate(imm32);
720 *rotate_imm = *immed_8 = 0; // Not used for movw.
721 return true;
722 }
723 }
724 }
725 } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
726 if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
727 *instr ^= kCmpCmnFlip;
728 return true;
729 }
730 } else {
731 Instr alu_insn = (*instr & kALUMask);
Steve Block1e0659c2011-05-24 12:43:12 +0100732 if (alu_insn == ADD ||
733 alu_insn == SUB) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100734 if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
735 *instr ^= kAddSubFlip;
736 return true;
737 }
Steve Block1e0659c2011-05-24 12:43:12 +0100738 } else if (alu_insn == AND ||
739 alu_insn == BIC) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100740 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
741 *instr ^= kAndBicFlip;
742 return true;
743 }
744 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000745 }
746 }
747 return false;
748}
749
750
751// We have to use the temporary register for things that can be relocated even
752// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
753// space. There is no guarantee that the relocated location can be similarly
754// encoded.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800755bool Operand::must_use_constant_pool() const {
756 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
Steve Blockd0582a62009-12-15 09:54:21 +0000757#ifdef DEBUG
758 if (!Serializer::enabled()) {
759 Serializer::TooLateToEnableNow();
760 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000761#endif // def DEBUG
Steve Blocka7e24c12009-10-30 11:49:00 +0000762 return Serializer::enabled();
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800763 } else if (rmode_ == RelocInfo::NONE) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000764 return false;
765 }
766 return true;
767}
768
769
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100770bool Operand::is_single_instruction() const {
771 if (rm_.is_valid()) return true;
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800772 if (must_use_constant_pool()) return false;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100773 uint32_t dummy1, dummy2;
774 return fits_shifter(imm32_, &dummy1, &dummy2, NULL);
775}
776
777
Steve Blocka7e24c12009-10-30 11:49:00 +0000778void Assembler::addrmod1(Instr instr,
779 Register rn,
780 Register rd,
781 const Operand& x) {
782 CheckBuffer();
Steve Block1e0659c2011-05-24 12:43:12 +0100783 ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000784 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000785 // Immediate.
Steve Blocka7e24c12009-10-30 11:49:00 +0000786 uint32_t rotate_imm;
787 uint32_t immed_8;
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800788 if (x.must_use_constant_pool() ||
Steve Blocka7e24c12009-10-30 11:49:00 +0000789 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
790 // The immediate operand cannot be encoded as a shifter operand, so load
791 // it first to register ip and change the original instruction to use ip.
792 // However, if the original instruction is a 'mov rd, x' (not setting the
Andrei Popescu31002712010-02-23 13:46:05 +0000793 // condition code), then replace it with a 'ldr rd, [pc]'.
Steve Blocka7e24c12009-10-30 11:49:00 +0000794 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
Steve Block1e0659c2011-05-24 12:43:12 +0100795 Condition cond = Instruction::ConditionField(instr);
796 if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800797 if (x.must_use_constant_pool() || !CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100798 RecordRelocInfo(x.rmode_, x.imm32_);
799 ldr(rd, MemOperand(pc, 0), cond);
800 } else {
801 // Will probably use movw, will certainly not use constant pool.
802 mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
803 movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
804 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000805 } else {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100806 // If this is not a mov or mvn instruction we may still be able to avoid
807 // a constant pool entry by using mvn or movw.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800808 if (!x.must_use_constant_pool() &&
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100809 (instr & kMovMvnMask) != kMovMvnPattern) {
810 mov(ip, x, LeaveCC, cond);
811 } else {
812 RecordRelocInfo(x.rmode_, x.imm32_);
813 ldr(ip, MemOperand(pc, 0), cond);
814 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000815 addrmod1(instr, rn, rd, Operand(ip));
816 }
817 return;
818 }
819 instr |= I | rotate_imm*B8 | immed_8;
820 } else if (!x.rs_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000821 // Immediate shift.
Steve Blocka7e24c12009-10-30 11:49:00 +0000822 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
823 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000824 // Register shift.
Steve Blocka7e24c12009-10-30 11:49:00 +0000825 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
826 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
827 }
828 emit(instr | rn.code()*B16 | rd.code()*B12);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100829 if (rn.is(pc) || x.rm_.is(pc)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000830 // Block constant pool emission for one instruction after reading pc.
Steve Blocka7e24c12009-10-30 11:49:00 +0000831 BlockConstPoolBefore(pc_offset() + kInstrSize);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100832 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000833}
834
835
836void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
Steve Block1e0659c2011-05-24 12:43:12 +0100837 ASSERT((instr & ~(kCondMask | B | L)) == B26);
Steve Blocka7e24c12009-10-30 11:49:00 +0000838 int am = x.am_;
839 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000840 // Immediate offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000841 int offset_12 = x.offset_;
842 if (offset_12 < 0) {
843 offset_12 = -offset_12;
844 am ^= U;
845 }
846 if (!is_uint12(offset_12)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000847 // Immediate offset cannot be encoded, load it first to register ip
848 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000849 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
Steve Block1e0659c2011-05-24 12:43:12 +0100850 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
Steve Blocka7e24c12009-10-30 11:49:00 +0000851 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
852 return;
853 }
854 ASSERT(offset_12 >= 0); // no masking needed
855 instr |= offset_12;
856 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000857 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
Steve Blocka7e24c12009-10-30 11:49:00 +0000858 // register offset the constructors make sure than both shift_imm_
Andrei Popescu31002712010-02-23 13:46:05 +0000859 // and shift_op_ are initialized.
Steve Blocka7e24c12009-10-30 11:49:00 +0000860 ASSERT(!x.rm_.is(pc));
861 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
862 }
863 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
864 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
865}
866
867
868void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
Steve Block1e0659c2011-05-24 12:43:12 +0100869 ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
Steve Blocka7e24c12009-10-30 11:49:00 +0000870 ASSERT(x.rn_.is_valid());
871 int am = x.am_;
872 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000873 // Immediate offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000874 int offset_8 = x.offset_;
875 if (offset_8 < 0) {
876 offset_8 = -offset_8;
877 am ^= U;
878 }
879 if (!is_uint8(offset_8)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000880 // Immediate offset cannot be encoded, load it first to register ip
881 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000882 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
Steve Block1e0659c2011-05-24 12:43:12 +0100883 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
Steve Blocka7e24c12009-10-30 11:49:00 +0000884 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
885 return;
886 }
887 ASSERT(offset_8 >= 0); // no masking needed
888 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
889 } else if (x.shift_imm_ != 0) {
Andrei Popescu31002712010-02-23 13:46:05 +0000890 // Scaled register offset not supported, load index first
891 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000892 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
893 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
Steve Block1e0659c2011-05-24 12:43:12 +0100894 Instruction::ConditionField(instr));
Steve Blocka7e24c12009-10-30 11:49:00 +0000895 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
896 return;
897 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000898 // Register offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000899 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
900 instr |= x.rm_.code();
901 }
902 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
903 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
904}
905
906
907void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
Steve Block1e0659c2011-05-24 12:43:12 +0100908 ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
Steve Blocka7e24c12009-10-30 11:49:00 +0000909 ASSERT(rl != 0);
910 ASSERT(!rn.is(pc));
911 emit(instr | rn.code()*B16 | rl);
912}
913
914
915void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
Andrei Popescu31002712010-02-23 13:46:05 +0000916 // Unindexed addressing is not encoded by this function.
Steve Blocka7e24c12009-10-30 11:49:00 +0000917 ASSERT_EQ((B27 | B26),
Steve Block1e0659c2011-05-24 12:43:12 +0100918 (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
Steve Blocka7e24c12009-10-30 11:49:00 +0000919 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
920 int am = x.am_;
921 int offset_8 = x.offset_;
922 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
923 offset_8 >>= 2;
924 if (offset_8 < 0) {
925 offset_8 = -offset_8;
926 am ^= U;
927 }
928 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
929 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
930
Andrei Popescu31002712010-02-23 13:46:05 +0000931 // Post-indexed addressing requires W == 1; different than in addrmod2/3.
Steve Blocka7e24c12009-10-30 11:49:00 +0000932 if ((am & P) == 0)
933 am |= W;
934
935 ASSERT(offset_8 >= 0); // no masking needed
936 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
937}
938
939
940int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
941 int target_pos;
942 if (L->is_bound()) {
943 target_pos = L->pos();
944 } else {
945 if (L->is_linked()) {
946 target_pos = L->pos(); // L's link
947 } else {
948 target_pos = kEndOfChain;
949 }
950 L->link_to(pc_offset());
951 }
952
953 // Block the emission of the constant pool, since the branch instruction must
Andrei Popescu31002712010-02-23 13:46:05 +0000954 // be emitted at the pc offset recorded by the label.
Steve Blocka7e24c12009-10-30 11:49:00 +0000955 BlockConstPoolBefore(pc_offset() + kInstrSize);
956 return target_pos - (pc_offset() + kPcLoadDelta);
957}
958
959
960void Assembler::label_at_put(Label* L, int at_offset) {
961 int target_pos;
962 if (L->is_bound()) {
963 target_pos = L->pos();
964 } else {
965 if (L->is_linked()) {
966 target_pos = L->pos(); // L's link
967 } else {
968 target_pos = kEndOfChain;
969 }
970 L->link_to(at_offset);
971 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
972 }
973}
974
975
Andrei Popescu31002712010-02-23 13:46:05 +0000976// Branch instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +0000977void Assembler::b(int branch_offset, Condition cond) {
978 ASSERT((branch_offset & 3) == 0);
979 int imm24 = branch_offset >> 2;
980 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +0100981 emit(cond | B27 | B25 | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +0000982
Steve Block6ded16b2010-05-10 14:33:55 +0100983 if (cond == al) {
Andrei Popescu31002712010-02-23 13:46:05 +0000984 // Dead code is a good location to emit the constant pool.
Steve Blocka7e24c12009-10-30 11:49:00 +0000985 CheckConstPool(false, false);
Steve Block6ded16b2010-05-10 14:33:55 +0100986 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000987}
988
989
990void Assembler::bl(int branch_offset, Condition cond) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100991 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +0000992 ASSERT((branch_offset & 3) == 0);
993 int imm24 = branch_offset >> 2;
994 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +0100995 emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +0000996}
997
998
999void Assembler::blx(int branch_offset) { // v5 and above
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001000 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001001 ASSERT((branch_offset & 1) == 0);
1002 int h = ((branch_offset & 2) >> 1)*B24;
1003 int imm24 = branch_offset >> 2;
1004 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +01001005 emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +00001006}
1007
1008
1009void Assembler::blx(Register target, Condition cond) { // v5 and above
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001010 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001011 ASSERT(!target.is(pc));
Steve Block1e0659c2011-05-24 12:43:12 +01001012 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
Steve Blocka7e24c12009-10-30 11:49:00 +00001013}
1014
1015
1016void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001017 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001018 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
Steve Block1e0659c2011-05-24 12:43:12 +01001019 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
Steve Blocka7e24c12009-10-30 11:49:00 +00001020}
1021
1022
Andrei Popescu31002712010-02-23 13:46:05 +00001023// Data-processing instructions.
1024
Steve Blocka7e24c12009-10-30 11:49:00 +00001025void Assembler::and_(Register dst, Register src1, const Operand& src2,
1026 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001027 addrmod1(cond | AND | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001028}
1029
1030
1031void Assembler::eor(Register dst, Register src1, const Operand& src2,
1032 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001033 addrmod1(cond | EOR | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001034}
1035
1036
1037void Assembler::sub(Register dst, Register src1, const Operand& src2,
1038 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001039 addrmod1(cond | SUB | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001040}
1041
1042
1043void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1044 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001045 addrmod1(cond | RSB | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001046}
1047
1048
1049void Assembler::add(Register dst, Register src1, const Operand& src2,
1050 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001051 addrmod1(cond | ADD | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001052
1053 // Eliminate pattern: push(r), pop()
1054 // str(src, MemOperand(sp, 4, NegPreIndex), al);
1055 // add(sp, sp, Operand(kPointerSize));
1056 // Both instructions can be eliminated.
Leon Clarkef7060e22010-06-03 12:02:55 +01001057 if (can_peephole_optimize(2) &&
Andrei Popescu31002712010-02-23 13:46:05 +00001058 // Pattern.
Steve Blocka7e24c12009-10-30 11:49:00 +00001059 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
Steve Block1e0659c2011-05-24 12:43:12 +01001060 (instr_at(pc_ - 2 * kInstrSize) & ~kRdMask) == kPushRegPattern) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001061 pc_ -= 2 * kInstrSize;
Leon Clarkef7060e22010-06-03 12:02:55 +01001062 if (FLAG_print_peephole_optimization) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001063 PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
1064 }
1065 }
1066}
1067
1068
1069void Assembler::adc(Register dst, Register src1, const Operand& src2,
1070 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001071 addrmod1(cond | ADC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001072}
1073
1074
1075void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1076 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001077 addrmod1(cond | SBC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001078}
1079
1080
1081void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1082 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001083 addrmod1(cond | RSC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001084}
1085
1086
1087void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001088 addrmod1(cond | TST | S, src1, r0, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001089}
1090
1091
1092void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001093 addrmod1(cond | TEQ | S, src1, r0, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001094}
1095
1096
1097void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001098 addrmod1(cond | CMP | S, src1, r0, src2);
1099}
1100
1101
1102void Assembler::cmp_raw_immediate(
1103 Register src, int raw_immediate, Condition cond) {
1104 ASSERT(is_uint12(raw_immediate));
1105 emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
Steve Blocka7e24c12009-10-30 11:49:00 +00001106}
1107
1108
1109void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001110 addrmod1(cond | CMN | S, src1, r0, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001111}
1112
1113
1114void Assembler::orr(Register dst, Register src1, const Operand& src2,
1115 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001116 addrmod1(cond | ORR | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001117}
1118
1119
1120void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1121 if (dst.is(pc)) {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001122 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001123 }
Steve Block6ded16b2010-05-10 14:33:55 +01001124 // Don't allow nop instructions in the form mov rn, rn to be generated using
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08001125 // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1126 // or MarkCode(int/NopMarkerTypes) pseudo instructions.
Steve Block6ded16b2010-05-10 14:33:55 +01001127 ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
Steve Block1e0659c2011-05-24 12:43:12 +01001128 addrmod1(cond | MOV | s, r0, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001129}
1130
1131
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01001132void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1133 ASSERT(immediate < 0x10000);
1134 mov(reg, Operand(immediate), LeaveCC, cond);
1135}
1136
1137
1138void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1139 emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1140}
1141
1142
Steve Blocka7e24c12009-10-30 11:49:00 +00001143void Assembler::bic(Register dst, Register src1, const Operand& src2,
1144 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001145 addrmod1(cond | BIC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001146}
1147
1148
1149void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001150 addrmod1(cond | MVN | s, r0, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001151}
1152
1153
Andrei Popescu31002712010-02-23 13:46:05 +00001154// Multiply instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001155void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1156 SBit s, Condition cond) {
1157 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1158 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1159 src2.code()*B8 | B7 | B4 | src1.code());
1160}
1161
1162
1163void Assembler::mul(Register dst, Register src1, Register src2,
1164 SBit s, Condition cond) {
1165 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1166 // dst goes in bits 16-19 for this instruction!
1167 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1168}
1169
1170
1171void Assembler::smlal(Register dstL,
1172 Register dstH,
1173 Register src1,
1174 Register src2,
1175 SBit s,
1176 Condition cond) {
1177 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1178 ASSERT(!dstL.is(dstH));
1179 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1180 src2.code()*B8 | B7 | B4 | src1.code());
1181}
1182
1183
1184void Assembler::smull(Register dstL,
1185 Register dstH,
1186 Register src1,
1187 Register src2,
1188 SBit s,
1189 Condition cond) {
1190 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1191 ASSERT(!dstL.is(dstH));
1192 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1193 src2.code()*B8 | B7 | B4 | src1.code());
1194}
1195
1196
1197void Assembler::umlal(Register dstL,
1198 Register dstH,
1199 Register src1,
1200 Register src2,
1201 SBit s,
1202 Condition cond) {
1203 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1204 ASSERT(!dstL.is(dstH));
1205 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1206 src2.code()*B8 | B7 | B4 | src1.code());
1207}
1208
1209
1210void Assembler::umull(Register dstL,
1211 Register dstH,
1212 Register src1,
1213 Register src2,
1214 SBit s,
1215 Condition cond) {
1216 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1217 ASSERT(!dstL.is(dstH));
1218 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1219 src2.code()*B8 | B7 | B4 | src1.code());
1220}
1221
1222
Andrei Popescu31002712010-02-23 13:46:05 +00001223// Miscellaneous arithmetic instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001224void Assembler::clz(Register dst, Register src, Condition cond) {
1225 // v5 and above.
1226 ASSERT(!dst.is(pc) && !src.is(pc));
1227 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
Steve Block1e0659c2011-05-24 12:43:12 +01001228 15*B8 | CLZ | src.code());
Steve Blocka7e24c12009-10-30 11:49:00 +00001229}
1230
1231
Kristian Monsen50ef84f2010-07-29 15:18:00 +01001232// Saturating instructions.
1233
1234// Unsigned saturate.
1235void Assembler::usat(Register dst,
1236 int satpos,
1237 const Operand& src,
1238 Condition cond) {
1239 // v6 and above.
1240 ASSERT(CpuFeatures::IsSupported(ARMv7));
1241 ASSERT(!dst.is(pc) && !src.rm_.is(pc));
1242 ASSERT((satpos >= 0) && (satpos <= 31));
1243 ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1244 ASSERT(src.rs_.is(no_reg));
1245
1246 int sh = 0;
1247 if (src.shift_op_ == ASR) {
1248 sh = 1;
1249 }
1250
1251 emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1252 src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1253}
1254
1255
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001256// Bitfield manipulation instructions.
1257
1258// Unsigned bit field extract.
1259// Extracts #width adjacent bits from position #lsb in a register, and
1260// writes them to the low bits of a destination register.
1261// ubfx dst, src, #lsb, #width
1262void Assembler::ubfx(Register dst,
1263 Register src,
1264 int lsb,
1265 int width,
1266 Condition cond) {
1267 // v7 and above.
1268 ASSERT(CpuFeatures::IsSupported(ARMv7));
1269 ASSERT(!dst.is(pc) && !src.is(pc));
1270 ASSERT((lsb >= 0) && (lsb <= 31));
1271 ASSERT((width >= 1) && (width <= (32 - lsb)));
1272 emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1273 lsb*B7 | B6 | B4 | src.code());
1274}
1275
1276
1277// Signed bit field extract.
1278// Extracts #width adjacent bits from position #lsb in a register, and
1279// writes them to the low bits of a destination register. The extracted
1280// value is sign extended to fill the destination register.
1281// sbfx dst, src, #lsb, #width
1282void Assembler::sbfx(Register dst,
1283 Register src,
1284 int lsb,
1285 int width,
1286 Condition cond) {
1287 // v7 and above.
1288 ASSERT(CpuFeatures::IsSupported(ARMv7));
1289 ASSERT(!dst.is(pc) && !src.is(pc));
1290 ASSERT((lsb >= 0) && (lsb <= 31));
1291 ASSERT((width >= 1) && (width <= (32 - lsb)));
1292 emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1293 lsb*B7 | B6 | B4 | src.code());
1294}
1295
1296
1297// Bit field clear.
1298// Sets #width adjacent bits at position #lsb in the destination register
1299// to zero, preserving the value of the other bits.
1300// bfc dst, #lsb, #width
1301void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1302 // v7 and above.
1303 ASSERT(CpuFeatures::IsSupported(ARMv7));
1304 ASSERT(!dst.is(pc));
1305 ASSERT((lsb >= 0) && (lsb <= 31));
1306 ASSERT((width >= 1) && (width <= (32 - lsb)));
1307 int msb = lsb + width - 1;
1308 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1309}
1310
1311
1312// Bit field insert.
1313// Inserts #width adjacent bits from the low bits of the source register
1314// into position #lsb of the destination register.
1315// bfi dst, src, #lsb, #width
1316void Assembler::bfi(Register dst,
1317 Register src,
1318 int lsb,
1319 int width,
1320 Condition cond) {
1321 // v7 and above.
1322 ASSERT(CpuFeatures::IsSupported(ARMv7));
1323 ASSERT(!dst.is(pc) && !src.is(pc));
1324 ASSERT((lsb >= 0) && (lsb <= 31));
1325 ASSERT((width >= 1) && (width <= (32 - lsb)));
1326 int msb = lsb + width - 1;
1327 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1328 src.code());
1329}
1330
1331
Andrei Popescu31002712010-02-23 13:46:05 +00001332// Status register access instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001333void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1334 ASSERT(!dst.is(pc));
1335 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1336}
1337
1338
1339void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1340 Condition cond) {
1341 ASSERT(fields >= B16 && fields < B20); // at least one field set
1342 Instr instr;
1343 if (!src.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +00001344 // Immediate.
Steve Blocka7e24c12009-10-30 11:49:00 +00001345 uint32_t rotate_imm;
1346 uint32_t immed_8;
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001347 if (src.must_use_constant_pool() ||
Steve Blocka7e24c12009-10-30 11:49:00 +00001348 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
Andrei Popescu31002712010-02-23 13:46:05 +00001349 // Immediate operand cannot be encoded, load it first to register ip.
Steve Blocka7e24c12009-10-30 11:49:00 +00001350 RecordRelocInfo(src.rmode_, src.imm32_);
1351 ldr(ip, MemOperand(pc, 0), cond);
1352 msr(fields, Operand(ip), cond);
1353 return;
1354 }
1355 instr = I | rotate_imm*B8 | immed_8;
1356 } else {
1357 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
1358 instr = src.rm_.code();
1359 }
1360 emit(cond | instr | B24 | B21 | fields | 15*B12);
1361}
1362
1363
Andrei Popescu31002712010-02-23 13:46:05 +00001364// Load/Store instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001365void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1366 if (dst.is(pc)) {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001367 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001368 }
1369 addrmod2(cond | B26 | L, dst, src);
1370
Leon Clarkef7060e22010-06-03 12:02:55 +01001371 // Eliminate pattern: push(ry), pop(rx)
1372 // str(ry, MemOperand(sp, 4, NegPreIndex), al)
1373 // ldr(rx, MemOperand(sp, 4, PostIndex), al)
1374 // Both instructions can be eliminated if ry = rx.
1375 // If ry != rx, a register copy from ry to rx is inserted
1376 // after eliminating the push and the pop instructions.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001377 if (can_peephole_optimize(2)) {
1378 Instr push_instr = instr_at(pc_ - 2 * kInstrSize);
1379 Instr pop_instr = instr_at(pc_ - 1 * kInstrSize);
Leon Clarkef7060e22010-06-03 12:02:55 +01001380
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001381 if (IsPush(push_instr) && IsPop(pop_instr)) {
Steve Block1e0659c2011-05-24 12:43:12 +01001382 if (Instruction::RdValue(pop_instr) != Instruction::RdValue(push_instr)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001383 // For consecutive push and pop on different registers,
1384 // we delete both the push & pop and insert a register move.
1385 // push ry, pop rx --> mov rx, ry
1386 Register reg_pushed, reg_popped;
1387 reg_pushed = GetRd(push_instr);
1388 reg_popped = GetRd(pop_instr);
1389 pc_ -= 2 * kInstrSize;
1390 // Insert a mov instruction, which is better than a pair of push & pop
1391 mov(reg_popped, reg_pushed);
1392 if (FLAG_print_peephole_optimization) {
1393 PrintF("%x push/pop (diff reg) replaced by a reg move\n",
1394 pc_offset());
1395 }
1396 } else {
1397 // For consecutive push and pop on the same register,
1398 // both the push and the pop can be deleted.
1399 pc_ -= 2 * kInstrSize;
1400 if (FLAG_print_peephole_optimization) {
1401 PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
1402 }
Leon Clarkef7060e22010-06-03 12:02:55 +01001403 }
1404 }
1405 }
1406
1407 if (can_peephole_optimize(2)) {
1408 Instr str_instr = instr_at(pc_ - 2 * kInstrSize);
1409 Instr ldr_instr = instr_at(pc_ - 1 * kInstrSize);
1410
1411 if ((IsStrRegFpOffset(str_instr) &&
1412 IsLdrRegFpOffset(ldr_instr)) ||
1413 (IsStrRegFpNegOffset(str_instr) &&
1414 IsLdrRegFpNegOffset(ldr_instr))) {
1415 if ((ldr_instr & kLdrStrInstrArgumentMask) ==
1416 (str_instr & kLdrStrInstrArgumentMask)) {
1417 // Pattern: Ldr/str same fp+offset, same register.
1418 //
1419 // The following:
1420 // str rx, [fp, #-12]
1421 // ldr rx, [fp, #-12]
1422 //
1423 // Becomes:
1424 // str rx, [fp, #-12]
1425
1426 pc_ -= 1 * kInstrSize;
1427 if (FLAG_print_peephole_optimization) {
1428 PrintF("%x str/ldr (fp + same offset), same reg\n", pc_offset());
1429 }
1430 } else if ((ldr_instr & kLdrStrOffsetMask) ==
1431 (str_instr & kLdrStrOffsetMask)) {
1432 // Pattern: Ldr/str same fp+offset, different register.
1433 //
1434 // The following:
1435 // str rx, [fp, #-12]
1436 // ldr ry, [fp, #-12]
1437 //
1438 // Becomes:
1439 // str rx, [fp, #-12]
1440 // mov ry, rx
1441
1442 Register reg_stored, reg_loaded;
1443 reg_stored = GetRd(str_instr);
1444 reg_loaded = GetRd(ldr_instr);
1445 pc_ -= 1 * kInstrSize;
1446 // Insert a mov instruction, which is better than ldr.
1447 mov(reg_loaded, reg_stored);
1448 if (FLAG_print_peephole_optimization) {
1449 PrintF("%x str/ldr (fp + same offset), diff reg \n", pc_offset());
1450 }
1451 }
1452 }
1453 }
1454
1455 if (can_peephole_optimize(3)) {
1456 Instr mem_write_instr = instr_at(pc_ - 3 * kInstrSize);
1457 Instr ldr_instr = instr_at(pc_ - 2 * kInstrSize);
1458 Instr mem_read_instr = instr_at(pc_ - 1 * kInstrSize);
1459 if (IsPush(mem_write_instr) &&
1460 IsPop(mem_read_instr)) {
1461 if ((IsLdrRegFpOffset(ldr_instr) ||
1462 IsLdrRegFpNegOffset(ldr_instr))) {
Steve Block1e0659c2011-05-24 12:43:12 +01001463 if (Instruction::RdValue(mem_write_instr) ==
1464 Instruction::RdValue(mem_read_instr)) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001465 // Pattern: push & pop from/to same register,
1466 // with a fp+offset ldr in between
1467 //
1468 // The following:
1469 // str rx, [sp, #-4]!
1470 // ldr rz, [fp, #-24]
1471 // ldr rx, [sp], #+4
1472 //
1473 // Becomes:
1474 // if(rx == rz)
1475 // delete all
1476 // else
1477 // ldr rz, [fp, #-24]
1478
Steve Block1e0659c2011-05-24 12:43:12 +01001479 if (Instruction::RdValue(mem_write_instr) ==
1480 Instruction::RdValue(ldr_instr)) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001481 pc_ -= 3 * kInstrSize;
1482 } else {
1483 pc_ -= 3 * kInstrSize;
1484 // Reinsert back the ldr rz.
1485 emit(ldr_instr);
1486 }
1487 if (FLAG_print_peephole_optimization) {
1488 PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset());
1489 }
1490 } else {
1491 // Pattern: push & pop from/to different registers
1492 // with a fp+offset ldr in between
1493 //
1494 // The following:
1495 // str rx, [sp, #-4]!
1496 // ldr rz, [fp, #-24]
1497 // ldr ry, [sp], #+4
1498 //
1499 // Becomes:
1500 // if(ry == rz)
1501 // mov ry, rx;
1502 // else if(rx != rz)
1503 // ldr rz, [fp, #-24]
1504 // mov ry, rx
1505 // else if((ry != rz) || (rx == rz)) becomes:
1506 // mov ry, rx
1507 // ldr rz, [fp, #-24]
1508
1509 Register reg_pushed, reg_popped;
Steve Block1e0659c2011-05-24 12:43:12 +01001510 if (Instruction::RdValue(mem_read_instr) ==
1511 Instruction::RdValue(ldr_instr)) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001512 reg_pushed = GetRd(mem_write_instr);
1513 reg_popped = GetRd(mem_read_instr);
1514 pc_ -= 3 * kInstrSize;
1515 mov(reg_popped, reg_pushed);
Steve Block1e0659c2011-05-24 12:43:12 +01001516 } else if (Instruction::RdValue(mem_write_instr) !=
1517 Instruction::RdValue(ldr_instr)) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001518 reg_pushed = GetRd(mem_write_instr);
1519 reg_popped = GetRd(mem_read_instr);
1520 pc_ -= 3 * kInstrSize;
1521 emit(ldr_instr);
1522 mov(reg_popped, reg_pushed);
Steve Block1e0659c2011-05-24 12:43:12 +01001523 } else if ((Instruction::RdValue(mem_read_instr) !=
1524 Instruction::RdValue(ldr_instr)) ||
1525 (Instruction::RdValue(mem_write_instr) ==
1526 Instruction::RdValue(ldr_instr))) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001527 reg_pushed = GetRd(mem_write_instr);
1528 reg_popped = GetRd(mem_read_instr);
1529 pc_ -= 3 * kInstrSize;
1530 mov(reg_popped, reg_pushed);
1531 emit(ldr_instr);
1532 }
1533 if (FLAG_print_peephole_optimization) {
1534 PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset());
1535 }
1536 }
1537 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001538 }
1539 }
1540}
1541
1542
1543void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1544 addrmod2(cond | B26, src, dst);
1545
1546 // Eliminate pattern: pop(), push(r)
1547 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
1548 // -> str r, [sp, 0], al
Leon Clarkef7060e22010-06-03 12:02:55 +01001549 if (can_peephole_optimize(2) &&
Andrei Popescu31002712010-02-23 13:46:05 +00001550 // Pattern.
Steve Blocka7e24c12009-10-30 11:49:00 +00001551 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
1552 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
1553 pc_ -= 2 * kInstrSize;
1554 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
Leon Clarkef7060e22010-06-03 12:02:55 +01001555 if (FLAG_print_peephole_optimization) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001556 PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
1557 }
1558 }
1559}
1560
1561
1562void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1563 addrmod2(cond | B26 | B | L, dst, src);
1564}
1565
1566
1567void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1568 addrmod2(cond | B26 | B, src, dst);
1569}
1570
1571
1572void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1573 addrmod3(cond | L | B7 | H | B4, dst, src);
1574}
1575
1576
1577void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1578 addrmod3(cond | B7 | H | B4, src, dst);
1579}
1580
1581
1582void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1583 addrmod3(cond | L | B7 | S6 | B4, dst, src);
1584}
1585
1586
1587void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1588 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1589}
1590
1591
Leon Clarkef7060e22010-06-03 12:02:55 +01001592void Assembler::ldrd(Register dst1, Register dst2,
1593 const MemOperand& src, Condition cond) {
1594 ASSERT(CpuFeatures::IsEnabled(ARMv7));
Kristian Monsen25f61362010-05-21 11:50:48 +01001595 ASSERT(src.rm().is(no_reg));
Leon Clarkef7060e22010-06-03 12:02:55 +01001596 ASSERT(!dst1.is(lr)); // r14.
1597 ASSERT_EQ(0, dst1.code() % 2);
1598 ASSERT_EQ(dst1.code() + 1, dst2.code());
1599 addrmod3(cond | B7 | B6 | B4, dst1, src);
Kristian Monsen25f61362010-05-21 11:50:48 +01001600}
1601
1602
Leon Clarkef7060e22010-06-03 12:02:55 +01001603void Assembler::strd(Register src1, Register src2,
1604 const MemOperand& dst, Condition cond) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001605 ASSERT(dst.rm().is(no_reg));
Leon Clarkef7060e22010-06-03 12:02:55 +01001606 ASSERT(!src1.is(lr)); // r14.
1607 ASSERT_EQ(0, src1.code() % 2);
1608 ASSERT_EQ(src1.code() + 1, src2.code());
1609 ASSERT(CpuFeatures::IsEnabled(ARMv7));
1610 addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
Kristian Monsen25f61362010-05-21 11:50:48 +01001611}
1612
Andrei Popescu31002712010-02-23 13:46:05 +00001613// Load/Store multiple instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001614void Assembler::ldm(BlockAddrMode am,
1615 Register base,
1616 RegList dst,
1617 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001618 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
Steve Blocka7e24c12009-10-30 11:49:00 +00001619 ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
1620
1621 addrmod4(cond | B27 | am | L, base, dst);
1622
Andrei Popescu31002712010-02-23 13:46:05 +00001623 // Emit the constant pool after a function return implemented by ldm ..{..pc}.
Steve Blocka7e24c12009-10-30 11:49:00 +00001624 if (cond == al && (dst & pc.bit()) != 0) {
1625 // There is a slight chance that the ldm instruction was actually a call,
1626 // in which case it would be wrong to return into the constant pool; we
1627 // recognize this case by checking if the emission of the pool was blocked
1628 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1629 // the case, we emit a jump over the pool.
1630 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1631 }
1632}
1633
1634
1635void Assembler::stm(BlockAddrMode am,
1636 Register base,
1637 RegList src,
1638 Condition cond) {
1639 addrmod4(cond | B27 | am, base, src);
1640}
1641
1642
Andrei Popescu31002712010-02-23 13:46:05 +00001643// Exception-generating instructions and debugging support.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001644// Stops with a non-negative code less than kNumOfWatchedStops support
1645// enabling/disabling and a counter feature. See simulator-arm.h .
1646void Assembler::stop(const char* msg, Condition cond, int32_t code) {
Andrei Popescu402d9372010-02-26 13:31:12 +00001647#ifndef __arm__
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001648 ASSERT(code >= kDefaultStopCode);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001649 // The Simulator will handle the stop instruction and get the message address.
1650 // It expects to find the address just after the svc instruction.
1651 BlockConstPoolFor(2);
1652 if (code >= 0) {
Steve Block1e0659c2011-05-24 12:43:12 +01001653 svc(kStopCode + code, cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001654 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01001655 svc(kStopCode + kMaxStopCode, cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001656 }
1657 emit(reinterpret_cast<Instr>(msg));
Andrei Popescu402d9372010-02-26 13:31:12 +00001658#else // def __arm__
1659#ifdef CAN_USE_ARMV5_INSTRUCTIONS
Steve Block1e0659c2011-05-24 12:43:12 +01001660 if (cond != al) {
1661 Label skip;
1662 b(&skip, NegateCondition(cond));
1663 bkpt(0);
1664 bind(&skip);
1665 } else {
1666 bkpt(0);
1667 }
Andrei Popescu402d9372010-02-26 13:31:12 +00001668#else // ndef CAN_USE_ARMV5_INSTRUCTIONS
Ben Murdochb0fe1622011-05-05 13:52:32 +01001669 svc(0x9f0001, cond);
Andrei Popescu402d9372010-02-26 13:31:12 +00001670#endif // ndef CAN_USE_ARMV5_INSTRUCTIONS
1671#endif // def __arm__
Steve Blocka7e24c12009-10-30 11:49:00 +00001672}
1673
1674
1675void Assembler::bkpt(uint32_t imm16) { // v5 and above
1676 ASSERT(is_uint16(imm16));
Steve Block1e0659c2011-05-24 12:43:12 +01001677 emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
Steve Blocka7e24c12009-10-30 11:49:00 +00001678}
1679
1680
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001681void Assembler::svc(uint32_t imm24, Condition cond) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001682 ASSERT(is_uint24(imm24));
1683 emit(cond | 15*B24 | imm24);
1684}
1685
1686
Andrei Popescu31002712010-02-23 13:46:05 +00001687// Coprocessor instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001688void Assembler::cdp(Coprocessor coproc,
1689 int opcode_1,
1690 CRegister crd,
1691 CRegister crn,
1692 CRegister crm,
1693 int opcode_2,
1694 Condition cond) {
1695 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
1696 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
1697 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
1698}
1699
1700
1701void Assembler::cdp2(Coprocessor coproc,
1702 int opcode_1,
1703 CRegister crd,
1704 CRegister crn,
1705 CRegister crm,
1706 int opcode_2) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001707 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001708}
1709
1710
1711void Assembler::mcr(Coprocessor coproc,
1712 int opcode_1,
1713 Register rd,
1714 CRegister crn,
1715 CRegister crm,
1716 int opcode_2,
1717 Condition cond) {
1718 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1719 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
1720 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1721}
1722
1723
1724void Assembler::mcr2(Coprocessor coproc,
1725 int opcode_1,
1726 Register rd,
1727 CRegister crn,
1728 CRegister crm,
1729 int opcode_2) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001730 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001731}
1732
1733
1734void Assembler::mrc(Coprocessor coproc,
1735 int opcode_1,
1736 Register rd,
1737 CRegister crn,
1738 CRegister crm,
1739 int opcode_2,
1740 Condition cond) {
1741 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1742 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
1743 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1744}
1745
1746
1747void Assembler::mrc2(Coprocessor coproc,
1748 int opcode_1,
1749 Register rd,
1750 CRegister crn,
1751 CRegister crm,
1752 int opcode_2) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001753 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001754}
1755
1756
1757void Assembler::ldc(Coprocessor coproc,
1758 CRegister crd,
1759 const MemOperand& src,
1760 LFlag l,
1761 Condition cond) {
1762 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
1763}
1764
1765
1766void Assembler::ldc(Coprocessor coproc,
1767 CRegister crd,
1768 Register rn,
1769 int option,
1770 LFlag l,
1771 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001772 // Unindexed addressing.
Steve Blocka7e24c12009-10-30 11:49:00 +00001773 ASSERT(is_uint8(option));
1774 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
1775 coproc*B8 | (option & 255));
1776}
1777
1778
1779void Assembler::ldc2(Coprocessor coproc,
1780 CRegister crd,
1781 const MemOperand& src,
1782 LFlag l) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001783 ldc(coproc, crd, src, l, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001784}
1785
1786
1787void Assembler::ldc2(Coprocessor coproc,
1788 CRegister crd,
1789 Register rn,
1790 int option,
1791 LFlag l) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001792 ldc(coproc, crd, rn, option, l, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001793}
1794
1795
1796void Assembler::stc(Coprocessor coproc,
1797 CRegister crd,
1798 const MemOperand& dst,
1799 LFlag l,
1800 Condition cond) {
1801 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
1802}
1803
1804
1805void Assembler::stc(Coprocessor coproc,
1806 CRegister crd,
1807 Register rn,
1808 int option,
1809 LFlag l,
1810 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001811 // Unindexed addressing.
Steve Blocka7e24c12009-10-30 11:49:00 +00001812 ASSERT(is_uint8(option));
1813 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
1814 coproc*B8 | (option & 255));
1815}
1816
1817
1818void Assembler::stc2(Coprocessor
1819 coproc, CRegister crd,
1820 const MemOperand& dst,
1821 LFlag l) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001822 stc(coproc, crd, dst, l, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001823}
1824
1825
1826void Assembler::stc2(Coprocessor coproc,
1827 CRegister crd,
1828 Register rn,
1829 int option,
1830 LFlag l) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001831 stc(coproc, crd, rn, option, l, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001832}
1833
1834
Steve Blockd0582a62009-12-15 09:54:21 +00001835// Support for VFP.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001836
Leon Clarked91b9f72010-01-27 17:25:45 +00001837void Assembler::vldr(const DwVfpRegister dst,
1838 const Register base,
1839 int offset,
1840 const Condition cond) {
1841 // Ddst = MEM(Rbase + offset).
1842 // Instruction details available in ARM DDI 0406A, A8-628.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001843 // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
Leon Clarked91b9f72010-01-27 17:25:45 +00001844 // Vdst(15-12) | 1011(11-8) | offset
1845 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001846 int u = 1;
1847 if (offset < 0) {
1848 offset = -offset;
1849 u = 0;
1850 }
Leon Clarked91b9f72010-01-27 17:25:45 +00001851 ASSERT(offset % 4 == 0);
Steve Block6ded16b2010-05-10 14:33:55 +01001852 ASSERT((offset / 4) < 256);
Iain Merrick75681382010-08-19 15:07:18 +01001853 ASSERT(offset >= 0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001854 emit(cond | u*B23 | 0xD1*B20 | base.code()*B16 | dst.code()*B12 |
Leon Clarked91b9f72010-01-27 17:25:45 +00001855 0xB*B8 | ((offset / 4) & 255));
1856}
1857
1858
Steve Block6ded16b2010-05-10 14:33:55 +01001859void Assembler::vldr(const SwVfpRegister dst,
1860 const Register base,
1861 int offset,
1862 const Condition cond) {
1863 // Sdst = MEM(Rbase + offset).
1864 // Instruction details available in ARM DDI 0406A, A8-628.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001865 // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
Steve Block6ded16b2010-05-10 14:33:55 +01001866 // Vdst(15-12) | 1010(11-8) | offset
1867 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001868 int u = 1;
1869 if (offset < 0) {
1870 offset = -offset;
1871 u = 0;
1872 }
Steve Block6ded16b2010-05-10 14:33:55 +01001873 ASSERT(offset % 4 == 0);
1874 ASSERT((offset / 4) < 256);
Iain Merrick75681382010-08-19 15:07:18 +01001875 ASSERT(offset >= 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001876 int sd, d;
1877 dst.split_code(&sd, &d);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001878 emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
Steve Block6ded16b2010-05-10 14:33:55 +01001879 0xA*B8 | ((offset / 4) & 255));
1880}
1881
1882
Leon Clarked91b9f72010-01-27 17:25:45 +00001883void Assembler::vstr(const DwVfpRegister src,
1884 const Register base,
1885 int offset,
1886 const Condition cond) {
1887 // MEM(Rbase + offset) = Dsrc.
1888 // Instruction details available in ARM DDI 0406A, A8-786.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001889 // cond(31-28) | 1101(27-24)| U000(23-20) | | Rbase(19-16) |
Leon Clarked91b9f72010-01-27 17:25:45 +00001890 // Vsrc(15-12) | 1011(11-8) | (offset/4)
1891 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001892 int u = 1;
1893 if (offset < 0) {
1894 offset = -offset;
1895 u = 0;
1896 }
Leon Clarked91b9f72010-01-27 17:25:45 +00001897 ASSERT(offset % 4 == 0);
Steve Block6ded16b2010-05-10 14:33:55 +01001898 ASSERT((offset / 4) < 256);
Iain Merrick75681382010-08-19 15:07:18 +01001899 ASSERT(offset >= 0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001900 emit(cond | u*B23 | 0xD0*B20 | base.code()*B16 | src.code()*B12 |
Leon Clarked91b9f72010-01-27 17:25:45 +00001901 0xB*B8 | ((offset / 4) & 255));
1902}
1903
1904
Iain Merrick75681382010-08-19 15:07:18 +01001905void Assembler::vstr(const SwVfpRegister src,
1906 const Register base,
1907 int offset,
1908 const Condition cond) {
1909 // MEM(Rbase + offset) = SSrc.
1910 // Instruction details available in ARM DDI 0406A, A8-786.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001911 // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
Iain Merrick75681382010-08-19 15:07:18 +01001912 // Vdst(15-12) | 1010(11-8) | (offset/4)
1913 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001914 int u = 1;
1915 if (offset < 0) {
1916 offset = -offset;
1917 u = 0;
1918 }
Iain Merrick75681382010-08-19 15:07:18 +01001919 ASSERT(offset % 4 == 0);
1920 ASSERT((offset / 4) < 256);
1921 ASSERT(offset >= 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001922 int sd, d;
1923 src.split_code(&sd, &d);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001924 emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
Iain Merrick75681382010-08-19 15:07:18 +01001925 0xA*B8 | ((offset / 4) & 255));
1926}
1927
1928
Ben Murdoch3bec4d22010-07-22 14:51:16 +01001929static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
1930 uint64_t i;
1931 memcpy(&i, &d, 8);
1932
1933 *lo = i & 0xffffffff;
1934 *hi = i >> 32;
1935}
1936
1937// Only works for little endian floating point formats.
1938// We don't support VFP on the mixed endian floating point platform.
1939static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
1940 ASSERT(CpuFeatures::IsEnabled(VFP3));
1941
1942 // VMOV can accept an immediate of the form:
1943 //
1944 // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
1945 //
1946 // The immediate is encoded using an 8-bit quantity, comprised of two
1947 // 4-bit fields. For an 8-bit immediate of the form:
1948 //
1949 // [abcdefgh]
1950 //
1951 // where a is the MSB and h is the LSB, an immediate 64-bit double can be
1952 // created of the form:
1953 //
1954 // [aBbbbbbb,bbcdefgh,00000000,00000000,
1955 // 00000000,00000000,00000000,00000000]
1956 //
1957 // where B = ~b.
1958 //
1959
1960 uint32_t lo, hi;
1961 DoubleAsTwoUInt32(d, &lo, &hi);
1962
1963 // The most obvious constraint is the long block of zeroes.
1964 if ((lo != 0) || ((hi & 0xffff) != 0)) {
1965 return false;
1966 }
1967
1968 // Bits 62:55 must be all clear or all set.
1969 if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
1970 return false;
1971 }
1972
1973 // Bit 63 must be NOT bit 62.
1974 if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
1975 return false;
1976 }
1977
1978 // Create the encoded immediate in the form:
1979 // [00000000,0000abcd,00000000,0000efgh]
1980 *encoding = (hi >> 16) & 0xf; // Low nybble.
1981 *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
1982 *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
1983
1984 return true;
1985}
1986
1987
1988void Assembler::vmov(const DwVfpRegister dst,
1989 double imm,
1990 const Condition cond) {
1991 // Dd = immediate
1992 // Instruction details available in ARM DDI 0406B, A8-640.
1993 ASSERT(CpuFeatures::IsEnabled(VFP3));
1994
1995 uint32_t enc;
1996 if (FitsVMOVDoubleImmediate(imm, &enc)) {
1997 // The double can be encoded in the instruction.
1998 emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
1999 } else {
2000 // Synthesise the double from ARM immediates. This could be implemented
2001 // using vldr from a constant pool.
2002 uint32_t lo, hi;
2003 DoubleAsTwoUInt32(imm, &lo, &hi);
2004
2005 if (lo == hi) {
2006 // If the lo and hi parts of the double are equal, the literal is easier
2007 // to create. This is the case with 0.0.
2008 mov(ip, Operand(lo));
2009 vmov(dst, ip, ip);
2010 } else {
2011 // Move the low part of the double into the lower of the corresponsing S
2012 // registers of D register dst.
2013 mov(ip, Operand(lo));
2014 vmov(dst.low(), ip, cond);
2015
2016 // Move the high part of the double into the higher of the corresponsing S
2017 // registers of D register dst.
2018 mov(ip, Operand(hi));
2019 vmov(dst.high(), ip, cond);
2020 }
2021 }
2022}
2023
2024
2025void Assembler::vmov(const SwVfpRegister dst,
2026 const SwVfpRegister src,
2027 const Condition cond) {
2028 // Sd = Sm
2029 // Instruction details available in ARM DDI 0406B, A8-642.
2030 ASSERT(CpuFeatures::IsEnabled(VFP3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002031 int sd, d, sm, m;
2032 dst.split_code(&sd, &d);
2033 src.split_code(&sm, &m);
2034 emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
Ben Murdoch3bec4d22010-07-22 14:51:16 +01002035}
2036
2037
Leon Clarkee46be812010-01-19 14:06:41 +00002038void Assembler::vmov(const DwVfpRegister dst,
Steve Block8defd9f2010-07-08 12:39:36 +01002039 const DwVfpRegister src,
2040 const Condition cond) {
2041 // Dd = Dm
2042 // Instruction details available in ARM DDI 0406B, A8-642.
Ben Murdoch3bec4d22010-07-22 14:51:16 +01002043 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Block8defd9f2010-07-08 12:39:36 +01002044 emit(cond | 0xE*B24 | 0xB*B20 |
2045 dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
2046}
2047
2048
2049void Assembler::vmov(const DwVfpRegister dst,
Leon Clarkee46be812010-01-19 14:06:41 +00002050 const Register src1,
2051 const Register src2,
2052 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00002053 // Dm = <Rt,Rt2>.
2054 // Instruction details available in ARM DDI 0406A, A8-646.
2055 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2056 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2057 ASSERT(CpuFeatures::IsEnabled(VFP3));
2058 ASSERT(!src1.is(pc) && !src2.is(pc));
2059 emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2060 src1.code()*B12 | 0xB*B8 | B4 | dst.code());
2061}
2062
2063
Leon Clarkee46be812010-01-19 14:06:41 +00002064void Assembler::vmov(const Register dst1,
2065 const Register dst2,
2066 const DwVfpRegister src,
2067 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00002068 // <Rt,Rt2> = Dm.
2069 // Instruction details available in ARM DDI 0406A, A8-646.
2070 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2071 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2072 ASSERT(CpuFeatures::IsEnabled(VFP3));
2073 ASSERT(!dst1.is(pc) && !dst2.is(pc));
2074 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2075 dst1.code()*B12 | 0xB*B8 | B4 | src.code());
2076}
2077
2078
Leon Clarkee46be812010-01-19 14:06:41 +00002079void Assembler::vmov(const SwVfpRegister dst,
Steve Blockd0582a62009-12-15 09:54:21 +00002080 const Register src,
Steve Blockd0582a62009-12-15 09:54:21 +00002081 const Condition cond) {
2082 // Sn = Rt.
2083 // Instruction details available in ARM DDI 0406A, A8-642.
2084 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2085 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2086 ASSERT(CpuFeatures::IsEnabled(VFP3));
2087 ASSERT(!src.is(pc));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002088 int sn, n;
2089 dst.split_code(&sn, &n);
2090 emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
Steve Blockd0582a62009-12-15 09:54:21 +00002091}
2092
2093
Leon Clarkee46be812010-01-19 14:06:41 +00002094void Assembler::vmov(const Register dst,
2095 const SwVfpRegister src,
Steve Blockd0582a62009-12-15 09:54:21 +00002096 const Condition cond) {
2097 // Rt = Sn.
2098 // Instruction details available in ARM DDI 0406A, A8-642.
2099 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2100 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2101 ASSERT(CpuFeatures::IsEnabled(VFP3));
2102 ASSERT(!dst.is(pc));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002103 int sn, n;
2104 src.split_code(&sn, &n);
2105 emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
Steve Blockd0582a62009-12-15 09:54:21 +00002106}
2107
2108
Steve Block6ded16b2010-05-10 14:33:55 +01002109// Type of data to read from or write to VFP register.
2110// Used as specifier in generic vcvt instruction.
2111enum VFPType { S32, U32, F32, F64 };
2112
2113
2114static bool IsSignedVFPType(VFPType type) {
2115 switch (type) {
2116 case S32:
2117 return true;
2118 case U32:
2119 return false;
2120 default:
2121 UNREACHABLE();
2122 return false;
2123 }
Steve Blockd0582a62009-12-15 09:54:21 +00002124}
2125
2126
Steve Block6ded16b2010-05-10 14:33:55 +01002127static bool IsIntegerVFPType(VFPType type) {
2128 switch (type) {
2129 case S32:
2130 case U32:
2131 return true;
2132 case F32:
2133 case F64:
2134 return false;
2135 default:
2136 UNREACHABLE();
2137 return false;
2138 }
2139}
2140
2141
2142static bool IsDoubleVFPType(VFPType type) {
2143 switch (type) {
2144 case F32:
2145 return false;
2146 case F64:
2147 return true;
2148 default:
2149 UNREACHABLE();
2150 return false;
2151 }
2152}
2153
2154
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002155// Split five bit reg_code based on size of reg_type.
2156// 32-bit register codes are Vm:M
2157// 64-bit register codes are M:Vm
2158// where Vm is four bits, and M is a single bit.
2159static void SplitRegCode(VFPType reg_type,
Steve Block6ded16b2010-05-10 14:33:55 +01002160 int reg_code,
2161 int* vm,
2162 int* m) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002163 ASSERT((reg_code >= 0) && (reg_code <= 31));
2164 if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2165 // 32 bit type.
Steve Block6ded16b2010-05-10 14:33:55 +01002166 *m = reg_code & 0x1;
2167 *vm = reg_code >> 1;
2168 } else {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002169 // 64 bit type.
Steve Block6ded16b2010-05-10 14:33:55 +01002170 *m = (reg_code & 0x10) >> 4;
2171 *vm = reg_code & 0x0F;
2172 }
2173}
2174
2175
2176// Encode vcvt.src_type.dst_type instruction.
2177static Instr EncodeVCVT(const VFPType dst_type,
2178 const int dst_code,
2179 const VFPType src_type,
2180 const int src_code,
Steve Block1e0659c2011-05-24 12:43:12 +01002181 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002182 const Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002183 ASSERT(src_type != dst_type);
2184 int D, Vd, M, Vm;
2185 SplitRegCode(src_type, src_code, &Vm, &M);
2186 SplitRegCode(dst_type, dst_code, &Vd, &D);
2187
Steve Block6ded16b2010-05-10 14:33:55 +01002188 if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2189 // Conversion between IEEE floating point and 32-bit integer.
2190 // Instruction details available in ARM DDI 0406B, A8.6.295.
2191 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2192 // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2193 ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2194
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002195 int sz, opc2, op;
Steve Block6ded16b2010-05-10 14:33:55 +01002196
2197 if (IsIntegerVFPType(dst_type)) {
2198 opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2199 sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
Russell Brenner90bac252010-11-18 13:33:46 -08002200 op = mode;
Steve Block6ded16b2010-05-10 14:33:55 +01002201 } else {
2202 ASSERT(IsIntegerVFPType(src_type));
Steve Block6ded16b2010-05-10 14:33:55 +01002203 opc2 = 0x0;
2204 sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2205 op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
Steve Block6ded16b2010-05-10 14:33:55 +01002206 }
2207
2208 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2209 Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2210 } else {
2211 // Conversion between IEEE double and single precision.
2212 // Instruction details available in ARM DDI 0406B, A8.6.298.
2213 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2214 // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002215 int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
Steve Block6ded16b2010-05-10 14:33:55 +01002216 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2217 Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2218 }
2219}
2220
2221
2222void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2223 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002224 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002225 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00002226 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002227 emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002228}
2229
2230
2231void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2232 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002233 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002234 const Condition cond) {
2235 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002236 emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002237}
2238
2239
2240void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2241 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002242 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002243 const Condition cond) {
2244 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002245 emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002246}
2247
2248
2249void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2250 const DwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002251 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002252 const Condition cond) {
2253 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002254 emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002255}
2256
2257
2258void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2259 const DwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002260 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002261 const Condition cond) {
2262 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002263 emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002264}
2265
2266
2267void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2268 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002269 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002270 const Condition cond) {
2271 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002272 emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002273}
2274
2275
2276void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2277 const DwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002278 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002279 const Condition cond) {
2280 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002281 emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
Steve Blockd0582a62009-12-15 09:54:21 +00002282}
2283
2284
Steve Block1e0659c2011-05-24 12:43:12 +01002285void Assembler::vabs(const DwVfpRegister dst,
2286 const DwVfpRegister src,
2287 const Condition cond) {
2288 emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 |
2289 0x5*B9 | B8 | 0x3*B6 | src.code());
2290}
2291
2292
Leon Clarkee46be812010-01-19 14:06:41 +00002293void Assembler::vadd(const DwVfpRegister dst,
2294 const DwVfpRegister src1,
2295 const DwVfpRegister src2,
2296 const Condition cond) {
2297 // Dd = vadd(Dn, Dm) double precision floating point addition.
Steve Blockd0582a62009-12-15 09:54:21 +00002298 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2299 // Instruction details available in ARM DDI 0406A, A8-536.
2300 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2301 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2302 ASSERT(CpuFeatures::IsEnabled(VFP3));
2303 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2304 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2305}
2306
2307
Leon Clarkee46be812010-01-19 14:06:41 +00002308void Assembler::vsub(const DwVfpRegister dst,
2309 const DwVfpRegister src1,
2310 const DwVfpRegister src2,
2311 const Condition cond) {
2312 // Dd = vsub(Dn, Dm) double precision floating point subtraction.
Steve Blockd0582a62009-12-15 09:54:21 +00002313 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2314 // Instruction details available in ARM DDI 0406A, A8-784.
2315 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2316 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
2317 ASSERT(CpuFeatures::IsEnabled(VFP3));
2318 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2319 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
2320}
2321
2322
Leon Clarkee46be812010-01-19 14:06:41 +00002323void Assembler::vmul(const DwVfpRegister dst,
2324 const DwVfpRegister src1,
2325 const DwVfpRegister src2,
2326 const Condition cond) {
2327 // Dd = vmul(Dn, Dm) double precision floating point multiplication.
Steve Blockd0582a62009-12-15 09:54:21 +00002328 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2329 // Instruction details available in ARM DDI 0406A, A8-784.
2330 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
2331 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2332 ASSERT(CpuFeatures::IsEnabled(VFP3));
2333 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
2334 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2335}
2336
2337
Leon Clarkee46be812010-01-19 14:06:41 +00002338void Assembler::vdiv(const DwVfpRegister dst,
2339 const DwVfpRegister src1,
2340 const DwVfpRegister src2,
2341 const Condition cond) {
2342 // Dd = vdiv(Dn, Dm) double precision floating point division.
Steve Blockd0582a62009-12-15 09:54:21 +00002343 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2344 // Instruction details available in ARM DDI 0406A, A8-584.
2345 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
2346 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2347 ASSERT(CpuFeatures::IsEnabled(VFP3));
2348 emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
2349 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2350}
2351
2352
Leon Clarkee46be812010-01-19 14:06:41 +00002353void Assembler::vcmp(const DwVfpRegister src1,
2354 const DwVfpRegister src2,
Steve Blockd0582a62009-12-15 09:54:21 +00002355 const Condition cond) {
2356 // vcmp(Dd, Dm) double precision floating point comparison.
2357 // Instruction details available in ARM DDI 0406A, A8-570.
2358 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002359 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | Vm(3-0)
Steve Blockd0582a62009-12-15 09:54:21 +00002360 ASSERT(CpuFeatures::IsEnabled(VFP3));
2361 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002362 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
Steve Blockd0582a62009-12-15 09:54:21 +00002363}
2364
2365
Iain Merrick75681382010-08-19 15:07:18 +01002366void Assembler::vcmp(const DwVfpRegister src1,
2367 const double src2,
Iain Merrick75681382010-08-19 15:07:18 +01002368 const Condition cond) {
2369 // vcmp(Dd, Dm) double precision floating point comparison.
2370 // Instruction details available in ARM DDI 0406A, A8-570.
2371 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0101 (19-16) |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002372 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | 0000(3-0)
Iain Merrick75681382010-08-19 15:07:18 +01002373 ASSERT(CpuFeatures::IsEnabled(VFP3));
2374 ASSERT(src2 == 0.0);
2375 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | B16 |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002376 src1.code()*B12 | 0x5*B9 | B8 | B6);
Iain Merrick75681382010-08-19 15:07:18 +01002377}
2378
2379
Russell Brenner90bac252010-11-18 13:33:46 -08002380void Assembler::vmsr(Register dst, Condition cond) {
2381 // Instruction details available in ARM DDI 0406A, A8-652.
2382 // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
2383 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
2384 ASSERT(CpuFeatures::IsEnabled(VFP3));
2385 emit(cond | 0xE*B24 | 0xE*B20 | B16 |
2386 dst.code()*B12 | 0xA*B8 | B4);
2387}
2388
2389
Steve Blockd0582a62009-12-15 09:54:21 +00002390void Assembler::vmrs(Register dst, Condition cond) {
2391 // Instruction details available in ARM DDI 0406A, A8-652.
2392 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
2393 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
2394 ASSERT(CpuFeatures::IsEnabled(VFP3));
2395 emit(cond | 0xE*B24 | 0xF*B20 | B16 |
2396 dst.code()*B12 | 0xA*B8 | B4);
2397}
2398
2399
Steve Block8defd9f2010-07-08 12:39:36 +01002400void Assembler::vsqrt(const DwVfpRegister dst,
2401 const DwVfpRegister src,
2402 const Condition cond) {
2403 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
2404 // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
2405 ASSERT(CpuFeatures::IsEnabled(VFP3));
2406 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
2407 dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
2408}
2409
2410
Andrei Popescu31002712010-02-23 13:46:05 +00002411// Pseudo instructions.
Steve Block6ded16b2010-05-10 14:33:55 +01002412void Assembler::nop(int type) {
2413 // This is mov rx, rx.
2414 ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
2415 emit(al | 13*B21 | type*B12 | type);
2416}
2417
2418
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002419bool Assembler::IsNop(Instr instr, int type) {
Steve Block1e0659c2011-05-24 12:43:12 +01002420 // Check for mov rx, rx where x = type.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002421 ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
2422 return instr == (al | 13*B21 | type*B12 | type);
2423}
2424
2425
Steve Blockd0582a62009-12-15 09:54:21 +00002426bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
2427 uint32_t dummy1;
2428 uint32_t dummy2;
2429 return fits_shifter(imm32, &dummy1, &dummy2, NULL);
2430}
2431
2432
2433void Assembler::BlockConstPoolFor(int instructions) {
2434 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
2435}
2436
2437
Andrei Popescu31002712010-02-23 13:46:05 +00002438// Debugging.
Steve Blocka7e24c12009-10-30 11:49:00 +00002439void Assembler::RecordJSReturn() {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08002440 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00002441 CheckBuffer();
2442 RecordRelocInfo(RelocInfo::JS_RETURN);
2443}
2444
2445
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002446void Assembler::RecordDebugBreakSlot() {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08002447 positions_recorder()->WriteRecordedPositions();
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002448 CheckBuffer();
2449 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
2450}
2451
2452
Steve Blocka7e24c12009-10-30 11:49:00 +00002453void Assembler::RecordComment(const char* msg) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002454 if (FLAG_code_comments) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002455 CheckBuffer();
2456 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2457 }
2458}
2459
2460
Steve Blocka7e24c12009-10-30 11:49:00 +00002461void Assembler::GrowBuffer() {
2462 if (!own_buffer_) FATAL("external code buffer is too small");
2463
Andrei Popescu31002712010-02-23 13:46:05 +00002464 // Compute new buffer size.
Steve Blocka7e24c12009-10-30 11:49:00 +00002465 CodeDesc desc; // the new buffer
2466 if (buffer_size_ < 4*KB) {
2467 desc.buffer_size = 4*KB;
2468 } else if (buffer_size_ < 1*MB) {
2469 desc.buffer_size = 2*buffer_size_;
2470 } else {
2471 desc.buffer_size = buffer_size_ + 1*MB;
2472 }
2473 CHECK_GT(desc.buffer_size, 0); // no overflow
2474
Andrei Popescu31002712010-02-23 13:46:05 +00002475 // Setup new buffer.
Steve Blocka7e24c12009-10-30 11:49:00 +00002476 desc.buffer = NewArray<byte>(desc.buffer_size);
2477
2478 desc.instr_size = pc_offset();
2479 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2480
Andrei Popescu31002712010-02-23 13:46:05 +00002481 // Copy the data.
Steve Blocka7e24c12009-10-30 11:49:00 +00002482 int pc_delta = desc.buffer - buffer_;
2483 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2484 memmove(desc.buffer, buffer_, desc.instr_size);
2485 memmove(reloc_info_writer.pos() + rc_delta,
2486 reloc_info_writer.pos(), desc.reloc_size);
2487
Andrei Popescu31002712010-02-23 13:46:05 +00002488 // Switch buffers.
Steve Blocka7e24c12009-10-30 11:49:00 +00002489 DeleteArray(buffer_);
2490 buffer_ = desc.buffer;
2491 buffer_size_ = desc.buffer_size;
2492 pc_ += pc_delta;
2493 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2494 reloc_info_writer.last_pc() + pc_delta);
2495
Andrei Popescu31002712010-02-23 13:46:05 +00002496 // None of our relocation types are pc relative pointing outside the code
Steve Blocka7e24c12009-10-30 11:49:00 +00002497 // buffer nor pc absolute pointing inside the code buffer, so there is no need
Andrei Popescu31002712010-02-23 13:46:05 +00002498 // to relocate any emitted relocation entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002499
Andrei Popescu31002712010-02-23 13:46:05 +00002500 // Relocate pending relocation entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002501 for (int i = 0; i < num_prinfo_; i++) {
2502 RelocInfo& rinfo = prinfo_[i];
2503 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2504 rinfo.rmode() != RelocInfo::POSITION);
2505 if (rinfo.rmode() != RelocInfo::JS_RETURN) {
2506 rinfo.set_pc(rinfo.pc() + pc_delta);
2507 }
2508 }
2509}
2510
2511
Ben Murdochb0fe1622011-05-05 13:52:32 +01002512void Assembler::db(uint8_t data) {
Ben Murdochb8e0da22011-05-16 14:20:40 +01002513 // No relocation info should be pending while using db. db is used
2514 // to write pure data with no pointers and the constant pool should
2515 // be emitted before using db.
2516 ASSERT(num_prinfo_ == 0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002517 CheckBuffer();
2518 *reinterpret_cast<uint8_t*>(pc_) = data;
2519 pc_ += sizeof(uint8_t);
2520}
2521
2522
2523void Assembler::dd(uint32_t data) {
Ben Murdochb8e0da22011-05-16 14:20:40 +01002524 // No relocation info should be pending while using dd. dd is used
2525 // to write pure data with no pointers and the constant pool should
2526 // be emitted before using dd.
2527 ASSERT(num_prinfo_ == 0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002528 CheckBuffer();
2529 *reinterpret_cast<uint32_t*>(pc_) = data;
2530 pc_ += sizeof(uint32_t);
2531}
2532
2533
Steve Blocka7e24c12009-10-30 11:49:00 +00002534void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2535 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002536 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
Andrei Popescu31002712010-02-23 13:46:05 +00002537 // Adjust code for new modes.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002538 ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
2539 || RelocInfo::IsJSReturn(rmode)
Steve Blocka7e24c12009-10-30 11:49:00 +00002540 || RelocInfo::IsComment(rmode)
2541 || RelocInfo::IsPosition(rmode));
Andrei Popescu31002712010-02-23 13:46:05 +00002542 // These modes do not need an entry in the constant pool.
Steve Blocka7e24c12009-10-30 11:49:00 +00002543 } else {
2544 ASSERT(num_prinfo_ < kMaxNumPRInfo);
2545 prinfo_[num_prinfo_++] = rinfo;
2546 // Make sure the constant pool is not emitted in place of the next
Andrei Popescu31002712010-02-23 13:46:05 +00002547 // instruction for which we just recorded relocation info.
Steve Blocka7e24c12009-10-30 11:49:00 +00002548 BlockConstPoolBefore(pc_offset() + kInstrSize);
2549 }
2550 if (rinfo.rmode() != RelocInfo::NONE) {
2551 // Don't record external references unless the heap will be serialized.
Steve Blockd0582a62009-12-15 09:54:21 +00002552 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
2553#ifdef DEBUG
2554 if (!Serializer::enabled()) {
2555 Serializer::TooLateToEnableNow();
2556 }
2557#endif
2558 if (!Serializer::enabled() && !FLAG_debug_code) {
2559 return;
2560 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002561 }
2562 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
2563 reloc_info_writer.Write(&rinfo);
2564 }
2565}
2566
2567
2568void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2569 // Calculate the offset of the next check. It will be overwritten
2570 // when a const pool is generated or when const pools are being
2571 // blocked for a specific range.
2572 next_buffer_check_ = pc_offset() + kCheckConstInterval;
2573
Andrei Popescu31002712010-02-23 13:46:05 +00002574 // There is nothing to do if there are no pending relocation info entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002575 if (num_prinfo_ == 0) return;
2576
2577 // We emit a constant pool at regular intervals of about kDistBetweenPools
2578 // or when requested by parameter force_emit (e.g. after each function).
2579 // We prefer not to emit a jump unless the max distance is reached or if we
2580 // are running low on slots, which can happen if a lot of constants are being
2581 // emitted (e.g. --debug-code and many static references).
2582 int dist = pc_offset() - last_const_pool_end_;
2583 if (!force_emit && dist < kMaxDistBetweenPools &&
2584 (require_jump || dist < kDistBetweenPools) &&
2585 // TODO(1236125): Cleanup the "magic" number below. We know that
2586 // the code generation will test every kCheckConstIntervalInst.
2587 // Thus we are safe as long as we generate less than 7 constant
2588 // entries per instruction.
2589 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
2590 return;
2591 }
2592
2593 // If we did not return by now, we need to emit the constant pool soon.
2594
2595 // However, some small sequences of instructions must not be broken up by the
2596 // insertion of a constant pool; such sequences are protected by setting
Steve Block6ded16b2010-05-10 14:33:55 +01002597 // either const_pool_blocked_nesting_ or no_const_pool_before_, which are
2598 // both checked here. Also, recursive calls to CheckConstPool are blocked by
2599 // no_const_pool_before_.
2600 if (const_pool_blocked_nesting_ > 0 || pc_offset() < no_const_pool_before_) {
Andrei Popescu31002712010-02-23 13:46:05 +00002601 // Emission is currently blocked; make sure we try again as soon as
2602 // possible.
Steve Block6ded16b2010-05-10 14:33:55 +01002603 if (const_pool_blocked_nesting_ > 0) {
2604 next_buffer_check_ = pc_offset() + kInstrSize;
2605 } else {
2606 next_buffer_check_ = no_const_pool_before_;
2607 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002608
Andrei Popescu31002712010-02-23 13:46:05 +00002609 // Something is wrong if emission is forced and blocked at the same time.
Steve Blocka7e24c12009-10-30 11:49:00 +00002610 ASSERT(!force_emit);
2611 return;
2612 }
2613
2614 int jump_instr = require_jump ? kInstrSize : 0;
2615
2616 // Check that the code buffer is large enough before emitting the constant
2617 // pool and relocation information (include the jump over the pool and the
2618 // constant pool marker).
2619 int max_needed_space =
2620 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
2621 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
2622
Andrei Popescu31002712010-02-23 13:46:05 +00002623 // Block recursive calls to CheckConstPool.
Steve Blocka7e24c12009-10-30 11:49:00 +00002624 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
2625 num_prinfo_*kInstrSize);
2626 // Don't bother to check for the emit calls below.
2627 next_buffer_check_ = no_const_pool_before_;
2628
Andrei Popescu31002712010-02-23 13:46:05 +00002629 // Emit jump over constant pool if necessary.
Steve Blocka7e24c12009-10-30 11:49:00 +00002630 Label after_pool;
2631 if (require_jump) b(&after_pool);
2632
2633 RecordComment("[ Constant Pool");
2634
Andrei Popescu31002712010-02-23 13:46:05 +00002635 // Put down constant pool marker "Undefined instruction" as specified by
2636 // A3.1 Instruction set encoding.
Steve Blocka7e24c12009-10-30 11:49:00 +00002637 emit(0x03000000 | num_prinfo_);
2638
Andrei Popescu31002712010-02-23 13:46:05 +00002639 // Emit constant pool entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002640 for (int i = 0; i < num_prinfo_; i++) {
2641 RelocInfo& rinfo = prinfo_[i];
2642 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2643 rinfo.rmode() != RelocInfo::POSITION &&
2644 rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
2645 Instr instr = instr_at(rinfo.pc());
2646
Andrei Popescu31002712010-02-23 13:46:05 +00002647 // Instruction to patch must be a ldr/str [pc, #offset].
2648 // P and U set, B and W clear, Rn == pc, offset12 still 0.
Steve Block1e0659c2011-05-24 12:43:12 +01002649 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | kOff12Mask)) ==
Steve Blocka7e24c12009-10-30 11:49:00 +00002650 (2*B25 | P | U | pc.code()*B16));
2651 int delta = pc_ - rinfo.pc() - 8;
2652 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
2653 if (delta < 0) {
2654 instr &= ~U;
2655 delta = -delta;
2656 }
2657 ASSERT(is_uint12(delta));
2658 instr_at_put(rinfo.pc(), instr + delta);
2659 emit(rinfo.data());
2660 }
2661 num_prinfo_ = 0;
2662 last_const_pool_end_ = pc_offset();
2663
2664 RecordComment("]");
2665
2666 if (after_pool.is_linked()) {
2667 bind(&after_pool);
2668 }
2669
2670 // Since a constant pool was just emitted, move the check offset forward by
2671 // the standard interval.
2672 next_buffer_check_ = pc_offset() + kCheckConstInterval;
2673}
2674
2675
2676} } // namespace v8::internal
Leon Clarkef7060e22010-06-03 12:02:55 +01002677
2678#endif // V8_TARGET_ARCH_ARM