blob: 09d2c170c2e85b8bc7f3f0e58fcda7e1be6454b1 [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "regexp-macro-assembler.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42static void EmitIdenticalObjectComparison(MacroAssembler* masm,
43 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +010044 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +010045 bool never_nan_nan);
46static void EmitSmiNonsmiComparison(MacroAssembler* masm,
47 Register lhs,
48 Register rhs,
49 Label* lhs_not_nan,
50 Label* slow,
51 bool strict);
Steve Block1e0659c2011-05-24 12:43:12 +010052static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010053static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
54 Register lhs,
55 Register rhs);
56
57
Ben Murdoch257744e2011-11-30 15:57:28 +000058// Check if the operand is a heap number.
59static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
60 Register scratch1, Register scratch2,
61 Label* not_a_heap_number) {
62 __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
63 __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
64 __ cmp(scratch1, scratch2);
65 __ b(ne, not_a_heap_number);
66}
67
68
Steve Block1e0659c2011-05-24 12:43:12 +010069void ToNumberStub::Generate(MacroAssembler* masm) {
70 // The ToNumber stub takes one argument in eax.
71 Label check_heap_number, call_builtin;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000072 __ JumpIfNotSmi(r0, &check_heap_number);
Steve Block1e0659c2011-05-24 12:43:12 +010073 __ Ret();
74
75 __ bind(&check_heap_number);
Ben Murdoch257744e2011-11-30 15:57:28 +000076 EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
Steve Block1e0659c2011-05-24 12:43:12 +010077 __ Ret();
78
79 __ bind(&call_builtin);
80 __ push(r0);
Ben Murdoch257744e2011-11-30 15:57:28 +000081 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +010082}
83
84
Kristian Monsen80d68ea2010-09-08 11:05:35 +010085void FastNewClosureStub::Generate(MacroAssembler* masm) {
86 // Create a new closure from the given function info in new
87 // space. Set the context to the current context in cp.
88 Label gc;
89
90 // Pop the function info from the stack.
91 __ pop(r3);
92
93 // Attempt to allocate new JSFunction in new space.
94 __ AllocateInNewSpace(JSFunction::kSize,
95 r0,
96 r1,
97 r2,
98 &gc,
99 TAG_OBJECT);
100
Steve Block44f0eee2011-05-26 01:26:41 +0100101 int map_index = strict_mode_ == kStrictMode
102 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
103 : Context::FUNCTION_MAP_INDEX;
104
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100105 // Compute the function map in the current global context and set that
106 // as the map of the allocated object.
107 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
108 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +0100109 __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100110 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
111
112 // Initialize the rest of the function. We don't have to update the
113 // write barrier because the allocated object is in new space.
114 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
115 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100116 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100117 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
118 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
119 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
120 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
121 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
122 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +0100123 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
124
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100125
126 // Initialize the code pointer in the function to be the one
127 // found in the shared function info object.
128 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
129 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
130 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
131
132 // Return result. The argument function info has been popped already.
133 __ Ret();
134
135 // Create a new closure through the slower runtime call.
136 __ bind(&gc);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800137 __ LoadRoot(r4, Heap::kFalseValueRootIndex);
138 __ Push(cp, r3, r4);
139 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100140}
141
142
143void FastNewContextStub::Generate(MacroAssembler* masm) {
144 // Try to allocate the context in new space.
145 Label gc;
146 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
147
148 // Attempt to allocate the context in new space.
149 __ AllocateInNewSpace(FixedArray::SizeFor(length),
150 r0,
151 r1,
152 r2,
153 &gc,
154 TAG_OBJECT);
155
156 // Load the function from the stack.
157 __ ldr(r3, MemOperand(sp, 0));
158
159 // Setup the object header.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000160 __ LoadRoot(r2, Heap::kFunctionContextMapRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100161 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
162 __ mov(r2, Operand(Smi::FromInt(length)));
163 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
164
165 // Setup the fixed slots.
166 __ mov(r1, Operand(Smi::FromInt(0)));
167 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000168 __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100169 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
170
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000171 // Copy the global object from the previous context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100172 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
173 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
174
175 // Initialize the rest of the slots to undefined.
176 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
177 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
178 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
179 }
180
181 // Remove the on-stack argument and return.
182 __ mov(cp, r0);
183 __ pop();
184 __ Ret();
185
186 // Need to collect. Call into runtime system.
187 __ bind(&gc);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000188 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100189}
190
191
192void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
193 // Stack layout on entry:
194 //
195 // [sp]: constant elements.
196 // [sp + kPointerSize]: literal index.
197 // [sp + (2 * kPointerSize)]: literals array.
198
199 // All sizes here are multiples of kPointerSize.
200 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
201 int size = JSArray::kSize + elements_size;
202
203 // Load boilerplate object into r3 and check if we need to create a
204 // boilerplate.
205 Label slow_case;
206 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
207 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
208 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
209 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
210 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
211 __ cmp(r3, ip);
212 __ b(eq, &slow_case);
213
214 if (FLAG_debug_code) {
215 const char* message;
216 Heap::RootListIndex expected_map_index;
217 if (mode_ == CLONE_ELEMENTS) {
218 message = "Expected (writable) fixed array";
219 expected_map_index = Heap::kFixedArrayMapRootIndex;
220 } else {
221 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
222 message = "Expected copy-on-write fixed array";
223 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
224 }
225 __ push(r3);
226 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
227 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
228 __ LoadRoot(ip, expected_map_index);
229 __ cmp(r3, ip);
230 __ Assert(eq, message);
231 __ pop(r3);
232 }
233
234 // Allocate both the JS array and the elements array in one big
235 // allocation. This avoids multiple limit checks.
236 __ AllocateInNewSpace(size,
237 r0,
238 r1,
239 r2,
240 &slow_case,
241 TAG_OBJECT);
242
243 // Copy the JS array part.
244 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
245 if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
246 __ ldr(r1, FieldMemOperand(r3, i));
247 __ str(r1, FieldMemOperand(r0, i));
248 }
249 }
250
251 if (length_ > 0) {
252 // Get hold of the elements array of the boilerplate and setup the
253 // elements pointer in the resulting object.
254 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
255 __ add(r2, r0, Operand(JSArray::kSize));
256 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
257
258 // Copy the elements array.
259 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
260 }
261
262 // Return and remove the on-stack parameters.
263 __ add(sp, sp, Operand(3 * kPointerSize));
264 __ Ret();
265
266 __ bind(&slow_case);
267 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
268}
269
270
271// Takes a Smi and converts to an IEEE 64 bit floating point value in two
272// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
273// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
274// scratch register. Destroys the source register. No GC occurs during this
275// stub so you don't have to set up the frame.
276class ConvertToDoubleStub : public CodeStub {
277 public:
278 ConvertToDoubleStub(Register result_reg_1,
279 Register result_reg_2,
280 Register source_reg,
281 Register scratch_reg)
282 : result1_(result_reg_1),
283 result2_(result_reg_2),
284 source_(source_reg),
285 zeros_(scratch_reg) { }
286
287 private:
288 Register result1_;
289 Register result2_;
290 Register source_;
291 Register zeros_;
292
293 // Minor key encoding in 16 bits.
294 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
295 class OpBits: public BitField<Token::Value, 2, 14> {};
296
297 Major MajorKey() { return ConvertToDouble; }
298 int MinorKey() {
299 // Encode the parameters in a unique 16 bit value.
300 return result1_.code() +
301 (result2_.code() << 4) +
302 (source_.code() << 8) +
303 (zeros_.code() << 12);
304 }
305
306 void Generate(MacroAssembler* masm);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100307};
308
309
310void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100311 Register exponent = result1_;
312 Register mantissa = result2_;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100313
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100314 Label not_special;
315 // Convert from Smi to integer.
316 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
317 // Move sign bit from source to destination. This works because the sign bit
318 // in the exponent word of the double has the same position and polarity as
319 // the 2's complement sign bit in a Smi.
320 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
321 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
322 // Subtract from 0 if source was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100323 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100324
325 // We have -1, 0 or 1, which we treat specially. Register source_ contains
326 // absolute value: it is either equal to 1 (special case of -1 and 1),
327 // greater than 1 (not a special case) or less than 1 (special case of 0).
328 __ cmp(source_, Operand(1));
329 __ b(gt, &not_special);
330
331 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
332 static const uint32_t exponent_word_for_1 =
333 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
334 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
335 // 1, 0 and -1 all have 0 for the second word.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100336 __ mov(mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100337 __ Ret();
338
339 __ bind(&not_special);
340 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
341 // Gets the wrong answer for 0, but we already checked for that case above.
342 __ CountLeadingZeros(zeros_, source_, mantissa);
343 // Compute exponent and or it into the exponent register.
344 // We use mantissa as a scratch register here. Use a fudge factor to
345 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
346 // that fit in the ARM's constant field.
347 int fudge = 0x400;
348 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
349 __ add(mantissa, mantissa, Operand(fudge));
350 __ orr(exponent,
351 exponent,
352 Operand(mantissa, LSL, HeapNumber::kExponentShift));
353 // Shift up the source chopping the top bit off.
354 __ add(zeros_, zeros_, Operand(1));
355 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
356 __ mov(source_, Operand(source_, LSL, zeros_));
357 // Compute lower part of fraction (last 12 bits).
358 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
359 // And the top (top 20 bits).
360 __ orr(exponent,
361 exponent,
362 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
363 __ Ret();
364}
365
366
Steve Block1e0659c2011-05-24 12:43:12 +0100367void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
368 FloatingPointHelper::Destination destination,
369 Register scratch1,
370 Register scratch2) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100371 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100372 CpuFeatures::Scope scope(VFP3);
373 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
374 __ vmov(d7.high(), scratch1);
375 __ vcvt_f64_s32(d7, d7.high());
376 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
377 __ vmov(d6.high(), scratch1);
378 __ vcvt_f64_s32(d6, d6.high());
379 if (destination == kCoreRegisters) {
380 __ vmov(r2, r3, d7);
381 __ vmov(r0, r1, d6);
382 }
383 } else {
384 ASSERT(destination == kCoreRegisters);
385 // Write Smi from r0 to r3 and r2 in double format.
386 __ mov(scratch1, Operand(r0));
387 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
388 __ push(lr);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000389 __ Call(stub1.GetCode());
Ben Murdoch8b112d22011-06-08 16:22:53 +0100390 // Write Smi from r1 to r1 and r0 in double format.
Steve Block1e0659c2011-05-24 12:43:12 +0100391 __ mov(scratch1, Operand(r1));
392 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000393 __ Call(stub2.GetCode());
Steve Block1e0659c2011-05-24 12:43:12 +0100394 __ pop(lr);
395 }
396}
397
398
399void FloatingPointHelper::LoadOperands(
400 MacroAssembler* masm,
401 FloatingPointHelper::Destination destination,
402 Register heap_number_map,
403 Register scratch1,
404 Register scratch2,
405 Label* slow) {
406
407 // Load right operand (r0) to d6 or r2/r3.
408 LoadNumber(masm, destination,
409 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
410
411 // Load left operand (r1) to d7 or r0/r1.
412 LoadNumber(masm, destination,
413 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
414}
415
416
417void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
418 Destination destination,
419 Register object,
420 DwVfpRegister dst,
421 Register dst1,
422 Register dst2,
423 Register heap_number_map,
424 Register scratch1,
425 Register scratch2,
426 Label* not_number) {
427 if (FLAG_debug_code) {
428 __ AbortIfNotRootValue(heap_number_map,
429 Heap::kHeapNumberMapRootIndex,
430 "HeapNumberMap register clobbered.");
431 }
432
433 Label is_smi, done;
434
435 __ JumpIfSmi(object, &is_smi);
436 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
437
438 // Handle loading a double from a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100439 if (CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +0100440 destination == kVFPRegisters) {
Steve Block1e0659c2011-05-24 12:43:12 +0100441 CpuFeatures::Scope scope(VFP3);
442 // Load the double from tagged HeapNumber to double register.
443 __ sub(scratch1, object, Operand(kHeapObjectTag));
444 __ vldr(dst, scratch1, HeapNumber::kValueOffset);
445 } else {
446 ASSERT(destination == kCoreRegisters);
447 // Load the double from heap number to dst1 and dst2 in double format.
448 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
449 }
450 __ jmp(&done);
451
452 // Handle loading a double from a smi.
453 __ bind(&is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100454 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100455 CpuFeatures::Scope scope(VFP3);
456 // Convert smi to double using VFP instructions.
457 __ SmiUntag(scratch1, object);
458 __ vmov(dst.high(), scratch1);
459 __ vcvt_f64_s32(dst, dst.high());
460 if (destination == kCoreRegisters) {
461 // Load the converted smi to dst1 and dst2 in double format.
462 __ vmov(dst1, dst2, dst);
463 }
464 } else {
465 ASSERT(destination == kCoreRegisters);
466 // Write smi to dst1 and dst2 double format.
467 __ mov(scratch1, Operand(object));
468 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
469 __ push(lr);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000470 __ Call(stub.GetCode());
Steve Block1e0659c2011-05-24 12:43:12 +0100471 __ pop(lr);
472 }
473
474 __ bind(&done);
475}
476
477
Steve Block44f0eee2011-05-26 01:26:41 +0100478void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
479 Register object,
480 Register dst,
481 Register heap_number_map,
482 Register scratch1,
483 Register scratch2,
484 Register scratch3,
485 DwVfpRegister double_scratch,
486 Label* not_number) {
Steve Block1e0659c2011-05-24 12:43:12 +0100487 if (FLAG_debug_code) {
488 __ AbortIfNotRootValue(heap_number_map,
489 Heap::kHeapNumberMapRootIndex,
490 "HeapNumberMap register clobbered.");
491 }
Steve Block44f0eee2011-05-26 01:26:41 +0100492 Label is_smi;
493 Label done;
494 Label not_in_int32_range;
495
Steve Block1e0659c2011-05-24 12:43:12 +0100496 __ JumpIfSmi(object, &is_smi);
497 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
498 __ cmp(scratch1, heap_number_map);
Steve Block44f0eee2011-05-26 01:26:41 +0100499 __ b(ne, not_number);
500 __ ConvertToInt32(object,
501 dst,
502 scratch1,
503 scratch2,
504 double_scratch,
505 &not_in_int32_range);
Steve Block1e0659c2011-05-24 12:43:12 +0100506 __ jmp(&done);
Steve Block44f0eee2011-05-26 01:26:41 +0100507
508 __ bind(&not_in_int32_range);
509 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
510 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
511
512 __ EmitOutOfInt32RangeTruncate(dst,
513 scratch1,
514 scratch2,
515 scratch3);
516 __ jmp(&done);
517
Steve Block1e0659c2011-05-24 12:43:12 +0100518 __ bind(&is_smi);
519 __ SmiUntag(dst, object);
520 __ bind(&done);
521}
522
523
Ben Murdoch257744e2011-11-30 15:57:28 +0000524void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
525 Register int_scratch,
526 Destination destination,
527 DwVfpRegister double_dst,
528 Register dst1,
529 Register dst2,
530 Register scratch2,
531 SwVfpRegister single_scratch) {
532 ASSERT(!int_scratch.is(scratch2));
533 ASSERT(!int_scratch.is(dst1));
534 ASSERT(!int_scratch.is(dst2));
535
536 Label done;
537
538 if (CpuFeatures::IsSupported(VFP3)) {
539 CpuFeatures::Scope scope(VFP3);
540 __ vmov(single_scratch, int_scratch);
541 __ vcvt_f64_s32(double_dst, single_scratch);
542 if (destination == kCoreRegisters) {
543 __ vmov(dst1, dst2, double_dst);
544 }
545 } else {
546 Label fewer_than_20_useful_bits;
547 // Expected output:
548 // | dst2 | dst1 |
549 // | s | exp | mantissa |
550
551 // Check for zero.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000552 __ cmp(int_scratch, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +0000553 __ mov(dst2, int_scratch);
554 __ mov(dst1, int_scratch);
555 __ b(eq, &done);
556
557 // Preload the sign of the value.
558 __ and_(dst2, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
559 // Get the absolute value of the object (as an unsigned integer).
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000560 __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
Ben Murdoch257744e2011-11-30 15:57:28 +0000561
562 // Get mantisssa[51:20].
563
564 // Get the position of the first set bit.
565 __ CountLeadingZeros(dst1, int_scratch, scratch2);
566 __ rsb(dst1, dst1, Operand(31));
567
568 // Set the exponent.
569 __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias));
570 __ Bfi(dst2, scratch2, scratch2,
571 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
572
573 // Clear the first non null bit.
574 __ mov(scratch2, Operand(1));
575 __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst1));
576
577 __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
578 // Get the number of bits to set in the lower part of the mantissa.
579 __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
580 __ b(mi, &fewer_than_20_useful_bits);
581 // Set the higher 20 bits of the mantissa.
582 __ orr(dst2, dst2, Operand(int_scratch, LSR, scratch2));
583 __ rsb(scratch2, scratch2, Operand(32));
584 __ mov(dst1, Operand(int_scratch, LSL, scratch2));
585 __ b(&done);
586
587 __ bind(&fewer_than_20_useful_bits);
588 __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
589 __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
590 __ orr(dst2, dst2, scratch2);
591 // Set dst1 to 0.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000592 __ mov(dst1, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +0000593 }
594 __ bind(&done);
595}
596
597
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100598void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
599 Register object,
600 Destination destination,
601 DwVfpRegister double_dst,
602 Register dst1,
603 Register dst2,
604 Register heap_number_map,
605 Register scratch1,
606 Register scratch2,
607 SwVfpRegister single_scratch,
608 Label* not_int32) {
609 ASSERT(!scratch1.is(object) && !scratch2.is(object));
610 ASSERT(!scratch1.is(scratch2));
611 ASSERT(!heap_number_map.is(object) &&
612 !heap_number_map.is(scratch1) &&
613 !heap_number_map.is(scratch2));
614
615 Label done, obj_is_not_smi;
616
617 __ JumpIfNotSmi(object, &obj_is_not_smi);
618 __ SmiUntag(scratch1, object);
Ben Murdoch257744e2011-11-30 15:57:28 +0000619 ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
620 scratch2, single_scratch);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100621 __ b(&done);
622
623 __ bind(&obj_is_not_smi);
624 if (FLAG_debug_code) {
625 __ AbortIfNotRootValue(heap_number_map,
626 Heap::kHeapNumberMapRootIndex,
627 "HeapNumberMap register clobbered.");
628 }
629 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
630
631 // Load the number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100632 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100633 CpuFeatures::Scope scope(VFP3);
634 // Load the double value.
635 __ sub(scratch1, object, Operand(kHeapObjectTag));
636 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
637
638 __ EmitVFPTruncate(kRoundToZero,
639 single_scratch,
640 double_dst,
641 scratch1,
642 scratch2,
643 kCheckForInexactConversion);
644
645 // Jump to not_int32 if the operation did not succeed.
646 __ b(ne, not_int32);
647
648 if (destination == kCoreRegisters) {
649 __ vmov(dst1, dst2, double_dst);
650 }
651
652 } else {
653 ASSERT(!scratch1.is(object) && !scratch2.is(object));
654 // Load the double value in the destination registers..
655 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
656
657 // Check for 0 and -0.
658 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
659 __ orr(scratch1, scratch1, Operand(dst2));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000660 __ cmp(scratch1, Operand::Zero());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100661 __ b(eq, &done);
662
663 // Check that the value can be exactly represented by a 32-bit integer.
664 // Jump to not_int32 if that's not the case.
665 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
666
667 // dst1 and dst2 were trashed. Reload the double value.
668 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
669 }
670
671 __ bind(&done);
672}
673
674
675void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
676 Register object,
677 Register dst,
678 Register heap_number_map,
679 Register scratch1,
680 Register scratch2,
681 Register scratch3,
682 DwVfpRegister double_scratch,
683 Label* not_int32) {
684 ASSERT(!dst.is(object));
685 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
686 ASSERT(!scratch1.is(scratch2) &&
687 !scratch1.is(scratch3) &&
688 !scratch2.is(scratch3));
689
690 Label done;
691
692 // Untag the object into the destination register.
693 __ SmiUntag(dst, object);
694 // Just return if the object is a smi.
695 __ JumpIfSmi(object, &done);
696
697 if (FLAG_debug_code) {
698 __ AbortIfNotRootValue(heap_number_map,
699 Heap::kHeapNumberMapRootIndex,
700 "HeapNumberMap register clobbered.");
701 }
702 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
703
704 // Object is a heap number.
705 // Convert the floating point value to a 32-bit integer.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100706 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100707 CpuFeatures::Scope scope(VFP3);
708 SwVfpRegister single_scratch = double_scratch.low();
709 // Load the double value.
710 __ sub(scratch1, object, Operand(kHeapObjectTag));
711 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
712
713 __ EmitVFPTruncate(kRoundToZero,
714 single_scratch,
715 double_scratch,
716 scratch1,
717 scratch2,
718 kCheckForInexactConversion);
719
720 // Jump to not_int32 if the operation did not succeed.
721 __ b(ne, not_int32);
722 // Get the result in the destination register.
723 __ vmov(dst, single_scratch);
724
725 } else {
726 // Load the double value in the destination registers.
727 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
728 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
729
730 // Check for 0 and -0.
731 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
732 __ orr(dst, scratch2, Operand(dst));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000733 __ cmp(dst, Operand::Zero());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100734 __ b(eq, &done);
735
736 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
737
738 // Registers state after DoubleIs32BitInteger.
739 // dst: mantissa[51:20].
740 // scratch2: 1
741
742 // Shift back the higher bits of the mantissa.
743 __ mov(dst, Operand(dst, LSR, scratch3));
744 // Set the implicit first bit.
745 __ rsb(scratch3, scratch3, Operand(32));
746 __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
747 // Set the sign.
748 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
749 __ tst(scratch1, Operand(HeapNumber::kSignMask));
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000750 __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100751 }
752
753 __ bind(&done);
754}
755
756
757void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
758 Register src1,
759 Register src2,
760 Register dst,
761 Register scratch,
762 Label* not_int32) {
763 // Get exponent alone in scratch.
764 __ Ubfx(scratch,
765 src1,
766 HeapNumber::kExponentShift,
767 HeapNumber::kExponentBits);
768
769 // Substract the bias from the exponent.
770 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
771
772 // src1: higher (exponent) part of the double value.
773 // src2: lower (mantissa) part of the double value.
774 // scratch: unbiased exponent.
775
776 // Fast cases. Check for obvious non 32-bit integer values.
777 // Negative exponent cannot yield 32-bit integers.
778 __ b(mi, not_int32);
779 // Exponent greater than 31 cannot yield 32-bit integers.
780 // Also, a positive value with an exponent equal to 31 is outside of the
781 // signed 32-bit integer range.
782 // Another way to put it is that if (exponent - signbit) > 30 then the
783 // number cannot be represented as an int32.
784 Register tmp = dst;
785 __ sub(tmp, scratch, Operand(src1, LSR, 31));
786 __ cmp(tmp, Operand(30));
787 __ b(gt, not_int32);
788 // - Bits [21:0] in the mantissa are not null.
789 __ tst(src2, Operand(0x3fffff));
790 __ b(ne, not_int32);
791
792 // Otherwise the exponent needs to be big enough to shift left all the
793 // non zero bits left. So we need the (30 - exponent) last bits of the
794 // 31 higher bits of the mantissa to be null.
795 // Because bits [21:0] are null, we can check instead that the
796 // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
797
798 // Get the 32 higher bits of the mantissa in dst.
799 __ Ubfx(dst,
800 src2,
801 HeapNumber::kMantissaBitsInTopWord,
802 32 - HeapNumber::kMantissaBitsInTopWord);
803 __ orr(dst,
804 dst,
805 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
806
807 // Create the mask and test the lower bits (of the higher bits).
808 __ rsb(scratch, scratch, Operand(32));
809 __ mov(src2, Operand(1));
810 __ mov(src1, Operand(src2, LSL, scratch));
811 __ sub(src1, src1, Operand(1));
812 __ tst(dst, src1);
813 __ b(ne, not_int32);
814}
815
816
817void FloatingPointHelper::CallCCodeForDoubleOperation(
818 MacroAssembler* masm,
819 Token::Value op,
820 Register heap_number_result,
821 Register scratch) {
822 // Using core registers:
823 // r0: Left value (least significant part of mantissa).
824 // r1: Left value (sign, exponent, top of mantissa).
825 // r2: Right value (least significant part of mantissa).
826 // r3: Right value (sign, exponent, top of mantissa).
827
828 // Assert that heap_number_result is callee-saved.
829 // We currently always use r5 to pass it.
830 ASSERT(heap_number_result.is(r5));
831
832 // Push the current return address before the C call. Return will be
833 // through pop(pc) below.
834 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +0000835 __ PrepareCallCFunction(0, 2, scratch);
836 if (masm->use_eabi_hardfloat()) {
837 CpuFeatures::Scope scope(VFP3);
838 __ vmov(d0, r0, r1);
839 __ vmov(d1, r2, r3);
840 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100841 // Call C routine that may not cause GC or other trouble.
Steve Block44f0eee2011-05-26 01:26:41 +0100842 __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()),
Ben Murdoch257744e2011-11-30 15:57:28 +0000843 0, 2);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100844 // Store answer in the overwritable heap number. Double returned in
Ben Murdoch257744e2011-11-30 15:57:28 +0000845 // registers r0 and r1 or in d0.
846 if (masm->use_eabi_hardfloat()) {
847 CpuFeatures::Scope scope(VFP3);
848 __ vstr(d0,
849 FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
850 } else {
851 __ Strd(r0, r1, FieldMemOperand(heap_number_result,
852 HeapNumber::kValueOffset));
853 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100854 // Place heap_number_result in r0 and return to the pushed return address.
855 __ mov(r0, Operand(heap_number_result));
856 __ pop(pc);
857}
858
Steve Block1e0659c2011-05-24 12:43:12 +0100859
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100860// See comment for class.
861void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
862 Label max_negative_int;
863 // the_int_ has the answer which is a signed int32 but not a Smi.
864 // We test for the special value that has a different exponent. This test
865 // has the neat side effect of setting the flags according to the sign.
866 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
867 __ cmp(the_int_, Operand(0x80000000u));
868 __ b(eq, &max_negative_int);
869 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
870 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
871 uint32_t non_smi_exponent =
872 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
873 __ mov(scratch_, Operand(non_smi_exponent));
874 // Set the sign bit in scratch_ if the value was negative.
875 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
876 // Subtract from 0 if the value was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100877 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100878 // We should be masking the implict first digit of the mantissa away here,
879 // but it just ends up combining harmlessly with the last digit of the
880 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
881 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
882 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
883 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
884 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
885 __ str(scratch_, FieldMemOperand(the_heap_number_,
886 HeapNumber::kExponentOffset));
887 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
888 __ str(scratch_, FieldMemOperand(the_heap_number_,
889 HeapNumber::kMantissaOffset));
890 __ Ret();
891
892 __ bind(&max_negative_int);
893 // The max negative int32 is stored as a positive number in the mantissa of
894 // a double because it uses a sign bit instead of using two's complement.
895 // The actual mantissa bits stored are all 0 because the implicit most
896 // significant 1 bit is not stored.
897 non_smi_exponent += 1 << HeapNumber::kExponentShift;
898 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
899 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
Iain Merrick9ac36c92010-09-13 15:29:50 +0100900 __ mov(ip, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100901 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
902 __ Ret();
903}
904
905
906// Handle the case where the lhs and rhs are the same object.
907// Equality is almost reflexive (everything but NaN), so this is a test
908// for "identity and not NaN".
909static void EmitIdenticalObjectComparison(MacroAssembler* masm,
910 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +0100911 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100912 bool never_nan_nan) {
913 Label not_identical;
914 Label heap_number, return_equal;
915 __ cmp(r0, r1);
916 __ b(ne, &not_identical);
917
918 // The two objects are identical. If we know that one of them isn't NaN then
919 // we now know they test equal.
Steve Block1e0659c2011-05-24 12:43:12 +0100920 if (cond != eq || !never_nan_nan) {
Steve Block44f0eee2011-05-26 01:26:41 +0100921 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100922 // so we do the second best thing - test it ourselves.
923 // They are both equal and they are not both Smis so both of them are not
924 // Smis. If it's not a heap number, then return equal.
Steve Block1e0659c2011-05-24 12:43:12 +0100925 if (cond == lt || cond == gt) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000926 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100927 __ b(ge, slow);
928 } else {
929 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
930 __ b(eq, &heap_number);
931 // Comparing JS objects with <=, >= is complicated.
Steve Block1e0659c2011-05-24 12:43:12 +0100932 if (cond != eq) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000933 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100934 __ b(ge, slow);
935 // Normally here we fall through to return_equal, but undefined is
936 // special: (undefined == undefined) == true, but
937 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
Steve Block1e0659c2011-05-24 12:43:12 +0100938 if (cond == le || cond == ge) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100939 __ cmp(r4, Operand(ODDBALL_TYPE));
940 __ b(ne, &return_equal);
941 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
942 __ cmp(r0, r2);
943 __ b(ne, &return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +0100944 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100945 // undefined <= undefined should fail.
946 __ mov(r0, Operand(GREATER));
947 } else {
948 // undefined >= undefined should fail.
949 __ mov(r0, Operand(LESS));
950 }
951 __ Ret();
952 }
953 }
954 }
955 }
956
957 __ bind(&return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +0100958 if (cond == lt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100959 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
Steve Block1e0659c2011-05-24 12:43:12 +0100960 } else if (cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100961 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
962 } else {
963 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
964 }
965 __ Ret();
966
Steve Block1e0659c2011-05-24 12:43:12 +0100967 if (cond != eq || !never_nan_nan) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100968 // For less and greater we don't have to check for NaN since the result of
969 // x < x is false regardless. For the others here is some code to check
970 // for NaN.
Steve Block1e0659c2011-05-24 12:43:12 +0100971 if (cond != lt && cond != gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100972 __ bind(&heap_number);
973 // It is a heap number, so return non-equal if it's NaN and equal if it's
974 // not NaN.
975
976 // The representation of NaN values has all exponent bits (52..62) set,
977 // and not all mantissa bits (0..51) clear.
978 // Read top bits of double representation (second word of value).
979 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
980 // Test that exponent bits are all set.
981 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
982 // NaNs have all-one exponents so they sign extend to -1.
983 __ cmp(r3, Operand(-1));
984 __ b(ne, &return_equal);
985
986 // Shift out flag and all exponent bits, retaining only mantissa.
987 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
988 // Or with all low-bits of mantissa.
989 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
990 __ orr(r0, r3, Operand(r2), SetCC);
991 // For equal we already have the right value in r0: Return zero (equal)
992 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
993 // not (it's a NaN). For <= and >= we need to load r0 with the failing
994 // value if it's a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +0100995 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100996 // All-zero means Infinity means equal.
997 __ Ret(eq);
Steve Block1e0659c2011-05-24 12:43:12 +0100998 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100999 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
1000 } else {
1001 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
1002 }
1003 }
1004 __ Ret();
1005 }
1006 // No fall through here.
1007 }
1008
1009 __ bind(&not_identical);
1010}
1011
1012
1013// See comment at call site.
1014static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1015 Register lhs,
1016 Register rhs,
1017 Label* lhs_not_nan,
1018 Label* slow,
1019 bool strict) {
1020 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1021 (lhs.is(r1) && rhs.is(r0)));
1022
1023 Label rhs_is_smi;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001024 __ JumpIfSmi(rhs, &rhs_is_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001025
1026 // Lhs is a Smi. Check whether the rhs is a heap number.
1027 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1028 if (strict) {
1029 // If rhs is not a number and lhs is a Smi then strict equality cannot
1030 // succeed. Return non-equal
1031 // If rhs is r0 then there is already a non zero value in it.
1032 if (!rhs.is(r0)) {
1033 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1034 }
1035 __ Ret(ne);
1036 } else {
1037 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1038 // the runtime.
1039 __ b(ne, slow);
1040 }
1041
1042 // Lhs is a smi, rhs is a number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001043 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001044 // Convert lhs to a double in d7.
1045 CpuFeatures::Scope scope(VFP3);
1046 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1047 // Load the double from rhs, tagged HeapNumber r0, to d6.
1048 __ sub(r7, rhs, Operand(kHeapObjectTag));
1049 __ vldr(d6, r7, HeapNumber::kValueOffset);
1050 } else {
1051 __ push(lr);
1052 // Convert lhs to a double in r2, r3.
1053 __ mov(r7, Operand(lhs));
1054 ConvertToDoubleStub stub1(r3, r2, r7, r6);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001055 __ Call(stub1.GetCode());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001056 // Load rhs to a double in r0, r1.
1057 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1058 __ pop(lr);
1059 }
1060
1061 // We now have both loaded as doubles but we can skip the lhs nan check
1062 // since it's a smi.
1063 __ jmp(lhs_not_nan);
1064
1065 __ bind(&rhs_is_smi);
1066 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
1067 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1068 if (strict) {
1069 // If lhs is not a number and rhs is a smi then strict equality cannot
1070 // succeed. Return non-equal.
1071 // If lhs is r0 then there is already a non zero value in it.
1072 if (!lhs.is(r0)) {
1073 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1074 }
1075 __ Ret(ne);
1076 } else {
1077 // Smi compared non-strictly with a non-smi non-heap-number. Call
1078 // the runtime.
1079 __ b(ne, slow);
1080 }
1081
1082 // Rhs is a smi, lhs is a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001083 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001084 CpuFeatures::Scope scope(VFP3);
1085 // Load the double from lhs, tagged HeapNumber r1, to d7.
1086 __ sub(r7, lhs, Operand(kHeapObjectTag));
1087 __ vldr(d7, r7, HeapNumber::kValueOffset);
1088 // Convert rhs to a double in d6 .
1089 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1090 } else {
1091 __ push(lr);
1092 // Load lhs to a double in r2, r3.
1093 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1094 // Convert rhs to a double in r0, r1.
1095 __ mov(r7, Operand(rhs));
1096 ConvertToDoubleStub stub2(r1, r0, r7, r6);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001097 __ Call(stub2.GetCode());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001098 __ pop(lr);
1099 }
1100 // Fall through to both_loaded_as_doubles.
1101}
1102
1103
Steve Block1e0659c2011-05-24 12:43:12 +01001104void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001105 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1106 Register rhs_exponent = exp_first ? r0 : r1;
1107 Register lhs_exponent = exp_first ? r2 : r3;
1108 Register rhs_mantissa = exp_first ? r1 : r0;
1109 Register lhs_mantissa = exp_first ? r3 : r2;
1110 Label one_is_nan, neither_is_nan;
1111
1112 __ Sbfx(r4,
1113 lhs_exponent,
1114 HeapNumber::kExponentShift,
1115 HeapNumber::kExponentBits);
1116 // NaNs have all-one exponents so they sign extend to -1.
1117 __ cmp(r4, Operand(-1));
1118 __ b(ne, lhs_not_nan);
1119 __ mov(r4,
1120 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1121 SetCC);
1122 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001123 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001124 __ b(ne, &one_is_nan);
1125
1126 __ bind(lhs_not_nan);
1127 __ Sbfx(r4,
1128 rhs_exponent,
1129 HeapNumber::kExponentShift,
1130 HeapNumber::kExponentBits);
1131 // NaNs have all-one exponents so they sign extend to -1.
1132 __ cmp(r4, Operand(-1));
1133 __ b(ne, &neither_is_nan);
1134 __ mov(r4,
1135 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1136 SetCC);
1137 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001138 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001139 __ b(eq, &neither_is_nan);
1140
1141 __ bind(&one_is_nan);
1142 // NaN comparisons always fail.
1143 // Load whatever we need in r0 to make the comparison fail.
Steve Block1e0659c2011-05-24 12:43:12 +01001144 if (cond == lt || cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001145 __ mov(r0, Operand(GREATER));
1146 } else {
1147 __ mov(r0, Operand(LESS));
1148 }
1149 __ Ret();
1150
1151 __ bind(&neither_is_nan);
1152}
1153
1154
1155// See comment at call site.
Steve Block1e0659c2011-05-24 12:43:12 +01001156static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1157 Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001158 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1159 Register rhs_exponent = exp_first ? r0 : r1;
1160 Register lhs_exponent = exp_first ? r2 : r3;
1161 Register rhs_mantissa = exp_first ? r1 : r0;
1162 Register lhs_mantissa = exp_first ? r3 : r2;
1163
1164 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001165 if (cond == eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001166 // Doubles are not equal unless they have the same bit pattern.
1167 // Exception: 0 and -0.
1168 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1169 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1170 // Return non-zero if the numbers are unequal.
1171 __ Ret(ne);
1172
1173 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1174 // If exponents are equal then return 0.
1175 __ Ret(eq);
1176
1177 // Exponents are unequal. The only way we can return that the numbers
1178 // are equal is if one is -0 and the other is 0. We already dealt
1179 // with the case where both are -0 or both are 0.
1180 // We start by seeing if the mantissas (that are equal) or the bottom
1181 // 31 bits of the rhs exponent are non-zero. If so we return not
1182 // equal.
1183 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1184 __ mov(r0, Operand(r4), LeaveCC, ne);
1185 __ Ret(ne);
1186 // Now they are equal if and only if the lhs exponent is zero in its
1187 // low 31 bits.
1188 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1189 __ Ret();
1190 } else {
1191 // Call a native function to do a comparison between two non-NaNs.
1192 // Call C routine that may not cause GC or other trouble.
1193 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00001194 __ PrepareCallCFunction(0, 2, r5);
1195 if (masm->use_eabi_hardfloat()) {
1196 CpuFeatures::Scope scope(VFP3);
1197 __ vmov(d0, r0, r1);
1198 __ vmov(d1, r2, r3);
1199 }
1200 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1201 0, 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001202 __ pop(pc); // Return.
1203 }
1204}
1205
1206
1207// See comment at call site.
1208static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1209 Register lhs,
1210 Register rhs) {
1211 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1212 (lhs.is(r1) && rhs.is(r0)));
1213
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001214 // If either operand is a JS object or an oddball value, then they are
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001215 // not equal since their pointers are different.
1216 // There is no test for undetectability in strict equality.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001217 STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001218 Label first_non_object;
1219 // Get the type of the first operand into r2 and compare it with
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001220 // FIRST_SPEC_OBJECT_TYPE.
1221 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001222 __ b(lt, &first_non_object);
1223
1224 // Return non-zero (r0 is not zero)
1225 Label return_not_equal;
1226 __ bind(&return_not_equal);
1227 __ Ret();
1228
1229 __ bind(&first_non_object);
1230 // Check for oddballs: true, false, null, undefined.
1231 __ cmp(r2, Operand(ODDBALL_TYPE));
1232 __ b(eq, &return_not_equal);
1233
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001234 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001235 __ b(ge, &return_not_equal);
1236
1237 // Check for oddballs: true, false, null, undefined.
1238 __ cmp(r3, Operand(ODDBALL_TYPE));
1239 __ b(eq, &return_not_equal);
1240
1241 // Now that we have the types we might as well check for symbol-symbol.
1242 // Ensure that no non-strings have the symbol bit set.
1243 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1244 STATIC_ASSERT(kSymbolTag != 0);
1245 __ and_(r2, r2, Operand(r3));
1246 __ tst(r2, Operand(kIsSymbolMask));
1247 __ b(ne, &return_not_equal);
1248}
1249
1250
1251// See comment at call site.
1252static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1253 Register lhs,
1254 Register rhs,
1255 Label* both_loaded_as_doubles,
1256 Label* not_heap_numbers,
1257 Label* slow) {
1258 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1259 (lhs.is(r1) && rhs.is(r0)));
1260
1261 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1262 __ b(ne, not_heap_numbers);
1263 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1264 __ cmp(r2, r3);
1265 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
1266
1267 // Both are heap numbers. Load them up then jump to the code we have
1268 // for that.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001269 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001270 CpuFeatures::Scope scope(VFP3);
1271 __ sub(r7, rhs, Operand(kHeapObjectTag));
1272 __ vldr(d6, r7, HeapNumber::kValueOffset);
1273 __ sub(r7, lhs, Operand(kHeapObjectTag));
1274 __ vldr(d7, r7, HeapNumber::kValueOffset);
1275 } else {
1276 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1277 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1278 }
1279 __ jmp(both_loaded_as_doubles);
1280}
1281
1282
1283// Fast negative check for symbol-to-symbol equality.
1284static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1285 Register lhs,
1286 Register rhs,
1287 Label* possible_strings,
1288 Label* not_both_strings) {
1289 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1290 (lhs.is(r1) && rhs.is(r0)));
1291
1292 // r2 is object type of rhs.
1293 // Ensure that no non-strings have the symbol bit set.
1294 Label object_test;
1295 STATIC_ASSERT(kSymbolTag != 0);
1296 __ tst(r2, Operand(kIsNotStringMask));
1297 __ b(ne, &object_test);
1298 __ tst(r2, Operand(kIsSymbolMask));
1299 __ b(eq, possible_strings);
1300 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1301 __ b(ge, not_both_strings);
1302 __ tst(r3, Operand(kIsSymbolMask));
1303 __ b(eq, possible_strings);
1304
1305 // Both are symbols. We already checked they weren't the same pointer
1306 // so they are not equal.
1307 __ mov(r0, Operand(NOT_EQUAL));
1308 __ Ret();
1309
1310 __ bind(&object_test);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001311 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001312 __ b(lt, not_both_strings);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001313 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001314 __ b(lt, not_both_strings);
1315 // If both objects are undetectable, they are equal. Otherwise, they
1316 // are not equal, since they are different objects and an object is not
1317 // equal to undefined.
1318 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1319 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1320 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1321 __ and_(r0, r2, Operand(r3));
1322 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1323 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1324 __ Ret();
1325}
1326
1327
1328void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1329 Register object,
1330 Register result,
1331 Register scratch1,
1332 Register scratch2,
1333 Register scratch3,
1334 bool object_is_smi,
1335 Label* not_found) {
1336 // Use of registers. Register result is used as a temporary.
1337 Register number_string_cache = result;
1338 Register mask = scratch3;
1339
1340 // Load the number string cache.
1341 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1342
1343 // Make the hash mask from the length of the number string cache. It
1344 // contains two elements (number and string) for each cache entry.
1345 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1346 // Divide length by two (length is a smi).
1347 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1348 __ sub(mask, mask, Operand(1)); // Make mask.
1349
1350 // Calculate the entry in the number string cache. The hash value in the
1351 // number string cache for smis is just the smi value, and the hash for
1352 // doubles is the xor of the upper and lower words. See
1353 // Heap::GetNumberStringCache.
Steve Block44f0eee2011-05-26 01:26:41 +01001354 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001355 Label is_smi;
1356 Label load_result_from_cache;
1357 if (!object_is_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01001358 __ JumpIfSmi(object, &is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001359 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001360 CpuFeatures::Scope scope(VFP3);
1361 __ CheckMap(object,
1362 scratch1,
1363 Heap::kHeapNumberMapRootIndex,
1364 not_found,
Ben Murdoch257744e2011-11-30 15:57:28 +00001365 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001366
1367 STATIC_ASSERT(8 == kDoubleSize);
1368 __ add(scratch1,
1369 object,
1370 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1371 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1372 __ eor(scratch1, scratch1, Operand(scratch2));
1373 __ and_(scratch1, scratch1, Operand(mask));
1374
1375 // Calculate address of entry in string cache: each entry consists
1376 // of two pointer sized fields.
1377 __ add(scratch1,
1378 number_string_cache,
1379 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1380
1381 Register probe = mask;
1382 __ ldr(probe,
1383 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
Steve Block1e0659c2011-05-24 12:43:12 +01001384 __ JumpIfSmi(probe, not_found);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001385 __ sub(scratch2, object, Operand(kHeapObjectTag));
1386 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1387 __ sub(probe, probe, Operand(kHeapObjectTag));
1388 __ vldr(d1, probe, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001389 __ VFPCompareAndSetFlags(d0, d1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001390 __ b(ne, not_found); // The cache did not contain this value.
1391 __ b(&load_result_from_cache);
1392 } else {
1393 __ b(not_found);
1394 }
1395 }
1396
1397 __ bind(&is_smi);
1398 Register scratch = scratch1;
1399 __ and_(scratch, mask, Operand(object, ASR, 1));
1400 // Calculate address of entry in string cache: each entry consists
1401 // of two pointer sized fields.
1402 __ add(scratch,
1403 number_string_cache,
1404 Operand(scratch, LSL, kPointerSizeLog2 + 1));
1405
1406 // Check if the entry is the smi we are looking for.
1407 Register probe = mask;
1408 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1409 __ cmp(object, probe);
1410 __ b(ne, not_found);
1411
1412 // Get the result from the cache.
1413 __ bind(&load_result_from_cache);
1414 __ ldr(result,
1415 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01001416 __ IncrementCounter(isolate->counters()->number_to_string_native(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001417 1,
1418 scratch1,
1419 scratch2);
1420}
1421
1422
1423void NumberToStringStub::Generate(MacroAssembler* masm) {
1424 Label runtime;
1425
1426 __ ldr(r1, MemOperand(sp, 0));
1427
1428 // Generate code to lookup number in the number string cache.
1429 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1430 __ add(sp, sp, Operand(1 * kPointerSize));
1431 __ Ret();
1432
1433 __ bind(&runtime);
1434 // Handle number to string in the runtime system if not found in the cache.
1435 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1436}
1437
1438
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001439// On entry lhs_ and rhs_ are the values to be compared.
1440// On exit r0 is 0, positive or negative to indicate the result of
1441// the comparison.
1442void CompareStub::Generate(MacroAssembler* masm) {
1443 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
1444 (lhs_.is(r1) && rhs_.is(r0)));
1445
1446 Label slow; // Call builtin.
1447 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1448
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001449 if (include_smi_compare_) {
1450 Label not_two_smis, smi_done;
1451 __ orr(r2, r1, r0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001452 __ JumpIfNotSmi(r2, &not_two_smis);
Ben Murdochf87a2032010-10-22 12:50:53 +01001453 __ mov(r1, Operand(r1, ASR, 1));
1454 __ sub(r0, r1, Operand(r0, ASR, 1));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001455 __ Ret();
1456 __ bind(&not_two_smis);
1457 } else if (FLAG_debug_code) {
1458 __ orr(r2, r1, r0);
1459 __ tst(r2, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001460 __ Assert(ne, "CompareStub: unexpected smi operands.");
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001461 }
1462
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001463 // NOTICE! This code is only reached after a smi-fast-case check, so
1464 // it is certain that at least one operand isn't a smi.
1465
1466 // Handle the case where the objects are identical. Either returns the answer
1467 // or goes to slow. Only falls through if the objects were not identical.
1468 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1469
1470 // If either is a Smi (we know that not both are), then they can only
1471 // be strictly equal if the other is a HeapNumber.
1472 STATIC_ASSERT(kSmiTag == 0);
1473 ASSERT_EQ(0, Smi::FromInt(0));
1474 __ and_(r2, lhs_, Operand(rhs_));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001475 __ JumpIfNotSmi(r2, &not_smis);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001476 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1477 // 1) Return the answer.
1478 // 2) Go to slow.
1479 // 3) Fall through to both_loaded_as_doubles.
1480 // 4) Jump to lhs_not_nan.
1481 // In cases 3 and 4 we have found out we were dealing with a number-number
1482 // comparison. If VFP3 is supported the double values of the numbers have
1483 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1484 // into r0, r1, r2, and r3.
1485 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
1486
1487 __ bind(&both_loaded_as_doubles);
1488 // The arguments have been converted to doubles and stored in d6 and d7, if
1489 // VFP3 is supported, or in r0, r1, r2, and r3.
Steve Block44f0eee2011-05-26 01:26:41 +01001490 Isolate* isolate = masm->isolate();
Ben Murdoch8b112d22011-06-08 16:22:53 +01001491 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001492 __ bind(&lhs_not_nan);
1493 CpuFeatures::Scope scope(VFP3);
1494 Label no_nan;
1495 // ARMv7 VFP3 instructions to implement double precision comparison.
Ben Murdochb8e0da22011-05-16 14:20:40 +01001496 __ VFPCompareAndSetFlags(d7, d6);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001497 Label nan;
1498 __ b(vs, &nan);
1499 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1500 __ mov(r0, Operand(LESS), LeaveCC, lt);
1501 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1502 __ Ret();
1503
1504 __ bind(&nan);
1505 // If one of the sides was a NaN then the v flag is set. Load r0 with
1506 // whatever it takes to make the comparison fail, since comparisons with NaN
1507 // always fail.
1508 if (cc_ == lt || cc_ == le) {
1509 __ mov(r0, Operand(GREATER));
1510 } else {
1511 __ mov(r0, Operand(LESS));
1512 }
1513 __ Ret();
1514 } else {
1515 // Checks for NaN in the doubles we have loaded. Can return the answer or
1516 // fall through if neither is a NaN. Also binds lhs_not_nan.
1517 EmitNanCheck(masm, &lhs_not_nan, cc_);
1518 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
1519 // answer. Never falls through.
1520 EmitTwoNonNanDoubleComparison(masm, cc_);
1521 }
1522
1523 __ bind(&not_smis);
1524 // At this point we know we are dealing with two different objects,
1525 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
1526 if (strict_) {
1527 // This returns non-equal for some object types, or falls through if it
1528 // was not lucky.
1529 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1530 }
1531
1532 Label check_for_symbols;
1533 Label flat_string_check;
1534 // Check for heap-number-heap-number comparison. Can jump to slow case,
1535 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1536 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1537 // In this case r2 will contain the type of rhs_. Never falls through.
1538 EmitCheckForTwoHeapNumbers(masm,
1539 lhs_,
1540 rhs_,
1541 &both_loaded_as_doubles,
1542 &check_for_symbols,
1543 &flat_string_check);
1544
1545 __ bind(&check_for_symbols);
1546 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1547 // symbols.
1548 if (cc_ == eq && !strict_) {
1549 // Returns an answer for two symbols or two detectable objects.
1550 // Otherwise jumps to string case or not both strings case.
1551 // Assumes that r2 is the type of rhs_ on entry.
1552 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1553 }
1554
1555 // Check for both being sequential ASCII strings, and inline if that is the
1556 // case.
1557 __ bind(&flat_string_check);
1558
1559 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
1560
Steve Block44f0eee2011-05-26 01:26:41 +01001561 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
Ben Murdoch257744e2011-11-30 15:57:28 +00001562 if (cc_ == eq) {
1563 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001564 lhs_,
1565 rhs_,
1566 r2,
1567 r3,
Ben Murdoch257744e2011-11-30 15:57:28 +00001568 r4);
1569 } else {
1570 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1571 lhs_,
1572 rhs_,
1573 r2,
1574 r3,
1575 r4,
1576 r5);
1577 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001578 // Never falls through to here.
1579
1580 __ bind(&slow);
1581
1582 __ Push(lhs_, rhs_);
1583 // Figure out which native to call and setup the arguments.
1584 Builtins::JavaScript native;
1585 if (cc_ == eq) {
1586 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1587 } else {
1588 native = Builtins::COMPARE;
1589 int ncr; // NaN compare result
1590 if (cc_ == lt || cc_ == le) {
1591 ncr = GREATER;
1592 } else {
1593 ASSERT(cc_ == gt || cc_ == ge); // remaining cases
1594 ncr = LESS;
1595 }
1596 __ mov(r0, Operand(Smi::FromInt(ncr)));
1597 __ push(r0);
1598 }
1599
1600 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1601 // tagged as a small integer.
Ben Murdoch257744e2011-11-30 15:57:28 +00001602 __ InvokeBuiltin(native, JUMP_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001603}
1604
1605
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001606// The stub expects its argument in the tos_ register and returns its result in
1607// it, too: zero for false, and a non-zero value for true.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001608void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001609 // This stub uses VFP3 instructions.
Ben Murdoch257744e2011-11-30 15:57:28 +00001610 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001611
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001612 Label patch;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001613 const Register map = r9.is(tos_) ? r7 : r9;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001614
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001615 // undefined -> false.
1616 CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +00001617
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001618 // Boolean -> its value.
1619 CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1620 CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
Ben Murdoch257744e2011-11-30 15:57:28 +00001621
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001622 // 'null' -> false.
1623 CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +00001624
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001625 if (types_.Contains(SMI)) {
1626 // Smis: 0 -> false, all other -> true
1627 __ tst(tos_, Operand(kSmiTagMask));
1628 // tos_ contains the correct return value already
1629 __ Ret(eq);
1630 } else if (types_.NeedsMap()) {
1631 // If we need a map later and have a Smi -> patch.
1632 __ JumpIfSmi(tos_, &patch);
1633 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001634
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001635 if (types_.NeedsMap()) {
1636 __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001637
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001638 if (types_.CanBeUndetectable()) {
1639 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
1640 __ tst(ip, Operand(1 << Map::kIsUndetectable));
1641 // Undetectable -> false.
1642 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
1643 __ Ret(ne);
1644 }
1645 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001646
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001647 if (types_.Contains(SPEC_OBJECT)) {
1648 // Spec object -> true.
1649 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
1650 // tos_ contains the correct non-zero return value already.
1651 __ Ret(ge);
1652 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001653
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001654 if (types_.Contains(STRING)) {
1655 // String value -> false iff empty.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001656 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001657 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
1658 __ Ret(lt); // the string length is OK as the return value
1659 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001660
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001661 if (types_.Contains(HEAP_NUMBER)) {
1662 // Heap number -> false iff +0, -0, or NaN.
1663 Label not_heap_number;
1664 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1665 __ b(ne, &not_heap_number);
1666 __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1667 __ VFPCompareAndSetFlags(d1, 0.0);
1668 // "tos_" is a register, and contains a non zero value by default.
1669 // Hence we only need to overwrite "tos_" with zero to return false for
1670 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
1671 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO
1672 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN
1673 __ Ret();
1674 __ bind(&not_heap_number);
1675 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001676
Ben Murdoch69a99ed2011-11-30 16:03:39 +00001677 __ bind(&patch);
1678 GenerateTypeTransition(masm);
1679}
1680
1681
1682void ToBooleanStub::CheckOddball(MacroAssembler* masm,
1683 Type type,
1684 Heap::RootListIndex value,
1685 bool result) {
1686 if (types_.Contains(type)) {
1687 // If we see an expected oddball, return its ToBoolean value tos_.
1688 __ LoadRoot(ip, value);
1689 __ cmp(tos_, ip);
1690 // The value of a root is never NULL, so we can avoid loading a non-null
1691 // value into tos_ when we want to return 'true'.
1692 if (!result) {
1693 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1694 }
1695 __ Ret(eq);
1696 }
1697}
1698
1699
1700void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
1701 if (!tos_.is(r3)) {
1702 __ mov(r3, Operand(tos_));
1703 }
1704 __ mov(r2, Operand(Smi::FromInt(tos_.code())));
1705 __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
1706 __ Push(r3, r2, r1);
1707 // Patch the caller to an appropriate specialized stub and return the
1708 // operation result to the caller of the stub.
1709 __ TailCallExternalReference(
1710 ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
1711 3,
1712 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001713}
1714
1715
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001716void UnaryOpStub::PrintName(StringStream* stream) {
Ben Murdoch257744e2011-11-30 15:57:28 +00001717 const char* op_name = Token::Name(op_);
1718 const char* overwrite_name = NULL; // Make g++ happy.
1719 switch (mode_) {
1720 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
1721 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
1722 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001723 stream->Add("UnaryOpStub_%s_%s_%s",
1724 op_name,
1725 overwrite_name,
1726 UnaryOpIC::GetName(operand_type_));
Ben Murdoch257744e2011-11-30 15:57:28 +00001727}
1728
1729
1730// TODO(svenpanne): Use virtual functions instead of switch.
1731void UnaryOpStub::Generate(MacroAssembler* masm) {
1732 switch (operand_type_) {
1733 case UnaryOpIC::UNINITIALIZED:
1734 GenerateTypeTransition(masm);
1735 break;
1736 case UnaryOpIC::SMI:
1737 GenerateSmiStub(masm);
1738 break;
1739 case UnaryOpIC::HEAP_NUMBER:
1740 GenerateHeapNumberStub(masm);
1741 break;
1742 case UnaryOpIC::GENERIC:
1743 GenerateGenericStub(masm);
1744 break;
1745 }
1746}
1747
1748
1749void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001750 __ mov(r3, Operand(r0)); // the operand
1751 __ mov(r2, Operand(Smi::FromInt(op_)));
1752 __ mov(r1, Operand(Smi::FromInt(mode_)));
Ben Murdoch257744e2011-11-30 15:57:28 +00001753 __ mov(r0, Operand(Smi::FromInt(operand_type_)));
Ben Murdoch257744e2011-11-30 15:57:28 +00001754 __ Push(r3, r2, r1, r0);
1755
1756 __ TailCallExternalReference(
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001757 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
Ben Murdoch257744e2011-11-30 15:57:28 +00001758}
1759
1760
1761// TODO(svenpanne): Use virtual functions instead of switch.
1762void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
1763 switch (op_) {
1764 case Token::SUB:
1765 GenerateSmiStubSub(masm);
1766 break;
1767 case Token::BIT_NOT:
1768 GenerateSmiStubBitNot(masm);
1769 break;
1770 default:
1771 UNREACHABLE();
1772 }
1773}
1774
1775
1776void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
1777 Label non_smi, slow;
1778 GenerateSmiCodeSub(masm, &non_smi, &slow);
1779 __ bind(&non_smi);
1780 __ bind(&slow);
1781 GenerateTypeTransition(masm);
1782}
1783
1784
1785void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
1786 Label non_smi;
1787 GenerateSmiCodeBitNot(masm, &non_smi);
1788 __ bind(&non_smi);
1789 GenerateTypeTransition(masm);
1790}
1791
1792
1793void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
1794 Label* non_smi,
1795 Label* slow) {
1796 __ JumpIfNotSmi(r0, non_smi);
1797
1798 // The result of negating zero or the smallest negative smi is not a smi.
1799 __ bic(ip, r0, Operand(0x80000000), SetCC);
1800 __ b(eq, slow);
1801
1802 // Return '0 - value'.
1803 __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
1804 __ Ret();
1805}
1806
1807
1808void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
1809 Label* non_smi) {
1810 __ JumpIfNotSmi(r0, non_smi);
1811
1812 // Flip bits and revert inverted smi-tag.
1813 __ mvn(r0, Operand(r0));
1814 __ bic(r0, r0, Operand(kSmiTagMask));
1815 __ Ret();
1816}
1817
1818
1819// TODO(svenpanne): Use virtual functions instead of switch.
1820void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
1821 switch (op_) {
1822 case Token::SUB:
1823 GenerateHeapNumberStubSub(masm);
1824 break;
1825 case Token::BIT_NOT:
1826 GenerateHeapNumberStubBitNot(masm);
1827 break;
1828 default:
1829 UNREACHABLE();
1830 }
1831}
1832
1833
1834void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
1835 Label non_smi, slow, call_builtin;
1836 GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
1837 __ bind(&non_smi);
1838 GenerateHeapNumberCodeSub(masm, &slow);
1839 __ bind(&slow);
1840 GenerateTypeTransition(masm);
1841 __ bind(&call_builtin);
1842 GenerateGenericCodeFallback(masm);
1843}
1844
1845
1846void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
1847 Label non_smi, slow;
1848 GenerateSmiCodeBitNot(masm, &non_smi);
1849 __ bind(&non_smi);
1850 GenerateHeapNumberCodeBitNot(masm, &slow);
1851 __ bind(&slow);
1852 GenerateTypeTransition(masm);
1853}
1854
1855void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
1856 Label* slow) {
1857 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
1858 // r0 is a heap number. Get a new heap number in r1.
1859 if (mode_ == UNARY_OVERWRITE) {
1860 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1861 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
1862 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1863 } else {
1864 Label slow_allocate_heapnumber, heapnumber_allocated;
1865 __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
1866 __ jmp(&heapnumber_allocated);
1867
1868 __ bind(&slow_allocate_heapnumber);
1869 __ EnterInternalFrame();
1870 __ push(r0);
1871 __ CallRuntime(Runtime::kNumberAlloc, 0);
1872 __ mov(r1, Operand(r0));
1873 __ pop(r0);
1874 __ LeaveInternalFrame();
1875
1876 __ bind(&heapnumber_allocated);
1877 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1878 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1879 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
1880 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
1881 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
1882 __ mov(r0, Operand(r1));
1883 }
1884 __ Ret();
1885}
1886
1887
1888void UnaryOpStub::GenerateHeapNumberCodeBitNot(
1889 MacroAssembler* masm, Label* slow) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001890 Label impossible;
1891
Ben Murdoch257744e2011-11-30 15:57:28 +00001892 EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
1893 // Convert the heap number is r0 to an untagged integer in r1.
1894 __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
1895
1896 // Do the bitwise operation and check if the result fits in a smi.
1897 Label try_float;
1898 __ mvn(r1, Operand(r1));
1899 __ add(r2, r1, Operand(0x40000000), SetCC);
1900 __ b(mi, &try_float);
1901
1902 // Tag the result as a smi and we're done.
1903 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
1904 __ Ret();
1905
1906 // Try to store the result in a heap number.
1907 __ bind(&try_float);
1908 if (mode_ == UNARY_NO_OVERWRITE) {
1909 Label slow_allocate_heapnumber, heapnumber_allocated;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001910 // Allocate a new heap number without zapping r0, which we need if it fails.
1911 __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
Ben Murdoch257744e2011-11-30 15:57:28 +00001912 __ jmp(&heapnumber_allocated);
1913
1914 __ bind(&slow_allocate_heapnumber);
1915 __ EnterInternalFrame();
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001916 __ push(r0); // Push the heap number, not the untagged int32.
1917 __ CallRuntime(Runtime::kNumberAlloc, 0);
1918 __ mov(r2, r0); // Move the new heap number into r2.
1919 // Get the heap number into r0, now that the new heap number is in r2.
1920 __ pop(r0);
Ben Murdoch257744e2011-11-30 15:57:28 +00001921 __ LeaveInternalFrame();
1922
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001923 // Convert the heap number in r0 to an untagged integer in r1.
1924 // This can't go slow-case because it's the same number we already
1925 // converted once again.
1926 __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
1927 __ mvn(r1, Operand(r1));
1928
Ben Murdoch257744e2011-11-30 15:57:28 +00001929 __ bind(&heapnumber_allocated);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001930 __ mov(r0, r2); // Move newly allocated heap number to r0.
Ben Murdoch257744e2011-11-30 15:57:28 +00001931 }
1932
1933 if (CpuFeatures::IsSupported(VFP3)) {
1934 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
1935 CpuFeatures::Scope scope(VFP3);
1936 __ vmov(s0, r1);
1937 __ vcvt_f64_s32(d0, s0);
1938 __ sub(r2, r0, Operand(kHeapObjectTag));
1939 __ vstr(d0, r2, HeapNumber::kValueOffset);
1940 __ Ret();
1941 } else {
1942 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
1943 // have to set up a frame.
1944 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
1945 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1946 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001947
1948 __ bind(&impossible);
1949 if (FLAG_debug_code) {
1950 __ stop("Incorrect assumption in bit-not stub");
1951 }
Ben Murdoch257744e2011-11-30 15:57:28 +00001952}
1953
1954
1955// TODO(svenpanne): Use virtual functions instead of switch.
1956void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
1957 switch (op_) {
1958 case Token::SUB:
1959 GenerateGenericStubSub(masm);
1960 break;
1961 case Token::BIT_NOT:
1962 GenerateGenericStubBitNot(masm);
1963 break;
1964 default:
1965 UNREACHABLE();
1966 }
1967}
1968
1969
1970void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
1971 Label non_smi, slow;
1972 GenerateSmiCodeSub(masm, &non_smi, &slow);
1973 __ bind(&non_smi);
1974 GenerateHeapNumberCodeSub(masm, &slow);
1975 __ bind(&slow);
1976 GenerateGenericCodeFallback(masm);
1977}
1978
1979
1980void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
1981 Label non_smi, slow;
1982 GenerateSmiCodeBitNot(masm, &non_smi);
1983 __ bind(&non_smi);
1984 GenerateHeapNumberCodeBitNot(masm, &slow);
1985 __ bind(&slow);
1986 GenerateGenericCodeFallback(masm);
1987}
1988
1989
1990void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
1991 // Handle the slow case by jumping to the JavaScript builtin.
1992 __ push(r0);
1993 switch (op_) {
1994 case Token::SUB:
1995 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
1996 break;
1997 case Token::BIT_NOT:
1998 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
1999 break;
2000 default:
2001 UNREACHABLE();
2002 }
2003}
2004
2005
Ben Murdoch257744e2011-11-30 15:57:28 +00002006void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002007 Label get_result;
2008
2009 __ Push(r1, r0);
2010
2011 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
2012 __ mov(r1, Operand(Smi::FromInt(op_)));
2013 __ mov(r0, Operand(Smi::FromInt(operands_type_)));
2014 __ Push(r2, r1, r0);
2015
2016 __ TailCallExternalReference(
Ben Murdoch257744e2011-11-30 15:57:28 +00002017 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
Steve Block44f0eee2011-05-26 01:26:41 +01002018 masm->isolate()),
Steve Block1e0659c2011-05-24 12:43:12 +01002019 5,
2020 1);
2021}
2022
2023
Ben Murdoch257744e2011-11-30 15:57:28 +00002024void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
Steve Block1e0659c2011-05-24 12:43:12 +01002025 MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002026 UNIMPLEMENTED();
Steve Block1e0659c2011-05-24 12:43:12 +01002027}
2028
2029
Ben Murdoch257744e2011-11-30 15:57:28 +00002030void BinaryOpStub::Generate(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002031 switch (operands_type_) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002032 case BinaryOpIC::UNINITIALIZED:
Steve Block1e0659c2011-05-24 12:43:12 +01002033 GenerateTypeTransition(masm);
2034 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002035 case BinaryOpIC::SMI:
Steve Block1e0659c2011-05-24 12:43:12 +01002036 GenerateSmiStub(masm);
2037 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002038 case BinaryOpIC::INT32:
Steve Block1e0659c2011-05-24 12:43:12 +01002039 GenerateInt32Stub(masm);
2040 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002041 case BinaryOpIC::HEAP_NUMBER:
Steve Block1e0659c2011-05-24 12:43:12 +01002042 GenerateHeapNumberStub(masm);
2043 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002044 case BinaryOpIC::ODDBALL:
Steve Block44f0eee2011-05-26 01:26:41 +01002045 GenerateOddballStub(masm);
2046 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002047 case BinaryOpIC::BOTH_STRING:
2048 GenerateBothStringStub(masm);
2049 break;
2050 case BinaryOpIC::STRING:
Steve Block1e0659c2011-05-24 12:43:12 +01002051 GenerateStringStub(masm);
2052 break;
Ben Murdoch257744e2011-11-30 15:57:28 +00002053 case BinaryOpIC::GENERIC:
Steve Block1e0659c2011-05-24 12:43:12 +01002054 GenerateGeneric(masm);
2055 break;
2056 default:
2057 UNREACHABLE();
2058 }
2059}
2060
2061
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002062void BinaryOpStub::PrintName(StringStream* stream) {
Steve Block1e0659c2011-05-24 12:43:12 +01002063 const char* op_name = Token::Name(op_);
2064 const char* overwrite_name;
2065 switch (mode_) {
2066 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2067 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2068 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2069 default: overwrite_name = "UnknownOverwrite"; break;
2070 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002071 stream->Add("BinaryOpStub_%s_%s_%s",
2072 op_name,
2073 overwrite_name,
2074 BinaryOpIC::GetName(operands_type_));
Steve Block1e0659c2011-05-24 12:43:12 +01002075}
2076
2077
Ben Murdoch257744e2011-11-30 15:57:28 +00002078void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002079 Register left = r1;
2080 Register right = r0;
2081 Register scratch1 = r7;
2082 Register scratch2 = r9;
2083
2084 ASSERT(right.is(r0));
2085 STATIC_ASSERT(kSmiTag == 0);
2086
2087 Label not_smi_result;
2088 switch (op_) {
2089 case Token::ADD:
2090 __ add(right, left, Operand(right), SetCC); // Add optimistically.
2091 __ Ret(vc);
2092 __ sub(right, right, Operand(left)); // Revert optimistic add.
2093 break;
2094 case Token::SUB:
2095 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
2096 __ Ret(vc);
2097 __ sub(right, left, Operand(right)); // Revert optimistic subtract.
2098 break;
2099 case Token::MUL:
2100 // Remove tag from one of the operands. This way the multiplication result
2101 // will be a smi if it fits the smi range.
2102 __ SmiUntag(ip, right);
2103 // Do multiplication
2104 // scratch1 = lower 32 bits of ip * left.
2105 // scratch2 = higher 32 bits of ip * left.
2106 __ smull(scratch1, scratch2, left, ip);
2107 // Check for overflowing the smi range - no overflow if higher 33 bits of
2108 // the result are identical.
2109 __ mov(ip, Operand(scratch1, ASR, 31));
2110 __ cmp(ip, Operand(scratch2));
2111 __ b(ne, &not_smi_result);
2112 // Go slow on zero result to handle -0.
2113 __ tst(scratch1, Operand(scratch1));
2114 __ mov(right, Operand(scratch1), LeaveCC, ne);
2115 __ Ret(ne);
2116 // We need -0 if we were multiplying a negative number with 0 to get 0.
2117 // We know one of them was zero.
2118 __ add(scratch2, right, Operand(left), SetCC);
2119 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2120 __ Ret(pl); // Return smi 0 if the non-zero one was positive.
2121 // We fall through here if we multiplied a negative number with 0, because
2122 // that would mean we should produce -0.
2123 break;
2124 case Token::DIV:
2125 // Check for power of two on the right hand side.
2126 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2127 // Check for positive and no remainder (scratch1 contains right - 1).
2128 __ orr(scratch2, scratch1, Operand(0x80000000u));
2129 __ tst(left, scratch2);
2130 __ b(ne, &not_smi_result);
2131
2132 // Perform division by shifting.
2133 __ CountLeadingZeros(scratch1, scratch1, scratch2);
2134 __ rsb(scratch1, scratch1, Operand(31));
2135 __ mov(right, Operand(left, LSR, scratch1));
2136 __ Ret();
2137 break;
2138 case Token::MOD:
2139 // Check for two positive smis.
2140 __ orr(scratch1, left, Operand(right));
2141 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
2142 __ b(ne, &not_smi_result);
2143
2144 // Check for power of two on the right hand side.
2145 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2146
2147 // Perform modulus by masking.
2148 __ and_(right, left, Operand(scratch1));
2149 __ Ret();
2150 break;
2151 case Token::BIT_OR:
2152 __ orr(right, left, Operand(right));
2153 __ Ret();
2154 break;
2155 case Token::BIT_AND:
2156 __ and_(right, left, Operand(right));
2157 __ Ret();
2158 break;
2159 case Token::BIT_XOR:
2160 __ eor(right, left, Operand(right));
2161 __ Ret();
2162 break;
2163 case Token::SAR:
2164 // Remove tags from right operand.
2165 __ GetLeastBitsFromSmi(scratch1, right, 5);
2166 __ mov(right, Operand(left, ASR, scratch1));
2167 // Smi tag result.
2168 __ bic(right, right, Operand(kSmiTagMask));
2169 __ Ret();
2170 break;
2171 case Token::SHR:
2172 // Remove tags from operands. We can't do this on a 31 bit number
2173 // because then the 0s get shifted into bit 30 instead of bit 31.
2174 __ SmiUntag(scratch1, left);
2175 __ GetLeastBitsFromSmi(scratch2, right, 5);
2176 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2177 // Unsigned shift is not allowed to produce a negative number, so
2178 // check the sign bit and the sign bit after Smi tagging.
2179 __ tst(scratch1, Operand(0xc0000000));
2180 __ b(ne, &not_smi_result);
2181 // Smi tag result.
2182 __ SmiTag(right, scratch1);
2183 __ Ret();
2184 break;
2185 case Token::SHL:
2186 // Remove tags from operands.
2187 __ SmiUntag(scratch1, left);
2188 __ GetLeastBitsFromSmi(scratch2, right, 5);
2189 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2190 // Check that the signed result fits in a Smi.
2191 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2192 __ b(mi, &not_smi_result);
2193 __ SmiTag(right, scratch1);
2194 __ Ret();
2195 break;
2196 default:
2197 UNREACHABLE();
2198 }
2199 __ bind(&not_smi_result);
2200}
2201
2202
Ben Murdoch257744e2011-11-30 15:57:28 +00002203void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
2204 bool smi_operands,
2205 Label* not_numbers,
2206 Label* gc_required) {
Steve Block1e0659c2011-05-24 12:43:12 +01002207 Register left = r1;
2208 Register right = r0;
2209 Register scratch1 = r7;
2210 Register scratch2 = r9;
Steve Block44f0eee2011-05-26 01:26:41 +01002211 Register scratch3 = r4;
Steve Block1e0659c2011-05-24 12:43:12 +01002212
2213 ASSERT(smi_operands || (not_numbers != NULL));
2214 if (smi_operands && FLAG_debug_code) {
2215 __ AbortIfNotSmi(left);
2216 __ AbortIfNotSmi(right);
2217 }
2218
2219 Register heap_number_map = r6;
2220 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2221
2222 switch (op_) {
2223 case Token::ADD:
2224 case Token::SUB:
2225 case Token::MUL:
2226 case Token::DIV:
2227 case Token::MOD: {
2228 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
2229 // depending on whether VFP3 is available or not.
2230 FloatingPointHelper::Destination destination =
Ben Murdoch8b112d22011-06-08 16:22:53 +01002231 CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +01002232 op_ != Token::MOD ?
Steve Block1e0659c2011-05-24 12:43:12 +01002233 FloatingPointHelper::kVFPRegisters :
2234 FloatingPointHelper::kCoreRegisters;
2235
2236 // Allocate new heap number for result.
2237 Register result = r5;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002238 GenerateHeapResultAllocation(
2239 masm, result, heap_number_map, scratch1, scratch2, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002240
2241 // Load the operands.
2242 if (smi_operands) {
2243 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2244 } else {
2245 FloatingPointHelper::LoadOperands(masm,
2246 destination,
2247 heap_number_map,
2248 scratch1,
2249 scratch2,
2250 not_numbers);
2251 }
2252
2253 // Calculate the result.
2254 if (destination == FloatingPointHelper::kVFPRegisters) {
2255 // Using VFP registers:
2256 // d6: Left value
2257 // d7: Right value
2258 CpuFeatures::Scope scope(VFP3);
2259 switch (op_) {
2260 case Token::ADD:
2261 __ vadd(d5, d6, d7);
2262 break;
2263 case Token::SUB:
2264 __ vsub(d5, d6, d7);
2265 break;
2266 case Token::MUL:
2267 __ vmul(d5, d6, d7);
2268 break;
2269 case Token::DIV:
2270 __ vdiv(d5, d6, d7);
2271 break;
2272 default:
2273 UNREACHABLE();
2274 }
2275
2276 __ sub(r0, result, Operand(kHeapObjectTag));
2277 __ vstr(d5, r0, HeapNumber::kValueOffset);
2278 __ add(r0, r0, Operand(kHeapObjectTag));
2279 __ Ret();
2280 } else {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002281 // Call the C function to handle the double operation.
2282 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2283 op_,
2284 result,
2285 scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002286 if (FLAG_debug_code) {
2287 __ stop("Unreachable code.");
2288 }
Steve Block1e0659c2011-05-24 12:43:12 +01002289 }
2290 break;
2291 }
2292 case Token::BIT_OR:
2293 case Token::BIT_XOR:
2294 case Token::BIT_AND:
2295 case Token::SAR:
2296 case Token::SHR:
2297 case Token::SHL: {
2298 if (smi_operands) {
2299 __ SmiUntag(r3, left);
2300 __ SmiUntag(r2, right);
2301 } else {
2302 // Convert operands to 32-bit integers. Right in r2 and left in r3.
Steve Block44f0eee2011-05-26 01:26:41 +01002303 FloatingPointHelper::ConvertNumberToInt32(masm,
2304 left,
2305 r3,
2306 heap_number_map,
2307 scratch1,
2308 scratch2,
2309 scratch3,
2310 d0,
2311 not_numbers);
2312 FloatingPointHelper::ConvertNumberToInt32(masm,
2313 right,
2314 r2,
2315 heap_number_map,
2316 scratch1,
2317 scratch2,
2318 scratch3,
2319 d0,
2320 not_numbers);
Steve Block1e0659c2011-05-24 12:43:12 +01002321 }
2322
2323 Label result_not_a_smi;
2324 switch (op_) {
2325 case Token::BIT_OR:
2326 __ orr(r2, r3, Operand(r2));
2327 break;
2328 case Token::BIT_XOR:
2329 __ eor(r2, r3, Operand(r2));
2330 break;
2331 case Token::BIT_AND:
2332 __ and_(r2, r3, Operand(r2));
2333 break;
2334 case Token::SAR:
2335 // Use only the 5 least significant bits of the shift count.
Steve Block1e0659c2011-05-24 12:43:12 +01002336 __ GetLeastBitsFromInt32(r2, r2, 5);
2337 __ mov(r2, Operand(r3, ASR, r2));
2338 break;
2339 case Token::SHR:
2340 // Use only the 5 least significant bits of the shift count.
2341 __ GetLeastBitsFromInt32(r2, r2, 5);
2342 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2343 // SHR is special because it is required to produce a positive answer.
2344 // The code below for writing into heap numbers isn't capable of
2345 // writing the register as an unsigned int so we go to slow case if we
2346 // hit this case.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002347 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002348 __ b(mi, &result_not_a_smi);
2349 } else {
2350 __ b(mi, not_numbers);
2351 }
2352 break;
2353 case Token::SHL:
2354 // Use only the 5 least significant bits of the shift count.
2355 __ GetLeastBitsFromInt32(r2, r2, 5);
2356 __ mov(r2, Operand(r3, LSL, r2));
2357 break;
2358 default:
2359 UNREACHABLE();
2360 }
2361
2362 // Check that the *signed* result fits in a smi.
2363 __ add(r3, r2, Operand(0x40000000), SetCC);
2364 __ b(mi, &result_not_a_smi);
2365 __ SmiTag(r0, r2);
2366 __ Ret();
2367
2368 // Allocate new heap number for result.
2369 __ bind(&result_not_a_smi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002370 Register result = r5;
2371 if (smi_operands) {
2372 __ AllocateHeapNumber(
2373 result, scratch1, scratch2, heap_number_map, gc_required);
2374 } else {
2375 GenerateHeapResultAllocation(
2376 masm, result, heap_number_map, scratch1, scratch2, gc_required);
2377 }
Steve Block1e0659c2011-05-24 12:43:12 +01002378
2379 // r2: Answer as signed int32.
2380 // r5: Heap number to write answer into.
2381
2382 // Nothing can go wrong now, so move the heap number to r0, which is the
2383 // result.
2384 __ mov(r0, Operand(r5));
2385
Ben Murdoch8b112d22011-06-08 16:22:53 +01002386 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002387 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
2388 // mentioned above SHR needs to always produce a positive result.
2389 CpuFeatures::Scope scope(VFP3);
2390 __ vmov(s0, r2);
2391 if (op_ == Token::SHR) {
2392 __ vcvt_f64_u32(d0, s0);
2393 } else {
2394 __ vcvt_f64_s32(d0, s0);
2395 }
2396 __ sub(r3, r0, Operand(kHeapObjectTag));
2397 __ vstr(d0, r3, HeapNumber::kValueOffset);
2398 __ Ret();
2399 } else {
2400 // Tail call that writes the int32 in r2 to the heap number in r0, using
2401 // r3 as scratch. r0 is preserved and returned.
2402 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2403 __ TailCallStub(&stub);
2404 }
2405 break;
2406 }
2407 default:
2408 UNREACHABLE();
2409 }
2410}
2411
2412
2413// Generate the smi code. If the operation on smis are successful this return is
2414// generated. If the result is not a smi and heap number allocation is not
2415// requested the code falls through. If number allocation is requested but a
2416// heap number cannot be allocated the code jumps to the lable gc_required.
Ben Murdoch257744e2011-11-30 15:57:28 +00002417void BinaryOpStub::GenerateSmiCode(
2418 MacroAssembler* masm,
Ben Murdoch8b112d22011-06-08 16:22:53 +01002419 Label* use_runtime,
Steve Block1e0659c2011-05-24 12:43:12 +01002420 Label* gc_required,
2421 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2422 Label not_smis;
2423
2424 Register left = r1;
2425 Register right = r0;
2426 Register scratch1 = r7;
Steve Block1e0659c2011-05-24 12:43:12 +01002427
2428 // Perform combined smi check on both operands.
2429 __ orr(scratch1, left, Operand(right));
2430 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002431 __ JumpIfNotSmi(scratch1, &not_smis);
Steve Block1e0659c2011-05-24 12:43:12 +01002432
2433 // If the smi-smi operation results in a smi return is generated.
2434 GenerateSmiSmiOperation(masm);
2435
2436 // If heap number results are possible generate the result in an allocated
2437 // heap number.
2438 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002439 GenerateFPOperation(masm, true, use_runtime, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002440 }
2441 __ bind(&not_smis);
2442}
2443
2444
Ben Murdoch257744e2011-11-30 15:57:28 +00002445void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002446 Label not_smis, call_runtime;
2447
Ben Murdoch257744e2011-11-30 15:57:28 +00002448 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2449 result_type_ == BinaryOpIC::SMI) {
Steve Block1e0659c2011-05-24 12:43:12 +01002450 // Only allow smi results.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002451 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002452 } else {
2453 // Allow heap number result and don't make a transition if a heap number
2454 // cannot be allocated.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002455 GenerateSmiCode(masm,
2456 &call_runtime,
2457 &call_runtime,
2458 ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002459 }
2460
2461 // Code falls through if the result is not returned as either a smi or heap
2462 // number.
2463 GenerateTypeTransition(masm);
2464
2465 __ bind(&call_runtime);
2466 GenerateCallRuntime(masm);
2467}
2468
2469
Ben Murdoch257744e2011-11-30 15:57:28 +00002470void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2471 ASSERT(operands_type_ == BinaryOpIC::STRING);
Steve Block1e0659c2011-05-24 12:43:12 +01002472 ASSERT(op_ == Token::ADD);
2473 // Try to add arguments as strings, otherwise, transition to the generic
Ben Murdoch257744e2011-11-30 15:57:28 +00002474 // BinaryOpIC type.
Steve Block1e0659c2011-05-24 12:43:12 +01002475 GenerateAddStrings(masm);
2476 GenerateTypeTransition(masm);
2477}
2478
2479
Ben Murdoch257744e2011-11-30 15:57:28 +00002480void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
2481 Label call_runtime;
2482 ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
2483 ASSERT(op_ == Token::ADD);
2484 // If both arguments are strings, call the string add stub.
2485 // Otherwise, do a transition.
2486
2487 // Registers containing left and right operands respectively.
2488 Register left = r1;
2489 Register right = r0;
2490
2491 // Test if left operand is a string.
2492 __ JumpIfSmi(left, &call_runtime);
2493 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
2494 __ b(ge, &call_runtime);
2495
2496 // Test if right operand is a string.
2497 __ JumpIfSmi(right, &call_runtime);
2498 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2499 __ b(ge, &call_runtime);
2500
2501 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2502 GenerateRegisterArgsPush(masm);
2503 __ TailCallStub(&string_add_stub);
2504
2505 __ bind(&call_runtime);
2506 GenerateTypeTransition(masm);
2507}
2508
2509
2510void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2511 ASSERT(operands_type_ == BinaryOpIC::INT32);
Steve Block1e0659c2011-05-24 12:43:12 +01002512
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002513 Register left = r1;
2514 Register right = r0;
2515 Register scratch1 = r7;
2516 Register scratch2 = r9;
2517 DwVfpRegister double_scratch = d0;
2518 SwVfpRegister single_scratch = s3;
2519
2520 Register heap_number_result = no_reg;
2521 Register heap_number_map = r6;
2522 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2523
2524 Label call_runtime;
2525 // Labels for type transition, used for wrong input or output types.
2526 // Both label are currently actually bound to the same position. We use two
2527 // different label to differentiate the cause leading to type transition.
2528 Label transition;
2529
2530 // Smi-smi fast case.
2531 Label skip;
2532 __ orr(scratch1, left, right);
2533 __ JumpIfNotSmi(scratch1, &skip);
2534 GenerateSmiSmiOperation(masm);
2535 // Fall through if the result is not a smi.
2536 __ bind(&skip);
2537
2538 switch (op_) {
2539 case Token::ADD:
2540 case Token::SUB:
2541 case Token::MUL:
2542 case Token::DIV:
2543 case Token::MOD: {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002544 // Load both operands and check that they are 32-bit integer.
2545 // Jump to type transition if they are not. The registers r0 and r1 (right
2546 // and left) are preserved for the runtime call.
2547 FloatingPointHelper::Destination destination =
2548 (CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD)
2549 ? FloatingPointHelper::kVFPRegisters
2550 : FloatingPointHelper::kCoreRegisters;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002551
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002552 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2553 right,
2554 destination,
2555 d7,
2556 r2,
2557 r3,
2558 heap_number_map,
2559 scratch1,
2560 scratch2,
2561 s0,
2562 &transition);
2563 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2564 left,
2565 destination,
2566 d6,
2567 r4,
2568 r5,
2569 heap_number_map,
2570 scratch1,
2571 scratch2,
2572 s0,
2573 &transition);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002574
2575 if (destination == FloatingPointHelper::kVFPRegisters) {
2576 CpuFeatures::Scope scope(VFP3);
2577 Label return_heap_number;
2578 switch (op_) {
2579 case Token::ADD:
2580 __ vadd(d5, d6, d7);
2581 break;
2582 case Token::SUB:
2583 __ vsub(d5, d6, d7);
2584 break;
2585 case Token::MUL:
2586 __ vmul(d5, d6, d7);
2587 break;
2588 case Token::DIV:
2589 __ vdiv(d5, d6, d7);
2590 break;
2591 default:
2592 UNREACHABLE();
2593 }
2594
2595 if (op_ != Token::DIV) {
2596 // These operations produce an integer result.
2597 // Try to return a smi if we can.
2598 // Otherwise return a heap number if allowed, or jump to type
2599 // transition.
2600
2601 __ EmitVFPTruncate(kRoundToZero,
2602 single_scratch,
2603 d5,
2604 scratch1,
2605 scratch2);
2606
Ben Murdoch257744e2011-11-30 15:57:28 +00002607 if (result_type_ <= BinaryOpIC::INT32) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002608 // If the ne condition is set, result does
2609 // not fit in a 32-bit integer.
2610 __ b(ne, &transition);
2611 }
2612
2613 // Check if the result fits in a smi.
2614 __ vmov(scratch1, single_scratch);
2615 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2616 // If not try to return a heap number.
2617 __ b(mi, &return_heap_number);
Steve Block44f0eee2011-05-26 01:26:41 +01002618 // Check for minus zero. Return heap number for minus zero.
2619 Label not_zero;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002620 __ cmp(scratch1, Operand::Zero());
Steve Block44f0eee2011-05-26 01:26:41 +01002621 __ b(ne, &not_zero);
2622 __ vmov(scratch2, d5.high());
2623 __ tst(scratch2, Operand(HeapNumber::kSignMask));
2624 __ b(ne, &return_heap_number);
2625 __ bind(&not_zero);
2626
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002627 // Tag the result and return.
2628 __ SmiTag(r0, scratch1);
2629 __ Ret();
Steve Block44f0eee2011-05-26 01:26:41 +01002630 } else {
2631 // DIV just falls through to allocating a heap number.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002632 }
2633
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002634 __ bind(&return_heap_number);
2635 // Return a heap number, or fall through to type transition or runtime
2636 // call if we can't.
2637 if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
2638 : BinaryOpIC::INT32)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002639 // We are using vfp registers so r5 is available.
2640 heap_number_result = r5;
2641 GenerateHeapResultAllocation(masm,
2642 heap_number_result,
2643 heap_number_map,
2644 scratch1,
2645 scratch2,
2646 &call_runtime);
2647 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2648 __ vstr(d5, r0, HeapNumber::kValueOffset);
2649 __ mov(r0, heap_number_result);
2650 __ Ret();
2651 }
2652
2653 // A DIV operation expecting an integer result falls through
2654 // to type transition.
2655
2656 } else {
2657 // We preserved r0 and r1 to be able to call runtime.
2658 // Save the left value on the stack.
2659 __ Push(r5, r4);
2660
Steve Block053d10c2011-06-13 19:13:29 +01002661 Label pop_and_call_runtime;
2662
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002663 // Allocate a heap number to store the result.
2664 heap_number_result = r5;
2665 GenerateHeapResultAllocation(masm,
2666 heap_number_result,
2667 heap_number_map,
2668 scratch1,
2669 scratch2,
Steve Block053d10c2011-06-13 19:13:29 +01002670 &pop_and_call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002671
2672 // Load the left value from the value saved on the stack.
2673 __ Pop(r1, r0);
2674
2675 // Call the C function to handle the double operation.
2676 FloatingPointHelper::CallCCodeForDoubleOperation(
2677 masm, op_, heap_number_result, scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002678 if (FLAG_debug_code) {
2679 __ stop("Unreachable code.");
2680 }
Steve Block053d10c2011-06-13 19:13:29 +01002681
2682 __ bind(&pop_and_call_runtime);
2683 __ Drop(2);
2684 __ b(&call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002685 }
2686
2687 break;
2688 }
2689
2690 case Token::BIT_OR:
2691 case Token::BIT_XOR:
2692 case Token::BIT_AND:
2693 case Token::SAR:
2694 case Token::SHR:
2695 case Token::SHL: {
2696 Label return_heap_number;
2697 Register scratch3 = r5;
2698 // Convert operands to 32-bit integers. Right in r2 and left in r3. The
2699 // registers r0 and r1 (right and left) are preserved for the runtime
2700 // call.
2701 FloatingPointHelper::LoadNumberAsInt32(masm,
2702 left,
2703 r3,
2704 heap_number_map,
2705 scratch1,
2706 scratch2,
2707 scratch3,
2708 d0,
2709 &transition);
2710 FloatingPointHelper::LoadNumberAsInt32(masm,
2711 right,
2712 r2,
2713 heap_number_map,
2714 scratch1,
2715 scratch2,
2716 scratch3,
2717 d0,
2718 &transition);
2719
2720 // The ECMA-262 standard specifies that, for shift operations, only the
2721 // 5 least significant bits of the shift value should be used.
2722 switch (op_) {
2723 case Token::BIT_OR:
2724 __ orr(r2, r3, Operand(r2));
2725 break;
2726 case Token::BIT_XOR:
2727 __ eor(r2, r3, Operand(r2));
2728 break;
2729 case Token::BIT_AND:
2730 __ and_(r2, r3, Operand(r2));
2731 break;
2732 case Token::SAR:
2733 __ and_(r2, r2, Operand(0x1f));
2734 __ mov(r2, Operand(r3, ASR, r2));
2735 break;
2736 case Token::SHR:
2737 __ and_(r2, r2, Operand(0x1f));
2738 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2739 // SHR is special because it is required to produce a positive answer.
2740 // We only get a negative result if the shift value (r2) is 0.
2741 // This result cannot be respresented as a signed 32-bit integer, try
2742 // to return a heap number if we can.
2743 // The non vfp3 code does not support this special case, so jump to
2744 // runtime if we don't support it.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002745 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002746 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2747 ? &transition
2748 : &return_heap_number);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002749 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00002750 __ b(mi, (result_type_ <= BinaryOpIC::INT32)
2751 ? &transition
2752 : &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002753 }
2754 break;
2755 case Token::SHL:
2756 __ and_(r2, r2, Operand(0x1f));
2757 __ mov(r2, Operand(r3, LSL, r2));
2758 break;
2759 default:
2760 UNREACHABLE();
2761 }
2762
2763 // Check if the result fits in a smi.
2764 __ add(scratch1, r2, Operand(0x40000000), SetCC);
2765 // If not try to return a heap number. (We know the result is an int32.)
2766 __ b(mi, &return_heap_number);
2767 // Tag the result and return.
2768 __ SmiTag(r0, r2);
2769 __ Ret();
2770
2771 __ bind(&return_heap_number);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002772 heap_number_result = r5;
2773 GenerateHeapResultAllocation(masm,
2774 heap_number_result,
2775 heap_number_map,
2776 scratch1,
2777 scratch2,
2778 &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002779
Ben Murdoch8b112d22011-06-08 16:22:53 +01002780 if (CpuFeatures::IsSupported(VFP3)) {
2781 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002782 if (op_ != Token::SHR) {
2783 // Convert the result to a floating point value.
2784 __ vmov(double_scratch.low(), r2);
2785 __ vcvt_f64_s32(double_scratch, double_scratch.low());
2786 } else {
2787 // The result must be interpreted as an unsigned 32-bit integer.
2788 __ vmov(double_scratch.low(), r2);
2789 __ vcvt_f64_u32(double_scratch, double_scratch.low());
2790 }
2791
2792 // Store the result.
2793 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2794 __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
2795 __ mov(r0, heap_number_result);
2796 __ Ret();
2797 } else {
2798 // Tail call that writes the int32 in r2 to the heap number in r0, using
2799 // r3 as scratch. r0 is preserved and returned.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002800 __ mov(r0, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002801 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2802 __ TailCallStub(&stub);
2803 }
2804
2805 break;
2806 }
2807
2808 default:
2809 UNREACHABLE();
2810 }
2811
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002812 // We never expect DIV to yield an integer result, so we always generate
2813 // type transition code for DIV operations expecting an integer result: the
2814 // code will fall through to this type transition.
2815 if (transition.is_linked() ||
2816 ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002817 __ bind(&transition);
2818 GenerateTypeTransition(masm);
2819 }
2820
2821 __ bind(&call_runtime);
2822 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01002823}
2824
2825
Ben Murdoch257744e2011-11-30 15:57:28 +00002826void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01002827 Label call_runtime;
2828
2829 if (op_ == Token::ADD) {
2830 // Handle string addition here, because it is the only operation
2831 // that does not do a ToNumber conversion on the operands.
2832 GenerateAddStrings(masm);
2833 }
2834
2835 // Convert oddball arguments to numbers.
2836 Label check, done;
2837 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
2838 __ b(ne, &check);
2839 if (Token::IsBitOp(op_)) {
2840 __ mov(r1, Operand(Smi::FromInt(0)));
2841 } else {
2842 __ LoadRoot(r1, Heap::kNanValueRootIndex);
2843 }
2844 __ jmp(&done);
2845 __ bind(&check);
2846 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
2847 __ b(ne, &done);
2848 if (Token::IsBitOp(op_)) {
2849 __ mov(r0, Operand(Smi::FromInt(0)));
2850 } else {
2851 __ LoadRoot(r0, Heap::kNanValueRootIndex);
2852 }
2853 __ bind(&done);
2854
2855 GenerateHeapNumberStub(masm);
2856}
2857
2858
Ben Murdoch257744e2011-11-30 15:57:28 +00002859void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01002860 Label call_runtime;
2861 GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01002862
2863 __ bind(&call_runtime);
2864 GenerateCallRuntime(masm);
2865}
2866
2867
Ben Murdoch257744e2011-11-30 15:57:28 +00002868void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002869 Label call_runtime, call_string_add_or_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01002870
Ben Murdoch8b112d22011-06-08 16:22:53 +01002871 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002872
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002873 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01002874
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002875 __ bind(&call_string_add_or_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01002876 if (op_ == Token::ADD) {
2877 GenerateAddStrings(masm);
2878 }
2879
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002880 __ bind(&call_runtime);
2881 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01002882}
2883
2884
Ben Murdoch257744e2011-11-30 15:57:28 +00002885void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002886 ASSERT(op_ == Token::ADD);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002887 Label left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01002888
2889 Register left = r1;
2890 Register right = r0;
Steve Block1e0659c2011-05-24 12:43:12 +01002891
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002892 // Check if left argument is a string.
2893 __ JumpIfSmi(left, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01002894 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002895 __ b(ge, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01002896
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002897 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
2898 GenerateRegisterArgsPush(masm);
2899 __ TailCallStub(&string_add_left_stub);
2900
2901 // Left operand is not a string, test right.
2902 __ bind(&left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01002903 __ JumpIfSmi(right, &call_runtime);
2904 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2905 __ b(ge, &call_runtime);
2906
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002907 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
Steve Block1e0659c2011-05-24 12:43:12 +01002908 GenerateRegisterArgsPush(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002909 __ TailCallStub(&string_add_right_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01002910
2911 // At least one argument is not a string.
2912 __ bind(&call_runtime);
2913}
2914
2915
Ben Murdoch257744e2011-11-30 15:57:28 +00002916void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002917 GenerateRegisterArgsPush(masm);
2918 switch (op_) {
2919 case Token::ADD:
Ben Murdoch257744e2011-11-30 15:57:28 +00002920 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002921 break;
2922 case Token::SUB:
Ben Murdoch257744e2011-11-30 15:57:28 +00002923 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002924 break;
2925 case Token::MUL:
Ben Murdoch257744e2011-11-30 15:57:28 +00002926 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002927 break;
2928 case Token::DIV:
Ben Murdoch257744e2011-11-30 15:57:28 +00002929 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002930 break;
2931 case Token::MOD:
Ben Murdoch257744e2011-11-30 15:57:28 +00002932 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002933 break;
2934 case Token::BIT_OR:
Ben Murdoch257744e2011-11-30 15:57:28 +00002935 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002936 break;
2937 case Token::BIT_AND:
Ben Murdoch257744e2011-11-30 15:57:28 +00002938 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002939 break;
2940 case Token::BIT_XOR:
Ben Murdoch257744e2011-11-30 15:57:28 +00002941 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002942 break;
2943 case Token::SAR:
Ben Murdoch257744e2011-11-30 15:57:28 +00002944 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002945 break;
2946 case Token::SHR:
Ben Murdoch257744e2011-11-30 15:57:28 +00002947 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002948 break;
2949 case Token::SHL:
Ben Murdoch257744e2011-11-30 15:57:28 +00002950 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01002951 break;
2952 default:
2953 UNREACHABLE();
2954 }
2955}
2956
2957
Ben Murdoch257744e2011-11-30 15:57:28 +00002958void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
2959 Register result,
2960 Register heap_number_map,
2961 Register scratch1,
2962 Register scratch2,
2963 Label* gc_required) {
Steve Block1e0659c2011-05-24 12:43:12 +01002964 // Code below will scratch result if allocation fails. To keep both arguments
2965 // intact for the runtime call result cannot be one of these.
2966 ASSERT(!result.is(r0) && !result.is(r1));
2967
2968 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
2969 Label skip_allocation, allocated;
2970 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
2971 // If the overwritable operand is already an object, we skip the
2972 // allocation of a heap number.
2973 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
2974 // Allocate a heap number for the result.
2975 __ AllocateHeapNumber(
2976 result, scratch1, scratch2, heap_number_map, gc_required);
2977 __ b(&allocated);
2978 __ bind(&skip_allocation);
2979 // Use object holding the overwritable operand for result.
2980 __ mov(result, Operand(overwritable_operand));
2981 __ bind(&allocated);
2982 } else {
2983 ASSERT(mode_ == NO_OVERWRITE);
2984 __ AllocateHeapNumber(
2985 result, scratch1, scratch2, heap_number_map, gc_required);
2986 }
2987}
2988
2989
Ben Murdoch257744e2011-11-30 15:57:28 +00002990void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01002991 __ Push(r1, r0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002992}
2993
2994
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002995void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002996 // Untagged case: double input in d2, double result goes
2997 // into d2.
2998 // Tagged case: tagged input on top of stack and in r0,
2999 // tagged result (heap number) goes into r0.
3000
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003001 Label input_not_smi;
3002 Label loaded;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003003 Label calculate;
3004 Label invalid_cache;
3005 const Register scratch0 = r9;
3006 const Register scratch1 = r7;
3007 const Register cache_entry = r0;
3008 const bool tagged = (argument_type_ == TAGGED);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003009
Ben Murdoch8b112d22011-06-08 16:22:53 +01003010 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003011 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003012 if (tagged) {
3013 // Argument is a number and is on stack and in r0.
3014 // Load argument and check if it is a smi.
3015 __ JumpIfNotSmi(r0, &input_not_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003016
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003017 // Input is a smi. Convert to double and load the low and high words
3018 // of the double into r2, r3.
3019 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
3020 __ b(&loaded);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003021
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003022 __ bind(&input_not_smi);
3023 // Check if input is a HeapNumber.
3024 __ CheckMap(r0,
3025 r1,
3026 Heap::kHeapNumberMapRootIndex,
3027 &calculate,
Ben Murdoch257744e2011-11-30 15:57:28 +00003028 DONT_DO_SMI_CHECK);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003029 // Input is a HeapNumber. Load it to a double register and store the
3030 // low and high words into r2, r3.
3031 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
3032 __ vmov(r2, r3, d0);
3033 } else {
3034 // Input is untagged double in d2. Output goes to d2.
3035 __ vmov(r2, r3, d2);
3036 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003037 __ bind(&loaded);
3038 // r2 = low 32 bits of double value
3039 // r3 = high 32 bits of double value
3040 // Compute hash (the shifts are arithmetic):
3041 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3042 __ eor(r1, r2, Operand(r3));
3043 __ eor(r1, r1, Operand(r1, ASR, 16));
3044 __ eor(r1, r1, Operand(r1, ASR, 8));
Steve Block44f0eee2011-05-26 01:26:41 +01003045 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3046 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003047
3048 // r2 = low 32 bits of double value.
3049 // r3 = high 32 bits of double value.
3050 // r1 = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01003051 Isolate* isolate = masm->isolate();
3052 ExternalReference cache_array =
3053 ExternalReference::transcendental_cache_array_address(isolate);
3054 __ mov(cache_entry, Operand(cache_array));
3055 // cache_entry points to cache array.
3056 int cache_array_index
3057 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
3058 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003059 // r0 points to the cache for the type type_.
3060 // If NULL, the cache hasn't been initialized yet, so go through runtime.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003061 __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
3062 __ b(eq, &invalid_cache);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003063
3064#ifdef DEBUG
3065 // Check that the layout of cache elements match expectations.
Steve Block44f0eee2011-05-26 01:26:41 +01003066 { TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003067 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3068 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3069 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3070 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3071 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3072 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
3073 CHECK_EQ(0, elem_in0 - elem_start);
3074 CHECK_EQ(kIntSize, elem_in1 - elem_start);
3075 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3076 }
3077#endif
3078
3079 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
3080 __ add(r1, r1, Operand(r1, LSL, 1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003081 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003082 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003083 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003084 __ cmp(r2, r4);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003085 __ b(ne, &calculate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003086 __ cmp(r3, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003087 __ b(ne, &calculate);
3088 // Cache hit. Load result, cleanup and return.
3089 if (tagged) {
3090 // Pop input value from stack and load result into r0.
3091 __ pop();
3092 __ mov(r0, Operand(r6));
3093 } else {
3094 // Load result into d2.
3095 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3096 }
3097 __ Ret();
Ben Murdoch8b112d22011-06-08 16:22:53 +01003098 } // if (CpuFeatures::IsSupported(VFP3))
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003099
3100 __ bind(&calculate);
3101 if (tagged) {
3102 __ bind(&invalid_cache);
Steve Block44f0eee2011-05-26 01:26:41 +01003103 ExternalReference runtime_function =
3104 ExternalReference(RuntimeFunction(), masm->isolate());
3105 __ TailCallExternalReference(runtime_function, 1, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003106 } else {
Ben Murdoch8b112d22011-06-08 16:22:53 +01003107 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003108 CpuFeatures::Scope scope(VFP3);
3109
3110 Label no_update;
3111 Label skip_cache;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003112
3113 // Call C function to calculate the result and update the cache.
3114 // Register r0 holds precalculated cache entry address; preserve
3115 // it on the stack and pop it into register cache_entry after the
3116 // call.
3117 __ push(cache_entry);
3118 GenerateCallCFunction(masm, scratch0);
3119 __ GetCFunctionDoubleResult(d2);
3120
3121 // Try to update the cache. If we cannot allocate a
3122 // heap number, we return the result without updating.
3123 __ pop(cache_entry);
3124 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3125 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
3126 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3127 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
3128 __ Ret();
3129
3130 __ bind(&invalid_cache);
3131 // The cache is invalid. Call runtime which will recreate the
3132 // cache.
3133 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3134 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
3135 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3136 __ EnterInternalFrame();
3137 __ push(r0);
3138 __ CallRuntime(RuntimeFunction(), 1);
3139 __ LeaveInternalFrame();
3140 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3141 __ Ret();
3142
3143 __ bind(&skip_cache);
3144 // Call C function to calculate the result and answer directly
3145 // without updating the cache.
3146 GenerateCallCFunction(masm, scratch0);
3147 __ GetCFunctionDoubleResult(d2);
3148 __ bind(&no_update);
3149
3150 // We return the value in d2 without adding it to the cache, but
3151 // we cause a scavenging GC so that future allocations will succeed.
3152 __ EnterInternalFrame();
3153
3154 // Allocate an aligned object larger than a HeapNumber.
3155 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3156 __ mov(scratch0, Operand(4 * kPointerSize));
3157 __ push(scratch0);
3158 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3159 __ LeaveInternalFrame();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003160 __ Ret();
3161 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003162}
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003163
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003164
3165void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3166 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +01003167 Isolate* isolate = masm->isolate();
3168
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003169 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00003170 __ PrepareCallCFunction(0, 1, scratch);
3171 if (masm->use_eabi_hardfloat()) {
3172 __ vmov(d0, d2);
3173 } else {
3174 __ vmov(r0, r1, d2);
3175 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003176 switch (type_) {
3177 case TranscendentalCache::SIN:
Ben Murdoch257744e2011-11-30 15:57:28 +00003178 __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
3179 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003180 break;
3181 case TranscendentalCache::COS:
Ben Murdoch257744e2011-11-30 15:57:28 +00003182 __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
3183 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003184 break;
3185 case TranscendentalCache::LOG:
Ben Murdoch257744e2011-11-30 15:57:28 +00003186 __ CallCFunction(ExternalReference::math_log_double_function(isolate),
3187 0, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003188 break;
3189 default:
3190 UNIMPLEMENTED();
3191 break;
3192 }
3193 __ pop(lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003194}
3195
3196
3197Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3198 switch (type_) {
3199 // Add more cases when necessary.
3200 case TranscendentalCache::SIN: return Runtime::kMath_sin;
3201 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003202 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003203 default:
3204 UNIMPLEMENTED();
3205 return Runtime::kAbort;
3206 }
3207}
3208
3209
3210void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01003211 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003212}
3213
3214
Steve Block44f0eee2011-05-26 01:26:41 +01003215void MathPowStub::Generate(MacroAssembler* masm) {
3216 Label call_runtime;
3217
Ben Murdoch8b112d22011-06-08 16:22:53 +01003218 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block44f0eee2011-05-26 01:26:41 +01003219 CpuFeatures::Scope scope(VFP3);
3220
3221 Label base_not_smi;
3222 Label exponent_not_smi;
3223 Label convert_exponent;
3224
3225 const Register base = r0;
3226 const Register exponent = r1;
3227 const Register heapnumbermap = r5;
3228 const Register heapnumber = r6;
3229 const DoubleRegister double_base = d0;
3230 const DoubleRegister double_exponent = d1;
3231 const DoubleRegister double_result = d2;
3232 const SwVfpRegister single_scratch = s0;
3233 const Register scratch = r9;
3234 const Register scratch2 = r7;
3235
3236 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
3237 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
3238 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
3239
3240 // Convert base to double value and store it in d0.
3241 __ JumpIfNotSmi(base, &base_not_smi);
3242 // Base is a Smi. Untag and convert it.
3243 __ SmiUntag(base);
3244 __ vmov(single_scratch, base);
3245 __ vcvt_f64_s32(double_base, single_scratch);
3246 __ b(&convert_exponent);
3247
3248 __ bind(&base_not_smi);
3249 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3250 __ cmp(scratch, heapnumbermap);
3251 __ b(ne, &call_runtime);
3252 // Base is a heapnumber. Load it into double register.
3253 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3254
3255 __ bind(&convert_exponent);
3256 __ JumpIfNotSmi(exponent, &exponent_not_smi);
3257 __ SmiUntag(exponent);
3258
3259 // The base is in a double register and the exponent is
3260 // an untagged smi. Allocate a heap number and call a
3261 // C function for integer exponents. The register containing
3262 // the heap number is callee-saved.
3263 __ AllocateHeapNumber(heapnumber,
3264 scratch,
3265 scratch2,
3266 heapnumbermap,
3267 &call_runtime);
3268 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00003269 __ PrepareCallCFunction(1, 1, scratch);
3270 __ SetCallCDoubleArguments(double_base, exponent);
Steve Block44f0eee2011-05-26 01:26:41 +01003271 __ CallCFunction(
Ben Murdoch257744e2011-11-30 15:57:28 +00003272 ExternalReference::power_double_int_function(masm->isolate()),
3273 1, 1);
Steve Block44f0eee2011-05-26 01:26:41 +01003274 __ pop(lr);
3275 __ GetCFunctionDoubleResult(double_result);
3276 __ vstr(double_result,
3277 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3278 __ mov(r0, heapnumber);
3279 __ Ret(2 * kPointerSize);
3280
3281 __ bind(&exponent_not_smi);
3282 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3283 __ cmp(scratch, heapnumbermap);
3284 __ b(ne, &call_runtime);
3285 // Exponent is a heapnumber. Load it into double register.
3286 __ vldr(double_exponent,
3287 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3288
3289 // The base and the exponent are in double registers.
3290 // Allocate a heap number and call a C function for
3291 // double exponents. The register containing
3292 // the heap number is callee-saved.
3293 __ AllocateHeapNumber(heapnumber,
3294 scratch,
3295 scratch2,
3296 heapnumbermap,
3297 &call_runtime);
3298 __ push(lr);
Ben Murdoch257744e2011-11-30 15:57:28 +00003299 __ PrepareCallCFunction(0, 2, scratch);
3300 __ SetCallCDoubleArguments(double_base, double_exponent);
Steve Block44f0eee2011-05-26 01:26:41 +01003301 __ CallCFunction(
Ben Murdoch257744e2011-11-30 15:57:28 +00003302 ExternalReference::power_double_double_function(masm->isolate()),
3303 0, 2);
Steve Block44f0eee2011-05-26 01:26:41 +01003304 __ pop(lr);
3305 __ GetCFunctionDoubleResult(double_result);
3306 __ vstr(double_result,
3307 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3308 __ mov(r0, heapnumber);
3309 __ Ret(2 * kPointerSize);
3310 }
3311
3312 __ bind(&call_runtime);
3313 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3314}
3315
3316
3317bool CEntryStub::NeedsImmovableCode() {
3318 return true;
3319}
3320
3321
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003322void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003323 __ Throw(r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003324}
3325
3326
3327void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
3328 UncatchableExceptionType type) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003329 __ ThrowUncatchable(type, r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003330}
3331
3332
3333void CEntryStub::GenerateCore(MacroAssembler* masm,
3334 Label* throw_normal_exception,
3335 Label* throw_termination_exception,
3336 Label* throw_out_of_memory_exception,
3337 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01003338 bool always_allocate) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003339 // r0: result parameter for PerformGC, if any
3340 // r4: number of arguments including receiver (C callee-saved)
3341 // r5: pointer to builtin function (C callee-saved)
3342 // r6: pointer to the first argument (C callee-saved)
Steve Block44f0eee2011-05-26 01:26:41 +01003343 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003344
3345 if (do_gc) {
3346 // Passing r0.
Ben Murdoch257744e2011-11-30 15:57:28 +00003347 __ PrepareCallCFunction(1, 0, r1);
3348 __ CallCFunction(ExternalReference::perform_gc_function(isolate),
3349 1, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003350 }
3351
3352 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01003353 ExternalReference::heap_always_allocate_scope_depth(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003354 if (always_allocate) {
3355 __ mov(r0, Operand(scope_depth));
3356 __ ldr(r1, MemOperand(r0));
3357 __ add(r1, r1, Operand(1));
3358 __ str(r1, MemOperand(r0));
3359 }
3360
3361 // Call C built-in.
3362 // r0 = argc, r1 = argv
3363 __ mov(r0, Operand(r4));
3364 __ mov(r1, Operand(r6));
3365
Steve Block1e0659c2011-05-24 12:43:12 +01003366#if defined(V8_HOST_ARCH_ARM)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003367 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
3368 int frame_alignment_mask = frame_alignment - 1;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003369 if (FLAG_debug_code) {
3370 if (frame_alignment > kPointerSize) {
3371 Label alignment_as_expected;
3372 ASSERT(IsPowerOf2(frame_alignment));
Steve Block1e0659c2011-05-24 12:43:12 +01003373 __ tst(sp, Operand(frame_alignment_mask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003374 __ b(eq, &alignment_as_expected);
3375 // Don't use Check here, as it will call Runtime_Abort re-entering here.
3376 __ stop("Unexpected alignment");
3377 __ bind(&alignment_as_expected);
3378 }
3379 }
3380#endif
3381
Steve Block44f0eee2011-05-26 01:26:41 +01003382 __ mov(r2, Operand(ExternalReference::isolate_address()));
3383
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003384 // To let the GC traverse the return address of the exit frames, we need to
3385 // know where the return address is. The CEntryStub is unmovable, so
3386 // we can store the address on the stack to be able to find it again and
3387 // we never have to restore it, because it will not change.
Steve Block1e0659c2011-05-24 12:43:12 +01003388 // Compute the return address in lr to return to after the jump below. Pc is
3389 // already at '+ 8' from the current instruction but return is after three
3390 // instructions so add another 4 to pc to get the return address.
3391 masm->add(lr, pc, Operand(4));
3392 __ str(lr, MemOperand(sp, 0));
3393 masm->Jump(r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003394
3395 if (always_allocate) {
3396 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
3397 // though (contain the result).
3398 __ mov(r2, Operand(scope_depth));
3399 __ ldr(r3, MemOperand(r2));
3400 __ sub(r3, r3, Operand(1));
3401 __ str(r3, MemOperand(r2));
3402 }
3403
3404 // check for failure result
3405 Label failure_returned;
3406 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3407 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
3408 __ add(r2, r0, Operand(1));
3409 __ tst(r2, Operand(kFailureTagMask));
3410 __ b(eq, &failure_returned);
3411
3412 // Exit C frame and return.
3413 // r0:r1: result
3414 // sp: stack pointer
3415 // fp: frame pointer
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003416 // Callee-saved register r4 still holds argc.
3417 __ LeaveExitFrame(save_doubles_, r4);
3418 __ mov(pc, lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003419
3420 // check if we should retry or throw exception
3421 Label retry;
3422 __ bind(&failure_returned);
3423 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3424 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
3425 __ b(eq, &retry);
3426
3427 // Special handling of out of memory exceptions.
3428 Failure* out_of_memory = Failure::OutOfMemoryException();
3429 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3430 __ b(eq, throw_out_of_memory_exception);
3431
3432 // Retrieve the pending exception and clear the variable.
Steve Block44f0eee2011-05-26 01:26:41 +01003433 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003434 __ ldr(r3, MemOperand(ip));
Steve Block44f0eee2011-05-26 01:26:41 +01003435 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
3436 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003437 __ ldr(r0, MemOperand(ip));
3438 __ str(r3, MemOperand(ip));
3439
3440 // Special handling of termination exceptions which are uncatchable
3441 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003442 __ cmp(r0, Operand(isolate->factory()->termination_exception()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003443 __ b(eq, throw_termination_exception);
3444
3445 // Handle normal exception.
3446 __ jmp(throw_normal_exception);
3447
3448 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
3449}
3450
3451
3452void CEntryStub::Generate(MacroAssembler* masm) {
3453 // Called from JavaScript; parameters are on stack as if calling JS function
3454 // r0: number of arguments including receiver
3455 // r1: pointer to builtin function
3456 // fp: frame pointer (restored after C call)
3457 // sp: stack pointer (restored as callee's sp after C call)
3458 // cp: current context (C callee-saved)
3459
3460 // Result returned in r0 or r0+r1 by default.
3461
3462 // NOTE: Invocations of builtins may return failure objects
3463 // instead of a proper result. The builtin entry handles
3464 // this by performing a garbage collection and retrying the
3465 // builtin once.
3466
Steve Block1e0659c2011-05-24 12:43:12 +01003467 // Compute the argv pointer in a callee-saved register.
3468 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
3469 __ sub(r6, r6, Operand(kPointerSize));
3470
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003471 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003472 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003473
Steve Block1e0659c2011-05-24 12:43:12 +01003474 // Setup argc and the builtin function in callee-saved registers.
3475 __ mov(r4, Operand(r0));
3476 __ mov(r5, Operand(r1));
3477
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003478 // r4: number of arguments (C callee-saved)
3479 // r5: pointer to builtin function (C callee-saved)
3480 // r6: pointer to first argument (C callee-saved)
3481
3482 Label throw_normal_exception;
3483 Label throw_termination_exception;
3484 Label throw_out_of_memory_exception;
3485
3486 // Call into the runtime system.
3487 GenerateCore(masm,
3488 &throw_normal_exception,
3489 &throw_termination_exception,
3490 &throw_out_of_memory_exception,
3491 false,
Steve Block1e0659c2011-05-24 12:43:12 +01003492 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003493
3494 // Do space-specific GC and retry runtime call.
3495 GenerateCore(masm,
3496 &throw_normal_exception,
3497 &throw_termination_exception,
3498 &throw_out_of_memory_exception,
3499 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003500 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003501
3502 // Do full GC and retry runtime call one final time.
3503 Failure* failure = Failure::InternalError();
3504 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
3505 GenerateCore(masm,
3506 &throw_normal_exception,
3507 &throw_termination_exception,
3508 &throw_out_of_memory_exception,
3509 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003510 true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003511
3512 __ bind(&throw_out_of_memory_exception);
3513 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
3514
3515 __ bind(&throw_termination_exception);
3516 GenerateThrowUncatchable(masm, TERMINATION);
3517
3518 __ bind(&throw_normal_exception);
3519 GenerateThrowTOS(masm);
3520}
3521
3522
3523void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
3524 // r0: code entry
3525 // r1: function
3526 // r2: receiver
3527 // r3: argc
3528 // [sp+0]: argv
3529
3530 Label invoke, exit;
3531
3532 // Called from C, so do not pop argc and args on exit (preserve sp)
3533 // No need to save register-passed args
3534 // Save callee-saved registers (incl. cp and fp), sp, and lr
3535 __ stm(db_w, sp, kCalleeSaved | lr.bit());
3536
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003537 if (CpuFeatures::IsSupported(VFP3)) {
3538 CpuFeatures::Scope scope(VFP3);
3539 // Save callee-saved vfp registers.
3540 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003541 // Set up the reserved register for 0.0.
3542 __ vmov(kDoubleRegZero, 0.0);
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003543 }
3544
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003545 // Get address of argv, see stm above.
3546 // r0: code entry
3547 // r1: function
3548 // r2: receiver
3549 // r3: argc
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003550
3551 // Setup argv in r4.
3552 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
3553 if (CpuFeatures::IsSupported(VFP3)) {
3554 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
3555 }
3556 __ ldr(r4, MemOperand(sp, offset_to_argv));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003557
3558 // Push a frame with special values setup to mark it as an entry frame.
3559 // r0: code entry
3560 // r1: function
3561 // r2: receiver
3562 // r3: argc
3563 // r4: argv
Steve Block44f0eee2011-05-26 01:26:41 +01003564 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003565 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
3566 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
3567 __ mov(r7, Operand(Smi::FromInt(marker)));
3568 __ mov(r6, Operand(Smi::FromInt(marker)));
Steve Block44f0eee2011-05-26 01:26:41 +01003569 __ mov(r5,
3570 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003571 __ ldr(r5, MemOperand(r5));
3572 __ Push(r8, r7, r6, r5);
3573
3574 // Setup frame pointer for the frame to be pushed.
3575 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3576
Ben Murdochb0fe1622011-05-05 13:52:32 +01003577 // If this is the outermost JS call, set js_entry_sp value.
Steve Block053d10c2011-06-13 19:13:29 +01003578 Label non_outermost_js;
Steve Block44f0eee2011-05-26 01:26:41 +01003579 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003580 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3581 __ ldr(r6, MemOperand(r5));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00003582 __ cmp(r6, Operand::Zero());
Steve Block053d10c2011-06-13 19:13:29 +01003583 __ b(ne, &non_outermost_js);
3584 __ str(fp, MemOperand(r5));
3585 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3586 Label cont;
3587 __ b(&cont);
3588 __ bind(&non_outermost_js);
3589 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
3590 __ bind(&cont);
3591 __ push(ip);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003592
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003593 // Call a faked try-block that does the invoke.
3594 __ bl(&invoke);
3595
3596 // Caught exception: Store result (exception) in the pending
3597 // exception field in the JSEnv and return a failure sentinel.
3598 // Coming in here the fp will be invalid because the PushTryHandler below
3599 // sets it to 0 to signal the existence of the JSEntry frame.
Steve Block44f0eee2011-05-26 01:26:41 +01003600 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
3601 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003602 __ str(r0, MemOperand(ip));
3603 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
3604 __ b(&exit);
3605
3606 // Invoke: Link this frame into the handler chain.
3607 __ bind(&invoke);
3608 // Must preserve r0-r4, r5-r7 are available.
3609 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
3610 // If an exception not caught by another handler occurs, this handler
3611 // returns control to the code after the bl(&invoke) above, which
3612 // restores all kCalleeSaved registers (including cp and fp) to their
3613 // saved values before returning a failure to C.
3614
3615 // Clear any pending exceptions.
Steve Block44f0eee2011-05-26 01:26:41 +01003616 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003617 __ ldr(r5, MemOperand(ip));
Steve Block44f0eee2011-05-26 01:26:41 +01003618 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
3619 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003620 __ str(r5, MemOperand(ip));
3621
3622 // Invoke the function by calling through JS entry trampoline builtin.
3623 // Notice that we cannot store a reference to the trampoline code directly in
3624 // this stub, because runtime stubs are not traversed when doing GC.
3625
3626 // Expected registers by Builtins::JSEntryTrampoline
3627 // r0: code entry
3628 // r1: function
3629 // r2: receiver
3630 // r3: argc
3631 // r4: argv
3632 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01003633 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
3634 isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003635 __ mov(ip, Operand(construct_entry));
3636 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01003637 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003638 __ mov(ip, Operand(entry));
3639 }
3640 __ ldr(ip, MemOperand(ip)); // deref address
3641
3642 // Branch and link to JSEntryTrampoline. We don't use the double underscore
3643 // macro for the add instruction because we don't want the coverage tool
3644 // inserting instructions here after we read the pc.
3645 __ mov(lr, Operand(pc));
3646 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
3647
Steve Block053d10c2011-06-13 19:13:29 +01003648 // Unlink this frame from the handler chain.
3649 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003650
3651 __ bind(&exit); // r0 holds result
Steve Block053d10c2011-06-13 19:13:29 +01003652 // Check if the current stack frame is marked as the outermost JS frame.
3653 Label non_outermost_js_2;
3654 __ pop(r5);
3655 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3656 __ b(ne, &non_outermost_js_2);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00003657 __ mov(r6, Operand::Zero());
Steve Block053d10c2011-06-13 19:13:29 +01003658 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3659 __ str(r6, MemOperand(r5));
3660 __ bind(&non_outermost_js_2);
Steve Block053d10c2011-06-13 19:13:29 +01003661
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003662 // Restore the top frame descriptors from the stack.
3663 __ pop(r3);
Steve Block44f0eee2011-05-26 01:26:41 +01003664 __ mov(ip,
3665 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003666 __ str(r3, MemOperand(ip));
3667
3668 // Reset the stack to the callee saved registers.
3669 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3670
3671 // Restore callee-saved registers and return.
3672#ifdef DEBUG
3673 if (FLAG_debug_code) {
3674 __ mov(lr, Operand(pc));
3675 }
3676#endif
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003677
3678 if (CpuFeatures::IsSupported(VFP3)) {
3679 CpuFeatures::Scope scope(VFP3);
3680 // Restore callee-saved vfp registers.
3681 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
3682 }
3683
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003684 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
3685}
3686
3687
Steve Block1e0659c2011-05-24 12:43:12 +01003688// Uses registers r0 to r4.
3689// Expected input (depending on whether args are in registers or on the stack):
3690// * object: r0 or at sp + 1 * kPointerSize.
3691// * function: r1 or at sp.
3692//
3693// An inlined call site may have been generated before calling this stub.
3694// In this case the offset to the inline site to patch is passed on the stack,
3695// in the safepoint slot for register r4.
3696// (See LCodeGen::DoInstanceOfKnownGlobal)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003697void InstanceofStub::Generate(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003698 // Call site inlining and patching implies arguments in registers.
3699 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
3700 // ReturnTrueFalse is only implemented for inlined call sites.
3701 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
3702
Ben Murdochb0fe1622011-05-05 13:52:32 +01003703 // Fixed register usage throughout the stub:
Steve Block9fac8402011-05-12 15:51:54 +01003704 const Register object = r0; // Object (lhs).
Steve Block1e0659c2011-05-24 12:43:12 +01003705 Register map = r3; // Map of the object.
Steve Block9fac8402011-05-12 15:51:54 +01003706 const Register function = r1; // Function (rhs).
Ben Murdochb0fe1622011-05-05 13:52:32 +01003707 const Register prototype = r4; // Prototype of the function.
Steve Block1e0659c2011-05-24 12:43:12 +01003708 const Register inline_site = r9;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003709 const Register scratch = r2;
Steve Block1e0659c2011-05-24 12:43:12 +01003710
3711 const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize;
3712
Ben Murdochb0fe1622011-05-05 13:52:32 +01003713 Label slow, loop, is_instance, is_not_instance, not_js_object;
Steve Block1e0659c2011-05-24 12:43:12 +01003714
Ben Murdoch086aeea2011-05-13 15:57:08 +01003715 if (!HasArgsInRegisters()) {
Steve Block9fac8402011-05-12 15:51:54 +01003716 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
3717 __ ldr(function, MemOperand(sp, 0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003718 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003719
Ben Murdochb0fe1622011-05-05 13:52:32 +01003720 // Check that the left hand is a JS object and load map.
Steve Block1e0659c2011-05-24 12:43:12 +01003721 __ JumpIfSmi(object, &not_js_object);
Steve Block9fac8402011-05-12 15:51:54 +01003722 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003723
Steve Block1e0659c2011-05-24 12:43:12 +01003724 // If there is a call site cache don't look in the global cache, but do the
3725 // real lookup and update the call site cache.
3726 if (!HasCallSiteInlineCheck()) {
3727 Label miss;
3728 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
3729 __ cmp(function, ip);
3730 __ b(ne, &miss);
3731 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
3732 __ cmp(map, ip);
3733 __ b(ne, &miss);
3734 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
3735 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003736
Steve Block1e0659c2011-05-24 12:43:12 +01003737 __ bind(&miss);
3738 }
3739
3740 // Get the prototype of the function.
Steve Block9fac8402011-05-12 15:51:54 +01003741 __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003742
3743 // Check that the function prototype is a JS object.
Steve Block1e0659c2011-05-24 12:43:12 +01003744 __ JumpIfSmi(prototype, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003745 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003746
Steve Block1e0659c2011-05-24 12:43:12 +01003747 // Update the global instanceof or call site inlined cache with the current
3748 // map and function. The cached answer will be set when it is known below.
3749 if (!HasCallSiteInlineCheck()) {
3750 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
3751 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
3752 } else {
3753 ASSERT(HasArgsInRegisters());
3754 // Patch the (relocated) inlined map check.
3755
3756 // The offset was stored in r4 safepoint slot.
3757 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003758 __ LoadFromSafepointRegisterSlot(scratch, r4);
Steve Block1e0659c2011-05-24 12:43:12 +01003759 __ sub(inline_site, lr, scratch);
3760 // Get the map location in scratch and patch it.
3761 __ GetRelocatedValueLocation(inline_site, scratch);
3762 __ str(map, MemOperand(scratch));
3763 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003764
3765 // Register mapping: r3 is object map and r4 is function prototype.
3766 // Get prototype of object into r2.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003767 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003768
Steve Block1e0659c2011-05-24 12:43:12 +01003769 // We don't need map any more. Use it as a scratch register.
3770 Register scratch2 = map;
3771 map = no_reg;
3772
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003773 // Loop through the prototype chain looking for the function prototype.
Steve Block1e0659c2011-05-24 12:43:12 +01003774 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003775 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003776 __ cmp(scratch, Operand(prototype));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003777 __ b(eq, &is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01003778 __ cmp(scratch, scratch2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003779 __ b(eq, &is_not_instance);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003780 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
3781 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003782 __ jmp(&loop);
3783
3784 __ bind(&is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01003785 if (!HasCallSiteInlineCheck()) {
3786 __ mov(r0, Operand(Smi::FromInt(0)));
3787 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
3788 } else {
3789 // Patch the call site to return true.
3790 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
3791 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
3792 // Get the boolean result location in scratch and patch it.
3793 __ GetRelocatedValueLocation(inline_site, scratch);
3794 __ str(r0, MemOperand(scratch));
3795
3796 if (!ReturnTrueFalseObject()) {
3797 __ mov(r0, Operand(Smi::FromInt(0)));
3798 }
3799 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01003800 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003801
3802 __ bind(&is_not_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01003803 if (!HasCallSiteInlineCheck()) {
3804 __ mov(r0, Operand(Smi::FromInt(1)));
3805 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
3806 } else {
3807 // Patch the call site to return false.
3808 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
3809 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
3810 // Get the boolean result location in scratch and patch it.
3811 __ GetRelocatedValueLocation(inline_site, scratch);
3812 __ str(r0, MemOperand(scratch));
3813
3814 if (!ReturnTrueFalseObject()) {
3815 __ mov(r0, Operand(Smi::FromInt(1)));
3816 }
3817 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01003818 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003819
3820 Label object_not_null, object_not_null_or_smi;
3821 __ bind(&not_js_object);
3822 // Before null, smi and string value checks, check that the rhs is a function
3823 // as for a non-function rhs an exception needs to be thrown.
Steve Block1e0659c2011-05-24 12:43:12 +01003824 __ JumpIfSmi(function, &slow);
3825 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003826 __ b(ne, &slow);
3827
3828 // Null is not instance of anything.
Ben Murdoch257744e2011-11-30 15:57:28 +00003829 __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003830 __ b(ne, &object_not_null);
3831 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01003832 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003833
3834 __ bind(&object_not_null);
3835 // Smi values are not instances of anything.
Steve Block1e0659c2011-05-24 12:43:12 +01003836 __ JumpIfNotSmi(object, &object_not_null_or_smi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003837 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01003838 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003839
3840 __ bind(&object_not_null_or_smi);
3841 // String values are not instances of anything.
3842 __ IsObjectJSStringType(object, scratch, &slow);
3843 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01003844 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003845
3846 // Slow-case. Tail call builtin.
Ben Murdoch086aeea2011-05-13 15:57:08 +01003847 __ bind(&slow);
Steve Block1e0659c2011-05-24 12:43:12 +01003848 if (!ReturnTrueFalseObject()) {
3849 if (HasArgsInRegisters()) {
3850 __ Push(r0, r1);
3851 }
Ben Murdoch257744e2011-11-30 15:57:28 +00003852 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003853 } else {
3854 __ EnterInternalFrame();
3855 __ Push(r0, r1);
Ben Murdoch257744e2011-11-30 15:57:28 +00003856 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
Steve Block1e0659c2011-05-24 12:43:12 +01003857 __ LeaveInternalFrame();
Ben Murdoch69a99ed2011-11-30 16:03:39 +00003858 __ cmp(r0, Operand::Zero());
Steve Block1e0659c2011-05-24 12:43:12 +01003859 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
3860 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
3861 __ Ret(HasArgsInRegisters() ? 0 : 2);
3862 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003863}
3864
3865
Steve Block1e0659c2011-05-24 12:43:12 +01003866Register InstanceofStub::left() { return r0; }
3867
3868
3869Register InstanceofStub::right() { return r1; }
3870
3871
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003872void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
3873 // The displacement is the offset of the last parameter (if any)
3874 // relative to the frame pointer.
3875 static const int kDisplacement =
3876 StandardFrameConstants::kCallerSPOffset - kPointerSize;
3877
3878 // Check that the key is a smi.
3879 Label slow;
Steve Block1e0659c2011-05-24 12:43:12 +01003880 __ JumpIfNotSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003881
3882 // Check if the calling frame is an arguments adaptor frame.
3883 Label adaptor;
3884 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3885 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
3886 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3887 __ b(eq, &adaptor);
3888
3889 // Check index against formal parameters count limit passed in
3890 // through register r0. Use unsigned comparison to get negative
3891 // check for free.
3892 __ cmp(r1, r0);
Ben Murdoch086aeea2011-05-13 15:57:08 +01003893 __ b(hs, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003894
3895 // Read the argument from the stack and return it.
3896 __ sub(r3, r0, r1);
3897 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
3898 __ ldr(r0, MemOperand(r3, kDisplacement));
3899 __ Jump(lr);
3900
3901 // Arguments adaptor case: Check index against actual arguments
3902 // limit found in the arguments adaptor frame. Use unsigned
3903 // comparison to get negative check for free.
3904 __ bind(&adaptor);
3905 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
3906 __ cmp(r1, r0);
3907 __ b(cs, &slow);
3908
3909 // Read the argument from the adaptor frame and return it.
3910 __ sub(r3, r0, r1);
3911 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
3912 __ ldr(r0, MemOperand(r3, kDisplacement));
3913 __ Jump(lr);
3914
3915 // Slow-case: Handle non-smi or out-of-bounds access to arguments
3916 // by calling the runtime system.
3917 __ bind(&slow);
3918 __ push(r1);
3919 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
3920}
3921
3922
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003923void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003924 // sp[0] : number of parameters
3925 // sp[4] : receiver displacement
3926 // sp[8] : function
3927
3928 // Check if the calling frame is an arguments adaptor frame.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003929 Label runtime;
3930 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3931 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
3932 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3933 __ b(ne, &runtime);
3934
3935 // Patch the arguments.length and the parameters pointer in the current frame.
3936 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
3937 __ str(r2, MemOperand(sp, 0 * kPointerSize));
3938 __ add(r3, r3, Operand(r2, LSL, 1));
3939 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
3940 __ str(r3, MemOperand(sp, 1 * kPointerSize));
3941
3942 __ bind(&runtime);
3943 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
3944}
3945
3946
3947void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
3948 // Stack layout:
3949 // sp[0] : number of parameters (tagged)
3950 // sp[4] : address of receiver argument
3951 // sp[8] : function
3952 // Registers used over whole function:
3953 // r6 : allocated object (tagged)
3954 // r9 : mapped parameter count (tagged)
3955
3956 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
3957 // r1 = parameter count (tagged)
3958
3959 // Check if the calling frame is an arguments adaptor frame.
3960 Label runtime;
3961 Label adaptor_frame, try_allocate;
3962 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3963 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
3964 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3965 __ b(eq, &adaptor_frame);
3966
3967 // No adaptor, parameter count = argument count.
3968 __ mov(r2, r1);
3969 __ b(&try_allocate);
3970
3971 // We have an adaptor frame. Patch the parameters pointer.
3972 __ bind(&adaptor_frame);
3973 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
3974 __ add(r3, r3, Operand(r2, LSL, 1));
3975 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
3976 __ str(r3, MemOperand(sp, 1 * kPointerSize));
3977
3978 // r1 = parameter count (tagged)
3979 // r2 = argument count (tagged)
3980 // Compute the mapped parameter count = min(r1, r2) in r1.
3981 __ cmp(r1, Operand(r2));
3982 __ mov(r1, Operand(r2), LeaveCC, gt);
3983
3984 __ bind(&try_allocate);
3985
3986 // Compute the sizes of backing store, parameter map, and arguments object.
3987 // 1. Parameter map, has 2 extra words containing context and backing store.
3988 const int kParameterMapHeaderSize =
3989 FixedArray::kHeaderSize + 2 * kPointerSize;
3990 // If there are no mapped parameters, we do not need the parameter_map.
3991 __ cmp(r1, Operand(Smi::FromInt(0)));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00003992 __ mov(r9, Operand::Zero(), LeaveCC, eq);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003993 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
3994 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
3995
3996 // 2. Backing store.
3997 __ add(r9, r9, Operand(r2, LSL, 1));
3998 __ add(r9, r9, Operand(FixedArray::kHeaderSize));
3999
4000 // 3. Arguments object.
4001 __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
4002
4003 // Do the allocation of all three objects in one go.
4004 __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
4005
4006 // r0 = address of new object(s) (tagged)
4007 // r2 = argument count (tagged)
4008 // Get the arguments boilerplate from the current (global) context into r4.
4009 const int kNormalOffset =
4010 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4011 const int kAliasedOffset =
4012 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4013
4014 __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_INDEX)));
4015 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004016 __ cmp(r1, Operand::Zero());
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004017 __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
4018 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
4019
4020 // r0 = address of new object (tagged)
4021 // r1 = mapped parameter count (tagged)
4022 // r2 = argument count (tagged)
4023 // r4 = address of boilerplate object (tagged)
4024 // Copy the JS object part.
4025 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4026 __ ldr(r3, FieldMemOperand(r4, i));
4027 __ str(r3, FieldMemOperand(r0, i));
4028 }
4029
4030 // Setup the callee in-object property.
4031 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4032 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
4033 const int kCalleeOffset = JSObject::kHeaderSize +
4034 Heap::kArgumentsCalleeIndex * kPointerSize;
4035 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
4036
4037 // Use the length (smi tagged) and set that as an in-object property too.
4038 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4039 const int kLengthOffset = JSObject::kHeaderSize +
4040 Heap::kArgumentsLengthIndex * kPointerSize;
4041 __ str(r2, FieldMemOperand(r0, kLengthOffset));
4042
4043 // Setup the elements pointer in the allocated arguments object.
4044 // If we allocated a parameter map, r4 will point there, otherwise
4045 // it will point to the backing store.
4046 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
4047 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4048
4049 // r0 = address of new object (tagged)
4050 // r1 = mapped parameter count (tagged)
4051 // r2 = argument count (tagged)
4052 // r4 = address of parameter map or backing store (tagged)
4053 // Initialize parameter map. If there are no mapped arguments, we're done.
4054 Label skip_parameter_map;
4055 __ cmp(r1, Operand(Smi::FromInt(0)));
4056 // Move backing store address to r3, because it is
4057 // expected there when filling in the unmapped arguments.
4058 __ mov(r3, r4, LeaveCC, eq);
4059 __ b(eq, &skip_parameter_map);
4060
4061 __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
4062 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
4063 __ add(r6, r1, Operand(Smi::FromInt(2)));
4064 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
4065 __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
4066 __ add(r6, r4, Operand(r1, LSL, 1));
4067 __ add(r6, r6, Operand(kParameterMapHeaderSize));
4068 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
4069
4070 // Copy the parameter slots and the holes in the arguments.
4071 // We need to fill in mapped_parameter_count slots. They index the context,
4072 // where parameters are stored in reverse order, at
4073 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4074 // The mapped parameter thus need to get indices
4075 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4076 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4077 // We loop from right to left.
4078 Label parameters_loop, parameters_test;
4079 __ mov(r6, r1);
4080 __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
4081 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4082 __ sub(r9, r9, Operand(r1));
4083 __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
4084 __ add(r3, r4, Operand(r6, LSL, 1));
4085 __ add(r3, r3, Operand(kParameterMapHeaderSize));
4086
4087 // r6 = loop variable (tagged)
4088 // r1 = mapping index (tagged)
4089 // r3 = address of backing store (tagged)
4090 // r4 = address of parameter map (tagged)
4091 // r5 = temporary scratch (a.o., for address calculation)
4092 // r7 = the hole value
4093 __ jmp(&parameters_test);
4094
4095 __ bind(&parameters_loop);
4096 __ sub(r6, r6, Operand(Smi::FromInt(1)));
4097 __ mov(r5, Operand(r6, LSL, 1));
4098 __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4099 __ str(r9, MemOperand(r4, r5));
4100 __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4101 __ str(r7, MemOperand(r3, r5));
4102 __ add(r9, r9, Operand(Smi::FromInt(1)));
4103 __ bind(&parameters_test);
4104 __ cmp(r6, Operand(Smi::FromInt(0)));
4105 __ b(ne, &parameters_loop);
4106
4107 __ bind(&skip_parameter_map);
4108 // r2 = argument count (tagged)
4109 // r3 = address of backing store (tagged)
4110 // r5 = scratch
4111 // Copy arguments header and remaining slots (if there are any).
4112 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
4113 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
4114 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
4115
4116 Label arguments_loop, arguments_test;
4117 __ mov(r9, r1);
4118 __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
4119 __ sub(r4, r4, Operand(r9, LSL, 1));
4120 __ jmp(&arguments_test);
4121
4122 __ bind(&arguments_loop);
4123 __ sub(r4, r4, Operand(kPointerSize));
4124 __ ldr(r6, MemOperand(r4, 0));
4125 __ add(r5, r3, Operand(r9, LSL, 1));
4126 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
4127 __ add(r9, r9, Operand(Smi::FromInt(1)));
4128
4129 __ bind(&arguments_test);
4130 __ cmp(r9, Operand(r2));
4131 __ b(lt, &arguments_loop);
4132
4133 // Return and remove the on-stack parameters.
4134 __ add(sp, sp, Operand(3 * kPointerSize));
4135 __ Ret();
4136
4137 // Do the runtime call to allocate the arguments object.
4138 // r2 = argument count (taggged)
4139 __ bind(&runtime);
4140 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
4141 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4142}
4143
4144
4145void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4146 // sp[0] : number of parameters
4147 // sp[4] : receiver displacement
4148 // sp[8] : function
4149 // Check if the calling frame is an arguments adaptor frame.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004150 Label adaptor_frame, try_allocate, runtime;
4151 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4152 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4153 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4154 __ b(eq, &adaptor_frame);
4155
4156 // Get the length from the frame.
4157 __ ldr(r1, MemOperand(sp, 0));
4158 __ b(&try_allocate);
4159
4160 // Patch the arguments.length and the parameters pointer.
4161 __ bind(&adaptor_frame);
4162 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4163 __ str(r1, MemOperand(sp, 0));
4164 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
4165 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4166 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4167
4168 // Try the new space allocation. Start out with computing the size
4169 // of the arguments object and the elements array in words.
4170 Label add_arguments_object;
4171 __ bind(&try_allocate);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004172 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004173 __ b(eq, &add_arguments_object);
4174 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4175 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
4176 __ bind(&add_arguments_object);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004177 __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004178
4179 // Do the allocation of both objects in one go.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004180 __ AllocateInNewSpace(r1,
4181 r0,
4182 r2,
4183 r3,
4184 &runtime,
4185 static_cast<AllocationFlags>(TAG_OBJECT |
4186 SIZE_IN_WORDS));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004187
4188 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004189 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4190 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004191 __ ldr(r4, MemOperand(r4, Context::SlotOffset(
4192 Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004193
4194 // Copy the JS object part.
4195 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
4196
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004197 // Get the length (smi tagged) and set that as an in-object property too.
Steve Block44f0eee2011-05-26 01:26:41 +01004198 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004199 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01004200 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004201 Heap::kArgumentsLengthIndex * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004202
4203 // If there are no actual arguments, we're done.
4204 Label done;
Iain Merrick9ac36c92010-09-13 15:29:50 +01004205 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004206 __ b(eq, &done);
4207
4208 // Get the parameters pointer from the stack.
4209 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
4210
4211 // Setup the elements pointer in the allocated arguments object and
4212 // initialize the header in the elements fixed array.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004213 __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004214 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4215 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4216 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
4217 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004218 // Untag the length for the loop.
4219 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004220
4221 // Copy the fixed array slots.
4222 Label loop;
4223 // Setup r4 to point to the first array slot.
4224 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4225 __ bind(&loop);
4226 // Pre-decrement r2 with kPointerSize on each iteration.
4227 // Pre-decrement in order to skip receiver.
4228 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
4229 // Post-increment r4 with kPointerSize on each iteration.
4230 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
4231 __ sub(r1, r1, Operand(1));
Iain Merrick9ac36c92010-09-13 15:29:50 +01004232 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004233 __ b(ne, &loop);
4234
4235 // Return and remove the on-stack parameters.
4236 __ bind(&done);
4237 __ add(sp, sp, Operand(3 * kPointerSize));
4238 __ Ret();
4239
4240 // Do the runtime call to allocate the arguments object.
4241 __ bind(&runtime);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004242 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004243}
4244
4245
4246void RegExpExecStub::Generate(MacroAssembler* masm) {
4247 // Just jump directly to runtime if native RegExp is not selected at compile
4248 // time or if regexp entry in generated code is turned off runtime switch or
4249 // at compilation.
4250#ifdef V8_INTERPRETED_REGEXP
4251 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4252#else // V8_INTERPRETED_REGEXP
4253 if (!FLAG_regexp_entry_native) {
4254 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4255 return;
4256 }
4257
4258 // Stack frame on entry.
4259 // sp[0]: last_match_info (expected JSArray)
4260 // sp[4]: previous index
4261 // sp[8]: subject string
4262 // sp[12]: JSRegExp object
4263
4264 static const int kLastMatchInfoOffset = 0 * kPointerSize;
4265 static const int kPreviousIndexOffset = 1 * kPointerSize;
4266 static const int kSubjectOffset = 2 * kPointerSize;
4267 static const int kJSRegExpOffset = 3 * kPointerSize;
4268
4269 Label runtime, invoke_regexp;
4270
4271 // Allocation of registers for this function. These are in callee save
4272 // registers and will be preserved by the call to the native RegExp code, as
4273 // this code is called using the normal C calling convention. When calling
4274 // directly from generated code the native RegExp code will not do a GC and
4275 // therefore the content of these registers are safe to use after the call.
4276 Register subject = r4;
4277 Register regexp_data = r5;
4278 Register last_match_info_elements = r6;
4279
4280 // Ensure that a RegExp stack is allocated.
Steve Block44f0eee2011-05-26 01:26:41 +01004281 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004282 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01004283 ExternalReference::address_of_regexp_stack_memory_address(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004284 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01004285 ExternalReference::address_of_regexp_stack_memory_size(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004286 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
4287 __ ldr(r0, MemOperand(r0, 0));
4288 __ tst(r0, Operand(r0));
4289 __ b(eq, &runtime);
4290
4291 // Check that the first argument is a JSRegExp object.
4292 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
4293 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004294 __ JumpIfSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004295 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
4296 __ b(ne, &runtime);
4297
4298 // Check that the RegExp has been compiled (data contains a fixed array).
4299 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
4300 if (FLAG_debug_code) {
4301 __ tst(regexp_data, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004302 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004303 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
4304 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
4305 }
4306
4307 // regexp_data: RegExp data (FixedArray)
4308 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4309 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4310 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4311 __ b(ne, &runtime);
4312
4313 // regexp_data: RegExp data (FixedArray)
4314 // Check that the number of captures fit in the static offsets vector buffer.
4315 __ ldr(r2,
4316 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4317 // Calculate number of capture registers (number_of_captures + 1) * 2. This
4318 // uses the asumption that smis are 2 * their untagged value.
4319 STATIC_ASSERT(kSmiTag == 0);
4320 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4321 __ add(r2, r2, Operand(2)); // r2 was a smi.
4322 // Check that the static offsets vector buffer is large enough.
4323 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4324 __ b(hi, &runtime);
4325
4326 // r2: Number of capture registers
4327 // regexp_data: RegExp data (FixedArray)
4328 // Check that the second argument is a string.
4329 __ ldr(subject, MemOperand(sp, kSubjectOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004330 __ JumpIfSmi(subject, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004331 Condition is_string = masm->IsObjectStringType(subject, r0);
4332 __ b(NegateCondition(is_string), &runtime);
4333 // Get the length of the string to r3.
4334 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
4335
4336 // r2: Number of capture registers
4337 // r3: Length of subject string as a smi
4338 // subject: Subject string
4339 // regexp_data: RegExp data (FixedArray)
4340 // Check that the third argument is a positive smi less than the subject
4341 // string length. A negative value will be greater (unsigned comparison).
4342 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004343 __ JumpIfNotSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004344 __ cmp(r3, Operand(r0));
4345 __ b(ls, &runtime);
4346
4347 // r2: Number of capture registers
4348 // subject: Subject string
4349 // regexp_data: RegExp data (FixedArray)
4350 // Check that the fourth object is a JSArray object.
4351 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004352 __ JumpIfSmi(r0, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004353 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
4354 __ b(ne, &runtime);
4355 // Check that the JSArray is in fast case.
4356 __ ldr(last_match_info_elements,
4357 FieldMemOperand(r0, JSArray::kElementsOffset));
4358 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4359 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
4360 __ cmp(r0, ip);
4361 __ b(ne, &runtime);
4362 // Check that the last match info has space for the capture registers and the
4363 // additional information.
4364 __ ldr(r0,
4365 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4366 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
4367 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
4368 __ b(gt, &runtime);
4369
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004370 // Reset offset for possibly sliced string.
4371 __ mov(r9, Operand(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004372 // subject: Subject string
4373 // regexp_data: RegExp data (FixedArray)
4374 // Check the representation and encoding of the subject string.
4375 Label seq_string;
4376 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4377 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4378 // First check for flat string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004379 __ and_(r1, r0, Operand(kIsNotStringMask | kStringRepresentationMask), SetCC);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004380 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4381 __ b(eq, &seq_string);
4382
4383 // subject: Subject string
4384 // regexp_data: RegExp data (FixedArray)
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004385 // Check for flat cons string or sliced string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004386 // A flat cons string is a cons string where the second part is the empty
4387 // string. In that case the subject string is just the first part of the cons
4388 // string. Also in this case the first part of the cons string is known to be
4389 // a sequential string or an external string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004390 // In the case of a sliced string its offset has to be taken into account.
4391 Label cons_string, check_encoding;
4392 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4393 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
4394 __ cmp(r1, Operand(kExternalStringTag));
4395 __ b(lt, &cons_string);
4396 __ b(eq, &runtime);
4397
4398 // String is sliced.
4399 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
4400 __ mov(r9, Operand(r9, ASR, kSmiTagSize));
4401 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
4402 // r9: offset of sliced string, smi-tagged.
4403 __ jmp(&check_encoding);
4404 // String is a cons string, check whether it is flat.
4405 __ bind(&cons_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004406 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
4407 __ LoadRoot(r1, Heap::kEmptyStringRootIndex);
4408 __ cmp(r0, r1);
4409 __ b(ne, &runtime);
4410 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004411 // Is first part of cons or parent of slice a flat string?
4412 __ bind(&check_encoding);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004413 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4414 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004415 STATIC_ASSERT(kSeqStringTag == 0);
4416 __ tst(r0, Operand(kStringRepresentationMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004417 __ b(ne, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004418 __ bind(&seq_string);
4419 // subject: Subject string
4420 // regexp_data: RegExp data (FixedArray)
4421 // r0: Instance type of subject string
4422 STATIC_ASSERT(4 == kAsciiStringTag);
4423 STATIC_ASSERT(kTwoByteStringTag == 0);
4424 // Find the code object based on the assumptions above.
4425 __ and_(r0, r0, Operand(kStringEncodingMask));
4426 __ mov(r3, Operand(r0, ASR, 2), SetCC);
4427 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
4428 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
4429
4430 // Check that the irregexp code has been generated for the actual string
4431 // encoding. If it has, the field contains a code object otherwise it contains
Ben Murdoch257744e2011-11-30 15:57:28 +00004432 // a smi (code flushing support).
4433 __ JumpIfSmi(r7, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004434
Steve Block44f0eee2011-05-26 01:26:41 +01004435 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004436 // r7: code
4437 // subject: Subject string
4438 // regexp_data: RegExp data (FixedArray)
4439 // Load used arguments before starting to push arguments for call to native
4440 // RegExp code to avoid handling changing stack height.
4441 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
4442 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
4443
4444 // r1: previous index
Steve Block44f0eee2011-05-26 01:26:41 +01004445 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004446 // r7: code
4447 // subject: Subject string
4448 // regexp_data: RegExp data (FixedArray)
4449 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01004450 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004451
Steve Block44f0eee2011-05-26 01:26:41 +01004452 // Isolates: note we add an additional parameter here (isolate pointer).
4453 static const int kRegExpExecuteArguments = 8;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004454 static const int kParameterRegisters = 4;
4455 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004456
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004457 // Stack pointer now points to cell where return address is to be written.
4458 // Arguments are before that on the stack or in registers.
4459
Steve Block44f0eee2011-05-26 01:26:41 +01004460 // Argument 8 (sp[16]): Pass current isolate address.
4461 __ mov(r0, Operand(ExternalReference::isolate_address()));
4462 __ str(r0, MemOperand(sp, 4 * kPointerSize));
4463
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004464 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004465 __ mov(r0, Operand(1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004466 __ str(r0, MemOperand(sp, 3 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004467
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004468 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004469 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
4470 __ ldr(r0, MemOperand(r0, 0));
4471 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
4472 __ ldr(r2, MemOperand(r2, 0));
4473 __ add(r0, r0, Operand(r2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004474 __ str(r0, MemOperand(sp, 2 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004475
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004476 // Argument 5 (sp[4]): static offsets vector buffer.
Steve Block44f0eee2011-05-26 01:26:41 +01004477 __ mov(r0,
4478 Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004479 __ str(r0, MemOperand(sp, 1 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004480
4481 // For arguments 4 and 3 get string length, calculate start of string data and
4482 // calculate the shift of the index (0 for ASCII and 1 for two byte).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004483 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004484 __ add(r8, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004485 __ eor(r3, r3, Operand(1));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004486 // Load the length from the original subject string from the previous stack
4487 // frame. Therefore we have to use fp, which points exactly to two pointer
4488 // sizes below the previous sp. (Because creating a new stack frame pushes
4489 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
4490 __ ldr(r0, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
4491 // If slice offset is not 0, load the length from the original sliced string.
4492 // Argument 4, r3: End of string data
4493 // Argument 3, r2: Start of string data
4494 // Prepare start and end index of the input.
4495 __ add(r9, r8, Operand(r9, LSL, r3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004496 __ add(r2, r9, Operand(r1, LSL, r3));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004497
4498 __ ldr(r8, FieldMemOperand(r0, String::kLengthOffset));
4499 __ mov(r8, Operand(r8, ASR, kSmiTagSize));
4500 __ add(r3, r9, Operand(r8, LSL, r3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004501
4502 // Argument 2 (r1): Previous index.
4503 // Already there
4504
4505 // Argument 1 (r0): Subject string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004506 // Already there
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004507
4508 // Locate the code entry and call it.
4509 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004510 DirectCEntryStub stub;
4511 stub.GenerateCall(masm, r7);
4512
4513 __ LeaveExitFrame(false, no_reg);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004514
4515 // r0: result
4516 // subject: subject string (callee saved)
4517 // regexp_data: RegExp data (callee saved)
4518 // last_match_info_elements: Last match info elements (callee saved)
4519
4520 // Check the result.
4521 Label success;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004522
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004523 __ cmp(subject, Operand(NativeRegExpMacroAssembler::SUCCESS));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004524 __ b(eq, &success);
4525 Label failure;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004526 __ cmp(subject, Operand(NativeRegExpMacroAssembler::FAILURE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004527 __ b(eq, &failure);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004528 __ cmp(subject, Operand(NativeRegExpMacroAssembler::EXCEPTION));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004529 // If not exception it can only be retry. Handle that in the runtime system.
4530 __ b(ne, &runtime);
4531 // Result must now be exception. If there is no pending exception already a
4532 // stack overflow (on the backtrack stack) was detected in RegExp code but
4533 // haven't created the exception yet. Handle that in the runtime system.
4534 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Steve Block44f0eee2011-05-26 01:26:41 +01004535 __ mov(r1, Operand(ExternalReference::the_hole_value_location(isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004536 __ ldr(r1, MemOperand(r1, 0));
Steve Block44f0eee2011-05-26 01:26:41 +01004537 __ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address,
4538 isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004539 __ ldr(r0, MemOperand(r2, 0));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004540 __ cmp(subject, r1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004541 __ b(eq, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004542
4543 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
4544
4545 // Check if the exception is a termination. If so, throw as uncatchable.
4546 __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004547 __ cmp(subject, ip);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004548 Label termination_exception;
4549 __ b(eq, &termination_exception);
4550
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004551 __ Throw(subject); // Expects thrown value in r0.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004552
4553 __ bind(&termination_exception);
4554 __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0.
4555
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004556 __ bind(&failure);
4557 // For failure and exception return null.
Ben Murdoch257744e2011-11-30 15:57:28 +00004558 __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004559 __ add(sp, sp, Operand(4 * kPointerSize));
4560 __ Ret();
4561
4562 // Process the result from the native regexp code.
4563 __ bind(&success);
4564 __ ldr(r1,
4565 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4566 // Calculate number of capture registers (number_of_captures + 1) * 2.
4567 STATIC_ASSERT(kSmiTag == 0);
4568 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4569 __ add(r1, r1, Operand(2)); // r1 was a smi.
4570
4571 // r1: number of capture registers
4572 // r4: subject string
4573 // Store the capture count.
4574 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
4575 __ str(r2, FieldMemOperand(last_match_info_elements,
4576 RegExpImpl::kLastCaptureCountOffset));
4577 // Store last subject and last input.
4578 __ mov(r3, last_match_info_elements); // Moved up to reduce latency.
4579 __ str(subject,
4580 FieldMemOperand(last_match_info_elements,
4581 RegExpImpl::kLastSubjectOffset));
4582 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7);
4583 __ str(subject,
4584 FieldMemOperand(last_match_info_elements,
4585 RegExpImpl::kLastInputOffset));
4586 __ mov(r3, last_match_info_elements);
4587 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7);
4588
4589 // Get the static offsets vector filled by the native regexp code.
4590 ExternalReference address_of_static_offsets_vector =
Steve Block44f0eee2011-05-26 01:26:41 +01004591 ExternalReference::address_of_static_offsets_vector(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004592 __ mov(r2, Operand(address_of_static_offsets_vector));
4593
4594 // r1: number of capture registers
4595 // r2: offsets vector
4596 Label next_capture, done;
4597 // Capture register counter starts from number of capture registers and
4598 // counts down until wraping after zero.
4599 __ add(r0,
4600 last_match_info_elements,
4601 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
4602 __ bind(&next_capture);
4603 __ sub(r1, r1, Operand(1), SetCC);
4604 __ b(mi, &done);
4605 // Read the value from the static offsets vector buffer.
4606 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
4607 // Store the smi value in the last match info.
4608 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
4609 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
4610 __ jmp(&next_capture);
4611 __ bind(&done);
4612
4613 // Return last match info.
4614 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4615 __ add(sp, sp, Operand(4 * kPointerSize));
4616 __ Ret();
4617
4618 // Do the runtime call to execute the regexp.
4619 __ bind(&runtime);
4620 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4621#endif // V8_INTERPRETED_REGEXP
4622}
4623
4624
Ben Murdochb0fe1622011-05-05 13:52:32 +01004625void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
4626 const int kMaxInlineLength = 100;
4627 Label slowcase;
4628 Label done;
Ben Murdoch257744e2011-11-30 15:57:28 +00004629 Factory* factory = masm->isolate()->factory();
4630
Ben Murdochb0fe1622011-05-05 13:52:32 +01004631 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
4632 STATIC_ASSERT(kSmiTag == 0);
4633 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004634 __ JumpIfNotSmi(r1, &slowcase);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004635 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
4636 __ b(hi, &slowcase);
4637 // Smi-tagging is equivalent to multiplying by 2.
4638 // Allocate RegExpResult followed by FixedArray with size in ebx.
4639 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
4640 // Elements: [Map][Length][..elements..]
4641 // Size of JSArray with two in-object properties and the header of a
4642 // FixedArray.
4643 int objects_size =
4644 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
4645 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
4646 __ add(r2, r5, Operand(objects_size));
4647 __ AllocateInNewSpace(
4648 r2, // In: Size, in words.
4649 r0, // Out: Start of allocation (tagged).
4650 r3, // Scratch register.
4651 r4, // Scratch register.
4652 &slowcase,
4653 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
4654 // r0: Start of allocated area, object-tagged.
4655 // r1: Number of elements in array, as smi.
4656 // r5: Number of elements, untagged.
4657
4658 // Set JSArray map to global.regexp_result_map().
4659 // Set empty properties FixedArray.
4660 // Set elements to point to FixedArray allocated right after the JSArray.
4661 // Interleave operations for better latency.
4662 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
4663 __ add(r3, r0, Operand(JSRegExpResult::kSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00004664 __ mov(r4, Operand(factory->empty_fixed_array()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004665 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
4666 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
4667 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
4668 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
4669 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
4670
4671 // Set input, index and length fields from arguments.
4672 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
4673 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
4674 __ ldr(r1, MemOperand(sp, kPointerSize * 1));
4675 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
4676 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
4677 __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset));
4678
4679 // Fill out the elements FixedArray.
4680 // r0: JSArray, tagged.
4681 // r3: FixedArray, tagged.
4682 // r5: Number of elements in array, untagged.
4683
4684 // Set map.
Ben Murdoch257744e2011-11-30 15:57:28 +00004685 __ mov(r2, Operand(factory->fixed_array_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004686 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
4687 // Set FixedArray length.
4688 __ mov(r6, Operand(r5, LSL, kSmiTagSize));
4689 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
4690 // Fill contents of fixed-array with the-hole.
Ben Murdoch257744e2011-11-30 15:57:28 +00004691 __ mov(r2, Operand(factory->the_hole_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004692 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4693 // Fill fixed array elements with hole.
4694 // r0: JSArray, tagged.
4695 // r2: the hole.
4696 // r3: Start of elements in FixedArray.
4697 // r5: Number of elements to fill.
4698 Label loop;
4699 __ tst(r5, Operand(r5));
4700 __ bind(&loop);
4701 __ b(le, &done); // Jump if r1 is negative or zero.
4702 __ sub(r5, r5, Operand(1), SetCC);
4703 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
4704 __ jmp(&loop);
4705
4706 __ bind(&done);
4707 __ add(sp, sp, Operand(3 * kPointerSize));
4708 __ Ret();
4709
4710 __ bind(&slowcase);
4711 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
4712}
4713
4714
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004715void CallFunctionStub::Generate(MacroAssembler* masm) {
4716 Label slow;
4717
Ben Murdoch257744e2011-11-30 15:57:28 +00004718 // The receiver might implicitly be the global object. This is
4719 // indicated by passing the hole as the receiver to the call
4720 // function stub.
4721 if (ReceiverMightBeImplicit()) {
4722 Label call;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004723 // Get the receiver from the stack.
4724 // function, receiver [, arguments]
Ben Murdoch257744e2011-11-30 15:57:28 +00004725 __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
4726 // Call as function is indicated with the hole.
4727 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
4728 __ b(ne, &call);
4729 // Patch the receiver on the stack with the global receiver object.
4730 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4731 __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
4732 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
4733 __ bind(&call);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004734 }
4735
4736 // Get the function to call from the stack.
4737 // function, receiver [, arguments]
4738 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
4739
4740 // Check that the function is really a JavaScript function.
4741 // r1: pushed function (to be verified)
Steve Block1e0659c2011-05-24 12:43:12 +01004742 __ JumpIfSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004743 // Get the map of the function object.
4744 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
4745 __ b(ne, &slow);
4746
4747 // Fast-case: Invoke the function now.
4748 // r1: pushed function
4749 ParameterCount actual(argc_);
Ben Murdoch257744e2011-11-30 15:57:28 +00004750
4751 if (ReceiverMightBeImplicit()) {
4752 Label call_as_function;
4753 __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
4754 __ b(eq, &call_as_function);
4755 __ InvokeFunction(r1,
4756 actual,
4757 JUMP_FUNCTION,
4758 NullCallWrapper(),
4759 CALL_AS_METHOD);
4760 __ bind(&call_as_function);
4761 }
4762 __ InvokeFunction(r1,
4763 actual,
4764 JUMP_FUNCTION,
4765 NullCallWrapper(),
4766 CALL_AS_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004767
4768 // Slow-case: Non-function called.
4769 __ bind(&slow);
4770 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
4771 // of the original receiver from the call site).
4772 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
4773 __ mov(r0, Operand(argc_)); // Setup the number of arguments.
Iain Merrick9ac36c92010-09-13 15:29:50 +01004774 __ mov(r2, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004775 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004776 __ SetCallKind(r5, CALL_AS_METHOD);
Steve Block44f0eee2011-05-26 01:26:41 +01004777 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004778 RelocInfo::CODE_TARGET);
4779}
4780
4781
4782// Unfortunately you have to run without snapshots to see most of these
4783// names in the profile since most compare stubs end up in the snapshot.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004784void CompareStub::PrintName(StringStream* stream) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004785 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
4786 (lhs_.is(r1) && rhs_.is(r0)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004787 const char* cc_name;
4788 switch (cc_) {
4789 case lt: cc_name = "LT"; break;
4790 case gt: cc_name = "GT"; break;
4791 case le: cc_name = "LE"; break;
4792 case ge: cc_name = "GE"; break;
4793 case eq: cc_name = "EQ"; break;
4794 case ne: cc_name = "NE"; break;
4795 default: cc_name = "UnknownCondition"; break;
4796 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004797 bool is_equality = cc_ == eq || cc_ == ne;
4798 stream->Add("CompareStub_%s", cc_name);
4799 stream->Add(lhs_.is(r0) ? "_r0" : "_r1");
4800 stream->Add(rhs_.is(r0) ? "_r0" : "_r1");
4801 if (strict_ && is_equality) stream->Add("_STRICT");
4802 if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
4803 if (!include_number_compare_) stream->Add("_NO_NUMBER");
4804 if (!include_smi_compare_) stream->Add("_NO_SMI");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004805}
4806
4807
4808int CompareStub::MinorKey() {
4809 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
4810 // stubs the never NaN NaN condition is only taken into account if the
4811 // condition is equals.
4812 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
4813 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
4814 (lhs_.is(r1) && rhs_.is(r0)));
4815 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
4816 | RegisterField::encode(lhs_.is(r0))
4817 | StrictField::encode(strict_)
4818 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004819 | IncludeNumberCompareField::encode(include_number_compare_)
4820 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004821}
4822
4823
4824// StringCharCodeAtGenerator
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004825void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
4826 Label flat_string;
4827 Label ascii_string;
4828 Label got_char_code;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004829 Label sliced_string;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004830
4831 // If the receiver is a smi trigger the non-string case.
Steve Block1e0659c2011-05-24 12:43:12 +01004832 __ JumpIfSmi(object_, receiver_not_string_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004833
4834 // Fetch the instance type of the receiver into result register.
4835 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
4836 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
4837 // If the receiver is not a string trigger the non-string case.
4838 __ tst(result_, Operand(kIsNotStringMask));
4839 __ b(ne, receiver_not_string_);
4840
4841 // If the index is non-smi trigger the non-smi case.
Steve Block1e0659c2011-05-24 12:43:12 +01004842 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004843
4844 // Put smi-tagged index into scratch register.
4845 __ mov(scratch_, index_);
4846 __ bind(&got_smi_index_);
4847
4848 // Check for index out of range.
4849 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
4850 __ cmp(ip, Operand(scratch_));
4851 __ b(ls, index_out_of_range_);
4852
4853 // We need special handling for non-flat strings.
4854 STATIC_ASSERT(kSeqStringTag == 0);
4855 __ tst(result_, Operand(kStringRepresentationMask));
4856 __ b(eq, &flat_string);
4857
4858 // Handle non-flat strings.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004859 __ and_(result_, result_, Operand(kStringRepresentationMask));
4860 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4861 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
4862 __ cmp(result_, Operand(kExternalStringTag));
4863 __ b(gt, &sliced_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004864 __ b(eq, &call_runtime_);
4865
4866 // ConsString.
4867 // Check whether the right hand side is the empty string (i.e. if
4868 // this is really a flat string in a cons string). If that is not
4869 // the case we would rather go to the runtime system now to flatten
4870 // the string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004871 Label assure_seq_string;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004872 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
4873 __ LoadRoot(ip, Heap::kEmptyStringRootIndex);
4874 __ cmp(result_, Operand(ip));
4875 __ b(ne, &call_runtime_);
4876 // Get the first of the two strings and load its instance type.
4877 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004878 __ jmp(&assure_seq_string);
4879
4880 // SlicedString, unpack and add offset.
4881 __ bind(&sliced_string);
4882 __ ldr(result_, FieldMemOperand(object_, SlicedString::kOffsetOffset));
4883 __ add(scratch_, scratch_, result_);
4884 __ ldr(object_, FieldMemOperand(object_, SlicedString::kParentOffset));
4885
4886 // Assure that we are dealing with a sequential string. Go to runtime if not.
4887 __ bind(&assure_seq_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004888 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
4889 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004890 // Check that parent is not an external string. Go to runtime otherwise.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004891 STATIC_ASSERT(kSeqStringTag == 0);
4892 __ tst(result_, Operand(kStringRepresentationMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004893 __ b(ne, &call_runtime_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004894
4895 // Check for 1-byte or 2-byte string.
4896 __ bind(&flat_string);
4897 STATIC_ASSERT(kAsciiStringTag != 0);
4898 __ tst(result_, Operand(kStringEncodingMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004899 __ b(ne, &ascii_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004900
4901 // 2-byte string.
4902 // Load the 2-byte character code into the result register. We can
4903 // add without shifting since the smi tag size is the log2 of the
4904 // number of bytes in a two-byte character.
4905 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
4906 __ add(scratch_, object_, Operand(scratch_));
4907 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
4908 __ jmp(&got_char_code);
4909
4910 // ASCII string.
4911 // Load the byte into the result register.
4912 __ bind(&ascii_string);
4913 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
4914 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
4915
4916 __ bind(&got_char_code);
4917 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
4918 __ bind(&exit_);
4919}
4920
4921
4922void StringCharCodeAtGenerator::GenerateSlow(
4923 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4924 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
4925
4926 // Index is not a smi.
4927 __ bind(&index_not_smi_);
4928 // If index is a heap number, try converting it to an integer.
4929 __ CheckMap(index_,
4930 scratch_,
4931 Heap::kHeapNumberMapRootIndex,
4932 index_not_number_,
Ben Murdoch257744e2011-11-30 15:57:28 +00004933 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004934 call_helper.BeforeCall(masm);
4935 __ Push(object_, index_);
4936 __ push(index_); // Consumed by runtime conversion function.
4937 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
4938 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
4939 } else {
4940 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
4941 // NumberToSmi discards numbers that are not exact integers.
4942 __ CallRuntime(Runtime::kNumberToSmi, 1);
4943 }
4944 // Save the conversion result before the pop instructions below
4945 // have a chance to overwrite it.
4946 __ Move(scratch_, r0);
4947 __ pop(index_);
4948 __ pop(object_);
4949 // Reload the instance type.
4950 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
4951 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
4952 call_helper.AfterCall(masm);
4953 // If index is still not a smi, it must be out of range.
Steve Block1e0659c2011-05-24 12:43:12 +01004954 __ JumpIfNotSmi(scratch_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004955 // Otherwise, return to the fast path.
4956 __ jmp(&got_smi_index_);
4957
4958 // Call runtime. We get here when the receiver is a string and the
4959 // index is a number, but the code of getting the actual character
4960 // is too complex (e.g., when the string needs to be flattened).
4961 __ bind(&call_runtime_);
4962 call_helper.BeforeCall(masm);
4963 __ Push(object_, index_);
4964 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
4965 __ Move(result_, r0);
4966 call_helper.AfterCall(masm);
4967 __ jmp(&exit_);
4968
4969 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
4970}
4971
4972
4973// -------------------------------------------------------------------------
4974// StringCharFromCodeGenerator
4975
4976void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
4977 // Fast case of Heap::LookupSingleCharacterStringFromCode.
4978 STATIC_ASSERT(kSmiTag == 0);
4979 STATIC_ASSERT(kSmiShiftSize == 0);
4980 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
4981 __ tst(code_,
4982 Operand(kSmiTagMask |
4983 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
Steve Block1e0659c2011-05-24 12:43:12 +01004984 __ b(ne, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004985
4986 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01004987 // At this point code register contains smi tagged ASCII char code.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004988 STATIC_ASSERT(kSmiTag == 0);
4989 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
4990 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
4991 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4992 __ cmp(result_, Operand(ip));
4993 __ b(eq, &slow_case_);
4994 __ bind(&exit_);
4995}
4996
4997
4998void StringCharFromCodeGenerator::GenerateSlow(
4999 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
5000 __ Abort("Unexpected fallthrough to CharFromCode slow case");
5001
5002 __ bind(&slow_case_);
5003 call_helper.BeforeCall(masm);
5004 __ push(code_);
5005 __ CallRuntime(Runtime::kCharFromCode, 1);
5006 __ Move(result_, r0);
5007 call_helper.AfterCall(masm);
5008 __ jmp(&exit_);
5009
5010 __ Abort("Unexpected fallthrough from CharFromCode slow case");
5011}
5012
5013
5014// -------------------------------------------------------------------------
5015// StringCharAtGenerator
5016
5017void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5018 char_code_at_generator_.GenerateFast(masm);
5019 char_from_code_generator_.GenerateFast(masm);
5020}
5021
5022
5023void StringCharAtGenerator::GenerateSlow(
5024 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
5025 char_code_at_generator_.GenerateSlow(masm, call_helper);
5026 char_from_code_generator_.GenerateSlow(masm, call_helper);
5027}
5028
5029
5030class StringHelper : public AllStatic {
5031 public:
5032 // Generate code for copying characters using a simple loop. This should only
5033 // be used in places where the number of characters is small and the
5034 // additional setup and checking in GenerateCopyCharactersLong adds too much
5035 // overhead. Copying of overlapping regions is not supported.
5036 // Dest register ends at the position after the last character written.
5037 static void GenerateCopyCharacters(MacroAssembler* masm,
5038 Register dest,
5039 Register src,
5040 Register count,
5041 Register scratch,
5042 bool ascii);
5043
5044 // Generate code for copying a large number of characters. This function
5045 // is allowed to spend extra time setting up conditions to make copying
5046 // faster. Copying of overlapping regions is not supported.
5047 // Dest register ends at the position after the last character written.
5048 static void GenerateCopyCharactersLong(MacroAssembler* masm,
5049 Register dest,
5050 Register src,
5051 Register count,
5052 Register scratch1,
5053 Register scratch2,
5054 Register scratch3,
5055 Register scratch4,
5056 Register scratch5,
5057 int flags);
5058
5059
5060 // Probe the symbol table for a two character string. If the string is
5061 // not found by probing a jump to the label not_found is performed. This jump
5062 // does not guarantee that the string is not in the symbol table. If the
5063 // string is found the code falls through with the string in register r0.
5064 // Contents of both c1 and c2 registers are modified. At the exit c1 is
5065 // guaranteed to contain halfword with low and high bytes equal to
5066 // initial contents of c1 and c2 respectively.
5067 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5068 Register c1,
5069 Register c2,
5070 Register scratch1,
5071 Register scratch2,
5072 Register scratch3,
5073 Register scratch4,
5074 Register scratch5,
5075 Label* not_found);
5076
5077 // Generate string hash.
5078 static void GenerateHashInit(MacroAssembler* masm,
5079 Register hash,
5080 Register character);
5081
5082 static void GenerateHashAddCharacter(MacroAssembler* masm,
5083 Register hash,
5084 Register character);
5085
5086 static void GenerateHashGetHash(MacroAssembler* masm,
5087 Register hash);
5088
5089 private:
5090 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
5091};
5092
5093
5094void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5095 Register dest,
5096 Register src,
5097 Register count,
5098 Register scratch,
5099 bool ascii) {
5100 Label loop;
5101 Label done;
5102 // This loop just copies one character at a time, as it is only used for very
5103 // short strings.
5104 if (!ascii) {
5105 __ add(count, count, Operand(count), SetCC);
5106 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005107 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005108 }
5109 __ b(eq, &done);
5110
5111 __ bind(&loop);
5112 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
5113 // Perform sub between load and dependent store to get the load time to
5114 // complete.
5115 __ sub(count, count, Operand(1), SetCC);
5116 __ strb(scratch, MemOperand(dest, 1, PostIndex));
5117 // last iteration.
5118 __ b(gt, &loop);
5119
5120 __ bind(&done);
5121}
5122
5123
5124enum CopyCharactersFlags {
5125 COPY_ASCII = 1,
5126 DEST_ALWAYS_ALIGNED = 2
5127};
5128
5129
5130void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5131 Register dest,
5132 Register src,
5133 Register count,
5134 Register scratch1,
5135 Register scratch2,
5136 Register scratch3,
5137 Register scratch4,
5138 Register scratch5,
5139 int flags) {
5140 bool ascii = (flags & COPY_ASCII) != 0;
5141 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5142
5143 if (dest_always_aligned && FLAG_debug_code) {
5144 // Check that destination is actually word aligned if the flag says
5145 // that it is.
5146 __ tst(dest, Operand(kPointerAlignmentMask));
5147 __ Check(eq, "Destination of copy not aligned.");
5148 }
5149
5150 const int kReadAlignment = 4;
5151 const int kReadAlignmentMask = kReadAlignment - 1;
5152 // Ensure that reading an entire aligned word containing the last character
5153 // of a string will not read outside the allocated area (because we pad up
5154 // to kObjectAlignment).
5155 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5156 // Assumes word reads and writes are little endian.
5157 // Nothing to do for zero characters.
5158 Label done;
5159 if (!ascii) {
5160 __ add(count, count, Operand(count), SetCC);
5161 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005162 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005163 }
5164 __ b(eq, &done);
5165
5166 // Assume that you cannot read (or write) unaligned.
5167 Label byte_loop;
5168 // Must copy at least eight bytes, otherwise just do it one byte at a time.
5169 __ cmp(count, Operand(8));
5170 __ add(count, dest, Operand(count));
5171 Register limit = count; // Read until src equals this.
5172 __ b(lt, &byte_loop);
5173
5174 if (!dest_always_aligned) {
5175 // Align dest by byte copying. Copies between zero and three bytes.
5176 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
5177 Label dest_aligned;
5178 __ b(eq, &dest_aligned);
5179 __ cmp(scratch4, Operand(2));
5180 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
5181 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
5182 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
5183 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5184 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
5185 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
5186 __ bind(&dest_aligned);
5187 }
5188
5189 Label simple_loop;
5190
5191 __ sub(scratch4, dest, Operand(src));
5192 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
5193 __ b(eq, &simple_loop);
5194 // Shift register is number of bits in a source word that
5195 // must be combined with bits in the next source word in order
5196 // to create a destination word.
5197
5198 // Complex loop for src/dst that are not aligned the same way.
5199 {
5200 Label loop;
5201 __ mov(scratch4, Operand(scratch4, LSL, 3));
5202 Register left_shift = scratch4;
5203 __ and_(src, src, Operand(~3)); // Round down to load previous word.
5204 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5205 // Store the "shift" most significant bits of scratch in the least
5206 // signficant bits (i.e., shift down by (32-shift)).
5207 __ rsb(scratch2, left_shift, Operand(32));
5208 Register right_shift = scratch2;
5209 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
5210
5211 __ bind(&loop);
5212 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
5213 __ sub(scratch5, limit, Operand(dest));
5214 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
5215 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5216 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
5217 // Loop if four or more bytes left to copy.
5218 // Compare to eight, because we did the subtract before increasing dst.
5219 __ sub(scratch5, scratch5, Operand(8), SetCC);
5220 __ b(ge, &loop);
5221 }
5222 // There is now between zero and three bytes left to copy (negative that
5223 // number is in scratch5), and between one and three bytes already read into
5224 // scratch1 (eight times that number in scratch4). We may have read past
5225 // the end of the string, but because objects are aligned, we have not read
5226 // past the end of the object.
5227 // Find the minimum of remaining characters to move and preloaded characters
5228 // and write those as bytes.
5229 __ add(scratch5, scratch5, Operand(4), SetCC);
5230 __ b(eq, &done);
5231 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
5232 // Move minimum of bytes read and bytes left to copy to scratch4.
5233 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
5234 // Between one and three (value in scratch5) characters already read into
5235 // scratch ready to write.
5236 __ cmp(scratch5, Operand(2));
5237 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5238 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
5239 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
5240 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
5241 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
5242 // Copy any remaining bytes.
5243 __ b(&byte_loop);
5244
5245 // Simple loop.
5246 // Copy words from src to dst, until less than four bytes left.
5247 // Both src and dest are word aligned.
5248 __ bind(&simple_loop);
5249 {
5250 Label loop;
5251 __ bind(&loop);
5252 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5253 __ sub(scratch3, limit, Operand(dest));
5254 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5255 // Compare to 8, not 4, because we do the substraction before increasing
5256 // dest.
5257 __ cmp(scratch3, Operand(8));
5258 __ b(ge, &loop);
5259 }
5260
5261 // Copy bytes from src to dst until dst hits limit.
5262 __ bind(&byte_loop);
5263 __ cmp(dest, Operand(limit));
5264 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
5265 __ b(ge, &done);
5266 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5267 __ b(&byte_loop);
5268
5269 __ bind(&done);
5270}
5271
5272
5273void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5274 Register c1,
5275 Register c2,
5276 Register scratch1,
5277 Register scratch2,
5278 Register scratch3,
5279 Register scratch4,
5280 Register scratch5,
5281 Label* not_found) {
5282 // Register scratch3 is the general scratch register in this function.
5283 Register scratch = scratch3;
5284
5285 // Make sure that both characters are not digits as such strings has a
5286 // different hash algorithm. Don't try to look for these in the symbol table.
5287 Label not_array_index;
5288 __ sub(scratch, c1, Operand(static_cast<int>('0')));
5289 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5290 __ b(hi, &not_array_index);
5291 __ sub(scratch, c2, Operand(static_cast<int>('0')));
5292 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5293
5294 // If check failed combine both characters into single halfword.
5295 // This is required by the contract of the method: code at the
5296 // not_found branch expects this combination in c1 register
5297 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
5298 __ b(ls, not_found);
5299
5300 __ bind(&not_array_index);
5301 // Calculate the two character string hash.
5302 Register hash = scratch1;
5303 StringHelper::GenerateHashInit(masm, hash, c1);
5304 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5305 StringHelper::GenerateHashGetHash(masm, hash);
5306
5307 // Collect the two characters in a register.
5308 Register chars = c1;
5309 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
5310
5311 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5312 // hash: hash of two character string.
5313
5314 // Load symbol table
5315 // Load address of first element of the symbol table.
5316 Register symbol_table = c2;
5317 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5318
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005319 Register undefined = scratch4;
5320 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5321
5322 // Calculate capacity mask from the symbol table capacity.
5323 Register mask = scratch2;
5324 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5325 __ mov(mask, Operand(mask, ASR, 1));
5326 __ sub(mask, mask, Operand(1));
5327
5328 // Calculate untagged address of the first element of the symbol table.
5329 Register first_symbol_table_element = symbol_table;
5330 __ add(first_symbol_table_element, symbol_table,
5331 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5332
5333 // Registers
5334 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5335 // hash: hash of two character string
5336 // mask: capacity mask
5337 // first_symbol_table_element: address of the first element of
5338 // the symbol table
Steve Block44f0eee2011-05-26 01:26:41 +01005339 // undefined: the undefined object
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005340 // scratch: -
5341
5342 // Perform a number of probes in the symbol table.
5343 static const int kProbes = 4;
5344 Label found_in_symbol_table;
5345 Label next_probe[kProbes];
5346 for (int i = 0; i < kProbes; i++) {
5347 Register candidate = scratch5; // Scratch register contains candidate.
5348
5349 // Calculate entry in symbol table.
5350 if (i > 0) {
5351 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5352 } else {
5353 __ mov(candidate, hash);
5354 }
5355
5356 __ and_(candidate, candidate, Operand(mask));
5357
5358 // Load the entry from the symble table.
5359 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5360 __ ldr(candidate,
5361 MemOperand(first_symbol_table_element,
5362 candidate,
5363 LSL,
5364 kPointerSizeLog2));
5365
5366 // If entry is undefined no string with this hash can be found.
Steve Block44f0eee2011-05-26 01:26:41 +01005367 Label is_string;
5368 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
5369 __ b(ne, &is_string);
5370
5371 __ cmp(undefined, candidate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005372 __ b(eq, not_found);
Steve Block44f0eee2011-05-26 01:26:41 +01005373 // Must be null (deleted entry).
5374 if (FLAG_debug_code) {
5375 __ LoadRoot(ip, Heap::kNullValueRootIndex);
5376 __ cmp(ip, candidate);
5377 __ Assert(eq, "oddball in symbol table is not undefined or null");
5378 }
5379 __ jmp(&next_probe[i]);
5380
5381 __ bind(&is_string);
5382
5383 // Check that the candidate is a non-external ASCII string. The instance
5384 // type is still in the scratch register from the CompareObjectType
5385 // operation.
5386 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005387
5388 // If length is not 2 the string is not a candidate.
5389 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5390 __ cmp(scratch, Operand(Smi::FromInt(2)));
5391 __ b(ne, &next_probe[i]);
5392
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005393 // Check if the two characters match.
5394 // Assumes that word load is little endian.
5395 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5396 __ cmp(chars, scratch);
5397 __ b(eq, &found_in_symbol_table);
5398 __ bind(&next_probe[i]);
5399 }
5400
5401 // No matching 2 character string found by probing.
5402 __ jmp(not_found);
5403
5404 // Scratch register contains result when we fall through to here.
5405 Register result = scratch;
5406 __ bind(&found_in_symbol_table);
5407 __ Move(r0, result);
5408}
5409
5410
5411void StringHelper::GenerateHashInit(MacroAssembler* masm,
5412 Register hash,
5413 Register character) {
5414 // hash = character + (character << 10);
5415 __ add(hash, character, Operand(character, LSL, 10));
5416 // hash ^= hash >> 6;
5417 __ eor(hash, hash, Operand(hash, ASR, 6));
5418}
5419
5420
5421void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5422 Register hash,
5423 Register character) {
5424 // hash += character;
5425 __ add(hash, hash, Operand(character));
5426 // hash += hash << 10;
5427 __ add(hash, hash, Operand(hash, LSL, 10));
5428 // hash ^= hash >> 6;
5429 __ eor(hash, hash, Operand(hash, ASR, 6));
5430}
5431
5432
5433void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5434 Register hash) {
5435 // hash += hash << 3;
5436 __ add(hash, hash, Operand(hash, LSL, 3));
5437 // hash ^= hash >> 11;
5438 __ eor(hash, hash, Operand(hash, ASR, 11));
5439 // hash += hash << 15;
5440 __ add(hash, hash, Operand(hash, LSL, 15), SetCC);
5441
5442 // if (hash == 0) hash = 27;
Steve Block1e0659c2011-05-24 12:43:12 +01005443 __ mov(hash, Operand(27), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005444}
5445
5446
5447void SubStringStub::Generate(MacroAssembler* masm) {
5448 Label runtime;
5449
5450 // Stack frame on entry.
5451 // lr: return address
5452 // sp[0]: to
5453 // sp[4]: from
5454 // sp[8]: string
5455
5456 // This stub is called from the native-call %_SubString(...), so
5457 // nothing can be assumed about the arguments. It is tested that:
5458 // "string" is a sequential string,
5459 // both "from" and "to" are smis, and
5460 // 0 <= from <= to <= string.length.
5461 // If any of these assumptions fail, we call the runtime system.
5462
5463 static const int kToOffset = 0 * kPointerSize;
5464 static const int kFromOffset = 1 * kPointerSize;
5465 static const int kStringOffset = 2 * kPointerSize;
5466
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005467 // Check bounds and smi-ness.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005468 Register to = r6;
5469 Register from = r7;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005470
5471 if (FLAG_string_slices) {
5472 __ nop(0); // Jumping as first instruction would crash the code generation.
5473 __ jmp(&runtime);
5474 }
5475
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005476 __ Ldrd(to, from, MemOperand(sp, kToOffset));
5477 STATIC_ASSERT(kFromOffset == kToOffset + 4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005478 STATIC_ASSERT(kSmiTag == 0);
5479 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005480
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005481 // I.e., arithmetic shift right by one un-smi-tags.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005482 __ mov(r2, Operand(to, ASR, 1), SetCC);
5483 __ mov(r3, Operand(from, ASR, 1), SetCC, cc);
5484 // If either to or from had the smi tag bit set, then carry is set now.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005485 __ b(cs, &runtime); // Either "from" or "to" is not a smi.
5486 __ b(mi, &runtime); // From is negative.
5487
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005488 // Both to and from are smis.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005489 __ sub(r2, r2, Operand(r3), SetCC);
5490 __ b(mi, &runtime); // Fail if from > to.
5491 // Special handling of sub-strings of length 1 and 2. One character strings
5492 // are handled in the runtime system (looked up in the single character
5493 // cache). Two character strings are looked for in the symbol cache.
5494 __ cmp(r2, Operand(2));
5495 __ b(lt, &runtime);
5496
5497 // r2: length
5498 // r3: from index (untaged smi)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005499 // r6 (a.k.a. to): to (smi)
5500 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005501
5502 // Make sure first argument is a sequential (or flat) string.
5503 __ ldr(r5, MemOperand(sp, kStringOffset));
5504 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005505 __ JumpIfSmi(r5, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005506 Condition is_string = masm->IsObjectStringType(r5, r1);
5507 __ b(NegateCondition(is_string), &runtime);
5508
5509 // r1: instance type
5510 // r2: length
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005511 // r3: from index (untagged smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005512 // r5: string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005513 // r6 (a.k.a. to): to (smi)
5514 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005515 Label seq_string;
5516 __ and_(r4, r1, Operand(kStringRepresentationMask));
5517 STATIC_ASSERT(kSeqStringTag < kConsStringTag);
5518 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
5519 __ cmp(r4, Operand(kConsStringTag));
5520 __ b(gt, &runtime); // External strings go to runtime.
5521 __ b(lt, &seq_string); // Sequential strings are handled directly.
5522
5523 // Cons string. Try to recurse (once) on the first substring.
5524 // (This adds a little more generality than necessary to handle flattened
5525 // cons strings, but not much).
5526 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
5527 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
5528 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5529 __ tst(r1, Operand(kStringRepresentationMask));
5530 STATIC_ASSERT(kSeqStringTag == 0);
5531 __ b(ne, &runtime); // Cons and External strings go to runtime.
5532
5533 // Definitly a sequential string.
5534 __ bind(&seq_string);
5535
5536 // r1: instance type.
5537 // r2: length
5538 // r3: from index (untaged smi)
5539 // r5: string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005540 // r6 (a.k.a. to): to (smi)
5541 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005542 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005543 __ cmp(r4, Operand(to));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005544 __ b(lt, &runtime); // Fail if to > length.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005545 to = no_reg;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005546
5547 // r1: instance type.
5548 // r2: result string length.
5549 // r3: from index (untaged smi)
5550 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005551 // r7 (a.k.a. from): from offset (smi)
Steve Block44f0eee2011-05-26 01:26:41 +01005552 // Check for flat ASCII string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005553 Label non_ascii_flat;
5554 __ tst(r1, Operand(kStringEncodingMask));
5555 STATIC_ASSERT(kTwoByteStringTag == 0);
5556 __ b(eq, &non_ascii_flat);
5557
5558 Label result_longer_than_two;
5559 __ cmp(r2, Operand(2));
5560 __ b(gt, &result_longer_than_two);
5561
5562 // Sub string of length 2 requested.
5563 // Get the two characters forming the sub string.
5564 __ add(r5, r5, Operand(r3));
5565 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
5566 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
5567
5568 // Try to lookup two character string in symbol table.
5569 Label make_two_character_string;
5570 StringHelper::GenerateTwoCharacterSymbolTableProbe(
5571 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01005572 Counters* counters = masm->isolate()->counters();
5573 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005574 __ add(sp, sp, Operand(3 * kPointerSize));
5575 __ Ret();
5576
5577 // r2: result string length.
5578 // r3: two characters combined into halfword in little endian byte order.
5579 __ bind(&make_two_character_string);
5580 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
5581 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01005582 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005583 __ add(sp, sp, Operand(3 * kPointerSize));
5584 __ Ret();
5585
5586 __ bind(&result_longer_than_two);
5587
5588 // Allocate the result.
5589 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
5590
5591 // r0: result string.
5592 // r2: result string length.
5593 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005594 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005595 // Locate first character of result.
5596 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5597 // Locate 'from' character of string.
5598 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005599 __ add(r5, r5, Operand(from, ASR, 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005600
5601 // r0: result string.
5602 // r1: first character of result string.
5603 // r2: result string length.
5604 // r5: first character of sub string to copy.
5605 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
5606 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
5607 COPY_ASCII | DEST_ALWAYS_ALIGNED);
Steve Block44f0eee2011-05-26 01:26:41 +01005608 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005609 __ add(sp, sp, Operand(3 * kPointerSize));
5610 __ Ret();
5611
5612 __ bind(&non_ascii_flat);
5613 // r2: result string length.
5614 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005615 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005616 // Check for flat two byte string.
5617
5618 // Allocate the result.
5619 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
5620
5621 // r0: result string.
5622 // r2: result string length.
5623 // r5: string.
5624 // Locate first character of result.
5625 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5626 // Locate 'from' character of string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005627 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005628 // As "from" is a smi it is 2 times the value which matches the size of a two
5629 // byte character.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005630 __ add(r5, r5, Operand(from));
5631 from = no_reg;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005632
5633 // r0: result string.
5634 // r1: first character of result.
5635 // r2: result length.
5636 // r5: first character of string to copy.
5637 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005638 StringHelper::GenerateCopyCharactersLong(
5639 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
Steve Block44f0eee2011-05-26 01:26:41 +01005640 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005641 __ add(sp, sp, Operand(3 * kPointerSize));
5642 __ Ret();
5643
5644 // Just jump to runtime to create the sub string.
5645 __ bind(&runtime);
5646 __ TailCallRuntime(Runtime::kSubString, 3, 1);
5647}
5648
5649
Ben Murdoch257744e2011-11-30 15:57:28 +00005650void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
5651 Register left,
5652 Register right,
5653 Register scratch1,
5654 Register scratch2,
5655 Register scratch3) {
5656 Register length = scratch1;
5657
5658 // Compare lengths.
5659 Label strings_not_equal, check_zero_length;
5660 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
5661 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
5662 __ cmp(length, scratch2);
5663 __ b(eq, &check_zero_length);
5664 __ bind(&strings_not_equal);
5665 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
5666 __ Ret();
5667
5668 // Check if the length is zero.
5669 Label compare_chars;
5670 __ bind(&check_zero_length);
5671 STATIC_ASSERT(kSmiTag == 0);
5672 __ tst(length, Operand(length));
5673 __ b(ne, &compare_chars);
5674 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
5675 __ Ret();
5676
5677 // Compare characters.
5678 __ bind(&compare_chars);
5679 GenerateAsciiCharsCompareLoop(masm,
5680 left, right, length, scratch2, scratch3,
5681 &strings_not_equal);
5682
5683 // Characters are equal.
5684 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
5685 __ Ret();
5686}
5687
5688
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005689void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
5690 Register left,
5691 Register right,
5692 Register scratch1,
5693 Register scratch2,
5694 Register scratch3,
5695 Register scratch4) {
Ben Murdoch257744e2011-11-30 15:57:28 +00005696 Label result_not_equal, compare_lengths;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005697 // Find minimum length and length difference.
5698 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
5699 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
5700 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
5701 Register length_delta = scratch3;
5702 __ mov(scratch1, scratch2, LeaveCC, gt);
5703 Register min_length = scratch1;
5704 STATIC_ASSERT(kSmiTag == 0);
5705 __ tst(min_length, Operand(min_length));
5706 __ b(eq, &compare_lengths);
5707
Ben Murdoch257744e2011-11-30 15:57:28 +00005708 // Compare loop.
5709 GenerateAsciiCharsCompareLoop(masm,
5710 left, right, min_length, scratch2, scratch4,
5711 &result_not_equal);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005712
Ben Murdoch257744e2011-11-30 15:57:28 +00005713 // Compare lengths - strings up to min-length are equal.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005714 __ bind(&compare_lengths);
5715 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
Ben Murdoch257744e2011-11-30 15:57:28 +00005716 // Use length_delta as result if it's zero.
5717 __ mov(r0, Operand(length_delta), SetCC);
5718 __ bind(&result_not_equal);
5719 // Conditionally update the result based either on length_delta or
5720 // the last comparion performed in the loop above.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005721 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
5722 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
5723 __ Ret();
5724}
5725
5726
Ben Murdoch257744e2011-11-30 15:57:28 +00005727void StringCompareStub::GenerateAsciiCharsCompareLoop(
5728 MacroAssembler* masm,
5729 Register left,
5730 Register right,
5731 Register length,
5732 Register scratch1,
5733 Register scratch2,
5734 Label* chars_not_equal) {
5735 // Change index to run from -length to -1 by adding length to string
5736 // start. This means that loop ends when index reaches zero, which
5737 // doesn't need an additional compare.
5738 __ SmiUntag(length);
5739 __ add(scratch1, length,
5740 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5741 __ add(left, left, Operand(scratch1));
5742 __ add(right, right, Operand(scratch1));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00005743 __ rsb(length, length, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00005744 Register index = length; // index = -length;
5745
5746 // Compare loop.
5747 Label loop;
5748 __ bind(&loop);
5749 __ ldrb(scratch1, MemOperand(left, index));
5750 __ ldrb(scratch2, MemOperand(right, index));
5751 __ cmp(scratch1, scratch2);
5752 __ b(ne, chars_not_equal);
5753 __ add(index, index, Operand(1), SetCC);
5754 __ b(ne, &loop);
5755}
5756
5757
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005758void StringCompareStub::Generate(MacroAssembler* masm) {
5759 Label runtime;
5760
Steve Block44f0eee2011-05-26 01:26:41 +01005761 Counters* counters = masm->isolate()->counters();
5762
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005763 // Stack frame on entry.
5764 // sp[0]: right string
5765 // sp[4]: left string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005766 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005767
5768 Label not_same;
5769 __ cmp(r0, r1);
5770 __ b(ne, &not_same);
5771 STATIC_ASSERT(EQUAL == 0);
5772 STATIC_ASSERT(kSmiTag == 0);
5773 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
Steve Block44f0eee2011-05-26 01:26:41 +01005774 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005775 __ add(sp, sp, Operand(2 * kPointerSize));
5776 __ Ret();
5777
5778 __ bind(&not_same);
5779
Steve Block44f0eee2011-05-26 01:26:41 +01005780 // Check that both objects are sequential ASCII strings.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005781 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005782
Steve Block44f0eee2011-05-26 01:26:41 +01005783 // Compare flat ASCII strings natively. Remove arguments from stack first.
5784 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005785 __ add(sp, sp, Operand(2 * kPointerSize));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005786 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005787
5788 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
5789 // tagged as a small integer.
5790 __ bind(&runtime);
5791 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
5792}
5793
5794
5795void StringAddStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005796 Label string_add_runtime, call_builtin;
5797 Builtins::JavaScript builtin_id = Builtins::ADD;
5798
Steve Block44f0eee2011-05-26 01:26:41 +01005799 Counters* counters = masm->isolate()->counters();
5800
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005801 // Stack on entry:
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005802 // sp[0]: second argument (right).
5803 // sp[4]: first argument (left).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005804
5805 // Load the two arguments.
5806 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
5807 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
5808
5809 // Make sure that both arguments are strings if not known in advance.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005810 if (flags_ == NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005811 __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
5812 // Load instance types.
5813 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5814 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5815 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5816 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5817 STATIC_ASSERT(kStringTag == 0);
5818 // If either is not a string, go to runtime.
5819 __ tst(r4, Operand(kIsNotStringMask));
5820 __ tst(r5, Operand(kIsNotStringMask), eq);
5821 __ b(ne, &string_add_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005822 } else {
5823 // Here at least one of the arguments is definitely a string.
5824 // We convert the one that is not known to be a string.
5825 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
5826 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
5827 GenerateConvertArgument(
5828 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
5829 builtin_id = Builtins::STRING_ADD_RIGHT;
5830 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
5831 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
5832 GenerateConvertArgument(
5833 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
5834 builtin_id = Builtins::STRING_ADD_LEFT;
5835 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005836 }
5837
5838 // Both arguments are strings.
5839 // r0: first string
5840 // r1: second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005841 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
5842 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005843 {
5844 Label strings_not_empty;
5845 // Check if either of the strings are empty. In that case return the other.
5846 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
5847 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
5848 STATIC_ASSERT(kSmiTag == 0);
5849 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
5850 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
5851 STATIC_ASSERT(kSmiTag == 0);
5852 // Else test if second string is empty.
5853 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
5854 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
5855
Steve Block44f0eee2011-05-26 01:26:41 +01005856 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005857 __ add(sp, sp, Operand(2 * kPointerSize));
5858 __ Ret();
5859
5860 __ bind(&strings_not_empty);
5861 }
5862
5863 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
5864 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
5865 // Both strings are non-empty.
5866 // r0: first string
5867 // r1: second string
5868 // r2: length of first string
5869 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005870 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
5871 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005872 // Look at the length of the result of adding the two strings.
5873 Label string_add_flat_result, longer_than_two;
5874 // Adding two lengths can't overflow.
5875 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
5876 __ add(r6, r2, Operand(r3));
Steve Block44f0eee2011-05-26 01:26:41 +01005877 // Use the symbol table when adding two one character strings, as it
5878 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005879 __ cmp(r6, Operand(2));
5880 __ b(ne, &longer_than_two);
5881
Steve Block44f0eee2011-05-26 01:26:41 +01005882 // Check that both strings are non-external ASCII strings.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005883 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005884 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5885 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5886 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5887 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5888 }
5889 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
5890 &string_add_runtime);
5891
5892 // Get the two characters forming the sub string.
5893 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
5894 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
5895
5896 // Try to lookup two character string in symbol table. If it is not found
5897 // just allocate a new one.
5898 Label make_two_character_string;
5899 StringHelper::GenerateTwoCharacterSymbolTableProbe(
5900 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01005901 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005902 __ add(sp, sp, Operand(2 * kPointerSize));
5903 __ Ret();
5904
5905 __ bind(&make_two_character_string);
5906 // Resulting string has length 2 and first chars of two strings
5907 // are combined into single halfword in r2 register.
5908 // So we can fill resulting string without two loops by a single
5909 // halfword store instruction (which assumes that processor is
5910 // in a little endian mode)
5911 __ mov(r6, Operand(2));
5912 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
5913 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01005914 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005915 __ add(sp, sp, Operand(2 * kPointerSize));
5916 __ Ret();
5917
5918 __ bind(&longer_than_two);
5919 // Check if resulting string will be flat.
5920 __ cmp(r6, Operand(String::kMinNonFlatLength));
5921 __ b(lt, &string_add_flat_result);
5922 // Handle exceptionally long strings in the runtime system.
5923 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
5924 ASSERT(IsPowerOf2(String::kMaxLength + 1));
5925 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
5926 __ cmp(r6, Operand(String::kMaxLength + 1));
5927 __ b(hs, &string_add_runtime);
5928
5929 // If result is not supposed to be flat, allocate a cons string object.
Steve Block44f0eee2011-05-26 01:26:41 +01005930 // If both strings are ASCII the result is an ASCII cons string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005931 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005932 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5933 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5934 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5935 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5936 }
5937 Label non_ascii, allocated, ascii_data;
5938 STATIC_ASSERT(kTwoByteStringTag == 0);
5939 __ tst(r4, Operand(kStringEncodingMask));
5940 __ tst(r5, Operand(kStringEncodingMask), ne);
5941 __ b(eq, &non_ascii);
5942
5943 // Allocate an ASCII cons string.
5944 __ bind(&ascii_data);
5945 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
5946 __ bind(&allocated);
5947 // Fill the fields of the cons string.
5948 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
5949 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
5950 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01005951 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005952 __ add(sp, sp, Operand(2 * kPointerSize));
5953 __ Ret();
5954
5955 __ bind(&non_ascii);
5956 // At least one of the strings is two-byte. Check whether it happens
Steve Block44f0eee2011-05-26 01:26:41 +01005957 // to contain only ASCII characters.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005958 // r4: first instance type.
5959 // r5: second instance type.
5960 __ tst(r4, Operand(kAsciiDataHintMask));
5961 __ tst(r5, Operand(kAsciiDataHintMask), ne);
5962 __ b(ne, &ascii_data);
5963 __ eor(r4, r4, Operand(r5));
5964 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
5965 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
5966 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
5967 __ b(eq, &ascii_data);
5968
5969 // Allocate a two byte cons string.
5970 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
5971 __ jmp(&allocated);
5972
5973 // Handle creating a flat result. First check that both strings are
5974 // sequential and that they have the same encoding.
5975 // r0: first string
5976 // r1: second string
5977 // r2: length of first string
5978 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005979 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
5980 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005981 // r6: sum of lengths.
5982 __ bind(&string_add_flat_result);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005983 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005984 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5985 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5986 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5987 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5988 }
5989 // Check that both strings are sequential.
5990 STATIC_ASSERT(kSeqStringTag == 0);
5991 __ tst(r4, Operand(kStringRepresentationMask));
5992 __ tst(r5, Operand(kStringRepresentationMask), eq);
5993 __ b(ne, &string_add_runtime);
5994 // Now check if both strings have the same encoding (ASCII/Two-byte).
5995 // r0: first string.
5996 // r1: second string.
5997 // r2: length of first string.
5998 // r3: length of second string.
5999 // r6: sum of lengths..
6000 Label non_ascii_string_add_flat_result;
6001 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
6002 __ eor(r7, r4, Operand(r5));
6003 __ tst(r7, Operand(kStringEncodingMask));
6004 __ b(ne, &string_add_runtime);
6005 // And see if it's ASCII or two-byte.
6006 __ tst(r4, Operand(kStringEncodingMask));
6007 __ b(eq, &non_ascii_string_add_flat_result);
6008
6009 // Both strings are sequential ASCII strings. We also know that they are
6010 // short (since the sum of the lengths is less than kMinNonFlatLength).
6011 // r6: length of resulting flat string
6012 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
6013 // Locate first character of result.
6014 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6015 // Locate first character of first argument.
6016 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6017 // r0: first character of first string.
6018 // r1: second string.
6019 // r2: length of first string.
6020 // r3: length of second string.
6021 // r6: first character of result.
6022 // r7: result string.
6023 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
6024
6025 // Load second argument and locate first character.
6026 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6027 // r1: first character of second string.
6028 // r3: length of second string.
6029 // r6: next character of result.
6030 // r7: result string.
6031 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
6032 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01006033 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006034 __ add(sp, sp, Operand(2 * kPointerSize));
6035 __ Ret();
6036
6037 __ bind(&non_ascii_string_add_flat_result);
6038 // Both strings are sequential two byte strings.
6039 // r0: first string.
6040 // r1: second string.
6041 // r2: length of first string.
6042 // r3: length of second string.
6043 // r6: sum of length of strings.
6044 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
6045 // r0: first string.
6046 // r1: second string.
6047 // r2: length of first string.
6048 // r3: length of second string.
6049 // r7: result string.
6050
6051 // Locate first character of result.
6052 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6053 // Locate first character of first argument.
6054 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6055
6056 // r0: first character of first string.
6057 // r1: second string.
6058 // r2: length of first string.
6059 // r3: length of second string.
6060 // r6: first character of result.
6061 // r7: result string.
6062 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
6063
6064 // Locate first character of second argument.
6065 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6066
6067 // r1: first character of second string.
6068 // r3: length of second string.
6069 // r6: next character of result (after copy of first string).
6070 // r7: result string.
6071 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
6072
6073 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01006074 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006075 __ add(sp, sp, Operand(2 * kPointerSize));
6076 __ Ret();
6077
6078 // Just jump to runtime to add the two strings.
6079 __ bind(&string_add_runtime);
6080 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006081
6082 if (call_builtin.is_linked()) {
6083 __ bind(&call_builtin);
Ben Murdoch257744e2011-11-30 15:57:28 +00006084 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006085 }
6086}
6087
6088
6089void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6090 int stack_offset,
6091 Register arg,
6092 Register scratch1,
6093 Register scratch2,
6094 Register scratch3,
6095 Register scratch4,
6096 Label* slow) {
6097 // First check if the argument is already a string.
6098 Label not_string, done;
6099 __ JumpIfSmi(arg, &not_string);
6100 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
6101 __ b(lt, &done);
6102
6103 // Check the number to string cache.
6104 Label not_cached;
6105 __ bind(&not_string);
6106 // Puts the cached result into scratch1.
6107 NumberToStringStub::GenerateLookupNumberStringCache(masm,
6108 arg,
6109 scratch1,
6110 scratch2,
6111 scratch3,
6112 scratch4,
6113 false,
6114 &not_cached);
6115 __ mov(arg, scratch1);
6116 __ str(arg, MemOperand(sp, stack_offset));
6117 __ jmp(&done);
6118
6119 // Check if the argument is a safe string wrapper.
6120 __ bind(&not_cached);
6121 __ JumpIfSmi(arg, slow);
6122 __ CompareObjectType(
6123 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
6124 __ b(ne, slow);
6125 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6126 __ and_(scratch2,
6127 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6128 __ cmp(scratch2,
6129 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6130 __ b(ne, slow);
6131 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6132 __ str(arg, MemOperand(sp, stack_offset));
6133
6134 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006135}
6136
6137
Ben Murdochb0fe1622011-05-05 13:52:32 +01006138void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6139 ASSERT(state_ == CompareIC::SMIS);
6140 Label miss;
6141 __ orr(r2, r1, r0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006142 __ JumpIfNotSmi(r2, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006143
6144 if (GetCondition() == eq) {
6145 // For equality we do not care about the sign of the result.
6146 __ sub(r0, r0, r1, SetCC);
6147 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01006148 // Untag before subtracting to avoid handling overflow.
6149 __ SmiUntag(r1);
6150 __ sub(r0, r1, SmiUntagOperand(r0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01006151 }
6152 __ Ret();
6153
6154 __ bind(&miss);
6155 GenerateMiss(masm);
6156}
6157
6158
6159void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6160 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6161
6162 Label generic_stub;
6163 Label unordered;
6164 Label miss;
6165 __ and_(r2, r1, Operand(r0));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006166 __ JumpIfSmi(r2, &generic_stub);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006167
6168 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
6169 __ b(ne, &miss);
6170 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
6171 __ b(ne, &miss);
6172
6173 // Inlining the double comparison and falling back to the general compare
6174 // stub if NaN is involved or VFP3 is unsupported.
Ben Murdoch8b112d22011-06-08 16:22:53 +01006175 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01006176 CpuFeatures::Scope scope(VFP3);
6177
6178 // Load left and right operand
6179 __ sub(r2, r1, Operand(kHeapObjectTag));
6180 __ vldr(d0, r2, HeapNumber::kValueOffset);
6181 __ sub(r2, r0, Operand(kHeapObjectTag));
6182 __ vldr(d1, r2, HeapNumber::kValueOffset);
6183
6184 // Compare operands
Ben Murdochb8e0da22011-05-16 14:20:40 +01006185 __ VFPCompareAndSetFlags(d0, d1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006186
6187 // Don't base result on status bits when a NaN is involved.
6188 __ b(vs, &unordered);
6189
6190 // Return a result of -1, 0, or 1, based on status bits.
6191 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
6192 __ mov(r0, Operand(LESS), LeaveCC, lt);
6193 __ mov(r0, Operand(GREATER), LeaveCC, gt);
6194 __ Ret();
6195
6196 __ bind(&unordered);
6197 }
6198
6199 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
6200 __ bind(&generic_stub);
6201 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6202
6203 __ bind(&miss);
6204 GenerateMiss(masm);
6205}
6206
6207
Ben Murdoch257744e2011-11-30 15:57:28 +00006208void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
6209 ASSERT(state_ == CompareIC::SYMBOLS);
6210 Label miss;
6211
6212 // Registers containing left and right operands respectively.
6213 Register left = r1;
6214 Register right = r0;
6215 Register tmp1 = r2;
6216 Register tmp2 = r3;
6217
6218 // Check that both operands are heap objects.
6219 __ JumpIfEitherSmi(left, right, &miss);
6220
6221 // Check that both operands are symbols.
6222 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6223 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6224 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6225 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6226 STATIC_ASSERT(kSymbolTag != 0);
6227 __ and_(tmp1, tmp1, Operand(tmp2));
6228 __ tst(tmp1, Operand(kIsSymbolMask));
6229 __ b(eq, &miss);
6230
6231 // Symbols are compared by identity.
6232 __ cmp(left, right);
6233 // Make sure r0 is non-zero. At this point input operands are
6234 // guaranteed to be non-zero.
6235 ASSERT(right.is(r0));
6236 STATIC_ASSERT(EQUAL == 0);
6237 STATIC_ASSERT(kSmiTag == 0);
6238 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6239 __ Ret();
6240
6241 __ bind(&miss);
6242 GenerateMiss(masm);
6243}
6244
6245
6246void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
6247 ASSERT(state_ == CompareIC::STRINGS);
6248 Label miss;
6249
6250 // Registers containing left and right operands respectively.
6251 Register left = r1;
6252 Register right = r0;
6253 Register tmp1 = r2;
6254 Register tmp2 = r3;
6255 Register tmp3 = r4;
6256 Register tmp4 = r5;
6257
6258 // Check that both operands are heap objects.
6259 __ JumpIfEitherSmi(left, right, &miss);
6260
6261 // Check that both operands are strings. This leaves the instance
6262 // types loaded in tmp1 and tmp2.
6263 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6264 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6265 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6266 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6267 STATIC_ASSERT(kNotStringTag != 0);
6268 __ orr(tmp3, tmp1, tmp2);
6269 __ tst(tmp3, Operand(kIsNotStringMask));
6270 __ b(ne, &miss);
6271
6272 // Fast check for identical strings.
6273 __ cmp(left, right);
6274 STATIC_ASSERT(EQUAL == 0);
6275 STATIC_ASSERT(kSmiTag == 0);
6276 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
6277 __ Ret(eq);
6278
6279 // Handle not identical strings.
6280
6281 // Check that both strings are symbols. If they are, we're done
6282 // because we already know they are not identical.
6283 ASSERT(GetCondition() == eq);
6284 STATIC_ASSERT(kSymbolTag != 0);
6285 __ and_(tmp3, tmp1, Operand(tmp2));
6286 __ tst(tmp3, Operand(kIsSymbolMask));
6287 // Make sure r0 is non-zero. At this point input operands are
6288 // guaranteed to be non-zero.
6289 ASSERT(right.is(r0));
6290 __ Ret(ne);
6291
6292 // Check that both strings are sequential ASCII.
6293 Label runtime;
6294 __ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4,
6295 &runtime);
6296
6297 // Compare flat ASCII strings. Returns when done.
6298 StringCompareStub::GenerateFlatAsciiStringEquals(
6299 masm, left, right, tmp1, tmp2, tmp3);
6300
6301 // Handle more complex cases in runtime.
6302 __ bind(&runtime);
6303 __ Push(left, right);
6304 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6305
6306 __ bind(&miss);
6307 GenerateMiss(masm);
6308}
6309
6310
Ben Murdochb0fe1622011-05-05 13:52:32 +01006311void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6312 ASSERT(state_ == CompareIC::OBJECTS);
6313 Label miss;
6314 __ and_(r2, r1, Operand(r0));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006315 __ JumpIfSmi(r2, &miss);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006316
6317 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
6318 __ b(ne, &miss);
6319 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
6320 __ b(ne, &miss);
6321
6322 ASSERT(GetCondition() == eq);
6323 __ sub(r0, r0, Operand(r1));
6324 __ Ret();
6325
6326 __ bind(&miss);
6327 GenerateMiss(masm);
6328}
6329
6330
6331void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
6332 __ Push(r1, r0);
6333 __ push(lr);
6334
6335 // Call the runtime system in a fresh internal frame.
Steve Block44f0eee2011-05-26 01:26:41 +01006336 ExternalReference miss =
6337 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01006338 __ EnterInternalFrame();
6339 __ Push(r1, r0);
6340 __ mov(ip, Operand(Smi::FromInt(op_)));
6341 __ push(ip);
6342 __ CallExternalReference(miss, 3);
6343 __ LeaveInternalFrame();
6344 // Compute the entry point of the rewritten stub.
6345 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
6346 // Restore registers.
6347 __ pop(lr);
6348 __ pop(r0);
6349 __ pop(r1);
6350 __ Jump(r2);
6351}
6352
6353
Steve Block1e0659c2011-05-24 12:43:12 +01006354void DirectCEntryStub::Generate(MacroAssembler* masm) {
6355 __ ldr(pc, MemOperand(sp, 0));
6356}
6357
6358
6359void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006360 ExternalReference function) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006361 __ mov(r2, Operand(function));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006362 GenerateCall(masm, r2);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006363}
6364
6365
6366void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
6367 Register target) {
Steve Block1e0659c2011-05-24 12:43:12 +01006368 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
6369 RelocInfo::CODE_TARGET));
6370 // Push return address (accessible to GC through exit frame pc).
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006371 // Note that using pc with str is deprecated.
6372 Label start;
6373 __ bind(&start);
6374 __ add(ip, pc, Operand(Assembler::kInstrSize));
6375 __ str(ip, MemOperand(sp, 0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006376 __ Jump(target); // Call the C++ function.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006377 ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
6378 masm->SizeOfCodeGeneratedSince(&start));
Steve Block1e0659c2011-05-24 12:43:12 +01006379}
6380
6381
Ben Murdoch257744e2011-11-30 15:57:28 +00006382MaybeObject* StringDictionaryLookupStub::GenerateNegativeLookup(
6383 MacroAssembler* masm,
6384 Label* miss,
6385 Label* done,
6386 Register receiver,
6387 Register properties,
6388 String* name,
6389 Register scratch0) {
6390 // If names of slots in range from 1 to kProbes - 1 for the hash value are
6391 // not equal to the name and kProbes-th slot is not used (its name is the
6392 // undefined value), it guarantees the hash table doesn't contain the
6393 // property. It's true even if some slots represent deleted properties
6394 // (their names are the null value).
6395 for (int i = 0; i < kInlinedProbes; i++) {
6396 // scratch0 points to properties hash.
6397 // Compute the masked index: (hash + i + i * i) & mask.
6398 Register index = scratch0;
6399 // Capacity is smi 2^n.
6400 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
6401 __ sub(index, index, Operand(1));
6402 __ and_(index, index, Operand(
6403 Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
6404
6405 // Scale the index by multiplying by the entry size.
6406 ASSERT(StringDictionary::kEntrySize == 3);
6407 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
6408
6409 Register entity_name = scratch0;
6410 // Having undefined at this place means the name is not contained.
6411 ASSERT_EQ(kSmiTagSize, 1);
6412 Register tmp = properties;
6413 __ add(tmp, properties, Operand(index, LSL, 1));
6414 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
6415
6416 ASSERT(!tmp.is(entity_name));
6417 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
6418 __ cmp(entity_name, tmp);
6419 __ b(eq, done);
6420
6421 if (i != kInlinedProbes - 1) {
6422 // Stop if found the property.
6423 __ cmp(entity_name, Operand(Handle<String>(name)));
6424 __ b(eq, miss);
6425
6426 // Check if the entry name is not a symbol.
6427 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
6428 __ ldrb(entity_name,
6429 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
6430 __ tst(entity_name, Operand(kIsSymbolMask));
6431 __ b(eq, miss);
6432
6433 // Restore the properties.
6434 __ ldr(properties,
6435 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6436 }
6437 }
6438
6439 const int spill_mask =
6440 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
6441 r2.bit() | r1.bit() | r0.bit());
6442
6443 __ stm(db_w, sp, spill_mask);
6444 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
6445 __ mov(r1, Operand(Handle<String>(name)));
6446 StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
6447 MaybeObject* result = masm->TryCallStub(&stub);
6448 if (result->IsFailure()) return result;
6449 __ tst(r0, Operand(r0));
6450 __ ldm(ia_w, sp, spill_mask);
6451
6452 __ b(eq, done);
6453 __ b(ne, miss);
6454 return result;
6455}
6456
6457
6458// Probe the string dictionary in the |elements| register. Jump to the
6459// |done| label if a property with the given name is found. Jump to
6460// the |miss| label otherwise.
6461// If lookup was successful |scratch2| will be equal to elements + 4 * index.
6462void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
6463 Label* miss,
6464 Label* done,
6465 Register elements,
6466 Register name,
6467 Register scratch1,
6468 Register scratch2) {
6469 // Assert that name contains a string.
6470 if (FLAG_debug_code) __ AbortIfNotString(name);
6471
6472 // Compute the capacity mask.
6473 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
6474 __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
6475 __ sub(scratch1, scratch1, Operand(1));
6476
6477 // Generate an unrolled loop that performs a few probes before
6478 // giving up. Measurements done on Gmail indicate that 2 probes
6479 // cover ~93% of loads from dictionaries.
6480 for (int i = 0; i < kInlinedProbes; i++) {
6481 // Compute the masked index: (hash + i + i * i) & mask.
6482 __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
6483 if (i > 0) {
6484 // Add the probe offset (i + i * i) left shifted to avoid right shifting
6485 // the hash in a separate instruction. The value hash + i + i * i is right
6486 // shifted in the following and instruction.
6487 ASSERT(StringDictionary::GetProbeOffset(i) <
6488 1 << (32 - String::kHashFieldOffset));
6489 __ add(scratch2, scratch2, Operand(
6490 StringDictionary::GetProbeOffset(i) << String::kHashShift));
6491 }
6492 __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
6493
6494 // Scale the index by multiplying by the element size.
6495 ASSERT(StringDictionary::kEntrySize == 3);
6496 // scratch2 = scratch2 * 3.
6497 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
6498
6499 // Check if the key is identical to the name.
6500 __ add(scratch2, elements, Operand(scratch2, LSL, 2));
6501 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
6502 __ cmp(name, Operand(ip));
6503 __ b(eq, done);
6504 }
6505
6506 const int spill_mask =
6507 (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
6508 r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
6509 ~(scratch1.bit() | scratch2.bit());
6510
6511 __ stm(db_w, sp, spill_mask);
6512 __ Move(r0, elements);
6513 __ Move(r1, name);
6514 StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
6515 __ CallStub(&stub);
6516 __ tst(r0, Operand(r0));
6517 __ mov(scratch2, Operand(r2));
6518 __ ldm(ia_w, sp, spill_mask);
6519
6520 __ b(ne, done);
6521 __ b(eq, miss);
6522}
6523
6524
6525void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
6526 // Registers:
6527 // result: StringDictionary to probe
6528 // r1: key
6529 // : StringDictionary to probe.
6530 // index_: will hold an index of entry if lookup is successful.
6531 // might alias with result_.
6532 // Returns:
6533 // result_ is zero if lookup failed, non zero otherwise.
6534
6535 Register result = r0;
6536 Register dictionary = r0;
6537 Register key = r1;
6538 Register index = r2;
6539 Register mask = r3;
6540 Register hash = r4;
6541 Register undefined = r5;
6542 Register entry_key = r6;
6543
6544 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
6545
6546 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
6547 __ mov(mask, Operand(mask, ASR, kSmiTagSize));
6548 __ sub(mask, mask, Operand(1));
6549
6550 __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
6551
6552 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
6553
6554 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
6555 // Compute the masked index: (hash + i + i * i) & mask.
6556 // Capacity is smi 2^n.
6557 if (i > 0) {
6558 // Add the probe offset (i + i * i) left shifted to avoid right shifting
6559 // the hash in a separate instruction. The value hash + i + i * i is right
6560 // shifted in the following and instruction.
6561 ASSERT(StringDictionary::GetProbeOffset(i) <
6562 1 << (32 - String::kHashFieldOffset));
6563 __ add(index, hash, Operand(
6564 StringDictionary::GetProbeOffset(i) << String::kHashShift));
6565 } else {
6566 __ mov(index, Operand(hash));
6567 }
6568 __ and_(index, mask, Operand(index, LSR, String::kHashShift));
6569
6570 // Scale the index by multiplying by the entry size.
6571 ASSERT(StringDictionary::kEntrySize == 3);
6572 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
6573
6574 ASSERT_EQ(kSmiTagSize, 1);
6575 __ add(index, dictionary, Operand(index, LSL, 2));
6576 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
6577
6578 // Having undefined at this place means the name is not contained.
6579 __ cmp(entry_key, Operand(undefined));
6580 __ b(eq, &not_in_dictionary);
6581
6582 // Stop if found the property.
6583 __ cmp(entry_key, Operand(key));
6584 __ b(eq, &in_dictionary);
6585
6586 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
6587 // Check if the entry name is not a symbol.
6588 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
6589 __ ldrb(entry_key,
6590 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
6591 __ tst(entry_key, Operand(kIsSymbolMask));
6592 __ b(eq, &maybe_in_dictionary);
6593 }
6594 }
6595
6596 __ bind(&maybe_in_dictionary);
6597 // If we are doing negative lookup then probing failure should be
6598 // treated as a lookup success. For positive lookup probing failure
6599 // should be treated as lookup failure.
6600 if (mode_ == POSITIVE_LOOKUP) {
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006601 __ mov(result, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00006602 __ Ret();
6603 }
6604
6605 __ bind(&in_dictionary);
6606 __ mov(result, Operand(1));
6607 __ Ret();
6608
6609 __ bind(&not_in_dictionary);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00006610 __ mov(result, Operand::Zero());
Ben Murdoch257744e2011-11-30 15:57:28 +00006611 __ Ret();
6612}
6613
6614
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006615#undef __
6616
6617} } // namespace v8::internal
6618
6619#endif // V8_TARGET_ARCH_ARM