blob: 1264dd9b2dad8ce513c55f318bee303bc2483580 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X87
8
9#include "src/base/bits.h"
10#include "src/bootstrapper.h"
11#include "src/code-stubs.h"
12#include "src/codegen.h"
13#include "src/ic/handler-compiler.h"
14#include "src/ic/ic.h"
15#include "src/isolate.h"
16#include "src/jsregexp.h"
17#include "src/regexp-macro-assembler.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040018#include "src/runtime/runtime.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000019
20namespace v8 {
21namespace internal {
22
23
24static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
27 // register state
28 // eax -- number of arguments
29 // edi -- function
30 // ebx -- allocation site with elements kind
31 Address deopt_handler = Runtime::FunctionForId(
32 Runtime::kArrayConstructor)->entry;
33
34 if (constant_stack_parameter_count == 0) {
35 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
36 JS_FUNCTION_STUB_MODE);
37 } else {
38 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
39 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
40 }
41}
42
43
44static void InitializeInternalArrayConstructorDescriptor(
45 Isolate* isolate, CodeStubDescriptor* descriptor,
46 int constant_stack_parameter_count) {
47 // register state
48 // eax -- number of arguments
49 // edi -- constructor function
50 Address deopt_handler = Runtime::FunctionForId(
51 Runtime::kInternalArrayConstructor)->entry;
52
53 if (constant_stack_parameter_count == 0) {
54 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
55 JS_FUNCTION_STUB_MODE);
56 } else {
57 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
58 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
59 }
60}
61
62
63void ArrayNoArgumentConstructorStub::InitializeDescriptor(
64 CodeStubDescriptor* descriptor) {
65 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
66}
67
68
69void ArraySingleArgumentConstructorStub::InitializeDescriptor(
70 CodeStubDescriptor* descriptor) {
71 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
72}
73
74
75void ArrayNArgumentsConstructorStub::InitializeDescriptor(
76 CodeStubDescriptor* descriptor) {
77 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
78}
79
80
81void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
82 CodeStubDescriptor* descriptor) {
83 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
84}
85
86
87void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
88 CodeStubDescriptor* descriptor) {
89 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
90}
91
92
93void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
94 CodeStubDescriptor* descriptor) {
95 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
96}
97
98
99#define __ ACCESS_MASM(masm)
100
101
102void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
103 ExternalReference miss) {
104 // Update the static counter each time a new code stub is generated.
105 isolate()->counters()->code_stubs()->Increment();
106
107 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
108 int param_count = descriptor.GetEnvironmentParameterCount();
109 {
110 // Call the runtime system in a fresh internal frame.
111 FrameScope scope(masm, StackFrame::INTERNAL);
112 DCHECK(param_count == 0 ||
113 eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
114 // Push arguments
115 for (int i = 0; i < param_count; ++i) {
116 __ push(descriptor.GetEnvironmentParameterRegister(i));
117 }
118 __ CallExternalReference(miss, param_count);
119 }
120
121 __ ret(0);
122}
123
124
125void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
126 // We don't allow a GC during a store buffer overflow so there is no need to
127 // store the registers in any particular way, but we do have to store and
128 // restore them.
129 __ pushad();
130 if (save_doubles()) {
131 // Save FPU stat in m108byte.
132 __ sub(esp, Immediate(108));
133 __ fnsave(Operand(esp, 0));
134 }
135 const int argument_count = 1;
136
137 AllowExternalCallThatCantCauseGC scope(masm);
138 __ PrepareCallCFunction(argument_count, ecx);
139 __ mov(Operand(esp, 0 * kPointerSize),
140 Immediate(ExternalReference::isolate_address(isolate())));
141 __ CallCFunction(
142 ExternalReference::store_buffer_overflow_function(isolate()),
143 argument_count);
144 if (save_doubles()) {
145 // Restore FPU stat in m108byte.
146 __ frstor(Operand(esp, 0));
147 __ add(esp, Immediate(108));
148 }
149 __ popad();
150 __ ret(0);
151}
152
153
154class FloatingPointHelper : public AllStatic {
155 public:
156 enum ArgLocation {
157 ARGS_ON_STACK,
158 ARGS_IN_REGISTERS
159 };
160
161 // Code pattern for loading a floating point value. Input value must
162 // be either a smi or a heap number object (fp value). Requirements:
163 // operand in register number. Returns operand as floating point number
164 // on FPU stack.
165 static void LoadFloatOperand(MacroAssembler* masm, Register number);
166
167 // Test if operands are smi or number objects (fp). Requirements:
168 // operand_1 in eax, operand_2 in edx; falls through on float
169 // operands, jumps to the non_float label otherwise.
170 static void CheckFloatOperands(MacroAssembler* masm,
171 Label* non_float,
172 Register scratch);
173};
174
175
176void DoubleToIStub::Generate(MacroAssembler* masm) {
177 Register input_reg = this->source();
178 Register final_result_reg = this->destination();
179 DCHECK(is_truncating());
180
181 Label check_negative, process_64_bits, done, done_no_stash;
182
183 int double_offset = offset();
184
185 // Account for return address and saved regs if input is esp.
186 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
187
188 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
189 MemOperand exponent_operand(MemOperand(input_reg,
190 double_offset + kDoubleSize / 2));
191
192 Register scratch1;
193 {
194 Register scratch_candidates[3] = { ebx, edx, edi };
195 for (int i = 0; i < 3; i++) {
196 scratch1 = scratch_candidates[i];
197 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
198 }
199 }
200 // Since we must use ecx for shifts below, use some other register (eax)
201 // to calculate the result if ecx is the requested return register.
202 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
203 // Save ecx if it isn't the return register and therefore volatile, or if it
204 // is the return register, then save the temp register we use in its stead for
205 // the result.
206 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
207 __ push(scratch1);
208 __ push(save_reg);
209
210 bool stash_exponent_copy = !input_reg.is(esp);
211 __ mov(scratch1, mantissa_operand);
212 __ mov(ecx, exponent_operand);
213 if (stash_exponent_copy) __ push(ecx);
214
215 __ and_(ecx, HeapNumber::kExponentMask);
216 __ shr(ecx, HeapNumber::kExponentShift);
217 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
218 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
219 __ j(below, &process_64_bits);
220
221 // Result is entirely in lower 32-bits of mantissa
222 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
223 __ sub(ecx, Immediate(delta));
224 __ xor_(result_reg, result_reg);
225 __ cmp(ecx, Immediate(31));
226 __ j(above, &done);
227 __ shl_cl(scratch1);
228 __ jmp(&check_negative);
229
230 __ bind(&process_64_bits);
231 // Result must be extracted from shifted 32-bit mantissa
232 __ sub(ecx, Immediate(delta));
233 __ neg(ecx);
234 if (stash_exponent_copy) {
235 __ mov(result_reg, MemOperand(esp, 0));
236 } else {
237 __ mov(result_reg, exponent_operand);
238 }
239 __ and_(result_reg,
240 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
241 __ add(result_reg,
242 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
243 __ shrd(result_reg, scratch1);
244 __ shr_cl(result_reg);
245 __ test(ecx, Immediate(32));
246 {
247 Label skip_mov;
248 __ j(equal, &skip_mov, Label::kNear);
249 __ mov(scratch1, result_reg);
250 __ bind(&skip_mov);
251 }
252
253 // If the double was negative, negate the integer result.
254 __ bind(&check_negative);
255 __ mov(result_reg, scratch1);
256 __ neg(result_reg);
257 if (stash_exponent_copy) {
258 __ cmp(MemOperand(esp, 0), Immediate(0));
259 } else {
260 __ cmp(exponent_operand, Immediate(0));
261 }
262 {
263 Label skip_mov;
264 __ j(less_equal, &skip_mov, Label::kNear);
265 __ mov(result_reg, scratch1);
266 __ bind(&skip_mov);
267 }
268
269 // Restore registers
270 __ bind(&done);
271 if (stash_exponent_copy) {
272 __ add(esp, Immediate(kDoubleSize / 2));
273 }
274 __ bind(&done_no_stash);
275 if (!final_result_reg.is(result_reg)) {
276 DCHECK(final_result_reg.is(ecx));
277 __ mov(final_result_reg, result_reg);
278 }
279 __ pop(save_reg);
280 __ pop(scratch1);
281 __ ret(0);
282}
283
284
285void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
286 Register number) {
287 Label load_smi, done;
288
289 __ JumpIfSmi(number, &load_smi, Label::kNear);
290 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
291 __ jmp(&done, Label::kNear);
292
293 __ bind(&load_smi);
294 __ SmiUntag(number);
295 __ push(number);
296 __ fild_s(Operand(esp, 0));
297 __ pop(number);
298
299 __ bind(&done);
300}
301
302
303void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
304 Label* non_float,
305 Register scratch) {
306 Label test_other, done;
307 // Test if both operands are floats or smi -> scratch=k_is_float;
308 // Otherwise scratch = k_not_float.
309 __ JumpIfSmi(edx, &test_other, Label::kNear);
310 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
311 Factory* factory = masm->isolate()->factory();
312 __ cmp(scratch, factory->heap_number_map());
313 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
314
315 __ bind(&test_other);
316 __ JumpIfSmi(eax, &done, Label::kNear);
317 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
318 __ cmp(scratch, factory->heap_number_map());
319 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
320
321 // Fall-through: Both operands are numbers.
322 __ bind(&done);
323}
324
325
326void MathPowStub::Generate(MacroAssembler* masm) {
327 // No SSE2 support
328 UNREACHABLE();
329}
330
331
332void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
333 Label miss;
334 Register receiver = LoadDescriptor::ReceiverRegister();
335
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400336 if (FLAG_vector_ics) {
337 // With careful management, we won't have to save slot and vector on
338 // the stack. Simply handle the possibly missing case first.
339 // TODO(mvstanton): this code can be more efficient.
340 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
341 Immediate(isolate()->factory()->the_hole_value()));
342 __ j(equal, &miss);
343 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
344 __ ret(0);
345 } else {
346 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax,
347 ebx, &miss);
348 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000349 __ bind(&miss);
350 PropertyAccessCompiler::TailCallBuiltin(
351 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
352}
353
354
355void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
356 // Return address is on the stack.
357 Label slow;
358
359 Register receiver = LoadDescriptor::ReceiverRegister();
360 Register key = LoadDescriptor::NameRegister();
361 Register scratch = eax;
362 DCHECK(!scratch.is(receiver) && !scratch.is(key));
363
364 // Check that the key is an array index, that is Uint32.
365 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
366 __ j(not_zero, &slow);
367
368 // Everything is fine, call runtime.
369 __ pop(scratch);
370 __ push(receiver); // receiver
371 __ push(key); // key
372 __ push(scratch); // return address
373
374 // Perform tail call to the entry.
375 ExternalReference ref = ExternalReference(
376 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
377 __ TailCallExternalReference(ref, 2, 1);
378
379 __ bind(&slow);
380 PropertyAccessCompiler::TailCallBuiltin(
381 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
382}
383
384
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400385void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
386 // Return address is on the stack.
387 Label miss;
388
389 Register receiver = LoadDescriptor::ReceiverRegister();
390 Register index = LoadDescriptor::NameRegister();
391 Register scratch = edi;
392 DCHECK(!scratch.is(receiver) && !scratch.is(index));
393 Register result = eax;
394 DCHECK(!result.is(scratch));
395 DCHECK(!FLAG_vector_ics ||
396 (!scratch.is(VectorLoadICDescriptor::VectorRegister()) &&
397 result.is(VectorLoadICDescriptor::SlotRegister())));
398
399 // StringCharAtGenerator doesn't use the result register until it's passed
400 // the different miss possibilities. If it did, we would have a conflict
401 // when FLAG_vector_ics is true.
402
403 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
404 &miss, // When not a string.
405 &miss, // When not a number.
406 &miss, // When index out of range.
407 STRING_INDEX_IS_ARRAY_INDEX,
408 RECEIVER_IS_STRING);
409 char_at_generator.GenerateFast(masm);
410 __ ret(0);
411
412 StubRuntimeCallHelper call_helper;
413 char_at_generator.GenerateSlow(masm, call_helper);
414
415 __ bind(&miss);
416 PropertyAccessCompiler::TailCallBuiltin(
417 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
418}
419
420
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000421void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
422 // The key is in edx and the parameter count is in eax.
423 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
424 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
425
426 // The displacement is used for skipping the frame pointer on the
427 // stack. It is the offset of the last parameter (if any) relative
428 // to the frame pointer.
429 static const int kDisplacement = 1 * kPointerSize;
430
431 // Check that the key is a smi.
432 Label slow;
433 __ JumpIfNotSmi(edx, &slow, Label::kNear);
434
435 // Check if the calling frame is an arguments adaptor frame.
436 Label adaptor;
437 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
438 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
439 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
440 __ j(equal, &adaptor, Label::kNear);
441
442 // Check index against formal parameters count limit passed in
443 // through register eax. Use unsigned comparison to get negative
444 // check for free.
445 __ cmp(edx, eax);
446 __ j(above_equal, &slow, Label::kNear);
447
448 // Read the argument from the stack and return it.
449 STATIC_ASSERT(kSmiTagSize == 1);
450 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
451 __ lea(ebx, Operand(ebp, eax, times_2, 0));
452 __ neg(edx);
453 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
454 __ ret(0);
455
456 // Arguments adaptor case: Check index against actual arguments
457 // limit found in the arguments adaptor frame. Use unsigned
458 // comparison to get negative check for free.
459 __ bind(&adaptor);
460 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
461 __ cmp(edx, ecx);
462 __ j(above_equal, &slow, Label::kNear);
463
464 // Read the argument from the stack and return it.
465 STATIC_ASSERT(kSmiTagSize == 1);
466 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
467 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
468 __ neg(edx);
469 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
470 __ ret(0);
471
472 // Slow-case: Handle non-smi or out-of-bounds access to arguments
473 // by calling the runtime system.
474 __ bind(&slow);
475 __ pop(ebx); // Return address.
476 __ push(edx);
477 __ push(ebx);
478 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
479}
480
481
482void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
483 // esp[0] : return address
484 // esp[4] : number of parameters
485 // esp[8] : receiver displacement
486 // esp[12] : function
487
488 // Check if the calling frame is an arguments adaptor frame.
489 Label runtime;
490 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
491 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
492 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
493 __ j(not_equal, &runtime, Label::kNear);
494
495 // Patch the arguments.length and the parameters pointer.
496 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
497 __ mov(Operand(esp, 1 * kPointerSize), ecx);
498 __ lea(edx, Operand(edx, ecx, times_2,
499 StandardFrameConstants::kCallerSPOffset));
500 __ mov(Operand(esp, 2 * kPointerSize), edx);
501
502 __ bind(&runtime);
503 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
504}
505
506
507void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
508 // esp[0] : return address
509 // esp[4] : number of parameters (tagged)
510 // esp[8] : receiver displacement
511 // esp[12] : function
512
513 // ebx = parameter count (tagged)
514 __ mov(ebx, Operand(esp, 1 * kPointerSize));
515
516 // Check if the calling frame is an arguments adaptor frame.
517 // TODO(rossberg): Factor out some of the bits that are shared with the other
518 // Generate* functions.
519 Label runtime;
520 Label adaptor_frame, try_allocate;
521 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
522 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
523 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
524 __ j(equal, &adaptor_frame, Label::kNear);
525
526 // No adaptor, parameter count = argument count.
527 __ mov(ecx, ebx);
528 __ jmp(&try_allocate, Label::kNear);
529
530 // We have an adaptor frame. Patch the parameters pointer.
531 __ bind(&adaptor_frame);
532 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
533 __ lea(edx, Operand(edx, ecx, times_2,
534 StandardFrameConstants::kCallerSPOffset));
535 __ mov(Operand(esp, 2 * kPointerSize), edx);
536
537 // ebx = parameter count (tagged)
538 // ecx = argument count (smi-tagged)
539 // esp[4] = parameter count (tagged)
540 // esp[8] = address of receiver argument
541 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
542 __ cmp(ebx, ecx);
543 __ j(less_equal, &try_allocate, Label::kNear);
544 __ mov(ebx, ecx);
545
546 __ bind(&try_allocate);
547
548 // Save mapped parameter count.
549 __ push(ebx);
550
551 // Compute the sizes of backing store, parameter map, and arguments object.
552 // 1. Parameter map, has 2 extra words containing context and backing store.
553 const int kParameterMapHeaderSize =
554 FixedArray::kHeaderSize + 2 * kPointerSize;
555 Label no_parameter_map;
556 __ test(ebx, ebx);
557 __ j(zero, &no_parameter_map, Label::kNear);
558 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
559 __ bind(&no_parameter_map);
560
561 // 2. Backing store.
562 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
563
564 // 3. Arguments object.
565 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
566
567 // Do the allocation of all three objects in one go.
568 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
569
570 // eax = address of new object(s) (tagged)
571 // ecx = argument count (smi-tagged)
572 // esp[0] = mapped parameter count (tagged)
573 // esp[8] = parameter count (tagged)
574 // esp[12] = address of receiver argument
575 // Get the arguments map from the current native context into edi.
576 Label has_mapped_parameters, instantiate;
577 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
578 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
579 __ mov(ebx, Operand(esp, 0 * kPointerSize));
580 __ test(ebx, ebx);
581 __ j(not_zero, &has_mapped_parameters, Label::kNear);
582 __ mov(
583 edi,
584 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
585 __ jmp(&instantiate, Label::kNear);
586
587 __ bind(&has_mapped_parameters);
588 __ mov(
589 edi,
590 Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
591 __ bind(&instantiate);
592
593 // eax = address of new object (tagged)
594 // ebx = mapped parameter count (tagged)
595 // ecx = argument count (smi-tagged)
596 // edi = address of arguments map (tagged)
597 // esp[0] = mapped parameter count (tagged)
598 // esp[8] = parameter count (tagged)
599 // esp[12] = address of receiver argument
600 // Copy the JS object part.
601 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
602 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
603 masm->isolate()->factory()->empty_fixed_array());
604 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
605 masm->isolate()->factory()->empty_fixed_array());
606
607 // Set up the callee in-object property.
608 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
609 __ mov(edx, Operand(esp, 4 * kPointerSize));
610 __ AssertNotSmi(edx);
611 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
612 Heap::kArgumentsCalleeIndex * kPointerSize),
613 edx);
614
615 // Use the length (smi tagged) and set that as an in-object property too.
616 __ AssertSmi(ecx);
617 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
618 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
619 Heap::kArgumentsLengthIndex * kPointerSize),
620 ecx);
621
622 // Set up the elements pointer in the allocated arguments object.
623 // If we allocated a parameter map, edi will point there, otherwise to the
624 // backing store.
625 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
626 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
627
628 // eax = address of new object (tagged)
629 // ebx = mapped parameter count (tagged)
630 // ecx = argument count (tagged)
631 // edi = address of parameter map or backing store (tagged)
632 // esp[0] = mapped parameter count (tagged)
633 // esp[8] = parameter count (tagged)
634 // esp[12] = address of receiver argument
635 // Free a register.
636 __ push(eax);
637
638 // Initialize parameter map. If there are no mapped arguments, we're done.
639 Label skip_parameter_map;
640 __ test(ebx, ebx);
641 __ j(zero, &skip_parameter_map);
642
643 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
644 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
645 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
646 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
647 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
648 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
649 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
650
651 // Copy the parameter slots and the holes in the arguments.
652 // We need to fill in mapped_parameter_count slots. They index the context,
653 // where parameters are stored in reverse order, at
654 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
655 // The mapped parameter thus need to get indices
656 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
657 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
658 // We loop from right to left.
659 Label parameters_loop, parameters_test;
660 __ push(ecx);
661 __ mov(eax, Operand(esp, 2 * kPointerSize));
662 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
663 __ add(ebx, Operand(esp, 4 * kPointerSize));
664 __ sub(ebx, eax);
665 __ mov(ecx, isolate()->factory()->the_hole_value());
666 __ mov(edx, edi);
667 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
668 // eax = loop variable (tagged)
669 // ebx = mapping index (tagged)
670 // ecx = the hole value
671 // edx = address of parameter map (tagged)
672 // edi = address of backing store (tagged)
673 // esp[0] = argument count (tagged)
674 // esp[4] = address of new object (tagged)
675 // esp[8] = mapped parameter count (tagged)
676 // esp[16] = parameter count (tagged)
677 // esp[20] = address of receiver argument
678 __ jmp(&parameters_test, Label::kNear);
679
680 __ bind(&parameters_loop);
681 __ sub(eax, Immediate(Smi::FromInt(1)));
682 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
683 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
684 __ add(ebx, Immediate(Smi::FromInt(1)));
685 __ bind(&parameters_test);
686 __ test(eax, eax);
687 __ j(not_zero, &parameters_loop, Label::kNear);
688 __ pop(ecx);
689
690 __ bind(&skip_parameter_map);
691
692 // ecx = argument count (tagged)
693 // edi = address of backing store (tagged)
694 // esp[0] = address of new object (tagged)
695 // esp[4] = mapped parameter count (tagged)
696 // esp[12] = parameter count (tagged)
697 // esp[16] = address of receiver argument
698 // Copy arguments header and remaining slots (if there are any).
699 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
700 Immediate(isolate()->factory()->fixed_array_map()));
701 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
702
703 Label arguments_loop, arguments_test;
704 __ mov(ebx, Operand(esp, 1 * kPointerSize));
705 __ mov(edx, Operand(esp, 4 * kPointerSize));
706 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
707 __ sub(edx, ebx);
708 __ jmp(&arguments_test, Label::kNear);
709
710 __ bind(&arguments_loop);
711 __ sub(edx, Immediate(kPointerSize));
712 __ mov(eax, Operand(edx, 0));
713 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
714 __ add(ebx, Immediate(Smi::FromInt(1)));
715
716 __ bind(&arguments_test);
717 __ cmp(ebx, ecx);
718 __ j(less, &arguments_loop, Label::kNear);
719
720 // Restore.
721 __ pop(eax); // Address of arguments object.
722 __ pop(ebx); // Parameter count.
723
724 // Return and remove the on-stack parameters.
725 __ ret(3 * kPointerSize);
726
727 // Do the runtime call to allocate the arguments object.
728 __ bind(&runtime);
729 __ pop(eax); // Remove saved parameter count.
730 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
731 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
732}
733
734
735void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
736 // esp[0] : return address
737 // esp[4] : number of parameters
738 // esp[8] : receiver displacement
739 // esp[12] : function
740
741 // Check if the calling frame is an arguments adaptor frame.
742 Label adaptor_frame, try_allocate, runtime;
743 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
744 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
745 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
746 __ j(equal, &adaptor_frame, Label::kNear);
747
748 // Get the length from the frame.
749 __ mov(ecx, Operand(esp, 1 * kPointerSize));
750 __ jmp(&try_allocate, Label::kNear);
751
752 // Patch the arguments.length and the parameters pointer.
753 __ bind(&adaptor_frame);
754 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
755 __ mov(Operand(esp, 1 * kPointerSize), ecx);
756 __ lea(edx, Operand(edx, ecx, times_2,
757 StandardFrameConstants::kCallerSPOffset));
758 __ mov(Operand(esp, 2 * kPointerSize), edx);
759
760 // Try the new space allocation. Start out with computing the size of
761 // the arguments object and the elements array.
762 Label add_arguments_object;
763 __ bind(&try_allocate);
764 __ test(ecx, ecx);
765 __ j(zero, &add_arguments_object, Label::kNear);
766 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
767 __ bind(&add_arguments_object);
768 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
769
770 // Do the allocation of both objects in one go.
771 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
772
773 // Get the arguments map from the current native context.
774 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
775 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
776 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
777 __ mov(edi, Operand(edi, offset));
778
779 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
780 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
781 masm->isolate()->factory()->empty_fixed_array());
782 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
783 masm->isolate()->factory()->empty_fixed_array());
784
785 // Get the length (smi tagged) and set that as an in-object property too.
786 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
787 __ mov(ecx, Operand(esp, 1 * kPointerSize));
788 __ AssertSmi(ecx);
789 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
790 Heap::kArgumentsLengthIndex * kPointerSize),
791 ecx);
792
793 // If there are no actual arguments, we're done.
794 Label done;
795 __ test(ecx, ecx);
796 __ j(zero, &done, Label::kNear);
797
798 // Get the parameters pointer from the stack.
799 __ mov(edx, Operand(esp, 2 * kPointerSize));
800
801 // Set up the elements pointer in the allocated arguments object and
802 // initialize the header in the elements fixed array.
803 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
804 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
805 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
806 Immediate(isolate()->factory()->fixed_array_map()));
807
808 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
809 // Untag the length for the loop below.
810 __ SmiUntag(ecx);
811
812 // Copy the fixed array slots.
813 Label loop;
814 __ bind(&loop);
815 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
816 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
817 __ add(edi, Immediate(kPointerSize));
818 __ sub(edx, Immediate(kPointerSize));
819 __ dec(ecx);
820 __ j(not_zero, &loop);
821
822 // Return and remove the on-stack parameters.
823 __ bind(&done);
824 __ ret(3 * kPointerSize);
825
826 // Do the runtime call to allocate the arguments object.
827 __ bind(&runtime);
828 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
829}
830
831
832void RegExpExecStub::Generate(MacroAssembler* masm) {
833 // Just jump directly to runtime if native RegExp is not selected at compile
834 // time or if regexp entry in generated code is turned off runtime switch or
835 // at compilation.
836#ifdef V8_INTERPRETED_REGEXP
837 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
838#else // V8_INTERPRETED_REGEXP
839
840 // Stack frame on entry.
841 // esp[0]: return address
842 // esp[4]: last_match_info (expected JSArray)
843 // esp[8]: previous index
844 // esp[12]: subject string
845 // esp[16]: JSRegExp object
846
847 static const int kLastMatchInfoOffset = 1 * kPointerSize;
848 static const int kPreviousIndexOffset = 2 * kPointerSize;
849 static const int kSubjectOffset = 3 * kPointerSize;
850 static const int kJSRegExpOffset = 4 * kPointerSize;
851
852 Label runtime;
853 Factory* factory = isolate()->factory();
854
855 // Ensure that a RegExp stack is allocated.
856 ExternalReference address_of_regexp_stack_memory_address =
857 ExternalReference::address_of_regexp_stack_memory_address(isolate());
858 ExternalReference address_of_regexp_stack_memory_size =
859 ExternalReference::address_of_regexp_stack_memory_size(isolate());
860 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
861 __ test(ebx, ebx);
862 __ j(zero, &runtime);
863
864 // Check that the first argument is a JSRegExp object.
865 __ mov(eax, Operand(esp, kJSRegExpOffset));
866 STATIC_ASSERT(kSmiTag == 0);
867 __ JumpIfSmi(eax, &runtime);
868 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
869 __ j(not_equal, &runtime);
870
871 // Check that the RegExp has been compiled (data contains a fixed array).
872 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
873 if (FLAG_debug_code) {
874 __ test(ecx, Immediate(kSmiTagMask));
875 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
876 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
877 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
878 }
879
880 // ecx: RegExp data (FixedArray)
881 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
882 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
883 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
884 __ j(not_equal, &runtime);
885
886 // ecx: RegExp data (FixedArray)
887 // Check that the number of captures fit in the static offsets vector buffer.
888 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
889 // Check (number_of_captures + 1) * 2 <= offsets vector size
890 // Or number_of_captures * 2 <= offsets vector size - 2
891 // Multiplying by 2 comes for free since edx is smi-tagged.
892 STATIC_ASSERT(kSmiTag == 0);
893 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
894 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
895 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
896 __ j(above, &runtime);
897
898 // Reset offset for possibly sliced string.
899 __ Move(edi, Immediate(0));
900 __ mov(eax, Operand(esp, kSubjectOffset));
901 __ JumpIfSmi(eax, &runtime);
902 __ mov(edx, eax); // Make a copy of the original subject string.
903 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
904 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
905
906 // eax: subject string
907 // edx: subject string
908 // ebx: subject string instance type
909 // ecx: RegExp data (FixedArray)
910 // Handle subject string according to its encoding and representation:
911 // (1) Sequential two byte? If yes, go to (9).
912 // (2) Sequential one byte? If yes, go to (6).
913 // (3) Anything but sequential or cons? If yes, go to (7).
914 // (4) Cons string. If the string is flat, replace subject with first string.
915 // Otherwise bailout.
916 // (5a) Is subject sequential two byte? If yes, go to (9).
917 // (5b) Is subject external? If yes, go to (8).
918 // (6) One byte sequential. Load regexp code for one byte.
919 // (E) Carry on.
920 /// [...]
921
922 // Deferred code at the end of the stub:
923 // (7) Not a long external string? If yes, go to (10).
924 // (8) External string. Make it, offset-wise, look like a sequential string.
925 // (8a) Is the external string one byte? If yes, go to (6).
926 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
927 // (10) Short external string or not a string? If yes, bail out to runtime.
928 // (11) Sliced string. Replace subject with parent. Go to (5a).
929
930 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
931 external_string /* 8 */, check_underlying /* 5a */,
932 not_seq_nor_cons /* 7 */, check_code /* E */,
933 not_long_external /* 10 */;
934
935 // (1) Sequential two byte? If yes, go to (9).
936 __ and_(ebx, kIsNotStringMask |
937 kStringRepresentationMask |
938 kStringEncodingMask |
939 kShortExternalStringMask);
940 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
941 __ j(zero, &seq_two_byte_string); // Go to (9).
942
943 // (2) Sequential one byte? If yes, go to (6).
944 // Any other sequential string must be one byte.
945 __ and_(ebx, Immediate(kIsNotStringMask |
946 kStringRepresentationMask |
947 kShortExternalStringMask));
948 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
949
950 // (3) Anything but sequential or cons? If yes, go to (7).
951 // We check whether the subject string is a cons, since sequential strings
952 // have already been covered.
953 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
954 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
955 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
956 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
957 __ cmp(ebx, Immediate(kExternalStringTag));
958 __ j(greater_equal, &not_seq_nor_cons); // Go to (7).
959
960 // (4) Cons string. Check that it's flat.
961 // Replace subject with first string and reload instance type.
962 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
963 __ j(not_equal, &runtime);
964 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
965 __ bind(&check_underlying);
966 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
967 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
968
969 // (5a) Is subject sequential two byte? If yes, go to (9).
970 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
971 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
972 __ j(zero, &seq_two_byte_string); // Go to (9).
973 // (5b) Is subject external? If yes, go to (8).
974 __ test_b(ebx, kStringRepresentationMask);
975 // The underlying external string is never a short external string.
976 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
977 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
978 __ j(not_zero, &external_string); // Go to (8).
979
980 // eax: sequential subject string (or look-alike, external string)
981 // edx: original subject string
982 // ecx: RegExp data (FixedArray)
983 // (6) One byte sequential. Load regexp code for one byte.
984 __ bind(&seq_one_byte_string);
985 // Load previous index and check range before edx is overwritten. We have
986 // to use edx instead of eax here because it might have been only made to
987 // look like a sequential string when it actually is an external string.
988 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
989 __ JumpIfNotSmi(ebx, &runtime);
990 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
991 __ j(above_equal, &runtime);
992 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
993 __ Move(ecx, Immediate(1)); // Type is one byte.
994
995 // (E) Carry on. String handling is done.
996 __ bind(&check_code);
997 // edx: irregexp code
998 // Check that the irregexp code has been generated for the actual string
999 // encoding. If it has, the field contains a code object otherwise it contains
1000 // a smi (code flushing support).
1001 __ JumpIfSmi(edx, &runtime);
1002
1003 // eax: subject string
1004 // ebx: previous index (smi)
1005 // edx: code
1006 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1007 // All checks done. Now push arguments for native regexp code.
1008 Counters* counters = isolate()->counters();
1009 __ IncrementCounter(counters->regexp_entry_native(), 1);
1010
1011 // Isolates: note we add an additional parameter here (isolate pointer).
1012 static const int kRegExpExecuteArguments = 9;
1013 __ EnterApiExitFrame(kRegExpExecuteArguments);
1014
1015 // Argument 9: Pass current isolate address.
1016 __ mov(Operand(esp, 8 * kPointerSize),
1017 Immediate(ExternalReference::isolate_address(isolate())));
1018
1019 // Argument 8: Indicate that this is a direct call from JavaScript.
1020 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1021
1022 // Argument 7: Start (high end) of backtracking stack memory area.
1023 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1024 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1025 __ mov(Operand(esp, 6 * kPointerSize), esi);
1026
1027 // Argument 6: Set the number of capture registers to zero to force global
1028 // regexps to behave as non-global. This does not affect non-global regexps.
1029 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1030
1031 // Argument 5: static offsets vector buffer.
1032 __ mov(Operand(esp, 4 * kPointerSize),
1033 Immediate(ExternalReference::address_of_static_offsets_vector(
1034 isolate())));
1035
1036 // Argument 2: Previous index.
1037 __ SmiUntag(ebx);
1038 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1039
1040 // Argument 1: Original subject string.
1041 // The original subject is in the previous stack frame. Therefore we have to
1042 // use ebp, which points exactly to one pointer size below the previous esp.
1043 // (Because creating a new stack frame pushes the previous ebp onto the stack
1044 // and thereby moves up esp by one kPointerSize.)
1045 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1046 __ mov(Operand(esp, 0 * kPointerSize), esi);
1047
1048 // esi: original subject string
1049 // eax: underlying subject string
1050 // ebx: previous index
1051 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1052 // edx: code
1053 // Argument 4: End of string data
1054 // Argument 3: Start of string data
1055 // Prepare start and end index of the input.
1056 // Load the length from the original sliced string if that is the case.
1057 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1058 __ add(esi, edi); // Calculate input end wrt offset.
1059 __ SmiUntag(edi);
1060 __ add(ebx, edi); // Calculate input start wrt offset.
1061
1062 // ebx: start index of the input string
1063 // esi: end index of the input string
1064 Label setup_two_byte, setup_rest;
1065 __ test(ecx, ecx);
1066 __ j(zero, &setup_two_byte, Label::kNear);
1067 __ SmiUntag(esi);
1068 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1069 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1070 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1071 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1072 __ jmp(&setup_rest, Label::kNear);
1073
1074 __ bind(&setup_two_byte);
1075 STATIC_ASSERT(kSmiTag == 0);
1076 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1077 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1078 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1079 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1080 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1081
1082 __ bind(&setup_rest);
1083
1084 // Locate the code entry and call it.
1085 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1086 __ call(edx);
1087
1088 // Drop arguments and come back to JS mode.
1089 __ LeaveApiExitFrame(true);
1090
1091 // Check the result.
1092 Label success;
1093 __ cmp(eax, 1);
1094 // We expect exactly one result since we force the called regexp to behave
1095 // as non-global.
1096 __ j(equal, &success);
1097 Label failure;
1098 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1099 __ j(equal, &failure);
1100 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1101 // If not exception it can only be retry. Handle that in the runtime system.
1102 __ j(not_equal, &runtime);
1103 // Result must now be exception. If there is no pending exception already a
1104 // stack overflow (on the backtrack stack) was detected in RegExp code but
1105 // haven't created the exception yet. Handle that in the runtime system.
1106 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1107 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1108 isolate());
1109 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1110 __ mov(eax, Operand::StaticVariable(pending_exception));
1111 __ cmp(edx, eax);
1112 __ j(equal, &runtime);
1113 // For exception, throw the exception again.
1114
1115 // Clear the pending exception variable.
1116 __ mov(Operand::StaticVariable(pending_exception), edx);
1117
1118 // Special handling of termination exceptions which are uncatchable
1119 // by javascript code.
1120 __ cmp(eax, factory->termination_exception());
1121 Label throw_termination_exception;
1122 __ j(equal, &throw_termination_exception, Label::kNear);
1123
1124 // Handle normal exception by following handler chain.
1125 __ Throw(eax);
1126
1127 __ bind(&throw_termination_exception);
1128 __ ThrowUncatchable(eax);
1129
1130 __ bind(&failure);
1131 // For failure to match, return null.
1132 __ mov(eax, factory->null_value());
1133 __ ret(4 * kPointerSize);
1134
1135 // Load RegExp data.
1136 __ bind(&success);
1137 __ mov(eax, Operand(esp, kJSRegExpOffset));
1138 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1139 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1140 // Calculate number of capture registers (number_of_captures + 1) * 2.
1141 STATIC_ASSERT(kSmiTag == 0);
1142 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1143 __ add(edx, Immediate(2)); // edx was a smi.
1144
1145 // edx: Number of capture registers
1146 // Load last_match_info which is still known to be a fast case JSArray.
1147 // Check that the fourth object is a JSArray object.
1148 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1149 __ JumpIfSmi(eax, &runtime);
1150 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1151 __ j(not_equal, &runtime);
1152 // Check that the JSArray is in fast case.
1153 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1154 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1155 __ cmp(eax, factory->fixed_array_map());
1156 __ j(not_equal, &runtime);
1157 // Check that the last match info has space for the capture registers and the
1158 // additional information.
1159 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1160 __ SmiUntag(eax);
1161 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1162 __ cmp(edx, eax);
1163 __ j(greater, &runtime);
1164
1165 // ebx: last_match_info backing store (FixedArray)
1166 // edx: number of capture registers
1167 // Store the capture count.
1168 __ SmiTag(edx); // Number of capture registers to smi.
1169 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1170 __ SmiUntag(edx); // Number of capture registers back from smi.
1171 // Store last subject and last input.
1172 __ mov(eax, Operand(esp, kSubjectOffset));
1173 __ mov(ecx, eax);
1174 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1175 __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
1176 kDontSaveFPRegs);
1177 __ mov(eax, ecx);
1178 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1179 __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
1180 kDontSaveFPRegs);
1181
1182 // Get the static offsets vector filled by the native regexp code.
1183 ExternalReference address_of_static_offsets_vector =
1184 ExternalReference::address_of_static_offsets_vector(isolate());
1185 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1186
1187 // ebx: last_match_info backing store (FixedArray)
1188 // ecx: offsets vector
1189 // edx: number of capture registers
1190 Label next_capture, done;
1191 // Capture register counter starts from number of capture registers and
1192 // counts down until wraping after zero.
1193 __ bind(&next_capture);
1194 __ sub(edx, Immediate(1));
1195 __ j(negative, &done, Label::kNear);
1196 // Read the value from the static offsets vector buffer.
1197 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1198 __ SmiTag(edi);
1199 // Store the smi value in the last match info.
1200 __ mov(FieldOperand(ebx,
1201 edx,
1202 times_pointer_size,
1203 RegExpImpl::kFirstCaptureOffset),
1204 edi);
1205 __ jmp(&next_capture);
1206 __ bind(&done);
1207
1208 // Return last match info.
1209 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1210 __ ret(4 * kPointerSize);
1211
1212 // Do the runtime call to execute the regexp.
1213 __ bind(&runtime);
1214 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
1215
1216 // Deferred code for string handling.
1217 // (7) Not a long external string? If yes, go to (10).
1218 __ bind(&not_seq_nor_cons);
1219 // Compare flags are still set from (3).
1220 __ j(greater, &not_long_external, Label::kNear); // Go to (10).
1221
1222 // (8) External string. Short external strings have been ruled out.
1223 __ bind(&external_string);
1224 // Reload instance type.
1225 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1226 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1227 if (FLAG_debug_code) {
1228 // Assert that we do not have a cons or slice (indirect strings) here.
1229 // Sequential strings have already been ruled out.
1230 __ test_b(ebx, kIsIndirectStringMask);
1231 __ Assert(zero, kExternalStringExpectedButNotFound);
1232 }
1233 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1234 // Move the pointer so that offset-wise, it looks like a sequential string.
1235 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1236 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1237 STATIC_ASSERT(kTwoByteStringTag == 0);
1238 // (8a) Is the external string one byte? If yes, go to (6).
1239 __ test_b(ebx, kStringEncodingMask);
1240 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1241
1242 // eax: sequential subject string (or look-alike, external string)
1243 // edx: original subject string
1244 // ecx: RegExp data (FixedArray)
1245 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1246 __ bind(&seq_two_byte_string);
1247 // Load previous index and check range before edx is overwritten. We have
1248 // to use edx instead of eax here because it might have been only made to
1249 // look like a sequential string when it actually is an external string.
1250 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1251 __ JumpIfNotSmi(ebx, &runtime);
1252 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1253 __ j(above_equal, &runtime);
1254 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1255 __ Move(ecx, Immediate(0)); // Type is two byte.
1256 __ jmp(&check_code); // Go to (E).
1257
1258 // (10) Not a string or a short external string? If yes, bail out to runtime.
1259 __ bind(&not_long_external);
1260 // Catch non-string subject or short external string.
1261 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1262 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1263 __ j(not_zero, &runtime);
1264
1265 // (11) Sliced string. Replace subject with parent. Go to (5a).
1266 // Load offset into edi and replace subject string with parent.
1267 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1268 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1269 __ jmp(&check_underlying); // Go to (5a).
1270#endif // V8_INTERPRETED_REGEXP
1271}
1272
1273
1274static int NegativeComparisonResult(Condition cc) {
1275 DCHECK(cc != equal);
1276 DCHECK((cc == less) || (cc == less_equal)
1277 || (cc == greater) || (cc == greater_equal));
1278 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1279}
1280
1281
1282static void CheckInputType(MacroAssembler* masm, Register input,
1283 CompareICState::State expected, Label* fail) {
1284 Label ok;
1285 if (expected == CompareICState::SMI) {
1286 __ JumpIfNotSmi(input, fail);
1287 } else if (expected == CompareICState::NUMBER) {
1288 __ JumpIfSmi(input, &ok);
1289 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1290 Immediate(masm->isolate()->factory()->heap_number_map()));
1291 __ j(not_equal, fail);
1292 }
1293 // We could be strict about internalized/non-internalized here, but as long as
1294 // hydrogen doesn't care, the stub doesn't have to care either.
1295 __ bind(&ok);
1296}
1297
1298
1299static void BranchIfNotInternalizedString(MacroAssembler* masm,
1300 Label* label,
1301 Register object,
1302 Register scratch) {
1303 __ JumpIfSmi(object, label);
1304 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1305 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1306 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1307 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1308 __ j(not_zero, label);
1309}
1310
1311
1312void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1313 Label check_unequal_objects;
1314 Condition cc = GetCondition();
1315
1316 Label miss;
1317 CheckInputType(masm, edx, left(), &miss);
1318 CheckInputType(masm, eax, right(), &miss);
1319
1320 // Compare two smis.
1321 Label non_smi, smi_done;
1322 __ mov(ecx, edx);
1323 __ or_(ecx, eax);
1324 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1325 __ sub(edx, eax); // Return on the result of the subtraction.
1326 __ j(no_overflow, &smi_done, Label::kNear);
1327 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1328 __ bind(&smi_done);
1329 __ mov(eax, edx);
1330 __ ret(0);
1331 __ bind(&non_smi);
1332
1333 // NOTICE! This code is only reached after a smi-fast-case check, so
1334 // it is certain that at least one operand isn't a smi.
1335
1336 // Identical objects can be compared fast, but there are some tricky cases
1337 // for NaN and undefined.
1338 Label generic_heap_number_comparison;
1339 {
1340 Label not_identical;
1341 __ cmp(eax, edx);
1342 __ j(not_equal, &not_identical);
1343
1344 if (cc != equal) {
1345 // Check for undefined. undefined OP undefined is false even though
1346 // undefined == undefined.
1347 Label check_for_nan;
1348 __ cmp(edx, isolate()->factory()->undefined_value());
1349 __ j(not_equal, &check_for_nan, Label::kNear);
1350 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1351 __ ret(0);
1352 __ bind(&check_for_nan);
1353 }
1354
1355 // Test for NaN. Compare heap numbers in a general way,
1356 // to hanlde NaNs correctly.
1357 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1358 Immediate(isolate()->factory()->heap_number_map()));
1359 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1360 if (cc != equal) {
1361 // Call runtime on identical JSObjects. Otherwise return equal.
1362 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1363 __ j(above_equal, &not_identical);
1364 }
1365 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1366 __ ret(0);
1367
1368
1369 __ bind(&not_identical);
1370 }
1371
1372 // Strict equality can quickly decide whether objects are equal.
1373 // Non-strict object equality is slower, so it is handled later in the stub.
1374 if (cc == equal && strict()) {
1375 Label slow; // Fallthrough label.
1376 Label not_smis;
1377 // If we're doing a strict equality comparison, we don't have to do
1378 // type conversion, so we generate code to do fast comparison for objects
1379 // and oddballs. Non-smi numbers and strings still go through the usual
1380 // slow-case code.
1381 // If either is a Smi (we know that not both are), then they can only
1382 // be equal if the other is a HeapNumber. If so, use the slow case.
1383 STATIC_ASSERT(kSmiTag == 0);
1384 DCHECK_EQ(0, Smi::FromInt(0));
1385 __ mov(ecx, Immediate(kSmiTagMask));
1386 __ and_(ecx, eax);
1387 __ test(ecx, edx);
1388 __ j(not_zero, &not_smis, Label::kNear);
1389 // One operand is a smi.
1390
1391 // Check whether the non-smi is a heap number.
1392 STATIC_ASSERT(kSmiTagMask == 1);
1393 // ecx still holds eax & kSmiTag, which is either zero or one.
1394 __ sub(ecx, Immediate(0x01));
1395 __ mov(ebx, edx);
1396 __ xor_(ebx, eax);
1397 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1398 __ xor_(ebx, eax);
1399 // if eax was smi, ebx is now edx, else eax.
1400
1401 // Check if the non-smi operand is a heap number.
1402 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1403 Immediate(isolate()->factory()->heap_number_map()));
1404 // If heap number, handle it in the slow case.
1405 __ j(equal, &slow, Label::kNear);
1406 // Return non-equal (ebx is not zero)
1407 __ mov(eax, ebx);
1408 __ ret(0);
1409
1410 __ bind(&not_smis);
1411 // If either operand is a JSObject or an oddball value, then they are not
1412 // equal since their pointers are different
1413 // There is no test for undetectability in strict equality.
1414
1415 // Get the type of the first operand.
1416 // If the first object is a JS object, we have done pointer comparison.
1417 Label first_non_object;
1418 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1419 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1420 __ j(below, &first_non_object, Label::kNear);
1421
1422 // Return non-zero (eax is not zero)
1423 Label return_not_equal;
1424 STATIC_ASSERT(kHeapObjectTag != 0);
1425 __ bind(&return_not_equal);
1426 __ ret(0);
1427
1428 __ bind(&first_non_object);
1429 // Check for oddballs: true, false, null, undefined.
1430 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1431 __ j(equal, &return_not_equal);
1432
1433 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1434 __ j(above_equal, &return_not_equal);
1435
1436 // Check for oddballs: true, false, null, undefined.
1437 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1438 __ j(equal, &return_not_equal);
1439
1440 // Fall through to the general case.
1441 __ bind(&slow);
1442 }
1443
1444 // Generate the number comparison code.
1445 Label non_number_comparison;
1446 Label unordered;
1447 __ bind(&generic_heap_number_comparison);
1448 FloatingPointHelper::CheckFloatOperands(
1449 masm, &non_number_comparison, ebx);
1450 FloatingPointHelper::LoadFloatOperand(masm, eax);
1451 FloatingPointHelper::LoadFloatOperand(masm, edx);
1452 __ FCmp();
1453
1454 // Don't base result on EFLAGS when a NaN is involved.
1455 __ j(parity_even, &unordered, Label::kNear);
1456
1457 Label below_label, above_label;
1458 // Return a result of -1, 0, or 1, based on EFLAGS.
1459 __ j(below, &below_label, Label::kNear);
1460 __ j(above, &above_label, Label::kNear);
1461
1462 __ Move(eax, Immediate(0));
1463 __ ret(0);
1464
1465 __ bind(&below_label);
1466 __ mov(eax, Immediate(Smi::FromInt(-1)));
1467 __ ret(0);
1468
1469 __ bind(&above_label);
1470 __ mov(eax, Immediate(Smi::FromInt(1)));
1471 __ ret(0);
1472
1473 // If one of the numbers was NaN, then the result is always false.
1474 // The cc is never not-equal.
1475 __ bind(&unordered);
1476 DCHECK(cc != not_equal);
1477 if (cc == less || cc == less_equal) {
1478 __ mov(eax, Immediate(Smi::FromInt(1)));
1479 } else {
1480 __ mov(eax, Immediate(Smi::FromInt(-1)));
1481 }
1482 __ ret(0);
1483
1484 // The number comparison code did not provide a valid result.
1485 __ bind(&non_number_comparison);
1486
1487 // Fast negative check for internalized-to-internalized equality.
1488 Label check_for_strings;
1489 if (cc == equal) {
1490 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1491 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1492
1493 // We've already checked for object identity, so if both operands
1494 // are internalized they aren't equal. Register eax already holds a
1495 // non-zero value, which indicates not equal, so just return.
1496 __ ret(0);
1497 }
1498
1499 __ bind(&check_for_strings);
1500
1501 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1502 &check_unequal_objects);
1503
1504 // Inline comparison of one-byte strings.
1505 if (cc == equal) {
1506 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1507 } else {
1508 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1509 edi);
1510 }
1511#ifdef DEBUG
1512 __ Abort(kUnexpectedFallThroughFromStringComparison);
1513#endif
1514
1515 __ bind(&check_unequal_objects);
1516 if (cc == equal && !strict()) {
1517 // Non-strict equality. Objects are unequal if
1518 // they are both JSObjects and not undetectable,
1519 // and their pointers are different.
1520 Label not_both_objects;
1521 Label return_unequal;
1522 // At most one is a smi, so we can test for smi by adding the two.
1523 // A smi plus a heap object has the low bit set, a heap object plus
1524 // a heap object has the low bit clear.
1525 STATIC_ASSERT(kSmiTag == 0);
1526 STATIC_ASSERT(kSmiTagMask == 1);
1527 __ lea(ecx, Operand(eax, edx, times_1, 0));
1528 __ test(ecx, Immediate(kSmiTagMask));
1529 __ j(not_zero, &not_both_objects, Label::kNear);
1530 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1531 __ j(below, &not_both_objects, Label::kNear);
1532 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1533 __ j(below, &not_both_objects, Label::kNear);
1534 // We do not bail out after this point. Both are JSObjects, and
1535 // they are equal if and only if both are undetectable.
1536 // The and of the undetectable flags is 1 if and only if they are equal.
1537 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1538 1 << Map::kIsUndetectable);
1539 __ j(zero, &return_unequal, Label::kNear);
1540 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1541 1 << Map::kIsUndetectable);
1542 __ j(zero, &return_unequal, Label::kNear);
1543 // The objects are both undetectable, so they both compare as the value
1544 // undefined, and are equal.
1545 __ Move(eax, Immediate(EQUAL));
1546 __ bind(&return_unequal);
1547 // Return non-equal by returning the non-zero object pointer in eax,
1548 // or return equal if we fell through to here.
1549 __ ret(0); // rax, rdx were pushed
1550 __ bind(&not_both_objects);
1551 }
1552
1553 // Push arguments below the return address.
1554 __ pop(ecx);
1555 __ push(edx);
1556 __ push(eax);
1557
1558 // Figure out which native to call and setup the arguments.
1559 Builtins::JavaScript builtin;
1560 if (cc == equal) {
1561 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1562 } else {
1563 builtin = Builtins::COMPARE;
1564 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1565 }
1566
1567 // Restore return address on the stack.
1568 __ push(ecx);
1569
1570 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1571 // tagged as a small integer.
1572 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1573
1574 __ bind(&miss);
1575 GenerateMiss(masm);
1576}
1577
1578
1579static void GenerateRecordCallTarget(MacroAssembler* masm) {
1580 // Cache the called function in a feedback vector slot. Cache states
1581 // are uninitialized, monomorphic (indicated by a JSFunction), and
1582 // megamorphic.
1583 // eax : number of arguments to the construct function
1584 // ebx : Feedback vector
1585 // edx : slot in feedback vector (Smi)
1586 // edi : the function to call
1587 Isolate* isolate = masm->isolate();
1588 Label initialize, done, miss, megamorphic, not_array_function;
1589
1590 // Load the cache state into ecx.
1591 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1592 FixedArray::kHeaderSize));
1593
1594 // A monomorphic cache hit or an already megamorphic state: invoke the
1595 // function without changing the state.
1596 __ cmp(ecx, edi);
1597 __ j(equal, &done, Label::kFar);
1598 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1599 __ j(equal, &done, Label::kFar);
1600
1601 if (!FLAG_pretenuring_call_new) {
1602 // If we came here, we need to see if we are the array function.
1603 // If we didn't have a matching function, and we didn't find the megamorph
1604 // sentinel, then we have in the slot either some other function or an
1605 // AllocationSite. Do a map check on the object in ecx.
1606 Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
1607 __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
1608 __ j(not_equal, &miss);
1609
1610 // Make sure the function is the Array() function
1611 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1612 __ cmp(edi, ecx);
1613 __ j(not_equal, &megamorphic);
1614 __ jmp(&done, Label::kFar);
1615 }
1616
1617 __ bind(&miss);
1618
1619 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1620 // megamorphic.
1621 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
1622 __ j(equal, &initialize);
1623 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1624 // write-barrier is needed.
1625 __ bind(&megamorphic);
1626 __ mov(
1627 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1628 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1629 __ jmp(&done, Label::kFar);
1630
1631 // An uninitialized cache is patched with the function or sentinel to
1632 // indicate the ElementsKind if function is the Array constructor.
1633 __ bind(&initialize);
1634 if (!FLAG_pretenuring_call_new) {
1635 // Make sure the function is the Array() function
1636 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1637 __ cmp(edi, ecx);
1638 __ j(not_equal, &not_array_function);
1639
1640 // The target function is the Array constructor,
1641 // Create an AllocationSite if we don't already have it, store it in the
1642 // slot.
1643 {
1644 FrameScope scope(masm, StackFrame::INTERNAL);
1645
1646 // Arguments register must be smi-tagged to call out.
1647 __ SmiTag(eax);
1648 __ push(eax);
1649 __ push(edi);
1650 __ push(edx);
1651 __ push(ebx);
1652
1653 CreateAllocationSiteStub create_stub(isolate);
1654 __ CallStub(&create_stub);
1655
1656 __ pop(ebx);
1657 __ pop(edx);
1658 __ pop(edi);
1659 __ pop(eax);
1660 __ SmiUntag(eax);
1661 }
1662 __ jmp(&done);
1663
1664 __ bind(&not_array_function);
1665 }
1666
1667 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
1668 FixedArray::kHeaderSize),
1669 edi);
1670 // We won't need edx or ebx anymore, just save edi
1671 __ push(edi);
1672 __ push(ebx);
1673 __ push(edx);
1674 __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
1675 OMIT_SMI_CHECK);
1676 __ pop(edx);
1677 __ pop(ebx);
1678 __ pop(edi);
1679
1680 __ bind(&done);
1681}
1682
1683
1684static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
1685 // Do not transform the receiver for strict mode functions.
1686 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1687 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1688 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
1689 __ j(not_equal, cont);
1690
1691 // Do not transform the receiver for natives (shared already in ecx).
1692 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1693 1 << SharedFunctionInfo::kNativeBitWithinByte);
1694 __ j(not_equal, cont);
1695}
1696
1697
1698static void EmitSlowCase(Isolate* isolate,
1699 MacroAssembler* masm,
1700 int argc,
1701 Label* non_function) {
1702 // Check for function proxy.
1703 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1704 __ j(not_equal, non_function);
1705 __ pop(ecx);
1706 __ push(edi); // put proxy as additional argument under return address
1707 __ push(ecx);
1708 __ Move(eax, Immediate(argc + 1));
1709 __ Move(ebx, Immediate(0));
1710 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
1711 {
1712 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1713 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1714 }
1715
1716 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
1717 // of the original receiver from the call site).
1718 __ bind(non_function);
1719 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
1720 __ Move(eax, Immediate(argc));
1721 __ Move(ebx, Immediate(0));
1722 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
1723 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1724 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1725}
1726
1727
1728static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
1729 // Wrap the receiver and patch it back onto the stack.
1730 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
1731 __ push(edi);
1732 __ push(eax);
1733 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1734 __ pop(edi);
1735 }
1736 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
1737 __ jmp(cont);
1738}
1739
1740
1741static void CallFunctionNoFeedback(MacroAssembler* masm,
1742 int argc, bool needs_checks,
1743 bool call_as_method) {
1744 // edi : the function to call
1745 Label slow, non_function, wrap, cont;
1746
1747 if (needs_checks) {
1748 // Check that the function really is a JavaScript function.
1749 __ JumpIfSmi(edi, &non_function);
1750
1751 // Goto slow case if we do not have a function.
1752 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1753 __ j(not_equal, &slow);
1754 }
1755
1756 // Fast-case: Just invoke the function.
1757 ParameterCount actual(argc);
1758
1759 if (call_as_method) {
1760 if (needs_checks) {
1761 EmitContinueIfStrictOrNative(masm, &cont);
1762 }
1763
1764 // Load the receiver from the stack.
1765 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
1766
1767 if (needs_checks) {
1768 __ JumpIfSmi(eax, &wrap);
1769
1770 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1771 __ j(below, &wrap);
1772 } else {
1773 __ jmp(&wrap);
1774 }
1775
1776 __ bind(&cont);
1777 }
1778
1779 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
1780
1781 if (needs_checks) {
1782 // Slow-case: Non-function called.
1783 __ bind(&slow);
1784 // (non_function is bound in EmitSlowCase)
1785 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
1786 }
1787
1788 if (call_as_method) {
1789 __ bind(&wrap);
1790 EmitWrapCase(masm, argc, &cont);
1791 }
1792}
1793
1794
1795void CallFunctionStub::Generate(MacroAssembler* masm) {
1796 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
1797}
1798
1799
1800void CallConstructStub::Generate(MacroAssembler* masm) {
1801 // eax : number of arguments
1802 // ebx : feedback vector
1803 // edx : (only if ebx is not the megamorphic symbol) slot in feedback
1804 // vector (Smi)
1805 // edi : constructor function
1806 Label slow, non_function_call;
1807
1808 // Check that function is not a smi.
1809 __ JumpIfSmi(edi, &non_function_call);
1810 // Check that function is a JSFunction.
1811 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1812 __ j(not_equal, &slow);
1813
1814 if (RecordCallTarget()) {
1815 GenerateRecordCallTarget(masm);
1816
1817 if (FLAG_pretenuring_call_new) {
1818 // Put the AllocationSite from the feedback vector into ebx.
1819 // By adding kPointerSize we encode that we know the AllocationSite
1820 // entry is at the feedback vector slot given by edx + 1.
1821 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1822 FixedArray::kHeaderSize + kPointerSize));
1823 } else {
1824 Label feedback_register_initialized;
1825 // Put the AllocationSite from the feedback vector into ebx, or undefined.
1826 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1827 FixedArray::kHeaderSize));
1828 Handle<Map> allocation_site_map =
1829 isolate()->factory()->allocation_site_map();
1830 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
1831 __ j(equal, &feedback_register_initialized);
1832 __ mov(ebx, isolate()->factory()->undefined_value());
1833 __ bind(&feedback_register_initialized);
1834 }
1835
1836 __ AssertUndefinedOrAllocationSite(ebx);
1837 }
1838
1839 // Jump to the function-specific construct stub.
1840 Register jmp_reg = ecx;
1841 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1842 __ mov(jmp_reg, FieldOperand(jmp_reg,
1843 SharedFunctionInfo::kConstructStubOffset));
1844 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
1845 __ jmp(jmp_reg);
1846
1847 // edi: called object
1848 // eax: number of arguments
1849 // ecx: object map
1850 Label do_call;
1851 __ bind(&slow);
1852 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1853 __ j(not_equal, &non_function_call);
1854 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
1855 __ jmp(&do_call);
1856
1857 __ bind(&non_function_call);
1858 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
1859 __ bind(&do_call);
1860 // Set expected number of arguments to zero (not changing eax).
1861 __ Move(ebx, Immediate(0));
1862 Handle<Code> arguments_adaptor =
1863 isolate()->builtins()->ArgumentsAdaptorTrampoline();
1864 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
1865}
1866
1867
1868static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
1869 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1870 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
1871 __ mov(vector, FieldOperand(vector,
1872 SharedFunctionInfo::kFeedbackVectorOffset));
1873}
1874
1875
1876void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
1877 // edi - function
1878 // edx - slot id
1879 Label miss;
1880 int argc = arg_count();
1881 ParameterCount actual(argc);
1882
1883 EmitLoadTypeFeedbackVector(masm, ebx);
1884
1885 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1886 __ cmp(edi, ecx);
1887 __ j(not_equal, &miss);
1888
1889 __ mov(eax, arg_count());
1890 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1891 FixedArray::kHeaderSize));
1892
1893 // Verify that ecx contains an AllocationSite
1894 Factory* factory = masm->isolate()->factory();
1895 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
1896 factory->allocation_site_map());
1897 __ j(not_equal, &miss);
1898
1899 __ mov(ebx, ecx);
1900 ArrayConstructorStub stub(masm->isolate(), arg_count());
1901 __ TailCallStub(&stub);
1902
1903 __ bind(&miss);
1904 GenerateMiss(masm);
1905
1906 // The slow case, we need this no matter what to complete a call after a miss.
1907 CallFunctionNoFeedback(masm,
1908 arg_count(),
1909 true,
1910 CallAsMethod());
1911
1912 // Unreachable.
1913 __ int3();
1914}
1915
1916
1917void CallICStub::Generate(MacroAssembler* masm) {
1918 // edi - function
1919 // edx - slot id
1920 Isolate* isolate = masm->isolate();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001921 const int with_types_offset =
1922 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
1923 const int generic_offset =
1924 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001925 Label extra_checks_or_miss, slow_start;
1926 Label slow, non_function, wrap, cont;
1927 Label have_js_function;
1928 int argc = arg_count();
1929 ParameterCount actual(argc);
1930
1931 EmitLoadTypeFeedbackVector(masm, ebx);
1932
1933 // The checks. First, does edi match the recorded monomorphic target?
1934 __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
1935 FixedArray::kHeaderSize));
1936 __ j(not_equal, &extra_checks_or_miss);
1937
1938 __ bind(&have_js_function);
1939 if (CallAsMethod()) {
1940 EmitContinueIfStrictOrNative(masm, &cont);
1941
1942 // Load the receiver from the stack.
1943 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
1944
1945 __ JumpIfSmi(eax, &wrap);
1946
1947 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1948 __ j(below, &wrap);
1949
1950 __ bind(&cont);
1951 }
1952
1953 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
1954
1955 __ bind(&slow);
1956 EmitSlowCase(isolate, masm, argc, &non_function);
1957
1958 if (CallAsMethod()) {
1959 __ bind(&wrap);
1960 EmitWrapCase(masm, argc, &cont);
1961 }
1962
1963 __ bind(&extra_checks_or_miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001964 Label uninitialized, miss;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001965
1966 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1967 FixedArray::kHeaderSize));
1968 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1969 __ j(equal, &slow_start);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001970
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001971 // The following cases attempt to handle MISS cases without going to the
1972 // runtime.
1973 if (FLAG_trace_ic) {
1974 __ jmp(&miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001975 }
1976
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001977 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
1978 __ j(equal, &uninitialized);
1979
1980 // We are going megamorphic. If the feedback is a JSFunction, it is fine
1981 // to handle it here. More complex cases are dealt with in the runtime.
1982 __ AssertNotSmi(ecx);
1983 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
1984 __ j(not_equal, &miss);
1985 __ mov(
1986 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1987 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1988 // We have to update statistics for runtime profiling.
1989 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
1990 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
1991 __ jmp(&slow_start);
1992
1993 __ bind(&uninitialized);
1994
1995 // We are going monomorphic, provided we actually have a JSFunction.
1996 __ JumpIfSmi(edi, &miss);
1997
1998 // Goto miss case if we do not have a function.
1999 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2000 __ j(not_equal, &miss);
2001
2002 // Make sure the function is not the Array() function, which requires special
2003 // behavior on MISS.
2004 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2005 __ cmp(edi, ecx);
2006 __ j(equal, &miss);
2007
2008 // Update stats.
2009 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2010
2011 // Store the function.
2012 __ mov(
2013 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2014 edi);
2015
2016 // Update the write barrier.
2017 __ mov(eax, edi);
2018 __ RecordWriteArray(ebx, eax, edx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
2019 OMIT_SMI_CHECK);
2020 __ jmp(&have_js_function);
2021
2022 // We are here because tracing is on or we encountered a MISS case we can't
2023 // handle here.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002024 __ bind(&miss);
2025 GenerateMiss(masm);
2026
2027 // the slow case
2028 __ bind(&slow_start);
2029
2030 // Check that the function really is a JavaScript function.
2031 __ JumpIfSmi(edi, &non_function);
2032
2033 // Goto slow case if we do not have a function.
2034 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2035 __ j(not_equal, &slow);
2036 __ jmp(&have_js_function);
2037
2038 // Unreachable
2039 __ int3();
2040}
2041
2042
2043void CallICStub::GenerateMiss(MacroAssembler* masm) {
2044 // Get the receiver of the function from the stack; 1 ~ return address.
2045 __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize));
2046
2047 {
2048 FrameScope scope(masm, StackFrame::INTERNAL);
2049
2050 // Push the receiver and the function and feedback info.
2051 __ push(ecx);
2052 __ push(edi);
2053 __ push(ebx);
2054 __ push(edx);
2055
2056 // Call the entry.
2057 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2058 : IC::kCallIC_Customization_Miss;
2059
2060 ExternalReference miss = ExternalReference(IC_Utility(id),
2061 masm->isolate());
2062 __ CallExternalReference(miss, 4);
2063
2064 // Move result to edi and exit the internal frame.
2065 __ mov(edi, eax);
2066 }
2067}
2068
2069
2070bool CEntryStub::NeedsImmovableCode() {
2071 return false;
2072}
2073
2074
2075void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2076 CEntryStub::GenerateAheadOfTime(isolate);
2077 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2078 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2079 // It is important that the store buffer overflow stubs are generated first.
2080 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2081 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2082 BinaryOpICStub::GenerateAheadOfTime(isolate);
2083 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2084}
2085
2086
2087void CodeStub::GenerateFPStubs(Isolate* isolate) {
2088 CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2089 // Stubs might already be in the snapshot, detect that and don't regenerate,
2090 // which would lead to code stub initialization state being messed up.
2091 Code* save_doubles_code;
2092 if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
2093 save_doubles_code = *(save_doubles.GetCode());
2094 }
2095 isolate->set_fp_stubs_generated(true);
2096}
2097
2098
2099void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2100 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2101 stub.GetCode();
2102}
2103
2104
2105void CEntryStub::Generate(MacroAssembler* masm) {
2106 // eax: number of arguments including receiver
2107 // ebx: pointer to C function (C callee-saved)
2108 // ebp: frame pointer (restored after C call)
2109 // esp: stack pointer (restored after C call)
2110 // esi: current context (C callee-saved)
2111 // edi: JS function of the caller (C callee-saved)
2112
2113 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2114
2115 // Enter the exit frame that transitions from JavaScript to C++.
2116 __ EnterExitFrame(save_doubles());
2117
2118 // ebx: pointer to C function (C callee-saved)
2119 // ebp: frame pointer (restored after C call)
2120 // esp: stack pointer (restored after C call)
2121 // edi: number of arguments including receiver (C callee-saved)
2122 // esi: pointer to the first argument (C callee-saved)
2123
2124 // Result returned in eax, or eax+edx if result size is 2.
2125
2126 // Check stack alignment.
2127 if (FLAG_debug_code) {
2128 __ CheckStackAlignment();
2129 }
2130
2131 // Call C function.
2132 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2133 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2134 __ mov(Operand(esp, 2 * kPointerSize),
2135 Immediate(ExternalReference::isolate_address(isolate())));
2136 __ call(ebx);
2137 // Result is in eax or edx:eax - do not destroy these registers!
2138
2139 // Runtime functions should not return 'the hole'. Allowing it to escape may
2140 // lead to crashes in the IC code later.
2141 if (FLAG_debug_code) {
2142 Label okay;
2143 __ cmp(eax, isolate()->factory()->the_hole_value());
2144 __ j(not_equal, &okay, Label::kNear);
2145 __ int3();
2146 __ bind(&okay);
2147 }
2148
2149 // Check result for exception sentinel.
2150 Label exception_returned;
2151 __ cmp(eax, isolate()->factory()->exception());
2152 __ j(equal, &exception_returned);
2153
2154 ExternalReference pending_exception_address(
2155 Isolate::kPendingExceptionAddress, isolate());
2156
2157 // Check that there is no pending exception, otherwise we
2158 // should have returned the exception sentinel.
2159 if (FLAG_debug_code) {
2160 __ push(edx);
2161 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2162 Label okay;
2163 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2164 // Cannot use check here as it attempts to generate call into runtime.
2165 __ j(equal, &okay, Label::kNear);
2166 __ int3();
2167 __ bind(&okay);
2168 __ pop(edx);
2169 }
2170
2171 // Exit the JavaScript to C++ exit frame.
2172 __ LeaveExitFrame(save_doubles());
2173 __ ret(0);
2174
2175 // Handling of exception.
2176 __ bind(&exception_returned);
2177
2178 // Retrieve the pending exception.
2179 __ mov(eax, Operand::StaticVariable(pending_exception_address));
2180
2181 // Clear the pending exception.
2182 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2183 __ mov(Operand::StaticVariable(pending_exception_address), edx);
2184
2185 // Special handling of termination exceptions which are uncatchable
2186 // by javascript code.
2187 Label throw_termination_exception;
2188 __ cmp(eax, isolate()->factory()->termination_exception());
2189 __ j(equal, &throw_termination_exception);
2190
2191 // Handle normal exception.
2192 __ Throw(eax);
2193
2194 __ bind(&throw_termination_exception);
2195 __ ThrowUncatchable(eax);
2196}
2197
2198
2199void JSEntryStub::Generate(MacroAssembler* masm) {
2200 Label invoke, handler_entry, exit;
2201 Label not_outermost_js, not_outermost_js_2;
2202
2203 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2204
2205 // Set up frame.
2206 __ push(ebp);
2207 __ mov(ebp, esp);
2208
2209 // Push marker in two places.
2210 int marker = type();
2211 __ push(Immediate(Smi::FromInt(marker))); // context slot
2212 __ push(Immediate(Smi::FromInt(marker))); // function slot
2213 // Save callee-saved registers (C calling conventions).
2214 __ push(edi);
2215 __ push(esi);
2216 __ push(ebx);
2217
2218 // Save copies of the top frame descriptor on the stack.
2219 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2220 __ push(Operand::StaticVariable(c_entry_fp));
2221
2222 // If this is the outermost JS call, set js_entry_sp value.
2223 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2224 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2225 __ j(not_equal, &not_outermost_js, Label::kNear);
2226 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2227 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2228 __ jmp(&invoke, Label::kNear);
2229 __ bind(&not_outermost_js);
2230 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2231
2232 // Jump to a faked try block that does the invoke, with a faked catch
2233 // block that sets the pending exception.
2234 __ jmp(&invoke);
2235 __ bind(&handler_entry);
2236 handler_offset_ = handler_entry.pos();
2237 // Caught exception: Store result (exception) in the pending exception
2238 // field in the JSEnv and return a failure sentinel.
2239 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2240 isolate());
2241 __ mov(Operand::StaticVariable(pending_exception), eax);
2242 __ mov(eax, Immediate(isolate()->factory()->exception()));
2243 __ jmp(&exit);
2244
2245 // Invoke: Link this frame into the handler chain. There's only one
2246 // handler block in this code object, so its index is 0.
2247 __ bind(&invoke);
2248 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2249
2250 // Clear any pending exceptions.
2251 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2252 __ mov(Operand::StaticVariable(pending_exception), edx);
2253
2254 // Fake a receiver (NULL).
2255 __ push(Immediate(0)); // receiver
2256
2257 // Invoke the function by calling through JS entry trampoline builtin and
2258 // pop the faked function when we return. Notice that we cannot store a
2259 // reference to the trampoline code directly in this stub, because the
2260 // builtin stubs may not have been generated yet.
2261 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2262 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2263 isolate());
2264 __ mov(edx, Immediate(construct_entry));
2265 } else {
2266 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2267 __ mov(edx, Immediate(entry));
2268 }
2269 __ mov(edx, Operand(edx, 0)); // deref address
2270 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2271 __ call(edx);
2272
2273 // Unlink this frame from the handler chain.
2274 __ PopTryHandler();
2275
2276 __ bind(&exit);
2277 // Check if the current stack frame is marked as the outermost JS frame.
2278 __ pop(ebx);
2279 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2280 __ j(not_equal, &not_outermost_js_2);
2281 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2282 __ bind(&not_outermost_js_2);
2283
2284 // Restore the top frame descriptor from the stack.
2285 __ pop(Operand::StaticVariable(ExternalReference(
2286 Isolate::kCEntryFPAddress, isolate())));
2287
2288 // Restore callee-saved registers (C calling conventions).
2289 __ pop(ebx);
2290 __ pop(esi);
2291 __ pop(edi);
2292 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2293
2294 // Restore frame pointer and return.
2295 __ pop(ebp);
2296 __ ret(0);
2297}
2298
2299
2300// Generate stub code for instanceof.
2301// This code can patch a call site inlined cache of the instance of check,
2302// which looks like this.
2303//
2304// 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2305// 75 0a jne <some near label>
2306// b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2307//
2308// If call site patching is requested the stack will have the delta from the
2309// return address to the cmp instruction just below the return address. This
2310// also means that call site patching can only take place with arguments in
2311// registers. TOS looks like this when call site patching is requested
2312//
2313// esp[0] : return address
2314// esp[4] : delta from return address to cmp instruction
2315//
2316void InstanceofStub::Generate(MacroAssembler* masm) {
2317 // Call site inlining and patching implies arguments in registers.
2318 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2319
2320 // Fixed register usage throughout the stub.
2321 Register object = eax; // Object (lhs).
2322 Register map = ebx; // Map of the object.
2323 Register function = edx; // Function (rhs).
2324 Register prototype = edi; // Prototype of the function.
2325 Register scratch = ecx;
2326
2327 // Constants describing the call site code to patch.
2328 static const int kDeltaToCmpImmediate = 2;
2329 static const int kDeltaToMov = 8;
2330 static const int kDeltaToMovImmediate = 9;
2331 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2332 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2333 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2334
2335 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2336 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2337
2338 // Get the object and function - they are always both needed.
2339 Label slow, not_js_object;
2340 if (!HasArgsInRegisters()) {
2341 __ mov(object, Operand(esp, 2 * kPointerSize));
2342 __ mov(function, Operand(esp, 1 * kPointerSize));
2343 }
2344
2345 // Check that the left hand is a JS object.
2346 __ JumpIfSmi(object, &not_js_object);
2347 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
2348
2349 // If there is a call site cache don't look in the global cache, but do the
2350 // real lookup and update the call site cache.
2351 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2352 // Look up the function and the map in the instanceof cache.
2353 Label miss;
2354 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2355 __ j(not_equal, &miss, Label::kNear);
2356 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2357 __ j(not_equal, &miss, Label::kNear);
2358 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2359 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2360 __ bind(&miss);
2361 }
2362
2363 // Get the prototype of the function.
2364 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2365
2366 // Check that the function prototype is a JS object.
2367 __ JumpIfSmi(prototype, &slow);
2368 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2369
2370 // Update the global instanceof or call site inlined cache with the current
2371 // map and function. The cached answer will be set when it is known below.
2372 if (!HasCallSiteInlineCheck()) {
2373 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2374 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2375 } else {
2376 // The constants for the code patching are based on no push instructions
2377 // at the call site.
2378 DCHECK(HasArgsInRegisters());
2379 // Get return address and delta to inlined map check.
2380 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2381 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2382 if (FLAG_debug_code) {
2383 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2384 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2385 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2386 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2387 }
2388 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2389 __ mov(Operand(scratch, 0), map);
2390 }
2391
2392 // Loop through the prototype chain of the object looking for the function
2393 // prototype.
2394 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2395 Label loop, is_instance, is_not_instance;
2396 __ bind(&loop);
2397 __ cmp(scratch, prototype);
2398 __ j(equal, &is_instance, Label::kNear);
2399 Factory* factory = isolate()->factory();
2400 __ cmp(scratch, Immediate(factory->null_value()));
2401 __ j(equal, &is_not_instance, Label::kNear);
2402 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2403 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2404 __ jmp(&loop);
2405
2406 __ bind(&is_instance);
2407 if (!HasCallSiteInlineCheck()) {
2408 __ mov(eax, Immediate(0));
2409 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2410 if (ReturnTrueFalseObject()) {
2411 __ mov(eax, factory->true_value());
2412 }
2413 } else {
2414 // Get return address and delta to inlined map check.
2415 __ mov(eax, factory->true_value());
2416 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2417 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2418 if (FLAG_debug_code) {
2419 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2420 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2421 }
2422 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2423 if (!ReturnTrueFalseObject()) {
2424 __ Move(eax, Immediate(0));
2425 }
2426 }
2427 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2428
2429 __ bind(&is_not_instance);
2430 if (!HasCallSiteInlineCheck()) {
2431 __ mov(eax, Immediate(Smi::FromInt(1)));
2432 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2433 if (ReturnTrueFalseObject()) {
2434 __ mov(eax, factory->false_value());
2435 }
2436 } else {
2437 // Get return address and delta to inlined map check.
2438 __ mov(eax, factory->false_value());
2439 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2440 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2441 if (FLAG_debug_code) {
2442 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2443 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2444 }
2445 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2446 if (!ReturnTrueFalseObject()) {
2447 __ Move(eax, Immediate(Smi::FromInt(1)));
2448 }
2449 }
2450 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2451
2452 Label object_not_null, object_not_null_or_smi;
2453 __ bind(&not_js_object);
2454 // Before null, smi and string value checks, check that the rhs is a function
2455 // as for a non-function rhs an exception needs to be thrown.
2456 __ JumpIfSmi(function, &slow, Label::kNear);
2457 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2458 __ j(not_equal, &slow, Label::kNear);
2459
2460 // Null is not instance of anything.
2461 __ cmp(object, factory->null_value());
2462 __ j(not_equal, &object_not_null, Label::kNear);
2463 if (ReturnTrueFalseObject()) {
2464 __ mov(eax, factory->false_value());
2465 } else {
2466 __ Move(eax, Immediate(Smi::FromInt(1)));
2467 }
2468 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2469
2470 __ bind(&object_not_null);
2471 // Smi values is not instance of anything.
2472 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2473 if (ReturnTrueFalseObject()) {
2474 __ mov(eax, factory->false_value());
2475 } else {
2476 __ Move(eax, Immediate(Smi::FromInt(1)));
2477 }
2478 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2479
2480 __ bind(&object_not_null_or_smi);
2481 // String values is not instance of anything.
2482 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2483 __ j(NegateCondition(is_string), &slow, Label::kNear);
2484 if (ReturnTrueFalseObject()) {
2485 __ mov(eax, factory->false_value());
2486 } else {
2487 __ Move(eax, Immediate(Smi::FromInt(1)));
2488 }
2489 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2490
2491 // Slow-case: Go through the JavaScript implementation.
2492 __ bind(&slow);
2493 if (!ReturnTrueFalseObject()) {
2494 // Tail call the builtin which returns 0 or 1.
2495 if (HasArgsInRegisters()) {
2496 // Push arguments below return address.
2497 __ pop(scratch);
2498 __ push(object);
2499 __ push(function);
2500 __ push(scratch);
2501 }
2502 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2503 } else {
2504 // Call the builtin and convert 0/1 to true/false.
2505 {
2506 FrameScope scope(masm, StackFrame::INTERNAL);
2507 __ push(object);
2508 __ push(function);
2509 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2510 }
2511 Label true_value, done;
2512 __ test(eax, eax);
2513 __ j(zero, &true_value, Label::kNear);
2514 __ mov(eax, factory->false_value());
2515 __ jmp(&done, Label::kNear);
2516 __ bind(&true_value);
2517 __ mov(eax, factory->true_value());
2518 __ bind(&done);
2519 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2520 }
2521}
2522
2523
2524// -------------------------------------------------------------------------
2525// StringCharCodeAtGenerator
2526
2527void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2528 // If the receiver is a smi trigger the non-string case.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002529 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2530 __ JumpIfSmi(object_, receiver_not_string_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002531
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002532 // Fetch the instance type of the receiver into result register.
2533 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2534 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2535 // If the receiver is not a string trigger the non-string case.
2536 __ test(result_, Immediate(kIsNotStringMask));
2537 __ j(not_zero, receiver_not_string_);
2538 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002539
2540 // If the index is non-smi trigger the non-smi case.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002541 __ JumpIfNotSmi(index_, &index_not_smi_);
2542 __ bind(&got_smi_index_);
2543
2544 // Check for index out of range.
2545 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2546 __ j(above_equal, index_out_of_range_);
2547
2548 __ SmiUntag(index_);
2549
2550 Factory* factory = masm->isolate()->factory();
2551 StringCharLoadGenerator::Generate(
2552 masm, factory, object_, index_, result_, &call_runtime_);
2553
2554 __ SmiTag(result_);
2555 __ bind(&exit_);
2556}
2557
2558
2559void StringCharCodeAtGenerator::GenerateSlow(
2560 MacroAssembler* masm,
2561 const RuntimeCallHelper& call_helper) {
2562 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2563
2564 // Index is not a smi.
2565 __ bind(&index_not_smi_);
2566 // If index is a heap number, try converting it to an integer.
2567 __ CheckMap(index_,
2568 masm->isolate()->factory()->heap_number_map(),
2569 index_not_number_,
2570 DONT_DO_SMI_CHECK);
2571 call_helper.BeforeCall(masm);
2572 __ push(object_);
2573 __ push(index_); // Consumed by runtime conversion function.
2574 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2575 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2576 } else {
2577 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2578 // NumberToSmi discards numbers that are not exact integers.
2579 __ CallRuntime(Runtime::kNumberToSmi, 1);
2580 }
2581 if (!index_.is(eax)) {
2582 // Save the conversion result before the pop instructions below
2583 // have a chance to overwrite it.
2584 __ mov(index_, eax);
2585 }
2586 __ pop(object_);
2587 // Reload the instance type.
2588 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2589 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2590 call_helper.AfterCall(masm);
2591 // If index is still not a smi, it must be out of range.
2592 STATIC_ASSERT(kSmiTag == 0);
2593 __ JumpIfNotSmi(index_, index_out_of_range_);
2594 // Otherwise, return to the fast path.
2595 __ jmp(&got_smi_index_);
2596
2597 // Call runtime. We get here when the receiver is a string and the
2598 // index is a number, but the code of getting the actual character
2599 // is too complex (e.g., when the string needs to be flattened).
2600 __ bind(&call_runtime_);
2601 call_helper.BeforeCall(masm);
2602 __ push(object_);
2603 __ SmiTag(index_);
2604 __ push(index_);
2605 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2606 if (!result_.is(eax)) {
2607 __ mov(result_, eax);
2608 }
2609 call_helper.AfterCall(masm);
2610 __ jmp(&exit_);
2611
2612 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2613}
2614
2615
2616// -------------------------------------------------------------------------
2617// StringCharFromCodeGenerator
2618
2619void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2620 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2621 STATIC_ASSERT(kSmiTag == 0);
2622 STATIC_ASSERT(kSmiShiftSize == 0);
2623 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2624 __ test(code_,
2625 Immediate(kSmiTagMask |
2626 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
2627 __ j(not_zero, &slow_case_);
2628
2629 Factory* factory = masm->isolate()->factory();
2630 __ Move(result_, Immediate(factory->single_character_string_cache()));
2631 STATIC_ASSERT(kSmiTag == 0);
2632 STATIC_ASSERT(kSmiTagSize == 1);
2633 STATIC_ASSERT(kSmiShiftSize == 0);
2634 // At this point code register contains smi tagged one byte char code.
2635 __ mov(result_, FieldOperand(result_,
2636 code_, times_half_pointer_size,
2637 FixedArray::kHeaderSize));
2638 __ cmp(result_, factory->undefined_value());
2639 __ j(equal, &slow_case_);
2640 __ bind(&exit_);
2641}
2642
2643
2644void StringCharFromCodeGenerator::GenerateSlow(
2645 MacroAssembler* masm,
2646 const RuntimeCallHelper& call_helper) {
2647 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2648
2649 __ bind(&slow_case_);
2650 call_helper.BeforeCall(masm);
2651 __ push(code_);
2652 __ CallRuntime(Runtime::kCharFromCode, 1);
2653 if (!result_.is(eax)) {
2654 __ mov(result_, eax);
2655 }
2656 call_helper.AfterCall(masm);
2657 __ jmp(&exit_);
2658
2659 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2660}
2661
2662
2663void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2664 Register dest,
2665 Register src,
2666 Register count,
2667 Register scratch,
2668 String::Encoding encoding) {
2669 DCHECK(!scratch.is(dest));
2670 DCHECK(!scratch.is(src));
2671 DCHECK(!scratch.is(count));
2672
2673 // Nothing to do for zero characters.
2674 Label done;
2675 __ test(count, count);
2676 __ j(zero, &done);
2677
2678 // Make count the number of bytes to copy.
2679 if (encoding == String::TWO_BYTE_ENCODING) {
2680 __ shl(count, 1);
2681 }
2682
2683 Label loop;
2684 __ bind(&loop);
2685 __ mov_b(scratch, Operand(src, 0));
2686 __ mov_b(Operand(dest, 0), scratch);
2687 __ inc(src);
2688 __ inc(dest);
2689 __ dec(count);
2690 __ j(not_zero, &loop);
2691
2692 __ bind(&done);
2693}
2694
2695
2696void SubStringStub::Generate(MacroAssembler* masm) {
2697 Label runtime;
2698
2699 // Stack frame on entry.
2700 // esp[0]: return address
2701 // esp[4]: to
2702 // esp[8]: from
2703 // esp[12]: string
2704
2705 // Make sure first argument is a string.
2706 __ mov(eax, Operand(esp, 3 * kPointerSize));
2707 STATIC_ASSERT(kSmiTag == 0);
2708 __ JumpIfSmi(eax, &runtime);
2709 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2710 __ j(NegateCondition(is_string), &runtime);
2711
2712 // eax: string
2713 // ebx: instance type
2714
2715 // Calculate length of sub string using the smi values.
2716 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
2717 __ JumpIfNotSmi(ecx, &runtime);
2718 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
2719 __ JumpIfNotSmi(edx, &runtime);
2720 __ sub(ecx, edx);
2721 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
2722 Label not_original_string;
2723 // Shorter than original string's length: an actual substring.
2724 __ j(below, &not_original_string, Label::kNear);
2725 // Longer than original string's length or negative: unsafe arguments.
2726 __ j(above, &runtime);
2727 // Return original string.
2728 Counters* counters = isolate()->counters();
2729 __ IncrementCounter(counters->sub_string_native(), 1);
2730 __ ret(3 * kPointerSize);
2731 __ bind(&not_original_string);
2732
2733 Label single_char;
2734 __ cmp(ecx, Immediate(Smi::FromInt(1)));
2735 __ j(equal, &single_char);
2736
2737 // eax: string
2738 // ebx: instance type
2739 // ecx: sub string length (smi)
2740 // edx: from index (smi)
2741 // Deal with different string types: update the index if necessary
2742 // and put the underlying string into edi.
2743 Label underlying_unpacked, sliced_string, seq_or_external_string;
2744 // If the string is not indirect, it can only be sequential or external.
2745 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2746 STATIC_ASSERT(kIsIndirectStringMask != 0);
2747 __ test(ebx, Immediate(kIsIndirectStringMask));
2748 __ j(zero, &seq_or_external_string, Label::kNear);
2749
2750 Factory* factory = isolate()->factory();
2751 __ test(ebx, Immediate(kSlicedNotConsMask));
2752 __ j(not_zero, &sliced_string, Label::kNear);
2753 // Cons string. Check whether it is flat, then fetch first part.
2754 // Flat cons strings have an empty second part.
2755 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
2756 factory->empty_string());
2757 __ j(not_equal, &runtime);
2758 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
2759 // Update instance type.
2760 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2761 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2762 __ jmp(&underlying_unpacked, Label::kNear);
2763
2764 __ bind(&sliced_string);
2765 // Sliced string. Fetch parent and adjust start index by offset.
2766 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
2767 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
2768 // Update instance type.
2769 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2770 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2771 __ jmp(&underlying_unpacked, Label::kNear);
2772
2773 __ bind(&seq_or_external_string);
2774 // Sequential or external string. Just move string to the expected register.
2775 __ mov(edi, eax);
2776
2777 __ bind(&underlying_unpacked);
2778
2779 if (FLAG_string_slices) {
2780 Label copy_routine;
2781 // edi: underlying subject string
2782 // ebx: instance type of underlying subject string
2783 // edx: adjusted start index (smi)
2784 // ecx: length (smi)
2785 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
2786 // Short slice. Copy instead of slicing.
2787 __ j(less, &copy_routine);
2788 // Allocate new sliced string. At this point we do not reload the instance
2789 // type including the string encoding because we simply rely on the info
2790 // provided by the original string. It does not matter if the original
2791 // string's encoding is wrong because we always have to recheck encoding of
2792 // the newly created string's parent anyways due to externalized strings.
2793 Label two_byte_slice, set_slice_header;
2794 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2795 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2796 __ test(ebx, Immediate(kStringEncodingMask));
2797 __ j(zero, &two_byte_slice, Label::kNear);
2798 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
2799 __ jmp(&set_slice_header, Label::kNear);
2800 __ bind(&two_byte_slice);
2801 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
2802 __ bind(&set_slice_header);
2803 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
2804 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
2805 Immediate(String::kEmptyHashField));
2806 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
2807 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
2808 __ IncrementCounter(counters->sub_string_native(), 1);
2809 __ ret(3 * kPointerSize);
2810
2811 __ bind(&copy_routine);
2812 }
2813
2814 // edi: underlying subject string
2815 // ebx: instance type of underlying subject string
2816 // edx: adjusted start index (smi)
2817 // ecx: length (smi)
2818 // The subject string can only be external or sequential string of either
2819 // encoding at this point.
2820 Label two_byte_sequential, runtime_drop_two, sequential_string;
2821 STATIC_ASSERT(kExternalStringTag != 0);
2822 STATIC_ASSERT(kSeqStringTag == 0);
2823 __ test_b(ebx, kExternalStringTag);
2824 __ j(zero, &sequential_string);
2825
2826 // Handle external string.
2827 // Rule out short external strings.
2828 STATIC_ASSERT(kShortExternalStringTag != 0);
2829 __ test_b(ebx, kShortExternalStringMask);
2830 __ j(not_zero, &runtime);
2831 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
2832 // Move the pointer so that offset-wise, it looks like a sequential string.
2833 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2834 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2835
2836 __ bind(&sequential_string);
2837 // Stash away (adjusted) index and (underlying) string.
2838 __ push(edx);
2839 __ push(edi);
2840 __ SmiUntag(ecx);
2841 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2842 __ test_b(ebx, kStringEncodingMask);
2843 __ j(zero, &two_byte_sequential);
2844
2845 // Sequential one byte string. Allocate the result.
2846 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2847
2848 // eax: result string
2849 // ecx: result string length
2850 // Locate first character of result.
2851 __ mov(edi, eax);
2852 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2853 // Load string argument and locate character of sub string start.
2854 __ pop(edx);
2855 __ pop(ebx);
2856 __ SmiUntag(ebx);
2857 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
2858
2859 // eax: result string
2860 // ecx: result length
2861 // edi: first character of result
2862 // edx: character of sub string start
2863 StringHelper::GenerateCopyCharacters(
2864 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
2865 __ IncrementCounter(counters->sub_string_native(), 1);
2866 __ ret(3 * kPointerSize);
2867
2868 __ bind(&two_byte_sequential);
2869 // Sequential two-byte string. Allocate the result.
2870 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2871
2872 // eax: result string
2873 // ecx: result string length
2874 // Locate first character of result.
2875 __ mov(edi, eax);
2876 __ add(edi,
2877 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2878 // Load string argument and locate character of sub string start.
2879 __ pop(edx);
2880 __ pop(ebx);
2881 // As from is a smi it is 2 times the value which matches the size of a two
2882 // byte character.
2883 STATIC_ASSERT(kSmiTag == 0);
2884 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2885 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
2886
2887 // eax: result string
2888 // ecx: result length
2889 // edi: first character of result
2890 // edx: character of sub string start
2891 StringHelper::GenerateCopyCharacters(
2892 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
2893 __ IncrementCounter(counters->sub_string_native(), 1);
2894 __ ret(3 * kPointerSize);
2895
2896 // Drop pushed values on the stack before tail call.
2897 __ bind(&runtime_drop_two);
2898 __ Drop(2);
2899
2900 // Just jump to runtime to create the sub string.
2901 __ bind(&runtime);
2902 __ TailCallRuntime(Runtime::kSubString, 3, 1);
2903
2904 __ bind(&single_char);
2905 // eax: string
2906 // ebx: instance type
2907 // ecx: sub string length (smi)
2908 // edx: from index (smi)
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002909 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
2910 &runtime, STRING_INDEX_IS_NUMBER,
2911 RECEIVER_IS_STRING);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002912 generator.GenerateFast(masm);
2913 __ ret(3 * kPointerSize);
2914 generator.SkipSlow(masm, &runtime);
2915}
2916
2917
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002918void ToNumberStub::Generate(MacroAssembler* masm) {
2919 // The ToNumber stub takes one argument in eax.
2920 Label not_smi;
2921 __ JumpIfNotSmi(eax, &not_smi, Label::kNear);
2922 __ Ret();
2923 __ bind(&not_smi);
2924
2925 Label not_heap_number;
2926 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
2927 __ j(not_equal, &not_heap_number, Label::kNear);
2928 __ Ret();
2929 __ bind(&not_heap_number);
2930
2931 Label not_string, slow_string;
2932 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
2933 // eax: object
2934 // edi: object map
2935 __ j(above_equal, &not_string, Label::kNear);
2936 // Check if string has a cached array index.
2937 __ test(FieldOperand(eax, String::kHashFieldOffset),
2938 Immediate(String::kContainsCachedArrayIndexMask));
2939 __ j(not_zero, &slow_string, Label::kNear);
2940 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
2941 __ IndexFromHash(eax, eax);
2942 __ Ret();
2943 __ bind(&slow_string);
2944 __ pop(ecx); // Pop return address.
2945 __ push(eax); // Push argument.
2946 __ push(ecx); // Push return address.
2947 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
2948 __ bind(&not_string);
2949
2950 Label not_oddball;
2951 __ CmpInstanceType(edi, ODDBALL_TYPE);
2952 __ j(not_equal, &not_oddball, Label::kNear);
2953 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
2954 __ Ret();
2955 __ bind(&not_oddball);
2956
2957 __ pop(ecx); // Pop return address.
2958 __ push(eax); // Push argument.
2959 __ push(ecx); // Push return address.
2960 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
2961}
2962
2963
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002964void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2965 Register left,
2966 Register right,
2967 Register scratch1,
2968 Register scratch2) {
2969 Register length = scratch1;
2970
2971 // Compare lengths.
2972 Label strings_not_equal, check_zero_length;
2973 __ mov(length, FieldOperand(left, String::kLengthOffset));
2974 __ cmp(length, FieldOperand(right, String::kLengthOffset));
2975 __ j(equal, &check_zero_length, Label::kNear);
2976 __ bind(&strings_not_equal);
2977 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
2978 __ ret(0);
2979
2980 // Check if the length is zero.
2981 Label compare_chars;
2982 __ bind(&check_zero_length);
2983 STATIC_ASSERT(kSmiTag == 0);
2984 __ test(length, length);
2985 __ j(not_zero, &compare_chars, Label::kNear);
2986 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2987 __ ret(0);
2988
2989 // Compare characters.
2990 __ bind(&compare_chars);
2991 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2992 &strings_not_equal, Label::kNear);
2993
2994 // Characters are equal.
2995 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2996 __ ret(0);
2997}
2998
2999
3000void StringHelper::GenerateCompareFlatOneByteStrings(
3001 MacroAssembler* masm, Register left, Register right, Register scratch1,
3002 Register scratch2, Register scratch3) {
3003 Counters* counters = masm->isolate()->counters();
3004 __ IncrementCounter(counters->string_compare_native(), 1);
3005
3006 // Find minimum length.
3007 Label left_shorter;
3008 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3009 __ mov(scratch3, scratch1);
3010 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3011
3012 Register length_delta = scratch3;
3013
3014 __ j(less_equal, &left_shorter, Label::kNear);
3015 // Right string is shorter. Change scratch1 to be length of right string.
3016 __ sub(scratch1, length_delta);
3017 __ bind(&left_shorter);
3018
3019 Register min_length = scratch1;
3020
3021 // If either length is zero, just compare lengths.
3022 Label compare_lengths;
3023 __ test(min_length, min_length);
3024 __ j(zero, &compare_lengths, Label::kNear);
3025
3026 // Compare characters.
3027 Label result_not_equal;
3028 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3029 &result_not_equal, Label::kNear);
3030
3031 // Compare lengths - strings up to min-length are equal.
3032 __ bind(&compare_lengths);
3033 __ test(length_delta, length_delta);
3034 Label length_not_equal;
3035 __ j(not_zero, &length_not_equal, Label::kNear);
3036
3037 // Result is EQUAL.
3038 STATIC_ASSERT(EQUAL == 0);
3039 STATIC_ASSERT(kSmiTag == 0);
3040 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3041 __ ret(0);
3042
3043 Label result_greater;
3044 Label result_less;
3045 __ bind(&length_not_equal);
3046 __ j(greater, &result_greater, Label::kNear);
3047 __ jmp(&result_less, Label::kNear);
3048 __ bind(&result_not_equal);
3049 __ j(above, &result_greater, Label::kNear);
3050 __ bind(&result_less);
3051
3052 // Result is LESS.
3053 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3054 __ ret(0);
3055
3056 // Result is GREATER.
3057 __ bind(&result_greater);
3058 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3059 __ ret(0);
3060}
3061
3062
3063void StringHelper::GenerateOneByteCharsCompareLoop(
3064 MacroAssembler* masm, Register left, Register right, Register length,
3065 Register scratch, Label* chars_not_equal,
3066 Label::Distance chars_not_equal_near) {
3067 // Change index to run from -length to -1 by adding length to string
3068 // start. This means that loop ends when index reaches zero, which
3069 // doesn't need an additional compare.
3070 __ SmiUntag(length);
3071 __ lea(left,
3072 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3073 __ lea(right,
3074 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3075 __ neg(length);
3076 Register index = length; // index = -length;
3077
3078 // Compare loop.
3079 Label loop;
3080 __ bind(&loop);
3081 __ mov_b(scratch, Operand(left, index, times_1, 0));
3082 __ cmpb(scratch, Operand(right, index, times_1, 0));
3083 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3084 __ inc(index);
3085 __ j(not_zero, &loop);
3086}
3087
3088
3089void StringCompareStub::Generate(MacroAssembler* masm) {
3090 Label runtime;
3091
3092 // Stack frame on entry.
3093 // esp[0]: return address
3094 // esp[4]: right string
3095 // esp[8]: left string
3096
3097 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3098 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3099
3100 Label not_same;
3101 __ cmp(edx, eax);
3102 __ j(not_equal, &not_same, Label::kNear);
3103 STATIC_ASSERT(EQUAL == 0);
3104 STATIC_ASSERT(kSmiTag == 0);
3105 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3106 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3107 __ ret(2 * kPointerSize);
3108
3109 __ bind(&not_same);
3110
3111 // Check that both objects are sequential one-byte strings.
3112 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3113
3114 // Compare flat one-byte strings.
3115 // Drop arguments from the stack.
3116 __ pop(ecx);
3117 __ add(esp, Immediate(2 * kPointerSize));
3118 __ push(ecx);
3119 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3120 edi);
3121
3122 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3123 // tagged as a small integer.
3124 __ bind(&runtime);
3125 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3126}
3127
3128
3129void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3130 // ----------- S t a t e -------------
3131 // -- edx : left
3132 // -- eax : right
3133 // -- esp[0] : return address
3134 // -----------------------------------
3135
3136 // Load ecx with the allocation site. We stick an undefined dummy value here
3137 // and replace it with the real allocation site later when we instantiate this
3138 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3139 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3140
3141 // Make sure that we actually patched the allocation site.
3142 if (FLAG_debug_code) {
3143 __ test(ecx, Immediate(kSmiTagMask));
3144 __ Assert(not_equal, kExpectedAllocationSite);
3145 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3146 isolate()->factory()->allocation_site_map());
3147 __ Assert(equal, kExpectedAllocationSite);
3148 }
3149
3150 // Tail call into the stub that handles binary operations with allocation
3151 // sites.
3152 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3153 __ TailCallStub(&stub);
3154}
3155
3156
3157void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3158 DCHECK(state() == CompareICState::SMI);
3159 Label miss;
3160 __ mov(ecx, edx);
3161 __ or_(ecx, eax);
3162 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3163
3164 if (GetCondition() == equal) {
3165 // For equality we do not care about the sign of the result.
3166 __ sub(eax, edx);
3167 } else {
3168 Label done;
3169 __ sub(edx, eax);
3170 __ j(no_overflow, &done, Label::kNear);
3171 // Correct sign of result in case of overflow.
3172 __ not_(edx);
3173 __ bind(&done);
3174 __ mov(eax, edx);
3175 }
3176 __ ret(0);
3177
3178 __ bind(&miss);
3179 GenerateMiss(masm);
3180}
3181
3182
3183void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3184 DCHECK(state() == CompareICState::NUMBER);
3185
3186 Label generic_stub;
3187 Label unordered, maybe_undefined1, maybe_undefined2;
3188 Label miss;
3189
3190 if (left() == CompareICState::SMI) {
3191 __ JumpIfNotSmi(edx, &miss);
3192 }
3193 if (right() == CompareICState::SMI) {
3194 __ JumpIfNotSmi(eax, &miss);
3195 }
3196
3197 // Inlining the double comparison and falling back to the general compare
3198 // stub if NaN is involved or SSE2 or CMOV is unsupported.
3199 __ mov(ecx, edx);
3200 __ and_(ecx, eax);
3201 __ JumpIfSmi(ecx, &generic_stub, Label::kNear);
3202
3203 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3204 isolate()->factory()->heap_number_map());
3205 __ j(not_equal, &maybe_undefined1, Label::kNear);
3206 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3207 isolate()->factory()->heap_number_map());
3208 __ j(not_equal, &maybe_undefined2, Label::kNear);
3209
3210 __ bind(&unordered);
3211 __ bind(&generic_stub);
3212 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3213 CompareICState::GENERIC, CompareICState::GENERIC);
3214 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3215
3216 __ bind(&maybe_undefined1);
3217 if (Token::IsOrderedRelationalCompareOp(op())) {
3218 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3219 __ j(not_equal, &miss);
3220 __ JumpIfSmi(edx, &unordered);
3221 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3222 __ j(not_equal, &maybe_undefined2, Label::kNear);
3223 __ jmp(&unordered);
3224 }
3225
3226 __ bind(&maybe_undefined2);
3227 if (Token::IsOrderedRelationalCompareOp(op())) {
3228 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3229 __ j(equal, &unordered);
3230 }
3231
3232 __ bind(&miss);
3233 GenerateMiss(masm);
3234}
3235
3236
3237void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3238 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3239 DCHECK(GetCondition() == equal);
3240
3241 // Registers containing left and right operands respectively.
3242 Register left = edx;
3243 Register right = eax;
3244 Register tmp1 = ecx;
3245 Register tmp2 = ebx;
3246
3247 // Check that both operands are heap objects.
3248 Label miss;
3249 __ mov(tmp1, left);
3250 STATIC_ASSERT(kSmiTag == 0);
3251 __ and_(tmp1, right);
3252 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3253
3254 // Check that both operands are internalized strings.
3255 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3256 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3257 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3258 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3259 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3260 __ or_(tmp1, tmp2);
3261 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3262 __ j(not_zero, &miss, Label::kNear);
3263
3264 // Internalized strings are compared by identity.
3265 Label done;
3266 __ cmp(left, right);
3267 // Make sure eax is non-zero. At this point input operands are
3268 // guaranteed to be non-zero.
3269 DCHECK(right.is(eax));
3270 __ j(not_equal, &done, Label::kNear);
3271 STATIC_ASSERT(EQUAL == 0);
3272 STATIC_ASSERT(kSmiTag == 0);
3273 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3274 __ bind(&done);
3275 __ ret(0);
3276
3277 __ bind(&miss);
3278 GenerateMiss(masm);
3279}
3280
3281
3282void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3283 DCHECK(state() == CompareICState::UNIQUE_NAME);
3284 DCHECK(GetCondition() == equal);
3285
3286 // Registers containing left and right operands respectively.
3287 Register left = edx;
3288 Register right = eax;
3289 Register tmp1 = ecx;
3290 Register tmp2 = ebx;
3291
3292 // Check that both operands are heap objects.
3293 Label miss;
3294 __ mov(tmp1, left);
3295 STATIC_ASSERT(kSmiTag == 0);
3296 __ and_(tmp1, right);
3297 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3298
3299 // Check that both operands are unique names. This leaves the instance
3300 // types loaded in tmp1 and tmp2.
3301 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3302 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3303 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3304 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3305
3306 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3307 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3308
3309 // Unique names are compared by identity.
3310 Label done;
3311 __ cmp(left, right);
3312 // Make sure eax is non-zero. At this point input operands are
3313 // guaranteed to be non-zero.
3314 DCHECK(right.is(eax));
3315 __ j(not_equal, &done, Label::kNear);
3316 STATIC_ASSERT(EQUAL == 0);
3317 STATIC_ASSERT(kSmiTag == 0);
3318 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3319 __ bind(&done);
3320 __ ret(0);
3321
3322 __ bind(&miss);
3323 GenerateMiss(masm);
3324}
3325
3326
3327void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3328 DCHECK(state() == CompareICState::STRING);
3329 Label miss;
3330
3331 bool equality = Token::IsEqualityOp(op());
3332
3333 // Registers containing left and right operands respectively.
3334 Register left = edx;
3335 Register right = eax;
3336 Register tmp1 = ecx;
3337 Register tmp2 = ebx;
3338 Register tmp3 = edi;
3339
3340 // Check that both operands are heap objects.
3341 __ mov(tmp1, left);
3342 STATIC_ASSERT(kSmiTag == 0);
3343 __ and_(tmp1, right);
3344 __ JumpIfSmi(tmp1, &miss);
3345
3346 // Check that both operands are strings. This leaves the instance
3347 // types loaded in tmp1 and tmp2.
3348 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3349 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3350 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3351 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3352 __ mov(tmp3, tmp1);
3353 STATIC_ASSERT(kNotStringTag != 0);
3354 __ or_(tmp3, tmp2);
3355 __ test(tmp3, Immediate(kIsNotStringMask));
3356 __ j(not_zero, &miss);
3357
3358 // Fast check for identical strings.
3359 Label not_same;
3360 __ cmp(left, right);
3361 __ j(not_equal, &not_same, Label::kNear);
3362 STATIC_ASSERT(EQUAL == 0);
3363 STATIC_ASSERT(kSmiTag == 0);
3364 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3365 __ ret(0);
3366
3367 // Handle not identical strings.
3368 __ bind(&not_same);
3369
3370 // Check that both strings are internalized. If they are, we're done
3371 // because we already know they are not identical. But in the case of
3372 // non-equality compare, we still need to determine the order. We
3373 // also know they are both strings.
3374 if (equality) {
3375 Label do_compare;
3376 STATIC_ASSERT(kInternalizedTag == 0);
3377 __ or_(tmp1, tmp2);
3378 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3379 __ j(not_zero, &do_compare, Label::kNear);
3380 // Make sure eax is non-zero. At this point input operands are
3381 // guaranteed to be non-zero.
3382 DCHECK(right.is(eax));
3383 __ ret(0);
3384 __ bind(&do_compare);
3385 }
3386
3387 // Check that both strings are sequential one-byte.
3388 Label runtime;
3389 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3390
3391 // Compare flat one byte strings. Returns when done.
3392 if (equality) {
3393 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3394 tmp2);
3395 } else {
3396 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3397 tmp2, tmp3);
3398 }
3399
3400 // Handle more complex cases in runtime.
3401 __ bind(&runtime);
3402 __ pop(tmp1); // Return address.
3403 __ push(left);
3404 __ push(right);
3405 __ push(tmp1);
3406 if (equality) {
3407 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3408 } else {
3409 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3410 }
3411
3412 __ bind(&miss);
3413 GenerateMiss(masm);
3414}
3415
3416
3417void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3418 DCHECK(state() == CompareICState::OBJECT);
3419 Label miss;
3420 __ mov(ecx, edx);
3421 __ and_(ecx, eax);
3422 __ JumpIfSmi(ecx, &miss, Label::kNear);
3423
3424 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3425 __ j(not_equal, &miss, Label::kNear);
3426 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3427 __ j(not_equal, &miss, Label::kNear);
3428
3429 DCHECK(GetCondition() == equal);
3430 __ sub(eax, edx);
3431 __ ret(0);
3432
3433 __ bind(&miss);
3434 GenerateMiss(masm);
3435}
3436
3437
3438void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3439 Label miss;
3440 __ mov(ecx, edx);
3441 __ and_(ecx, eax);
3442 __ JumpIfSmi(ecx, &miss, Label::kNear);
3443
3444 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3445 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3446 __ cmp(ecx, known_map_);
3447 __ j(not_equal, &miss, Label::kNear);
3448 __ cmp(ebx, known_map_);
3449 __ j(not_equal, &miss, Label::kNear);
3450
3451 __ sub(eax, edx);
3452 __ ret(0);
3453
3454 __ bind(&miss);
3455 GenerateMiss(masm);
3456}
3457
3458
3459void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3460 {
3461 // Call the runtime system in a fresh internal frame.
3462 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3463 isolate());
3464 FrameScope scope(masm, StackFrame::INTERNAL);
3465 __ push(edx); // Preserve edx and eax.
3466 __ push(eax);
3467 __ push(edx); // And also use them as the arguments.
3468 __ push(eax);
3469 __ push(Immediate(Smi::FromInt(op())));
3470 __ CallExternalReference(miss, 3);
3471 // Compute the entry point of the rewritten stub.
3472 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3473 __ pop(eax);
3474 __ pop(edx);
3475 }
3476
3477 // Do a tail call to the rewritten stub.
3478 __ jmp(edi);
3479}
3480
3481
3482// Helper function used to check that the dictionary doesn't contain
3483// the property. This function may return false negatives, so miss_label
3484// must always call a backup property check that is complete.
3485// This function is safe to call if the receiver has fast properties.
3486// Name must be a unique name and receiver must be a heap object.
3487void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3488 Label* miss,
3489 Label* done,
3490 Register properties,
3491 Handle<Name> name,
3492 Register r0) {
3493 DCHECK(name->IsUniqueName());
3494
3495 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3496 // not equal to the name and kProbes-th slot is not used (its name is the
3497 // undefined value), it guarantees the hash table doesn't contain the
3498 // property. It's true even if some slots represent deleted properties
3499 // (their names are the hole value).
3500 for (int i = 0; i < kInlinedProbes; i++) {
3501 // Compute the masked index: (hash + i + i * i) & mask.
3502 Register index = r0;
3503 // Capacity is smi 2^n.
3504 __ mov(index, FieldOperand(properties, kCapacityOffset));
3505 __ dec(index);
3506 __ and_(index,
3507 Immediate(Smi::FromInt(name->Hash() +
3508 NameDictionary::GetProbeOffset(i))));
3509
3510 // Scale the index by multiplying by the entry size.
3511 DCHECK(NameDictionary::kEntrySize == 3);
3512 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3513 Register entity_name = r0;
3514 // Having undefined at this place means the name is not contained.
3515 DCHECK_EQ(kSmiTagSize, 1);
3516 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3517 kElementsStartOffset - kHeapObjectTag));
3518 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3519 __ j(equal, done);
3520
3521 // Stop if found the property.
3522 __ cmp(entity_name, Handle<Name>(name));
3523 __ j(equal, miss);
3524
3525 Label good;
3526 // Check for the hole and skip.
3527 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3528 __ j(equal, &good, Label::kNear);
3529
3530 // Check if the entry name is not a unique name.
3531 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3532 __ JumpIfNotUniqueNameInstanceType(
3533 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3534 __ bind(&good);
3535 }
3536
3537 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3538 NEGATIVE_LOOKUP);
3539 __ push(Immediate(Handle<Object>(name)));
3540 __ push(Immediate(name->Hash()));
3541 __ CallStub(&stub);
3542 __ test(r0, r0);
3543 __ j(not_zero, miss);
3544 __ jmp(done);
3545}
3546
3547
3548// Probe the name dictionary in the |elements| register. Jump to the
3549// |done| label if a property with the given name is found leaving the
3550// index into the dictionary in |r0|. Jump to the |miss| label
3551// otherwise.
3552void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3553 Label* miss,
3554 Label* done,
3555 Register elements,
3556 Register name,
3557 Register r0,
3558 Register r1) {
3559 DCHECK(!elements.is(r0));
3560 DCHECK(!elements.is(r1));
3561 DCHECK(!name.is(r0));
3562 DCHECK(!name.is(r1));
3563
3564 __ AssertName(name);
3565
3566 __ mov(r1, FieldOperand(elements, kCapacityOffset));
3567 __ shr(r1, kSmiTagSize); // convert smi to int
3568 __ dec(r1);
3569
3570 // Generate an unrolled loop that performs a few probes before
3571 // giving up. Measurements done on Gmail indicate that 2 probes
3572 // cover ~93% of loads from dictionaries.
3573 for (int i = 0; i < kInlinedProbes; i++) {
3574 // Compute the masked index: (hash + i + i * i) & mask.
3575 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3576 __ shr(r0, Name::kHashShift);
3577 if (i > 0) {
3578 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
3579 }
3580 __ and_(r0, r1);
3581
3582 // Scale the index by multiplying by the entry size.
3583 DCHECK(NameDictionary::kEntrySize == 3);
3584 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
3585
3586 // Check if the key is identical to the name.
3587 __ cmp(name, Operand(elements,
3588 r0,
3589 times_4,
3590 kElementsStartOffset - kHeapObjectTag));
3591 __ j(equal, done);
3592 }
3593
3594 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
3595 POSITIVE_LOOKUP);
3596 __ push(name);
3597 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3598 __ shr(r0, Name::kHashShift);
3599 __ push(r0);
3600 __ CallStub(&stub);
3601
3602 __ test(r1, r1);
3603 __ j(zero, miss);
3604 __ jmp(done);
3605}
3606
3607
3608void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3609 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3610 // we cannot call anything that could cause a GC from this stub.
3611 // Stack frame on entry:
3612 // esp[0 * kPointerSize]: return address.
3613 // esp[1 * kPointerSize]: key's hash.
3614 // esp[2 * kPointerSize]: key.
3615 // Registers:
3616 // dictionary_: NameDictionary to probe.
3617 // result_: used as scratch.
3618 // index_: will hold an index of entry if lookup is successful.
3619 // might alias with result_.
3620 // Returns:
3621 // result_ is zero if lookup failed, non zero otherwise.
3622
3623 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3624
3625 Register scratch = result();
3626
3627 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
3628 __ dec(scratch);
3629 __ SmiUntag(scratch);
3630 __ push(scratch);
3631
3632 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3633 // not equal to the name and kProbes-th slot is not used (its name is the
3634 // undefined value), it guarantees the hash table doesn't contain the
3635 // property. It's true even if some slots represent deleted properties
3636 // (their names are the null value).
3637 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3638 // Compute the masked index: (hash + i + i * i) & mask.
3639 __ mov(scratch, Operand(esp, 2 * kPointerSize));
3640 if (i > 0) {
3641 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3642 }
3643 __ and_(scratch, Operand(esp, 0));
3644
3645 // Scale the index by multiplying by the entry size.
3646 DCHECK(NameDictionary::kEntrySize == 3);
3647 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
3648
3649 // Having undefined at this place means the name is not contained.
3650 DCHECK_EQ(kSmiTagSize, 1);
3651 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
3652 kElementsStartOffset - kHeapObjectTag));
3653 __ cmp(scratch, isolate()->factory()->undefined_value());
3654 __ j(equal, &not_in_dictionary);
3655
3656 // Stop if found the property.
3657 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
3658 __ j(equal, &in_dictionary);
3659
3660 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3661 // If we hit a key that is not a unique name during negative
3662 // lookup we have to bailout as this key might be equal to the
3663 // key we are looking for.
3664
3665 // Check if the entry name is not a unique name.
3666 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3667 __ JumpIfNotUniqueNameInstanceType(
3668 FieldOperand(scratch, Map::kInstanceTypeOffset),
3669 &maybe_in_dictionary);
3670 }
3671 }
3672
3673 __ bind(&maybe_in_dictionary);
3674 // If we are doing negative lookup then probing failure should be
3675 // treated as a lookup success. For positive lookup probing failure
3676 // should be treated as lookup failure.
3677 if (mode() == POSITIVE_LOOKUP) {
3678 __ mov(result(), Immediate(0));
3679 __ Drop(1);
3680 __ ret(2 * kPointerSize);
3681 }
3682
3683 __ bind(&in_dictionary);
3684 __ mov(result(), Immediate(1));
3685 __ Drop(1);
3686 __ ret(2 * kPointerSize);
3687
3688 __ bind(&not_in_dictionary);
3689 __ mov(result(), Immediate(0));
3690 __ Drop(1);
3691 __ ret(2 * kPointerSize);
3692}
3693
3694
3695void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3696 Isolate* isolate) {
3697 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
3698 stub.GetCode();
3699 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3700 stub2.GetCode();
3701}
3702
3703
3704// Takes the input in 3 registers: address_ value_ and object_. A pointer to
3705// the value has just been written into the object, now this stub makes sure
3706// we keep the GC informed. The word in the object where the value has been
3707// written is in the address register.
3708void RecordWriteStub::Generate(MacroAssembler* masm) {
3709 Label skip_to_incremental_noncompacting;
3710 Label skip_to_incremental_compacting;
3711
3712 // The first two instructions are generated with labels so as to get the
3713 // offset fixed up correctly by the bind(Label*) call. We patch it back and
3714 // forth between a compare instructions (a nop in this position) and the
3715 // real branch when we start and stop incremental heap marking.
3716 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
3717 __ jmp(&skip_to_incremental_compacting, Label::kFar);
3718
3719 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3720 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3721 MacroAssembler::kReturnAtEnd);
3722 } else {
3723 __ ret(0);
3724 }
3725
3726 __ bind(&skip_to_incremental_noncompacting);
3727 GenerateIncremental(masm, INCREMENTAL);
3728
3729 __ bind(&skip_to_incremental_compacting);
3730 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3731
3732 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3733 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3734 masm->set_byte_at(0, kTwoByteNopInstruction);
3735 masm->set_byte_at(2, kFiveByteNopInstruction);
3736}
3737
3738
3739void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3740 regs_.Save(masm);
3741
3742 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3743 Label dont_need_remembered_set;
3744
3745 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3746 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3747 regs_.scratch0(),
3748 &dont_need_remembered_set);
3749
3750 __ CheckPageFlag(regs_.object(),
3751 regs_.scratch0(),
3752 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3753 not_zero,
3754 &dont_need_remembered_set);
3755
3756 // First notify the incremental marker if necessary, then update the
3757 // remembered set.
3758 CheckNeedsToInformIncrementalMarker(
3759 masm,
3760 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
3761 mode);
3762 InformIncrementalMarker(masm);
3763 regs_.Restore(masm);
3764 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3765 MacroAssembler::kReturnAtEnd);
3766
3767 __ bind(&dont_need_remembered_set);
3768 }
3769
3770 CheckNeedsToInformIncrementalMarker(
3771 masm,
3772 kReturnOnNoNeedToInformIncrementalMarker,
3773 mode);
3774 InformIncrementalMarker(masm);
3775 regs_.Restore(masm);
3776 __ ret(0);
3777}
3778
3779
3780void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3781 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3782 int argument_count = 3;
3783 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3784 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
3785 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
3786 __ mov(Operand(esp, 2 * kPointerSize),
3787 Immediate(ExternalReference::isolate_address(isolate())));
3788
3789 AllowExternalCallThatCantCauseGC scope(masm);
3790 __ CallCFunction(
3791 ExternalReference::incremental_marking_record_write_function(isolate()),
3792 argument_count);
3793
3794 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3795}
3796
3797
3798void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3799 MacroAssembler* masm,
3800 OnNoNeedToInformIncrementalMarker on_no_need,
3801 Mode mode) {
3802 Label object_is_black, need_incremental, need_incremental_pop_object;
3803
3804 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
3805 __ and_(regs_.scratch0(), regs_.object());
3806 __ mov(regs_.scratch1(),
3807 Operand(regs_.scratch0(),
3808 MemoryChunk::kWriteBarrierCounterOffset));
3809 __ sub(regs_.scratch1(), Immediate(1));
3810 __ mov(Operand(regs_.scratch0(),
3811 MemoryChunk::kWriteBarrierCounterOffset),
3812 regs_.scratch1());
3813 __ j(negative, &need_incremental);
3814
3815 // Let's look at the color of the object: If it is not black we don't have
3816 // to inform the incremental marker.
3817 __ JumpIfBlack(regs_.object(),
3818 regs_.scratch0(),
3819 regs_.scratch1(),
3820 &object_is_black,
3821 Label::kNear);
3822
3823 regs_.Restore(masm);
3824 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3825 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3826 MacroAssembler::kReturnAtEnd);
3827 } else {
3828 __ ret(0);
3829 }
3830
3831 __ bind(&object_is_black);
3832
3833 // Get the value from the slot.
3834 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3835
3836 if (mode == INCREMENTAL_COMPACTION) {
3837 Label ensure_not_white;
3838
3839 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3840 regs_.scratch1(), // Scratch.
3841 MemoryChunk::kEvacuationCandidateMask,
3842 zero,
3843 &ensure_not_white,
3844 Label::kNear);
3845
3846 __ CheckPageFlag(regs_.object(),
3847 regs_.scratch1(), // Scratch.
3848 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3849 not_zero,
3850 &ensure_not_white,
3851 Label::kNear);
3852
3853 __ jmp(&need_incremental);
3854
3855 __ bind(&ensure_not_white);
3856 }
3857
3858 // We need an extra register for this, so we push the object register
3859 // temporarily.
3860 __ push(regs_.object());
3861 __ EnsureNotWhite(regs_.scratch0(), // The value.
3862 regs_.scratch1(), // Scratch.
3863 regs_.object(), // Scratch.
3864 &need_incremental_pop_object,
3865 Label::kNear);
3866 __ pop(regs_.object());
3867
3868 regs_.Restore(masm);
3869 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3870 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3871 MacroAssembler::kReturnAtEnd);
3872 } else {
3873 __ ret(0);
3874 }
3875
3876 __ bind(&need_incremental_pop_object);
3877 __ pop(regs_.object());
3878
3879 __ bind(&need_incremental);
3880
3881 // Fall through when we need to inform the incremental marker.
3882}
3883
3884
3885void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
3886 // ----------- S t a t e -------------
3887 // -- eax : element value to store
3888 // -- ecx : element index as smi
3889 // -- esp[0] : return address
3890 // -- esp[4] : array literal index in function
3891 // -- esp[8] : array literal
3892 // clobbers ebx, edx, edi
3893 // -----------------------------------
3894
3895 Label element_done;
3896 Label double_elements;
3897 Label smi_element;
3898 Label slow_elements;
3899 Label slow_elements_from_double;
3900 Label fast_elements;
3901
3902 // Get array literal index, array literal and its map.
3903 __ mov(edx, Operand(esp, 1 * kPointerSize));
3904 __ mov(ebx, Operand(esp, 2 * kPointerSize));
3905 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
3906
3907 __ CheckFastElements(edi, &double_elements);
3908
3909 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
3910 __ JumpIfSmi(eax, &smi_element);
3911 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
3912
3913 // Store into the array literal requires a elements transition. Call into
3914 // the runtime.
3915
3916 __ bind(&slow_elements);
3917 __ pop(edi); // Pop return address and remember to put back later for tail
3918 // call.
3919 __ push(ebx);
3920 __ push(ecx);
3921 __ push(eax);
3922 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3923 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
3924 __ push(edx);
3925 __ push(edi); // Return return address so that tail call returns to right
3926 // place.
3927 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
3928
3929 __ bind(&slow_elements_from_double);
3930 __ pop(edx);
3931 __ jmp(&slow_elements);
3932
3933 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
3934 __ bind(&fast_elements);
3935 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
3936 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
3937 FixedArrayBase::kHeaderSize));
3938 __ mov(Operand(ecx, 0), eax);
3939 // Update the write barrier for the array store.
3940 __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
3941 OMIT_SMI_CHECK);
3942 __ ret(0);
3943
3944 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
3945 // and value is Smi.
3946 __ bind(&smi_element);
3947 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
3948 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
3949 FixedArrayBase::kHeaderSize), eax);
3950 __ ret(0);
3951
3952 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
3953 __ bind(&double_elements);
3954
3955 __ push(edx);
3956 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
3957 __ StoreNumberToDoubleElements(eax,
3958 edx,
3959 ecx,
3960 edi,
3961 &slow_elements_from_double,
3962 false);
3963 __ pop(edx);
3964 __ ret(0);
3965}
3966
3967
3968void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3969 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3970 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
3971 int parameter_count_offset =
3972 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
3973 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
3974 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3975 __ pop(ecx);
3976 int additional_offset =
3977 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
3978 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
3979 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
3980}
3981
3982
3983void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
3984 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
3985 VectorLoadStub stub(isolate(), state());
3986 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3987}
3988
3989
3990void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
3991 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
3992 VectorKeyedLoadStub stub(isolate());
3993 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3994}
3995
3996
3997void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
3998 if (masm->isolate()->function_entry_hook() != NULL) {
3999 ProfileEntryHookStub stub(masm->isolate());
4000 masm->CallStub(&stub);
4001 }
4002}
4003
4004
4005void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4006 // Save volatile registers.
4007 const int kNumSavedRegisters = 3;
4008 __ push(eax);
4009 __ push(ecx);
4010 __ push(edx);
4011
4012 // Calculate and push the original stack pointer.
4013 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4014 __ push(eax);
4015
4016 // Retrieve our return address and use it to calculate the calling
4017 // function's address.
4018 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4019 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4020 __ push(eax);
4021
4022 // Call the entry hook.
4023 DCHECK(isolate()->function_entry_hook() != NULL);
4024 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4025 RelocInfo::RUNTIME_ENTRY);
4026 __ add(esp, Immediate(2 * kPointerSize));
4027
4028 // Restore ecx.
4029 __ pop(edx);
4030 __ pop(ecx);
4031 __ pop(eax);
4032
4033 __ ret(0);
4034}
4035
4036
4037template<class T>
4038static void CreateArrayDispatch(MacroAssembler* masm,
4039 AllocationSiteOverrideMode mode) {
4040 if (mode == DISABLE_ALLOCATION_SITES) {
4041 T stub(masm->isolate(),
4042 GetInitialFastElementsKind(),
4043 mode);
4044 __ TailCallStub(&stub);
4045 } else if (mode == DONT_OVERRIDE) {
4046 int last_index = GetSequenceIndexFromFastElementsKind(
4047 TERMINAL_FAST_ELEMENTS_KIND);
4048 for (int i = 0; i <= last_index; ++i) {
4049 Label next;
4050 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4051 __ cmp(edx, kind);
4052 __ j(not_equal, &next);
4053 T stub(masm->isolate(), kind);
4054 __ TailCallStub(&stub);
4055 __ bind(&next);
4056 }
4057
4058 // If we reached this point there is a problem.
4059 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4060 } else {
4061 UNREACHABLE();
4062 }
4063}
4064
4065
4066static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4067 AllocationSiteOverrideMode mode) {
4068 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4069 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4070 // eax - number of arguments
4071 // edi - constructor?
4072 // esp[0] - return address
4073 // esp[4] - last argument
4074 Label normal_sequence;
4075 if (mode == DONT_OVERRIDE) {
4076 DCHECK(FAST_SMI_ELEMENTS == 0);
4077 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4078 DCHECK(FAST_ELEMENTS == 2);
4079 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4080 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4081 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4082
4083 // is the low bit set? If so, we are holey and that is good.
4084 __ test_b(edx, 1);
4085 __ j(not_zero, &normal_sequence);
4086 }
4087
4088 // look at the first argument
4089 __ mov(ecx, Operand(esp, kPointerSize));
4090 __ test(ecx, ecx);
4091 __ j(zero, &normal_sequence);
4092
4093 if (mode == DISABLE_ALLOCATION_SITES) {
4094 ElementsKind initial = GetInitialFastElementsKind();
4095 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4096
4097 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4098 holey_initial,
4099 DISABLE_ALLOCATION_SITES);
4100 __ TailCallStub(&stub_holey);
4101
4102 __ bind(&normal_sequence);
4103 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4104 initial,
4105 DISABLE_ALLOCATION_SITES);
4106 __ TailCallStub(&stub);
4107 } else if (mode == DONT_OVERRIDE) {
4108 // We are going to create a holey array, but our kind is non-holey.
4109 // Fix kind and retry.
4110 __ inc(edx);
4111
4112 if (FLAG_debug_code) {
4113 Handle<Map> allocation_site_map =
4114 masm->isolate()->factory()->allocation_site_map();
4115 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4116 __ Assert(equal, kExpectedAllocationSite);
4117 }
4118
4119 // Save the resulting elements kind in type info. We can't just store r3
4120 // in the AllocationSite::transition_info field because elements kind is
4121 // restricted to a portion of the field...upper bits need to be left alone.
4122 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4123 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4124 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4125
4126 __ bind(&normal_sequence);
4127 int last_index = GetSequenceIndexFromFastElementsKind(
4128 TERMINAL_FAST_ELEMENTS_KIND);
4129 for (int i = 0; i <= last_index; ++i) {
4130 Label next;
4131 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4132 __ cmp(edx, kind);
4133 __ j(not_equal, &next);
4134 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4135 __ TailCallStub(&stub);
4136 __ bind(&next);
4137 }
4138
4139 // If we reached this point there is a problem.
4140 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4141 } else {
4142 UNREACHABLE();
4143 }
4144}
4145
4146
4147template<class T>
4148static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4149 int to_index = GetSequenceIndexFromFastElementsKind(
4150 TERMINAL_FAST_ELEMENTS_KIND);
4151 for (int i = 0; i <= to_index; ++i) {
4152 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4153 T stub(isolate, kind);
4154 stub.GetCode();
4155 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4156 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4157 stub1.GetCode();
4158 }
4159 }
4160}
4161
4162
4163void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4164 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4165 isolate);
4166 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4167 isolate);
4168 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4169 isolate);
4170}
4171
4172
4173void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4174 Isolate* isolate) {
4175 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4176 for (int i = 0; i < 2; i++) {
4177 // For internal arrays we only need a few things
4178 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4179 stubh1.GetCode();
4180 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4181 stubh2.GetCode();
4182 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4183 stubh3.GetCode();
4184 }
4185}
4186
4187
4188void ArrayConstructorStub::GenerateDispatchToArrayStub(
4189 MacroAssembler* masm,
4190 AllocationSiteOverrideMode mode) {
4191 if (argument_count() == ANY) {
4192 Label not_zero_case, not_one_case;
4193 __ test(eax, eax);
4194 __ j(not_zero, &not_zero_case);
4195 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4196
4197 __ bind(&not_zero_case);
4198 __ cmp(eax, 1);
4199 __ j(greater, &not_one_case);
4200 CreateArrayDispatchOneArgument(masm, mode);
4201
4202 __ bind(&not_one_case);
4203 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4204 } else if (argument_count() == NONE) {
4205 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4206 } else if (argument_count() == ONE) {
4207 CreateArrayDispatchOneArgument(masm, mode);
4208 } else if (argument_count() == MORE_THAN_ONE) {
4209 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4210 } else {
4211 UNREACHABLE();
4212 }
4213}
4214
4215
4216void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4217 // ----------- S t a t e -------------
4218 // -- eax : argc (only if argument_count() == ANY)
4219 // -- ebx : AllocationSite or undefined
4220 // -- edi : constructor
4221 // -- esp[0] : return address
4222 // -- esp[4] : last argument
4223 // -----------------------------------
4224 if (FLAG_debug_code) {
4225 // The array construct code is only set for the global and natives
4226 // builtin Array functions which always have maps.
4227
4228 // Initial map for the builtin Array function should be a map.
4229 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4230 // Will both indicate a NULL and a Smi.
4231 __ test(ecx, Immediate(kSmiTagMask));
4232 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4233 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4234 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4235
4236 // We should either have undefined in ebx or a valid AllocationSite
4237 __ AssertUndefinedOrAllocationSite(ebx);
4238 }
4239
4240 Label no_info;
4241 // If the feedback vector is the undefined value call an array constructor
4242 // that doesn't use AllocationSites.
4243 __ cmp(ebx, isolate()->factory()->undefined_value());
4244 __ j(equal, &no_info);
4245
4246 // Only look at the lower 16 bits of the transition info.
4247 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4248 __ SmiUntag(edx);
4249 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4250 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4251 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4252
4253 __ bind(&no_info);
4254 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4255}
4256
4257
4258void InternalArrayConstructorStub::GenerateCase(
4259 MacroAssembler* masm, ElementsKind kind) {
4260 Label not_zero_case, not_one_case;
4261 Label normal_sequence;
4262
4263 __ test(eax, eax);
4264 __ j(not_zero, &not_zero_case);
4265 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4266 __ TailCallStub(&stub0);
4267
4268 __ bind(&not_zero_case);
4269 __ cmp(eax, 1);
4270 __ j(greater, &not_one_case);
4271
4272 if (IsFastPackedElementsKind(kind)) {
4273 // We might need to create a holey array
4274 // look at the first argument
4275 __ mov(ecx, Operand(esp, kPointerSize));
4276 __ test(ecx, ecx);
4277 __ j(zero, &normal_sequence);
4278
4279 InternalArraySingleArgumentConstructorStub
4280 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4281 __ TailCallStub(&stub1_holey);
4282 }
4283
4284 __ bind(&normal_sequence);
4285 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4286 __ TailCallStub(&stub1);
4287
4288 __ bind(&not_one_case);
4289 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4290 __ TailCallStub(&stubN);
4291}
4292
4293
4294void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4295 // ----------- S t a t e -------------
4296 // -- eax : argc
4297 // -- edi : constructor
4298 // -- esp[0] : return address
4299 // -- esp[4] : last argument
4300 // -----------------------------------
4301
4302 if (FLAG_debug_code) {
4303 // The array construct code is only set for the global and natives
4304 // builtin Array functions which always have maps.
4305
4306 // Initial map for the builtin Array function should be a map.
4307 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4308 // Will both indicate a NULL and a Smi.
4309 __ test(ecx, Immediate(kSmiTagMask));
4310 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4311 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4312 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4313 }
4314
4315 // Figure out the right elements kind
4316 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4317
4318 // Load the map's "bit field 2" into |result|. We only need the first byte,
4319 // but the following masking takes care of that anyway.
4320 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
4321 // Retrieve elements_kind from bit field 2.
4322 __ DecodeField<Map::ElementsKindBits>(ecx);
4323
4324 if (FLAG_debug_code) {
4325 Label done;
4326 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4327 __ j(equal, &done);
4328 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
4329 __ Assert(equal,
4330 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4331 __ bind(&done);
4332 }
4333
4334 Label fast_elements_case;
4335 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4336 __ j(equal, &fast_elements_case);
4337 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4338
4339 __ bind(&fast_elements_case);
4340 GenerateCase(masm, FAST_ELEMENTS);
4341}
4342
4343
4344void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4345 // ----------- S t a t e -------------
4346 // -- eax : callee
4347 // -- ebx : call_data
4348 // -- ecx : holder
4349 // -- edx : api_function_address
4350 // -- esi : context
4351 // --
4352 // -- esp[0] : return address
4353 // -- esp[4] : last argument
4354 // -- ...
4355 // -- esp[argc * 4] : first argument
4356 // -- esp[(argc + 1) * 4] : receiver
4357 // -----------------------------------
4358
4359 Register callee = eax;
4360 Register call_data = ebx;
4361 Register holder = ecx;
4362 Register api_function_address = edx;
4363 Register return_address = edi;
4364 Register context = esi;
4365
4366 int argc = this->argc();
4367 bool is_store = this->is_store();
4368 bool call_data_undefined = this->call_data_undefined();
4369
4370 typedef FunctionCallbackArguments FCA;
4371
4372 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4373 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4374 STATIC_ASSERT(FCA::kDataIndex == 4);
4375 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4376 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4377 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4378 STATIC_ASSERT(FCA::kHolderIndex == 0);
4379 STATIC_ASSERT(FCA::kArgsLength == 7);
4380
4381 __ pop(return_address);
4382
4383 // context save
4384 __ push(context);
4385 // load context from callee
4386 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
4387
4388 // callee
4389 __ push(callee);
4390
4391 // call data
4392 __ push(call_data);
4393
4394 Register scratch = call_data;
4395 if (!call_data_undefined) {
4396 // return value
4397 __ push(Immediate(isolate()->factory()->undefined_value()));
4398 // return value default
4399 __ push(Immediate(isolate()->factory()->undefined_value()));
4400 } else {
4401 // return value
4402 __ push(scratch);
4403 // return value default
4404 __ push(scratch);
4405 }
4406 // isolate
4407 __ push(Immediate(reinterpret_cast<int>(isolate())));
4408 // holder
4409 __ push(holder);
4410
4411 __ mov(scratch, esp);
4412
4413 // return address
4414 __ push(return_address);
4415
4416 // API function gets reference to the v8::Arguments. If CPU profiler
4417 // is enabled wrapper function will be called and we need to pass
4418 // address of the callback as additional parameter, always allocate
4419 // space for it.
4420 const int kApiArgc = 1 + 1;
4421
4422 // Allocate the v8::Arguments structure in the arguments' space since
4423 // it's not controlled by GC.
4424 const int kApiStackSpace = 4;
4425
4426 __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
4427
4428 // FunctionCallbackInfo::implicit_args_.
4429 __ mov(ApiParameterOperand(2), scratch);
4430 __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
4431 // FunctionCallbackInfo::values_.
4432 __ mov(ApiParameterOperand(3), scratch);
4433 // FunctionCallbackInfo::length_.
4434 __ Move(ApiParameterOperand(4), Immediate(argc));
4435 // FunctionCallbackInfo::is_construct_call_.
4436 __ Move(ApiParameterOperand(5), Immediate(0));
4437
4438 // v8::InvocationCallback's argument.
4439 __ lea(scratch, ApiParameterOperand(2));
4440 __ mov(ApiParameterOperand(0), scratch);
4441
4442 ExternalReference thunk_ref =
4443 ExternalReference::invoke_function_callback(isolate());
4444
4445 Operand context_restore_operand(ebp,
4446 (2 + FCA::kContextSaveIndex) * kPointerSize);
4447 // Stores return the first js argument
4448 int return_value_offset = 0;
4449 if (is_store) {
4450 return_value_offset = 2 + FCA::kArgsLength;
4451 } else {
4452 return_value_offset = 2 + FCA::kReturnValueOffset;
4453 }
4454 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
4455 __ CallApiFunctionAndReturn(api_function_address,
4456 thunk_ref,
4457 ApiParameterOperand(1),
4458 argc + FCA::kArgsLength + 1,
4459 return_value_operand,
4460 &context_restore_operand);
4461}
4462
4463
4464void CallApiGetterStub::Generate(MacroAssembler* masm) {
4465 // ----------- S t a t e -------------
4466 // -- esp[0] : return address
4467 // -- esp[4] : name
4468 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
4469 // -- ...
4470 // -- edx : api_function_address
4471 // -----------------------------------
4472 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
4473
4474 // array for v8::Arguments::values_, handler for name and pointer
4475 // to the values (it considered as smi in GC).
4476 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
4477 // Allocate space for opional callback address parameter in case
4478 // CPU profiler is active.
4479 const int kApiArgc = 2 + 1;
4480
4481 Register api_function_address = edx;
4482 Register scratch = ebx;
4483
4484 // load address of name
4485 __ lea(scratch, Operand(esp, 1 * kPointerSize));
4486
4487 __ PrepareCallApiFunction(kApiArgc);
4488 __ mov(ApiParameterOperand(0), scratch); // name.
4489 __ add(scratch, Immediate(kPointerSize));
4490 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
4491
4492 ExternalReference thunk_ref =
4493 ExternalReference::invoke_accessor_getter_callback(isolate());
4494
4495 __ CallApiFunctionAndReturn(api_function_address,
4496 thunk_ref,
4497 ApiParameterOperand(2),
4498 kStackSpace,
4499 Operand(ebp, 7 * kPointerSize),
4500 NULL);
4501}
4502
4503
4504#undef __
4505
4506} } // namespace v8::internal
4507
4508#endif // V8_TARGET_ARCH_X87