blob: c34a57920a8d3328597db19a3ef3bcf16e16da9d [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
Iain Merrick9ac36c92010-09-13 15:29:50 +010028#include <limits.h> // For LONG_MIN, LONG_MAX.
29
Steve Blocka7e24c12009-10-30 11:49:00 +000030#include "v8.h"
31
Leon Clarkef7060e22010-06-03 12:02:55 +010032#if defined(V8_TARGET_ARCH_ARM)
33
Steve Blocka7e24c12009-10-30 11:49:00 +000034#include "bootstrapper.h"
Ben Murdoch8b112d22011-06-08 16:22:53 +010035#include "codegen.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000036#include "debug.h"
37#include "runtime.h"
38
39namespace v8 {
40namespace internal {
41
Ben Murdoch8b112d22011-06-08 16:22:53 +010042MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
43 : Assembler(arg_isolate, buffer, size),
Steve Blocka7e24c12009-10-30 11:49:00 +000044 generating_stub_(false),
Ben Murdoch8b112d22011-06-08 16:22:53 +010045 allow_stub_calls_(true) {
46 if (isolate() != NULL) {
47 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
48 isolate());
49 }
Steve Blocka7e24c12009-10-30 11:49:00 +000050}
51
52
53// We always generate arm code, never thumb code, even if V8 is compiled to
54// thumb, so we require inter-working support
55#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
56#error "flag -mthumb-interwork missing"
57#endif
58
59
60// We do not support thumb inter-working with an arm architecture not supporting
61// the blx instruction (below v5t). If you know what CPU you are compiling for
62// you can use -march=armv7 or similar.
63#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
64# error "For thumb inter-working we require an architecture which supports blx"
65#endif
66
67
Steve Blocka7e24c12009-10-30 11:49:00 +000068// Using bx does not yield better code, so use it only when required
69#if defined(USE_THUMB_INTERWORK)
70#define USE_BX 1
71#endif
72
73
74void MacroAssembler::Jump(Register target, Condition cond) {
75#if USE_BX
76 bx(target, cond);
77#else
78 mov(pc, Operand(target), LeaveCC, cond);
79#endif
80}
81
82
83void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
84 Condition cond) {
85#if USE_BX
Ben Murdoch257744e2011-11-30 15:57:28 +000086 mov(ip, Operand(target, rmode));
Steve Blocka7e24c12009-10-30 11:49:00 +000087 bx(ip, cond);
88#else
89 mov(pc, Operand(target, rmode), LeaveCC, cond);
90#endif
91}
92
93
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000094void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
Steve Blocka7e24c12009-10-30 11:49:00 +000095 Condition cond) {
96 ASSERT(!RelocInfo::IsCodeTarget(rmode));
97 Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
98}
99
100
101void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
102 Condition cond) {
103 ASSERT(RelocInfo::IsCodeTarget(rmode));
104 // 'code' is always generated ARM code, never THUMB code
105 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
106}
107
108
Steve Block44f0eee2011-05-26 01:26:41 +0100109int MacroAssembler::CallSize(Register target, Condition cond) {
110#if USE_BLX
111 return kInstrSize;
112#else
113 return 2 * kInstrSize;
114#endif
115}
116
117
Steve Blocka7e24c12009-10-30 11:49:00 +0000118void MacroAssembler::Call(Register target, Condition cond) {
Steve Block44f0eee2011-05-26 01:26:41 +0100119 // Block constant pool for the call instruction sequence.
120 BlockConstPoolScope block_const_pool(this);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000121 Label start;
122 bind(&start);
Steve Blocka7e24c12009-10-30 11:49:00 +0000123#if USE_BLX
124 blx(target, cond);
125#else
126 // set lr for return at current pc + 8
127 mov(lr, Operand(pc), LeaveCC, cond);
128 mov(pc, Operand(target), LeaveCC, cond);
129#endif
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000130 ASSERT_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start));
Steve Blocka7e24c12009-10-30 11:49:00 +0000131}
132
133
Steve Block44f0eee2011-05-26 01:26:41 +0100134int MacroAssembler::CallSize(
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000135 Address target, RelocInfo::Mode rmode, Condition cond) {
Steve Block44f0eee2011-05-26 01:26:41 +0100136 int size = 2 * kInstrSize;
137 Instr mov_instr = cond | MOV | LeaveCC;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000138 intptr_t immediate = reinterpret_cast<intptr_t>(target);
139 if (!Operand(immediate, rmode).is_single_instruction(mov_instr)) {
Steve Block44f0eee2011-05-26 01:26:41 +0100140 size += kInstrSize;
141 }
142 return size;
143}
144
145
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000146void MacroAssembler::Call(Address target,
Ben Murdoch257744e2011-11-30 15:57:28 +0000147 RelocInfo::Mode rmode,
148 Condition cond) {
Steve Block44f0eee2011-05-26 01:26:41 +0100149 // Block constant pool for the call instruction sequence.
150 BlockConstPoolScope block_const_pool(this);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000151 Label start;
152 bind(&start);
Steve Block6ded16b2010-05-10 14:33:55 +0100153#if USE_BLX
154 // On ARMv5 and after the recommended call sequence is:
155 // ldr ip, [pc, #...]
156 // blx ip
157
Steve Block44f0eee2011-05-26 01:26:41 +0100158 // Statement positions are expected to be recorded when the target
159 // address is loaded. The mov method will automatically record
160 // positions when pc is the target, since this is not the case here
161 // we have to do it explicitly.
162 positions_recorder()->WriteRecordedPositions();
Steve Block6ded16b2010-05-10 14:33:55 +0100163
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000164 mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
Steve Block44f0eee2011-05-26 01:26:41 +0100165 blx(ip, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100166
167 ASSERT(kCallTargetAddressOffset == 2 * kInstrSize);
168#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000169 // Set lr for return at current pc + 8.
170 mov(lr, Operand(pc), LeaveCC, cond);
171 // Emit a ldr<cond> pc, [pc + offset of target in constant pool].
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000172 mov(pc, Operand(reinterpret_cast<int32_t>(target), rmode), LeaveCC, cond);
Steve Blocka7e24c12009-10-30 11:49:00 +0000173 ASSERT(kCallTargetAddressOffset == kInstrSize);
Steve Block6ded16b2010-05-10 14:33:55 +0100174#endif
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000175 ASSERT_EQ(CallSize(target, rmode, cond), SizeOfCodeGeneratedSince(&start));
Steve Blocka7e24c12009-10-30 11:49:00 +0000176}
177
178
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000179int MacroAssembler::CallSize(Handle<Code> code,
180 RelocInfo::Mode rmode,
181 unsigned ast_id,
182 Condition cond) {
183 return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
Ben Murdoch257744e2011-11-30 15:57:28 +0000184}
185
186
187void MacroAssembler::Call(Handle<Code> code,
188 RelocInfo::Mode rmode,
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000189 unsigned ast_id,
Ben Murdoch257744e2011-11-30 15:57:28 +0000190 Condition cond) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000191 Label start;
192 bind(&start);
Steve Blocka7e24c12009-10-30 11:49:00 +0000193 ASSERT(RelocInfo::IsCodeTarget(rmode));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000194 if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
195 SetRecordedAstId(ast_id);
196 rmode = RelocInfo::CODE_TARGET_WITH_ID;
197 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000198 // 'code' is always generated ARM code, never THUMB code
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000199 Call(reinterpret_cast<Address>(code.location()), rmode, cond);
200 ASSERT_EQ(CallSize(code, rmode, ast_id, cond),
201 SizeOfCodeGeneratedSince(&start));
Steve Blocka7e24c12009-10-30 11:49:00 +0000202}
203
204
205void MacroAssembler::Ret(Condition cond) {
206#if USE_BX
207 bx(lr, cond);
208#else
209 mov(pc, Operand(lr), LeaveCC, cond);
210#endif
211}
212
213
Leon Clarkee46be812010-01-19 14:06:41 +0000214void MacroAssembler::Drop(int count, Condition cond) {
215 if (count > 0) {
216 add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
217 }
218}
219
220
Ben Murdochb0fe1622011-05-05 13:52:32 +0100221void MacroAssembler::Ret(int drop, Condition cond) {
222 Drop(drop, cond);
223 Ret(cond);
224}
225
226
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100227void MacroAssembler::Swap(Register reg1,
228 Register reg2,
229 Register scratch,
230 Condition cond) {
Steve Block6ded16b2010-05-10 14:33:55 +0100231 if (scratch.is(no_reg)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100232 eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
233 eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
234 eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100235 } else {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100236 mov(scratch, reg1, LeaveCC, cond);
237 mov(reg1, reg2, LeaveCC, cond);
238 mov(reg2, scratch, LeaveCC, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100239 }
240}
241
242
Leon Clarkee46be812010-01-19 14:06:41 +0000243void MacroAssembler::Call(Label* target) {
244 bl(target);
245}
246
247
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000248void MacroAssembler::Push(Handle<Object> handle) {
249 mov(ip, Operand(handle));
250 push(ip);
251}
252
253
Leon Clarkee46be812010-01-19 14:06:41 +0000254void MacroAssembler::Move(Register dst, Handle<Object> value) {
255 mov(dst, Operand(value));
256}
Steve Blockd0582a62009-12-15 09:54:21 +0000257
258
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000259void MacroAssembler::Move(Register dst, Register src, Condition cond) {
Steve Block6ded16b2010-05-10 14:33:55 +0100260 if (!dst.is(src)) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000261 mov(dst, src, LeaveCC, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100262 }
263}
264
265
Ben Murdoch257744e2011-11-30 15:57:28 +0000266void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
267 ASSERT(CpuFeatures::IsSupported(VFP3));
268 CpuFeatures::Scope scope(VFP3);
269 if (!dst.is(src)) {
270 vmov(dst, src);
271 }
272}
273
274
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100275void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
276 Condition cond) {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800277 if (!src2.is_reg() &&
278 !src2.must_use_constant_pool() &&
279 src2.immediate() == 0) {
Iain Merrick9ac36c92010-09-13 15:29:50 +0100280 mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800281
282 } else if (!src2.is_single_instruction() &&
283 !src2.must_use_constant_pool() &&
Ben Murdoch8b112d22011-06-08 16:22:53 +0100284 CpuFeatures::IsSupported(ARMv7) &&
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800285 IsPowerOf2(src2.immediate() + 1)) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000286 ubfx(dst, src1, 0,
287 WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800288
289 } else {
290 and_(dst, src1, src2, LeaveCC, cond);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100291 }
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100292}
293
294
295void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
296 Condition cond) {
297 ASSERT(lsb < 32);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100298 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100299 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
300 and_(dst, src1, Operand(mask), LeaveCC, cond);
301 if (lsb != 0) {
302 mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
303 }
304 } else {
305 ubfx(dst, src1, lsb, width, cond);
306 }
307}
308
309
310void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
311 Condition cond) {
312 ASSERT(lsb < 32);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100313 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100314 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
315 and_(dst, src1, Operand(mask), LeaveCC, cond);
316 int shift_up = 32 - lsb - width;
317 int shift_down = lsb + shift_up;
318 if (shift_up != 0) {
319 mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
320 }
321 if (shift_down != 0) {
322 mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
323 }
324 } else {
325 sbfx(dst, src1, lsb, width, cond);
326 }
327}
328
329
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100330void MacroAssembler::Bfi(Register dst,
331 Register src,
332 Register scratch,
333 int lsb,
334 int width,
335 Condition cond) {
336 ASSERT(0 <= lsb && lsb < 32);
337 ASSERT(0 <= width && width < 32);
338 ASSERT(lsb + width < 32);
339 ASSERT(!scratch.is(dst));
340 if (width == 0) return;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100341 if (!CpuFeatures::IsSupported(ARMv7)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100342 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
343 bic(dst, dst, Operand(mask));
344 and_(scratch, src, Operand((1 << width) - 1));
345 mov(scratch, Operand(scratch, LSL, lsb));
346 orr(dst, dst, scratch);
347 } else {
348 bfi(dst, src, lsb, width, cond);
349 }
350}
351
352
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100353void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) {
354 ASSERT(lsb < 32);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100355 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100356 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
357 bic(dst, dst, Operand(mask));
358 } else {
359 bfc(dst, lsb, width, cond);
360 }
361}
362
363
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100364void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
365 Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100366 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100367 ASSERT(!dst.is(pc) && !src.rm().is(pc));
368 ASSERT((satpos >= 0) && (satpos <= 31));
369
370 // These asserts are required to ensure compatibility with the ARMv7
371 // implementation.
372 ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
373 ASSERT(src.rs().is(no_reg));
374
375 Label done;
376 int satval = (1 << satpos) - 1;
377
378 if (cond != al) {
379 b(NegateCondition(cond), &done); // Skip saturate if !condition.
380 }
381 if (!(src.is_reg() && dst.is(src.rm()))) {
382 mov(dst, src);
383 }
384 tst(dst, Operand(~satval));
385 b(eq, &done);
Iain Merrick9ac36c92010-09-13 15:29:50 +0100386 mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi); // 0 if negative.
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100387 mov(dst, Operand(satval), LeaveCC, pl); // satval if positive.
388 bind(&done);
389 } else {
390 usat(dst, satpos, src, cond);
391 }
392}
393
394
Steve Blocka7e24c12009-10-30 11:49:00 +0000395void MacroAssembler::LoadRoot(Register destination,
396 Heap::RootListIndex index,
397 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +0000398 ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond);
Steve Blocka7e24c12009-10-30 11:49:00 +0000399}
400
401
Kristian Monsen25f61362010-05-21 11:50:48 +0100402void MacroAssembler::StoreRoot(Register source,
403 Heap::RootListIndex index,
404 Condition cond) {
405 str(source, MemOperand(roots, index << kPointerSizeLog2), cond);
406}
407
408
Steve Block6ded16b2010-05-10 14:33:55 +0100409void MacroAssembler::RecordWriteHelper(Register object,
Steve Block8defd9f2010-07-08 12:39:36 +0100410 Register address,
411 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +0100412 if (emit_debug_code()) {
Steve Block6ded16b2010-05-10 14:33:55 +0100413 // Check that the object is not in new space.
414 Label not_in_new_space;
Steve Block8defd9f2010-07-08 12:39:36 +0100415 InNewSpace(object, scratch, ne, &not_in_new_space);
Steve Block6ded16b2010-05-10 14:33:55 +0100416 Abort("new-space object passed to RecordWriteHelper");
417 bind(&not_in_new_space);
418 }
Leon Clarke4515c472010-02-03 11:58:03 +0000419
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100420 // Calculate page address.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100421 Bfc(object, 0, kPageSizeBits);
422
423 // Calculate region number.
Steve Block8defd9f2010-07-08 12:39:36 +0100424 Ubfx(address, address, Page::kRegionSizeLog2,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100425 kPageSizeBits - Page::kRegionSizeLog2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000426
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100427 // Mark region dirty.
Steve Block8defd9f2010-07-08 12:39:36 +0100428 ldr(scratch, MemOperand(object, Page::kDirtyFlagOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000429 mov(ip, Operand(1));
Steve Block8defd9f2010-07-08 12:39:36 +0100430 orr(scratch, scratch, Operand(ip, LSL, address));
431 str(scratch, MemOperand(object, Page::kDirtyFlagOffset));
Steve Block6ded16b2010-05-10 14:33:55 +0100432}
433
434
435void MacroAssembler::InNewSpace(Register object,
436 Register scratch,
Steve Block1e0659c2011-05-24 12:43:12 +0100437 Condition cond,
Steve Block6ded16b2010-05-10 14:33:55 +0100438 Label* branch) {
Steve Block1e0659c2011-05-24 12:43:12 +0100439 ASSERT(cond == eq || cond == ne);
Steve Block44f0eee2011-05-26 01:26:41 +0100440 and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
441 cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
Steve Block1e0659c2011-05-24 12:43:12 +0100442 b(cond, branch);
Steve Block6ded16b2010-05-10 14:33:55 +0100443}
444
445
446// Will clobber 4 registers: object, offset, scratch, ip. The
447// register 'object' contains a heap object pointer. The heap object
448// tag is shifted away.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100449void MacroAssembler::RecordWrite(Register object,
450 Operand offset,
451 Register scratch0,
452 Register scratch1) {
Steve Block6ded16b2010-05-10 14:33:55 +0100453 // The compiled code assumes that record write doesn't change the
454 // context register, so we check that none of the clobbered
455 // registers are cp.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100456 ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));
Steve Block6ded16b2010-05-10 14:33:55 +0100457
458 Label done;
459
460 // First, test that the object is not in the new space. We cannot set
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100461 // region marks for new space pages.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100462 InNewSpace(object, scratch0, eq, &done);
Steve Block6ded16b2010-05-10 14:33:55 +0100463
Steve Block8defd9f2010-07-08 12:39:36 +0100464 // Add offset into the object.
465 add(scratch0, object, offset);
466
Steve Block6ded16b2010-05-10 14:33:55 +0100467 // Record the actual write.
Steve Block8defd9f2010-07-08 12:39:36 +0100468 RecordWriteHelper(object, scratch0, scratch1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000469
470 bind(&done);
Leon Clarke4515c472010-02-03 11:58:03 +0000471
472 // Clobber all input registers when running with the debug-code flag
473 // turned on to provoke errors.
Steve Block44f0eee2011-05-26 01:26:41 +0100474 if (emit_debug_code()) {
Steve Block6ded16b2010-05-10 14:33:55 +0100475 mov(object, Operand(BitCast<int32_t>(kZapValue)));
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100476 mov(scratch0, Operand(BitCast<int32_t>(kZapValue)));
477 mov(scratch1, Operand(BitCast<int32_t>(kZapValue)));
Leon Clarke4515c472010-02-03 11:58:03 +0000478 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000479}
480
481
Steve Block8defd9f2010-07-08 12:39:36 +0100482// Will clobber 4 registers: object, address, scratch, ip. The
483// register 'object' contains a heap object pointer. The heap object
484// tag is shifted away.
485void MacroAssembler::RecordWrite(Register object,
486 Register address,
487 Register scratch) {
488 // The compiled code assumes that record write doesn't change the
489 // context register, so we check that none of the clobbered
490 // registers are cp.
491 ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));
492
493 Label done;
494
495 // First, test that the object is not in the new space. We cannot set
496 // region marks for new space pages.
497 InNewSpace(object, scratch, eq, &done);
498
499 // Record the actual write.
500 RecordWriteHelper(object, address, scratch);
501
502 bind(&done);
503
504 // Clobber all input registers when running with the debug-code flag
505 // turned on to provoke errors.
Steve Block44f0eee2011-05-26 01:26:41 +0100506 if (emit_debug_code()) {
Steve Block8defd9f2010-07-08 12:39:36 +0100507 mov(object, Operand(BitCast<int32_t>(kZapValue)));
508 mov(address, Operand(BitCast<int32_t>(kZapValue)));
509 mov(scratch, Operand(BitCast<int32_t>(kZapValue)));
510 }
511}
512
513
Ben Murdochb0fe1622011-05-05 13:52:32 +0100514// Push and pop all registers that can hold pointers.
515void MacroAssembler::PushSafepointRegisters() {
516 // Safepoints expect a block of contiguous register values starting with r0:
517 ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
518 // Safepoints expect a block of kNumSafepointRegisters values on the
519 // stack, so adjust the stack for unsaved registers.
520 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
521 ASSERT(num_unsaved >= 0);
522 sub(sp, sp, Operand(num_unsaved * kPointerSize));
523 stm(db_w, sp, kSafepointSavedRegisters);
524}
525
526
527void MacroAssembler::PopSafepointRegisters() {
528 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
529 ldm(ia_w, sp, kSafepointSavedRegisters);
530 add(sp, sp, Operand(num_unsaved * kPointerSize));
531}
532
533
Ben Murdochb8e0da22011-05-16 14:20:40 +0100534void MacroAssembler::PushSafepointRegistersAndDoubles() {
535 PushSafepointRegisters();
536 sub(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
537 kDoubleSize));
538 for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
539 vstr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
540 }
541}
542
543
544void MacroAssembler::PopSafepointRegistersAndDoubles() {
545 for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
546 vldr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
547 }
548 add(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
549 kDoubleSize));
550 PopSafepointRegisters();
551}
552
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100553void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
554 Register dst) {
555 str(src, SafepointRegistersAndDoublesSlot(dst));
Steve Block1e0659c2011-05-24 12:43:12 +0100556}
557
558
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100559void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
560 str(src, SafepointRegisterSlot(dst));
Steve Block1e0659c2011-05-24 12:43:12 +0100561}
562
563
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100564void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
565 ldr(dst, SafepointRegisterSlot(src));
Steve Block1e0659c2011-05-24 12:43:12 +0100566}
567
568
Ben Murdochb0fe1622011-05-05 13:52:32 +0100569int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
570 // The registers are pushed starting with the highest encoding,
571 // which means that lowest encodings are closest to the stack pointer.
572 ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
573 return reg_code;
574}
575
576
Steve Block1e0659c2011-05-24 12:43:12 +0100577MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
578 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
579}
580
581
582MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
583 // General purpose registers are pushed last on the stack.
584 int doubles_size = DwVfpRegister::kNumAllocatableRegisters * kDoubleSize;
585 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
586 return MemOperand(sp, doubles_size + register_offset);
587}
588
589
Leon Clarkef7060e22010-06-03 12:02:55 +0100590void MacroAssembler::Ldrd(Register dst1, Register dst2,
591 const MemOperand& src, Condition cond) {
592 ASSERT(src.rm().is(no_reg));
593 ASSERT(!dst1.is(lr)); // r14.
594 ASSERT_EQ(0, dst1.code() % 2);
595 ASSERT_EQ(dst1.code() + 1, dst2.code());
596
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000597 // V8 does not use this addressing mode, so the fallback code
598 // below doesn't support it yet.
599 ASSERT((src.am() != PreIndex) && (src.am() != NegPreIndex));
600
Leon Clarkef7060e22010-06-03 12:02:55 +0100601 // Generate two ldr instructions if ldrd is not available.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100602 if (CpuFeatures::IsSupported(ARMv7)) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100603 CpuFeatures::Scope scope(ARMv7);
604 ldrd(dst1, dst2, src, cond);
605 } else {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000606 if ((src.am() == Offset) || (src.am() == NegOffset)) {
607 MemOperand src2(src);
608 src2.set_offset(src2.offset() + 4);
609 if (dst1.is(src.rn())) {
610 ldr(dst2, src2, cond);
611 ldr(dst1, src, cond);
612 } else {
613 ldr(dst1, src, cond);
614 ldr(dst2, src2, cond);
615 }
616 } else { // PostIndex or NegPostIndex.
617 ASSERT((src.am() == PostIndex) || (src.am() == NegPostIndex));
618 if (dst1.is(src.rn())) {
619 ldr(dst2, MemOperand(src.rn(), 4, Offset), cond);
620 ldr(dst1, src, cond);
621 } else {
622 MemOperand src2(src);
623 src2.set_offset(src2.offset() - 4);
624 ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond);
625 ldr(dst2, src2, cond);
626 }
Leon Clarkef7060e22010-06-03 12:02:55 +0100627 }
628 }
629}
630
631
632void MacroAssembler::Strd(Register src1, Register src2,
633 const MemOperand& dst, Condition cond) {
634 ASSERT(dst.rm().is(no_reg));
635 ASSERT(!src1.is(lr)); // r14.
636 ASSERT_EQ(0, src1.code() % 2);
637 ASSERT_EQ(src1.code() + 1, src2.code());
638
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000639 // V8 does not use this addressing mode, so the fallback code
640 // below doesn't support it yet.
641 ASSERT((dst.am() != PreIndex) && (dst.am() != NegPreIndex));
642
Leon Clarkef7060e22010-06-03 12:02:55 +0100643 // Generate two str instructions if strd is not available.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100644 if (CpuFeatures::IsSupported(ARMv7)) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100645 CpuFeatures::Scope scope(ARMv7);
646 strd(src1, src2, dst, cond);
647 } else {
648 MemOperand dst2(dst);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000649 if ((dst.am() == Offset) || (dst.am() == NegOffset)) {
650 dst2.set_offset(dst2.offset() + 4);
651 str(src1, dst, cond);
652 str(src2, dst2, cond);
653 } else { // PostIndex or NegPostIndex.
654 ASSERT((dst.am() == PostIndex) || (dst.am() == NegPostIndex));
655 dst2.set_offset(dst2.offset() - 4);
656 str(src1, MemOperand(dst.rn(), 4, PostIndex), cond);
657 str(src2, dst2, cond);
658 }
Leon Clarkef7060e22010-06-03 12:02:55 +0100659 }
660}
661
662
Ben Murdochb8e0da22011-05-16 14:20:40 +0100663void MacroAssembler::ClearFPSCRBits(const uint32_t bits_to_clear,
664 const Register scratch,
665 const Condition cond) {
666 vmrs(scratch, cond);
667 bic(scratch, scratch, Operand(bits_to_clear), LeaveCC, cond);
668 vmsr(scratch, cond);
669}
670
671
672void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
673 const DwVfpRegister src2,
674 const Condition cond) {
675 // Compare and move FPSCR flags to the normal condition flags.
676 VFPCompareAndLoadFlags(src1, src2, pc, cond);
677}
678
679void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
680 const double src2,
681 const Condition cond) {
682 // Compare and move FPSCR flags to the normal condition flags.
683 VFPCompareAndLoadFlags(src1, src2, pc, cond);
684}
685
686
687void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
688 const DwVfpRegister src2,
689 const Register fpscr_flags,
690 const Condition cond) {
691 // Compare and load FPSCR.
692 vcmp(src1, src2, cond);
693 vmrs(fpscr_flags, cond);
694}
695
696void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
697 const double src2,
698 const Register fpscr_flags,
699 const Condition cond) {
700 // Compare and load FPSCR.
701 vcmp(src1, src2, cond);
702 vmrs(fpscr_flags, cond);
Ben Murdoch086aeea2011-05-13 15:57:08 +0100703}
704
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000705void MacroAssembler::Vmov(const DwVfpRegister dst,
706 const double imm,
707 const Condition cond) {
708 ASSERT(CpuFeatures::IsEnabled(VFP3));
709 static const DoubleRepresentation minus_zero(-0.0);
710 static const DoubleRepresentation zero(0.0);
711 DoubleRepresentation value(imm);
712 // Handle special values first.
713 if (value.bits == zero.bits) {
714 vmov(dst, kDoubleRegZero, cond);
715 } else if (value.bits == minus_zero.bits) {
716 vneg(dst, kDoubleRegZero, cond);
717 } else {
718 vmov(dst, imm, cond);
719 }
720}
721
Ben Murdoch086aeea2011-05-13 15:57:08 +0100722
Steve Blocka7e24c12009-10-30 11:49:00 +0000723void MacroAssembler::EnterFrame(StackFrame::Type type) {
724 // r0-r3: preserved
725 stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
726 mov(ip, Operand(Smi::FromInt(type)));
727 push(ip);
728 mov(ip, Operand(CodeObject()));
729 push(ip);
730 add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
731}
732
733
734void MacroAssembler::LeaveFrame(StackFrame::Type type) {
735 // r0: preserved
736 // r1: preserved
737 // r2: preserved
738
739 // Drop the execution stack down to the frame pointer and restore
740 // the caller frame pointer and return address.
741 mov(sp, fp);
742 ldm(ia_w, sp, fp.bit() | lr.bit());
743}
744
745
Steve Block1e0659c2011-05-24 12:43:12 +0100746void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
747 // Setup the frame structure on the stack.
748 ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
749 ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
750 ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
751 Push(lr, fp);
Andrei Popescu402d9372010-02-26 13:31:12 +0000752 mov(fp, Operand(sp)); // Setup new frame pointer.
Steve Block1e0659c2011-05-24 12:43:12 +0100753 // Reserve room for saved entry sp and code object.
754 sub(sp, sp, Operand(2 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +0100755 if (emit_debug_code()) {
Steve Block1e0659c2011-05-24 12:43:12 +0100756 mov(ip, Operand(0));
757 str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
758 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000759 mov(ip, Operand(CodeObject()));
Steve Block1e0659c2011-05-24 12:43:12 +0100760 str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000761
762 // Save the frame pointer and the context in top.
Steve Block44f0eee2011-05-26 01:26:41 +0100763 mov(ip, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000764 str(fp, MemOperand(ip));
Steve Block44f0eee2011-05-26 01:26:41 +0100765 mov(ip, Operand(ExternalReference(Isolate::k_context_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000766 str(cp, MemOperand(ip));
767
Ben Murdochb0fe1622011-05-05 13:52:32 +0100768 // Optionally save all double registers.
769 if (save_doubles) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100770 DwVfpRegister first = d0;
771 DwVfpRegister last =
772 DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1);
773 vstm(db_w, sp, first, last);
Steve Block1e0659c2011-05-24 12:43:12 +0100774 // Note that d0 will be accessible at
775 // fp - 2 * kPointerSize - DwVfpRegister::kNumRegisters * kDoubleSize,
776 // since the sp slot and code slot were pushed after the fp.
Ben Murdochb0fe1622011-05-05 13:52:32 +0100777 }
Steve Block1e0659c2011-05-24 12:43:12 +0100778
779 // Reserve place for the return address and stack space and align the frame
780 // preparing for calling the runtime function.
781 const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
782 sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
783 if (frame_alignment > 0) {
784 ASSERT(IsPowerOf2(frame_alignment));
785 and_(sp, sp, Operand(-frame_alignment));
786 }
787
788 // Set the exit frame sp value to point just before the return address
789 // location.
790 add(ip, sp, Operand(kPointerSize));
791 str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000792}
793
794
Steve Block6ded16b2010-05-10 14:33:55 +0100795void MacroAssembler::InitializeNewString(Register string,
796 Register length,
797 Heap::RootListIndex map_index,
798 Register scratch1,
799 Register scratch2) {
800 mov(scratch1, Operand(length, LSL, kSmiTagSize));
801 LoadRoot(scratch2, map_index);
802 str(scratch1, FieldMemOperand(string, String::kLengthOffset));
803 mov(scratch1, Operand(String::kEmptyHashField));
804 str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
805 str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
806}
807
808
809int MacroAssembler::ActivationFrameAlignment() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000810#if defined(V8_HOST_ARCH_ARM)
811 // Running on the real platform. Use the alignment as mandated by the local
812 // environment.
813 // Note: This will break if we ever start generating snapshots on one ARM
814 // platform for another ARM platform with a different alignment.
Steve Block6ded16b2010-05-10 14:33:55 +0100815 return OS::ActivationFrameAlignment();
Steve Blocka7e24c12009-10-30 11:49:00 +0000816#else // defined(V8_HOST_ARCH_ARM)
817 // If we are using the simulator then we should always align to the expected
818 // alignment. As the simulator is used to generate snapshots we do not know
Steve Block6ded16b2010-05-10 14:33:55 +0100819 // if the target platform will need alignment, so this is controlled from a
820 // flag.
821 return FLAG_sim_stack_alignment;
Steve Blocka7e24c12009-10-30 11:49:00 +0000822#endif // defined(V8_HOST_ARCH_ARM)
Steve Blocka7e24c12009-10-30 11:49:00 +0000823}
824
825
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100826void MacroAssembler::LeaveExitFrame(bool save_doubles,
827 Register argument_count) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100828 // Optionally restore all double registers.
829 if (save_doubles) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100830 // Calculate the stack location of the saved doubles and restore them.
831 const int offset = 2 * kPointerSize;
832 sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize));
833 DwVfpRegister first = d0;
834 DwVfpRegister last =
835 DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1);
836 vldm(ia, r3, first, last);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100837 }
838
Steve Blocka7e24c12009-10-30 11:49:00 +0000839 // Clear top frame.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100840 mov(r3, Operand(0, RelocInfo::NONE));
Steve Block44f0eee2011-05-26 01:26:41 +0100841 mov(ip, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000842 str(r3, MemOperand(ip));
843
844 // Restore current context from top and clear it in debug mode.
Steve Block44f0eee2011-05-26 01:26:41 +0100845 mov(ip, Operand(ExternalReference(Isolate::k_context_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000846 ldr(cp, MemOperand(ip));
847#ifdef DEBUG
848 str(r3, MemOperand(ip));
849#endif
850
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100851 // Tear down the exit frame, pop the arguments, and return.
Steve Block1e0659c2011-05-24 12:43:12 +0100852 mov(sp, Operand(fp));
853 ldm(ia_w, sp, fp.bit() | lr.bit());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100854 if (argument_count.is_valid()) {
855 add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
856 }
857}
858
859void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000860 if (use_eabi_hardfloat()) {
861 Move(dst, d0);
862 } else {
863 vmov(dst, r0, r1);
864 }
865}
866
867
868void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
869 // This macro takes the dst register to make the code more readable
870 // at the call sites. However, the dst register has to be r5 to
871 // follow the calling convention which requires the call type to be
872 // in r5.
873 ASSERT(dst.is(r5));
874 if (call_kind == CALL_AS_FUNCTION) {
875 mov(dst, Operand(Smi::FromInt(1)));
876 } else {
877 mov(dst, Operand(Smi::FromInt(0)));
878 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000879}
880
881
882void MacroAssembler::InvokePrologue(const ParameterCount& expected,
883 const ParameterCount& actual,
884 Handle<Code> code_constant,
885 Register code_reg,
886 Label* done,
Ben Murdochb8e0da22011-05-16 14:20:40 +0100887 InvokeFlag flag,
Ben Murdoch257744e2011-11-30 15:57:28 +0000888 const CallWrapper& call_wrapper,
889 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000890 bool definitely_matches = false;
891 Label regular_invoke;
892
893 // Check whether the expected and actual arguments count match. If not,
894 // setup registers according to contract with ArgumentsAdaptorTrampoline:
895 // r0: actual arguments count
896 // r1: function (passed through to callee)
897 // r2: expected arguments count
898 // r3: callee code entry
899
900 // The code below is made a lot easier because the calling code already sets
901 // up actual and expected registers according to the contract if values are
902 // passed in registers.
903 ASSERT(actual.is_immediate() || actual.reg().is(r0));
904 ASSERT(expected.is_immediate() || expected.reg().is(r2));
905 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
906
907 if (expected.is_immediate()) {
908 ASSERT(actual.is_immediate());
909 if (expected.immediate() == actual.immediate()) {
910 definitely_matches = true;
911 } else {
912 mov(r0, Operand(actual.immediate()));
913 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
914 if (expected.immediate() == sentinel) {
915 // Don't worry about adapting arguments for builtins that
916 // don't want that done. Skip adaption code by making it look
917 // like we have a match between expected and actual number of
918 // arguments.
919 definitely_matches = true;
920 } else {
921 mov(r2, Operand(expected.immediate()));
922 }
923 }
924 } else {
925 if (actual.is_immediate()) {
926 cmp(expected.reg(), Operand(actual.immediate()));
927 b(eq, &regular_invoke);
928 mov(r0, Operand(actual.immediate()));
929 } else {
930 cmp(expected.reg(), Operand(actual.reg()));
931 b(eq, &regular_invoke);
932 }
933 }
934
935 if (!definitely_matches) {
936 if (!code_constant.is_null()) {
937 mov(r3, Operand(code_constant));
938 add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
939 }
940
941 Handle<Code> adaptor =
Steve Block44f0eee2011-05-26 01:26:41 +0100942 isolate()->builtins()->ArgumentsAdaptorTrampoline();
Steve Blocka7e24c12009-10-30 11:49:00 +0000943 if (flag == CALL_FUNCTION) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000944 call_wrapper.BeforeCall(CallSize(adaptor));
Ben Murdoch257744e2011-11-30 15:57:28 +0000945 SetCallKind(r5, call_kind);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000946 Call(adaptor);
Ben Murdoch257744e2011-11-30 15:57:28 +0000947 call_wrapper.AfterCall();
Steve Blocka7e24c12009-10-30 11:49:00 +0000948 b(done);
949 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +0000950 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000951 Jump(adaptor, RelocInfo::CODE_TARGET);
952 }
953 bind(&regular_invoke);
954 }
955}
956
957
958void MacroAssembler::InvokeCode(Register code,
959 const ParameterCount& expected,
960 const ParameterCount& actual,
Ben Murdochb8e0da22011-05-16 14:20:40 +0100961 InvokeFlag flag,
Ben Murdoch257744e2011-11-30 15:57:28 +0000962 const CallWrapper& call_wrapper,
963 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000964 Label done;
965
Ben Murdochb8e0da22011-05-16 14:20:40 +0100966 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
Ben Murdoch257744e2011-11-30 15:57:28 +0000967 call_wrapper, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000968 if (flag == CALL_FUNCTION) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000969 call_wrapper.BeforeCall(CallSize(code));
970 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000971 Call(code);
Ben Murdoch257744e2011-11-30 15:57:28 +0000972 call_wrapper.AfterCall();
Steve Blocka7e24c12009-10-30 11:49:00 +0000973 } else {
974 ASSERT(flag == JUMP_FUNCTION);
Ben Murdoch257744e2011-11-30 15:57:28 +0000975 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000976 Jump(code);
977 }
978
979 // Continue here if InvokePrologue does handle the invocation due to
980 // mismatched parameter counts.
981 bind(&done);
982}
983
984
985void MacroAssembler::InvokeCode(Handle<Code> code,
986 const ParameterCount& expected,
987 const ParameterCount& actual,
988 RelocInfo::Mode rmode,
Ben Murdoch257744e2011-11-30 15:57:28 +0000989 InvokeFlag flag,
990 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000991 Label done;
992
Ben Murdoch257744e2011-11-30 15:57:28 +0000993 InvokePrologue(expected, actual, code, no_reg, &done, flag,
994 NullCallWrapper(), call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000995 if (flag == CALL_FUNCTION) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000996 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000997 Call(code, rmode);
998 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +0000999 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +00001000 Jump(code, rmode);
1001 }
1002
1003 // Continue here if InvokePrologue does handle the invocation due to
1004 // mismatched parameter counts.
1005 bind(&done);
1006}
1007
1008
1009void MacroAssembler::InvokeFunction(Register fun,
1010 const ParameterCount& actual,
Ben Murdochb8e0da22011-05-16 14:20:40 +01001011 InvokeFlag flag,
Ben Murdoch257744e2011-11-30 15:57:28 +00001012 const CallWrapper& call_wrapper,
1013 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001014 // Contract with called JS functions requires that function is passed in r1.
1015 ASSERT(fun.is(r1));
1016
1017 Register expected_reg = r2;
1018 Register code_reg = r3;
1019
1020 ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1021 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1022 ldr(expected_reg,
1023 FieldMemOperand(code_reg,
1024 SharedFunctionInfo::kFormalParameterCountOffset));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001025 mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize));
Steve Blocka7e24c12009-10-30 11:49:00 +00001026 ldr(code_reg,
Steve Block791712a2010-08-27 10:21:07 +01001027 FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00001028
1029 ParameterCount expected(expected_reg);
Ben Murdoch257744e2011-11-30 15:57:28 +00001030 InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +00001031}
1032
1033
Andrei Popescu402d9372010-02-26 13:31:12 +00001034void MacroAssembler::InvokeFunction(JSFunction* function,
1035 const ParameterCount& actual,
Ben Murdoch257744e2011-11-30 15:57:28 +00001036 InvokeFlag flag,
1037 CallKind call_kind) {
Andrei Popescu402d9372010-02-26 13:31:12 +00001038 ASSERT(function->is_compiled());
1039
1040 // Get the function and setup the context.
1041 mov(r1, Operand(Handle<JSFunction>(function)));
1042 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1043
1044 // Invoke the cached code.
1045 Handle<Code> code(function->code());
1046 ParameterCount expected(function->shared()->formal_parameter_count());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001047 if (V8::UseCrankshaft()) {
1048 // TODO(kasperl): For now, we always call indirectly through the
1049 // code field in the function to allow recompilation to take effect
1050 // without changing any of the call sites.
1051 ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00001052 InvokeCode(r3, expected, actual, flag, NullCallWrapper(), call_kind);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001053 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00001054 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag, call_kind);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001055 }
1056}
1057
1058
1059void MacroAssembler::IsObjectJSObjectType(Register heap_object,
1060 Register map,
1061 Register scratch,
1062 Label* fail) {
1063 ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
1064 IsInstanceJSObjectType(map, scratch, fail);
1065}
1066
1067
1068void MacroAssembler::IsInstanceJSObjectType(Register map,
1069 Register scratch,
1070 Label* fail) {
1071 ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001072 cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001073 b(lt, fail);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001074 cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001075 b(gt, fail);
1076}
1077
1078
1079void MacroAssembler::IsObjectJSStringType(Register object,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001080 Register scratch,
1081 Label* fail) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001082 ASSERT(kNotStringTag != 0);
1083
1084 ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1085 ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1086 tst(scratch, Operand(kIsNotStringMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001087 b(ne, fail);
Andrei Popescu402d9372010-02-26 13:31:12 +00001088}
1089
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001090
Steve Blocka7e24c12009-10-30 11:49:00 +00001091#ifdef ENABLE_DEBUGGER_SUPPORT
Andrei Popescu402d9372010-02-26 13:31:12 +00001092void MacroAssembler::DebugBreak() {
1093 ASSERT(allow_stub_calls());
Iain Merrick9ac36c92010-09-13 15:29:50 +01001094 mov(r0, Operand(0, RelocInfo::NONE));
Steve Block44f0eee2011-05-26 01:26:41 +01001095 mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
Andrei Popescu402d9372010-02-26 13:31:12 +00001096 CEntryStub ces(1);
1097 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
1098}
Steve Blocka7e24c12009-10-30 11:49:00 +00001099#endif
1100
1101
1102void MacroAssembler::PushTryHandler(CodeLocation try_location,
1103 HandlerType type) {
1104 // Adjust this code if not the case.
1105 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1106 // The pc (return address) is passed in register lr.
1107 if (try_location == IN_JAVASCRIPT) {
1108 if (type == TRY_CATCH_HANDLER) {
1109 mov(r3, Operand(StackHandler::TRY_CATCH));
1110 } else {
1111 mov(r3, Operand(StackHandler::TRY_FINALLY));
1112 }
1113 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
1114 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
1115 && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1116 stm(db_w, sp, r3.bit() | fp.bit() | lr.bit());
1117 // Save the current handler as the next handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001118 mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +00001119 ldr(r1, MemOperand(r3));
1120 ASSERT(StackHandlerConstants::kNextOffset == 0);
1121 push(r1);
1122 // Link this handler as the new current one.
1123 str(sp, MemOperand(r3));
1124 } else {
1125 // Must preserve r0-r4, r5-r7 are available.
1126 ASSERT(try_location == IN_JS_ENTRY);
1127 // The frame pointer does not point to a JS frame so we save NULL
1128 // for fp. We expect the code throwing an exception to check fp
1129 // before dereferencing it to restore the context.
Iain Merrick9ac36c92010-09-13 15:29:50 +01001130 mov(ip, Operand(0, RelocInfo::NONE)); // To save a NULL frame pointer.
Steve Blocka7e24c12009-10-30 11:49:00 +00001131 mov(r6, Operand(StackHandler::ENTRY));
1132 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
1133 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
1134 && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1135 stm(db_w, sp, r6.bit() | ip.bit() | lr.bit());
1136 // Save the current handler as the next handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001137 mov(r7, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +00001138 ldr(r6, MemOperand(r7));
1139 ASSERT(StackHandlerConstants::kNextOffset == 0);
1140 push(r6);
1141 // Link this handler as the new current one.
1142 str(sp, MemOperand(r7));
1143 }
1144}
1145
1146
Leon Clarkee46be812010-01-19 14:06:41 +00001147void MacroAssembler::PopTryHandler() {
1148 ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
1149 pop(r1);
Steve Block44f0eee2011-05-26 01:26:41 +01001150 mov(ip, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Leon Clarkee46be812010-01-19 14:06:41 +00001151 add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
1152 str(r1, MemOperand(ip));
1153}
1154
1155
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001156void MacroAssembler::Throw(Register value) {
1157 // r0 is expected to hold the exception.
1158 if (!value.is(r0)) {
1159 mov(r0, value);
1160 }
1161
1162 // Adjust this code if not the case.
1163 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1164
1165 // Drop the sp to the top of the handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001166 mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001167 ldr(sp, MemOperand(r3));
1168
1169 // Restore the next handler and frame pointer, discard handler state.
1170 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1171 pop(r2);
1172 str(r2, MemOperand(r3));
1173 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
1174 ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
1175
1176 // Before returning we restore the context from the frame pointer if
1177 // not NULL. The frame pointer is NULL in the exception handler of a
1178 // JS entry frame.
1179 cmp(fp, Operand(0, RelocInfo::NONE));
1180 // Set cp to NULL if fp is NULL.
1181 mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1182 // Restore cp otherwise.
1183 ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
1184#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01001185 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001186 mov(lr, Operand(pc));
1187 }
1188#endif
1189 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1190 pop(pc);
1191}
1192
1193
1194void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type,
1195 Register value) {
1196 // Adjust this code if not the case.
1197 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1198
1199 // r0 is expected to hold the exception.
1200 if (!value.is(r0)) {
1201 mov(r0, value);
1202 }
1203
1204 // Drop sp to the top stack handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001205 mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001206 ldr(sp, MemOperand(r3));
1207
1208 // Unwind the handlers until the ENTRY handler is found.
1209 Label loop, done;
1210 bind(&loop);
1211 // Load the type of the current stack handler.
1212 const int kStateOffset = StackHandlerConstants::kStateOffset;
1213 ldr(r2, MemOperand(sp, kStateOffset));
1214 cmp(r2, Operand(StackHandler::ENTRY));
1215 b(eq, &done);
1216 // Fetch the next handler in the list.
1217 const int kNextOffset = StackHandlerConstants::kNextOffset;
1218 ldr(sp, MemOperand(sp, kNextOffset));
1219 jmp(&loop);
1220 bind(&done);
1221
1222 // Set the top handler address to next handler past the current ENTRY handler.
1223 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1224 pop(r2);
1225 str(r2, MemOperand(r3));
1226
1227 if (type == OUT_OF_MEMORY) {
1228 // Set external caught exception to false.
Steve Block44f0eee2011-05-26 01:26:41 +01001229 ExternalReference external_caught(
1230 Isolate::k_external_caught_exception_address, isolate());
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001231 mov(r0, Operand(false, RelocInfo::NONE));
1232 mov(r2, Operand(external_caught));
1233 str(r0, MemOperand(r2));
1234
1235 // Set pending exception and r0 to out of memory exception.
1236 Failure* out_of_memory = Failure::OutOfMemoryException();
1237 mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
Steve Block44f0eee2011-05-26 01:26:41 +01001238 mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address,
1239 isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001240 str(r0, MemOperand(r2));
1241 }
1242
1243 // Stack layout at this point. See also StackHandlerConstants.
1244 // sp -> state (ENTRY)
1245 // fp
1246 // lr
1247
1248 // Discard handler state (r2 is not used) and restore frame pointer.
1249 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
1250 ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
1251 // Before returning we restore the context from the frame pointer if
1252 // not NULL. The frame pointer is NULL in the exception handler of a
1253 // JS entry frame.
1254 cmp(fp, Operand(0, RelocInfo::NONE));
1255 // Set cp to NULL if fp is NULL.
1256 mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1257 // Restore cp otherwise.
1258 ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
1259#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01001260 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001261 mov(lr, Operand(pc));
1262 }
1263#endif
1264 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1265 pop(pc);
1266}
1267
1268
Steve Blocka7e24c12009-10-30 11:49:00 +00001269void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1270 Register scratch,
1271 Label* miss) {
1272 Label same_contexts;
1273
1274 ASSERT(!holder_reg.is(scratch));
1275 ASSERT(!holder_reg.is(ip));
1276 ASSERT(!scratch.is(ip));
1277
1278 // Load current lexical context from the stack frame.
1279 ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
1280 // In debug mode, make sure the lexical context is set.
1281#ifdef DEBUG
Iain Merrick9ac36c92010-09-13 15:29:50 +01001282 cmp(scratch, Operand(0, RelocInfo::NONE));
Steve Blocka7e24c12009-10-30 11:49:00 +00001283 Check(ne, "we should not have an empty lexical context");
1284#endif
1285
1286 // Load the global context of the current context.
1287 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1288 ldr(scratch, FieldMemOperand(scratch, offset));
1289 ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
1290
1291 // Check the context is a global context.
Steve Block44f0eee2011-05-26 01:26:41 +01001292 if (emit_debug_code()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001293 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
1294 // Cannot use ip as a temporary in this verification code. Due to the fact
1295 // that ip is clobbered as part of cmp with an object Operand.
1296 push(holder_reg); // Temporarily save holder on the stack.
1297 // Read the first word and compare to the global_context_map.
1298 ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
1299 LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
1300 cmp(holder_reg, ip);
1301 Check(eq, "JSGlobalObject::global_context should be a global context.");
1302 pop(holder_reg); // Restore holder.
1303 }
1304
1305 // Check if both contexts are the same.
1306 ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
1307 cmp(scratch, Operand(ip));
1308 b(eq, &same_contexts);
1309
1310 // Check the context is a global context.
Steve Block44f0eee2011-05-26 01:26:41 +01001311 if (emit_debug_code()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001312 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
1313 // Cannot use ip as a temporary in this verification code. Due to the fact
1314 // that ip is clobbered as part of cmp with an object Operand.
1315 push(holder_reg); // Temporarily save holder on the stack.
1316 mov(holder_reg, ip); // Move ip to its holding place.
1317 LoadRoot(ip, Heap::kNullValueRootIndex);
1318 cmp(holder_reg, ip);
1319 Check(ne, "JSGlobalProxy::context() should not be null.");
1320
1321 ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
1322 LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
1323 cmp(holder_reg, ip);
1324 Check(eq, "JSGlobalObject::global_context should be a global context.");
1325 // Restore ip is not needed. ip is reloaded below.
1326 pop(holder_reg); // Restore holder.
1327 // Restore ip to holder's context.
1328 ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
1329 }
1330
1331 // Check that the security token in the calling global object is
1332 // compatible with the security token in the receiving global
1333 // object.
1334 int token_offset = Context::kHeaderSize +
1335 Context::SECURITY_TOKEN_INDEX * kPointerSize;
1336
1337 ldr(scratch, FieldMemOperand(scratch, token_offset));
1338 ldr(ip, FieldMemOperand(ip, token_offset));
1339 cmp(scratch, Operand(ip));
1340 b(ne, miss);
1341
1342 bind(&same_contexts);
1343}
1344
1345
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001346void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1347 Register elements,
1348 Register key,
1349 Register result,
1350 Register t0,
1351 Register t1,
1352 Register t2) {
1353 // Register use:
1354 //
1355 // elements - holds the slow-case elements of the receiver on entry.
1356 // Unchanged unless 'result' is the same register.
1357 //
1358 // key - holds the smi key on entry.
1359 // Unchanged unless 'result' is the same register.
1360 //
1361 // result - holds the result on exit if the load succeeded.
1362 // Allowed to be the same as 'key' or 'result'.
1363 // Unchanged on bailout so 'key' or 'result' can be used
1364 // in further computation.
1365 //
1366 // Scratch registers:
1367 //
1368 // t0 - holds the untagged key on entry and holds the hash once computed.
1369 //
1370 // t1 - used to hold the capacity mask of the dictionary
1371 //
1372 // t2 - used for the index into the dictionary.
1373 Label done;
1374
1375 // Compute the hash code from the untagged key. This must be kept in sync
1376 // with ComputeIntegerHash in utils.h.
1377 //
1378 // hash = ~hash + (hash << 15);
1379 mvn(t1, Operand(t0));
1380 add(t0, t1, Operand(t0, LSL, 15));
1381 // hash = hash ^ (hash >> 12);
1382 eor(t0, t0, Operand(t0, LSR, 12));
1383 // hash = hash + (hash << 2);
1384 add(t0, t0, Operand(t0, LSL, 2));
1385 // hash = hash ^ (hash >> 4);
1386 eor(t0, t0, Operand(t0, LSR, 4));
1387 // hash = hash * 2057;
1388 mov(t1, Operand(2057));
1389 mul(t0, t0, t1);
1390 // hash = hash ^ (hash >> 16);
1391 eor(t0, t0, Operand(t0, LSR, 16));
1392
1393 // Compute the capacity mask.
1394 ldr(t1, FieldMemOperand(elements, NumberDictionary::kCapacityOffset));
1395 mov(t1, Operand(t1, ASR, kSmiTagSize)); // convert smi to int
1396 sub(t1, t1, Operand(1));
1397
1398 // Generate an unrolled loop that performs a few probes before giving up.
1399 static const int kProbes = 4;
1400 for (int i = 0; i < kProbes; i++) {
1401 // Use t2 for index calculations and keep the hash intact in t0.
1402 mov(t2, t0);
1403 // Compute the masked index: (hash + i + i * i) & mask.
1404 if (i > 0) {
1405 add(t2, t2, Operand(NumberDictionary::GetProbeOffset(i)));
1406 }
1407 and_(t2, t2, Operand(t1));
1408
1409 // Scale the index by multiplying by the element size.
1410 ASSERT(NumberDictionary::kEntrySize == 3);
1411 add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3
1412
1413 // Check if the key is identical to the name.
1414 add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
1415 ldr(ip, FieldMemOperand(t2, NumberDictionary::kElementsStartOffset));
1416 cmp(key, Operand(ip));
1417 if (i != kProbes - 1) {
1418 b(eq, &done);
1419 } else {
1420 b(ne, miss);
1421 }
1422 }
1423
1424 bind(&done);
1425 // Check that the value is a normal property.
1426 // t2: elements + (index * kPointerSize)
1427 const int kDetailsOffset =
1428 NumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1429 ldr(t1, FieldMemOperand(t2, kDetailsOffset));
1430 tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::mask())));
1431 b(ne, miss);
1432
1433 // Get the value at the masked, scaled index and return.
1434 const int kValueOffset =
1435 NumberDictionary::kElementsStartOffset + kPointerSize;
1436 ldr(result, FieldMemOperand(t2, kValueOffset));
1437}
1438
1439
Steve Blocka7e24c12009-10-30 11:49:00 +00001440void MacroAssembler::AllocateInNewSpace(int object_size,
1441 Register result,
1442 Register scratch1,
1443 Register scratch2,
1444 Label* gc_required,
1445 AllocationFlags flags) {
John Reck59135872010-11-02 12:39:01 -07001446 if (!FLAG_inline_new) {
Steve Block44f0eee2011-05-26 01:26:41 +01001447 if (emit_debug_code()) {
John Reck59135872010-11-02 12:39:01 -07001448 // Trash the registers to simulate an allocation failure.
1449 mov(result, Operand(0x7091));
1450 mov(scratch1, Operand(0x7191));
1451 mov(scratch2, Operand(0x7291));
1452 }
1453 jmp(gc_required);
1454 return;
1455 }
1456
Steve Blocka7e24c12009-10-30 11:49:00 +00001457 ASSERT(!result.is(scratch1));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001458 ASSERT(!result.is(scratch2));
Steve Blocka7e24c12009-10-30 11:49:00 +00001459 ASSERT(!scratch1.is(scratch2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001460 ASSERT(!scratch1.is(ip));
1461 ASSERT(!scratch2.is(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001462
Kristian Monsen25f61362010-05-21 11:50:48 +01001463 // Make object size into bytes.
1464 if ((flags & SIZE_IN_WORDS) != 0) {
1465 object_size *= kPointerSize;
1466 }
1467 ASSERT_EQ(0, object_size & kObjectAlignmentMask);
1468
Ben Murdochb0fe1622011-05-05 13:52:32 +01001469 // Check relative positions of allocation top and limit addresses.
1470 // The values must be adjacent in memory to allow the use of LDM.
1471 // Also, assert that the registers are numbered such that the values
1472 // are loaded in the correct order.
Steve Blocka7e24c12009-10-30 11:49:00 +00001473 ExternalReference new_space_allocation_top =
Steve Block44f0eee2011-05-26 01:26:41 +01001474 ExternalReference::new_space_allocation_top_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001475 ExternalReference new_space_allocation_limit =
Steve Block44f0eee2011-05-26 01:26:41 +01001476 ExternalReference::new_space_allocation_limit_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001477 intptr_t top =
1478 reinterpret_cast<intptr_t>(new_space_allocation_top.address());
1479 intptr_t limit =
1480 reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
1481 ASSERT((limit - top) == kPointerSize);
1482 ASSERT(result.code() < ip.code());
1483
1484 // Set up allocation top address and object size registers.
1485 Register topaddr = scratch1;
1486 Register obj_size_reg = scratch2;
1487 mov(topaddr, Operand(new_space_allocation_top));
1488 mov(obj_size_reg, Operand(object_size));
1489
1490 // This code stores a temporary value in ip. This is OK, as the code below
1491 // does not need ip for implicit literal generation.
Steve Blocka7e24c12009-10-30 11:49:00 +00001492 if ((flags & RESULT_CONTAINS_TOP) == 0) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001493 // Load allocation top into result and allocation limit into ip.
1494 ldm(ia, topaddr, result.bit() | ip.bit());
1495 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001496 if (emit_debug_code()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001497 // Assert that result actually contains top on entry. ip is used
1498 // immediately below so this use of ip does not cause difference with
1499 // respect to register content between debug and release mode.
1500 ldr(ip, MemOperand(topaddr));
1501 cmp(result, ip);
1502 Check(eq, "Unexpected allocation top");
1503 }
1504 // Load allocation limit into ip. Result already contains allocation top.
1505 ldr(ip, MemOperand(topaddr, limit - top));
Steve Blocka7e24c12009-10-30 11:49:00 +00001506 }
1507
1508 // Calculate new top and bail out if new space is exhausted. Use result
1509 // to calculate the new top.
Steve Block1e0659c2011-05-24 12:43:12 +01001510 add(scratch2, result, Operand(obj_size_reg), SetCC);
1511 b(cs, gc_required);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001512 cmp(scratch2, Operand(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001513 b(hi, gc_required);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001514 str(scratch2, MemOperand(topaddr));
Steve Blocka7e24c12009-10-30 11:49:00 +00001515
Ben Murdochb0fe1622011-05-05 13:52:32 +01001516 // Tag object if requested.
Steve Blocka7e24c12009-10-30 11:49:00 +00001517 if ((flags & TAG_OBJECT) != 0) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001518 add(result, result, Operand(kHeapObjectTag));
Steve Blocka7e24c12009-10-30 11:49:00 +00001519 }
1520}
1521
1522
1523void MacroAssembler::AllocateInNewSpace(Register object_size,
1524 Register result,
1525 Register scratch1,
1526 Register scratch2,
1527 Label* gc_required,
1528 AllocationFlags flags) {
John Reck59135872010-11-02 12:39:01 -07001529 if (!FLAG_inline_new) {
Steve Block44f0eee2011-05-26 01:26:41 +01001530 if (emit_debug_code()) {
John Reck59135872010-11-02 12:39:01 -07001531 // Trash the registers to simulate an allocation failure.
1532 mov(result, Operand(0x7091));
1533 mov(scratch1, Operand(0x7191));
1534 mov(scratch2, Operand(0x7291));
1535 }
1536 jmp(gc_required);
1537 return;
1538 }
1539
Ben Murdochb0fe1622011-05-05 13:52:32 +01001540 // Assert that the register arguments are different and that none of
1541 // them are ip. ip is used explicitly in the code generated below.
Steve Blocka7e24c12009-10-30 11:49:00 +00001542 ASSERT(!result.is(scratch1));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001543 ASSERT(!result.is(scratch2));
Steve Blocka7e24c12009-10-30 11:49:00 +00001544 ASSERT(!scratch1.is(scratch2));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001545 ASSERT(!result.is(ip));
1546 ASSERT(!scratch1.is(ip));
1547 ASSERT(!scratch2.is(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001548
Ben Murdochb0fe1622011-05-05 13:52:32 +01001549 // Check relative positions of allocation top and limit addresses.
1550 // The values must be adjacent in memory to allow the use of LDM.
1551 // Also, assert that the registers are numbered such that the values
1552 // are loaded in the correct order.
Steve Blocka7e24c12009-10-30 11:49:00 +00001553 ExternalReference new_space_allocation_top =
Steve Block44f0eee2011-05-26 01:26:41 +01001554 ExternalReference::new_space_allocation_top_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001555 ExternalReference new_space_allocation_limit =
Steve Block44f0eee2011-05-26 01:26:41 +01001556 ExternalReference::new_space_allocation_limit_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001557 intptr_t top =
1558 reinterpret_cast<intptr_t>(new_space_allocation_top.address());
1559 intptr_t limit =
1560 reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
1561 ASSERT((limit - top) == kPointerSize);
1562 ASSERT(result.code() < ip.code());
1563
1564 // Set up allocation top address.
1565 Register topaddr = scratch1;
1566 mov(topaddr, Operand(new_space_allocation_top));
1567
1568 // This code stores a temporary value in ip. This is OK, as the code below
1569 // does not need ip for implicit literal generation.
Steve Blocka7e24c12009-10-30 11:49:00 +00001570 if ((flags & RESULT_CONTAINS_TOP) == 0) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001571 // Load allocation top into result and allocation limit into ip.
1572 ldm(ia, topaddr, result.bit() | ip.bit());
1573 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001574 if (emit_debug_code()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001575 // Assert that result actually contains top on entry. ip is used
1576 // immediately below so this use of ip does not cause difference with
1577 // respect to register content between debug and release mode.
1578 ldr(ip, MemOperand(topaddr));
1579 cmp(result, ip);
1580 Check(eq, "Unexpected allocation top");
1581 }
1582 // Load allocation limit into ip. Result already contains allocation top.
1583 ldr(ip, MemOperand(topaddr, limit - top));
Steve Blocka7e24c12009-10-30 11:49:00 +00001584 }
1585
1586 // Calculate new top and bail out if new space is exhausted. Use result
Ben Murdochb0fe1622011-05-05 13:52:32 +01001587 // to calculate the new top. Object size may be in words so a shift is
1588 // required to get the number of bytes.
Kristian Monsen25f61362010-05-21 11:50:48 +01001589 if ((flags & SIZE_IN_WORDS) != 0) {
Steve Block1e0659c2011-05-24 12:43:12 +01001590 add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
Kristian Monsen25f61362010-05-21 11:50:48 +01001591 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01001592 add(scratch2, result, Operand(object_size), SetCC);
Kristian Monsen25f61362010-05-21 11:50:48 +01001593 }
Steve Block1e0659c2011-05-24 12:43:12 +01001594 b(cs, gc_required);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001595 cmp(scratch2, Operand(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001596 b(hi, gc_required);
1597
Steve Blockd0582a62009-12-15 09:54:21 +00001598 // Update allocation top. result temporarily holds the new top.
Steve Block44f0eee2011-05-26 01:26:41 +01001599 if (emit_debug_code()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001600 tst(scratch2, Operand(kObjectAlignmentMask));
Steve Blockd0582a62009-12-15 09:54:21 +00001601 Check(eq, "Unaligned allocation in new space");
1602 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001603 str(scratch2, MemOperand(topaddr));
Steve Blocka7e24c12009-10-30 11:49:00 +00001604
1605 // Tag object if requested.
1606 if ((flags & TAG_OBJECT) != 0) {
1607 add(result, result, Operand(kHeapObjectTag));
1608 }
1609}
1610
1611
1612void MacroAssembler::UndoAllocationInNewSpace(Register object,
1613 Register scratch) {
1614 ExternalReference new_space_allocation_top =
Steve Block44f0eee2011-05-26 01:26:41 +01001615 ExternalReference::new_space_allocation_top_address(isolate());
Steve Blocka7e24c12009-10-30 11:49:00 +00001616
1617 // Make sure the object has no tag before resetting top.
1618 and_(object, object, Operand(~kHeapObjectTagMask));
1619#ifdef DEBUG
1620 // Check that the object un-allocated is below the current top.
1621 mov(scratch, Operand(new_space_allocation_top));
1622 ldr(scratch, MemOperand(scratch));
1623 cmp(object, scratch);
1624 Check(lt, "Undo allocation of non allocated memory");
1625#endif
1626 // Write the address of the object to un-allocate as the current top.
1627 mov(scratch, Operand(new_space_allocation_top));
1628 str(object, MemOperand(scratch));
1629}
1630
1631
Andrei Popescu31002712010-02-23 13:46:05 +00001632void MacroAssembler::AllocateTwoByteString(Register result,
1633 Register length,
1634 Register scratch1,
1635 Register scratch2,
1636 Register scratch3,
1637 Label* gc_required) {
1638 // Calculate the number of bytes needed for the characters in the string while
1639 // observing object alignment.
1640 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1641 mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars.
1642 add(scratch1, scratch1,
1643 Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
Kristian Monsen25f61362010-05-21 11:50:48 +01001644 and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
Andrei Popescu31002712010-02-23 13:46:05 +00001645
1646 // Allocate two-byte string in new space.
1647 AllocateInNewSpace(scratch1,
1648 result,
1649 scratch2,
1650 scratch3,
1651 gc_required,
1652 TAG_OBJECT);
1653
1654 // Set the map, length and hash field.
Steve Block6ded16b2010-05-10 14:33:55 +01001655 InitializeNewString(result,
1656 length,
1657 Heap::kStringMapRootIndex,
1658 scratch1,
1659 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001660}
1661
1662
1663void MacroAssembler::AllocateAsciiString(Register result,
1664 Register length,
1665 Register scratch1,
1666 Register scratch2,
1667 Register scratch3,
1668 Label* gc_required) {
1669 // Calculate the number of bytes needed for the characters in the string while
1670 // observing object alignment.
1671 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
1672 ASSERT(kCharSize == 1);
1673 add(scratch1, length,
1674 Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize));
Kristian Monsen25f61362010-05-21 11:50:48 +01001675 and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
Andrei Popescu31002712010-02-23 13:46:05 +00001676
1677 // Allocate ASCII string in new space.
1678 AllocateInNewSpace(scratch1,
1679 result,
1680 scratch2,
1681 scratch3,
1682 gc_required,
1683 TAG_OBJECT);
1684
1685 // Set the map, length and hash field.
Steve Block6ded16b2010-05-10 14:33:55 +01001686 InitializeNewString(result,
1687 length,
1688 Heap::kAsciiStringMapRootIndex,
1689 scratch1,
1690 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001691}
1692
1693
1694void MacroAssembler::AllocateTwoByteConsString(Register result,
1695 Register length,
1696 Register scratch1,
1697 Register scratch2,
1698 Label* gc_required) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001699 AllocateInNewSpace(ConsString::kSize,
Andrei Popescu31002712010-02-23 13:46:05 +00001700 result,
1701 scratch1,
1702 scratch2,
1703 gc_required,
1704 TAG_OBJECT);
Steve Block6ded16b2010-05-10 14:33:55 +01001705
1706 InitializeNewString(result,
1707 length,
1708 Heap::kConsStringMapRootIndex,
1709 scratch1,
1710 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001711}
1712
1713
1714void MacroAssembler::AllocateAsciiConsString(Register result,
1715 Register length,
1716 Register scratch1,
1717 Register scratch2,
1718 Label* gc_required) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001719 AllocateInNewSpace(ConsString::kSize,
Andrei Popescu31002712010-02-23 13:46:05 +00001720 result,
1721 scratch1,
1722 scratch2,
1723 gc_required,
1724 TAG_OBJECT);
Steve Block6ded16b2010-05-10 14:33:55 +01001725
1726 InitializeNewString(result,
1727 length,
1728 Heap::kConsAsciiStringMapRootIndex,
1729 scratch1,
1730 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001731}
1732
1733
Steve Block6ded16b2010-05-10 14:33:55 +01001734void MacroAssembler::CompareObjectType(Register object,
Steve Blocka7e24c12009-10-30 11:49:00 +00001735 Register map,
1736 Register type_reg,
1737 InstanceType type) {
Steve Block6ded16b2010-05-10 14:33:55 +01001738 ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00001739 CompareInstanceType(map, type_reg, type);
1740}
1741
1742
1743void MacroAssembler::CompareInstanceType(Register map,
1744 Register type_reg,
1745 InstanceType type) {
1746 ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
1747 cmp(type_reg, Operand(type));
1748}
1749
1750
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001751void MacroAssembler::CompareRoot(Register obj,
1752 Heap::RootListIndex index) {
1753 ASSERT(!obj.is(ip));
1754 LoadRoot(ip, index);
1755 cmp(obj, ip);
1756}
1757
1758
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001759void MacroAssembler::CheckFastElements(Register map,
1760 Register scratch,
1761 Label* fail) {
1762 STATIC_ASSERT(JSObject::FAST_ELEMENTS == 0);
1763 ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
1764 cmp(scratch, Operand(Map::kMaximumBitField2FastElementValue));
1765 b(hi, fail);
1766}
1767
1768
Andrei Popescu31002712010-02-23 13:46:05 +00001769void MacroAssembler::CheckMap(Register obj,
1770 Register scratch,
1771 Handle<Map> map,
1772 Label* fail,
Ben Murdoch257744e2011-11-30 15:57:28 +00001773 SmiCheckType smi_check_type) {
1774 if (smi_check_type == DO_SMI_CHECK) {
Steve Block1e0659c2011-05-24 12:43:12 +01001775 JumpIfSmi(obj, fail);
Andrei Popescu31002712010-02-23 13:46:05 +00001776 }
1777 ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
1778 mov(ip, Operand(map));
1779 cmp(scratch, ip);
1780 b(ne, fail);
1781}
1782
1783
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001784void MacroAssembler::CheckMap(Register obj,
1785 Register scratch,
1786 Heap::RootListIndex index,
1787 Label* fail,
Ben Murdoch257744e2011-11-30 15:57:28 +00001788 SmiCheckType smi_check_type) {
1789 if (smi_check_type == DO_SMI_CHECK) {
Steve Block1e0659c2011-05-24 12:43:12 +01001790 JumpIfSmi(obj, fail);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001791 }
1792 ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
1793 LoadRoot(ip, index);
1794 cmp(scratch, ip);
1795 b(ne, fail);
1796}
1797
1798
Ben Murdoch257744e2011-11-30 15:57:28 +00001799void MacroAssembler::DispatchMap(Register obj,
1800 Register scratch,
1801 Handle<Map> map,
1802 Handle<Code> success,
1803 SmiCheckType smi_check_type) {
1804 Label fail;
1805 if (smi_check_type == DO_SMI_CHECK) {
1806 JumpIfSmi(obj, &fail);
1807 }
1808 ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
1809 mov(ip, Operand(map));
1810 cmp(scratch, ip);
1811 Jump(success, RelocInfo::CODE_TARGET, eq);
1812 bind(&fail);
1813}
1814
1815
Steve Blocka7e24c12009-10-30 11:49:00 +00001816void MacroAssembler::TryGetFunctionPrototype(Register function,
1817 Register result,
1818 Register scratch,
1819 Label* miss) {
1820 // Check that the receiver isn't a smi.
Steve Block1e0659c2011-05-24 12:43:12 +01001821 JumpIfSmi(function, miss);
Steve Blocka7e24c12009-10-30 11:49:00 +00001822
1823 // Check that the function really is a function. Load map into result reg.
1824 CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
1825 b(ne, miss);
1826
1827 // Make sure that the function has an instance prototype.
1828 Label non_instance;
1829 ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
1830 tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
1831 b(ne, &non_instance);
1832
1833 // Get the prototype or initial map from the function.
1834 ldr(result,
1835 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1836
1837 // If the prototype or initial map is the hole, don't return it and
1838 // simply miss the cache instead. This will allow us to allocate a
1839 // prototype object on-demand in the runtime system.
1840 LoadRoot(ip, Heap::kTheHoleValueRootIndex);
1841 cmp(result, ip);
1842 b(eq, miss);
1843
1844 // If the function does not have an initial map, we're done.
1845 Label done;
1846 CompareObjectType(result, scratch, scratch, MAP_TYPE);
1847 b(ne, &done);
1848
1849 // Get the prototype from the initial map.
1850 ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
1851 jmp(&done);
1852
1853 // Non-instance prototype: Fetch prototype from constructor field
1854 // in initial map.
1855 bind(&non_instance);
1856 ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
1857
1858 // All done.
1859 bind(&done);
1860}
1861
1862
1863void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001864 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001865 Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond);
Steve Blocka7e24c12009-10-30 11:49:00 +00001866}
1867
1868
Ben Murdoch257744e2011-11-30 15:57:28 +00001869MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub, Condition cond) {
1870 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
1871 Object* result;
1872 { MaybeObject* maybe_result = stub->TryGetCode();
1873 if (!maybe_result->ToObject(&result)) return maybe_result;
1874 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001875 Handle<Code> code(Code::cast(result));
1876 Call(code, RelocInfo::CODE_TARGET, kNoASTId, cond);
Ben Murdoch257744e2011-11-30 15:57:28 +00001877 return result;
1878}
1879
1880
Andrei Popescu31002712010-02-23 13:46:05 +00001881void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001882 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
Andrei Popescu31002712010-02-23 13:46:05 +00001883 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
1884}
1885
1886
Steve Block1e0659c2011-05-24 12:43:12 +01001887MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub, Condition cond) {
1888 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
1889 Object* result;
1890 { MaybeObject* maybe_result = stub->TryGetCode();
1891 if (!maybe_result->ToObject(&result)) return maybe_result;
1892 }
Ben Murdoch257744e2011-11-30 15:57:28 +00001893 Jump(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET, cond);
Steve Block1e0659c2011-05-24 12:43:12 +01001894 return result;
1895}
1896
1897
1898static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1899 return ref0.address() - ref1.address();
1900}
1901
1902
1903MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001904 ExternalReference function, int stack_space) {
Steve Block1e0659c2011-05-24 12:43:12 +01001905 ExternalReference next_address =
1906 ExternalReference::handle_scope_next_address();
1907 const int kNextOffset = 0;
1908 const int kLimitOffset = AddressOffset(
1909 ExternalReference::handle_scope_limit_address(),
1910 next_address);
1911 const int kLevelOffset = AddressOffset(
1912 ExternalReference::handle_scope_level_address(),
1913 next_address);
1914
1915 // Allocate HandleScope in callee-save registers.
1916 mov(r7, Operand(next_address));
1917 ldr(r4, MemOperand(r7, kNextOffset));
1918 ldr(r5, MemOperand(r7, kLimitOffset));
1919 ldr(r6, MemOperand(r7, kLevelOffset));
1920 add(r6, r6, Operand(1));
1921 str(r6, MemOperand(r7, kLevelOffset));
1922
1923 // Native call returns to the DirectCEntry stub which redirects to the
1924 // return address pushed on stack (could have moved after GC).
1925 // DirectCEntry stub itself is generated early and never moves.
1926 DirectCEntryStub stub;
1927 stub.GenerateCall(this, function);
1928
1929 Label promote_scheduled_exception;
1930 Label delete_allocated_handles;
1931 Label leave_exit_frame;
1932
1933 // If result is non-zero, dereference to get the result value
1934 // otherwise set it to undefined.
1935 cmp(r0, Operand(0));
1936 LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
1937 ldr(r0, MemOperand(r0), ne);
1938
1939 // No more valid handles (the result handle was the last one). Restore
1940 // previous handle scope.
1941 str(r4, MemOperand(r7, kNextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01001942 if (emit_debug_code()) {
Steve Block1e0659c2011-05-24 12:43:12 +01001943 ldr(r1, MemOperand(r7, kLevelOffset));
1944 cmp(r1, r6);
1945 Check(eq, "Unexpected level after return from api call");
1946 }
1947 sub(r6, r6, Operand(1));
1948 str(r6, MemOperand(r7, kLevelOffset));
1949 ldr(ip, MemOperand(r7, kLimitOffset));
1950 cmp(r5, ip);
1951 b(ne, &delete_allocated_handles);
1952
1953 // Check if the function scheduled an exception.
1954 bind(&leave_exit_frame);
1955 LoadRoot(r4, Heap::kTheHoleValueRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01001956 mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
Steve Block1e0659c2011-05-24 12:43:12 +01001957 ldr(r5, MemOperand(ip));
1958 cmp(r4, r5);
1959 b(ne, &promote_scheduled_exception);
1960
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001961 // LeaveExitFrame expects unwind space to be in a register.
Steve Block1e0659c2011-05-24 12:43:12 +01001962 mov(r4, Operand(stack_space));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001963 LeaveExitFrame(false, r4);
1964 mov(pc, lr);
Steve Block1e0659c2011-05-24 12:43:12 +01001965
1966 bind(&promote_scheduled_exception);
Steve Block44f0eee2011-05-26 01:26:41 +01001967 MaybeObject* result
1968 = TryTailCallExternalReference(
1969 ExternalReference(Runtime::kPromoteScheduledException, isolate()),
1970 0,
1971 1);
Steve Block1e0659c2011-05-24 12:43:12 +01001972 if (result->IsFailure()) {
1973 return result;
1974 }
1975
1976 // HandleScope limit has changed. Delete allocated extensions.
1977 bind(&delete_allocated_handles);
1978 str(r5, MemOperand(r7, kLimitOffset));
1979 mov(r4, r0);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001980 PrepareCallCFunction(1, r5);
1981 mov(r0, Operand(ExternalReference::isolate_address()));
Steve Block44f0eee2011-05-26 01:26:41 +01001982 CallCFunction(
Ben Murdoch8b112d22011-06-08 16:22:53 +01001983 ExternalReference::delete_handle_scope_extensions(isolate()), 1);
Steve Block1e0659c2011-05-24 12:43:12 +01001984 mov(r0, r4);
1985 jmp(&leave_exit_frame);
1986
1987 return result;
1988}
1989
1990
Steve Blocka7e24c12009-10-30 11:49:00 +00001991void MacroAssembler::IllegalOperation(int num_arguments) {
1992 if (num_arguments > 0) {
1993 add(sp, sp, Operand(num_arguments * kPointerSize));
1994 }
1995 LoadRoot(r0, Heap::kUndefinedValueRootIndex);
1996}
1997
1998
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001999void MacroAssembler::IndexFromHash(Register hash, Register index) {
2000 // If the hash field contains an array index pick it out. The assert checks
2001 // that the constants for the maximum number of digits for an array index
2002 // cached in the hash field and the number of bits reserved for it does not
2003 // conflict.
2004 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
2005 (1 << String::kArrayIndexValueBits));
2006 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
2007 // the low kHashShift bits.
2008 STATIC_ASSERT(kSmiTag == 0);
2009 Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
2010 mov(index, Operand(hash, LSL, kSmiTagSize));
2011}
2012
2013
Steve Blockd0582a62009-12-15 09:54:21 +00002014void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg,
2015 Register outHighReg,
2016 Register outLowReg) {
2017 // ARMv7 VFP3 instructions to implement integer to double conversion.
2018 mov(r7, Operand(inReg, ASR, kSmiTagSize));
Leon Clarkee46be812010-01-19 14:06:41 +00002019 vmov(s15, r7);
Steve Block6ded16b2010-05-10 14:33:55 +01002020 vcvt_f64_s32(d7, s15);
Leon Clarkee46be812010-01-19 14:06:41 +00002021 vmov(outLowReg, outHighReg, d7);
Steve Blockd0582a62009-12-15 09:54:21 +00002022}
2023
2024
Steve Block8defd9f2010-07-08 12:39:36 +01002025void MacroAssembler::ObjectToDoubleVFPRegister(Register object,
2026 DwVfpRegister result,
2027 Register scratch1,
2028 Register scratch2,
2029 Register heap_number_map,
2030 SwVfpRegister scratch3,
2031 Label* not_number,
2032 ObjectToDoubleFlags flags) {
2033 Label done;
2034 if ((flags & OBJECT_NOT_SMI) == 0) {
2035 Label not_smi;
Steve Block1e0659c2011-05-24 12:43:12 +01002036 JumpIfNotSmi(object, &not_smi);
Steve Block8defd9f2010-07-08 12:39:36 +01002037 // Remove smi tag and convert to double.
2038 mov(scratch1, Operand(object, ASR, kSmiTagSize));
2039 vmov(scratch3, scratch1);
2040 vcvt_f64_s32(result, scratch3);
2041 b(&done);
2042 bind(&not_smi);
2043 }
2044 // Check for heap number and load double value from it.
2045 ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
2046 sub(scratch2, object, Operand(kHeapObjectTag));
2047 cmp(scratch1, heap_number_map);
2048 b(ne, not_number);
2049 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
2050 // If exponent is all ones the number is either a NaN or +/-Infinity.
2051 ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
2052 Sbfx(scratch1,
2053 scratch1,
2054 HeapNumber::kExponentShift,
2055 HeapNumber::kExponentBits);
2056 // All-one value sign extend to -1.
2057 cmp(scratch1, Operand(-1));
2058 b(eq, not_number);
2059 }
2060 vldr(result, scratch2, HeapNumber::kValueOffset);
2061 bind(&done);
2062}
2063
2064
2065void MacroAssembler::SmiToDoubleVFPRegister(Register smi,
2066 DwVfpRegister value,
2067 Register scratch1,
2068 SwVfpRegister scratch2) {
2069 mov(scratch1, Operand(smi, ASR, kSmiTagSize));
2070 vmov(scratch2, scratch1);
2071 vcvt_f64_s32(value, scratch2);
2072}
2073
2074
Iain Merrick9ac36c92010-09-13 15:29:50 +01002075// Tries to get a signed int32 out of a double precision floating point heap
2076// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
2077// 32bits signed integer range.
2078void MacroAssembler::ConvertToInt32(Register source,
2079 Register dest,
2080 Register scratch,
2081 Register scratch2,
Steve Block1e0659c2011-05-24 12:43:12 +01002082 DwVfpRegister double_scratch,
Iain Merrick9ac36c92010-09-13 15:29:50 +01002083 Label *not_int32) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002084 if (CpuFeatures::IsSupported(VFP3)) {
Iain Merrick9ac36c92010-09-13 15:29:50 +01002085 CpuFeatures::Scope scope(VFP3);
2086 sub(scratch, source, Operand(kHeapObjectTag));
Steve Block1e0659c2011-05-24 12:43:12 +01002087 vldr(double_scratch, scratch, HeapNumber::kValueOffset);
2088 vcvt_s32_f64(double_scratch.low(), double_scratch);
2089 vmov(dest, double_scratch.low());
Iain Merrick9ac36c92010-09-13 15:29:50 +01002090 // Signed vcvt instruction will saturate to the minimum (0x80000000) or
2091 // maximun (0x7fffffff) signed 32bits integer when the double is out of
2092 // range. When substracting one, the minimum signed integer becomes the
2093 // maximun signed integer.
2094 sub(scratch, dest, Operand(1));
2095 cmp(scratch, Operand(LONG_MAX - 1));
2096 // If equal then dest was LONG_MAX, if greater dest was LONG_MIN.
2097 b(ge, not_int32);
2098 } else {
2099 // This code is faster for doubles that are in the ranges -0x7fffffff to
2100 // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to
2101 // the range of signed int32 values that are not Smis. Jumps to the label
2102 // 'not_int32' if the double isn't in the range -0x80000000.0 to
2103 // 0x80000000.0 (excluding the endpoints).
2104 Label right_exponent, done;
2105 // Get exponent word.
2106 ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
2107 // Get exponent alone in scratch2.
2108 Ubfx(scratch2,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002109 scratch,
2110 HeapNumber::kExponentShift,
2111 HeapNumber::kExponentBits);
Iain Merrick9ac36c92010-09-13 15:29:50 +01002112 // Load dest with zero. We use this either for the final shift or
2113 // for the answer.
2114 mov(dest, Operand(0, RelocInfo::NONE));
2115 // Check whether the exponent matches a 32 bit signed int that is not a Smi.
2116 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
2117 // the exponent that we are fastest at and also the highest exponent we can
2118 // handle here.
2119 const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
2120 // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
2121 // split it up to avoid a constant pool entry. You can't do that in general
2122 // for cmp because of the overflow flag, but we know the exponent is in the
2123 // range 0-2047 so there is no overflow.
2124 int fudge_factor = 0x400;
2125 sub(scratch2, scratch2, Operand(fudge_factor));
2126 cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
2127 // If we have a match of the int32-but-not-Smi exponent then skip some
2128 // logic.
2129 b(eq, &right_exponent);
2130 // If the exponent is higher than that then go to slow case. This catches
2131 // numbers that don't fit in a signed int32, infinities and NaNs.
2132 b(gt, not_int32);
2133
2134 // We know the exponent is smaller than 30 (biased). If it is less than
2135 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
2136 // it rounds to zero.
2137 const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
2138 sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
2139 // Dest already has a Smi zero.
2140 b(lt, &done);
2141
2142 // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to
2143 // get how much to shift down.
2144 rsb(dest, scratch2, Operand(30));
2145
2146 bind(&right_exponent);
2147 // Get the top bits of the mantissa.
2148 and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
2149 // Put back the implicit 1.
2150 orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
2151 // Shift up the mantissa bits to take up the space the exponent used to
2152 // take. We just orred in the implicit bit so that took care of one and
2153 // we want to leave the sign bit 0 so we subtract 2 bits from the shift
2154 // distance.
2155 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
2156 mov(scratch2, Operand(scratch2, LSL, shift_distance));
2157 // Put sign in zero flag.
2158 tst(scratch, Operand(HeapNumber::kSignMask));
2159 // Get the second half of the double. For some exponents we don't
2160 // actually need this because the bits get shifted out again, but
2161 // it's probably slower to test than just to do it.
2162 ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
2163 // Shift down 22 bits to get the last 10 bits.
2164 orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
2165 // Move down according to the exponent.
2166 mov(dest, Operand(scratch, LSR, dest));
2167 // Fix sign if sign bit was set.
2168 rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne);
2169 bind(&done);
2170 }
2171}
2172
2173
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002174void MacroAssembler::EmitVFPTruncate(VFPRoundingMode rounding_mode,
2175 SwVfpRegister result,
2176 DwVfpRegister double_input,
2177 Register scratch1,
2178 Register scratch2,
2179 CheckForInexactConversion check_inexact) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002180 ASSERT(CpuFeatures::IsSupported(VFP3));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002181 CpuFeatures::Scope scope(VFP3);
2182 Register prev_fpscr = scratch1;
2183 Register scratch = scratch2;
2184
2185 int32_t check_inexact_conversion =
2186 (check_inexact == kCheckForInexactConversion) ? kVFPInexactExceptionBit : 0;
2187
2188 // Set custom FPCSR:
2189 // - Set rounding mode.
2190 // - Clear vfp cumulative exception flags.
2191 // - Make sure Flush-to-zero mode control bit is unset.
2192 vmrs(prev_fpscr);
2193 bic(scratch,
2194 prev_fpscr,
2195 Operand(kVFPExceptionMask |
2196 check_inexact_conversion |
2197 kVFPRoundingModeMask |
2198 kVFPFlushToZeroMask));
2199 // 'Round To Nearest' is encoded by 0b00 so no bits need to be set.
2200 if (rounding_mode != kRoundToNearest) {
2201 orr(scratch, scratch, Operand(rounding_mode));
2202 }
2203 vmsr(scratch);
2204
2205 // Convert the argument to an integer.
2206 vcvt_s32_f64(result,
2207 double_input,
2208 (rounding_mode == kRoundToZero) ? kDefaultRoundToZero
2209 : kFPSCRRounding);
2210
2211 // Retrieve FPSCR.
2212 vmrs(scratch);
2213 // Restore FPSCR.
2214 vmsr(prev_fpscr);
2215 // Check for vfp exceptions.
2216 tst(scratch, Operand(kVFPExceptionMask | check_inexact_conversion));
2217}
2218
2219
Steve Block44f0eee2011-05-26 01:26:41 +01002220void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result,
2221 Register input_high,
2222 Register input_low,
2223 Register scratch) {
2224 Label done, normal_exponent, restore_sign;
2225
2226 // Extract the biased exponent in result.
2227 Ubfx(result,
2228 input_high,
2229 HeapNumber::kExponentShift,
2230 HeapNumber::kExponentBits);
2231
2232 // Check for Infinity and NaNs, which should return 0.
2233 cmp(result, Operand(HeapNumber::kExponentMask));
2234 mov(result, Operand(0), LeaveCC, eq);
2235 b(eq, &done);
2236
2237 // Express exponent as delta to (number of mantissa bits + 31).
2238 sub(result,
2239 result,
2240 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31),
2241 SetCC);
2242
2243 // If the delta is strictly positive, all bits would be shifted away,
2244 // which means that we can return 0.
2245 b(le, &normal_exponent);
2246 mov(result, Operand(0));
2247 b(&done);
2248
2249 bind(&normal_exponent);
2250 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
2251 // Calculate shift.
2252 add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC);
2253
2254 // Save the sign.
2255 Register sign = result;
2256 result = no_reg;
2257 and_(sign, input_high, Operand(HeapNumber::kSignMask));
2258
2259 // Set the implicit 1 before the mantissa part in input_high.
2260 orr(input_high,
2261 input_high,
2262 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
2263 // Shift the mantissa bits to the correct position.
2264 // We don't need to clear non-mantissa bits as they will be shifted away.
2265 // If they weren't, it would mean that the answer is in the 32bit range.
2266 mov(input_high, Operand(input_high, LSL, scratch));
2267
2268 // Replace the shifted bits with bits from the lower mantissa word.
2269 Label pos_shift, shift_done;
2270 rsb(scratch, scratch, Operand(32), SetCC);
2271 b(&pos_shift, ge);
2272
2273 // Negate scratch.
2274 rsb(scratch, scratch, Operand(0));
2275 mov(input_low, Operand(input_low, LSL, scratch));
2276 b(&shift_done);
2277
2278 bind(&pos_shift);
2279 mov(input_low, Operand(input_low, LSR, scratch));
2280
2281 bind(&shift_done);
2282 orr(input_high, input_high, Operand(input_low));
2283 // Restore sign if necessary.
2284 cmp(sign, Operand(0));
2285 result = sign;
2286 sign = no_reg;
2287 rsb(result, input_high, Operand(0), LeaveCC, ne);
2288 mov(result, input_high, LeaveCC, eq);
2289 bind(&done);
2290}
2291
2292
2293void MacroAssembler::EmitECMATruncate(Register result,
2294 DwVfpRegister double_input,
2295 SwVfpRegister single_scratch,
2296 Register scratch,
2297 Register input_high,
2298 Register input_low) {
2299 CpuFeatures::Scope scope(VFP3);
2300 ASSERT(!input_high.is(result));
2301 ASSERT(!input_low.is(result));
2302 ASSERT(!input_low.is(input_high));
2303 ASSERT(!scratch.is(result) &&
2304 !scratch.is(input_high) &&
2305 !scratch.is(input_low));
2306 ASSERT(!single_scratch.is(double_input.low()) &&
2307 !single_scratch.is(double_input.high()));
2308
2309 Label done;
2310
2311 // Clear cumulative exception flags.
2312 ClearFPSCRBits(kVFPExceptionMask, scratch);
2313 // Try a conversion to a signed integer.
2314 vcvt_s32_f64(single_scratch, double_input);
2315 vmov(result, single_scratch);
2316 // Retrieve he FPSCR.
2317 vmrs(scratch);
2318 // Check for overflow and NaNs.
2319 tst(scratch, Operand(kVFPOverflowExceptionBit |
2320 kVFPUnderflowExceptionBit |
2321 kVFPInvalidOpExceptionBit));
2322 // If we had no exceptions we are done.
2323 b(eq, &done);
2324
2325 // Load the double value and perform a manual truncation.
2326 vmov(input_low, input_high, double_input);
2327 EmitOutOfInt32RangeTruncate(result,
2328 input_high,
2329 input_low,
2330 scratch);
2331 bind(&done);
2332}
2333
2334
Andrei Popescu31002712010-02-23 13:46:05 +00002335void MacroAssembler::GetLeastBitsFromSmi(Register dst,
2336 Register src,
2337 int num_least_bits) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002338 if (CpuFeatures::IsSupported(ARMv7)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002339 ubfx(dst, src, kSmiTagSize, num_least_bits);
Andrei Popescu31002712010-02-23 13:46:05 +00002340 } else {
2341 mov(dst, Operand(src, ASR, kSmiTagSize));
2342 and_(dst, dst, Operand((1 << num_least_bits) - 1));
2343 }
2344}
2345
2346
Steve Block1e0659c2011-05-24 12:43:12 +01002347void MacroAssembler::GetLeastBitsFromInt32(Register dst,
2348 Register src,
2349 int num_least_bits) {
2350 and_(dst, src, Operand((1 << num_least_bits) - 1));
2351}
2352
2353
Steve Block44f0eee2011-05-26 01:26:41 +01002354void MacroAssembler::CallRuntime(const Runtime::Function* f,
2355 int num_arguments) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002356 // All parameters are on the stack. r0 has the return value after call.
2357
2358 // If the expected number of arguments of the runtime function is
2359 // constant, we check that the actual number of arguments match the
2360 // expectation.
2361 if (f->nargs >= 0 && f->nargs != num_arguments) {
2362 IllegalOperation(num_arguments);
2363 return;
2364 }
2365
Leon Clarke4515c472010-02-03 11:58:03 +00002366 // TODO(1236192): Most runtime routines don't need the number of
2367 // arguments passed in because it is constant. At some point we
2368 // should remove this need and make the runtime routine entry code
2369 // smarter.
2370 mov(r0, Operand(num_arguments));
Steve Block44f0eee2011-05-26 01:26:41 +01002371 mov(r1, Operand(ExternalReference(f, isolate())));
Leon Clarke4515c472010-02-03 11:58:03 +00002372 CEntryStub stub(1);
Steve Blocka7e24c12009-10-30 11:49:00 +00002373 CallStub(&stub);
2374}
2375
2376
2377void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
2378 CallRuntime(Runtime::FunctionForId(fid), num_arguments);
2379}
2380
2381
Ben Murdochb0fe1622011-05-05 13:52:32 +01002382void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
Steve Block44f0eee2011-05-26 01:26:41 +01002383 const Runtime::Function* function = Runtime::FunctionForId(id);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002384 mov(r0, Operand(function->nargs));
Steve Block44f0eee2011-05-26 01:26:41 +01002385 mov(r1, Operand(ExternalReference(function, isolate())));
Ben Murdochb0fe1622011-05-05 13:52:32 +01002386 CEntryStub stub(1);
2387 stub.SaveDoubles();
2388 CallStub(&stub);
2389}
2390
2391
Andrei Popescu402d9372010-02-26 13:31:12 +00002392void MacroAssembler::CallExternalReference(const ExternalReference& ext,
2393 int num_arguments) {
2394 mov(r0, Operand(num_arguments));
2395 mov(r1, Operand(ext));
2396
2397 CEntryStub stub(1);
2398 CallStub(&stub);
2399}
2400
2401
Steve Block6ded16b2010-05-10 14:33:55 +01002402void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2403 int num_arguments,
2404 int result_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002405 // TODO(1236192): Most runtime routines don't need the number of
2406 // arguments passed in because it is constant. At some point we
2407 // should remove this need and make the runtime routine entry code
2408 // smarter.
2409 mov(r0, Operand(num_arguments));
Steve Block6ded16b2010-05-10 14:33:55 +01002410 JumpToExternalReference(ext);
Steve Blocka7e24c12009-10-30 11:49:00 +00002411}
2412
2413
Steve Block1e0659c2011-05-24 12:43:12 +01002414MaybeObject* MacroAssembler::TryTailCallExternalReference(
2415 const ExternalReference& ext, int num_arguments, int result_size) {
2416 // TODO(1236192): Most runtime routines don't need the number of
2417 // arguments passed in because it is constant. At some point we
2418 // should remove this need and make the runtime routine entry code
2419 // smarter.
2420 mov(r0, Operand(num_arguments));
2421 return TryJumpToExternalReference(ext);
2422}
2423
2424
Steve Block6ded16b2010-05-10 14:33:55 +01002425void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2426 int num_arguments,
2427 int result_size) {
Steve Block44f0eee2011-05-26 01:26:41 +01002428 TailCallExternalReference(ExternalReference(fid, isolate()),
2429 num_arguments,
2430 result_size);
Steve Block6ded16b2010-05-10 14:33:55 +01002431}
2432
2433
2434void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002435#if defined(__thumb__)
2436 // Thumb mode builtin.
2437 ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
2438#endif
2439 mov(r1, Operand(builtin));
2440 CEntryStub stub(1);
2441 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2442}
2443
2444
Steve Block1e0659c2011-05-24 12:43:12 +01002445MaybeObject* MacroAssembler::TryJumpToExternalReference(
2446 const ExternalReference& builtin) {
2447#if defined(__thumb__)
2448 // Thumb mode builtin.
2449 ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
2450#endif
2451 mov(r1, Operand(builtin));
2452 CEntryStub stub(1);
2453 return TryTailCallStub(&stub);
2454}
2455
2456
Steve Blocka7e24c12009-10-30 11:49:00 +00002457void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
Ben Murdoch257744e2011-11-30 15:57:28 +00002458 InvokeFlag flag,
2459 const CallWrapper& call_wrapper) {
Andrei Popescu402d9372010-02-26 13:31:12 +00002460 GetBuiltinEntry(r2, id);
Ben Murdoch257744e2011-11-30 15:57:28 +00002461 if (flag == CALL_FUNCTION) {
2462 call_wrapper.BeforeCall(CallSize(r2));
2463 SetCallKind(r5, CALL_AS_METHOD);
Andrei Popescu402d9372010-02-26 13:31:12 +00002464 Call(r2);
Ben Murdoch257744e2011-11-30 15:57:28 +00002465 call_wrapper.AfterCall();
Steve Blocka7e24c12009-10-30 11:49:00 +00002466 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00002467 ASSERT(flag == JUMP_FUNCTION);
2468 SetCallKind(r5, CALL_AS_METHOD);
Andrei Popescu402d9372010-02-26 13:31:12 +00002469 Jump(r2);
Steve Blocka7e24c12009-10-30 11:49:00 +00002470 }
2471}
2472
2473
Steve Block791712a2010-08-27 10:21:07 +01002474void MacroAssembler::GetBuiltinFunction(Register target,
2475 Builtins::JavaScript id) {
Steve Block6ded16b2010-05-10 14:33:55 +01002476 // Load the builtins object into target register.
2477 ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
2478 ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
Andrei Popescu402d9372010-02-26 13:31:12 +00002479 // Load the JavaScript builtin function from the builtins object.
Steve Block6ded16b2010-05-10 14:33:55 +01002480 ldr(target, FieldMemOperand(target,
Steve Block791712a2010-08-27 10:21:07 +01002481 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2482}
2483
2484
2485void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2486 ASSERT(!target.is(r1));
2487 GetBuiltinFunction(r1, id);
2488 // Load the code entry point from the builtins object.
2489 ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00002490}
2491
2492
2493void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2494 Register scratch1, Register scratch2) {
2495 if (FLAG_native_code_counters && counter->Enabled()) {
2496 mov(scratch1, Operand(value));
2497 mov(scratch2, Operand(ExternalReference(counter)));
2498 str(scratch1, MemOperand(scratch2));
2499 }
2500}
2501
2502
2503void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2504 Register scratch1, Register scratch2) {
2505 ASSERT(value > 0);
2506 if (FLAG_native_code_counters && counter->Enabled()) {
2507 mov(scratch2, Operand(ExternalReference(counter)));
2508 ldr(scratch1, MemOperand(scratch2));
2509 add(scratch1, scratch1, Operand(value));
2510 str(scratch1, MemOperand(scratch2));
2511 }
2512}
2513
2514
2515void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2516 Register scratch1, Register scratch2) {
2517 ASSERT(value > 0);
2518 if (FLAG_native_code_counters && counter->Enabled()) {
2519 mov(scratch2, Operand(ExternalReference(counter)));
2520 ldr(scratch1, MemOperand(scratch2));
2521 sub(scratch1, scratch1, Operand(value));
2522 str(scratch1, MemOperand(scratch2));
2523 }
2524}
2525
2526
Steve Block1e0659c2011-05-24 12:43:12 +01002527void MacroAssembler::Assert(Condition cond, const char* msg) {
Steve Block44f0eee2011-05-26 01:26:41 +01002528 if (emit_debug_code())
Steve Block1e0659c2011-05-24 12:43:12 +01002529 Check(cond, msg);
Steve Blocka7e24c12009-10-30 11:49:00 +00002530}
2531
2532
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002533void MacroAssembler::AssertRegisterIsRoot(Register reg,
2534 Heap::RootListIndex index) {
Steve Block44f0eee2011-05-26 01:26:41 +01002535 if (emit_debug_code()) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002536 LoadRoot(ip, index);
2537 cmp(reg, ip);
2538 Check(eq, "Register did not match expected root");
2539 }
2540}
2541
2542
Iain Merrick75681382010-08-19 15:07:18 +01002543void MacroAssembler::AssertFastElements(Register elements) {
Steve Block44f0eee2011-05-26 01:26:41 +01002544 if (emit_debug_code()) {
Iain Merrick75681382010-08-19 15:07:18 +01002545 ASSERT(!elements.is(ip));
2546 Label ok;
2547 push(elements);
2548 ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
2549 LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
2550 cmp(elements, ip);
2551 b(eq, &ok);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002552 LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex);
2553 cmp(elements, ip);
2554 b(eq, &ok);
Iain Merrick75681382010-08-19 15:07:18 +01002555 LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
2556 cmp(elements, ip);
2557 b(eq, &ok);
2558 Abort("JSObject with fast elements map has slow elements");
2559 bind(&ok);
2560 pop(elements);
2561 }
2562}
2563
2564
Steve Block1e0659c2011-05-24 12:43:12 +01002565void MacroAssembler::Check(Condition cond, const char* msg) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002566 Label L;
Steve Block1e0659c2011-05-24 12:43:12 +01002567 b(cond, &L);
Steve Blocka7e24c12009-10-30 11:49:00 +00002568 Abort(msg);
2569 // will not return here
2570 bind(&L);
2571}
2572
2573
2574void MacroAssembler::Abort(const char* msg) {
Steve Block8defd9f2010-07-08 12:39:36 +01002575 Label abort_start;
2576 bind(&abort_start);
Steve Blocka7e24c12009-10-30 11:49:00 +00002577 // We want to pass the msg string like a smi to avoid GC
2578 // problems, however msg is not guaranteed to be aligned
2579 // properly. Instead, we pass an aligned pointer that is
2580 // a proper v8 smi, but also pass the alignment difference
2581 // from the real pointer as a smi.
2582 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
2583 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
2584 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
2585#ifdef DEBUG
2586 if (msg != NULL) {
2587 RecordComment("Abort message: ");
2588 RecordComment(msg);
2589 }
2590#endif
Steve Blockd0582a62009-12-15 09:54:21 +00002591 // Disable stub call restrictions to always allow calls to abort.
Ben Murdoch086aeea2011-05-13 15:57:08 +01002592 AllowStubCallsScope allow_scope(this, true);
Steve Blockd0582a62009-12-15 09:54:21 +00002593
Steve Blocka7e24c12009-10-30 11:49:00 +00002594 mov(r0, Operand(p0));
2595 push(r0);
2596 mov(r0, Operand(Smi::FromInt(p1 - p0)));
2597 push(r0);
2598 CallRuntime(Runtime::kAbort, 2);
2599 // will not return here
Steve Block8defd9f2010-07-08 12:39:36 +01002600 if (is_const_pool_blocked()) {
2601 // If the calling code cares about the exact number of
2602 // instructions generated, we insert padding here to keep the size
2603 // of the Abort macro constant.
2604 static const int kExpectedAbortInstructions = 10;
2605 int abort_instructions = InstructionsGeneratedSince(&abort_start);
2606 ASSERT(abort_instructions <= kExpectedAbortInstructions);
2607 while (abort_instructions++ < kExpectedAbortInstructions) {
2608 nop();
2609 }
2610 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002611}
2612
2613
Steve Blockd0582a62009-12-15 09:54:21 +00002614void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2615 if (context_chain_length > 0) {
2616 // Move up the chain of contexts to the context containing the slot.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002617 ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
Steve Blockd0582a62009-12-15 09:54:21 +00002618 for (int i = 1; i < context_chain_length; i++) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002619 ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
Steve Blockd0582a62009-12-15 09:54:21 +00002620 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002621 } else {
2622 // Slot is in the current function context. Move it into the
2623 // destination register in case we store into it (the write barrier
2624 // cannot be allowed to destroy the context in esi).
2625 mov(dst, cp);
2626 }
Steve Blockd0582a62009-12-15 09:54:21 +00002627}
2628
2629
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002630void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2631 // Load the global or builtins object from the current context.
2632 ldr(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
2633 // Load the global context from the global or builtins object.
2634 ldr(function, FieldMemOperand(function,
2635 GlobalObject::kGlobalContextOffset));
2636 // Load the function from the global context.
2637 ldr(function, MemOperand(function, Context::SlotOffset(index)));
2638}
2639
2640
2641void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2642 Register map,
2643 Register scratch) {
2644 // Load the initial map. The global functions all have initial maps.
2645 ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002646 if (emit_debug_code()) {
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002647 Label ok, fail;
Ben Murdoch257744e2011-11-30 15:57:28 +00002648 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002649 b(&ok);
2650 bind(&fail);
2651 Abort("Global functions must have initial map");
2652 bind(&ok);
2653 }
2654}
2655
2656
Steve Block1e0659c2011-05-24 12:43:12 +01002657void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
2658 Register reg,
2659 Register scratch,
2660 Label* not_power_of_two_or_zero) {
2661 sub(scratch, reg, Operand(1), SetCC);
2662 b(mi, not_power_of_two_or_zero);
2663 tst(scratch, reg);
2664 b(ne, not_power_of_two_or_zero);
2665}
2666
2667
Steve Block44f0eee2011-05-26 01:26:41 +01002668void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
2669 Register reg,
2670 Register scratch,
2671 Label* zero_and_neg,
2672 Label* not_power_of_two) {
2673 sub(scratch, reg, Operand(1), SetCC);
2674 b(mi, zero_and_neg);
2675 tst(scratch, reg);
2676 b(ne, not_power_of_two);
2677}
2678
2679
Andrei Popescu31002712010-02-23 13:46:05 +00002680void MacroAssembler::JumpIfNotBothSmi(Register reg1,
2681 Register reg2,
2682 Label* on_not_both_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01002683 STATIC_ASSERT(kSmiTag == 0);
Andrei Popescu31002712010-02-23 13:46:05 +00002684 tst(reg1, Operand(kSmiTagMask));
2685 tst(reg2, Operand(kSmiTagMask), eq);
2686 b(ne, on_not_both_smi);
2687}
2688
2689
2690void MacroAssembler::JumpIfEitherSmi(Register reg1,
2691 Register reg2,
2692 Label* on_either_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01002693 STATIC_ASSERT(kSmiTag == 0);
Andrei Popescu31002712010-02-23 13:46:05 +00002694 tst(reg1, Operand(kSmiTagMask));
2695 tst(reg2, Operand(kSmiTagMask), ne);
2696 b(eq, on_either_smi);
2697}
2698
2699
Iain Merrick75681382010-08-19 15:07:18 +01002700void MacroAssembler::AbortIfSmi(Register object) {
Steve Block1e0659c2011-05-24 12:43:12 +01002701 STATIC_ASSERT(kSmiTag == 0);
Iain Merrick75681382010-08-19 15:07:18 +01002702 tst(object, Operand(kSmiTagMask));
2703 Assert(ne, "Operand is a smi");
2704}
2705
2706
Steve Block1e0659c2011-05-24 12:43:12 +01002707void MacroAssembler::AbortIfNotSmi(Register object) {
2708 STATIC_ASSERT(kSmiTag == 0);
2709 tst(object, Operand(kSmiTagMask));
2710 Assert(eq, "Operand is not smi");
2711}
2712
2713
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002714void MacroAssembler::AbortIfNotString(Register object) {
2715 STATIC_ASSERT(kSmiTag == 0);
2716 tst(object, Operand(kSmiTagMask));
2717 Assert(ne, "Operand is not a string");
2718 push(object);
2719 ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2720 CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
2721 pop(object);
2722 Assert(lo, "Operand is not a string");
2723}
2724
2725
2726
Steve Block1e0659c2011-05-24 12:43:12 +01002727void MacroAssembler::AbortIfNotRootValue(Register src,
2728 Heap::RootListIndex root_value_index,
2729 const char* message) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002730 CompareRoot(src, root_value_index);
Steve Block1e0659c2011-05-24 12:43:12 +01002731 Assert(eq, message);
2732}
2733
2734
2735void MacroAssembler::JumpIfNotHeapNumber(Register object,
2736 Register heap_number_map,
2737 Register scratch,
2738 Label* on_not_heap_number) {
2739 ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2740 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2741 cmp(scratch, heap_number_map);
2742 b(ne, on_not_heap_number);
2743}
2744
2745
Leon Clarked91b9f72010-01-27 17:25:45 +00002746void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
2747 Register first,
2748 Register second,
2749 Register scratch1,
2750 Register scratch2,
2751 Label* failure) {
2752 // Test that both first and second are sequential ASCII strings.
2753 // Assume that they are non-smis.
2754 ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2755 ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2756 ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2757 ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
Steve Block6ded16b2010-05-10 14:33:55 +01002758
2759 JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
2760 scratch2,
2761 scratch1,
2762 scratch2,
2763 failure);
Leon Clarked91b9f72010-01-27 17:25:45 +00002764}
2765
2766void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
2767 Register second,
2768 Register scratch1,
2769 Register scratch2,
2770 Label* failure) {
2771 // Check that neither is a smi.
Steve Block1e0659c2011-05-24 12:43:12 +01002772 STATIC_ASSERT(kSmiTag == 0);
Leon Clarked91b9f72010-01-27 17:25:45 +00002773 and_(scratch1, first, Operand(second));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002774 JumpIfSmi(scratch1, failure);
Leon Clarked91b9f72010-01-27 17:25:45 +00002775 JumpIfNonSmisNotBothSequentialAsciiStrings(first,
2776 second,
2777 scratch1,
2778 scratch2,
2779 failure);
2780}
2781
Steve Blockd0582a62009-12-15 09:54:21 +00002782
Steve Block6ded16b2010-05-10 14:33:55 +01002783// Allocates a heap number or jumps to the need_gc label if the young space
2784// is full and a scavenge is needed.
2785void MacroAssembler::AllocateHeapNumber(Register result,
2786 Register scratch1,
2787 Register scratch2,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002788 Register heap_number_map,
Steve Block6ded16b2010-05-10 14:33:55 +01002789 Label* gc_required) {
2790 // Allocate an object in the heap for the heap number and tag it as a heap
2791 // object.
Kristian Monsen25f61362010-05-21 11:50:48 +01002792 AllocateInNewSpace(HeapNumber::kSize,
Steve Block6ded16b2010-05-10 14:33:55 +01002793 result,
2794 scratch1,
2795 scratch2,
2796 gc_required,
2797 TAG_OBJECT);
2798
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002799 // Store heap number map in the allocated object.
2800 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2801 str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
Steve Block6ded16b2010-05-10 14:33:55 +01002802}
2803
2804
Steve Block8defd9f2010-07-08 12:39:36 +01002805void MacroAssembler::AllocateHeapNumberWithValue(Register result,
2806 DwVfpRegister value,
2807 Register scratch1,
2808 Register scratch2,
2809 Register heap_number_map,
2810 Label* gc_required) {
2811 AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
2812 sub(scratch1, result, Operand(kHeapObjectTag));
2813 vstr(value, scratch1, HeapNumber::kValueOffset);
2814}
2815
2816
Ben Murdochbb769b22010-08-11 14:56:33 +01002817// Copies a fixed number of fields of heap objects from src to dst.
2818void MacroAssembler::CopyFields(Register dst,
2819 Register src,
2820 RegList temps,
2821 int field_count) {
2822 // At least one bit set in the first 15 registers.
2823 ASSERT((temps & ((1 << 15) - 1)) != 0);
2824 ASSERT((temps & dst.bit()) == 0);
2825 ASSERT((temps & src.bit()) == 0);
2826 // Primitive implementation using only one temporary register.
2827
2828 Register tmp = no_reg;
2829 // Find a temp register in temps list.
2830 for (int i = 0; i < 15; i++) {
2831 if ((temps & (1 << i)) != 0) {
2832 tmp.set_code(i);
2833 break;
2834 }
2835 }
2836 ASSERT(!tmp.is(no_reg));
2837
2838 for (int i = 0; i < field_count; i++) {
2839 ldr(tmp, FieldMemOperand(src, i * kPointerSize));
2840 str(tmp, FieldMemOperand(dst, i * kPointerSize));
2841 }
2842}
2843
2844
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002845void MacroAssembler::CopyBytes(Register src,
2846 Register dst,
2847 Register length,
2848 Register scratch) {
2849 Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
2850
2851 // Align src before copying in word size chunks.
2852 bind(&align_loop);
2853 cmp(length, Operand(0));
2854 b(eq, &done);
2855 bind(&align_loop_1);
2856 tst(src, Operand(kPointerSize - 1));
2857 b(eq, &word_loop);
2858 ldrb(scratch, MemOperand(src, 1, PostIndex));
2859 strb(scratch, MemOperand(dst, 1, PostIndex));
2860 sub(length, length, Operand(1), SetCC);
2861 b(ne, &byte_loop_1);
2862
2863 // Copy bytes in word size chunks.
2864 bind(&word_loop);
Steve Block44f0eee2011-05-26 01:26:41 +01002865 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002866 tst(src, Operand(kPointerSize - 1));
2867 Assert(eq, "Expecting alignment for CopyBytes");
2868 }
2869 cmp(length, Operand(kPointerSize));
2870 b(lt, &byte_loop);
2871 ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
2872#if CAN_USE_UNALIGNED_ACCESSES
2873 str(scratch, MemOperand(dst, kPointerSize, PostIndex));
2874#else
2875 strb(scratch, MemOperand(dst, 1, PostIndex));
2876 mov(scratch, Operand(scratch, LSR, 8));
2877 strb(scratch, MemOperand(dst, 1, PostIndex));
2878 mov(scratch, Operand(scratch, LSR, 8));
2879 strb(scratch, MemOperand(dst, 1, PostIndex));
2880 mov(scratch, Operand(scratch, LSR, 8));
2881 strb(scratch, MemOperand(dst, 1, PostIndex));
2882#endif
2883 sub(length, length, Operand(kPointerSize));
2884 b(&word_loop);
2885
2886 // Copy the last bytes if any left.
2887 bind(&byte_loop);
2888 cmp(length, Operand(0));
2889 b(eq, &done);
2890 bind(&byte_loop_1);
2891 ldrb(scratch, MemOperand(src, 1, PostIndex));
2892 strb(scratch, MemOperand(dst, 1, PostIndex));
2893 sub(length, length, Operand(1), SetCC);
2894 b(ne, &byte_loop_1);
2895 bind(&done);
2896}
2897
2898
Steve Block8defd9f2010-07-08 12:39:36 +01002899void MacroAssembler::CountLeadingZeros(Register zeros, // Answer.
2900 Register source, // Input.
2901 Register scratch) {
Steve Block1e0659c2011-05-24 12:43:12 +01002902 ASSERT(!zeros.is(source) || !source.is(scratch));
Steve Block8defd9f2010-07-08 12:39:36 +01002903 ASSERT(!zeros.is(scratch));
2904 ASSERT(!scratch.is(ip));
2905 ASSERT(!source.is(ip));
2906 ASSERT(!zeros.is(ip));
Steve Block6ded16b2010-05-10 14:33:55 +01002907#ifdef CAN_USE_ARMV5_INSTRUCTIONS
2908 clz(zeros, source); // This instruction is only supported after ARM5.
2909#else
Iain Merrick9ac36c92010-09-13 15:29:50 +01002910 mov(zeros, Operand(0, RelocInfo::NONE));
Steve Block8defd9f2010-07-08 12:39:36 +01002911 Move(scratch, source);
Steve Block6ded16b2010-05-10 14:33:55 +01002912 // Top 16.
2913 tst(scratch, Operand(0xffff0000));
2914 add(zeros, zeros, Operand(16), LeaveCC, eq);
2915 mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
2916 // Top 8.
2917 tst(scratch, Operand(0xff000000));
2918 add(zeros, zeros, Operand(8), LeaveCC, eq);
2919 mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
2920 // Top 4.
2921 tst(scratch, Operand(0xf0000000));
2922 add(zeros, zeros, Operand(4), LeaveCC, eq);
2923 mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
2924 // Top 2.
2925 tst(scratch, Operand(0xc0000000));
2926 add(zeros, zeros, Operand(2), LeaveCC, eq);
2927 mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
2928 // Top bit.
2929 tst(scratch, Operand(0x80000000u));
2930 add(zeros, zeros, Operand(1), LeaveCC, eq);
2931#endif
2932}
2933
2934
2935void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
2936 Register first,
2937 Register second,
2938 Register scratch1,
2939 Register scratch2,
2940 Label* failure) {
2941 int kFlatAsciiStringMask =
2942 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2943 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2944 and_(scratch1, first, Operand(kFlatAsciiStringMask));
2945 and_(scratch2, second, Operand(kFlatAsciiStringMask));
2946 cmp(scratch1, Operand(kFlatAsciiStringTag));
2947 // Ignore second test if first test failed.
2948 cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
2949 b(ne, failure);
2950}
2951
2952
2953void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
2954 Register scratch,
2955 Label* failure) {
2956 int kFlatAsciiStringMask =
2957 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2958 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2959 and_(scratch, type, Operand(kFlatAsciiStringMask));
2960 cmp(scratch, Operand(kFlatAsciiStringTag));
2961 b(ne, failure);
2962}
2963
Steve Block44f0eee2011-05-26 01:26:41 +01002964static const int kRegisterPassedArguments = 4;
Steve Block6ded16b2010-05-10 14:33:55 +01002965
Steve Block44f0eee2011-05-26 01:26:41 +01002966
Ben Murdoch257744e2011-11-30 15:57:28 +00002967int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
2968 int num_double_arguments) {
2969 int stack_passed_words = 0;
2970 if (use_eabi_hardfloat()) {
2971 // In the hard floating point calling convention, we can use
2972 // all double registers to pass doubles.
2973 if (num_double_arguments > DoubleRegister::kNumRegisters) {
2974 stack_passed_words +=
2975 2 * (num_double_arguments - DoubleRegister::kNumRegisters);
2976 }
2977 } else {
2978 // In the soft floating point calling convention, every double
2979 // argument is passed using two registers.
2980 num_reg_arguments += 2 * num_double_arguments;
2981 }
Steve Block6ded16b2010-05-10 14:33:55 +01002982 // Up to four simple arguments are passed in registers r0..r3.
Ben Murdoch257744e2011-11-30 15:57:28 +00002983 if (num_reg_arguments > kRegisterPassedArguments) {
2984 stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
2985 }
2986 return stack_passed_words;
2987}
2988
2989
2990void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
2991 int num_double_arguments,
2992 Register scratch) {
2993 int frame_alignment = ActivationFrameAlignment();
2994 int stack_passed_arguments = CalculateStackPassedWords(
2995 num_reg_arguments, num_double_arguments);
Steve Block6ded16b2010-05-10 14:33:55 +01002996 if (frame_alignment > kPointerSize) {
2997 // Make stack end at alignment and make room for num_arguments - 4 words
2998 // and the original value of sp.
2999 mov(scratch, sp);
3000 sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
3001 ASSERT(IsPowerOf2(frame_alignment));
3002 and_(sp, sp, Operand(-frame_alignment));
3003 str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
3004 } else {
3005 sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
3006 }
3007}
3008
3009
Ben Murdoch257744e2011-11-30 15:57:28 +00003010void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3011 Register scratch) {
3012 PrepareCallCFunction(num_reg_arguments, 0, scratch);
3013}
3014
3015
3016void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) {
3017 if (use_eabi_hardfloat()) {
3018 Move(d0, dreg);
3019 } else {
3020 vmov(r0, r1, dreg);
3021 }
3022}
3023
3024
3025void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1,
3026 DoubleRegister dreg2) {
3027 if (use_eabi_hardfloat()) {
3028 if (dreg2.is(d0)) {
3029 ASSERT(!dreg1.is(d1));
3030 Move(d1, dreg2);
3031 Move(d0, dreg1);
3032 } else {
3033 Move(d0, dreg1);
3034 Move(d1, dreg2);
3035 }
3036 } else {
3037 vmov(r0, r1, dreg1);
3038 vmov(r2, r3, dreg2);
3039 }
3040}
3041
3042
3043void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg,
3044 Register reg) {
3045 if (use_eabi_hardfloat()) {
3046 Move(d0, dreg);
3047 Move(r0, reg);
3048 } else {
3049 Move(r2, reg);
3050 vmov(r0, r1, dreg);
3051 }
3052}
3053
3054
3055void MacroAssembler::CallCFunction(ExternalReference function,
3056 int num_reg_arguments,
3057 int num_double_arguments) {
3058 CallCFunctionHelper(no_reg,
3059 function,
3060 ip,
3061 num_reg_arguments,
3062 num_double_arguments);
3063}
3064
3065
3066void MacroAssembler::CallCFunction(Register function,
3067 Register scratch,
3068 int num_reg_arguments,
3069 int num_double_arguments) {
3070 CallCFunctionHelper(function,
3071 ExternalReference::the_hole_value_location(isolate()),
3072 scratch,
3073 num_reg_arguments,
3074 num_double_arguments);
3075}
3076
3077
Steve Block6ded16b2010-05-10 14:33:55 +01003078void MacroAssembler::CallCFunction(ExternalReference function,
3079 int num_arguments) {
Ben Murdoch257744e2011-11-30 15:57:28 +00003080 CallCFunction(function, num_arguments, 0);
Steve Block44f0eee2011-05-26 01:26:41 +01003081}
3082
Ben Murdoch257744e2011-11-30 15:57:28 +00003083
Steve Block44f0eee2011-05-26 01:26:41 +01003084void MacroAssembler::CallCFunction(Register function,
3085 Register scratch,
3086 int num_arguments) {
Ben Murdoch257744e2011-11-30 15:57:28 +00003087 CallCFunction(function, scratch, num_arguments, 0);
Steve Block6ded16b2010-05-10 14:33:55 +01003088}
3089
3090
Steve Block44f0eee2011-05-26 01:26:41 +01003091void MacroAssembler::CallCFunctionHelper(Register function,
3092 ExternalReference function_reference,
3093 Register scratch,
Ben Murdoch257744e2011-11-30 15:57:28 +00003094 int num_reg_arguments,
3095 int num_double_arguments) {
Steve Block6ded16b2010-05-10 14:33:55 +01003096 // Make sure that the stack is aligned before calling a C function unless
3097 // running in the simulator. The simulator has its own alignment check which
3098 // provides more information.
3099#if defined(V8_HOST_ARCH_ARM)
Steve Block44f0eee2011-05-26 01:26:41 +01003100 if (emit_debug_code()) {
Steve Block6ded16b2010-05-10 14:33:55 +01003101 int frame_alignment = OS::ActivationFrameAlignment();
3102 int frame_alignment_mask = frame_alignment - 1;
3103 if (frame_alignment > kPointerSize) {
3104 ASSERT(IsPowerOf2(frame_alignment));
3105 Label alignment_as_expected;
3106 tst(sp, Operand(frame_alignment_mask));
3107 b(eq, &alignment_as_expected);
3108 // Don't use Check here, as it will call Runtime_Abort possibly
3109 // re-entering here.
3110 stop("Unexpected alignment");
3111 bind(&alignment_as_expected);
3112 }
3113 }
3114#endif
3115
3116 // Just call directly. The function called cannot cause a GC, or
3117 // allow preemption, so the return address in the link register
3118 // stays correct.
Steve Block44f0eee2011-05-26 01:26:41 +01003119 if (function.is(no_reg)) {
3120 mov(scratch, Operand(function_reference));
3121 function = scratch;
3122 }
Steve Block6ded16b2010-05-10 14:33:55 +01003123 Call(function);
Ben Murdoch257744e2011-11-30 15:57:28 +00003124 int stack_passed_arguments = CalculateStackPassedWords(
3125 num_reg_arguments, num_double_arguments);
3126 if (ActivationFrameAlignment() > kPointerSize) {
Steve Block6ded16b2010-05-10 14:33:55 +01003127 ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
3128 } else {
3129 add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
3130 }
3131}
3132
3133
Steve Block1e0659c2011-05-24 12:43:12 +01003134void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
3135 Register result) {
3136 const uint32_t kLdrOffsetMask = (1 << 12) - 1;
3137 const int32_t kPCRegOffset = 2 * kPointerSize;
3138 ldr(result, MemOperand(ldr_location));
Steve Block44f0eee2011-05-26 01:26:41 +01003139 if (emit_debug_code()) {
Steve Block1e0659c2011-05-24 12:43:12 +01003140 // Check that the instruction is a ldr reg, [pc + offset] .
3141 and_(result, result, Operand(kLdrPCPattern));
3142 cmp(result, Operand(kLdrPCPattern));
3143 Check(eq, "The instruction to patch should be a load from pc.");
3144 // Result was clobbered. Restore it.
3145 ldr(result, MemOperand(ldr_location));
3146 }
3147 // Get the address of the constant.
3148 and_(result, result, Operand(kLdrOffsetMask));
3149 add(result, ldr_location, Operand(result));
3150 add(result, result, Operand(kPCRegOffset));
3151}
3152
3153
Ben Murdoch257744e2011-11-30 15:57:28 +00003154void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
3155 Usat(output_reg, 8, Operand(input_reg));
3156}
3157
3158
3159void MacroAssembler::ClampDoubleToUint8(Register result_reg,
3160 DoubleRegister input_reg,
3161 DoubleRegister temp_double_reg) {
3162 Label above_zero;
3163 Label done;
3164 Label in_bounds;
3165
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003166 Vmov(temp_double_reg, 0.0);
Ben Murdoch257744e2011-11-30 15:57:28 +00003167 VFPCompareAndSetFlags(input_reg, temp_double_reg);
3168 b(gt, &above_zero);
3169
3170 // Double value is less than zero, NaN or Inf, return 0.
3171 mov(result_reg, Operand(0));
3172 b(al, &done);
3173
3174 // Double value is >= 255, return 255.
3175 bind(&above_zero);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003176 Vmov(temp_double_reg, 255.0);
Ben Murdoch257744e2011-11-30 15:57:28 +00003177 VFPCompareAndSetFlags(input_reg, temp_double_reg);
3178 b(le, &in_bounds);
3179 mov(result_reg, Operand(255));
3180 b(al, &done);
3181
3182 // In 0-255 range, round and truncate.
3183 bind(&in_bounds);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003184 Vmov(temp_double_reg, 0.5);
Ben Murdoch257744e2011-11-30 15:57:28 +00003185 vadd(temp_double_reg, input_reg, temp_double_reg);
3186 vcvt_u32_f64(s0, temp_double_reg);
3187 vmov(result_reg, s0);
3188 bind(&done);
3189}
3190
3191
3192void MacroAssembler::LoadInstanceDescriptors(Register map,
3193 Register descriptors) {
3194 ldr(descriptors,
3195 FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset));
3196 Label not_smi;
3197 JumpIfNotSmi(descriptors, &not_smi);
3198 mov(descriptors, Operand(FACTORY->empty_descriptor_array()));
3199 bind(&not_smi);
3200}
3201
3202
Steve Blocka7e24c12009-10-30 11:49:00 +00003203CodePatcher::CodePatcher(byte* address, int instructions)
3204 : address_(address),
3205 instructions_(instructions),
3206 size_(instructions * Assembler::kInstrSize),
Ben Murdoch8b112d22011-06-08 16:22:53 +01003207 masm_(Isolate::Current(), address, size_ + Assembler::kGap) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003208 // Create a new macro assembler pointing to the address of the code to patch.
3209 // The size is adjusted with kGap on order for the assembler to generate size
3210 // bytes of instructions without failing with buffer size constraints.
3211 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3212}
3213
3214
3215CodePatcher::~CodePatcher() {
3216 // Indicate that code has changed.
3217 CPU::FlushICache(address_, size_);
3218
3219 // Check that the code was patched as expected.
3220 ASSERT(masm_.pc_ == address_ + size_);
3221 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3222}
3223
3224
Steve Block1e0659c2011-05-24 12:43:12 +01003225void CodePatcher::Emit(Instr instr) {
3226 masm()->emit(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00003227}
3228
3229
3230void CodePatcher::Emit(Address addr) {
3231 masm()->emit(reinterpret_cast<Instr>(addr));
3232}
Steve Block1e0659c2011-05-24 12:43:12 +01003233
3234
3235void CodePatcher::EmitCondition(Condition cond) {
3236 Instr instr = Assembler::instr_at(masm_.pc_);
3237 instr = (instr & ~kCondMask) | cond;
3238 masm_.emit(instr);
3239}
Steve Blocka7e24c12009-10-30 11:49:00 +00003240
3241
3242} } // namespace v8::internal
Leon Clarkef7060e22010-06-03 12:02:55 +01003243
3244#endif // V8_TARGET_ARCH_ARM