blob: fdb6c81d2ee40b6f981f6398b94df19cb0e1bc5b [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005#if V8_TARGET_ARCH_MIPS64
6
Ben Murdochb8a8cc12014-11-26 15:28:44 +00007#include "src/code-stubs.h"
Ben Murdochda12d292016-06-02 14:46:10 +01008#include "src/api-arguments.h"
9#include "src/bootstrapper.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000010#include "src/codegen.h"
11#include "src/ic/handler-compiler.h"
12#include "src/ic/ic.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000013#include "src/ic/stub-cache.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000014#include "src/isolate.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000015#include "src/mips64/code-stubs-mips64.h"
16#include "src/regexp/jsregexp.h"
17#include "src/regexp/regexp-macro-assembler.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040018#include "src/runtime/runtime.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000019
20namespace v8 {
21namespace internal {
22
23
24static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
27 Address deopt_handler = Runtime::FunctionForId(
28 Runtime::kArrayConstructor)->entry;
29
30 if (constant_stack_parameter_count == 0) {
31 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
32 JS_FUNCTION_STUB_MODE);
33 } else {
34 descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000035 JS_FUNCTION_STUB_MODE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000036 }
37}
38
39
40static void InitializeInternalArrayConstructorDescriptor(
41 Isolate* isolate, CodeStubDescriptor* descriptor,
42 int constant_stack_parameter_count) {
43 Address deopt_handler = Runtime::FunctionForId(
44 Runtime::kInternalArrayConstructor)->entry;
45
46 if (constant_stack_parameter_count == 0) {
47 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
48 JS_FUNCTION_STUB_MODE);
49 } else {
50 descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000051 JS_FUNCTION_STUB_MODE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000052 }
53}
54
55
56void ArrayNoArgumentConstructorStub::InitializeDescriptor(
57 CodeStubDescriptor* descriptor) {
58 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
59}
60
61
62void ArraySingleArgumentConstructorStub::InitializeDescriptor(
63 CodeStubDescriptor* descriptor) {
64 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
65}
66
67
68void ArrayNArgumentsConstructorStub::InitializeDescriptor(
69 CodeStubDescriptor* descriptor) {
70 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
71}
72
73
74void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
75 CodeStubDescriptor* descriptor) {
76 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
77}
78
Ben Murdochda12d292016-06-02 14:46:10 +010079void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
80 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
81 descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
82}
Ben Murdochb8a8cc12014-11-26 15:28:44 +000083
84void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
85 CodeStubDescriptor* descriptor) {
86 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
87}
88
89
90void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
91 CodeStubDescriptor* descriptor) {
92 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
93}
94
95
96#define __ ACCESS_MASM(masm)
97
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000098static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Ben Murdoch097c5b22016-05-18 11:27:45 +010099 Condition cc);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000100static void EmitSmiNonsmiComparison(MacroAssembler* masm,
101 Register lhs,
102 Register rhs,
103 Label* rhs_not_nan,
104 Label* slow,
105 bool strict);
106static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
107 Register lhs,
108 Register rhs);
109
110
111void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
112 ExternalReference miss) {
113 // Update the static counter each time a new code stub is generated.
114 isolate()->counters()->code_stubs()->Increment();
115
116 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000117 int param_count = descriptor.GetRegisterParameterCount();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000118 {
119 // Call the runtime system in a fresh internal frame.
120 FrameScope scope(masm, StackFrame::INTERNAL);
121 DCHECK((param_count == 0) ||
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000122 a0.is(descriptor.GetRegisterParameter(param_count - 1)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000123 // Push arguments, adjust sp.
124 __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
125 for (int i = 0; i < param_count; ++i) {
126 // Store argument to stack.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000127 __ sd(descriptor.GetRegisterParameter(i),
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000128 MemOperand(sp, (param_count - 1 - i) * kPointerSize));
129 }
130 __ CallExternalReference(miss, param_count);
131 }
132
133 __ Ret();
134}
135
136
137void DoubleToIStub::Generate(MacroAssembler* masm) {
138 Label out_of_range, only_low, negate, done;
139 Register input_reg = source();
140 Register result_reg = destination();
141
142 int double_offset = offset();
143 // Account for saved regs if input is sp.
144 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
145
146 Register scratch =
147 GetRegisterThatIsNotOneOf(input_reg, result_reg);
148 Register scratch2 =
149 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
150 Register scratch3 =
151 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
152 DoubleRegister double_scratch = kLithiumScratchDouble;
153
154 __ Push(scratch, scratch2, scratch3);
155 if (!skip_fastpath()) {
156 // Load double input.
157 __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
158
159 // Clear cumulative exception flags and save the FCSR.
160 __ cfc1(scratch2, FCSR);
161 __ ctc1(zero_reg, FCSR);
162
163 // Try a conversion to a signed integer.
164 __ Trunc_w_d(double_scratch, double_scratch);
165 // Move the converted value into the result register.
166 __ mfc1(scratch3, double_scratch);
167
168 // Retrieve and restore the FCSR.
169 __ cfc1(scratch, FCSR);
170 __ ctc1(scratch2, FCSR);
171
172 // Check for overflow and NaNs.
173 __ And(
174 scratch, scratch,
175 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
176 | kFCSRInvalidOpFlagMask);
177 // If we had no exceptions then set result_reg and we are done.
178 Label error;
179 __ Branch(&error, ne, scratch, Operand(zero_reg));
180 __ Move(result_reg, scratch3);
181 __ Branch(&done);
182 __ bind(&error);
183 }
184
185 // Load the double value and perform a manual truncation.
186 Register input_high = scratch2;
187 Register input_low = scratch3;
188
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000189 __ lw(input_low,
190 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
191 __ lw(input_high,
192 MemOperand(input_reg, double_offset + Register::kExponentOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000193
194 Label normal_exponent, restore_sign;
195 // Extract the biased exponent in result.
196 __ Ext(result_reg,
197 input_high,
198 HeapNumber::kExponentShift,
199 HeapNumber::kExponentBits);
200
201 // Check for Infinity and NaNs, which should return 0.
202 __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
203 __ Movz(result_reg, zero_reg, scratch);
204 __ Branch(&done, eq, scratch, Operand(zero_reg));
205
206 // Express exponent as delta to (number of mantissa bits + 31).
207 __ Subu(result_reg,
208 result_reg,
209 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
210
211 // If the delta is strictly positive, all bits would be shifted away,
212 // which means that we can return 0.
213 __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
214 __ mov(result_reg, zero_reg);
215 __ Branch(&done);
216
217 __ bind(&normal_exponent);
218 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
219 // Calculate shift.
220 __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
221
222 // Save the sign.
223 Register sign = result_reg;
224 result_reg = no_reg;
225 __ And(sign, input_high, Operand(HeapNumber::kSignMask));
226
227 // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
228 // to check for this specific case.
229 Label high_shift_needed, high_shift_done;
230 __ Branch(&high_shift_needed, lt, scratch, Operand(32));
231 __ mov(input_high, zero_reg);
232 __ Branch(&high_shift_done);
233 __ bind(&high_shift_needed);
234
235 // Set the implicit 1 before the mantissa part in input_high.
236 __ Or(input_high,
237 input_high,
238 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
239 // Shift the mantissa bits to the correct position.
240 // We don't need to clear non-mantissa bits as they will be shifted away.
241 // If they weren't, it would mean that the answer is in the 32bit range.
242 __ sllv(input_high, input_high, scratch);
243
244 __ bind(&high_shift_done);
245
246 // Replace the shifted bits with bits from the lower mantissa word.
247 Label pos_shift, shift_done;
248 __ li(at, 32);
249 __ subu(scratch, at, scratch);
250 __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
251
252 // Negate scratch.
253 __ Subu(scratch, zero_reg, scratch);
254 __ sllv(input_low, input_low, scratch);
255 __ Branch(&shift_done);
256
257 __ bind(&pos_shift);
258 __ srlv(input_low, input_low, scratch);
259
260 __ bind(&shift_done);
261 __ Or(input_high, input_high, Operand(input_low));
262 // Restore sign if necessary.
263 __ mov(scratch, sign);
264 result_reg = sign;
265 sign = no_reg;
266 __ Subu(result_reg, zero_reg, input_high);
267 __ Movz(result_reg, input_high, scratch);
268
269 __ bind(&done);
270
271 __ Pop(scratch, scratch2, scratch3);
272 __ Ret();
273}
274
275
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000276// Handle the case where the lhs and rhs are the same object.
277// Equality is almost reflexive (everything but NaN), so this is a test
278// for "identity and not NaN".
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000279static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100280 Condition cc) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000281 Label not_identical;
282 Label heap_number, return_equal;
283 Register exp_mask_reg = t1;
284
285 __ Branch(&not_identical, ne, a0, Operand(a1));
286
287 __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
288
289 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
290 // so we do the second best thing - test it ourselves.
291 // They are both equal and they are not both Smis so both of them are not
292 // Smis. If it's not a heap number, then return equal.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000293 __ GetObjectType(a0, t0, t0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000294 if (cc == less || cc == greater) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000295 // Call runtime on identical JSObjects.
296 __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
297 // Call runtime on identical symbols since we need to throw a TypeError.
298 __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
299 // Call runtime on identical SIMD values since we must throw a TypeError.
300 __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000301 } else {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000302 __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
303 // Comparing JS objects with <=, >= is complicated.
304 if (cc != eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000305 __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
306 // Call runtime on identical symbols since we need to throw a TypeError.
307 __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
308 // Call runtime on identical SIMD values since we must throw a TypeError.
309 __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000310 // Normally here we fall through to return_equal, but undefined is
311 // special: (undefined == undefined) == true, but
312 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
313 if (cc == less_equal || cc == greater_equal) {
314 __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
315 __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
316 __ Branch(&return_equal, ne, a0, Operand(a6));
317 DCHECK(is_int16(GREATER) && is_int16(LESS));
318 __ Ret(USE_DELAY_SLOT);
319 if (cc == le) {
320 // undefined <= undefined should fail.
321 __ li(v0, Operand(GREATER));
322 } else {
323 // undefined >= undefined should fail.
324 __ li(v0, Operand(LESS));
325 }
326 }
327 }
328 }
329
330 __ bind(&return_equal);
331 DCHECK(is_int16(GREATER) && is_int16(LESS));
332 __ Ret(USE_DELAY_SLOT);
333 if (cc == less) {
334 __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
335 } else if (cc == greater) {
336 __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
337 } else {
338 __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
339 }
340 // For less and greater we don't have to check for NaN since the result of
341 // x < x is false regardless. For the others here is some code to check
342 // for NaN.
343 if (cc != lt && cc != gt) {
344 __ bind(&heap_number);
345 // It is a heap number, so return non-equal if it's NaN and equal if it's
346 // not NaN.
347
348 // The representation of NaN values has all exponent bits (52..62) set,
349 // and not all mantissa bits (0..51) clear.
350 // Read top bits of double representation (second word of value).
351 __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
352 // Test that exponent bits are all set.
353 __ And(a7, a6, Operand(exp_mask_reg));
354 // If all bits not set (ne cond), then not a NaN, objects are equal.
355 __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
356
357 // Shift out flag and all exponent bits, retaining only mantissa.
358 __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
359 // Or with all low-bits of mantissa.
360 __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
361 __ Or(v0, a7, Operand(a6));
362 // For equal we already have the right value in v0: Return zero (equal)
363 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
364 // not (it's a NaN). For <= and >= we need to load v0 with the failing
365 // value if it's a NaN.
366 if (cc != eq) {
367 // All-zero means Infinity means equal.
368 __ Ret(eq, v0, Operand(zero_reg));
369 DCHECK(is_int16(GREATER) && is_int16(LESS));
370 __ Ret(USE_DELAY_SLOT);
371 if (cc == le) {
372 __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
373 } else {
374 __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
375 }
376 }
377 }
378 // No fall through here.
379
380 __ bind(&not_identical);
381}
382
383
384static void EmitSmiNonsmiComparison(MacroAssembler* masm,
385 Register lhs,
386 Register rhs,
387 Label* both_loaded_as_doubles,
388 Label* slow,
389 bool strict) {
390 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
391 (lhs.is(a1) && rhs.is(a0)));
392
393 Label lhs_is_smi;
394 __ JumpIfSmi(lhs, &lhs_is_smi);
395 // Rhs is a Smi.
396 // Check whether the non-smi is a heap number.
397 __ GetObjectType(lhs, t0, t0);
398 if (strict) {
399 // If lhs was not a number and rhs was a Smi then strict equality cannot
400 // succeed. Return non-equal (lhs is already not zero).
401 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
402 __ mov(v0, lhs);
403 } else {
404 // Smi compared non-strictly with a non-Smi non-heap-number. Call
405 // the runtime.
406 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
407 }
408 // Rhs is a smi, lhs is a number.
409 // Convert smi rhs to double.
410 __ SmiUntag(at, rhs);
411 __ mtc1(at, f14);
412 __ cvt_d_w(f14, f14);
413 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
414
415 // We now have both loaded as doubles.
416 __ jmp(both_loaded_as_doubles);
417
418 __ bind(&lhs_is_smi);
419 // Lhs is a Smi. Check whether the non-smi is a heap number.
420 __ GetObjectType(rhs, t0, t0);
421 if (strict) {
422 // If lhs was not a number and rhs was a Smi then strict equality cannot
423 // succeed. Return non-equal.
424 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
425 __ li(v0, Operand(1));
426 } else {
427 // Smi compared non-strictly with a non-Smi non-heap-number. Call
428 // the runtime.
429 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
430 }
431
432 // Lhs is a smi, rhs is a number.
433 // Convert smi lhs to double.
434 __ SmiUntag(at, lhs);
435 __ mtc1(at, f12);
436 __ cvt_d_w(f12, f12);
437 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
438 // Fall through to both_loaded_as_doubles.
439}
440
441
442static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
443 Register lhs,
444 Register rhs) {
445 // If either operand is a JS object or an oddball value, then they are
446 // not equal since their pointers are different.
447 // There is no test for undetectability in strict equality.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000448 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000449 Label first_non_object;
450 // Get the type of the first operand into a2 and compare it with
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000451 // FIRST_JS_RECEIVER_TYPE.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000452 __ GetObjectType(lhs, a2, a2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000453 __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000454
455 // Return non-zero.
456 Label return_not_equal;
457 __ bind(&return_not_equal);
458 __ Ret(USE_DELAY_SLOT);
459 __ li(v0, Operand(1));
460
461 __ bind(&first_non_object);
462 // Check for oddballs: true, false, null, undefined.
463 __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
464
465 __ GetObjectType(rhs, a3, a3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000466 __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000467
468 // Check for oddballs: true, false, null, undefined.
469 __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
470
471 // Now that we have the types we might as well check for
472 // internalized-internalized.
473 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
474 __ Or(a2, a2, Operand(a3));
475 __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
476 __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
477}
478
479
480static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
481 Register lhs,
482 Register rhs,
483 Label* both_loaded_as_doubles,
484 Label* not_heap_numbers,
485 Label* slow) {
486 __ GetObjectType(lhs, a3, a2);
487 __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
488 __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
489 // If first was a heap number & second wasn't, go to slow case.
490 __ Branch(slow, ne, a3, Operand(a2));
491
492 // Both are heap numbers. Load them up then jump to the code we have
493 // for that.
494 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
495 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
496
497 __ jmp(both_loaded_as_doubles);
498}
499
500
501// Fast negative check for internalized-to-internalized equality.
502static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100503 Register lhs, Register rhs,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000504 Label* possible_strings,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100505 Label* runtime_call) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000506 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
507 (lhs.is(a1) && rhs.is(a0)));
508
509 // a2 is object type of rhs.
Ben Murdochda12d292016-06-02 14:46:10 +0100510 Label object_test, return_equal, return_unequal, undetectable;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000511 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
512 __ And(at, a2, Operand(kIsNotStringMask));
513 __ Branch(&object_test, ne, at, Operand(zero_reg));
514 __ And(at, a2, Operand(kIsNotInternalizedMask));
515 __ Branch(possible_strings, ne, at, Operand(zero_reg));
516 __ GetObjectType(rhs, a3, a3);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100517 __ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000518 __ And(at, a3, Operand(kIsNotInternalizedMask));
519 __ Branch(possible_strings, ne, at, Operand(zero_reg));
520
Ben Murdoch097c5b22016-05-18 11:27:45 +0100521 // Both are internalized. We already checked they weren't the same pointer so
522 // they are not equal. Return non-equal by returning the non-zero object
523 // pointer in v0.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000524 __ Ret(USE_DELAY_SLOT);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100525 __ mov(v0, a0); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000526
527 __ bind(&object_test);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100528 __ ld(a2, FieldMemOperand(lhs, HeapObject::kMapOffset));
529 __ ld(a3, FieldMemOperand(rhs, HeapObject::kMapOffset));
530 __ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset));
531 __ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset));
532 __ And(at, t0, Operand(1 << Map::kIsUndetectable));
533 __ Branch(&undetectable, ne, at, Operand(zero_reg));
534 __ And(at, t1, Operand(1 << Map::kIsUndetectable));
535 __ Branch(&return_unequal, ne, at, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000536
Ben Murdoch097c5b22016-05-18 11:27:45 +0100537 __ GetInstanceType(a2, a2);
538 __ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
539 __ GetInstanceType(a3, a3);
540 __ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
541
542 __ bind(&return_unequal);
543 // Return non-equal by returning the non-zero object pointer in v0.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000544 __ Ret(USE_DELAY_SLOT);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100545 __ mov(v0, a0); // In delay slot.
546
547 __ bind(&undetectable);
548 __ And(at, t1, Operand(1 << Map::kIsUndetectable));
549 __ Branch(&return_unequal, eq, at, Operand(zero_reg));
Ben Murdochda12d292016-06-02 14:46:10 +0100550
551 // If both sides are JSReceivers, then the result is false according to
552 // the HTML specification, which says that only comparisons with null or
553 // undefined are affected by special casing for document.all.
554 __ GetInstanceType(a2, a2);
555 __ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE));
556 __ GetInstanceType(a3, a3);
557 __ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE));
558
559 __ bind(&return_equal);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100560 __ Ret(USE_DELAY_SLOT);
561 __ li(v0, Operand(EQUAL)); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000562}
563
564
565static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
566 Register scratch,
567 CompareICState::State expected,
568 Label* fail) {
569 Label ok;
570 if (expected == CompareICState::SMI) {
571 __ JumpIfNotSmi(input, fail);
572 } else if (expected == CompareICState::NUMBER) {
573 __ JumpIfSmi(input, &ok);
574 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
575 DONT_DO_SMI_CHECK);
576 }
577 // We could be strict about internalized/string here, but as long as
578 // hydrogen doesn't care, the stub doesn't have to care either.
579 __ bind(&ok);
580}
581
582
583// On entry a1 and a2 are the values to be compared.
584// On exit a0 is 0, positive or negative to indicate the result of
585// the comparison.
586void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
587 Register lhs = a1;
588 Register rhs = a0;
589 Condition cc = GetCondition();
590
591 Label miss;
592 CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
593 CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
594
595 Label slow; // Call builtin.
596 Label not_smis, both_loaded_as_doubles;
597
598 Label not_two_smis, smi_done;
599 __ Or(a2, a1, a0);
600 __ JumpIfNotSmi(a2, &not_two_smis);
601 __ SmiUntag(a1);
602 __ SmiUntag(a0);
603
604 __ Ret(USE_DELAY_SLOT);
605 __ dsubu(v0, a1, a0);
606 __ bind(&not_two_smis);
607
608 // NOTICE! This code is only reached after a smi-fast-case check, so
609 // it is certain that at least one operand isn't a smi.
610
611 // Handle the case where the objects are identical. Either returns the answer
612 // or goes to slow. Only falls through if the objects were not identical.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100613 EmitIdenticalObjectComparison(masm, &slow, cc);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000614
615 // If either is a Smi (we know that not both are), then they can only
616 // be strictly equal if the other is a HeapNumber.
617 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000618 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000619 __ And(a6, lhs, Operand(rhs));
620 __ JumpIfNotSmi(a6, &not_smis, a4);
621 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
622 // 1) Return the answer.
623 // 2) Go to slow.
624 // 3) Fall through to both_loaded_as_doubles.
625 // 4) Jump to rhs_not_nan.
626 // In cases 3 and 4 we have found out we were dealing with a number-number
627 // comparison and the numbers have been loaded into f12 and f14 as doubles,
628 // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
629 EmitSmiNonsmiComparison(masm, lhs, rhs,
630 &both_loaded_as_doubles, &slow, strict());
631
632 __ bind(&both_loaded_as_doubles);
633 // f12, f14 are the double representations of the left hand side
634 // and the right hand side if we have FPU. Otherwise a2, a3 represent
635 // left hand side and a0, a1 represent right hand side.
636
637 Label nan;
638 __ li(a4, Operand(LESS));
639 __ li(a5, Operand(GREATER));
640 __ li(a6, Operand(EQUAL));
641
642 // Check if either rhs or lhs is NaN.
643 __ BranchF(NULL, &nan, eq, f12, f14);
644
645 // Check if LESS condition is satisfied. If true, move conditionally
646 // result to v0.
647 if (kArchVariant != kMips64r6) {
648 __ c(OLT, D, f12, f14);
649 __ Movt(v0, a4);
650 // Use previous check to store conditionally to v0 oposite condition
651 // (GREATER). If rhs is equal to lhs, this will be corrected in next
652 // check.
653 __ Movf(v0, a5);
654 // Check if EQUAL condition is satisfied. If true, move conditionally
655 // result to v0.
656 __ c(EQ, D, f12, f14);
657 __ Movt(v0, a6);
658 } else {
659 Label skip;
660 __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
661 __ mov(v0, a4); // Return LESS as result.
662
663 __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
664 __ mov(v0, a6); // Return EQUAL as result.
665
666 __ mov(v0, a5); // Return GREATER as result.
667 __ bind(&skip);
668 }
669 __ Ret();
670
671 __ bind(&nan);
672 // NaN comparisons always fail.
673 // Load whatever we need in v0 to make the comparison fail.
674 DCHECK(is_int16(GREATER) && is_int16(LESS));
675 __ Ret(USE_DELAY_SLOT);
676 if (cc == lt || cc == le) {
677 __ li(v0, Operand(GREATER));
678 } else {
679 __ li(v0, Operand(LESS));
680 }
681
682
683 __ bind(&not_smis);
684 // At this point we know we are dealing with two different objects,
685 // and neither of them is a Smi. The objects are in lhs_ and rhs_.
686 if (strict()) {
687 // This returns non-equal for some object types, or falls through if it
688 // was not lucky.
689 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
690 }
691
692 Label check_for_internalized_strings;
693 Label flat_string_check;
694 // Check for heap-number-heap-number comparison. Can jump to slow case,
695 // or load both doubles and jump to the code that handles
696 // that case. If the inputs are not doubles then jumps to
697 // check_for_internalized_strings.
698 // In this case a2 will contain the type of lhs_.
699 EmitCheckForTwoHeapNumbers(masm,
700 lhs,
701 rhs,
702 &both_loaded_as_doubles,
703 &check_for_internalized_strings,
704 &flat_string_check);
705
706 __ bind(&check_for_internalized_strings);
707 if (cc == eq && !strict()) {
708 // Returns an answer for two internalized strings or two
709 // detectable objects.
710 // Otherwise jumps to string case or not both strings case.
711 // Assumes that a2 is the type of lhs_ on entry.
712 EmitCheckForInternalizedStringsOrObjects(
713 masm, lhs, rhs, &flat_string_check, &slow);
714 }
715
716 // Check for both being sequential one-byte strings,
717 // and inline if that is the case.
718 __ bind(&flat_string_check);
719
720 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
721
722 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
723 a3);
724 if (cc == eq) {
725 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
726 } else {
727 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
728 a5);
729 }
730 // Never falls through to here.
731
732 __ bind(&slow);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000733 if (cc == eq) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100734 {
735 FrameScope scope(masm, StackFrame::INTERNAL);
736 __ Push(lhs, rhs);
737 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
738 }
739 // Turn true into 0 and false into some non-zero value.
740 STATIC_ASSERT(EQUAL == 0);
741 __ LoadRoot(a0, Heap::kTrueValueRootIndex);
742 __ Ret(USE_DELAY_SLOT);
743 __ subu(v0, v0, a0); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000744 } else {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100745 // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
746 // a1 (rhs) second.
747 __ Push(lhs, rhs);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000748 int ncr; // NaN compare result.
749 if (cc == lt || cc == le) {
750 ncr = GREATER;
751 } else {
752 DCHECK(cc == gt || cc == ge); // Remaining cases.
753 ncr = LESS;
754 }
755 __ li(a0, Operand(Smi::FromInt(ncr)));
756 __ push(a0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000757
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000758 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
759 // tagged as a small integer.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100760 __ TailCallRuntime(Runtime::kCompare);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000761 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000762
763 __ bind(&miss);
764 GenerateMiss(masm);
765}
766
767
768void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
769 __ mov(t9, ra);
770 __ pop(ra);
771 __ PushSafepointRegisters();
772 __ Jump(t9);
773}
774
775
776void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
777 __ mov(t9, ra);
778 __ pop(ra);
779 __ PopSafepointRegisters();
780 __ Jump(t9);
781}
782
783
784void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
785 // We don't allow a GC during a store buffer overflow so there is no need to
786 // store the registers in any particular way, but we do have to store and
787 // restore them.
788 __ MultiPush(kJSCallerSaved | ra.bit());
789 if (save_doubles()) {
790 __ MultiPushFPU(kCallerSavedFPU);
791 }
792 const int argument_count = 1;
793 const int fp_argument_count = 0;
794 const Register scratch = a1;
795
796 AllowExternalCallThatCantCauseGC scope(masm);
797 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
798 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
799 __ CallCFunction(
800 ExternalReference::store_buffer_overflow_function(isolate()),
801 argument_count);
802 if (save_doubles()) {
803 __ MultiPopFPU(kCallerSavedFPU);
804 }
805
806 __ MultiPop(kJSCallerSaved | ra.bit());
807 __ Ret();
808}
809
810
811void MathPowStub::Generate(MacroAssembler* masm) {
812 const Register base = a1;
813 const Register exponent = MathPowTaggedDescriptor::exponent();
814 DCHECK(exponent.is(a2));
815 const Register heapnumbermap = a5;
816 const Register heapnumber = v0;
817 const DoubleRegister double_base = f2;
818 const DoubleRegister double_exponent = f4;
819 const DoubleRegister double_result = f0;
820 const DoubleRegister double_scratch = f6;
821 const FPURegister single_scratch = f8;
822 const Register scratch = t1;
823 const Register scratch2 = a7;
824
825 Label call_runtime, done, int_exponent;
826 if (exponent_type() == ON_STACK) {
827 Label base_is_smi, unpack_exponent;
828 // The exponent and base are supplied as arguments on the stack.
829 // This can only happen if the stub is called from non-optimized code.
830 // Load input parameters from stack to double registers.
831 __ ld(base, MemOperand(sp, 1 * kPointerSize));
832 __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
833
834 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
835
836 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
837 __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
838 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
839
840 __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
841 __ jmp(&unpack_exponent);
842
843 __ bind(&base_is_smi);
844 __ mtc1(scratch, single_scratch);
845 __ cvt_d_w(double_base, single_scratch);
846 __ bind(&unpack_exponent);
847
848 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
849
850 __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
851 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
852 __ ldc1(double_exponent,
853 FieldMemOperand(exponent, HeapNumber::kValueOffset));
854 } else if (exponent_type() == TAGGED) {
855 // Base is already in double_base.
856 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
857
858 __ ldc1(double_exponent,
859 FieldMemOperand(exponent, HeapNumber::kValueOffset));
860 }
861
862 if (exponent_type() != INTEGER) {
863 Label int_exponent_convert;
864 // Detect integer exponents stored as double.
865 __ EmitFPUTruncate(kRoundToMinusInf,
866 scratch,
867 double_exponent,
868 at,
869 double_scratch,
870 scratch2,
871 kCheckForInexactConversion);
872 // scratch2 == 0 means there was no conversion error.
873 __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
874
875 if (exponent_type() == ON_STACK) {
876 // Detect square root case. Crankshaft detects constant +/-0.5 at
877 // compile time and uses DoMathPowHalf instead. We then skip this check
878 // for non-constant cases of +/-0.5 as these hardly occur.
879 Label not_plus_half;
880
881 // Test for 0.5.
882 __ Move(double_scratch, 0.5);
883 __ BranchF(USE_DELAY_SLOT,
884 &not_plus_half,
885 NULL,
886 ne,
887 double_exponent,
888 double_scratch);
889 // double_scratch can be overwritten in the delay slot.
890 // Calculates square root of base. Check for the special case of
891 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400892 __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000893 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
894 __ neg_d(double_result, double_scratch);
895
896 // Add +0 to convert -0 to +0.
897 __ add_d(double_scratch, double_base, kDoubleRegZero);
898 __ sqrt_d(double_result, double_scratch);
899 __ jmp(&done);
900
901 __ bind(&not_plus_half);
902 __ Move(double_scratch, -0.5);
903 __ BranchF(USE_DELAY_SLOT,
904 &call_runtime,
905 NULL,
906 ne,
907 double_exponent,
908 double_scratch);
909 // double_scratch can be overwritten in the delay slot.
910 // Calculates square root of base. Check for the special case of
911 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400912 __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000913 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
914 __ Move(double_result, kDoubleRegZero);
915
916 // Add +0 to convert -0 to +0.
917 __ add_d(double_scratch, double_base, kDoubleRegZero);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400918 __ Move(double_result, 1.);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000919 __ sqrt_d(double_scratch, double_scratch);
920 __ div_d(double_result, double_result, double_scratch);
921 __ jmp(&done);
922 }
923
924 __ push(ra);
925 {
926 AllowExternalCallThatCantCauseGC scope(masm);
927 __ PrepareCallCFunction(0, 2, scratch2);
928 __ MovToFloatParameters(double_base, double_exponent);
929 __ CallCFunction(
930 ExternalReference::power_double_double_function(isolate()),
931 0, 2);
932 }
933 __ pop(ra);
934 __ MovFromFloatResult(double_result);
935 __ jmp(&done);
936
937 __ bind(&int_exponent_convert);
938 }
939
940 // Calculate power with integer exponent.
941 __ bind(&int_exponent);
942
943 // Get two copies of exponent in the registers scratch and exponent.
944 if (exponent_type() == INTEGER) {
945 __ mov(scratch, exponent);
946 } else {
947 // Exponent has previously been stored into scratch as untagged integer.
948 __ mov(exponent, scratch);
949 }
950
951 __ mov_d(double_scratch, double_base); // Back up base.
952 __ Move(double_result, 1.0);
953
954 // Get absolute value of exponent.
955 Label positive_exponent;
956 __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
957 __ Dsubu(scratch, zero_reg, scratch);
958 __ bind(&positive_exponent);
959
960 Label while_true, no_carry, loop_end;
961 __ bind(&while_true);
962
963 __ And(scratch2, scratch, 1);
964
965 __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
966 __ mul_d(double_result, double_result, double_scratch);
967 __ bind(&no_carry);
968
969 __ dsra(scratch, scratch, 1);
970
971 __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
972 __ mul_d(double_scratch, double_scratch, double_scratch);
973
974 __ Branch(&while_true);
975
976 __ bind(&loop_end);
977
978 __ Branch(&done, ge, exponent, Operand(zero_reg));
979 __ Move(double_scratch, 1.0);
980 __ div_d(double_result, double_scratch, double_result);
981 // Test whether result is zero. Bail out to check for subnormal result.
982 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
983 __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
984
985 // double_exponent may not contain the exponent value if the input was a
986 // smi. We set it with exponent value before bailing out.
987 __ mtc1(exponent, single_scratch);
988 __ cvt_d_w(double_exponent, single_scratch);
989
990 // Returning or bailing out.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000991 if (exponent_type() == ON_STACK) {
992 // The arguments are still on the stack.
993 __ bind(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000994 __ TailCallRuntime(Runtime::kMathPowRT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000995
996 // The stub is called from non-optimized code, which expects the result
997 // as heap number in exponent.
998 __ bind(&done);
999 __ AllocateHeapNumber(
1000 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
1001 __ sdc1(double_result,
1002 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
1003 DCHECK(heapnumber.is(v0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001004 __ DropAndRet(2);
1005 } else {
1006 __ push(ra);
1007 {
1008 AllowExternalCallThatCantCauseGC scope(masm);
1009 __ PrepareCallCFunction(0, 2, scratch);
1010 __ MovToFloatParameters(double_base, double_exponent);
1011 __ CallCFunction(
1012 ExternalReference::power_double_double_function(isolate()),
1013 0, 2);
1014 }
1015 __ pop(ra);
1016 __ MovFromFloatResult(double_result);
1017
1018 __ bind(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001019 __ Ret();
1020 }
1021}
1022
1023
1024bool CEntryStub::NeedsImmovableCode() {
1025 return true;
1026}
1027
1028
1029void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1030 CEntryStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001031 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1032 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1033 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1034 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001035 CreateWeakCellStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001036 BinaryOpICStub::GenerateAheadOfTime(isolate);
1037 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1038 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1039 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001040 StoreFastElementStub::GenerateAheadOfTime(isolate);
1041 TypeofStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001042}
1043
1044
1045void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1046 StoreRegistersStateStub stub(isolate);
1047 stub.GetCode();
1048}
1049
1050
1051void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1052 RestoreRegistersStateStub stub(isolate);
1053 stub.GetCode();
1054}
1055
1056
1057void CodeStub::GenerateFPStubs(Isolate* isolate) {
1058 // Generate if not already in cache.
1059 SaveFPRegsMode mode = kSaveFPRegs;
1060 CEntryStub(isolate, 1, mode).GetCode();
1061 StoreBufferOverflowStub(isolate, mode).GetCode();
1062 isolate->set_fp_stubs_generated(true);
1063}
1064
1065
1066void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1067 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1068 stub.GetCode();
1069}
1070
1071
1072void CEntryStub::Generate(MacroAssembler* masm) {
1073 // Called from JavaScript; parameters are on stack as if calling JS function
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001074 // a0: number of arguments including receiver
1075 // a1: pointer to builtin function
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001076 // fp: frame pointer (restored after C call)
1077 // sp: stack pointer (restored as callee's sp after C call)
1078 // cp: current context (C callee-saved)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001079 //
1080 // If argv_in_register():
1081 // a2: pointer to the first argument
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001082
1083 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1084
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001085 if (argv_in_register()) {
1086 // Move argv into the correct register.
1087 __ mov(s1, a2);
1088 } else {
1089 // Compute the argv pointer in a callee-saved register.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001090 __ Dlsa(s1, sp, a0, kPointerSizeLog2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001091 __ Dsubu(s1, s1, kPointerSize);
1092 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001093
1094 // Enter the exit frame that transitions from JavaScript to C++.
1095 FrameScope scope(masm, StackFrame::MANUAL);
1096 __ EnterExitFrame(save_doubles());
1097
1098 // s0: number of arguments including receiver (C callee-saved)
1099 // s1: pointer to first argument (C callee-saved)
1100 // s2: pointer to builtin function (C callee-saved)
1101
1102 // Prepare arguments for C routine.
1103 // a0 = argc
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001104 __ mov(s0, a0);
1105 __ mov(s2, a1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001106
1107 // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
1108 // also need to reserve the 4 argument slots on the stack.
1109
1110 __ AssertStackIsAligned();
1111
Ben Murdoch097c5b22016-05-18 11:27:45 +01001112 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
1113 int frame_alignment_mask = frame_alignment - 1;
1114 int result_stack_size;
1115 if (result_size() <= 2) {
1116 // a0 = argc, a1 = argv, a2 = isolate
1117 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1118 __ mov(a1, s1);
1119 result_stack_size = 0;
1120 } else {
1121 DCHECK_EQ(3, result_size());
1122 // Allocate additional space for the result.
1123 result_stack_size =
1124 ((result_size() * kPointerSize) + frame_alignment_mask) &
1125 ~frame_alignment_mask;
1126 __ Dsubu(sp, sp, Operand(result_stack_size));
1127
1128 // a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate.
1129 __ li(a3, Operand(ExternalReference::isolate_address(isolate())));
1130 __ mov(a2, s1);
1131 __ mov(a1, a0);
1132 __ mov(a0, sp);
1133 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001134
1135 // To let the GC traverse the return address of the exit frames, we need to
1136 // know where the return address is. The CEntryStub is unmovable, so
1137 // we can store the address on the stack to be able to find it again and
1138 // we never have to restore it, because it will not change.
1139 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001140 int kNumInstructionsToJump = 4;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001141 Label find_ra;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001142 // Adjust the value in ra to point to the correct return location, 2nd
1143 // instruction past the real call into C code (the jalr(t9)), and push it.
1144 // This is the return address of the exit frame.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001145 if (kArchVariant >= kMips64r6) {
1146 __ addiupc(ra, kNumInstructionsToJump + 1);
1147 } else {
1148 // This branch-and-link sequence is needed to find the current PC on mips
1149 // before r6, saved to the ra register.
1150 __ bal(&find_ra); // bal exposes branch delay slot.
1151 __ Daddu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
1152 }
1153 __ bind(&find_ra);
1154
1155 // This spot was reserved in EnterExitFrame.
1156 __ sd(ra, MemOperand(sp, result_stack_size));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001157 // Stack space reservation moved to the branch delay slot below.
1158 // Stack is still aligned.
1159
1160 // Call the C routine.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001161 __ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
1162 __ jalr(t9);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001163 // Set up sp in the delay slot.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001164 __ daddiu(sp, sp, -kCArgsSlotsSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001165 // Make sure the stored 'ra' points to this position.
1166 DCHECK_EQ(kNumInstructionsToJump,
1167 masm->InstructionsGeneratedSince(&find_ra));
1168 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01001169 if (result_size() > 2) {
1170 DCHECK_EQ(3, result_size());
1171 // Read result values stored on stack.
1172 __ ld(a0, MemOperand(v0, 2 * kPointerSize));
1173 __ ld(v1, MemOperand(v0, 1 * kPointerSize));
1174 __ ld(v0, MemOperand(v0, 0 * kPointerSize));
1175 }
1176 // Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers!
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001177
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001178 // Check result for exception sentinel.
1179 Label exception_returned;
1180 __ LoadRoot(a4, Heap::kExceptionRootIndex);
1181 __ Branch(&exception_returned, eq, a4, Operand(v0));
1182
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001183 // Check that there is no pending exception, otherwise we
1184 // should have returned the exception sentinel.
1185 if (FLAG_debug_code) {
1186 Label okay;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001187 ExternalReference pending_exception_address(
1188 Isolate::kPendingExceptionAddress, isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001189 __ li(a2, Operand(pending_exception_address));
1190 __ ld(a2, MemOperand(a2));
1191 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1192 // Cannot use check here as it attempts to generate call into runtime.
1193 __ Branch(&okay, eq, a4, Operand(a2));
1194 __ stop("Unexpected pending exception");
1195 __ bind(&okay);
1196 }
1197
1198 // Exit C frame and return.
1199 // v0:v1: result
1200 // sp: stack pointer
1201 // fp: frame pointer
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001202 Register argc;
1203 if (argv_in_register()) {
1204 // We don't want to pop arguments so set argc to no_reg.
1205 argc = no_reg;
1206 } else {
1207 // s0: still holds argc (callee-saved).
1208 argc = s0;
1209 }
1210 __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001211
1212 // Handling of exception.
1213 __ bind(&exception_returned);
1214
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001215 ExternalReference pending_handler_context_address(
1216 Isolate::kPendingHandlerContextAddress, isolate());
1217 ExternalReference pending_handler_code_address(
1218 Isolate::kPendingHandlerCodeAddress, isolate());
1219 ExternalReference pending_handler_offset_address(
1220 Isolate::kPendingHandlerOffsetAddress, isolate());
1221 ExternalReference pending_handler_fp_address(
1222 Isolate::kPendingHandlerFPAddress, isolate());
1223 ExternalReference pending_handler_sp_address(
1224 Isolate::kPendingHandlerSPAddress, isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001225
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001226 // Ask the runtime for help to determine the handler. This will set v0 to
1227 // contain the current pending exception, don't clobber it.
1228 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1229 isolate());
1230 {
1231 FrameScope scope(masm, StackFrame::MANUAL);
1232 __ PrepareCallCFunction(3, 0, a0);
1233 __ mov(a0, zero_reg);
1234 __ mov(a1, zero_reg);
1235 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1236 __ CallCFunction(find_handler, 3);
1237 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001238
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001239 // Retrieve the handler context, SP and FP.
1240 __ li(cp, Operand(pending_handler_context_address));
1241 __ ld(cp, MemOperand(cp));
1242 __ li(sp, Operand(pending_handler_sp_address));
1243 __ ld(sp, MemOperand(sp));
1244 __ li(fp, Operand(pending_handler_fp_address));
1245 __ ld(fp, MemOperand(fp));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001246
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001247 // If the handler is a JS frame, restore the context to the frame. Note that
1248 // the context will be set to (cp == 0) for non-JS frames.
1249 Label zero;
1250 __ Branch(&zero, eq, cp, Operand(zero_reg));
1251 __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1252 __ bind(&zero);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001253
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001254 // Compute the handler entry address and jump to it.
1255 __ li(a1, Operand(pending_handler_code_address));
1256 __ ld(a1, MemOperand(a1));
1257 __ li(a2, Operand(pending_handler_offset_address));
1258 __ ld(a2, MemOperand(a2));
1259 __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
1260 __ Daddu(t9, a1, a2);
1261 __ Jump(t9);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001262}
1263
1264
1265void JSEntryStub::Generate(MacroAssembler* masm) {
1266 Label invoke, handler_entry, exit;
1267 Isolate* isolate = masm->isolate();
1268
1269 // TODO(plind): unify the ABI description here.
1270 // Registers:
1271 // a0: entry address
1272 // a1: function
1273 // a2: receiver
1274 // a3: argc
1275 // a4 (a4): on mips64
1276
1277 // Stack:
1278 // 0 arg slots on mips64 (4 args slots on mips)
1279 // args -- in a4/a4 on mips64, on stack on mips
1280
1281 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1282
1283 // Save callee saved registers on the stack.
1284 __ MultiPush(kCalleeSaved | ra.bit());
1285
1286 // Save callee-saved FPU registers.
1287 __ MultiPushFPU(kCalleeSavedFPU);
1288 // Set up the reserved register for 0.0.
1289 __ Move(kDoubleRegZero, 0.0);
1290
1291 // Load argv in s0 register.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001292 __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001293
1294 __ InitializeRootRegister();
1295
1296 // We build an EntryFrame.
1297 __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1298 int marker = type();
1299 __ li(a6, Operand(Smi::FromInt(marker)));
1300 __ li(a5, Operand(Smi::FromInt(marker)));
1301 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
1302 __ li(a4, Operand(c_entry_fp));
1303 __ ld(a4, MemOperand(a4));
1304 __ Push(a7, a6, a5, a4);
1305 // Set up frame pointer for the frame to be pushed.
1306 __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1307
1308 // Registers:
1309 // a0: entry_address
1310 // a1: function
1311 // a2: receiver_pointer
1312 // a3: argc
1313 // s0: argv
1314 //
1315 // Stack:
1316 // caller fp |
1317 // function slot | entry frame
1318 // context slot |
1319 // bad fp (0xff...f) |
1320 // callee saved registers + ra
1321 // [ O32: 4 args slots]
1322 // args
1323
1324 // If this is the outermost JS call, set js_entry_sp value.
1325 Label non_outermost_js;
1326 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1327 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1328 __ ld(a6, MemOperand(a5));
1329 __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
1330 __ sd(fp, MemOperand(a5));
1331 __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1332 Label cont;
1333 __ b(&cont);
1334 __ nop(); // Branch delay slot nop.
1335 __ bind(&non_outermost_js);
1336 __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1337 __ bind(&cont);
1338 __ push(a4);
1339
1340 // Jump to a faked try block that does the invoke, with a faked catch
1341 // block that sets the pending exception.
1342 __ jmp(&invoke);
1343 __ bind(&handler_entry);
1344 handler_offset_ = handler_entry.pos();
1345 // Caught exception: Store result (exception) in the pending exception
1346 // field in the JSEnv and return a failure sentinel. Coming in here the
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001347 // fp will be invalid because the PushStackHandler below sets it to 0 to
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001348 // signal the existence of the JSEntry frame.
1349 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1350 isolate)));
1351 __ sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0.
1352 __ LoadRoot(v0, Heap::kExceptionRootIndex);
1353 __ b(&exit); // b exposes branch delay slot.
1354 __ nop(); // Branch delay slot nop.
1355
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001356 // Invoke: Link this frame into the handler chain.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001357 __ bind(&invoke);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001358 __ PushStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001359 // If an exception not caught by another handler occurs, this handler
1360 // returns control to the code after the bal(&invoke) above, which
1361 // restores all kCalleeSaved registers (including cp and fp) to their
1362 // saved values before returning a failure to C.
1363
1364 // Clear any pending exceptions.
1365 __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
1366 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1367 isolate)));
1368 __ sd(a5, MemOperand(a4));
1369
1370 // Invoke the function by calling through JS entry trampoline builtin.
1371 // Notice that we cannot store a reference to the trampoline code directly in
1372 // this stub, because runtime stubs are not traversed when doing GC.
1373
1374 // Registers:
1375 // a0: entry_address
1376 // a1: function
1377 // a2: receiver_pointer
1378 // a3: argc
1379 // s0: argv
1380 //
1381 // Stack:
1382 // handler frame
1383 // entry frame
1384 // callee saved registers + ra
1385 // [ O32: 4 args slots]
1386 // args
1387
1388 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1389 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1390 isolate);
1391 __ li(a4, Operand(construct_entry));
1392 } else {
1393 ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1394 __ li(a4, Operand(entry));
1395 }
1396 __ ld(t9, MemOperand(a4)); // Deref address.
1397 // Call JSEntryTrampoline.
1398 __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1399 __ Call(t9);
1400
1401 // Unlink this frame from the handler chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001402 __ PopStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001403
1404 __ bind(&exit); // v0 holds result
1405 // Check if the current stack frame is marked as the outermost JS frame.
1406 Label non_outermost_js_2;
1407 __ pop(a5);
1408 __ Branch(&non_outermost_js_2,
1409 ne,
1410 a5,
1411 Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1412 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1413 __ sd(zero_reg, MemOperand(a5));
1414 __ bind(&non_outermost_js_2);
1415
1416 // Restore the top frame descriptors from the stack.
1417 __ pop(a5);
1418 __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1419 isolate)));
1420 __ sd(a5, MemOperand(a4));
1421
1422 // Reset the stack to the callee saved registers.
1423 __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1424
1425 // Restore callee-saved fpu registers.
1426 __ MultiPopFPU(kCalleeSavedFPU);
1427
1428 // Restore callee saved registers from the stack.
1429 __ MultiPop(kCalleeSaved | ra.bit());
1430 // Return.
1431 __ Jump(ra);
1432}
1433
1434
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001435void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1436 // Return address is in ra.
1437 Label miss;
1438
1439 Register receiver = LoadDescriptor::ReceiverRegister();
1440 Register index = LoadDescriptor::NameRegister();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001441 Register scratch = a5;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001442 Register result = v0;
1443 DCHECK(!scratch.is(receiver) && !scratch.is(index));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001444 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001445
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001446 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1447 &miss, // When not a string.
1448 &miss, // When not a number.
1449 &miss, // When index out of range.
1450 STRING_INDEX_IS_ARRAY_INDEX,
1451 RECEIVER_IS_STRING);
1452 char_at_generator.GenerateFast(masm);
1453 __ Ret();
1454
1455 StubRuntimeCallHelper call_helper;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001456 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001457
1458 __ bind(&miss);
1459 PropertyAccessCompiler::TailCallBuiltin(
1460 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1461}
1462
1463
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001464void InstanceOfStub::Generate(MacroAssembler* masm) {
1465 Register const object = a1; // Object (lhs).
1466 Register const function = a0; // Function (rhs).
1467 Register const object_map = a2; // Map of {object}.
1468 Register const function_map = a3; // Map of {function}.
1469 Register const function_prototype = a4; // Prototype of {function}.
1470 Register const scratch = a5;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001471
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001472 DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
1473 DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001474
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001475 // Check if {object} is a smi.
1476 Label object_is_smi;
1477 __ JumpIfSmi(object, &object_is_smi);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001478
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001479 // Lookup the {function} and the {object} map in the global instanceof cache.
1480 // Note: This is safe because we clear the global instanceof cache whenever
1481 // we change the prototype of any object.
1482 Label fast_case, slow_case;
1483 __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1484 __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
1485 __ Branch(&fast_case, ne, function, Operand(at));
1486 __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
1487 __ Branch(&fast_case, ne, object_map, Operand(at));
1488 __ Ret(USE_DELAY_SLOT);
1489 __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001490
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001491 // If {object} is a smi we can safely return false if {function} is a JS
1492 // function, otherwise we have to miss to the runtime and throw an exception.
1493 __ bind(&object_is_smi);
1494 __ JumpIfSmi(function, &slow_case);
1495 __ GetObjectType(function, function_map, scratch);
1496 __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
1497 __ Ret(USE_DELAY_SLOT);
1498 __ LoadRoot(v0, Heap::kFalseValueRootIndex); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001499
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001500 // Fast-case: The {function} must be a valid JSFunction.
1501 __ bind(&fast_case);
1502 __ JumpIfSmi(function, &slow_case);
1503 __ GetObjectType(function, function_map, scratch);
1504 __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001505
Ben Murdochda12d292016-06-02 14:46:10 +01001506 // Go to the runtime if the function is not a constructor.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001507 __ lbu(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01001508 __ And(at, scratch, Operand(1 << Map::kIsConstructor));
1509 __ Branch(&slow_case, eq, at, Operand(zero_reg));
1510
1511 // Ensure that {function} has an instance prototype.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001512 __ And(at, scratch, Operand(1 << Map::kHasNonInstancePrototype));
1513 __ Branch(&slow_case, ne, at, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001514
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001515 // Get the "prototype" (or initial map) of the {function}.
1516 __ ld(function_prototype,
1517 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1518 __ AssertNotSmi(function_prototype);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001519
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001520 // Resolve the prototype if the {function} has an initial map. Afterwards the
1521 // {function_prototype} will be either the JSReceiver prototype object or the
1522 // hole value, which means that no instances of the {function} were created so
1523 // far and hence we should return false.
1524 Label function_prototype_valid;
1525 __ GetObjectType(function_prototype, scratch, scratch);
1526 __ Branch(&function_prototype_valid, ne, scratch, Operand(MAP_TYPE));
1527 __ ld(function_prototype,
1528 FieldMemOperand(function_prototype, Map::kPrototypeOffset));
1529 __ bind(&function_prototype_valid);
1530 __ AssertNotSmi(function_prototype);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001531
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001532 // Update the global instanceof cache with the current {object} map and
1533 // {function}. The cached answer will be set when it is known below.
1534 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1535 __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001536
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001537 // Loop through the prototype chain looking for the {function} prototype.
1538 // Assume true, and change to false if not found.
1539 Register const object_instance_type = function_map;
1540 Register const map_bit_field = function_map;
1541 Register const null = scratch;
1542 Register const result = v0;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001543
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001544 Label done, loop, fast_runtime_fallback;
1545 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1546 __ LoadRoot(null, Heap::kNullValueRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001547 __ bind(&loop);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001548
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001549 // Check if the object needs to be access checked.
1550 __ lbu(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
1551 __ And(map_bit_field, map_bit_field, Operand(1 << Map::kIsAccessCheckNeeded));
1552 __ Branch(&fast_runtime_fallback, ne, map_bit_field, Operand(zero_reg));
1553 // Check if the current object is a Proxy.
1554 __ lbu(object_instance_type,
1555 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1556 __ Branch(&fast_runtime_fallback, eq, object_instance_type,
1557 Operand(JS_PROXY_TYPE));
1558
1559 __ ld(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
1560 __ Branch(&done, eq, object, Operand(function_prototype));
1561 __ Branch(USE_DELAY_SLOT, &loop, ne, object, Operand(null));
1562 __ ld(object_map,
1563 FieldMemOperand(object, HeapObject::kMapOffset)); // In delay slot.
1564 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1565 __ bind(&done);
1566 __ Ret(USE_DELAY_SLOT);
1567 __ StoreRoot(result,
1568 Heap::kInstanceofCacheAnswerRootIndex); // In delay slot.
1569
1570 // Found Proxy or access check needed: Call the runtime
1571 __ bind(&fast_runtime_fallback);
1572 __ Push(object, function_prototype);
1573 // Invalidate the instanceof cache.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001574 DCHECK(Smi::FromInt(0) == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001575 __ StoreRoot(zero_reg, Heap::kInstanceofCacheFunctionRootIndex);
1576 __ TailCallRuntime(Runtime::kHasInPrototypeChain);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001577
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001578 // Slow-case: Call the %InstanceOf runtime function.
1579 __ bind(&slow_case);
1580 __ Push(object, function);
Ben Murdochda12d292016-06-02 14:46:10 +01001581 __ TailCallRuntime(is_es6_instanceof() ? Runtime::kOrdinaryHasInstance
1582 : Runtime::kInstanceOf);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001583}
1584
1585
1586void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1587 Label miss;
1588 Register receiver = LoadDescriptor::ReceiverRegister();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001589 // Ensure that the vector and slot registers won't be clobbered before
1590 // calling the miss handler.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001591 DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::VectorRegister(),
1592 LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001593
1594 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a4,
1595 a5, &miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001596 __ bind(&miss);
1597 PropertyAccessCompiler::TailCallBuiltin(
1598 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1599}
1600
1601
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001602void RegExpExecStub::Generate(MacroAssembler* masm) {
1603 // Just jump directly to runtime if native RegExp is not selected at compile
1604 // time or if regexp entry in generated code is turned off runtime switch or
1605 // at compilation.
1606#ifdef V8_INTERPRETED_REGEXP
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001607 __ TailCallRuntime(Runtime::kRegExpExec);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001608#else // V8_INTERPRETED_REGEXP
1609
1610 // Stack frame on entry.
1611 // sp[0]: last_match_info (expected JSArray)
1612 // sp[4]: previous index
1613 // sp[8]: subject string
1614 // sp[12]: JSRegExp object
1615
1616 const int kLastMatchInfoOffset = 0 * kPointerSize;
1617 const int kPreviousIndexOffset = 1 * kPointerSize;
1618 const int kSubjectOffset = 2 * kPointerSize;
1619 const int kJSRegExpOffset = 3 * kPointerSize;
1620
1621 Label runtime;
1622 // Allocation of registers for this function. These are in callee save
1623 // registers and will be preserved by the call to the native RegExp code, as
1624 // this code is called using the normal C calling convention. When calling
1625 // directly from generated code the native RegExp code will not do a GC and
1626 // therefore the content of these registers are safe to use after the call.
1627 // MIPS - using s0..s2, since we are not using CEntry Stub.
1628 Register subject = s0;
1629 Register regexp_data = s1;
1630 Register last_match_info_elements = s2;
1631
1632 // Ensure that a RegExp stack is allocated.
1633 ExternalReference address_of_regexp_stack_memory_address =
1634 ExternalReference::address_of_regexp_stack_memory_address(
1635 isolate());
1636 ExternalReference address_of_regexp_stack_memory_size =
1637 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1638 __ li(a0, Operand(address_of_regexp_stack_memory_size));
1639 __ ld(a0, MemOperand(a0, 0));
1640 __ Branch(&runtime, eq, a0, Operand(zero_reg));
1641
1642 // Check that the first argument is a JSRegExp object.
1643 __ ld(a0, MemOperand(sp, kJSRegExpOffset));
1644 STATIC_ASSERT(kSmiTag == 0);
1645 __ JumpIfSmi(a0, &runtime);
1646 __ GetObjectType(a0, a1, a1);
1647 __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
1648
1649 // Check that the RegExp has been compiled (data contains a fixed array).
1650 __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
1651 if (FLAG_debug_code) {
1652 __ SmiTst(regexp_data, a4);
1653 __ Check(nz,
1654 kUnexpectedTypeForRegExpDataFixedArrayExpected,
1655 a4,
1656 Operand(zero_reg));
1657 __ GetObjectType(regexp_data, a0, a0);
1658 __ Check(eq,
1659 kUnexpectedTypeForRegExpDataFixedArrayExpected,
1660 a0,
1661 Operand(FIXED_ARRAY_TYPE));
1662 }
1663
1664 // regexp_data: RegExp data (FixedArray)
1665 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1666 __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1667 __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
1668
1669 // regexp_data: RegExp data (FixedArray)
1670 // Check that the number of captures fit in the static offsets vector buffer.
1671 __ ld(a2,
1672 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1673 // Check (number_of_captures + 1) * 2 <= offsets vector size
1674 // Or number_of_captures * 2 <= offsets vector size - 2
1675 // Or number_of_captures <= offsets vector size / 2 - 1
1676 // Multiplying by 2 comes for free since a2 is smi-tagged.
1677 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1678 int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
1679 __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
1680
1681 // Reset offset for possibly sliced string.
1682 __ mov(t0, zero_reg);
1683 __ ld(subject, MemOperand(sp, kSubjectOffset));
1684 __ JumpIfSmi(subject, &runtime);
1685 __ mov(a3, subject); // Make a copy of the original subject string.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001686
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001687 // subject: subject string
1688 // a3: subject string
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001689 // regexp_data: RegExp data (FixedArray)
1690 // Handle subject string according to its encoding and representation:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001691 // (1) Sequential string? If yes, go to (4).
1692 // (2) Sequential or cons? If not, go to (5).
1693 // (3) Cons string. If the string is flat, replace subject with first string
1694 // and go to (1). Otherwise bail out to runtime.
1695 // (4) Sequential string. Load regexp code according to encoding.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001696 // (E) Carry on.
1697 /// [...]
1698
1699 // Deferred code at the end of the stub:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001700 // (5) Long external string? If not, go to (7).
1701 // (6) External string. Make it, offset-wise, look like a sequential string.
1702 // Go to (4).
1703 // (7) Short external string or not a string? If yes, bail out to runtime.
1704 // (8) Sliced string. Replace subject with parent. Go to (1).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001705
Ben Murdoch097c5b22016-05-18 11:27:45 +01001706 Label check_underlying; // (1)
1707 Label seq_string; // (4)
1708 Label not_seq_nor_cons; // (5)
1709 Label external_string; // (6)
1710 Label not_long_external; // (7)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001711
Ben Murdoch097c5b22016-05-18 11:27:45 +01001712 __ bind(&check_underlying);
1713 __ ld(a2, FieldMemOperand(subject, HeapObject::kMapOffset));
1714 __ lbu(a0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
1715
1716 // (1) Sequential string? If yes, go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001717 __ And(a1,
1718 a0,
1719 Operand(kIsNotStringMask |
1720 kStringRepresentationMask |
1721 kShortExternalStringMask));
1722 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001723 __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001724
Ben Murdoch097c5b22016-05-18 11:27:45 +01001725 // (2) Sequential or cons? If not, go to (5).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001726 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1727 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1728 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1729 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001730 // Go to (5).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001731 __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
1732
1733 // (3) Cons string. Check that it's flat.
1734 // Replace subject with first string and reload instance type.
1735 __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
1736 __ LoadRoot(a1, Heap::kempty_stringRootIndex);
1737 __ Branch(&runtime, ne, a0, Operand(a1));
1738 __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001739 __ jmp(&check_underlying);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001740
Ben Murdoch097c5b22016-05-18 11:27:45 +01001741 // (4) Sequential string. Load regexp code according to encoding.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001742 __ bind(&seq_string);
1743 // subject: sequential subject string (or look-alike, external string)
1744 // a3: original subject string
1745 // Load previous index and check range before a3 is overwritten. We have to
1746 // use a3 instead of subject here because subject might have been only made
1747 // to look like a sequential string when it actually is an external string.
1748 __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
1749 __ JumpIfNotSmi(a1, &runtime);
1750 __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
1751 __ Branch(&runtime, ls, a3, Operand(a1));
1752 __ SmiUntag(a1);
1753
1754 STATIC_ASSERT(kStringEncodingMask == 4);
1755 STATIC_ASSERT(kOneByteStringTag == 4);
1756 STATIC_ASSERT(kTwoByteStringTag == 0);
1757 __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one_byte.
1758 __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1759 __ dsra(a3, a0, 2); // a3 is 1 for one_byte, 0 for UC16 (used below).
1760 __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1761 __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
1762
1763 // (E) Carry on. String handling is done.
1764 // t9: irregexp code
1765 // Check that the irregexp code has been generated for the actual string
1766 // encoding. If it has, the field contains a code object otherwise it contains
1767 // a smi (code flushing support).
1768 __ JumpIfSmi(t9, &runtime);
1769
1770 // a1: previous index
1771 // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
1772 // t9: code
1773 // subject: Subject string
1774 // regexp_data: RegExp data (FixedArray)
1775 // All checks done. Now push arguments for native regexp code.
1776 __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
1777 1, a0, a2);
1778
1779 // Isolates: note we add an additional parameter here (isolate pointer).
1780 const int kRegExpExecuteArguments = 9;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001781 const int kParameterRegisters = 8;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001782 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1783
1784 // Stack pointer now points to cell where return address is to be written.
1785 // Arguments are before that on the stack or in registers, meaning we
1786 // treat the return address as argument 5. Thus every argument after that
1787 // needs to be shifted back by 1. Since DirectCEntryStub will handle
1788 // allocating space for the c argument slots, we don't need to calculate
1789 // that into the argument positions on the stack. This is how the stack will
1790 // look (sp meaning the value of sp at this moment):
1791 // Abi n64:
1792 // [sp + 1] - Argument 9
1793 // [sp + 0] - saved ra
1794 // Abi O32:
1795 // [sp + 5] - Argument 9
1796 // [sp + 4] - Argument 8
1797 // [sp + 3] - Argument 7
1798 // [sp + 2] - Argument 6
1799 // [sp + 1] - Argument 5
1800 // [sp + 0] - saved ra
1801
Ben Murdoch097c5b22016-05-18 11:27:45 +01001802 // Argument 9: Pass current isolate address.
1803 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
1804 __ sd(a0, MemOperand(sp, 1 * kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001805
Ben Murdoch097c5b22016-05-18 11:27:45 +01001806 // Argument 8: Indicate that this is a direct call from JavaScript.
1807 __ li(a7, Operand(1));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001808
Ben Murdoch097c5b22016-05-18 11:27:45 +01001809 // Argument 7: Start (high end) of backtracking stack memory area.
1810 __ li(a0, Operand(address_of_regexp_stack_memory_address));
1811 __ ld(a0, MemOperand(a0, 0));
1812 __ li(a2, Operand(address_of_regexp_stack_memory_size));
1813 __ ld(a2, MemOperand(a2, 0));
1814 __ daddu(a6, a0, a2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001815
Ben Murdoch097c5b22016-05-18 11:27:45 +01001816 // Argument 6: Set the number of capture registers to zero to force global
1817 // regexps to behave as non-global. This does not affect non-global regexps.
1818 __ mov(a5, zero_reg);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001819
Ben Murdoch097c5b22016-05-18 11:27:45 +01001820 // Argument 5: static offsets vector buffer.
1821 __ li(
1822 a4,
1823 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001824
1825 // For arguments 4 and 3 get string length, calculate start of string data
1826 // and calculate the shift of the index (0 for one_byte and 1 for two byte).
1827 __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1828 __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
1829 // Load the length from the original subject string from the previous stack
1830 // frame. Therefore we have to use fp, which points exactly to two pointer
1831 // sizes below the previous sp. (Because creating a new stack frame pushes
1832 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1833 __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1834 // If slice offset is not 0, load the length from the original sliced string.
1835 // Argument 4, a3: End of string data
1836 // Argument 3, a2: Start of string data
1837 // Prepare start and end index of the input.
1838 __ dsllv(t1, t0, a3);
1839 __ daddu(t0, t2, t1);
1840 __ dsllv(t1, a1, a3);
1841 __ daddu(a2, t0, t1);
1842
1843 __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
1844
1845 __ SmiUntag(t2);
1846 __ dsllv(t1, t2, a3);
1847 __ daddu(a3, t0, t1);
1848 // Argument 2 (a1): Previous index.
1849 // Already there
1850
1851 // Argument 1 (a0): Subject string.
1852 __ mov(a0, subject);
1853
1854 // Locate the code entry and call it.
1855 __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
1856 DirectCEntryStub stub(isolate());
1857 stub.GenerateCall(masm, t9);
1858
1859 __ LeaveExitFrame(false, no_reg, true);
1860
1861 // v0: result
1862 // subject: subject string (callee saved)
1863 // regexp_data: RegExp data (callee saved)
1864 // last_match_info_elements: Last match info elements (callee saved)
1865 // Check the result.
1866 Label success;
1867 __ Branch(&success, eq, v0, Operand(1));
1868 // We expect exactly one result since we force the called regexp to behave
1869 // as non-global.
1870 Label failure;
1871 __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
1872 // If not exception it can only be retry. Handle that in the runtime system.
1873 __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1874 // Result must now be exception. If there is no pending exception already a
1875 // stack overflow (on the backtrack stack) was detected in RegExp code but
1876 // haven't created the exception yet. Handle that in the runtime system.
1877 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1878 __ li(a1, Operand(isolate()->factory()->the_hole_value()));
1879 __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1880 isolate())));
1881 __ ld(v0, MemOperand(a2, 0));
1882 __ Branch(&runtime, eq, v0, Operand(a1));
1883
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001884 // For exception, throw the exception again.
1885 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001886
1887 __ bind(&failure);
1888 // For failure and exception return null.
1889 __ li(v0, Operand(isolate()->factory()->null_value()));
1890 __ DropAndRet(4);
1891
1892 // Process the result from the native regexp code.
1893 __ bind(&success);
1894
1895 __ lw(a1, UntagSmiFieldMemOperand(
1896 regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1897 // Calculate number of capture registers (number_of_captures + 1) * 2.
1898 __ Daddu(a1, a1, Operand(1));
1899 __ dsll(a1, a1, 1); // Multiply by 2.
1900
1901 __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
1902 __ JumpIfSmi(a0, &runtime);
1903 __ GetObjectType(a0, a2, a2);
1904 __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
1905 // Check that the JSArray is in fast case.
1906 __ ld(last_match_info_elements,
1907 FieldMemOperand(a0, JSArray::kElementsOffset));
1908 __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1909 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
1910 __ Branch(&runtime, ne, a0, Operand(at));
1911 // Check that the last match info has space for the capture registers and the
1912 // additional information.
1913 __ ld(a0,
1914 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1915 __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
1916
1917 __ SmiUntag(at, a0);
1918 __ Branch(&runtime, gt, a2, Operand(at));
1919
1920 // a1: number of capture registers
1921 // subject: subject string
1922 // Store the capture count.
1923 __ SmiTag(a2, a1); // To smi.
1924 __ sd(a2, FieldMemOperand(last_match_info_elements,
1925 RegExpImpl::kLastCaptureCountOffset));
1926 // Store last subject and last input.
1927 __ sd(subject,
1928 FieldMemOperand(last_match_info_elements,
1929 RegExpImpl::kLastSubjectOffset));
1930 __ mov(a2, subject);
1931 __ RecordWriteField(last_match_info_elements,
1932 RegExpImpl::kLastSubjectOffset,
1933 subject,
1934 a7,
1935 kRAHasNotBeenSaved,
1936 kDontSaveFPRegs);
1937 __ mov(subject, a2);
1938 __ sd(subject,
1939 FieldMemOperand(last_match_info_elements,
1940 RegExpImpl::kLastInputOffset));
1941 __ RecordWriteField(last_match_info_elements,
1942 RegExpImpl::kLastInputOffset,
1943 subject,
1944 a7,
1945 kRAHasNotBeenSaved,
1946 kDontSaveFPRegs);
1947
1948 // Get the static offsets vector filled by the native regexp code.
1949 ExternalReference address_of_static_offsets_vector =
1950 ExternalReference::address_of_static_offsets_vector(isolate());
1951 __ li(a2, Operand(address_of_static_offsets_vector));
1952
1953 // a1: number of capture registers
1954 // a2: offsets vector
1955 Label next_capture, done;
1956 // Capture register counter starts from number of capture registers and
1957 // counts down until wrapping after zero.
1958 __ Daddu(a0,
1959 last_match_info_elements,
1960 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
1961 __ bind(&next_capture);
1962 __ Dsubu(a1, a1, Operand(1));
1963 __ Branch(&done, lt, a1, Operand(zero_reg));
1964 // Read the value from the static offsets vector buffer.
1965 __ lw(a3, MemOperand(a2, 0));
1966 __ daddiu(a2, a2, kIntSize);
1967 // Store the smi value in the last match info.
1968 __ SmiTag(a3);
1969 __ sd(a3, MemOperand(a0, 0));
1970 __ Branch(&next_capture, USE_DELAY_SLOT);
1971 __ daddiu(a0, a0, kPointerSize); // In branch delay slot.
1972
1973 __ bind(&done);
1974
1975 // Return last match info.
1976 __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
1977 __ DropAndRet(4);
1978
1979 // Do the runtime call to execute the regexp.
1980 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001981 __ TailCallRuntime(Runtime::kRegExpExec);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001982
1983 // Deferred code for string handling.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001984 // (5) Long external string? If not, go to (7).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001985 __ bind(&not_seq_nor_cons);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001986 // Go to (7).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001987 __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
1988
Ben Murdoch097c5b22016-05-18 11:27:45 +01001989 // (6) External string. Make it, offset-wise, look like a sequential string.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001990 __ bind(&external_string);
1991 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
1992 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
1993 if (FLAG_debug_code) {
1994 // Assert that we do not have a cons or slice (indirect strings) here.
1995 // Sequential strings have already been ruled out.
1996 __ And(at, a0, Operand(kIsIndirectStringMask));
1997 __ Assert(eq,
1998 kExternalStringExpectedButNotFound,
1999 at,
2000 Operand(zero_reg));
2001 }
2002 __ ld(subject,
2003 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2004 // Move the pointer so that offset-wise, it looks like a sequential string.
2005 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2006 __ Dsubu(subject,
2007 subject,
2008 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002009 __ jmp(&seq_string); // Go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002010
Ben Murdoch097c5b22016-05-18 11:27:45 +01002011 // (7) Short external string or not a string? If yes, bail out to runtime.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002012 __ bind(&not_long_external);
2013 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2014 __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
2015 __ Branch(&runtime, ne, at, Operand(zero_reg));
2016
Ben Murdoch097c5b22016-05-18 11:27:45 +01002017 // (8) Sliced string. Replace subject with parent. Go to (4).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002018 // Load offset into t0 and replace subject string with parent.
2019 __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2020 __ SmiUntag(t0);
2021 __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002022 __ jmp(&check_underlying); // Go to (1).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002023#endif // V8_INTERPRETED_REGEXP
2024}
2025
2026
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002027static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
2028 // a0 : number of arguments to the construct function
2029 // a2 : feedback vector
2030 // a3 : slot in feedback vector (Smi)
2031 // a1 : the function to call
2032 FrameScope scope(masm, StackFrame::INTERNAL);
2033 const RegList kSavedRegs = 1 << 4 | // a0
2034 1 << 5 | // a1
2035 1 << 6 | // a2
2036 1 << 7; // a3
2037
2038
2039 // Number-of-arguments register must be smi-tagged to call out.
2040 __ SmiTag(a0);
2041 __ MultiPush(kSavedRegs);
2042
2043 __ CallStub(stub);
2044
2045 __ MultiPop(kSavedRegs);
2046 __ SmiUntag(a0);
2047}
2048
2049
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002050static void GenerateRecordCallTarget(MacroAssembler* masm) {
2051 // Cache the called function in a feedback vector slot. Cache states
2052 // are uninitialized, monomorphic (indicated by a JSFunction), and
2053 // megamorphic.
2054 // a0 : number of arguments to the construct function
2055 // a1 : the function to call
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002056 // a2 : feedback vector
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002057 // a3 : slot in feedback vector (Smi)
2058 Label initialize, done, miss, megamorphic, not_array_function;
2059
2060 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2061 masm->isolate()->heap()->megamorphic_symbol());
2062 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2063 masm->isolate()->heap()->uninitialized_symbol());
2064
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002065 // Load the cache state into a5.
2066 __ dsrl(a5, a3, 32 - kPointerSizeLog2);
2067 __ Daddu(a5, a2, Operand(a5));
2068 __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002069
2070 // A monomorphic cache hit or an already megamorphic state: invoke the
2071 // function without changing the state.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002072 // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at
2073 // this position in a symbol (see static asserts in type-feedback-vector.h).
2074 Label check_allocation_site;
2075 Register feedback_map = a6;
2076 Register weak_value = t0;
2077 __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset));
2078 __ Branch(&done, eq, a1, Operand(weak_value));
2079 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2080 __ Branch(&done, eq, a5, Operand(at));
2081 __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset));
2082 __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
2083 __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002084
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002085 // If the weak cell is cleared, we have a new chance to become monomorphic.
2086 __ JumpIfSmi(weak_value, &initialize);
2087 __ jmp(&megamorphic);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002088
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002089 __ bind(&check_allocation_site);
2090 // If we came here, we need to see if we are the array function.
2091 // If we didn't have a matching function, and we didn't find the megamorph
2092 // sentinel, then we have in the slot either some other function or an
2093 // AllocationSite.
2094 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2095 __ Branch(&miss, ne, feedback_map, Operand(at));
2096
2097 // Make sure the function is the Array() function
2098 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
2099 __ Branch(&megamorphic, ne, a1, Operand(a5));
2100 __ jmp(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002101
2102 __ bind(&miss);
2103
2104 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2105 // megamorphic.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002106 __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002107 __ Branch(&initialize, eq, a5, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002108 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2109 // write-barrier is needed.
2110 __ bind(&megamorphic);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002111 __ dsrl(a5, a3, 32 - kPointerSizeLog2);
2112 __ Daddu(a5, a2, Operand(a5));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002113 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002114 __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002115 __ jmp(&done);
2116
2117 // An uninitialized cache is patched with the function.
2118 __ bind(&initialize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002119 // Make sure the function is the Array() function.
2120 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
2121 __ Branch(&not_array_function, ne, a1, Operand(a5));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002122
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002123 // The target function is the Array constructor,
2124 // Create an AllocationSite if we don't already have it, store it in the
2125 // slot.
2126 CreateAllocationSiteStub create_stub(masm->isolate());
2127 CallStubInRecordCallTarget(masm, &create_stub);
2128 __ Branch(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002129
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002130 __ bind(&not_array_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002131
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002132 CreateWeakCellStub weak_cell_stub(masm->isolate());
2133 CallStubInRecordCallTarget(masm, &weak_cell_stub);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002134 __ bind(&done);
2135}
2136
2137
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002138void CallConstructStub::Generate(MacroAssembler* masm) {
2139 // a0 : number of arguments
2140 // a1 : the function to call
2141 // a2 : feedback vector
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002142 // a3 : slot in feedback vector (Smi, for RecordCallTarget)
2143
2144 Label non_function;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002145 // Check that the function is not a smi.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002146 __ JumpIfSmi(a1, &non_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002147 // Check that the function is a JSFunction.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002148 __ GetObjectType(a1, a5, a5);
2149 __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002150
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002151 GenerateRecordCallTarget(masm);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002152
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002153 __ dsrl(at, a3, 32 - kPointerSizeLog2);
2154 __ Daddu(a5, a2, at);
2155 Label feedback_register_initialized;
2156 // Put the AllocationSite from the feedback vector into a2, or undefined.
2157 __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
2158 __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
2159 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2160 __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
2161 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2162 __ bind(&feedback_register_initialized);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002163
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002164 __ AssertUndefinedOrAllocationSite(a2, a5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002165
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002166 // Pass function as new target.
2167 __ mov(a3, a1);
2168
2169 // Tail call to the function-specific construct stub (still in the caller
2170 // context at this point).
2171 __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2172 __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
2173 __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002174 __ Jump(at);
2175
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002176 __ bind(&non_function);
2177 __ mov(a3, a1);
2178 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002179}
2180
2181
2182// StringCharCodeAtGenerator.
2183void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2184 DCHECK(!a4.is(index_));
2185 DCHECK(!a4.is(result_));
2186 DCHECK(!a4.is(object_));
2187
2188 // If the receiver is a smi trigger the non-string case.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002189 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2190 __ JumpIfSmi(object_, receiver_not_string_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002191
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002192 // Fetch the instance type of the receiver into result register.
2193 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2194 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2195 // If the receiver is not a string trigger the non-string case.
2196 __ And(a4, result_, Operand(kIsNotStringMask));
2197 __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
2198 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002199
2200 // If the index is non-smi trigger the non-smi case.
2201 __ JumpIfNotSmi(index_, &index_not_smi_);
2202
2203 __ bind(&got_smi_index_);
2204
2205 // Check for index out of range.
2206 __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
2207 __ Branch(index_out_of_range_, ls, a4, Operand(index_));
2208
2209 __ SmiUntag(index_);
2210
2211 StringCharLoadGenerator::Generate(masm,
2212 object_,
2213 index_,
2214 result_,
2215 &call_runtime_);
2216
2217 __ SmiTag(result_);
2218 __ bind(&exit_);
2219}
2220
2221
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002222void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002223 // a1 - function
2224 // a3 - slot id
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002225 // a2 - vector
2226 // a4 - allocation site (loaded from vector[slot])
2227 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
2228 __ Branch(miss, ne, a1, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002229
2230 __ li(a0, Operand(arg_count()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002231
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002232 // Increment the call count for monomorphic function calls.
2233 __ dsrl(t0, a3, 32 - kPointerSizeLog2);
2234 __ Daddu(a3, a2, Operand(t0));
2235 __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2236 __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2237 __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002238
2239 __ mov(a2, a4);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002240 __ mov(a3, a1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002241 ArrayConstructorStub stub(masm->isolate(), arg_count());
2242 __ TailCallStub(&stub);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002243}
2244
2245
2246void CallICStub::Generate(MacroAssembler* masm) {
2247 // a1 - function
2248 // a3 - slot id (Smi)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002249 // a2 - vector
2250 Label extra_checks_or_miss, call, call_function;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002251 int argc = arg_count();
2252 ParameterCount actual(argc);
2253
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002254 // The checks. First, does r1 match the recorded monomorphic target?
2255 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2256 __ Daddu(a4, a2, Operand(a4));
2257 __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002258
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002259 // We don't know that we have a weak cell. We might have a private symbol
2260 // or an AllocationSite, but the memory is safe to examine.
2261 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2262 // FixedArray.
2263 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2264 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2265 // computed, meaning that it can't appear to be a pointer. If the low bit is
2266 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2267 // to be a pointer.
2268 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2269 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2270 WeakCell::kValueOffset &&
2271 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002272
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002273 __ ld(a5, FieldMemOperand(a4, WeakCell::kValueOffset));
2274 __ Branch(&extra_checks_or_miss, ne, a1, Operand(a5));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002275
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002276 // The compare above could have been a SMI/SMI comparison. Guard against this
2277 // convincing us that we have a monomorphic JSFunction.
2278 __ JumpIfSmi(a1, &extra_checks_or_miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002279
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002280 // Increment the call count for monomorphic function calls.
2281 __ dsrl(t0, a3, 32 - kPointerSizeLog2);
2282 __ Daddu(a3, a2, Operand(t0));
2283 __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2284 __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2285 __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002286
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002287 __ bind(&call_function);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002288 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
2289 tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002290 RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
2291 USE_DELAY_SLOT);
2292 __ li(a0, Operand(argc)); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002293
2294 __ bind(&extra_checks_or_miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002295 Label uninitialized, miss, not_allocation_site;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002296
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002297 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002298 __ Branch(&call, eq, a4, Operand(at));
2299
2300 // Verify that a4 contains an AllocationSite
2301 __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
2302 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2303 __ Branch(&not_allocation_site, ne, a5, Operand(at));
2304
2305 HandleArrayCase(masm, &miss);
2306
2307 __ bind(&not_allocation_site);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002308
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002309 // The following cases attempt to handle MISS cases without going to the
2310 // runtime.
2311 if (FLAG_trace_ic) {
2312 __ Branch(&miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002313 }
2314
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002315 __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
2316 __ Branch(&uninitialized, eq, a4, Operand(at));
2317
2318 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2319 // to handle it here. More complex cases are dealt with in the runtime.
2320 __ AssertNotSmi(a4);
2321 __ GetObjectType(a4, a5, a5);
2322 __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
2323 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2324 __ Daddu(a4, a2, Operand(a4));
2325 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2326 __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002327
2328 __ bind(&call);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002329 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002330 RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
2331 USE_DELAY_SLOT);
2332 __ li(a0, Operand(argc)); // In delay slot.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002333
2334 __ bind(&uninitialized);
2335
2336 // We are going monomorphic, provided we actually have a JSFunction.
2337 __ JumpIfSmi(a1, &miss);
2338
2339 // Goto miss case if we do not have a function.
2340 __ GetObjectType(a1, a4, a4);
2341 __ Branch(&miss, ne, a4, Operand(JS_FUNCTION_TYPE));
2342
2343 // Make sure the function is not the Array() function, which requires special
2344 // behavior on MISS.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002345 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a4);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002346 __ Branch(&miss, eq, a1, Operand(a4));
2347
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002348 // Make sure the function belongs to the same native context.
2349 __ ld(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
2350 __ ld(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
2351 __ ld(t1, NativeContextMemOperand());
2352 __ Branch(&miss, ne, t0, Operand(t1));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002353
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002354 // Initialize the call counter.
2355 __ dsrl(at, a3, 32 - kPointerSizeLog2);
2356 __ Daddu(at, a2, Operand(at));
2357 __ li(t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2358 __ sd(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002359
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002360 // Store the function. Use a stub since we need a frame for allocation.
2361 // a2 - vector
2362 // a3 - slot
2363 // a1 - function
2364 {
2365 FrameScope scope(masm, StackFrame::INTERNAL);
2366 CreateWeakCellStub create_stub(masm->isolate());
2367 __ Push(a1);
2368 __ CallStub(&create_stub);
2369 __ Pop(a1);
2370 }
2371
2372 __ Branch(&call_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002373
2374 // We are here because tracing is on or we encountered a MISS case we can't
2375 // handle here.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002376 __ bind(&miss);
2377 GenerateMiss(masm);
2378
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002379 __ Branch(&call);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002380}
2381
2382
2383void CallICStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002384 FrameScope scope(masm, StackFrame::INTERNAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002385
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002386 // Push the receiver and the function and feedback info.
2387 __ Push(a1, a2, a3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002388
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002389 // Call the entry.
2390 __ CallRuntime(Runtime::kCallIC_Miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002391
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002392 // Move result to a1 and exit the internal frame.
2393 __ mov(a1, v0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002394}
2395
2396
2397void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002398 MacroAssembler* masm, EmbedMode embed_mode,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002399 const RuntimeCallHelper& call_helper) {
2400 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2401
2402 // Index is not a smi.
2403 __ bind(&index_not_smi_);
2404 // If index is a heap number, try converting it to an integer.
2405 __ CheckMap(index_,
2406 result_,
2407 Heap::kHeapNumberMapRootIndex,
2408 index_not_number_,
2409 DONT_DO_SMI_CHECK);
2410 call_helper.BeforeCall(masm);
2411 // Consumed by runtime conversion function:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002412 if (embed_mode == PART_OF_IC_HANDLER) {
2413 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2414 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2415 } else {
2416 __ Push(object_, index_);
2417 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002418 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002419 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002420 } else {
2421 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2422 // NumberToSmi discards numbers that are not exact integers.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002423 __ CallRuntime(Runtime::kNumberToSmi);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002424 }
2425
2426 // Save the conversion result before the pop instructions below
2427 // have a chance to overwrite it.
2428
2429 __ Move(index_, v0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002430 if (embed_mode == PART_OF_IC_HANDLER) {
2431 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2432 LoadWithVectorDescriptor::SlotRegister(), object_);
2433 } else {
2434 __ pop(object_);
2435 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002436 // Reload the instance type.
2437 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2438 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2439 call_helper.AfterCall(masm);
2440 // If index is still not a smi, it must be out of range.
2441 __ JumpIfNotSmi(index_, index_out_of_range_);
2442 // Otherwise, return to the fast path.
2443 __ Branch(&got_smi_index_);
2444
2445 // Call runtime. We get here when the receiver is a string and the
2446 // index is a number, but the code of getting the actual character
2447 // is too complex (e.g., when the string needs to be flattened).
2448 __ bind(&call_runtime_);
2449 call_helper.BeforeCall(masm);
2450 __ SmiTag(index_);
2451 __ Push(object_, index_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002452 __ CallRuntime(Runtime::kStringCharCodeAtRT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002453
2454 __ Move(result_, v0);
2455
2456 call_helper.AfterCall(masm);
2457 __ jmp(&exit_);
2458
2459 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2460}
2461
2462
2463// -------------------------------------------------------------------------
2464// StringCharFromCodeGenerator
2465
2466void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2467 // Fast case of Heap::LookupSingleCharacterStringFromCode.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002468 __ JumpIfNotSmi(code_, &slow_case_);
2469 __ Branch(&slow_case_, hi, code_,
2470 Operand(Smi::FromInt(String::kMaxOneByteCharCode)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002471
2472 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2473 // At this point code register contains smi tagged one_byte char code.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002474 __ SmiScale(at, code_, kPointerSizeLog2);
2475 __ Daddu(result_, result_, at);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002476 __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002477 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2478 __ Branch(&slow_case_, eq, result_, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002479 __ bind(&exit_);
2480}
2481
2482
2483void StringCharFromCodeGenerator::GenerateSlow(
2484 MacroAssembler* masm,
2485 const RuntimeCallHelper& call_helper) {
2486 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2487
2488 __ bind(&slow_case_);
2489 call_helper.BeforeCall(masm);
2490 __ push(code_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002491 __ CallRuntime(Runtime::kStringCharFromCode);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002492 __ Move(result_, v0);
2493
2494 call_helper.AfterCall(masm);
2495 __ Branch(&exit_);
2496
2497 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2498}
2499
2500
2501enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2502
2503
2504void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2505 Register dest,
2506 Register src,
2507 Register count,
2508 Register scratch,
2509 String::Encoding encoding) {
2510 if (FLAG_debug_code) {
2511 // Check that destination is word aligned.
2512 __ And(scratch, dest, Operand(kPointerAlignmentMask));
2513 __ Check(eq,
2514 kDestinationOfCopyNotAligned,
2515 scratch,
2516 Operand(zero_reg));
2517 }
2518
2519 // Assumes word reads and writes are little endian.
2520 // Nothing to do for zero characters.
2521 Label done;
2522
2523 if (encoding == String::TWO_BYTE_ENCODING) {
2524 __ Daddu(count, count, count);
2525 }
2526
2527 Register limit = count; // Read until dest equals this.
2528 __ Daddu(limit, dest, Operand(count));
2529
2530 Label loop_entry, loop;
2531 // Copy bytes from src to dest until dest hits limit.
2532 __ Branch(&loop_entry);
2533 __ bind(&loop);
2534 __ lbu(scratch, MemOperand(src));
2535 __ daddiu(src, src, 1);
2536 __ sb(scratch, MemOperand(dest));
2537 __ daddiu(dest, dest, 1);
2538 __ bind(&loop_entry);
2539 __ Branch(&loop, lt, dest, Operand(limit));
2540
2541 __ bind(&done);
2542}
2543
2544
2545void SubStringStub::Generate(MacroAssembler* masm) {
2546 Label runtime;
2547 // Stack frame on entry.
2548 // ra: return address
2549 // sp[0]: to
2550 // sp[4]: from
2551 // sp[8]: string
2552
2553 // This stub is called from the native-call %_SubString(...), so
2554 // nothing can be assumed about the arguments. It is tested that:
2555 // "string" is a sequential string,
2556 // both "from" and "to" are smis, and
2557 // 0 <= from <= to <= string.length.
2558 // If any of these assumptions fail, we call the runtime system.
2559
2560 const int kToOffset = 0 * kPointerSize;
2561 const int kFromOffset = 1 * kPointerSize;
2562 const int kStringOffset = 2 * kPointerSize;
2563
2564 __ ld(a2, MemOperand(sp, kToOffset));
2565 __ ld(a3, MemOperand(sp, kFromOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002566
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002567 STATIC_ASSERT(kSmiTag == 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002568
2569 // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
2570 // safe in this case.
2571 __ JumpIfNotSmi(a2, &runtime);
2572 __ JumpIfNotSmi(a3, &runtime);
2573 // Both a2 and a3 are untagged integers.
2574
2575 __ SmiUntag(a2, a2);
2576 __ SmiUntag(a3, a3);
2577 __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
2578
2579 __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to.
2580 __ Dsubu(a2, a2, a3);
2581
2582 // Make sure first argument is a string.
2583 __ ld(v0, MemOperand(sp, kStringOffset));
2584 __ JumpIfSmi(v0, &runtime);
2585 __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
2586 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
2587 __ And(a4, a1, Operand(kIsNotStringMask));
2588
2589 __ Branch(&runtime, ne, a4, Operand(zero_reg));
2590
2591 Label single_char;
2592 __ Branch(&single_char, eq, a2, Operand(1));
2593
2594 // Short-cut for the case of trivial substring.
2595 Label return_v0;
2596 // v0: original string
2597 // a2: result string length
2598 __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
2599 __ SmiUntag(a4);
2600 // Return original string.
2601 __ Branch(&return_v0, eq, a2, Operand(a4));
2602 // Longer than original string's length or negative: unsafe arguments.
2603 __ Branch(&runtime, hi, a2, Operand(a4));
2604 // Shorter than original string's length: an actual substring.
2605
2606 // Deal with different string types: update the index if necessary
2607 // and put the underlying string into a5.
2608 // v0: original string
2609 // a1: instance type
2610 // a2: length
2611 // a3: from index (untagged)
2612 Label underlying_unpacked, sliced_string, seq_or_external_string;
2613 // If the string is not indirect, it can only be sequential or external.
2614 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2615 STATIC_ASSERT(kIsIndirectStringMask != 0);
2616 __ And(a4, a1, Operand(kIsIndirectStringMask));
2617 __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
2618 // a4 is used as a scratch register and can be overwritten in either case.
2619 __ And(a4, a1, Operand(kSlicedNotConsMask));
2620 __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
2621 // Cons string. Check whether it is flat, then fetch first part.
2622 __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
2623 __ LoadRoot(a4, Heap::kempty_stringRootIndex);
2624 __ Branch(&runtime, ne, a5, Operand(a4));
2625 __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
2626 // Update instance type.
2627 __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
2628 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
2629 __ jmp(&underlying_unpacked);
2630
2631 __ bind(&sliced_string);
2632 // Sliced string. Fetch parent and correct start index by offset.
2633 __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
2634 __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
2635 __ SmiUntag(a4); // Add offset to index.
2636 __ Daddu(a3, a3, a4);
2637 // Update instance type.
2638 __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
2639 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
2640 __ jmp(&underlying_unpacked);
2641
2642 __ bind(&seq_or_external_string);
2643 // Sequential or external string. Just move string to the expected register.
2644 __ mov(a5, v0);
2645
2646 __ bind(&underlying_unpacked);
2647
2648 if (FLAG_string_slices) {
2649 Label copy_routine;
2650 // a5: underlying subject string
2651 // a1: instance type of underlying subject string
2652 // a2: length
2653 // a3: adjusted start index (untagged)
2654 // Short slice. Copy instead of slicing.
2655 __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
2656 // Allocate new sliced string. At this point we do not reload the instance
2657 // type including the string encoding because we simply rely on the info
2658 // provided by the original string. It does not matter if the original
2659 // string's encoding is wrong because we always have to recheck encoding of
2660 // the newly created string's parent anyways due to externalized strings.
2661 Label two_byte_slice, set_slice_header;
2662 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2663 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2664 __ And(a4, a1, Operand(kStringEncodingMask));
2665 __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
2666 __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
2667 __ jmp(&set_slice_header);
2668 __ bind(&two_byte_slice);
2669 __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
2670 __ bind(&set_slice_header);
2671 __ SmiTag(a3);
2672 __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
2673 __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
2674 __ jmp(&return_v0);
2675
2676 __ bind(&copy_routine);
2677 }
2678
2679 // a5: underlying subject string
2680 // a1: instance type of underlying subject string
2681 // a2: length
2682 // a3: adjusted start index (untagged)
2683 Label two_byte_sequential, sequential_string, allocate_result;
2684 STATIC_ASSERT(kExternalStringTag != 0);
2685 STATIC_ASSERT(kSeqStringTag == 0);
2686 __ And(a4, a1, Operand(kExternalStringTag));
2687 __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
2688
2689 // Handle external string.
2690 // Rule out short external strings.
2691 STATIC_ASSERT(kShortExternalStringTag != 0);
2692 __ And(a4, a1, Operand(kShortExternalStringTag));
2693 __ Branch(&runtime, ne, a4, Operand(zero_reg));
2694 __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
2695 // a5 already points to the first character of underlying string.
2696 __ jmp(&allocate_result);
2697
2698 __ bind(&sequential_string);
2699 // Locate first character of underlying subject string.
2700 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2701 __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2702
2703 __ bind(&allocate_result);
2704 // Sequential acii string. Allocate the result.
2705 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2706 __ And(a4, a1, Operand(kStringEncodingMask));
2707 __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
2708
2709 // Allocate and copy the resulting one_byte string.
2710 __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
2711
2712 // Locate first character of substring to copy.
2713 __ Daddu(a5, a5, a3);
2714
2715 // Locate first character of result.
2716 __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2717
2718 // v0: result string
2719 // a1: first character of result string
2720 // a2: result string length
2721 // a5: first character of substring to copy
2722 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2723 StringHelper::GenerateCopyCharacters(
2724 masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
2725 __ jmp(&return_v0);
2726
2727 // Allocate and copy the resulting two-byte string.
2728 __ bind(&two_byte_sequential);
2729 __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
2730
2731 // Locate first character of substring to copy.
2732 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002733 __ Dlsa(a5, a5, a3, 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002734 // Locate first character of result.
2735 __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2736
2737 // v0: result string.
2738 // a1: first character of result.
2739 // a2: result length.
2740 // a5: first character of substring to copy.
2741 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2742 StringHelper::GenerateCopyCharacters(
2743 masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
2744
2745 __ bind(&return_v0);
2746 Counters* counters = isolate()->counters();
2747 __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
2748 __ DropAndRet(3);
2749
2750 // Just jump to runtime to create the sub string.
2751 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002752 __ TailCallRuntime(Runtime::kSubString);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002753
2754 __ bind(&single_char);
2755 // v0: original string
2756 // a1: instance type
2757 // a2: length
2758 // a3: from index (untagged)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002759 __ SmiTag(a3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002760 StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime,
2761 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002762 generator.GenerateFast(masm);
2763 __ DropAndRet(3);
2764 generator.SkipSlow(masm, &runtime);
2765}
2766
2767
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002768void ToNumberStub::Generate(MacroAssembler* masm) {
2769 // The ToNumber stub takes one argument in a0.
2770 Label not_smi;
2771 __ JumpIfNotSmi(a0, &not_smi);
2772 __ Ret(USE_DELAY_SLOT);
2773 __ mov(v0, a0);
2774 __ bind(&not_smi);
2775
2776 Label not_heap_number;
Ben Murdochda12d292016-06-02 14:46:10 +01002777 __ GetObjectType(a0, a1, a1);
2778 // a0: receiver
2779 // a1: receiver instance type
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002780 __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
2781 __ Ret(USE_DELAY_SLOT);
2782 __ mov(v0, a0);
2783 __ bind(&not_heap_number);
2784
Ben Murdochda12d292016-06-02 14:46:10 +01002785 NonNumberToNumberStub stub(masm->isolate());
2786 __ TailCallStub(&stub);
2787}
2788
2789void NonNumberToNumberStub::Generate(MacroAssembler* masm) {
2790 // The NonNumberToNumber stub takes on argument in a0.
2791 __ AssertNotNumber(a0);
2792
2793 Label not_string;
2794 __ GetObjectType(a0, a1, a1);
2795 // a0: receiver
2796 // a1: receiver instance type
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002797 __ Branch(&not_string, hs, a1, Operand(FIRST_NONSTRING_TYPE));
Ben Murdochda12d292016-06-02 14:46:10 +01002798 StringToNumberStub stub(masm->isolate());
2799 __ TailCallStub(&stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002800 __ bind(&not_string);
2801
2802 Label not_oddball;
2803 __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
2804 __ Ret(USE_DELAY_SLOT);
Ben Murdochda12d292016-06-02 14:46:10 +01002805 __ ld(v0, FieldMemOperand(a0, Oddball::kToNumberOffset)); // In delay slot.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002806 __ bind(&not_oddball);
2807
Ben Murdochda12d292016-06-02 14:46:10 +01002808 __ Push(a0); // Push argument.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002809 __ TailCallRuntime(Runtime::kToNumber);
2810}
2811
Ben Murdochda12d292016-06-02 14:46:10 +01002812void StringToNumberStub::Generate(MacroAssembler* masm) {
2813 // The StringToNumber stub takes on argument in a0.
2814 __ AssertString(a0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002815
Ben Murdochda12d292016-06-02 14:46:10 +01002816 // Check if string has a cached array index.
2817 Label runtime;
2818 __ lwu(a2, FieldMemOperand(a0, String::kHashFieldOffset));
2819 __ And(at, a2, Operand(String::kContainsCachedArrayIndexMask));
2820 __ Branch(&runtime, ne, at, Operand(zero_reg));
2821 __ IndexFromHash(a2, v0);
2822 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002823
Ben Murdochda12d292016-06-02 14:46:10 +01002824 __ bind(&runtime);
2825 __ Push(a0); // Push argument.
2826 __ TailCallRuntime(Runtime::kStringToNumber);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002827}
2828
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002829void ToStringStub::Generate(MacroAssembler* masm) {
2830 // The ToString stub takes on argument in a0.
2831 Label is_number;
2832 __ JumpIfSmi(a0, &is_number);
2833
2834 Label not_string;
2835 __ GetObjectType(a0, a1, a1);
2836 // a0: receiver
2837 // a1: receiver instance type
2838 __ Branch(&not_string, ge, a1, Operand(FIRST_NONSTRING_TYPE));
2839 __ Ret(USE_DELAY_SLOT);
2840 __ mov(v0, a0);
2841 __ bind(&not_string);
2842
2843 Label not_heap_number;
2844 __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
2845 __ bind(&is_number);
2846 NumberToStringStub stub(isolate());
2847 __ TailCallStub(&stub);
2848 __ bind(&not_heap_number);
2849
2850 Label not_oddball;
2851 __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
2852 __ Ret(USE_DELAY_SLOT);
2853 __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
2854 __ bind(&not_oddball);
2855
2856 __ push(a0); // Push argument.
2857 __ TailCallRuntime(Runtime::kToString);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002858}
2859
2860
Ben Murdoch097c5b22016-05-18 11:27:45 +01002861void ToNameStub::Generate(MacroAssembler* masm) {
2862 // The ToName stub takes on argument in a0.
2863 Label is_number;
2864 __ JumpIfSmi(a0, &is_number);
2865
2866 Label not_name;
2867 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
2868 __ GetObjectType(a0, a1, a1);
2869 // a0: receiver
2870 // a1: receiver instance type
2871 __ Branch(&not_name, gt, a1, Operand(LAST_NAME_TYPE));
2872 __ Ret(USE_DELAY_SLOT);
2873 __ mov(v0, a0);
2874 __ bind(&not_name);
2875
2876 Label not_heap_number;
2877 __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
2878 __ bind(&is_number);
2879 NumberToStringStub stub(isolate());
2880 __ TailCallStub(&stub);
2881 __ bind(&not_heap_number);
2882
2883 Label not_oddball;
2884 __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
2885 __ Ret(USE_DELAY_SLOT);
2886 __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
2887 __ bind(&not_oddball);
2888
2889 __ push(a0); // Push argument.
2890 __ TailCallRuntime(Runtime::kToName);
2891}
2892
2893
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002894void StringHelper::GenerateFlatOneByteStringEquals(
2895 MacroAssembler* masm, Register left, Register right, Register scratch1,
2896 Register scratch2, Register scratch3) {
2897 Register length = scratch1;
2898
2899 // Compare lengths.
2900 Label strings_not_equal, check_zero_length;
2901 __ ld(length, FieldMemOperand(left, String::kLengthOffset));
2902 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
2903 __ Branch(&check_zero_length, eq, length, Operand(scratch2));
2904 __ bind(&strings_not_equal);
2905 // Can not put li in delayslot, it has multi instructions.
2906 __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
2907 __ Ret();
2908
2909 // Check if the length is zero.
2910 Label compare_chars;
2911 __ bind(&check_zero_length);
2912 STATIC_ASSERT(kSmiTag == 0);
2913 __ Branch(&compare_chars, ne, length, Operand(zero_reg));
2914 DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
2915 __ Ret(USE_DELAY_SLOT);
2916 __ li(v0, Operand(Smi::FromInt(EQUAL)));
2917
2918 // Compare characters.
2919 __ bind(&compare_chars);
2920
2921 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
2922 v0, &strings_not_equal);
2923
2924 // Characters are equal.
2925 __ Ret(USE_DELAY_SLOT);
2926 __ li(v0, Operand(Smi::FromInt(EQUAL)));
2927}
2928
2929
2930void StringHelper::GenerateCompareFlatOneByteStrings(
2931 MacroAssembler* masm, Register left, Register right, Register scratch1,
2932 Register scratch2, Register scratch3, Register scratch4) {
2933 Label result_not_equal, compare_lengths;
2934 // Find minimum length and length difference.
2935 __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
2936 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
2937 __ Dsubu(scratch3, scratch1, Operand(scratch2));
2938 Register length_delta = scratch3;
2939 __ slt(scratch4, scratch2, scratch1);
2940 __ Movn(scratch1, scratch2, scratch4);
2941 Register min_length = scratch1;
2942 STATIC_ASSERT(kSmiTag == 0);
2943 __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
2944
2945 // Compare loop.
2946 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2947 scratch4, v0, &result_not_equal);
2948
2949 // Compare lengths - strings up to min-length are equal.
2950 __ bind(&compare_lengths);
2951 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2952 // Use length_delta as result if it's zero.
2953 __ mov(scratch2, length_delta);
2954 __ mov(scratch4, zero_reg);
2955 __ mov(v0, zero_reg);
2956
2957 __ bind(&result_not_equal);
2958 // Conditionally update the result based either on length_delta or
2959 // the last comparion performed in the loop above.
2960 Label ret;
2961 __ Branch(&ret, eq, scratch2, Operand(scratch4));
2962 __ li(v0, Operand(Smi::FromInt(GREATER)));
2963 __ Branch(&ret, gt, scratch2, Operand(scratch4));
2964 __ li(v0, Operand(Smi::FromInt(LESS)));
2965 __ bind(&ret);
2966 __ Ret();
2967}
2968
2969
2970void StringHelper::GenerateOneByteCharsCompareLoop(
2971 MacroAssembler* masm, Register left, Register right, Register length,
2972 Register scratch1, Register scratch2, Register scratch3,
2973 Label* chars_not_equal) {
2974 // Change index to run from -length to -1 by adding length to string
2975 // start. This means that loop ends when index reaches zero, which
2976 // doesn't need an additional compare.
2977 __ SmiUntag(length);
2978 __ Daddu(scratch1, length,
2979 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2980 __ Daddu(left, left, Operand(scratch1));
2981 __ Daddu(right, right, Operand(scratch1));
2982 __ Dsubu(length, zero_reg, length);
2983 Register index = length; // index = -length;
2984
2985
2986 // Compare loop.
2987 Label loop;
2988 __ bind(&loop);
2989 __ Daddu(scratch3, left, index);
2990 __ lbu(scratch1, MemOperand(scratch3));
2991 __ Daddu(scratch3, right, index);
2992 __ lbu(scratch2, MemOperand(scratch3));
2993 __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
2994 __ Daddu(index, index, 1);
2995 __ Branch(&loop, ne, index, Operand(zero_reg));
2996}
2997
2998
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002999void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3000 // ----------- S t a t e -------------
3001 // -- a1 : left
3002 // -- a0 : right
3003 // -- ra : return address
3004 // -----------------------------------
3005
3006 // Load a2 with the allocation site. We stick an undefined dummy value here
3007 // and replace it with the real allocation site later when we instantiate this
3008 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3009 __ li(a2, handle(isolate()->heap()->undefined_value()));
3010
3011 // Make sure that we actually patched the allocation site.
3012 if (FLAG_debug_code) {
3013 __ And(at, a2, Operand(kSmiTagMask));
3014 __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
3015 __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
3016 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3017 __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
3018 }
3019
3020 // Tail call into the stub that handles binary operations with allocation
3021 // sites.
3022 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3023 __ TailCallStub(&stub);
3024}
3025
3026
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003027void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
3028 DCHECK_EQ(CompareICState::BOOLEAN, state());
3029 Label miss;
3030
3031 __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3032 __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
Ben Murdoch097c5b22016-05-18 11:27:45 +01003033 if (!Token::IsEqualityOp(op())) {
3034 __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
3035 __ AssertSmi(a1);
3036 __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
3037 __ AssertSmi(a0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003038 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01003039 __ Ret(USE_DELAY_SLOT);
3040 __ Dsubu(v0, a1, a0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003041
3042 __ bind(&miss);
3043 GenerateMiss(masm);
3044}
3045
3046
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003047void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3048 DCHECK(state() == CompareICState::SMI);
3049 Label miss;
3050 __ Or(a2, a1, a0);
3051 __ JumpIfNotSmi(a2, &miss);
3052
3053 if (GetCondition() == eq) {
3054 // For equality we do not care about the sign of the result.
3055 __ Ret(USE_DELAY_SLOT);
3056 __ Dsubu(v0, a0, a1);
3057 } else {
3058 // Untag before subtracting to avoid handling overflow.
3059 __ SmiUntag(a1);
3060 __ SmiUntag(a0);
3061 __ Ret(USE_DELAY_SLOT);
3062 __ Dsubu(v0, a1, a0);
3063 }
3064
3065 __ bind(&miss);
3066 GenerateMiss(masm);
3067}
3068
3069
3070void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3071 DCHECK(state() == CompareICState::NUMBER);
3072
3073 Label generic_stub;
3074 Label unordered, maybe_undefined1, maybe_undefined2;
3075 Label miss;
3076
3077 if (left() == CompareICState::SMI) {
3078 __ JumpIfNotSmi(a1, &miss);
3079 }
3080 if (right() == CompareICState::SMI) {
3081 __ JumpIfNotSmi(a0, &miss);
3082 }
3083
3084 // Inlining the double comparison and falling back to the general compare
3085 // stub if NaN is involved.
3086 // Load left and right operand.
3087 Label done, left, left_smi, right_smi;
3088 __ JumpIfSmi(a0, &right_smi);
3089 __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3090 DONT_DO_SMI_CHECK);
3091 __ Dsubu(a2, a0, Operand(kHeapObjectTag));
3092 __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
3093 __ Branch(&left);
3094 __ bind(&right_smi);
3095 __ SmiUntag(a2, a0); // Can't clobber a0 yet.
3096 FPURegister single_scratch = f6;
3097 __ mtc1(a2, single_scratch);
3098 __ cvt_d_w(f2, single_scratch);
3099
3100 __ bind(&left);
3101 __ JumpIfSmi(a1, &left_smi);
3102 __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3103 DONT_DO_SMI_CHECK);
3104 __ Dsubu(a2, a1, Operand(kHeapObjectTag));
3105 __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
3106 __ Branch(&done);
3107 __ bind(&left_smi);
3108 __ SmiUntag(a2, a1); // Can't clobber a1 yet.
3109 single_scratch = f8;
3110 __ mtc1(a2, single_scratch);
3111 __ cvt_d_w(f0, single_scratch);
3112
3113 __ bind(&done);
3114
3115 // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
3116 Label fpu_eq, fpu_lt;
3117 // Test if equal, and also handle the unordered/NaN case.
3118 __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
3119
3120 // Test if less (unordered case is already handled).
3121 __ BranchF(&fpu_lt, NULL, lt, f0, f2);
3122
3123 // Otherwise it's greater, so just fall thru, and return.
3124 DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
3125 __ Ret(USE_DELAY_SLOT);
3126 __ li(v0, Operand(GREATER));
3127
3128 __ bind(&fpu_eq);
3129 __ Ret(USE_DELAY_SLOT);
3130 __ li(v0, Operand(EQUAL));
3131
3132 __ bind(&fpu_lt);
3133 __ Ret(USE_DELAY_SLOT);
3134 __ li(v0, Operand(LESS));
3135
3136 __ bind(&unordered);
3137 __ bind(&generic_stub);
Ben Murdoch097c5b22016-05-18 11:27:45 +01003138 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003139 CompareICState::GENERIC, CompareICState::GENERIC);
3140 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3141
3142 __ bind(&maybe_undefined1);
3143 if (Token::IsOrderedRelationalCompareOp(op())) {
3144 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3145 __ Branch(&miss, ne, a0, Operand(at));
3146 __ JumpIfSmi(a1, &unordered);
3147 __ GetObjectType(a1, a2, a2);
3148 __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
3149 __ jmp(&unordered);
3150 }
3151
3152 __ bind(&maybe_undefined2);
3153 if (Token::IsOrderedRelationalCompareOp(op())) {
3154 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3155 __ Branch(&unordered, eq, a1, Operand(at));
3156 }
3157
3158 __ bind(&miss);
3159 GenerateMiss(masm);
3160}
3161
3162
3163void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3164 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3165 Label miss;
3166
3167 // Registers containing left and right operands respectively.
3168 Register left = a1;
3169 Register right = a0;
3170 Register tmp1 = a2;
3171 Register tmp2 = a3;
3172
3173 // Check that both operands are heap objects.
3174 __ JumpIfEitherSmi(left, right, &miss);
3175
3176 // Check that both operands are internalized strings.
3177 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3178 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3179 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3180 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3181 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3182 __ Or(tmp1, tmp1, Operand(tmp2));
3183 __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3184 __ Branch(&miss, ne, at, Operand(zero_reg));
3185
3186 // Make sure a0 is non-zero. At this point input operands are
3187 // guaranteed to be non-zero.
3188 DCHECK(right.is(a0));
3189 STATIC_ASSERT(EQUAL == 0);
3190 STATIC_ASSERT(kSmiTag == 0);
3191 __ mov(v0, right);
3192 // Internalized strings are compared by identity.
3193 __ Ret(ne, left, Operand(right));
3194 DCHECK(is_int16(EQUAL));
3195 __ Ret(USE_DELAY_SLOT);
3196 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3197
3198 __ bind(&miss);
3199 GenerateMiss(masm);
3200}
3201
3202
3203void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3204 DCHECK(state() == CompareICState::UNIQUE_NAME);
3205 DCHECK(GetCondition() == eq);
3206 Label miss;
3207
3208 // Registers containing left and right operands respectively.
3209 Register left = a1;
3210 Register right = a0;
3211 Register tmp1 = a2;
3212 Register tmp2 = a3;
3213
3214 // Check that both operands are heap objects.
3215 __ JumpIfEitherSmi(left, right, &miss);
3216
3217 // Check that both operands are unique names. This leaves the instance
3218 // types loaded in tmp1 and tmp2.
3219 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3220 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3221 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3222 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3223
3224 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3225 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3226
3227 // Use a0 as result
3228 __ mov(v0, a0);
3229
3230 // Unique names are compared by identity.
3231 Label done;
3232 __ Branch(&done, ne, left, Operand(right));
3233 // Make sure a0 is non-zero. At this point input operands are
3234 // guaranteed to be non-zero.
3235 DCHECK(right.is(a0));
3236 STATIC_ASSERT(EQUAL == 0);
3237 STATIC_ASSERT(kSmiTag == 0);
3238 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3239 __ bind(&done);
3240 __ Ret();
3241
3242 __ bind(&miss);
3243 GenerateMiss(masm);
3244}
3245
3246
3247void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3248 DCHECK(state() == CompareICState::STRING);
3249 Label miss;
3250
3251 bool equality = Token::IsEqualityOp(op());
3252
3253 // Registers containing left and right operands respectively.
3254 Register left = a1;
3255 Register right = a0;
3256 Register tmp1 = a2;
3257 Register tmp2 = a3;
3258 Register tmp3 = a4;
3259 Register tmp4 = a5;
3260 Register tmp5 = a6;
3261
3262 // Check that both operands are heap objects.
3263 __ JumpIfEitherSmi(left, right, &miss);
3264
3265 // Check that both operands are strings. This leaves the instance
3266 // types loaded in tmp1 and tmp2.
3267 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3268 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3269 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3270 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3271 STATIC_ASSERT(kNotStringTag != 0);
3272 __ Or(tmp3, tmp1, tmp2);
3273 __ And(tmp5, tmp3, Operand(kIsNotStringMask));
3274 __ Branch(&miss, ne, tmp5, Operand(zero_reg));
3275
3276 // Fast check for identical strings.
3277 Label left_ne_right;
3278 STATIC_ASSERT(EQUAL == 0);
3279 STATIC_ASSERT(kSmiTag == 0);
3280 __ Branch(&left_ne_right, ne, left, Operand(right));
3281 __ Ret(USE_DELAY_SLOT);
3282 __ mov(v0, zero_reg); // In the delay slot.
3283 __ bind(&left_ne_right);
3284
3285 // Handle not identical strings.
3286
3287 // Check that both strings are internalized strings. If they are, we're done
3288 // because we already know they are not identical. We know they are both
3289 // strings.
3290 if (equality) {
3291 DCHECK(GetCondition() == eq);
3292 STATIC_ASSERT(kInternalizedTag == 0);
3293 __ Or(tmp3, tmp1, Operand(tmp2));
3294 __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
3295 Label is_symbol;
3296 __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
3297 // Make sure a0 is non-zero. At this point input operands are
3298 // guaranteed to be non-zero.
3299 DCHECK(right.is(a0));
3300 __ Ret(USE_DELAY_SLOT);
3301 __ mov(v0, a0); // In the delay slot.
3302 __ bind(&is_symbol);
3303 }
3304
3305 // Check that both strings are sequential one_byte.
3306 Label runtime;
3307 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3308 &runtime);
3309
3310 // Compare flat one_byte strings. Returns when done.
3311 if (equality) {
3312 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3313 tmp3);
3314 } else {
3315 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3316 tmp2, tmp3, tmp4);
3317 }
3318
3319 // Handle more complex cases in runtime.
3320 __ bind(&runtime);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003321 if (equality) {
Ben Murdochda12d292016-06-02 14:46:10 +01003322 {
3323 FrameScope scope(masm, StackFrame::INTERNAL);
3324 __ Push(left, right);
3325 __ CallRuntime(Runtime::kStringEqual);
3326 }
3327 __ LoadRoot(a0, Heap::kTrueValueRootIndex);
3328 __ Ret(USE_DELAY_SLOT);
3329 __ Subu(v0, v0, a0); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003330 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01003331 __ Push(left, right);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003332 __ TailCallRuntime(Runtime::kStringCompare);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003333 }
3334
3335 __ bind(&miss);
3336 GenerateMiss(masm);
3337}
3338
3339
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003340void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3341 DCHECK_EQ(CompareICState::RECEIVER, state());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003342 Label miss;
3343 __ And(a2, a1, Operand(a0));
3344 __ JumpIfSmi(a2, &miss);
3345
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003346 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003347 __ GetObjectType(a0, a2, a2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003348 __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003349 __ GetObjectType(a1, a2, a2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003350 __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003351
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003352 DCHECK_EQ(eq, GetCondition());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003353 __ Ret(USE_DELAY_SLOT);
3354 __ dsubu(v0, a0, a1);
3355
3356 __ bind(&miss);
3357 GenerateMiss(masm);
3358}
3359
3360
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003361void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003362 Label miss;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003363 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003364 __ And(a2, a1, a0);
3365 __ JumpIfSmi(a2, &miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003366 __ GetWeakValue(a4, cell);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003367 __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
3368 __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003369 __ Branch(&miss, ne, a2, Operand(a4));
3370 __ Branch(&miss, ne, a3, Operand(a4));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003371
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003372 if (Token::IsEqualityOp(op())) {
3373 __ Ret(USE_DELAY_SLOT);
3374 __ dsubu(v0, a0, a1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003375 } else {
3376 if (op() == Token::LT || op() == Token::LTE) {
3377 __ li(a2, Operand(Smi::FromInt(GREATER)));
3378 } else {
3379 __ li(a2, Operand(Smi::FromInt(LESS)));
3380 }
3381 __ Push(a1, a0, a2);
3382 __ TailCallRuntime(Runtime::kCompare);
3383 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003384
3385 __ bind(&miss);
3386 GenerateMiss(masm);
3387}
3388
3389
3390void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3391 {
3392 // Call the runtime system in a fresh internal frame.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003393 FrameScope scope(masm, StackFrame::INTERNAL);
3394 __ Push(a1, a0);
3395 __ Push(ra, a1, a0);
3396 __ li(a4, Operand(Smi::FromInt(op())));
3397 __ daddiu(sp, sp, -kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003398 __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
3399 USE_DELAY_SLOT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003400 __ sd(a4, MemOperand(sp)); // In the delay slot.
3401 // Compute the entry point of the rewritten stub.
3402 __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
3403 // Restore registers.
3404 __ Pop(a1, a0, ra);
3405 }
3406 __ Jump(a2);
3407}
3408
3409
3410void DirectCEntryStub::Generate(MacroAssembler* masm) {
3411 // Make place for arguments to fit C calling convention. Most of the callers
3412 // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
3413 // so they handle stack restoring and we don't have to do that here.
3414 // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
3415 // kCArgsSlotsSize stack space after the call.
3416 __ daddiu(sp, sp, -kCArgsSlotsSize);
3417 // Place the return address on the stack, making the call
3418 // GC safe. The RegExp backend also relies on this.
3419 __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
3420 __ Call(t9); // Call the C++ function.
3421 __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
3422
3423 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
3424 // In case of an error the return address may point to a memory area
3425 // filled with kZapValue by the GC.
3426 // Dereference the address and check for this.
3427 __ Uld(a4, MemOperand(t9));
3428 __ Assert(ne, kReceivedInvalidReturnAddress, a4,
3429 Operand(reinterpret_cast<uint64_t>(kZapValue)));
3430 }
3431 __ Jump(t9);
3432}
3433
3434
3435void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3436 Register target) {
3437 intptr_t loc =
3438 reinterpret_cast<intptr_t>(GetCode().location());
3439 __ Move(t9, target);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003440 __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
3441 __ Call(at);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003442}
3443
3444
3445void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3446 Label* miss,
3447 Label* done,
3448 Register receiver,
3449 Register properties,
3450 Handle<Name> name,
3451 Register scratch0) {
3452 DCHECK(name->IsUniqueName());
3453 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3454 // not equal to the name and kProbes-th slot is not used (its name is the
3455 // undefined value), it guarantees the hash table doesn't contain the
3456 // property. It's true even if some slots represent deleted properties
3457 // (their names are the hole value).
3458 for (int i = 0; i < kInlinedProbes; i++) {
3459 // scratch0 points to properties hash.
3460 // Compute the masked index: (hash + i + i * i) & mask.
3461 Register index = scratch0;
3462 // Capacity is smi 2^n.
3463 __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
3464 __ Dsubu(index, index, Operand(1));
3465 __ And(index, index,
3466 Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
3467
3468 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003469 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdoch097c5b22016-05-18 11:27:45 +01003470 __ Dlsa(index, index, index, 1); // index *= 3.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003471
3472 Register entity_name = scratch0;
3473 // Having undefined at this place means the name is not contained.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003474 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003475 Register tmp = properties;
3476
Ben Murdoch097c5b22016-05-18 11:27:45 +01003477 __ Dlsa(tmp, properties, index, kPointerSizeLog2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003478 __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3479
3480 DCHECK(!tmp.is(entity_name));
3481 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3482 __ Branch(done, eq, entity_name, Operand(tmp));
3483
3484 // Load the hole ready for use below:
3485 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3486
3487 // Stop if found the property.
3488 __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
3489
3490 Label good;
3491 __ Branch(&good, eq, entity_name, Operand(tmp));
3492
3493 // Check if the entry name is not a unique name.
3494 __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3495 __ lbu(entity_name,
3496 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3497 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3498 __ bind(&good);
3499
3500 // Restore the properties.
3501 __ ld(properties,
3502 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3503 }
3504
3505 const int spill_mask =
3506 (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
3507 a2.bit() | a1.bit() | a0.bit() | v0.bit());
3508
3509 __ MultiPush(spill_mask);
3510 __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3511 __ li(a1, Operand(Handle<Name>(name)));
3512 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3513 __ CallStub(&stub);
3514 __ mov(at, v0);
3515 __ MultiPop(spill_mask);
3516
3517 __ Branch(done, eq, at, Operand(zero_reg));
3518 __ Branch(miss, ne, at, Operand(zero_reg));
3519}
3520
3521
3522// Probe the name dictionary in the |elements| register. Jump to the
3523// |done| label if a property with the given name is found. Jump to
3524// the |miss| label otherwise.
3525// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3526void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3527 Label* miss,
3528 Label* done,
3529 Register elements,
3530 Register name,
3531 Register scratch1,
3532 Register scratch2) {
3533 DCHECK(!elements.is(scratch1));
3534 DCHECK(!elements.is(scratch2));
3535 DCHECK(!name.is(scratch1));
3536 DCHECK(!name.is(scratch2));
3537
3538 __ AssertName(name);
3539
3540 // Compute the capacity mask.
3541 __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
3542 __ SmiUntag(scratch1);
3543 __ Dsubu(scratch1, scratch1, Operand(1));
3544
3545 // Generate an unrolled loop that performs a few probes before
3546 // giving up. Measurements done on Gmail indicate that 2 probes
3547 // cover ~93% of loads from dictionaries.
3548 for (int i = 0; i < kInlinedProbes; i++) {
3549 // Compute the masked index: (hash + i + i * i) & mask.
3550 __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3551 if (i > 0) {
3552 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3553 // the hash in a separate instruction. The value hash + i + i * i is right
3554 // shifted in the following and instruction.
3555 DCHECK(NameDictionary::GetProbeOffset(i) <
3556 1 << (32 - Name::kHashFieldOffset));
3557 __ Daddu(scratch2, scratch2, Operand(
3558 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3559 }
3560 __ dsrl(scratch2, scratch2, Name::kHashShift);
3561 __ And(scratch2, scratch1, scratch2);
3562
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003563 // Scale the index by multiplying by the entry size.
3564 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003565 // scratch2 = scratch2 * 3.
Ben Murdoch097c5b22016-05-18 11:27:45 +01003566 __ Dlsa(scratch2, scratch2, scratch2, 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003567
3568 // Check if the key is identical to the name.
Ben Murdoch097c5b22016-05-18 11:27:45 +01003569 __ Dlsa(scratch2, elements, scratch2, kPointerSizeLog2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003570 __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
3571 __ Branch(done, eq, name, Operand(at));
3572 }
3573
3574 const int spill_mask =
3575 (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
3576 a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
3577 ~(scratch1.bit() | scratch2.bit());
3578
3579 __ MultiPush(spill_mask);
3580 if (name.is(a0)) {
3581 DCHECK(!elements.is(a1));
3582 __ Move(a1, name);
3583 __ Move(a0, elements);
3584 } else {
3585 __ Move(a0, elements);
3586 __ Move(a1, name);
3587 }
3588 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3589 __ CallStub(&stub);
3590 __ mov(scratch2, a2);
3591 __ mov(at, v0);
3592 __ MultiPop(spill_mask);
3593
3594 __ Branch(done, ne, at, Operand(zero_reg));
3595 __ Branch(miss, eq, at, Operand(zero_reg));
3596}
3597
3598
3599void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3600 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3601 // we cannot call anything that could cause a GC from this stub.
3602 // Registers:
3603 // result: NameDictionary to probe
3604 // a1: key
3605 // dictionary: NameDictionary to probe.
3606 // index: will hold an index of entry if lookup is successful.
3607 // might alias with result_.
3608 // Returns:
3609 // result_ is zero if lookup failed, non zero otherwise.
3610
3611 Register result = v0;
3612 Register dictionary = a0;
3613 Register key = a1;
3614 Register index = a2;
3615 Register mask = a3;
3616 Register hash = a4;
3617 Register undefined = a5;
3618 Register entry_key = a6;
3619
3620 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3621
3622 __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
3623 __ SmiUntag(mask);
3624 __ Dsubu(mask, mask, Operand(1));
3625
3626 __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3627
3628 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3629
3630 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3631 // Compute the masked index: (hash + i + i * i) & mask.
3632 // Capacity is smi 2^n.
3633 if (i > 0) {
3634 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3635 // the hash in a separate instruction. The value hash + i + i * i is right
3636 // shifted in the following and instruction.
3637 DCHECK(NameDictionary::GetProbeOffset(i) <
3638 1 << (32 - Name::kHashFieldOffset));
3639 __ Daddu(index, hash, Operand(
3640 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3641 } else {
3642 __ mov(index, hash);
3643 }
3644 __ dsrl(index, index, Name::kHashShift);
3645 __ And(index, mask, index);
3646
3647 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003648 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003649 // index *= 3.
Ben Murdoch097c5b22016-05-18 11:27:45 +01003650 __ Dlsa(index, index, index, 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003651
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003652 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdoch097c5b22016-05-18 11:27:45 +01003653 __ Dlsa(index, dictionary, index, kPointerSizeLog2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003654 __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
3655
3656 // Having undefined at this place means the name is not contained.
3657 __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
3658
3659 // Stop if found the property.
3660 __ Branch(&in_dictionary, eq, entry_key, Operand(key));
3661
3662 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3663 // Check if the entry name is not a unique name.
3664 __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3665 __ lbu(entry_key,
3666 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3667 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
3668 }
3669 }
3670
3671 __ bind(&maybe_in_dictionary);
3672 // If we are doing negative lookup then probing failure should be
3673 // treated as a lookup success. For positive lookup probing failure
3674 // should be treated as lookup failure.
3675 if (mode() == POSITIVE_LOOKUP) {
3676 __ Ret(USE_DELAY_SLOT);
3677 __ mov(result, zero_reg);
3678 }
3679
3680 __ bind(&in_dictionary);
3681 __ Ret(USE_DELAY_SLOT);
3682 __ li(result, 1);
3683
3684 __ bind(&not_in_dictionary);
3685 __ Ret(USE_DELAY_SLOT);
3686 __ mov(result, zero_reg);
3687}
3688
3689
3690void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3691 Isolate* isolate) {
3692 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3693 stub1.GetCode();
3694 // Hydrogen code stubs need stub2 at snapshot time.
3695 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3696 stub2.GetCode();
3697}
3698
3699
3700// Takes the input in 3 registers: address_ value_ and object_. A pointer to
3701// the value has just been written into the object, now this stub makes sure
3702// we keep the GC informed. The word in the object where the value has been
3703// written is in the address register.
3704void RecordWriteStub::Generate(MacroAssembler* masm) {
3705 Label skip_to_incremental_noncompacting;
3706 Label skip_to_incremental_compacting;
3707
3708 // The first two branch+nop instructions are generated with labels so as to
3709 // get the offset fixed up correctly by the bind(Label*) call. We patch it
3710 // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
3711 // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
3712 // incremental heap marking.
3713 // See RecordWriteStub::Patch for details.
3714 __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
3715 __ nop();
3716 __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
3717 __ nop();
3718
3719 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3720 __ RememberedSetHelper(object(),
3721 address(),
3722 value(),
3723 save_fp_regs_mode(),
3724 MacroAssembler::kReturnAtEnd);
3725 }
3726 __ Ret();
3727
3728 __ bind(&skip_to_incremental_noncompacting);
3729 GenerateIncremental(masm, INCREMENTAL);
3730
3731 __ bind(&skip_to_incremental_compacting);
3732 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3733
3734 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3735 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3736
3737 PatchBranchIntoNop(masm, 0);
3738 PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
3739}
3740
3741
3742void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3743 regs_.Save(masm);
3744
3745 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3746 Label dont_need_remembered_set;
3747
3748 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
3749 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3750 regs_.scratch0(),
3751 &dont_need_remembered_set);
3752
Ben Murdoch097c5b22016-05-18 11:27:45 +01003753 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
3754 &dont_need_remembered_set);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003755
3756 // First notify the incremental marker if necessary, then update the
3757 // remembered set.
3758 CheckNeedsToInformIncrementalMarker(
3759 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3760 InformIncrementalMarker(masm);
3761 regs_.Restore(masm);
3762 __ RememberedSetHelper(object(),
3763 address(),
3764 value(),
3765 save_fp_regs_mode(),
3766 MacroAssembler::kReturnAtEnd);
3767
3768 __ bind(&dont_need_remembered_set);
3769 }
3770
3771 CheckNeedsToInformIncrementalMarker(
3772 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3773 InformIncrementalMarker(masm);
3774 regs_.Restore(masm);
3775 __ Ret();
3776}
3777
3778
3779void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3780 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3781 int argument_count = 3;
3782 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3783 Register address =
3784 a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3785 DCHECK(!address.is(regs_.object()));
3786 DCHECK(!address.is(a0));
3787 __ Move(address, regs_.address());
3788 __ Move(a0, regs_.object());
3789 __ Move(a1, address);
3790 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
3791
3792 AllowExternalCallThatCantCauseGC scope(masm);
3793 __ CallCFunction(
3794 ExternalReference::incremental_marking_record_write_function(isolate()),
3795 argument_count);
3796 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3797}
3798
3799
3800void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3801 MacroAssembler* masm,
3802 OnNoNeedToInformIncrementalMarker on_no_need,
3803 Mode mode) {
3804 Label on_black;
3805 Label need_incremental;
3806 Label need_incremental_pop_scratch;
3807
3808 __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
3809 __ ld(regs_.scratch1(),
3810 MemOperand(regs_.scratch0(),
3811 MemoryChunk::kWriteBarrierCounterOffset));
3812 __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
3813 __ sd(regs_.scratch1(),
3814 MemOperand(regs_.scratch0(),
3815 MemoryChunk::kWriteBarrierCounterOffset));
3816 __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
3817
3818 // Let's look at the color of the object: If it is not black we don't have
3819 // to inform the incremental marker.
3820 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3821
3822 regs_.Restore(masm);
3823 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3824 __ RememberedSetHelper(object(),
3825 address(),
3826 value(),
3827 save_fp_regs_mode(),
3828 MacroAssembler::kReturnAtEnd);
3829 } else {
3830 __ Ret();
3831 }
3832
3833 __ bind(&on_black);
3834
3835 // Get the value from the slot.
3836 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
3837
3838 if (mode == INCREMENTAL_COMPACTION) {
3839 Label ensure_not_white;
3840
3841 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3842 regs_.scratch1(), // Scratch.
3843 MemoryChunk::kEvacuationCandidateMask,
3844 eq,
3845 &ensure_not_white);
3846
3847 __ CheckPageFlag(regs_.object(),
3848 regs_.scratch1(), // Scratch.
3849 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3850 eq,
3851 &need_incremental);
3852
3853 __ bind(&ensure_not_white);
3854 }
3855
3856 // We need extra registers for this, so we push the object and the address
3857 // register temporarily.
3858 __ Push(regs_.object(), regs_.address());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003859 __ JumpIfWhite(regs_.scratch0(), // The value.
3860 regs_.scratch1(), // Scratch.
3861 regs_.object(), // Scratch.
3862 regs_.address(), // Scratch.
3863 &need_incremental_pop_scratch);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003864 __ Pop(regs_.object(), regs_.address());
3865
3866 regs_.Restore(masm);
3867 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3868 __ RememberedSetHelper(object(),
3869 address(),
3870 value(),
3871 save_fp_regs_mode(),
3872 MacroAssembler::kReturnAtEnd);
3873 } else {
3874 __ Ret();
3875 }
3876
3877 __ bind(&need_incremental_pop_scratch);
3878 __ Pop(regs_.object(), regs_.address());
3879
3880 __ bind(&need_incremental);
3881
3882 // Fall through when we need to inform the incremental marker.
3883}
3884
3885
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003886void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3887 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3888 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3889 int parameter_count_offset =
Ben Murdochda12d292016-06-02 14:46:10 +01003890 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003891 __ ld(a1, MemOperand(fp, parameter_count_offset));
3892 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3893 __ Daddu(a1, a1, Operand(1));
3894 }
3895 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3896 __ dsll(a1, a1, kPointerSizeLog2);
3897 __ Ret(USE_DELAY_SLOT);
3898 __ Daddu(sp, sp, a1);
3899}
3900
3901
3902void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003903 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3904 LoadICStub stub(isolate(), state());
3905 stub.GenerateForTrampoline(masm);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003906}
3907
3908
3909void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003910 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3911 KeyedLoadICStub stub(isolate(), state());
3912 stub.GenerateForTrampoline(masm);
3913}
3914
3915
3916void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3917 __ EmitLoadTypeFeedbackVector(a2);
3918 CallICStub stub(isolate(), state());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003919 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3920}
3921
3922
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003923void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
3924
3925
3926void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3927 GenerateImpl(masm, true);
3928}
3929
3930
3931static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3932 Register receiver_map, Register scratch1,
3933 Register scratch2, bool is_polymorphic,
3934 Label* miss) {
3935 // feedback initially contains the feedback array
3936 Label next_loop, prepare_next;
3937 Label start_polymorphic;
3938
3939 Register cached_map = scratch1;
3940
3941 __ ld(cached_map,
3942 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3943 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3944 __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map));
3945 // found, now call handler.
3946 Register handler = feedback;
3947 __ ld(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3948 __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3949 __ Jump(t9);
3950
3951 Register length = scratch2;
3952 __ bind(&start_polymorphic);
3953 __ ld(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3954 if (!is_polymorphic) {
3955 // If the IC could be monomorphic we have to make sure we don't go past the
3956 // end of the feedback array.
3957 __ Branch(miss, eq, length, Operand(Smi::FromInt(2)));
3958 }
3959
3960 Register too_far = length;
3961 Register pointer_reg = feedback;
3962
3963 // +-----+------+------+-----+-----+ ... ----+
3964 // | map | len | wm0 | h0 | wm1 | hN |
3965 // +-----+------+------+-----+-----+ ... ----+
3966 // 0 1 2 len-1
3967 // ^ ^
3968 // | |
3969 // pointer_reg too_far
3970 // aka feedback scratch2
3971 // also need receiver_map
3972 // use cached_map (scratch1) to look in the weak map values.
3973 __ SmiScale(too_far, length, kPointerSizeLog2);
3974 __ Daddu(too_far, feedback, Operand(too_far));
3975 __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3976 __ Daddu(pointer_reg, feedback,
3977 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
3978
3979 __ bind(&next_loop);
3980 __ ld(cached_map, MemOperand(pointer_reg));
3981 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3982 __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
3983 __ ld(handler, MemOperand(pointer_reg, kPointerSize));
3984 __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3985 __ Jump(t9);
3986
3987 __ bind(&prepare_next);
3988 __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
3989 __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
3990
3991 // We exhausted our array of map handler pairs.
3992 __ Branch(miss);
3993}
3994
3995
3996static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3997 Register receiver_map, Register feedback,
3998 Register vector, Register slot,
3999 Register scratch, Label* compare_map,
4000 Label* load_smi_map, Label* try_array) {
4001 __ JumpIfSmi(receiver, load_smi_map);
4002 __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
4003 __ bind(compare_map);
4004 Register cached_map = scratch;
4005 // Move the weak map into the weak_cell register.
4006 __ ld(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
4007 __ Branch(try_array, ne, cached_map, Operand(receiver_map));
4008 Register handler = feedback;
4009 __ SmiScale(handler, slot, kPointerSizeLog2);
4010 __ Daddu(handler, vector, Operand(handler));
4011 __ ld(handler,
4012 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
4013 __ Daddu(t9, handler, Code::kHeaderSize - kHeapObjectTag);
4014 __ Jump(t9);
4015}
4016
4017
4018void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4019 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // a1
4020 Register name = LoadWithVectorDescriptor::NameRegister(); // a2
4021 Register vector = LoadWithVectorDescriptor::VectorRegister(); // a3
4022 Register slot = LoadWithVectorDescriptor::SlotRegister(); // a0
4023 Register feedback = a4;
4024 Register receiver_map = a5;
4025 Register scratch1 = a6;
4026
4027 __ SmiScale(feedback, slot, kPointerSizeLog2);
4028 __ Daddu(feedback, vector, Operand(feedback));
4029 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4030
4031 // Try to quickly handle the monomorphic case without knowing for sure
4032 // if we have a weak cell in feedback. We do know it's safe to look
4033 // at WeakCell::kValueOffset.
4034 Label try_array, load_smi_map, compare_map;
4035 Label not_array, miss;
4036 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4037 scratch1, &compare_map, &load_smi_map, &try_array);
4038
4039 // Is it a fixed array?
4040 __ bind(&try_array);
4041 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4042 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4043 __ Branch(&not_array, ne, scratch1, Operand(at));
4044 HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
4045
4046 __ bind(&not_array);
4047 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
4048 __ Branch(&miss, ne, feedback, Operand(at));
4049 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4050 Code::ComputeHandlerFlags(Code::LOAD_IC));
4051 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4052 receiver, name, feedback,
4053 receiver_map, scratch1, a7);
4054
4055 __ bind(&miss);
4056 LoadIC::GenerateMiss(masm);
4057
4058 __ bind(&load_smi_map);
4059 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4060 __ Branch(&compare_map);
4061}
4062
4063
4064void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4065 GenerateImpl(masm, false);
4066}
4067
4068
4069void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4070 GenerateImpl(masm, true);
4071}
4072
4073
4074void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4075 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // a1
4076 Register key = LoadWithVectorDescriptor::NameRegister(); // a2
4077 Register vector = LoadWithVectorDescriptor::VectorRegister(); // a3
4078 Register slot = LoadWithVectorDescriptor::SlotRegister(); // a0
4079 Register feedback = a4;
4080 Register receiver_map = a5;
4081 Register scratch1 = a6;
4082
4083 __ SmiScale(feedback, slot, kPointerSizeLog2);
4084 __ Daddu(feedback, vector, Operand(feedback));
4085 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4086
4087 // Try to quickly handle the monomorphic case without knowing for sure
4088 // if we have a weak cell in feedback. We do know it's safe to look
4089 // at WeakCell::kValueOffset.
4090 Label try_array, load_smi_map, compare_map;
4091 Label not_array, miss;
4092 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4093 scratch1, &compare_map, &load_smi_map, &try_array);
4094
4095 __ bind(&try_array);
4096 // Is it a fixed array?
4097 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4098 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4099 __ Branch(&not_array, ne, scratch1, Operand(at));
4100 // We have a polymorphic element handler.
4101 __ JumpIfNotSmi(key, &miss);
4102
4103 Label polymorphic, try_poly_name;
4104 __ bind(&polymorphic);
4105 HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
4106
4107 __ bind(&not_array);
4108 // Is it generic?
4109 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
4110 __ Branch(&try_poly_name, ne, feedback, Operand(at));
4111 Handle<Code> megamorphic_stub =
4112 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4113 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4114
4115 __ bind(&try_poly_name);
4116 // We might have a name in feedback, and a fixed array in the next slot.
4117 __ Branch(&miss, ne, key, Operand(feedback));
4118 // If the name comparison succeeded, we know we have a fixed array with
4119 // at least one map/handler pair.
4120 __ SmiScale(feedback, slot, kPointerSizeLog2);
4121 __ Daddu(feedback, vector, Operand(feedback));
4122 __ ld(feedback,
4123 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4124 HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, false, &miss);
4125
4126 __ bind(&miss);
4127 KeyedLoadIC::GenerateMiss(masm);
4128
4129 __ bind(&load_smi_map);
4130 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4131 __ Branch(&compare_map);
4132}
4133
4134
4135void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4136 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4137 VectorStoreICStub stub(isolate(), state());
4138 stub.GenerateForTrampoline(masm);
4139}
4140
4141
4142void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4143 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4144 VectorKeyedStoreICStub stub(isolate(), state());
4145 stub.GenerateForTrampoline(masm);
4146}
4147
4148
4149void VectorStoreICStub::Generate(MacroAssembler* masm) {
4150 GenerateImpl(masm, false);
4151}
4152
4153
4154void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4155 GenerateImpl(masm, true);
4156}
4157
4158
4159void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4160 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // a1
4161 Register key = VectorStoreICDescriptor::NameRegister(); // a2
4162 Register vector = VectorStoreICDescriptor::VectorRegister(); // a3
4163 Register slot = VectorStoreICDescriptor::SlotRegister(); // a4
4164 DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0)); // a0
4165 Register feedback = a5;
4166 Register receiver_map = a6;
4167 Register scratch1 = a7;
4168
4169 __ SmiScale(scratch1, slot, kPointerSizeLog2);
4170 __ Daddu(feedback, vector, Operand(scratch1));
4171 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4172
4173 // Try to quickly handle the monomorphic case without knowing for sure
4174 // if we have a weak cell in feedback. We do know it's safe to look
4175 // at WeakCell::kValueOffset.
4176 Label try_array, load_smi_map, compare_map;
4177 Label not_array, miss;
4178 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4179 scratch1, &compare_map, &load_smi_map, &try_array);
4180
4181 // Is it a fixed array?
4182 __ bind(&try_array);
4183 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4184 __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
4185
4186 Register scratch2 = t0;
4187 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
4188 &miss);
4189
4190 __ bind(&not_array);
4191 __ Branch(&miss, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
4192 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4193 Code::ComputeHandlerFlags(Code::STORE_IC));
4194 masm->isolate()->stub_cache()->GenerateProbe(
4195 masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
4196 scratch1, scratch2);
4197
4198 __ bind(&miss);
4199 StoreIC::GenerateMiss(masm);
4200
4201 __ bind(&load_smi_map);
4202 __ Branch(USE_DELAY_SLOT, &compare_map);
4203 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot.
4204}
4205
4206
4207void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4208 GenerateImpl(masm, false);
4209}
4210
4211
4212void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4213 GenerateImpl(masm, true);
4214}
4215
4216
4217static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
4218 Register receiver_map, Register scratch1,
4219 Register scratch2, Label* miss) {
4220 // feedback initially contains the feedback array
4221 Label next_loop, prepare_next;
4222 Label start_polymorphic;
4223 Label transition_call;
4224
4225 Register cached_map = scratch1;
4226 Register too_far = scratch2;
4227 Register pointer_reg = feedback;
4228
4229 __ ld(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4230
4231 // +-----+------+------+-----+-----+-----+ ... ----+
4232 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
4233 // +-----+------+------+-----+-----+ ----+ ... ----+
4234 // 0 1 2 len-1
4235 // ^ ^
4236 // | |
4237 // pointer_reg too_far
4238 // aka feedback scratch2
4239 // also need receiver_map
4240 // use cached_map (scratch1) to look in the weak map values.
4241 __ SmiScale(too_far, too_far, kPointerSizeLog2);
4242 __ Daddu(too_far, feedback, Operand(too_far));
4243 __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4244 __ Daddu(pointer_reg, feedback,
4245 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
4246
4247 __ bind(&next_loop);
4248 __ ld(cached_map, MemOperand(pointer_reg));
4249 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4250 __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
4251 // Is it a transitioning store?
4252 __ ld(too_far, MemOperand(pointer_reg, kPointerSize));
4253 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4254 __ Branch(&transition_call, ne, too_far, Operand(at));
4255
4256 __ ld(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4257 __ Daddu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
4258 __ Jump(t9);
4259
4260 __ bind(&transition_call);
4261 __ ld(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4262 __ JumpIfSmi(too_far, miss);
4263
4264 __ ld(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4265 // Load the map into the correct register.
4266 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4267 __ Move(feedback, too_far);
4268 __ Daddu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
4269 __ Jump(t9);
4270
4271 __ bind(&prepare_next);
4272 __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
4273 __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
4274
4275 // We exhausted our array of map handler pairs.
4276 __ Branch(miss);
4277}
4278
4279
4280void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4281 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // a1
4282 Register key = VectorStoreICDescriptor::NameRegister(); // a2
4283 Register vector = VectorStoreICDescriptor::VectorRegister(); // a3
4284 Register slot = VectorStoreICDescriptor::SlotRegister(); // a4
4285 DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0)); // a0
4286 Register feedback = a5;
4287 Register receiver_map = a6;
4288 Register scratch1 = a7;
4289
4290 __ SmiScale(scratch1, slot, kPointerSizeLog2);
4291 __ Daddu(feedback, vector, Operand(scratch1));
4292 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4293
4294 // Try to quickly handle the monomorphic case without knowing for sure
4295 // if we have a weak cell in feedback. We do know it's safe to look
4296 // at WeakCell::kValueOffset.
4297 Label try_array, load_smi_map, compare_map;
4298 Label not_array, miss;
4299 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4300 scratch1, &compare_map, &load_smi_map, &try_array);
4301
4302 __ bind(&try_array);
4303 // Is it a fixed array?
4304 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4305 __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
4306
4307 // We have a polymorphic element handler.
4308 Label try_poly_name;
4309
4310 Register scratch2 = t0;
4311
4312 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
4313 &miss);
4314
4315 __ bind(&not_array);
4316 // Is it generic?
4317 __ Branch(&try_poly_name, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
4318 Handle<Code> megamorphic_stub =
4319 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4320 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4321
4322 __ bind(&try_poly_name);
4323 // We might have a name in feedback, and a fixed array in the next slot.
4324 __ Branch(&miss, ne, key, Operand(feedback));
4325 // If the name comparison succeeded, we know we have a fixed array with
4326 // at least one map/handler pair.
4327 __ SmiScale(scratch1, slot, kPointerSizeLog2);
4328 __ Daddu(feedback, vector, Operand(scratch1));
4329 __ ld(feedback,
4330 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4331 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
4332 &miss);
4333
4334 __ bind(&miss);
4335 KeyedStoreIC::GenerateMiss(masm);
4336
4337 __ bind(&load_smi_map);
4338 __ Branch(USE_DELAY_SLOT, &compare_map);
4339 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot.
4340}
4341
4342
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004343void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4344 if (masm->isolate()->function_entry_hook() != NULL) {
4345 ProfileEntryHookStub stub(masm->isolate());
4346 __ push(ra);
4347 __ CallStub(&stub);
4348 __ pop(ra);
4349 }
4350}
4351
4352
4353void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4354 // The entry hook is a "push ra" instruction, followed by a call.
4355 // Note: on MIPS "push" is 2 instruction
4356 const int32_t kReturnAddressDistanceFromFunctionStart =
4357 Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
4358
4359 // This should contain all kJSCallerSaved registers.
4360 const RegList kSavedRegs =
4361 kJSCallerSaved | // Caller saved registers.
4362 s5.bit(); // Saved stack pointer.
4363
4364 // We also save ra, so the count here is one higher than the mask indicates.
4365 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4366
4367 // Save all caller-save registers as this may be called from anywhere.
4368 __ MultiPush(kSavedRegs | ra.bit());
4369
4370 // Compute the function's address for the first argument.
4371 __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
4372
4373 // The caller's return address is above the saved temporaries.
4374 // Grab that for the second argument to the hook.
4375 __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
4376
4377 // Align the stack if necessary.
4378 int frame_alignment = masm->ActivationFrameAlignment();
4379 if (frame_alignment > kPointerSize) {
4380 __ mov(s5, sp);
4381 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4382 __ And(sp, sp, Operand(-frame_alignment));
4383 }
4384
4385 __ Dsubu(sp, sp, kCArgsSlotsSize);
4386#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
4387 int64_t entry_hook =
4388 reinterpret_cast<int64_t>(isolate()->function_entry_hook());
4389 __ li(t9, Operand(entry_hook));
4390#else
4391 // Under the simulator we need to indirect the entry hook through a
4392 // trampoline function at a known address.
4393 // It additionally takes an isolate as a third parameter.
4394 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4395
4396 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4397 __ li(t9, Operand(ExternalReference(&dispatcher,
4398 ExternalReference::BUILTIN_CALL,
4399 isolate())));
4400#endif
4401 // Call C function through t9 to conform ABI for PIC.
4402 __ Call(t9);
4403
4404 // Restore the stack pointer if needed.
4405 if (frame_alignment > kPointerSize) {
4406 __ mov(sp, s5);
4407 } else {
4408 __ Daddu(sp, sp, kCArgsSlotsSize);
4409 }
4410
4411 // Also pop ra to get Ret(0).
4412 __ MultiPop(kSavedRegs | ra.bit());
4413 __ Ret();
4414}
4415
4416
4417template<class T>
4418static void CreateArrayDispatch(MacroAssembler* masm,
4419 AllocationSiteOverrideMode mode) {
4420 if (mode == DISABLE_ALLOCATION_SITES) {
4421 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4422 __ TailCallStub(&stub);
4423 } else if (mode == DONT_OVERRIDE) {
4424 int last_index = GetSequenceIndexFromFastElementsKind(
4425 TERMINAL_FAST_ELEMENTS_KIND);
4426 for (int i = 0; i <= last_index; ++i) {
4427 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4428 T stub(masm->isolate(), kind);
4429 __ TailCallStub(&stub, eq, a3, Operand(kind));
4430 }
4431
4432 // If we reached this point there is a problem.
4433 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4434 } else {
4435 UNREACHABLE();
4436 }
4437}
4438
4439
4440static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4441 AllocationSiteOverrideMode mode) {
4442 // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4443 // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4444 // a0 - number of arguments
4445 // a1 - constructor?
4446 // sp[0] - last argument
4447 Label normal_sequence;
4448 if (mode == DONT_OVERRIDE) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004449 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4450 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4451 STATIC_ASSERT(FAST_ELEMENTS == 2);
4452 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4453 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4454 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004455
4456 // is the low bit set? If so, we are holey and that is good.
4457 __ And(at, a3, Operand(1));
4458 __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
4459 }
4460 // look at the first argument
4461 __ ld(a5, MemOperand(sp, 0));
4462 __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
4463
4464 if (mode == DISABLE_ALLOCATION_SITES) {
4465 ElementsKind initial = GetInitialFastElementsKind();
4466 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4467
4468 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4469 holey_initial,
4470 DISABLE_ALLOCATION_SITES);
4471 __ TailCallStub(&stub_holey);
4472
4473 __ bind(&normal_sequence);
4474 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4475 initial,
4476 DISABLE_ALLOCATION_SITES);
4477 __ TailCallStub(&stub);
4478 } else if (mode == DONT_OVERRIDE) {
4479 // We are going to create a holey array, but our kind is non-holey.
4480 // Fix kind and retry (only if we have an allocation site in the slot).
4481 __ Daddu(a3, a3, Operand(1));
4482
4483 if (FLAG_debug_code) {
4484 __ ld(a5, FieldMemOperand(a2, 0));
4485 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
4486 __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
4487 }
4488
4489 // Save the resulting elements kind in type info. We can't just store a3
4490 // in the AllocationSite::transition_info field because elements kind is
4491 // restricted to a portion of the field...upper bits need to be left alone.
4492 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4493 __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4494 __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4495 __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4496
4497
4498 __ bind(&normal_sequence);
4499 int last_index = GetSequenceIndexFromFastElementsKind(
4500 TERMINAL_FAST_ELEMENTS_KIND);
4501 for (int i = 0; i <= last_index; ++i) {
4502 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4503 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4504 __ TailCallStub(&stub, eq, a3, Operand(kind));
4505 }
4506
4507 // If we reached this point there is a problem.
4508 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4509 } else {
4510 UNREACHABLE();
4511 }
4512}
4513
4514
4515template<class T>
4516static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4517 int to_index = GetSequenceIndexFromFastElementsKind(
4518 TERMINAL_FAST_ELEMENTS_KIND);
4519 for (int i = 0; i <= to_index; ++i) {
4520 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4521 T stub(isolate, kind);
4522 stub.GetCode();
4523 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4524 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4525 stub1.GetCode();
4526 }
4527 }
4528}
4529
4530
4531void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4532 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4533 isolate);
4534 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4535 isolate);
4536 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4537 isolate);
4538}
4539
4540
4541void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4542 Isolate* isolate) {
4543 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4544 for (int i = 0; i < 2; i++) {
4545 // For internal arrays we only need a few things.
4546 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4547 stubh1.GetCode();
4548 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4549 stubh2.GetCode();
4550 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4551 stubh3.GetCode();
4552 }
4553}
4554
4555
4556void ArrayConstructorStub::GenerateDispatchToArrayStub(
4557 MacroAssembler* masm,
4558 AllocationSiteOverrideMode mode) {
4559 if (argument_count() == ANY) {
4560 Label not_zero_case, not_one_case;
4561 __ And(at, a0, a0);
4562 __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
4563 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4564
4565 __ bind(&not_zero_case);
4566 __ Branch(&not_one_case, gt, a0, Operand(1));
4567 CreateArrayDispatchOneArgument(masm, mode);
4568
4569 __ bind(&not_one_case);
4570 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4571 } else if (argument_count() == NONE) {
4572 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4573 } else if (argument_count() == ONE) {
4574 CreateArrayDispatchOneArgument(masm, mode);
4575 } else if (argument_count() == MORE_THAN_ONE) {
4576 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4577 } else {
4578 UNREACHABLE();
4579 }
4580}
4581
4582
4583void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4584 // ----------- S t a t e -------------
4585 // -- a0 : argc (only if argument_count() == ANY)
4586 // -- a1 : constructor
4587 // -- a2 : AllocationSite or undefined
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004588 // -- a3 : new target
4589 // -- sp[0] : last argument
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004590 // -----------------------------------
4591
4592 if (FLAG_debug_code) {
4593 // The array construct code is only set for the global and natives
4594 // builtin Array functions which always have maps.
4595
4596 // Initial map for the builtin Array function should be a map.
4597 __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4598 // Will both indicate a NULL and a Smi.
4599 __ SmiTst(a4, at);
4600 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4601 at, Operand(zero_reg));
4602 __ GetObjectType(a4, a4, a5);
4603 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4604 a5, Operand(MAP_TYPE));
4605
4606 // We should either have undefined in a2 or a valid AllocationSite
4607 __ AssertUndefinedOrAllocationSite(a2, a4);
4608 }
4609
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004610 // Enter the context of the Array function.
4611 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
4612
4613 Label subclassing;
4614 __ Branch(&subclassing, ne, a1, Operand(a3));
4615
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004616 Label no_info;
4617 // Get the elements kind and case on that.
4618 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4619 __ Branch(&no_info, eq, a2, Operand(at));
4620
4621 __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4622 __ SmiUntag(a3);
4623 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4624 __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
4625 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4626
4627 __ bind(&no_info);
4628 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004629
4630 // Subclassing.
4631 __ bind(&subclassing);
4632 switch (argument_count()) {
4633 case ANY:
4634 case MORE_THAN_ONE:
Ben Murdoch097c5b22016-05-18 11:27:45 +01004635 __ Dlsa(at, sp, a0, kPointerSizeLog2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004636 __ sd(a1, MemOperand(at));
4637 __ li(at, Operand(3));
4638 __ Daddu(a0, a0, at);
4639 break;
4640 case NONE:
4641 __ sd(a1, MemOperand(sp, 0 * kPointerSize));
4642 __ li(a0, Operand(3));
4643 break;
4644 case ONE:
4645 __ sd(a1, MemOperand(sp, 1 * kPointerSize));
4646 __ li(a0, Operand(4));
4647 break;
4648 }
4649 __ Push(a3, a2);
4650 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004651}
4652
4653
4654void InternalArrayConstructorStub::GenerateCase(
4655 MacroAssembler* masm, ElementsKind kind) {
4656
4657 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4658 __ TailCallStub(&stub0, lo, a0, Operand(1));
4659
4660 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4661 __ TailCallStub(&stubN, hi, a0, Operand(1));
4662
4663 if (IsFastPackedElementsKind(kind)) {
4664 // We might need to create a holey array
4665 // look at the first argument.
4666 __ ld(at, MemOperand(sp, 0));
4667
4668 InternalArraySingleArgumentConstructorStub
4669 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4670 __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
4671 }
4672
4673 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4674 __ TailCallStub(&stub1);
4675}
4676
4677
4678void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4679 // ----------- S t a t e -------------
4680 // -- a0 : argc
4681 // -- a1 : constructor
4682 // -- sp[0] : return address
4683 // -- sp[4] : last argument
4684 // -----------------------------------
4685
4686 if (FLAG_debug_code) {
4687 // The array construct code is only set for the global and natives
4688 // builtin Array functions which always have maps.
4689
4690 // Initial map for the builtin Array function should be a map.
4691 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4692 // Will both indicate a NULL and a Smi.
4693 __ SmiTst(a3, at);
4694 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4695 at, Operand(zero_reg));
4696 __ GetObjectType(a3, a3, a4);
4697 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4698 a4, Operand(MAP_TYPE));
4699 }
4700
4701 // Figure out the right elements kind.
4702 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4703
4704 // Load the map's "bit field 2" into a3. We only need the first byte,
4705 // but the following bit field extraction takes care of that anyway.
4706 __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
4707 // Retrieve elements_kind from bit field 2.
4708 __ DecodeField<Map::ElementsKindBits>(a3);
4709
4710 if (FLAG_debug_code) {
4711 Label done;
4712 __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
4713 __ Assert(
4714 eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
4715 a3, Operand(FAST_HOLEY_ELEMENTS));
4716 __ bind(&done);
4717 }
4718
4719 Label fast_elements_case;
4720 __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
4721 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4722
4723 __ bind(&fast_elements_case);
4724 GenerateCase(masm, FAST_ELEMENTS);
4725}
4726
4727
Ben Murdoch097c5b22016-05-18 11:27:45 +01004728void FastNewObjectStub::Generate(MacroAssembler* masm) {
4729 // ----------- S t a t e -------------
4730 // -- a1 : target
4731 // -- a3 : new target
4732 // -- cp : context
4733 // -- ra : return address
4734 // -----------------------------------
4735 __ AssertFunction(a1);
4736 __ AssertReceiver(a3);
4737
4738 // Verify that the new target is a JSFunction.
4739 Label new_object;
4740 __ GetObjectType(a3, a2, a2);
4741 __ Branch(&new_object, ne, a2, Operand(JS_FUNCTION_TYPE));
4742
4743 // Load the initial map and verify that it's in fact a map.
4744 __ ld(a2, FieldMemOperand(a3, JSFunction::kPrototypeOrInitialMapOffset));
4745 __ JumpIfSmi(a2, &new_object);
4746 __ GetObjectType(a2, a0, a0);
4747 __ Branch(&new_object, ne, a0, Operand(MAP_TYPE));
4748
4749 // Fall back to runtime if the target differs from the new target's
4750 // initial map constructor.
4751 __ ld(a0, FieldMemOperand(a2, Map::kConstructorOrBackPointerOffset));
4752 __ Branch(&new_object, ne, a0, Operand(a1));
4753
4754 // Allocate the JSObject on the heap.
4755 Label allocate, done_allocate;
4756 __ lbu(a4, FieldMemOperand(a2, Map::kInstanceSizeOffset));
4757 __ Allocate(a4, v0, a5, a0, &allocate, SIZE_IN_WORDS);
4758 __ bind(&done_allocate);
4759
4760 // Initialize the JSObject fields.
4761 __ sd(a2, MemOperand(v0, JSObject::kMapOffset));
4762 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
4763 __ sd(a3, MemOperand(v0, JSObject::kPropertiesOffset));
4764 __ sd(a3, MemOperand(v0, JSObject::kElementsOffset));
4765 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
4766 __ Daddu(a1, v0, Operand(JSObject::kHeaderSize));
4767
4768 // ----------- S t a t e -------------
4769 // -- v0 : result (untagged)
4770 // -- a1 : result fields (untagged)
4771 // -- a5 : result end (untagged)
4772 // -- a2 : initial map
4773 // -- cp : context
4774 // -- ra : return address
4775 // -----------------------------------
4776
4777 // Perform in-object slack tracking if requested.
4778 Label slack_tracking;
4779 STATIC_ASSERT(Map::kNoSlackTracking == 0);
4780 __ lwu(a3, FieldMemOperand(a2, Map::kBitField3Offset));
4781 __ And(at, a3, Operand(Map::ConstructionCounter::kMask));
4782 __ Branch(USE_DELAY_SLOT, &slack_tracking, ne, at, Operand(zero_reg));
4783 __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); // In delay slot.
4784 {
4785 // Initialize all in-object fields with undefined.
4786 __ InitializeFieldsWithFiller(a1, a5, a0);
4787
4788 // Add the object tag to make the JSObject real.
4789 STATIC_ASSERT(kHeapObjectTag == 1);
4790 __ Ret(USE_DELAY_SLOT);
4791 __ Daddu(v0, v0, Operand(kHeapObjectTag)); // In delay slot.
4792 }
4793 __ bind(&slack_tracking);
4794 {
4795 // Decrease generous allocation count.
4796 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
4797 __ Subu(a3, a3, Operand(1 << Map::ConstructionCounter::kShift));
4798 __ sw(a3, FieldMemOperand(a2, Map::kBitField3Offset));
4799
4800 // Initialize the in-object fields with undefined.
4801 __ lbu(a4, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
4802 __ dsll(a4, a4, kPointerSizeLog2);
4803 __ Dsubu(a4, a5, a4);
4804 __ InitializeFieldsWithFiller(a1, a4, a0);
4805
4806 // Initialize the remaining (reserved) fields with one pointer filler map.
4807 __ LoadRoot(a0, Heap::kOnePointerFillerMapRootIndex);
4808 __ InitializeFieldsWithFiller(a1, a5, a0);
4809
4810 // Check if we can finalize the instance size.
4811 Label finalize;
4812 STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
4813 __ And(a3, a3, Operand(Map::ConstructionCounter::kMask));
4814 __ Branch(USE_DELAY_SLOT, &finalize, eq, a3, Operand(zero_reg));
4815 STATIC_ASSERT(kHeapObjectTag == 1);
4816 __ Daddu(v0, v0, Operand(kHeapObjectTag)); // In delay slot.
4817 __ Ret();
4818
4819 // Finalize the instance size.
4820 __ bind(&finalize);
4821 {
4822 FrameScope scope(masm, StackFrame::INTERNAL);
4823 __ Push(v0, a2);
4824 __ CallRuntime(Runtime::kFinalizeInstanceSize);
4825 __ Pop(v0);
4826 }
4827 __ Ret();
4828 }
4829
4830 // Fall back to %AllocateInNewSpace.
4831 __ bind(&allocate);
4832 {
4833 FrameScope scope(masm, StackFrame::INTERNAL);
4834 STATIC_ASSERT(kSmiTag == 0);
4835 STATIC_ASSERT(kSmiTagSize == 1);
4836 __ dsll(a4, a4, kPointerSizeLog2 + kSmiShiftSize + kSmiTagSize);
4837 __ SmiTag(a4);
4838 __ Push(a2, a4);
4839 __ CallRuntime(Runtime::kAllocateInNewSpace);
4840 __ Pop(a2);
4841 }
4842 STATIC_ASSERT(kHeapObjectTag == 1);
4843 __ Dsubu(v0, v0, Operand(kHeapObjectTag));
4844 __ lbu(a5, FieldMemOperand(a2, Map::kInstanceSizeOffset));
4845 __ Dlsa(a5, v0, a5, kPointerSizeLog2);
4846 __ jmp(&done_allocate);
4847
4848 // Fall back to %NewObject.
4849 __ bind(&new_object);
4850 __ Push(a1, a3);
4851 __ TailCallRuntime(Runtime::kNewObject);
4852}
4853
4854
4855void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
4856 // ----------- S t a t e -------------
4857 // -- a1 : function
4858 // -- cp : context
4859 // -- fp : frame pointer
4860 // -- ra : return address
4861 // -----------------------------------
4862 __ AssertFunction(a1);
4863
4864 // For Ignition we need to skip all possible handler/stub frames until
4865 // we reach the JavaScript frame for the function (similar to what the
4866 // runtime fallback implementation does). So make a2 point to that
4867 // JavaScript frame.
4868 {
4869 Label loop, loop_entry;
4870 __ Branch(USE_DELAY_SLOT, &loop_entry);
4871 __ mov(a2, fp); // In delay slot.
4872 __ bind(&loop);
4873 __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
4874 __ bind(&loop_entry);
Ben Murdochda12d292016-06-02 14:46:10 +01004875 __ ld(a3, MemOperand(a2, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004876 __ Branch(&loop, ne, a1, Operand(a3));
4877 }
4878
4879 // Check if we have rest parameters (only possible if we have an
4880 // arguments adaptor frame below the function frame).
4881 Label no_rest_parameters;
4882 __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01004883 __ ld(a3, MemOperand(a2, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004884 __ Branch(&no_rest_parameters, ne, a3,
4885 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4886
4887 // Check if the arguments adaptor frame contains more arguments than
4888 // specified by the function's internal formal parameter count.
4889 Label rest_parameters;
4890 __ SmiLoadUntag(
4891 a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4892 __ ld(a1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
4893 __ lw(a1,
4894 FieldMemOperand(a1, SharedFunctionInfo::kFormalParameterCountOffset));
4895 __ Dsubu(a0, a0, Operand(a1));
4896 __ Branch(&rest_parameters, gt, a0, Operand(zero_reg));
4897
4898 // Return an empty rest parameter array.
4899 __ bind(&no_rest_parameters);
4900 {
4901 // ----------- S t a t e -------------
4902 // -- cp : context
4903 // -- ra : return address
4904 // -----------------------------------
4905
4906 // Allocate an empty rest parameter array.
4907 Label allocate, done_allocate;
4908 __ Allocate(JSArray::kSize, v0, a0, a1, &allocate, TAG_OBJECT);
4909 __ bind(&done_allocate);
4910
4911 // Setup the rest parameter array in v0.
4912 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, a1);
4913 __ sd(a1, FieldMemOperand(v0, JSArray::kMapOffset));
4914 __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
4915 __ sd(a1, FieldMemOperand(v0, JSArray::kPropertiesOffset));
4916 __ sd(a1, FieldMemOperand(v0, JSArray::kElementsOffset));
4917 __ Move(a1, Smi::FromInt(0));
4918 __ Ret(USE_DELAY_SLOT);
4919 __ sd(a1, FieldMemOperand(v0, JSArray::kLengthOffset)); // In delay slot
4920 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4921
4922 // Fall back to %AllocateInNewSpace.
4923 __ bind(&allocate);
4924 {
4925 FrameScope scope(masm, StackFrame::INTERNAL);
4926 __ Push(Smi::FromInt(JSArray::kSize));
4927 __ CallRuntime(Runtime::kAllocateInNewSpace);
4928 }
4929 __ jmp(&done_allocate);
4930 }
4931
4932 __ bind(&rest_parameters);
4933 {
4934 // Compute the pointer to the first rest parameter (skippping the receiver).
4935 __ Dlsa(a2, a2, a0, kPointerSizeLog2);
4936 __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
4937 1 * kPointerSize));
4938
4939 // ----------- S t a t e -------------
4940 // -- cp : context
4941 // -- a0 : number of rest parameters
4942 // -- a2 : pointer to first rest parameters
4943 // -- ra : return address
4944 // -----------------------------------
4945
4946 // Allocate space for the rest parameter array plus the backing store.
4947 Label allocate, done_allocate;
4948 __ li(a1, Operand(JSArray::kSize + FixedArray::kHeaderSize));
4949 __ Dlsa(a1, a1, a0, kPointerSizeLog2);
4950 __ Allocate(a1, v0, a3, a4, &allocate, TAG_OBJECT);
4951 __ bind(&done_allocate);
4952
4953 // Compute arguments.length in a4.
4954 __ SmiTag(a4, a0);
4955
4956 // Setup the elements array in v0.
4957 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4958 __ sd(at, FieldMemOperand(v0, FixedArray::kMapOffset));
4959 __ sd(a4, FieldMemOperand(v0, FixedArray::kLengthOffset));
4960 __ Daddu(a3, v0, Operand(FixedArray::kHeaderSize));
4961 {
4962 Label loop, done_loop;
4963 __ Dlsa(a1, a3, a0, kPointerSizeLog2);
4964 __ bind(&loop);
4965 __ Branch(&done_loop, eq, a1, Operand(a3));
4966 __ ld(at, MemOperand(a2, 0 * kPointerSize));
4967 __ sd(at, FieldMemOperand(a3, 0 * kPointerSize));
4968 __ Dsubu(a2, a2, Operand(1 * kPointerSize));
4969 __ Daddu(a3, a3, Operand(1 * kPointerSize));
4970 __ Branch(&loop);
4971 __ bind(&done_loop);
4972 }
4973
4974 // Setup the rest parameter array in a3.
4975 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, at);
4976 __ sd(at, FieldMemOperand(a3, JSArray::kMapOffset));
4977 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
4978 __ sd(at, FieldMemOperand(a3, JSArray::kPropertiesOffset));
4979 __ sd(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
4980 __ sd(a4, FieldMemOperand(a3, JSArray::kLengthOffset));
4981 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4982 __ Ret(USE_DELAY_SLOT);
4983 __ mov(v0, a3); // In delay slot
4984
4985 // Fall back to %AllocateInNewSpace.
4986 __ bind(&allocate);
4987 {
4988 FrameScope scope(masm, StackFrame::INTERNAL);
4989 __ SmiTag(a0);
4990 __ SmiTag(a1);
4991 __ Push(a0, a2, a1);
4992 __ CallRuntime(Runtime::kAllocateInNewSpace);
4993 __ Pop(a0, a2);
4994 __ SmiUntag(a0);
4995 }
4996 __ jmp(&done_allocate);
4997 }
4998}
4999
5000
5001void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
5002 // ----------- S t a t e -------------
5003 // -- a1 : function
5004 // -- cp : context
5005 // -- fp : frame pointer
5006 // -- ra : return address
5007 // -----------------------------------
5008 __ AssertFunction(a1);
5009
5010 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
5011 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
5012 __ lw(a2,
5013 FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
5014 __ Lsa(a3, fp, a2, kPointerSizeLog2);
5015 __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
5016 __ SmiTag(a2);
5017
5018 // a1 : function
5019 // a2 : number of parameters (tagged)
5020 // a3 : parameters pointer
5021 // Registers used over whole function:
5022 // a5 : arguments count (tagged)
5023 // a6 : mapped parameter count (tagged)
5024
5025 // Check if the calling frame is an arguments adaptor frame.
5026 Label adaptor_frame, try_allocate, runtime;
5027 __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01005028 __ ld(a0, MemOperand(a4, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005029 __ Branch(&adaptor_frame, eq, a0,
5030 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5031
5032 // No adaptor, parameter count = argument count.
5033 __ mov(a5, a2);
5034 __ Branch(USE_DELAY_SLOT, &try_allocate);
5035 __ mov(a6, a2); // In delay slot.
5036
5037 // We have an adaptor frame. Patch the parameters pointer.
5038 __ bind(&adaptor_frame);
5039 __ ld(a5, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
5040 __ SmiScale(t2, a5, kPointerSizeLog2);
5041 __ Daddu(a4, a4, Operand(t2));
5042 __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
5043
5044 // a5 = argument count (tagged)
5045 // a6 = parameter count (tagged)
5046 // Compute the mapped parameter count = min(a6, a5) in a6.
5047 __ mov(a6, a2);
5048 __ Branch(&try_allocate, le, a6, Operand(a5));
5049 __ mov(a6, a5);
5050
5051 __ bind(&try_allocate);
5052
5053 // Compute the sizes of backing store, parameter map, and arguments object.
5054 // 1. Parameter map, has 2 extra words containing context and backing store.
5055 const int kParameterMapHeaderSize =
5056 FixedArray::kHeaderSize + 2 * kPointerSize;
5057 // If there are no mapped parameters, we do not need the parameter_map.
5058 Label param_map_size;
5059 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
5060 __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a6, Operand(zero_reg));
5061 __ mov(t1, zero_reg); // In delay slot: param map size = 0 when a6 == 0.
5062 __ SmiScale(t1, a6, kPointerSizeLog2);
5063 __ daddiu(t1, t1, kParameterMapHeaderSize);
5064 __ bind(&param_map_size);
5065
5066 // 2. Backing store.
5067 __ SmiScale(t2, a5, kPointerSizeLog2);
5068 __ Daddu(t1, t1, Operand(t2));
5069 __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
5070
5071 // 3. Arguments object.
5072 __ Daddu(t1, t1, Operand(JSSloppyArgumentsObject::kSize));
5073
5074 // Do the allocation of all three objects in one go.
5075 __ Allocate(t1, v0, t1, a4, &runtime, TAG_OBJECT);
5076
5077 // v0 = address of new object(s) (tagged)
5078 // a2 = argument count (smi-tagged)
5079 // Get the arguments boilerplate from the current native context into a4.
5080 const int kNormalOffset =
5081 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
5082 const int kAliasedOffset =
5083 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
5084
5085 __ ld(a4, NativeContextMemOperand());
5086 Label skip2_ne, skip2_eq;
5087 __ Branch(&skip2_ne, ne, a6, Operand(zero_reg));
5088 __ ld(a4, MemOperand(a4, kNormalOffset));
5089 __ bind(&skip2_ne);
5090
5091 __ Branch(&skip2_eq, eq, a6, Operand(zero_reg));
5092 __ ld(a4, MemOperand(a4, kAliasedOffset));
5093 __ bind(&skip2_eq);
5094
5095 // v0 = address of new object (tagged)
5096 // a2 = argument count (smi-tagged)
5097 // a4 = address of arguments map (tagged)
5098 // a6 = mapped parameter count (tagged)
5099 __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
5100 __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex);
5101 __ sd(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
5102 __ sd(t1, FieldMemOperand(v0, JSObject::kElementsOffset));
5103
5104 // Set up the callee in-object property.
5105 __ AssertNotSmi(a1);
5106 __ sd(a1, FieldMemOperand(v0, JSSloppyArgumentsObject::kCalleeOffset));
5107
5108 // Use the length (smi tagged) and set that as an in-object property too.
5109 __ AssertSmi(a5);
5110 __ sd(a5, FieldMemOperand(v0, JSSloppyArgumentsObject::kLengthOffset));
5111
5112 // Set up the elements pointer in the allocated arguments object.
5113 // If we allocated a parameter map, a4 will point there, otherwise
5114 // it will point to the backing store.
5115 __ Daddu(a4, v0, Operand(JSSloppyArgumentsObject::kSize));
5116 __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
5117
5118 // v0 = address of new object (tagged)
5119 // a2 = argument count (tagged)
5120 // a4 = address of parameter map or backing store (tagged)
5121 // a6 = mapped parameter count (tagged)
5122 // Initialize parameter map. If there are no mapped arguments, we're done.
5123 Label skip_parameter_map;
5124 Label skip3;
5125 __ Branch(&skip3, ne, a6, Operand(Smi::FromInt(0)));
5126 // Move backing store address to a1, because it is
5127 // expected there when filling in the unmapped arguments.
5128 __ mov(a1, a4);
5129 __ bind(&skip3);
5130
5131 __ Branch(&skip_parameter_map, eq, a6, Operand(Smi::FromInt(0)));
5132
5133 __ LoadRoot(a5, Heap::kSloppyArgumentsElementsMapRootIndex);
5134 __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
5135 __ Daddu(a5, a6, Operand(Smi::FromInt(2)));
5136 __ sd(a5, FieldMemOperand(a4, FixedArray::kLengthOffset));
5137 __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
5138 __ SmiScale(t2, a6, kPointerSizeLog2);
5139 __ Daddu(a5, a4, Operand(t2));
5140 __ Daddu(a5, a5, Operand(kParameterMapHeaderSize));
5141 __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
5142
5143 // Copy the parameter slots and the holes in the arguments.
5144 // We need to fill in mapped_parameter_count slots. They index the context,
5145 // where parameters are stored in reverse order, at
5146 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
5147 // The mapped parameter thus need to get indices
5148 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
5149 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
5150 // We loop from right to left.
5151 Label parameters_loop, parameters_test;
5152 __ mov(a5, a6);
5153 __ Daddu(t1, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
5154 __ Dsubu(t1, t1, Operand(a6));
5155 __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
5156 __ SmiScale(t2, a5, kPointerSizeLog2);
5157 __ Daddu(a1, a4, Operand(t2));
5158 __ Daddu(a1, a1, Operand(kParameterMapHeaderSize));
5159
5160 // a1 = address of backing store (tagged)
5161 // a4 = address of parameter map (tagged)
5162 // a0 = temporary scratch (a.o., for address calculation)
5163 // t1 = loop variable (tagged)
5164 // a7 = the hole value
5165 __ jmp(&parameters_test);
5166
5167 __ bind(&parameters_loop);
5168 __ Dsubu(a5, a5, Operand(Smi::FromInt(1)));
5169 __ SmiScale(a0, a5, kPointerSizeLog2);
5170 __ Daddu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
5171 __ Daddu(t2, a4, a0);
5172 __ sd(t1, MemOperand(t2));
5173 __ Dsubu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
5174 __ Daddu(t2, a1, a0);
5175 __ sd(a7, MemOperand(t2));
5176 __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
5177 __ bind(&parameters_test);
5178 __ Branch(&parameters_loop, ne, a5, Operand(Smi::FromInt(0)));
5179
5180 // Restore t1 = argument count (tagged).
5181 __ ld(a5, FieldMemOperand(v0, JSSloppyArgumentsObject::kLengthOffset));
5182
5183 __ bind(&skip_parameter_map);
5184 // v0 = address of new object (tagged)
5185 // a1 = address of backing store (tagged)
5186 // a5 = argument count (tagged)
5187 // a6 = mapped parameter count (tagged)
5188 // t1 = scratch
5189 // Copy arguments header and remaining slots (if there are any).
5190 __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
5191 __ sd(t1, FieldMemOperand(a1, FixedArray::kMapOffset));
5192 __ sd(a5, FieldMemOperand(a1, FixedArray::kLengthOffset));
5193
5194 Label arguments_loop, arguments_test;
5195 __ SmiScale(t2, a6, kPointerSizeLog2);
5196 __ Dsubu(a3, a3, Operand(t2));
5197 __ jmp(&arguments_test);
5198
5199 __ bind(&arguments_loop);
5200 __ Dsubu(a3, a3, Operand(kPointerSize));
5201 __ ld(a4, MemOperand(a3, 0));
5202 __ SmiScale(t2, a6, kPointerSizeLog2);
5203 __ Daddu(t1, a1, Operand(t2));
5204 __ sd(a4, FieldMemOperand(t1, FixedArray::kHeaderSize));
5205 __ Daddu(a6, a6, Operand(Smi::FromInt(1)));
5206
5207 __ bind(&arguments_test);
5208 __ Branch(&arguments_loop, lt, a6, Operand(a5));
5209
5210 // Return.
5211 __ Ret();
5212
5213 // Do the runtime call to allocate the arguments object.
5214 // a5 = argument count (tagged)
5215 __ bind(&runtime);
5216 __ Push(a1, a3, a5);
5217 __ TailCallRuntime(Runtime::kNewSloppyArguments);
5218}
5219
5220
5221void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
5222 // ----------- S t a t e -------------
5223 // -- a1 : function
5224 // -- cp : context
5225 // -- fp : frame pointer
5226 // -- ra : return address
5227 // -----------------------------------
5228 __ AssertFunction(a1);
5229
5230 // For Ignition we need to skip all possible handler/stub frames until
5231 // we reach the JavaScript frame for the function (similar to what the
5232 // runtime fallback implementation does). So make a2 point to that
5233 // JavaScript frame.
5234 {
5235 Label loop, loop_entry;
5236 __ Branch(USE_DELAY_SLOT, &loop_entry);
5237 __ mov(a2, fp); // In delay slot.
5238 __ bind(&loop);
5239 __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
5240 __ bind(&loop_entry);
Ben Murdochda12d292016-06-02 14:46:10 +01005241 __ ld(a3, MemOperand(a2, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005242 __ Branch(&loop, ne, a1, Operand(a3));
5243 }
5244
5245 // Check if we have an arguments adaptor frame below the function frame.
5246 Label arguments_adaptor, arguments_done;
5247 __ ld(a3, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01005248 __ ld(a0, MemOperand(a3, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005249 __ Branch(&arguments_adaptor, eq, a0,
5250 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5251 {
5252 __ ld(a1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
5253 __ lw(a0,
5254 FieldMemOperand(a1, SharedFunctionInfo::kFormalParameterCountOffset));
5255 __ Dlsa(a2, a2, a0, kPointerSizeLog2);
5256 __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
5257 1 * kPointerSize));
5258 }
5259 __ Branch(&arguments_done);
5260 __ bind(&arguments_adaptor);
5261 {
5262 __ SmiLoadUntag(
5263 a0, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
5264 __ Dlsa(a2, a3, a0, kPointerSizeLog2);
5265 __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
5266 1 * kPointerSize));
5267 }
5268 __ bind(&arguments_done);
5269
5270 // ----------- S t a t e -------------
5271 // -- cp : context
5272 // -- a0 : number of rest parameters
5273 // -- a2 : pointer to first rest parameters
5274 // -- ra : return address
5275 // -----------------------------------
5276
5277 // Allocate space for the rest parameter array plus the backing store.
5278 Label allocate, done_allocate;
5279 __ li(a1, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
5280 __ Dlsa(a1, a1, a0, kPointerSizeLog2);
5281 __ Allocate(a1, v0, a3, a4, &allocate, TAG_OBJECT);
5282 __ bind(&done_allocate);
5283
5284 // Compute arguments.length in a4.
5285 __ SmiTag(a4, a0);
5286
5287 // Setup the elements array in v0.
5288 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
5289 __ sd(at, FieldMemOperand(v0, FixedArray::kMapOffset));
5290 __ sd(a4, FieldMemOperand(v0, FixedArray::kLengthOffset));
5291 __ Daddu(a3, v0, Operand(FixedArray::kHeaderSize));
5292 {
5293 Label loop, done_loop;
5294 __ Dlsa(a1, a3, a0, kPointerSizeLog2);
5295 __ bind(&loop);
5296 __ Branch(&done_loop, eq, a1, Operand(a3));
5297 __ ld(at, MemOperand(a2, 0 * kPointerSize));
5298 __ sd(at, FieldMemOperand(a3, 0 * kPointerSize));
5299 __ Dsubu(a2, a2, Operand(1 * kPointerSize));
5300 __ Daddu(a3, a3, Operand(1 * kPointerSize));
5301 __ Branch(&loop);
5302 __ bind(&done_loop);
5303 }
5304
5305 // Setup the strict arguments object in a3.
5306 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, at);
5307 __ sd(at, FieldMemOperand(a3, JSStrictArgumentsObject::kMapOffset));
5308 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
5309 __ sd(at, FieldMemOperand(a3, JSStrictArgumentsObject::kPropertiesOffset));
5310 __ sd(v0, FieldMemOperand(a3, JSStrictArgumentsObject::kElementsOffset));
5311 __ sd(a4, FieldMemOperand(a3, JSStrictArgumentsObject::kLengthOffset));
5312 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
5313 __ Ret(USE_DELAY_SLOT);
5314 __ mov(v0, a3); // In delay slot
5315
5316 // Fall back to %AllocateInNewSpace.
5317 __ bind(&allocate);
5318 {
5319 FrameScope scope(masm, StackFrame::INTERNAL);
5320 __ SmiTag(a0);
5321 __ SmiTag(a1);
5322 __ Push(a0, a2, a1);
5323 __ CallRuntime(Runtime::kAllocateInNewSpace);
5324 __ Pop(a0, a2);
5325 __ SmiUntag(a0);
5326 }
5327 __ jmp(&done_allocate);
5328}
5329
5330
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005331void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5332 Register context_reg = cp;
5333 Register slot_reg = a2;
5334 Register result_reg = v0;
5335 Label slow_case;
5336
5337 // Go up context chain to the script context.
5338 for (int i = 0; i < depth(); ++i) {
5339 __ ld(result_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
5340 context_reg = result_reg;
5341 }
5342
5343 // Load the PropertyCell value at the specified slot.
Ben Murdoch097c5b22016-05-18 11:27:45 +01005344 __ Dlsa(at, context_reg, slot_reg, kPointerSizeLog2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005345 __ ld(result_reg, ContextMemOperand(at, 0));
5346 __ ld(result_reg, FieldMemOperand(result_reg, PropertyCell::kValueOffset));
5347
5348 // Check that value is not the_hole.
5349 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5350 __ Branch(&slow_case, eq, result_reg, Operand(at));
5351 __ Ret();
5352
5353 // Fallback to the runtime.
5354 __ bind(&slow_case);
5355 __ SmiTag(slot_reg);
5356 __ Push(slot_reg);
5357 __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5358}
5359
5360
5361void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5362 Register context_reg = cp;
5363 Register slot_reg = a2;
5364 Register value_reg = a0;
5365 Register cell_reg = a4;
5366 Register cell_value_reg = a5;
5367 Register cell_details_reg = a6;
5368 Label fast_heapobject_case, fast_smi_case, slow_case;
5369
5370 if (FLAG_debug_code) {
5371 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5372 __ Check(ne, kUnexpectedValue, value_reg, Operand(at));
5373 }
5374
5375 // Go up context chain to the script context.
5376 for (int i = 0; i < depth(); ++i) {
5377 __ ld(cell_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
5378 context_reg = cell_reg;
5379 }
5380
5381 // Load the PropertyCell at the specified slot.
Ben Murdoch097c5b22016-05-18 11:27:45 +01005382 __ Dlsa(at, context_reg, slot_reg, kPointerSizeLog2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005383 __ ld(cell_reg, ContextMemOperand(at, 0));
5384
5385 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5386 __ ld(cell_details_reg,
5387 FieldMemOperand(cell_reg, PropertyCell::kDetailsOffset));
5388 __ SmiUntag(cell_details_reg);
5389 __ And(cell_details_reg, cell_details_reg,
5390 PropertyDetails::PropertyCellTypeField::kMask |
5391 PropertyDetails::KindField::kMask |
5392 PropertyDetails::kAttributesReadOnlyMask);
5393
5394 // Check if PropertyCell holds mutable data.
5395 Label not_mutable_data;
5396 __ Branch(&not_mutable_data, ne, cell_details_reg,
5397 Operand(PropertyDetails::PropertyCellTypeField::encode(
5398 PropertyCellType::kMutable) |
5399 PropertyDetails::KindField::encode(kData)));
5400 __ JumpIfSmi(value_reg, &fast_smi_case);
5401 __ bind(&fast_heapobject_case);
5402 __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5403 __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
5404 cell_details_reg, kRAHasNotBeenSaved, kDontSaveFPRegs,
5405 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
5406 // RecordWriteField clobbers the value register, so we need to reload.
5407 __ Ret(USE_DELAY_SLOT);
5408 __ ld(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5409 __ bind(&not_mutable_data);
5410
5411 // Check if PropertyCell value matches the new value (relevant for Constant,
5412 // ConstantType and Undefined cells).
5413 Label not_same_value;
5414 __ ld(cell_value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5415 __ Branch(&not_same_value, ne, value_reg, Operand(cell_value_reg));
5416 // Make sure the PropertyCell is not marked READ_ONLY.
5417 __ And(at, cell_details_reg, PropertyDetails::kAttributesReadOnlyMask);
5418 __ Branch(&slow_case, ne, at, Operand(zero_reg));
5419 if (FLAG_debug_code) {
5420 Label done;
5421 // This can only be true for Constant, ConstantType and Undefined cells,
5422 // because we never store the_hole via this stub.
5423 __ Branch(&done, eq, cell_details_reg,
5424 Operand(PropertyDetails::PropertyCellTypeField::encode(
5425 PropertyCellType::kConstant) |
5426 PropertyDetails::KindField::encode(kData)));
5427 __ Branch(&done, eq, cell_details_reg,
5428 Operand(PropertyDetails::PropertyCellTypeField::encode(
5429 PropertyCellType::kConstantType) |
5430 PropertyDetails::KindField::encode(kData)));
5431 __ Check(eq, kUnexpectedValue, cell_details_reg,
5432 Operand(PropertyDetails::PropertyCellTypeField::encode(
5433 PropertyCellType::kUndefined) |
5434 PropertyDetails::KindField::encode(kData)));
5435 __ bind(&done);
5436 }
5437 __ Ret();
5438 __ bind(&not_same_value);
5439
5440 // Check if PropertyCell contains data with constant type (and is not
5441 // READ_ONLY).
5442 __ Branch(&slow_case, ne, cell_details_reg,
5443 Operand(PropertyDetails::PropertyCellTypeField::encode(
5444 PropertyCellType::kConstantType) |
5445 PropertyDetails::KindField::encode(kData)));
5446
5447 // Now either both old and new values must be SMIs or both must be heap
5448 // objects with same map.
5449 Label value_is_heap_object;
5450 __ JumpIfNotSmi(value_reg, &value_is_heap_object);
5451 __ JumpIfNotSmi(cell_value_reg, &slow_case);
5452 // Old and new values are SMIs, no need for a write barrier here.
5453 __ bind(&fast_smi_case);
5454 __ Ret(USE_DELAY_SLOT);
5455 __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5456 __ bind(&value_is_heap_object);
5457 __ JumpIfSmi(cell_value_reg, &slow_case);
5458 Register cell_value_map_reg = cell_value_reg;
5459 __ ld(cell_value_map_reg,
5460 FieldMemOperand(cell_value_reg, HeapObject::kMapOffset));
5461 __ Branch(&fast_heapobject_case, eq, cell_value_map_reg,
5462 FieldMemOperand(value_reg, HeapObject::kMapOffset));
5463
5464 // Fallback to the runtime.
5465 __ bind(&slow_case);
5466 __ SmiTag(slot_reg);
5467 __ Push(slot_reg, value_reg);
5468 __ TailCallRuntime(is_strict(language_mode())
5469 ? Runtime::kStoreGlobalViaContext_Strict
5470 : Runtime::kStoreGlobalViaContext_Sloppy);
5471}
5472
5473
5474static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5475 int64_t offset = (ref0.address() - ref1.address());
5476 DCHECK(static_cast<int>(offset) == offset);
5477 return static_cast<int>(offset);
5478}
5479
5480
5481// Calls an API function. Allocates HandleScope, extracts returned value
5482// from handle and propagates exceptions. Restores context. stack_space
5483// - space to be unwound on exit (includes the call JS arguments space and
5484// the additional space allocated for the fast call).
5485static void CallApiFunctionAndReturn(
5486 MacroAssembler* masm, Register function_address,
5487 ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
5488 MemOperand return_value_operand, MemOperand* context_restore_operand) {
5489 Isolate* isolate = masm->isolate();
5490 ExternalReference next_address =
5491 ExternalReference::handle_scope_next_address(isolate);
5492 const int kNextOffset = 0;
5493 const int kLimitOffset = AddressOffset(
5494 ExternalReference::handle_scope_limit_address(isolate), next_address);
5495 const int kLevelOffset = AddressOffset(
5496 ExternalReference::handle_scope_level_address(isolate), next_address);
5497
5498 DCHECK(function_address.is(a1) || function_address.is(a2));
5499
5500 Label profiler_disabled;
5501 Label end_profiler_check;
5502 __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
5503 __ lb(t9, MemOperand(t9, 0));
5504 __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
5505
5506 // Additional parameter is the address of the actual callback.
5507 __ li(t9, Operand(thunk_ref));
5508 __ jmp(&end_profiler_check);
5509
5510 __ bind(&profiler_disabled);
5511 __ mov(t9, function_address);
5512 __ bind(&end_profiler_check);
5513
5514 // Allocate HandleScope in callee-save registers.
5515 __ li(s3, Operand(next_address));
5516 __ ld(s0, MemOperand(s3, kNextOffset));
5517 __ ld(s1, MemOperand(s3, kLimitOffset));
5518 __ lw(s2, MemOperand(s3, kLevelOffset));
5519 __ Addu(s2, s2, Operand(1));
5520 __ sw(s2, MemOperand(s3, kLevelOffset));
5521
5522 if (FLAG_log_timer_events) {
5523 FrameScope frame(masm, StackFrame::MANUAL);
5524 __ PushSafepointRegisters();
5525 __ PrepareCallCFunction(1, a0);
5526 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5527 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5528 1);
5529 __ PopSafepointRegisters();
5530 }
5531
5532 // Native call returns to the DirectCEntry stub which redirects to the
5533 // return address pushed on stack (could have moved after GC).
5534 // DirectCEntry stub itself is generated early and never moves.
5535 DirectCEntryStub stub(isolate);
5536 stub.GenerateCall(masm, t9);
5537
5538 if (FLAG_log_timer_events) {
5539 FrameScope frame(masm, StackFrame::MANUAL);
5540 __ PushSafepointRegisters();
5541 __ PrepareCallCFunction(1, a0);
5542 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5543 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5544 1);
5545 __ PopSafepointRegisters();
5546 }
5547
5548 Label promote_scheduled_exception;
5549 Label delete_allocated_handles;
5550 Label leave_exit_frame;
5551 Label return_value_loaded;
5552
5553 // Load value from ReturnValue.
5554 __ ld(v0, return_value_operand);
5555 __ bind(&return_value_loaded);
5556
5557 // No more valid handles (the result handle was the last one). Restore
5558 // previous handle scope.
5559 __ sd(s0, MemOperand(s3, kNextOffset));
5560 if (__ emit_debug_code()) {
5561 __ lw(a1, MemOperand(s3, kLevelOffset));
5562 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
5563 }
5564 __ Subu(s2, s2, Operand(1));
5565 __ sw(s2, MemOperand(s3, kLevelOffset));
5566 __ ld(at, MemOperand(s3, kLimitOffset));
5567 __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
5568
5569 // Leave the API exit frame.
5570 __ bind(&leave_exit_frame);
5571
5572 bool restore_context = context_restore_operand != NULL;
5573 if (restore_context) {
5574 __ ld(cp, *context_restore_operand);
5575 }
5576 if (stack_space_offset != kInvalidStackOffset) {
5577 DCHECK(kCArgsSlotsSize == 0);
5578 __ ld(s0, MemOperand(sp, stack_space_offset));
5579 } else {
5580 __ li(s0, Operand(stack_space));
5581 }
5582 __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
5583 stack_space_offset != kInvalidStackOffset);
5584
5585 // Check if the function scheduled an exception.
5586 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
5587 __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
5588 __ ld(a5, MemOperand(at));
5589 __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
5590
5591 __ Ret();
5592
5593 // Re-throw by promoting a scheduled exception.
5594 __ bind(&promote_scheduled_exception);
5595 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5596
5597 // HandleScope limit has changed. Delete allocated extensions.
5598 __ bind(&delete_allocated_handles);
5599 __ sd(s1, MemOperand(s3, kLimitOffset));
5600 __ mov(s0, v0);
5601 __ mov(a0, v0);
5602 __ PrepareCallCFunction(1, s1);
5603 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5604 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5605 1);
5606 __ mov(v0, s0);
5607 __ jmp(&leave_exit_frame);
5608}
5609
Ben Murdochda12d292016-06-02 14:46:10 +01005610void CallApiCallbackStub::Generate(MacroAssembler* masm) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005611 // ----------- S t a t e -------------
5612 // -- a0 : callee
5613 // -- a4 : call_data
5614 // -- a2 : holder
5615 // -- a1 : api_function_address
5616 // -- cp : context
5617 // --
5618 // -- sp[0] : last argument
5619 // -- ...
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005620 // -- sp[(argc - 1)* 8] : first argument
5621 // -- sp[argc * 8] : receiver
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005622 // -----------------------------------
5623
5624 Register callee = a0;
5625 Register call_data = a4;
5626 Register holder = a2;
5627 Register api_function_address = a1;
5628 Register context = cp;
5629
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005630 typedef FunctionCallbackArguments FCA;
5631
5632 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5633 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5634 STATIC_ASSERT(FCA::kDataIndex == 4);
5635 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5636 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5637 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5638 STATIC_ASSERT(FCA::kHolderIndex == 0);
5639 STATIC_ASSERT(FCA::kArgsLength == 7);
5640
5641 // Save context, callee and call data.
5642 __ Push(context, callee, call_data);
Ben Murdochda12d292016-06-02 14:46:10 +01005643 if (!is_lazy()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005644 // Load context from callee.
5645 __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5646 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005647
5648 Register scratch = call_data;
Ben Murdochda12d292016-06-02 14:46:10 +01005649 if (!call_data_undefined()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005650 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5651 }
5652 // Push return value and default return value.
5653 __ Push(scratch, scratch);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005654 __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005655 // Push isolate and holder.
5656 __ Push(scratch, holder);
5657
5658 // Prepare arguments.
5659 __ mov(scratch, sp);
5660
5661 // Allocate the v8::Arguments structure in the arguments' space since
5662 // it's not controlled by GC.
5663 const int kApiStackSpace = 4;
5664
5665 FrameScope frame_scope(masm, StackFrame::MANUAL);
5666 __ EnterExitFrame(false, kApiStackSpace);
5667
5668 DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
5669 // a0 = FunctionCallbackInfo&
5670 // Arguments is after the return address.
5671 __ Daddu(a0, sp, Operand(1 * kPointerSize));
5672 // FunctionCallbackInfo::implicit_args_
5673 __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
Ben Murdochda12d292016-06-02 14:46:10 +01005674 // FunctionCallbackInfo::values_
5675 __ Daddu(at, scratch,
5676 Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
5677 __ sd(at, MemOperand(a0, 1 * kPointerSize));
5678 // FunctionCallbackInfo::length_ = argc
5679 // Stored as int field, 32-bit integers within struct on stack always left
5680 // justified by n64 ABI.
5681 __ li(at, Operand(argc()));
5682 __ sw(at, MemOperand(a0, 2 * kPointerSize));
5683 // FunctionCallbackInfo::is_construct_call_ = 0
5684 __ sw(zero_reg, MemOperand(a0, 2 * kPointerSize + kIntSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005685
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005686 ExternalReference thunk_ref =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005687 ExternalReference::invoke_function_callback(masm->isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005688
5689 AllowExternalCallThatCantCauseGC scope(masm);
5690 MemOperand context_restore_operand(
5691 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5692 // Stores return the first js argument.
5693 int return_value_offset = 0;
Ben Murdochda12d292016-06-02 14:46:10 +01005694 if (is_store()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005695 return_value_offset = 2 + FCA::kArgsLength;
5696 } else {
5697 return_value_offset = 2 + FCA::kReturnValueOffset;
5698 }
5699 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005700 int stack_space = 0;
5701 int32_t stack_space_offset = 4 * kPointerSize;
Ben Murdochda12d292016-06-02 14:46:10 +01005702 stack_space = argc() + FCA::kArgsLength + 1;
5703 stack_space_offset = kInvalidStackOffset;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005704 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5705 stack_space_offset, return_value_operand,
5706 &context_restore_operand);
5707}
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005708
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005709
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005710void CallApiGetterStub::Generate(MacroAssembler* masm) {
5711 // ----------- S t a t e -------------
Ben Murdoch097c5b22016-05-18 11:27:45 +01005712 // -- sp[0] : name
5713 // -- sp[8 .. (8 + kArgsLength*8)] : v8::PropertyCallbackInfo::args_
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005714 // -- ...
Ben Murdoch097c5b22016-05-18 11:27:45 +01005715 // -- a2 : api_function_address
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005716 // -----------------------------------
5717
5718 Register api_function_address = ApiGetterDescriptor::function_address();
5719 DCHECK(api_function_address.is(a2));
5720
Ben Murdoch097c5b22016-05-18 11:27:45 +01005721 // v8::PropertyCallbackInfo::args_ array and name handle.
5722 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5723
5724 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
5725 __ mov(a0, sp); // a0 = Handle<Name>
5726 __ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005727
5728 const int kApiStackSpace = 1;
5729 FrameScope frame_scope(masm, StackFrame::MANUAL);
5730 __ EnterExitFrame(false, kApiStackSpace);
5731
Ben Murdoch097c5b22016-05-18 11:27:45 +01005732 // Create v8::PropertyCallbackInfo object on the stack and initialize
5733 // it's args_ field.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005734 __ sd(a1, MemOperand(sp, 1 * kPointerSize));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005735 __ Daddu(a1, sp, Operand(1 * kPointerSize));
5736 // a1 = v8::PropertyCallbackInfo&
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005737
5738 ExternalReference thunk_ref =
5739 ExternalReference::invoke_accessor_getter_callback(isolate());
Ben Murdoch097c5b22016-05-18 11:27:45 +01005740
5741 // +3 is to skip prolog, return address and name handle.
5742 MemOperand return_value_operand(
5743 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005744 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5745 kStackUnwindSpace, kInvalidStackOffset,
Ben Murdoch097c5b22016-05-18 11:27:45 +01005746 return_value_operand, NULL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005747}
5748
5749
5750#undef __
5751
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005752} // namespace internal
5753} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005754
5755#endif // V8_TARGET_ARCH_MIPS64