blob: 8e89e8f0f47a3ea2ac19c9b346e79a528d76c4c2 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "code-stubs.h"
33#include "smart-pointer.h"
34#include "unicode-inl.h"
Steve Block3ce2e202009-11-05 08:53:23 +000035#if V8_TARGET_ARCH_ARM
36#include "arm/constants-arm.h"
Andrei Popescu31002712010-02-23 13:46:05 +000037#elif V8_TARGET_ARCH_MIPS
38#include "mips/constants-mips.h"
Steve Block3ce2e202009-11-05 08:53:23 +000039#endif
Steve Blocka7e24c12009-10-30 11:49:00 +000040
41//
42// All object types in the V8 JavaScript are described in this file.
43//
44// Inheritance hierarchy:
45// - Object
46// - Smi (immediate small integer)
47// - Failure (immediate for marking failed operation)
48// - HeapObject (superclass for everything allocated in the heap)
49// - JSObject
50// - JSArray
51// - JSRegExp
52// - JSFunction
53// - GlobalObject
54// - JSGlobalObject
55// - JSBuiltinsObject
56// - JSGlobalProxy
57// - JSValue
58// - Array
59// - ByteArray
60// - PixelArray
Steve Block3ce2e202009-11-05 08:53:23 +000061// - ExternalArray
62// - ExternalByteArray
63// - ExternalUnsignedByteArray
64// - ExternalShortArray
65// - ExternalUnsignedShortArray
66// - ExternalIntArray
67// - ExternalUnsignedIntArray
68// - ExternalFloatArray
Steve Blocka7e24c12009-10-30 11:49:00 +000069// - FixedArray
70// - DescriptorArray
71// - HashTable
72// - Dictionary
73// - SymbolTable
74// - CompilationCacheTable
Steve Block6ded16b2010-05-10 14:33:55 +010075// - CodeCacheHashTable
Steve Blocka7e24c12009-10-30 11:49:00 +000076// - MapCache
77// - Context
78// - GlobalContext
Steve Block6ded16b2010-05-10 14:33:55 +010079// - JSFunctionResultCache
Steve Blocka7e24c12009-10-30 11:49:00 +000080// - String
81// - SeqString
82// - SeqAsciiString
83// - SeqTwoByteString
84// - ConsString
Steve Blocka7e24c12009-10-30 11:49:00 +000085// - ExternalString
86// - ExternalAsciiString
87// - ExternalTwoByteString
88// - HeapNumber
89// - Code
90// - Map
91// - Oddball
92// - Proxy
93// - SharedFunctionInfo
94// - Struct
95// - AccessorInfo
96// - AccessCheckInfo
97// - InterceptorInfo
98// - CallHandlerInfo
99// - TemplateInfo
100// - FunctionTemplateInfo
101// - ObjectTemplateInfo
102// - Script
103// - SignatureInfo
104// - TypeSwitchInfo
105// - DebugInfo
106// - BreakPointInfo
Steve Block6ded16b2010-05-10 14:33:55 +0100107// - CodeCache
Steve Blocka7e24c12009-10-30 11:49:00 +0000108//
109// Formats of Object*:
110// Smi: [31 bit signed int] 0
111// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
112// Failure: [30 bit signed int] 11
113
114// Ecma-262 3rd 8.6.1
115enum PropertyAttributes {
116 NONE = v8::None,
117 READ_ONLY = v8::ReadOnly,
118 DONT_ENUM = v8::DontEnum,
119 DONT_DELETE = v8::DontDelete,
120 ABSENT = 16 // Used in runtime to indicate a property is absent.
121 // ABSENT can never be stored in or returned from a descriptor's attributes
122 // bitfield. It is only used as a return value meaning the attributes of
123 // a non-existent property.
124};
125
126namespace v8 {
127namespace internal {
128
129
130// PropertyDetails captures type and attributes for a property.
131// They are used both in property dictionaries and instance descriptors.
132class PropertyDetails BASE_EMBEDDED {
133 public:
134
135 PropertyDetails(PropertyAttributes attributes,
136 PropertyType type,
137 int index = 0) {
138 ASSERT(TypeField::is_valid(type));
139 ASSERT(AttributesField::is_valid(attributes));
140 ASSERT(IndexField::is_valid(index));
141
142 value_ = TypeField::encode(type)
143 | AttributesField::encode(attributes)
144 | IndexField::encode(index);
145
146 ASSERT(type == this->type());
147 ASSERT(attributes == this->attributes());
148 ASSERT(index == this->index());
149 }
150
151 // Conversion for storing details as Object*.
152 inline PropertyDetails(Smi* smi);
153 inline Smi* AsSmi();
154
155 PropertyType type() { return TypeField::decode(value_); }
156
157 bool IsTransition() {
158 PropertyType t = type();
159 ASSERT(t != INTERCEPTOR);
160 return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
161 }
162
163 bool IsProperty() {
164 return type() < FIRST_PHANTOM_PROPERTY_TYPE;
165 }
166
167 PropertyAttributes attributes() { return AttributesField::decode(value_); }
168
169 int index() { return IndexField::decode(value_); }
170
171 inline PropertyDetails AsDeleted();
172
173 static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
174
175 bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
176 bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
177 bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
178 bool IsDeleted() { return DeletedField::decode(value_) != 0;}
179
180 // Bit fields in value_ (type, shift, size). Must be public so the
181 // constants can be embedded in generated code.
182 class TypeField: public BitField<PropertyType, 0, 3> {};
183 class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
184 class DeletedField: public BitField<uint32_t, 6, 1> {};
Andrei Popescu402d9372010-02-26 13:31:12 +0000185 class IndexField: public BitField<uint32_t, 7, 32-7> {};
Steve Blocka7e24c12009-10-30 11:49:00 +0000186
187 static const int kInitialIndex = 1;
188 private:
189 uint32_t value_;
190};
191
192
193// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
194enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
195
196
197// PropertyNormalizationMode is used to specify whether to keep
198// inobject properties when normalizing properties of a JSObject.
199enum PropertyNormalizationMode {
200 CLEAR_INOBJECT_PROPERTIES,
201 KEEP_INOBJECT_PROPERTIES
202};
203
204
205// All Maps have a field instance_type containing a InstanceType.
206// It describes the type of the instances.
207//
208// As an example, a JavaScript object is a heap object and its map
209// instance_type is JS_OBJECT_TYPE.
210//
211// The names of the string instance types are intended to systematically
Leon Clarkee46be812010-01-19 14:06:41 +0000212// mirror their encoding in the instance_type field of the map. The default
213// encoding is considered TWO_BYTE. It is not mentioned in the name. ASCII
214// encoding is mentioned explicitly in the name. Likewise, the default
215// representation is considered sequential. It is not mentioned in the
216// name. The other representations (eg, CONS, EXTERNAL) are explicitly
217// mentioned. Finally, the string is either a SYMBOL_TYPE (if it is a
218// symbol) or a STRING_TYPE (if it is not a symbol).
Steve Blocka7e24c12009-10-30 11:49:00 +0000219//
220// NOTE: The following things are some that depend on the string types having
221// instance_types that are less than those of all other types:
222// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
223// Object::IsString.
224//
225// NOTE: Everything following JS_VALUE_TYPE is considered a
226// JSObject for GC purposes. The first four entries here have typeof
227// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
Steve Blockd0582a62009-12-15 09:54:21 +0000228#define INSTANCE_TYPE_LIST_ALL(V) \
229 V(SYMBOL_TYPE) \
230 V(ASCII_SYMBOL_TYPE) \
231 V(CONS_SYMBOL_TYPE) \
232 V(CONS_ASCII_SYMBOL_TYPE) \
233 V(EXTERNAL_SYMBOL_TYPE) \
234 V(EXTERNAL_ASCII_SYMBOL_TYPE) \
235 V(STRING_TYPE) \
236 V(ASCII_STRING_TYPE) \
237 V(CONS_STRING_TYPE) \
238 V(CONS_ASCII_STRING_TYPE) \
239 V(EXTERNAL_STRING_TYPE) \
240 V(EXTERNAL_ASCII_STRING_TYPE) \
241 V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE) \
242 \
243 V(MAP_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000244 V(CODE_TYPE) \
245 V(JS_GLOBAL_PROPERTY_CELL_TYPE) \
246 V(ODDBALL_TYPE) \
Leon Clarkee46be812010-01-19 14:06:41 +0000247 \
248 V(HEAP_NUMBER_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000249 V(PROXY_TYPE) \
250 V(BYTE_ARRAY_TYPE) \
251 V(PIXEL_ARRAY_TYPE) \
252 /* Note: the order of these external array */ \
253 /* types is relied upon in */ \
254 /* Object::IsExternalArray(). */ \
255 V(EXTERNAL_BYTE_ARRAY_TYPE) \
256 V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) \
257 V(EXTERNAL_SHORT_ARRAY_TYPE) \
258 V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) \
259 V(EXTERNAL_INT_ARRAY_TYPE) \
260 V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) \
261 V(EXTERNAL_FLOAT_ARRAY_TYPE) \
262 V(FILLER_TYPE) \
263 \
Leon Clarkee46be812010-01-19 14:06:41 +0000264 V(FIXED_ARRAY_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000265 V(ACCESSOR_INFO_TYPE) \
266 V(ACCESS_CHECK_INFO_TYPE) \
267 V(INTERCEPTOR_INFO_TYPE) \
268 V(SHARED_FUNCTION_INFO_TYPE) \
269 V(CALL_HANDLER_INFO_TYPE) \
270 V(FUNCTION_TEMPLATE_INFO_TYPE) \
271 V(OBJECT_TEMPLATE_INFO_TYPE) \
272 V(SIGNATURE_INFO_TYPE) \
273 V(TYPE_SWITCH_INFO_TYPE) \
274 V(SCRIPT_TYPE) \
Steve Block6ded16b2010-05-10 14:33:55 +0100275 V(CODE_CACHE_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000276 \
277 V(JS_VALUE_TYPE) \
278 V(JS_OBJECT_TYPE) \
279 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
280 V(JS_GLOBAL_OBJECT_TYPE) \
281 V(JS_BUILTINS_OBJECT_TYPE) \
282 V(JS_GLOBAL_PROXY_TYPE) \
283 V(JS_ARRAY_TYPE) \
284 V(JS_REGEXP_TYPE) \
285 \
286 V(JS_FUNCTION_TYPE) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000287
288#ifdef ENABLE_DEBUGGER_SUPPORT
Steve Blockd0582a62009-12-15 09:54:21 +0000289#define INSTANCE_TYPE_LIST_DEBUGGER(V) \
290 V(DEBUG_INFO_TYPE) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000291 V(BREAK_POINT_INFO_TYPE)
292#else
293#define INSTANCE_TYPE_LIST_DEBUGGER(V)
294#endif
295
Steve Blockd0582a62009-12-15 09:54:21 +0000296#define INSTANCE_TYPE_LIST(V) \
297 INSTANCE_TYPE_LIST_ALL(V) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000298 INSTANCE_TYPE_LIST_DEBUGGER(V)
299
300
301// Since string types are not consecutive, this macro is used to
302// iterate over them.
303#define STRING_TYPE_LIST(V) \
Steve Blockd0582a62009-12-15 09:54:21 +0000304 V(SYMBOL_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000305 SeqTwoByteString::kAlignedSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000306 symbol, \
307 Symbol) \
308 V(ASCII_SYMBOL_TYPE, \
309 SeqAsciiString::kAlignedSize, \
310 ascii_symbol, \
311 AsciiSymbol) \
312 V(CONS_SYMBOL_TYPE, \
313 ConsString::kSize, \
314 cons_symbol, \
315 ConsSymbol) \
316 V(CONS_ASCII_SYMBOL_TYPE, \
317 ConsString::kSize, \
318 cons_ascii_symbol, \
319 ConsAsciiSymbol) \
320 V(EXTERNAL_SYMBOL_TYPE, \
321 ExternalTwoByteString::kSize, \
322 external_symbol, \
323 ExternalSymbol) \
324 V(EXTERNAL_ASCII_SYMBOL_TYPE, \
325 ExternalAsciiString::kSize, \
326 external_ascii_symbol, \
327 ExternalAsciiSymbol) \
328 V(STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000329 SeqTwoByteString::kAlignedSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000330 string, \
331 String) \
332 V(ASCII_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000333 SeqAsciiString::kAlignedSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000334 ascii_string, \
335 AsciiString) \
336 V(CONS_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000337 ConsString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000338 cons_string, \
339 ConsString) \
340 V(CONS_ASCII_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000341 ConsString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000342 cons_ascii_string, \
343 ConsAsciiString) \
344 V(EXTERNAL_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000345 ExternalTwoByteString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000346 external_string, \
347 ExternalString) \
348 V(EXTERNAL_ASCII_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000349 ExternalAsciiString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000350 external_ascii_string, \
351 ExternalAsciiString) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000352
353// A struct is a simple object a set of object-valued fields. Including an
354// object type in this causes the compiler to generate most of the boilerplate
355// code for the class including allocation and garbage collection routines,
356// casts and predicates. All you need to define is the class, methods and
357// object verification routines. Easy, no?
358//
359// Note that for subtle reasons related to the ordering or numerical values of
360// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
361// manually.
Steve Blockd0582a62009-12-15 09:54:21 +0000362#define STRUCT_LIST_ALL(V) \
363 V(ACCESSOR_INFO, AccessorInfo, accessor_info) \
364 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
365 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
366 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
367 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
368 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
369 V(SIGNATURE_INFO, SignatureInfo, signature_info) \
370 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
Steve Block6ded16b2010-05-10 14:33:55 +0100371 V(SCRIPT, Script, script) \
372 V(CODE_CACHE, CodeCache, code_cache)
Steve Blocka7e24c12009-10-30 11:49:00 +0000373
374#ifdef ENABLE_DEBUGGER_SUPPORT
Steve Blockd0582a62009-12-15 09:54:21 +0000375#define STRUCT_LIST_DEBUGGER(V) \
376 V(DEBUG_INFO, DebugInfo, debug_info) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000377 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
378#else
379#define STRUCT_LIST_DEBUGGER(V)
380#endif
381
Steve Blockd0582a62009-12-15 09:54:21 +0000382#define STRUCT_LIST(V) \
383 STRUCT_LIST_ALL(V) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000384 STRUCT_LIST_DEBUGGER(V)
385
386// We use the full 8 bits of the instance_type field to encode heap object
387// instance types. The high-order bit (bit 7) is set if the object is not a
388// string, and cleared if it is a string.
389const uint32_t kIsNotStringMask = 0x80;
390const uint32_t kStringTag = 0x0;
391const uint32_t kNotStringTag = 0x80;
392
Leon Clarkee46be812010-01-19 14:06:41 +0000393// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
394// There are not enough types that the non-string types (with bit 7 set) can
395// have bit 6 set too.
396const uint32_t kIsSymbolMask = 0x40;
Steve Blocka7e24c12009-10-30 11:49:00 +0000397const uint32_t kNotSymbolTag = 0x0;
Leon Clarkee46be812010-01-19 14:06:41 +0000398const uint32_t kSymbolTag = 0x40;
Steve Blocka7e24c12009-10-30 11:49:00 +0000399
Steve Blocka7e24c12009-10-30 11:49:00 +0000400// If bit 7 is clear then bit 2 indicates whether the string consists of
401// two-byte characters or one-byte characters.
402const uint32_t kStringEncodingMask = 0x4;
403const uint32_t kTwoByteStringTag = 0x0;
404const uint32_t kAsciiStringTag = 0x4;
405
406// If bit 7 is clear, the low-order 2 bits indicate the representation
407// of the string.
408const uint32_t kStringRepresentationMask = 0x03;
409enum StringRepresentationTag {
410 kSeqStringTag = 0x0,
411 kConsStringTag = 0x1,
Steve Blocka7e24c12009-10-30 11:49:00 +0000412 kExternalStringTag = 0x3
413};
414
415
416// A ConsString with an empty string as the right side is a candidate
417// for being shortcut by the garbage collector unless it is a
418// symbol. It's not common to have non-flat symbols, so we do not
419// shortcut them thereby avoiding turning symbols into strings. See
420// heap.cc and mark-compact.cc.
421const uint32_t kShortcutTypeMask =
422 kIsNotStringMask |
423 kIsSymbolMask |
424 kStringRepresentationMask;
425const uint32_t kShortcutTypeTag = kConsStringTag;
426
427
428enum InstanceType {
Leon Clarkee46be812010-01-19 14:06:41 +0000429 // String types.
Steve Blockd0582a62009-12-15 09:54:21 +0000430 SYMBOL_TYPE = kSymbolTag | kSeqStringTag,
431 ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
432 CONS_SYMBOL_TYPE = kSymbolTag | kConsStringTag,
433 CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
434 EXTERNAL_SYMBOL_TYPE = kSymbolTag | kExternalStringTag,
435 EXTERNAL_ASCII_SYMBOL_TYPE =
436 kAsciiStringTag | kSymbolTag | kExternalStringTag,
437 STRING_TYPE = kSeqStringTag,
438 ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
439 CONS_STRING_TYPE = kConsStringTag,
440 CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
441 EXTERNAL_STRING_TYPE = kExternalStringTag,
442 EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
443 PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000444
Leon Clarkee46be812010-01-19 14:06:41 +0000445 // Objects allocated in their own spaces (never in new space).
446 MAP_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000447 CODE_TYPE,
448 ODDBALL_TYPE,
449 JS_GLOBAL_PROPERTY_CELL_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000450
451 // "Data", objects that cannot contain non-map-word pointers to heap
452 // objects.
453 HEAP_NUMBER_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000454 PROXY_TYPE,
455 BYTE_ARRAY_TYPE,
456 PIXEL_ARRAY_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000457 EXTERNAL_BYTE_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE
Steve Block3ce2e202009-11-05 08:53:23 +0000458 EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
459 EXTERNAL_SHORT_ARRAY_TYPE,
460 EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
461 EXTERNAL_INT_ARRAY_TYPE,
462 EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000463 EXTERNAL_FLOAT_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE
464 FILLER_TYPE, // LAST_DATA_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000465
Leon Clarkee46be812010-01-19 14:06:41 +0000466 // Structs.
Steve Blocka7e24c12009-10-30 11:49:00 +0000467 ACCESSOR_INFO_TYPE,
468 ACCESS_CHECK_INFO_TYPE,
469 INTERCEPTOR_INFO_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000470 CALL_HANDLER_INFO_TYPE,
471 FUNCTION_TEMPLATE_INFO_TYPE,
472 OBJECT_TEMPLATE_INFO_TYPE,
473 SIGNATURE_INFO_TYPE,
474 TYPE_SWITCH_INFO_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000475 SCRIPT_TYPE,
Steve Block6ded16b2010-05-10 14:33:55 +0100476 CODE_CACHE_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000477#ifdef ENABLE_DEBUGGER_SUPPORT
478 DEBUG_INFO_TYPE,
479 BREAK_POINT_INFO_TYPE,
480#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000481
Leon Clarkee46be812010-01-19 14:06:41 +0000482 FIXED_ARRAY_TYPE,
483 SHARED_FUNCTION_INFO_TYPE,
484
485 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000486 JS_OBJECT_TYPE,
487 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
488 JS_GLOBAL_OBJECT_TYPE,
489 JS_BUILTINS_OBJECT_TYPE,
490 JS_GLOBAL_PROXY_TYPE,
491 JS_ARRAY_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000492 JS_REGEXP_TYPE, // LAST_JS_OBJECT_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000493
494 JS_FUNCTION_TYPE,
495
496 // Pseudo-types
Steve Blocka7e24c12009-10-30 11:49:00 +0000497 FIRST_TYPE = 0x0,
Steve Blocka7e24c12009-10-30 11:49:00 +0000498 LAST_TYPE = JS_FUNCTION_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000499 INVALID_TYPE = FIRST_TYPE - 1,
500 FIRST_NONSTRING_TYPE = MAP_TYPE,
501 // Boundaries for testing for an external array.
502 FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
503 LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
504 // Boundary for promotion to old data space/old pointer space.
505 LAST_DATA_TYPE = FILLER_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000506 // Boundaries for testing the type is a JavaScript "object". Note that
507 // function objects are not counted as objects, even though they are
508 // implemented as such; only values whose typeof is "object" are included.
509 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
510 LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
511};
512
513
514enum CompareResult {
515 LESS = -1,
516 EQUAL = 0,
517 GREATER = 1,
518
519 NOT_EQUAL = GREATER
520};
521
522
523#define DECL_BOOLEAN_ACCESSORS(name) \
524 inline bool name(); \
525 inline void set_##name(bool value); \
526
527
528#define DECL_ACCESSORS(name, type) \
529 inline type* name(); \
530 inline void set_##name(type* value, \
531 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
532
533
534class StringStream;
535class ObjectVisitor;
536
537struct ValueInfo : public Malloced {
538 ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
539 InstanceType type;
540 Object* ptr;
541 const char* str;
542 double number;
543};
544
545
546// A template-ized version of the IsXXX functions.
547template <class C> static inline bool Is(Object* obj);
548
549
550// Object is the abstract superclass for all classes in the
551// object hierarchy.
552// Object does not use any virtual functions to avoid the
553// allocation of the C++ vtable.
554// Since Smi and Failure are subclasses of Object no
555// data members can be present in Object.
556class Object BASE_EMBEDDED {
557 public:
558 // Type testing.
559 inline bool IsSmi();
560 inline bool IsHeapObject();
561 inline bool IsHeapNumber();
562 inline bool IsString();
563 inline bool IsSymbol();
Steve Blocka7e24c12009-10-30 11:49:00 +0000564 // See objects-inl.h for more details
565 inline bool IsSeqString();
Steve Blocka7e24c12009-10-30 11:49:00 +0000566 inline bool IsExternalString();
567 inline bool IsExternalTwoByteString();
568 inline bool IsExternalAsciiString();
569 inline bool IsSeqTwoByteString();
570 inline bool IsSeqAsciiString();
Steve Blocka7e24c12009-10-30 11:49:00 +0000571 inline bool IsConsString();
572
573 inline bool IsNumber();
574 inline bool IsByteArray();
575 inline bool IsPixelArray();
Steve Block3ce2e202009-11-05 08:53:23 +0000576 inline bool IsExternalArray();
577 inline bool IsExternalByteArray();
578 inline bool IsExternalUnsignedByteArray();
579 inline bool IsExternalShortArray();
580 inline bool IsExternalUnsignedShortArray();
581 inline bool IsExternalIntArray();
582 inline bool IsExternalUnsignedIntArray();
583 inline bool IsExternalFloatArray();
Steve Blocka7e24c12009-10-30 11:49:00 +0000584 inline bool IsFailure();
585 inline bool IsRetryAfterGC();
586 inline bool IsOutOfMemoryFailure();
587 inline bool IsException();
588 inline bool IsJSObject();
589 inline bool IsJSContextExtensionObject();
590 inline bool IsMap();
591 inline bool IsFixedArray();
592 inline bool IsDescriptorArray();
593 inline bool IsContext();
594 inline bool IsCatchContext();
595 inline bool IsGlobalContext();
596 inline bool IsJSFunction();
597 inline bool IsCode();
598 inline bool IsOddball();
599 inline bool IsSharedFunctionInfo();
600 inline bool IsJSValue();
601 inline bool IsStringWrapper();
602 inline bool IsProxy();
603 inline bool IsBoolean();
604 inline bool IsJSArray();
605 inline bool IsJSRegExp();
606 inline bool IsHashTable();
607 inline bool IsDictionary();
608 inline bool IsSymbolTable();
Steve Block6ded16b2010-05-10 14:33:55 +0100609 inline bool IsJSFunctionResultCache();
Steve Blocka7e24c12009-10-30 11:49:00 +0000610 inline bool IsCompilationCacheTable();
Steve Block6ded16b2010-05-10 14:33:55 +0100611 inline bool IsCodeCacheHashTable();
Steve Blocka7e24c12009-10-30 11:49:00 +0000612 inline bool IsMapCache();
613 inline bool IsPrimitive();
614 inline bool IsGlobalObject();
615 inline bool IsJSGlobalObject();
616 inline bool IsJSBuiltinsObject();
617 inline bool IsJSGlobalProxy();
618 inline bool IsUndetectableObject();
619 inline bool IsAccessCheckNeeded();
620 inline bool IsJSGlobalPropertyCell();
621
622 // Returns true if this object is an instance of the specified
623 // function template.
624 inline bool IsInstanceOf(FunctionTemplateInfo* type);
625
626 inline bool IsStruct();
627#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
628 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
629#undef DECLARE_STRUCT_PREDICATE
630
631 // Oddball testing.
632 INLINE(bool IsUndefined());
633 INLINE(bool IsTheHole());
634 INLINE(bool IsNull());
635 INLINE(bool IsTrue());
636 INLINE(bool IsFalse());
637
638 // Extract the number.
639 inline double Number();
640
641 inline bool HasSpecificClassOf(String* name);
642
643 Object* ToObject(); // ECMA-262 9.9.
644 Object* ToBoolean(); // ECMA-262 9.2.
645
646 // Convert to a JSObject if needed.
647 // global_context is used when creating wrapper object.
648 Object* ToObject(Context* global_context);
649
650 // Converts this to a Smi if possible.
651 // Failure is returned otherwise.
652 inline Object* ToSmi();
653
654 void Lookup(String* name, LookupResult* result);
655
656 // Property access.
657 inline Object* GetProperty(String* key);
658 inline Object* GetProperty(String* key, PropertyAttributes* attributes);
659 Object* GetPropertyWithReceiver(Object* receiver,
660 String* key,
661 PropertyAttributes* attributes);
662 Object* GetProperty(Object* receiver,
663 LookupResult* result,
664 String* key,
665 PropertyAttributes* attributes);
666 Object* GetPropertyWithCallback(Object* receiver,
667 Object* structure,
668 String* name,
669 Object* holder);
670 Object* GetPropertyWithDefinedGetter(Object* receiver,
671 JSFunction* getter);
672
673 inline Object* GetElement(uint32_t index);
674 Object* GetElementWithReceiver(Object* receiver, uint32_t index);
675
676 // Return the object's prototype (might be Heap::null_value()).
677 Object* GetPrototype();
678
679 // Returns true if this is a JSValue containing a string and the index is
680 // < the length of the string. Used to implement [] on strings.
681 inline bool IsStringObjectWithCharacterAt(uint32_t index);
682
683#ifdef DEBUG
684 // Prints this object with details.
685 void Print();
686 void PrintLn();
687 // Verifies the object.
688 void Verify();
689
690 // Verify a pointer is a valid object pointer.
691 static void VerifyPointer(Object* p);
692#endif
693
694 // Prints this object without details.
695 void ShortPrint();
696
697 // Prints this object without details to a message accumulator.
698 void ShortPrint(StringStream* accumulator);
699
700 // Casting: This cast is only needed to satisfy macros in objects-inl.h.
701 static Object* cast(Object* value) { return value; }
702
703 // Layout description.
704 static const int kHeaderSize = 0; // Object does not take up any space.
705
706 private:
707 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
708};
709
710
711// Smi represents integer Numbers that can be stored in 31 bits.
712// Smis are immediate which means they are NOT allocated in the heap.
Steve Blocka7e24c12009-10-30 11:49:00 +0000713// The this pointer has the following format: [31 bit signed int] 0
Steve Block3ce2e202009-11-05 08:53:23 +0000714// For long smis it has the following format:
715// [32 bit signed int] [31 bits zero padding] 0
716// Smi stands for small integer.
Steve Blocka7e24c12009-10-30 11:49:00 +0000717class Smi: public Object {
718 public:
719 // Returns the integer value.
720 inline int value();
721
722 // Convert a value to a Smi object.
723 static inline Smi* FromInt(int value);
724
725 static inline Smi* FromIntptr(intptr_t value);
726
727 // Returns whether value can be represented in a Smi.
728 static inline bool IsValid(intptr_t value);
729
Steve Blocka7e24c12009-10-30 11:49:00 +0000730 // Casting.
731 static inline Smi* cast(Object* object);
732
733 // Dispatched behavior.
734 void SmiPrint();
735 void SmiPrint(StringStream* accumulator);
736#ifdef DEBUG
737 void SmiVerify();
738#endif
739
Steve Block3ce2e202009-11-05 08:53:23 +0000740 static const int kMinValue = (-1 << (kSmiValueSize - 1));
741 static const int kMaxValue = -(kMinValue + 1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000742
743 private:
744 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
745};
746
747
748// Failure is used for reporting out of memory situations and
749// propagating exceptions through the runtime system. Failure objects
750// are transient and cannot occur as part of the object graph.
751//
752// Failures are a single word, encoded as follows:
753// +-------------------------+---+--+--+
Steve Block3ce2e202009-11-05 08:53:23 +0000754// |...rrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
Steve Blocka7e24c12009-10-30 11:49:00 +0000755// +-------------------------+---+--+--+
Steve Block3ce2e202009-11-05 08:53:23 +0000756// 7 6 4 32 10
757//
Steve Blocka7e24c12009-10-30 11:49:00 +0000758//
759// The low two bits, 0-1, are the failure tag, 11. The next two bits,
760// 2-3, are a failure type tag 'tt' with possible values:
761// 00 RETRY_AFTER_GC
762// 01 EXCEPTION
763// 10 INTERNAL_ERROR
764// 11 OUT_OF_MEMORY_EXCEPTION
765//
766// The next three bits, 4-6, are an allocation space tag 'sss'. The
767// allocation space tag is 000 for all failure types except
768// RETRY_AFTER_GC. For RETRY_AFTER_GC, the possible values are the
769// allocation spaces (the encoding is found in globals.h).
770//
771// The remaining bits is the size of the allocation request in units
772// of the pointer size, and is zeroed except for RETRY_AFTER_GC
773// failures. The 25 bits (on a 32 bit platform) gives a representable
774// range of 2^27 bytes (128MB).
775
776// Failure type tag info.
777const int kFailureTypeTagSize = 2;
778const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
779
780class Failure: public Object {
781 public:
782 // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
783 enum Type {
784 RETRY_AFTER_GC = 0,
785 EXCEPTION = 1, // Returning this marker tells the real exception
786 // is in Top::pending_exception.
787 INTERNAL_ERROR = 2,
788 OUT_OF_MEMORY_EXCEPTION = 3
789 };
790
791 inline Type type() const;
792
793 // Returns the space that needs to be collected for RetryAfterGC failures.
794 inline AllocationSpace allocation_space() const;
795
796 // Returns the number of bytes requested (up to the representable maximum)
797 // for RetryAfterGC failures.
798 inline int requested() const;
799
800 inline bool IsInternalError() const;
801 inline bool IsOutOfMemoryException() const;
802
803 static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
804 static inline Failure* RetryAfterGC(int requested_bytes); // NEW_SPACE
805 static inline Failure* Exception();
806 static inline Failure* InternalError();
807 static inline Failure* OutOfMemoryException();
808 // Casting.
809 static inline Failure* cast(Object* object);
810
811 // Dispatched behavior.
812 void FailurePrint();
813 void FailurePrint(StringStream* accumulator);
814#ifdef DEBUG
815 void FailureVerify();
816#endif
817
818 private:
Steve Block3ce2e202009-11-05 08:53:23 +0000819 inline intptr_t value() const;
820 static inline Failure* Construct(Type type, intptr_t value = 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000821
822 DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
823};
824
825
826// Heap objects typically have a map pointer in their first word. However,
827// during GC other data (eg, mark bits, forwarding addresses) is sometimes
828// encoded in the first word. The class MapWord is an abstraction of the
829// value in a heap object's first word.
830class MapWord BASE_EMBEDDED {
831 public:
832 // Normal state: the map word contains a map pointer.
833
834 // Create a map word from a map pointer.
835 static inline MapWord FromMap(Map* map);
836
837 // View this map word as a map pointer.
838 inline Map* ToMap();
839
840
841 // Scavenge collection: the map word of live objects in the from space
842 // contains a forwarding address (a heap object pointer in the to space).
843
844 // True if this map word is a forwarding address for a scavenge
845 // collection. Only valid during a scavenge collection (specifically,
846 // when all map words are heap object pointers, ie. not during a full GC).
847 inline bool IsForwardingAddress();
848
849 // Create a map word from a forwarding address.
850 static inline MapWord FromForwardingAddress(HeapObject* object);
851
852 // View this map word as a forwarding address.
853 inline HeapObject* ToForwardingAddress();
854
Steve Blocka7e24c12009-10-30 11:49:00 +0000855 // Marking phase of full collection: the map word of live objects is
856 // marked, and may be marked as overflowed (eg, the object is live, its
857 // children have not been visited, and it does not fit in the marking
858 // stack).
859
860 // True if this map word's mark bit is set.
861 inline bool IsMarked();
862
863 // Return this map word but with its mark bit set.
864 inline void SetMark();
865
866 // Return this map word but with its mark bit cleared.
867 inline void ClearMark();
868
869 // True if this map word's overflow bit is set.
870 inline bool IsOverflowed();
871
872 // Return this map word but with its overflow bit set.
873 inline void SetOverflow();
874
875 // Return this map word but with its overflow bit cleared.
876 inline void ClearOverflow();
877
878
879 // Compacting phase of a full compacting collection: the map word of live
880 // objects contains an encoding of the original map address along with the
881 // forwarding address (represented as an offset from the first live object
882 // in the same page as the (old) object address).
883
884 // Create a map word from a map address and a forwarding address offset.
885 static inline MapWord EncodeAddress(Address map_address, int offset);
886
887 // Return the map address encoded in this map word.
888 inline Address DecodeMapAddress(MapSpace* map_space);
889
890 // Return the forwarding offset encoded in this map word.
891 inline int DecodeOffset();
892
893
894 // During serialization: the map word is used to hold an encoded
895 // address, and possibly a mark bit (set and cleared with SetMark
896 // and ClearMark).
897
898 // Create a map word from an encoded address.
899 static inline MapWord FromEncodedAddress(Address address);
900
901 inline Address ToEncodedAddress();
902
903 // Bits used by the marking phase of the garbage collector.
904 //
905 // The first word of a heap object is normally a map pointer. The last two
906 // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
907 // mark an object as live and/or overflowed:
908 // last bit = 0, marked as alive
909 // second bit = 1, overflowed
910 // An object is only marked as overflowed when it is marked as live while
911 // the marking stack is overflowed.
912 static const int kMarkingBit = 0; // marking bit
913 static const int kMarkingMask = (1 << kMarkingBit); // marking mask
914 static const int kOverflowBit = 1; // overflow bit
915 static const int kOverflowMask = (1 << kOverflowBit); // overflow mask
916
Leon Clarkee46be812010-01-19 14:06:41 +0000917 // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
918 // used.
Steve Blocka7e24c12009-10-30 11:49:00 +0000919 // +-----------------+------------------+-----------------+
920 // |forwarding offset|page offset of map|page index of map|
921 // +-----------------+------------------+-----------------+
Leon Clarkee46be812010-01-19 14:06:41 +0000922 // ^ ^ ^
923 // | | |
924 // | | kMapPageIndexBits
925 // | kMapPageOffsetBits
926 // kForwardingOffsetBits
927 static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
928 static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
929#ifdef V8_HOST_ARCH_64_BIT
930 static const int kMapPageIndexBits = 16;
931#else
932 // Use all the 32-bits to encode on a 32-bit platform.
933 static const int kMapPageIndexBits =
934 32 - (kMapPageOffsetBits + kForwardingOffsetBits);
935#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000936
937 static const int kMapPageIndexShift = 0;
938 static const int kMapPageOffsetShift =
939 kMapPageIndexShift + kMapPageIndexBits;
940 static const int kForwardingOffsetShift =
941 kMapPageOffsetShift + kMapPageOffsetBits;
942
Leon Clarkee46be812010-01-19 14:06:41 +0000943 // Bit masks covering the different parts the encoding.
944 static const uintptr_t kMapPageIndexMask =
Steve Blocka7e24c12009-10-30 11:49:00 +0000945 (1 << kMapPageOffsetShift) - 1;
Leon Clarkee46be812010-01-19 14:06:41 +0000946 static const uintptr_t kMapPageOffsetMask =
Steve Blocka7e24c12009-10-30 11:49:00 +0000947 ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
Leon Clarkee46be812010-01-19 14:06:41 +0000948 static const uintptr_t kForwardingOffsetMask =
Steve Blocka7e24c12009-10-30 11:49:00 +0000949 ~(kMapPageIndexMask | kMapPageOffsetMask);
950
951 private:
952 // HeapObject calls the private constructor and directly reads the value.
953 friend class HeapObject;
954
955 explicit MapWord(uintptr_t value) : value_(value) {}
956
957 uintptr_t value_;
958};
959
960
961// HeapObject is the superclass for all classes describing heap allocated
962// objects.
963class HeapObject: public Object {
964 public:
965 // [map]: Contains a map which contains the object's reflective
966 // information.
967 inline Map* map();
968 inline void set_map(Map* value);
969
970 // During garbage collection, the map word of a heap object does not
971 // necessarily contain a map pointer.
972 inline MapWord map_word();
973 inline void set_map_word(MapWord map_word);
974
975 // Converts an address to a HeapObject pointer.
976 static inline HeapObject* FromAddress(Address address);
977
978 // Returns the address of this HeapObject.
979 inline Address address();
980
981 // Iterates over pointers contained in the object (including the Map)
982 void Iterate(ObjectVisitor* v);
983
984 // Iterates over all pointers contained in the object except the
985 // first map pointer. The object type is given in the first
986 // parameter. This function does not access the map pointer in the
987 // object, and so is safe to call while the map pointer is modified.
988 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
989
990 // This method only applies to struct objects. Iterates over all the fields
991 // of this struct.
992 void IterateStructBody(int object_size, ObjectVisitor* v);
993
994 // Returns the heap object's size in bytes
995 inline int Size();
996
997 // Given a heap object's map pointer, returns the heap size in bytes
998 // Useful when the map pointer field is used for other purposes.
999 // GC internal.
1000 inline int SizeFromMap(Map* map);
1001
1002 // Support for the marking heap objects during the marking phase of GC.
1003 // True if the object is marked live.
1004 inline bool IsMarked();
1005
1006 // Mutate this object's map pointer to indicate that the object is live.
1007 inline void SetMark();
1008
1009 // Mutate this object's map pointer to remove the indication that the
1010 // object is live (ie, partially restore the map pointer).
1011 inline void ClearMark();
1012
1013 // True if this object is marked as overflowed. Overflowed objects have
1014 // been reached and marked during marking of the heap, but their children
1015 // have not necessarily been marked and they have not been pushed on the
1016 // marking stack.
1017 inline bool IsOverflowed();
1018
1019 // Mutate this object's map pointer to indicate that the object is
1020 // overflowed.
1021 inline void SetOverflow();
1022
1023 // Mutate this object's map pointer to remove the indication that the
1024 // object is overflowed (ie, partially restore the map pointer).
1025 inline void ClearOverflow();
1026
1027 // Returns the field at offset in obj, as a read/write Object* reference.
1028 // Does no checking, and is safe to use during GC, while maps are invalid.
1029 // Does not update remembered sets, so should only be assigned to
1030 // during marking GC.
1031 static inline Object** RawField(HeapObject* obj, int offset);
1032
1033 // Casting.
1034 static inline HeapObject* cast(Object* obj);
1035
Leon Clarke4515c472010-02-03 11:58:03 +00001036 // Return the write barrier mode for this. Callers of this function
1037 // must be able to present a reference to an AssertNoAllocation
1038 // object as a sign that they are not going to use this function
1039 // from code that allocates and thus invalidates the returned write
1040 // barrier mode.
1041 inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
Steve Blocka7e24c12009-10-30 11:49:00 +00001042
1043 // Dispatched behavior.
1044 void HeapObjectShortPrint(StringStream* accumulator);
1045#ifdef DEBUG
1046 void HeapObjectPrint();
1047 void HeapObjectVerify();
1048 inline void VerifyObjectField(int offset);
1049
1050 void PrintHeader(const char* id);
1051
1052 // Verify a pointer is a valid HeapObject pointer that points to object
1053 // areas in the heap.
1054 static void VerifyHeapPointer(Object* p);
1055#endif
1056
1057 // Layout description.
1058 // First field in a heap object is map.
1059 static const int kMapOffset = Object::kHeaderSize;
1060 static const int kHeaderSize = kMapOffset + kPointerSize;
1061
1062 STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1063
1064 protected:
1065 // helpers for calling an ObjectVisitor to iterate over pointers in the
1066 // half-open range [start, end) specified as integer offsets
1067 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1068 // as above, for the single element at "offset"
1069 inline void IteratePointer(ObjectVisitor* v, int offset);
1070
1071 // Computes the object size from the map.
1072 // Should only be used from SizeFromMap.
1073 int SlowSizeFromMap(Map* map);
1074
1075 private:
1076 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1077};
1078
1079
1080// The HeapNumber class describes heap allocated numbers that cannot be
1081// represented in a Smi (small integer)
1082class HeapNumber: public HeapObject {
1083 public:
1084 // [value]: number value.
1085 inline double value();
1086 inline void set_value(double value);
1087
1088 // Casting.
1089 static inline HeapNumber* cast(Object* obj);
1090
1091 // Dispatched behavior.
1092 Object* HeapNumberToBoolean();
1093 void HeapNumberPrint();
1094 void HeapNumberPrint(StringStream* accumulator);
1095#ifdef DEBUG
1096 void HeapNumberVerify();
1097#endif
1098
Steve Block6ded16b2010-05-10 14:33:55 +01001099 inline int get_exponent();
1100 inline int get_sign();
1101
Steve Blocka7e24c12009-10-30 11:49:00 +00001102 // Layout description.
1103 static const int kValueOffset = HeapObject::kHeaderSize;
1104 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1105 // is a mixture of sign, exponent and mantissa. Our current platforms are all
1106 // little endian apart from non-EABI arm which is little endian with big
1107 // endian floating point word ordering!
Steve Block3ce2e202009-11-05 08:53:23 +00001108#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
Steve Blocka7e24c12009-10-30 11:49:00 +00001109 static const int kMantissaOffset = kValueOffset;
1110 static const int kExponentOffset = kValueOffset + 4;
1111#else
1112 static const int kMantissaOffset = kValueOffset + 4;
1113 static const int kExponentOffset = kValueOffset;
1114# define BIG_ENDIAN_FLOATING_POINT 1
1115#endif
1116 static const int kSize = kValueOffset + kDoubleSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00001117 static const uint32_t kSignMask = 0x80000000u;
1118 static const uint32_t kExponentMask = 0x7ff00000u;
1119 static const uint32_t kMantissaMask = 0xfffffu;
Steve Block6ded16b2010-05-10 14:33:55 +01001120 static const int kMantissaBits = 52;
1121 static const int KExponentBits = 11;
Steve Blocka7e24c12009-10-30 11:49:00 +00001122 static const int kExponentBias = 1023;
1123 static const int kExponentShift = 20;
1124 static const int kMantissaBitsInTopWord = 20;
1125 static const int kNonMantissaBitsInTopWord = 12;
1126
1127 private:
1128 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1129};
1130
1131
1132// The JSObject describes real heap allocated JavaScript objects with
1133// properties.
1134// Note that the map of JSObject changes during execution to enable inline
1135// caching.
1136class JSObject: public HeapObject {
1137 public:
1138 enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1139 enum ElementsKind {
1140 FAST_ELEMENTS,
1141 DICTIONARY_ELEMENTS,
Steve Block3ce2e202009-11-05 08:53:23 +00001142 PIXEL_ELEMENTS,
1143 EXTERNAL_BYTE_ELEMENTS,
1144 EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1145 EXTERNAL_SHORT_ELEMENTS,
1146 EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1147 EXTERNAL_INT_ELEMENTS,
1148 EXTERNAL_UNSIGNED_INT_ELEMENTS,
1149 EXTERNAL_FLOAT_ELEMENTS
Steve Blocka7e24c12009-10-30 11:49:00 +00001150 };
1151
1152 // [properties]: Backing storage for properties.
1153 // properties is a FixedArray in the fast case, and a Dictionary in the
1154 // slow case.
1155 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1156 inline void initialize_properties();
1157 inline bool HasFastProperties();
1158 inline StringDictionary* property_dictionary(); // Gets slow properties.
1159
1160 // [elements]: The elements (properties with names that are integers).
1161 // elements is a FixedArray in the fast case, and a Dictionary in the slow
1162 // case or a PixelArray in a special case.
1163 DECL_ACCESSORS(elements, Array) // Get and set fast elements.
1164 inline void initialize_elements();
1165 inline ElementsKind GetElementsKind();
1166 inline bool HasFastElements();
1167 inline bool HasDictionaryElements();
1168 inline bool HasPixelElements();
Steve Block3ce2e202009-11-05 08:53:23 +00001169 inline bool HasExternalArrayElements();
1170 inline bool HasExternalByteElements();
1171 inline bool HasExternalUnsignedByteElements();
1172 inline bool HasExternalShortElements();
1173 inline bool HasExternalUnsignedShortElements();
1174 inline bool HasExternalIntElements();
1175 inline bool HasExternalUnsignedIntElements();
1176 inline bool HasExternalFloatElements();
Steve Block6ded16b2010-05-10 14:33:55 +01001177 inline bool AllowsSetElementsLength();
Steve Blocka7e24c12009-10-30 11:49:00 +00001178 inline NumberDictionary* element_dictionary(); // Gets slow elements.
1179
1180 // Collects elements starting at index 0.
1181 // Undefined values are placed after non-undefined values.
1182 // Returns the number of non-undefined values.
1183 Object* PrepareElementsForSort(uint32_t limit);
1184 // As PrepareElementsForSort, but only on objects where elements is
1185 // a dictionary, and it will stay a dictionary.
1186 Object* PrepareSlowElementsForSort(uint32_t limit);
1187
1188 Object* SetProperty(String* key,
1189 Object* value,
1190 PropertyAttributes attributes);
1191 Object* SetProperty(LookupResult* result,
1192 String* key,
1193 Object* value,
1194 PropertyAttributes attributes);
1195 Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1196 String* name,
1197 Object* value);
1198 Object* SetPropertyWithCallback(Object* structure,
1199 String* name,
1200 Object* value,
1201 JSObject* holder);
1202 Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1203 Object* value);
1204 Object* SetPropertyWithInterceptor(String* name,
1205 Object* value,
1206 PropertyAttributes attributes);
1207 Object* SetPropertyPostInterceptor(String* name,
1208 Object* value,
1209 PropertyAttributes attributes);
1210 Object* IgnoreAttributesAndSetLocalProperty(String* key,
1211 Object* value,
1212 PropertyAttributes attributes);
1213
1214 // Retrieve a value in a normalized object given a lookup result.
1215 // Handles the special representation of JS global objects.
1216 Object* GetNormalizedProperty(LookupResult* result);
1217
1218 // Sets the property value in a normalized object given a lookup result.
1219 // Handles the special representation of JS global objects.
1220 Object* SetNormalizedProperty(LookupResult* result, Object* value);
1221
1222 // Sets the property value in a normalized object given (key, value, details).
1223 // Handles the special representation of JS global objects.
1224 Object* SetNormalizedProperty(String* name,
1225 Object* value,
1226 PropertyDetails details);
1227
1228 // Deletes the named property in a normalized object.
1229 Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1230
Steve Blocka7e24c12009-10-30 11:49:00 +00001231 // Returns the class name ([[Class]] property in the specification).
1232 String* class_name();
1233
1234 // Returns the constructor name (the name (possibly, inferred name) of the
1235 // function that was used to instantiate the object).
1236 String* constructor_name();
1237
1238 // Retrieve interceptors.
1239 InterceptorInfo* GetNamedInterceptor();
1240 InterceptorInfo* GetIndexedInterceptor();
1241
1242 inline PropertyAttributes GetPropertyAttribute(String* name);
1243 PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1244 String* name);
1245 PropertyAttributes GetLocalPropertyAttribute(String* name);
1246
1247 Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1248 PropertyAttributes attributes);
1249 Object* LookupAccessor(String* name, bool is_getter);
1250
Leon Clarkef7060e22010-06-03 12:02:55 +01001251 Object* DefineAccessor(AccessorInfo* info);
1252
Steve Blocka7e24c12009-10-30 11:49:00 +00001253 // Used from Object::GetProperty().
1254 Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1255 LookupResult* result,
1256 String* name,
1257 PropertyAttributes* attributes);
1258 Object* GetPropertyWithInterceptor(JSObject* receiver,
1259 String* name,
1260 PropertyAttributes* attributes);
1261 Object* GetPropertyPostInterceptor(JSObject* receiver,
1262 String* name,
1263 PropertyAttributes* attributes);
Steve Blockd0582a62009-12-15 09:54:21 +00001264 Object* GetLocalPropertyPostInterceptor(JSObject* receiver,
1265 String* name,
1266 PropertyAttributes* attributes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001267
1268 // Returns true if this is an instance of an api function and has
1269 // been modified since it was created. May give false positives.
1270 bool IsDirty();
1271
1272 bool HasProperty(String* name) {
1273 return GetPropertyAttribute(name) != ABSENT;
1274 }
1275
1276 // Can cause a GC if it hits an interceptor.
1277 bool HasLocalProperty(String* name) {
1278 return GetLocalPropertyAttribute(name) != ABSENT;
1279 }
1280
Steve Blockd0582a62009-12-15 09:54:21 +00001281 // If the receiver is a JSGlobalProxy this method will return its prototype,
1282 // otherwise the result is the receiver itself.
1283 inline Object* BypassGlobalProxy();
1284
1285 // Accessors for hidden properties object.
1286 //
1287 // Hidden properties are not local properties of the object itself.
1288 // Instead they are stored on an auxiliary JSObject stored as a local
1289 // property with a special name Heap::hidden_symbol(). But if the
1290 // receiver is a JSGlobalProxy then the auxiliary object is a property
1291 // of its prototype.
1292 //
1293 // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1294 // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1295 // holder.
1296 //
1297 // These accessors do not touch interceptors or accessors.
1298 inline bool HasHiddenPropertiesObject();
1299 inline Object* GetHiddenPropertiesObject();
1300 inline Object* SetHiddenPropertiesObject(Object* hidden_obj);
1301
Steve Blocka7e24c12009-10-30 11:49:00 +00001302 Object* DeleteProperty(String* name, DeleteMode mode);
1303 Object* DeleteElement(uint32_t index, DeleteMode mode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001304
1305 // Tests for the fast common case for property enumeration.
1306 bool IsSimpleEnum();
1307
1308 // Do we want to keep the elements in fast case when increasing the
1309 // capacity?
1310 bool ShouldConvertToSlowElements(int new_capacity);
1311 // Returns true if the backing storage for the slow-case elements of
1312 // this object takes up nearly as much space as a fast-case backing
1313 // storage would. In that case the JSObject should have fast
1314 // elements.
1315 bool ShouldConvertToFastElements();
1316
1317 // Return the object's prototype (might be Heap::null_value()).
1318 inline Object* GetPrototype();
1319
Andrei Popescu402d9372010-02-26 13:31:12 +00001320 // Set the object's prototype (only JSObject and null are allowed).
1321 Object* SetPrototype(Object* value, bool skip_hidden_prototypes);
1322
Steve Blocka7e24c12009-10-30 11:49:00 +00001323 // Tells whether the index'th element is present.
1324 inline bool HasElement(uint32_t index);
1325 bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1326 bool HasLocalElement(uint32_t index);
1327
1328 bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1329 bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1330
1331 Object* SetFastElement(uint32_t index, Object* value);
1332
1333 // Set the index'th array element.
1334 // A Failure object is returned if GC is needed.
1335 Object* SetElement(uint32_t index, Object* value);
1336
1337 // Returns the index'th element.
1338 // The undefined object if index is out of bounds.
1339 Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1340
1341 void SetFastElements(FixedArray* elements);
1342 Object* SetSlowElements(Object* length);
1343
1344 // Lookup interceptors are used for handling properties controlled by host
1345 // objects.
1346 inline bool HasNamedInterceptor();
1347 inline bool HasIndexedInterceptor();
1348
1349 // Support functions for v8 api (needed for correct interceptor behavior).
1350 bool HasRealNamedProperty(String* key);
1351 bool HasRealElementProperty(uint32_t index);
1352 bool HasRealNamedCallbackProperty(String* key);
1353
1354 // Initializes the array to a certain length
1355 Object* SetElementsLength(Object* length);
1356
1357 // Get the header size for a JSObject. Used to compute the index of
1358 // internal fields as well as the number of internal fields.
1359 inline int GetHeaderSize();
1360
1361 inline int GetInternalFieldCount();
1362 inline Object* GetInternalField(int index);
1363 inline void SetInternalField(int index, Object* value);
1364
1365 // Lookup a property. If found, the result is valid and has
1366 // detailed information.
1367 void LocalLookup(String* name, LookupResult* result);
1368 void Lookup(String* name, LookupResult* result);
1369
1370 // The following lookup functions skip interceptors.
1371 void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1372 void LookupRealNamedProperty(String* name, LookupResult* result);
1373 void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1374 void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
Leon Clarkef7060e22010-06-03 12:02:55 +01001375 bool SetElementWithCallbackSetterInPrototypes(uint32_t index, Object* value);
Steve Blocka7e24c12009-10-30 11:49:00 +00001376 void LookupCallback(String* name, LookupResult* result);
1377
1378 // Returns the number of properties on this object filtering out properties
1379 // with the specified attributes (ignoring interceptors).
1380 int NumberOfLocalProperties(PropertyAttributes filter);
1381 // Returns the number of enumerable properties (ignoring interceptors).
1382 int NumberOfEnumProperties();
1383 // Fill in details for properties into storage starting at the specified
1384 // index.
1385 void GetLocalPropertyNames(FixedArray* storage, int index);
1386
1387 // Returns the number of properties on this object filtering out properties
1388 // with the specified attributes (ignoring interceptors).
1389 int NumberOfLocalElements(PropertyAttributes filter);
1390 // Returns the number of enumerable elements (ignoring interceptors).
1391 int NumberOfEnumElements();
1392 // Returns the number of elements on this object filtering out elements
1393 // with the specified attributes (ignoring interceptors).
1394 int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1395 // Count and fill in the enumerable elements into storage.
1396 // (storage->length() == NumberOfEnumElements()).
1397 // If storage is NULL, will count the elements without adding
1398 // them to any storage.
1399 // Returns the number of enumerable elements.
1400 int GetEnumElementKeys(FixedArray* storage);
1401
1402 // Add a property to a fast-case object using a map transition to
1403 // new_map.
1404 Object* AddFastPropertyUsingMap(Map* new_map,
1405 String* name,
1406 Object* value);
1407
1408 // Add a constant function property to a fast-case object.
1409 // This leaves a CONSTANT_TRANSITION in the old map, and
1410 // if it is called on a second object with this map, a
1411 // normal property is added instead, with a map transition.
1412 // This avoids the creation of many maps with the same constant
1413 // function, all orphaned.
1414 Object* AddConstantFunctionProperty(String* name,
1415 JSFunction* function,
1416 PropertyAttributes attributes);
1417
1418 Object* ReplaceSlowProperty(String* name,
1419 Object* value,
1420 PropertyAttributes attributes);
1421
1422 // Converts a descriptor of any other type to a real field,
1423 // backed by the properties array. Descriptors of visible
1424 // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1425 // Converts the descriptor on the original object's map to a
1426 // map transition, and the the new field is on the object's new map.
1427 Object* ConvertDescriptorToFieldAndMapTransition(
1428 String* name,
1429 Object* new_value,
1430 PropertyAttributes attributes);
1431
1432 // Converts a descriptor of any other type to a real field,
1433 // backed by the properties array. Descriptors of visible
1434 // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1435 Object* ConvertDescriptorToField(String* name,
1436 Object* new_value,
1437 PropertyAttributes attributes);
1438
1439 // Add a property to a fast-case object.
1440 Object* AddFastProperty(String* name,
1441 Object* value,
1442 PropertyAttributes attributes);
1443
1444 // Add a property to a slow-case object.
1445 Object* AddSlowProperty(String* name,
1446 Object* value,
1447 PropertyAttributes attributes);
1448
1449 // Add a property to an object.
1450 Object* AddProperty(String* name,
1451 Object* value,
1452 PropertyAttributes attributes);
1453
1454 // Convert the object to use the canonical dictionary
1455 // representation. If the object is expected to have additional properties
1456 // added this number can be indicated to have the backing store allocated to
1457 // an initial capacity for holding these properties.
1458 Object* NormalizeProperties(PropertyNormalizationMode mode,
1459 int expected_additional_properties);
1460 Object* NormalizeElements();
1461
1462 // Transform slow named properties to fast variants.
1463 // Returns failure if allocation failed.
1464 Object* TransformToFastProperties(int unused_property_fields);
1465
1466 // Access fast-case object properties at index.
1467 inline Object* FastPropertyAt(int index);
1468 inline Object* FastPropertyAtPut(int index, Object* value);
1469
1470 // Access to in object properties.
1471 inline Object* InObjectPropertyAt(int index);
1472 inline Object* InObjectPropertyAtPut(int index,
1473 Object* value,
1474 WriteBarrierMode mode
1475 = UPDATE_WRITE_BARRIER);
1476
1477 // initializes the body after properties slot, properties slot is
1478 // initialized by set_properties
1479 // Note: this call does not update write barrier, it is caller's
1480 // reponsibility to ensure that *v* can be collected without WB here.
1481 inline void InitializeBody(int object_size);
1482
1483 // Check whether this object references another object
1484 bool ReferencesObject(Object* obj);
1485
1486 // Casting.
1487 static inline JSObject* cast(Object* obj);
1488
1489 // Dispatched behavior.
1490 void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1491 void JSObjectShortPrint(StringStream* accumulator);
1492#ifdef DEBUG
1493 void JSObjectPrint();
1494 void JSObjectVerify();
1495 void PrintProperties();
1496 void PrintElements();
1497
1498 // Structure for collecting spill information about JSObjects.
1499 class SpillInformation {
1500 public:
1501 void Clear();
1502 void Print();
1503 int number_of_objects_;
1504 int number_of_objects_with_fast_properties_;
1505 int number_of_objects_with_fast_elements_;
1506 int number_of_fast_used_fields_;
1507 int number_of_fast_unused_fields_;
1508 int number_of_slow_used_properties_;
1509 int number_of_slow_unused_properties_;
1510 int number_of_fast_used_elements_;
1511 int number_of_fast_unused_elements_;
1512 int number_of_slow_used_elements_;
1513 int number_of_slow_unused_elements_;
1514 };
1515
1516 void IncrementSpillStatistics(SpillInformation* info);
1517#endif
1518 Object* SlowReverseLookup(Object* value);
1519
Leon Clarkee46be812010-01-19 14:06:41 +00001520 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1521 // Also maximal value of JSArray's length property.
1522 static const uint32_t kMaxElementCount = 0xffffffffu;
1523
Steve Blocka7e24c12009-10-30 11:49:00 +00001524 static const uint32_t kMaxGap = 1024;
1525 static const int kMaxFastElementsLength = 5000;
1526 static const int kInitialMaxFastElementArray = 100000;
1527 static const int kMaxFastProperties = 8;
1528 static const int kMaxInstanceSize = 255 * kPointerSize;
1529 // When extending the backing storage for property values, we increase
1530 // its size by more than the 1 entry necessary, so sequentially adding fields
1531 // to the same object requires fewer allocations and copies.
1532 static const int kFieldsAdded = 3;
1533
1534 // Layout description.
1535 static const int kPropertiesOffset = HeapObject::kHeaderSize;
1536 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1537 static const int kHeaderSize = kElementsOffset + kPointerSize;
1538
1539 STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1540
1541 Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1542
1543 private:
Leon Clarkef7060e22010-06-03 12:02:55 +01001544 Object* GetElementWithCallback(Object* receiver,
1545 Object* structure,
1546 uint32_t index,
1547 Object* holder);
1548 Object* SetElementWithCallback(Object* structure,
1549 uint32_t index,
1550 Object* value,
1551 JSObject* holder);
Steve Blocka7e24c12009-10-30 11:49:00 +00001552 Object* SetElementWithInterceptor(uint32_t index, Object* value);
1553 Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1554
1555 Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1556
1557 Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1558 Object* DeletePropertyWithInterceptor(String* name);
1559
1560 Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1561 Object* DeleteElementWithInterceptor(uint32_t index);
1562
1563 PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1564 String* name,
1565 bool continue_search);
1566 PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1567 String* name,
1568 bool continue_search);
1569 PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1570 Object* receiver,
1571 LookupResult* result,
1572 String* name,
1573 bool continue_search);
1574 PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1575 LookupResult* result,
1576 String* name,
1577 bool continue_search);
1578
1579 // Returns true if most of the elements backing storage is used.
1580 bool HasDenseElements();
1581
Leon Clarkef7060e22010-06-03 12:02:55 +01001582 bool CanSetCallback(String* name);
1583 Object* SetElementCallback(uint32_t index,
1584 Object* structure,
1585 PropertyAttributes attributes);
1586 Object* SetPropertyCallback(String* name,
1587 Object* structure,
1588 PropertyAttributes attributes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001589 Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1590
1591 void LookupInDescriptor(String* name, LookupResult* result);
1592
1593 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1594};
1595
1596
1597// Abstract super class arrays. It provides length behavior.
1598class Array: public HeapObject {
1599 public:
1600 // [length]: length of the array.
1601 inline int length();
1602 inline void set_length(int value);
1603
1604 // Convert an object to an array index.
1605 // Returns true if the conversion succeeded.
1606 static inline bool IndexFromObject(Object* object, uint32_t* index);
1607
1608 // Layout descriptor.
1609 static const int kLengthOffset = HeapObject::kHeaderSize;
1610
1611 protected:
1612 // No code should use the Array class directly, only its subclasses.
1613 // Use the kHeaderSize of the appropriate subclass, which may be aligned.
1614 static const int kHeaderSize = kLengthOffset + kIntSize;
1615 static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
1616
1617 private:
1618 DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
1619};
1620
1621
1622// FixedArray describes fixed sized arrays where element
1623// type is Object*.
1624
1625class FixedArray: public Array {
1626 public:
1627
1628 // Setter and getter for elements.
1629 inline Object* get(int index);
1630 // Setter that uses write barrier.
1631 inline void set(int index, Object* value);
1632
1633 // Setter that doesn't need write barrier).
1634 inline void set(int index, Smi* value);
1635 // Setter with explicit barrier mode.
1636 inline void set(int index, Object* value, WriteBarrierMode mode);
1637
1638 // Setters for frequently used oddballs located in old space.
1639 inline void set_undefined(int index);
1640 inline void set_null(int index);
1641 inline void set_the_hole(int index);
1642
Steve Block6ded16b2010-05-10 14:33:55 +01001643 // Gives access to raw memory which stores the array's data.
1644 inline Object** data_start();
1645
Steve Blocka7e24c12009-10-30 11:49:00 +00001646 // Copy operations.
1647 inline Object* Copy();
1648 Object* CopySize(int new_length);
1649
1650 // Add the elements of a JSArray to this FixedArray.
1651 Object* AddKeysFromJSArray(JSArray* array);
1652
1653 // Compute the union of this and other.
1654 Object* UnionOfKeys(FixedArray* other);
1655
1656 // Copy a sub array from the receiver to dest.
1657 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1658
1659 // Garbage collection support.
1660 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1661
1662 // Code Generation support.
1663 static int OffsetOfElementAt(int index) { return SizeFor(index); }
1664
1665 // Casting.
1666 static inline FixedArray* cast(Object* obj);
1667
Leon Clarkee46be812010-01-19 14:06:41 +00001668 static const int kHeaderSize = Array::kAlignedSize;
1669
1670 // Maximal allowed size, in bytes, of a single FixedArray.
1671 // Prevents overflowing size computations, as well as extreme memory
1672 // consumption.
1673 static const int kMaxSize = 512 * MB;
1674 // Maximally allowed length of a FixedArray.
1675 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00001676
1677 // Dispatched behavior.
1678 int FixedArraySize() { return SizeFor(length()); }
1679 void FixedArrayIterateBody(ObjectVisitor* v);
1680#ifdef DEBUG
1681 void FixedArrayPrint();
1682 void FixedArrayVerify();
1683 // Checks if two FixedArrays have identical contents.
1684 bool IsEqualTo(FixedArray* other);
1685#endif
1686
1687 // Swap two elements in a pair of arrays. If this array and the
1688 // numbers array are the same object, the elements are only swapped
1689 // once.
1690 void SwapPairs(FixedArray* numbers, int i, int j);
1691
1692 // Sort prefix of this array and the numbers array as pairs wrt. the
1693 // numbers. If the numbers array and the this array are the same
1694 // object, the prefix of this array is sorted.
1695 void SortPairs(FixedArray* numbers, uint32_t len);
1696
1697 protected:
Leon Clarke4515c472010-02-03 11:58:03 +00001698 // Set operation on FixedArray without using write barriers. Can
1699 // only be used for storing old space objects or smis.
Steve Blocka7e24c12009-10-30 11:49:00 +00001700 static inline void fast_set(FixedArray* array, int index, Object* value);
1701
1702 private:
1703 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1704};
1705
1706
1707// DescriptorArrays are fixed arrays used to hold instance descriptors.
1708// The format of the these objects is:
1709// [0]: point to a fixed array with (value, detail) pairs.
1710// [1]: next enumeration index (Smi), or pointer to small fixed array:
1711// [0]: next enumeration index (Smi)
1712// [1]: pointer to fixed array with enum cache
1713// [2]: first key
1714// [length() - 1]: last key
1715//
1716class DescriptorArray: public FixedArray {
1717 public:
1718 // Is this the singleton empty_descriptor_array?
1719 inline bool IsEmpty();
Leon Clarkee46be812010-01-19 14:06:41 +00001720
Steve Blocka7e24c12009-10-30 11:49:00 +00001721 // Returns the number of descriptors in the array.
1722 int number_of_descriptors() {
1723 return IsEmpty() ? 0 : length() - kFirstIndex;
1724 }
1725
1726 int NextEnumerationIndex() {
1727 if (IsEmpty()) return PropertyDetails::kInitialIndex;
1728 Object* obj = get(kEnumerationIndexIndex);
1729 if (obj->IsSmi()) {
1730 return Smi::cast(obj)->value();
1731 } else {
1732 Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1733 return Smi::cast(index)->value();
1734 }
1735 }
1736
1737 // Set next enumeration index and flush any enum cache.
1738 void SetNextEnumerationIndex(int value) {
1739 if (!IsEmpty()) {
1740 fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1741 }
1742 }
1743 bool HasEnumCache() {
1744 return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1745 }
1746
1747 Object* GetEnumCache() {
1748 ASSERT(HasEnumCache());
1749 FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1750 return bridge->get(kEnumCacheBridgeCacheIndex);
1751 }
1752
1753 // Initialize or change the enum cache,
1754 // using the supplied storage for the small "bridge".
1755 void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1756
1757 // Accessors for fetching instance descriptor at descriptor number.
1758 inline String* GetKey(int descriptor_number);
1759 inline Object* GetValue(int descriptor_number);
1760 inline Smi* GetDetails(int descriptor_number);
1761 inline PropertyType GetType(int descriptor_number);
1762 inline int GetFieldIndex(int descriptor_number);
1763 inline JSFunction* GetConstantFunction(int descriptor_number);
1764 inline Object* GetCallbacksObject(int descriptor_number);
1765 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1766 inline bool IsProperty(int descriptor_number);
1767 inline bool IsTransition(int descriptor_number);
1768 inline bool IsNullDescriptor(int descriptor_number);
1769 inline bool IsDontEnum(int descriptor_number);
1770
1771 // Accessor for complete descriptor.
1772 inline void Get(int descriptor_number, Descriptor* desc);
1773 inline void Set(int descriptor_number, Descriptor* desc);
1774
1775 // Transfer complete descriptor from another descriptor array to
1776 // this one.
1777 inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1778
1779 // Copy the descriptor array, insert a new descriptor and optionally
1780 // remove map transitions. If the descriptor is already present, it is
1781 // replaced. If a replaced descriptor is a real property (not a transition
1782 // or null), its enumeration index is kept as is.
1783 // If adding a real property, map transitions must be removed. If adding
1784 // a transition, they must not be removed. All null descriptors are removed.
1785 Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1786
1787 // Remove all transitions. Return a copy of the array with all transitions
1788 // removed, or a Failure object if the new array could not be allocated.
1789 Object* RemoveTransitions();
1790
1791 // Sort the instance descriptors by the hash codes of their keys.
1792 void Sort();
1793
1794 // Search the instance descriptors for given name.
1795 inline int Search(String* name);
1796
1797 // Tells whether the name is present int the array.
1798 bool Contains(String* name) { return kNotFound != Search(name); }
1799
1800 // Perform a binary search in the instance descriptors represented
1801 // by this fixed array. low and high are descriptor indices. If there
1802 // are three instance descriptors in this array it should be called
1803 // with low=0 and high=2.
1804 int BinarySearch(String* name, int low, int high);
1805
1806 // Perform a linear search in the instance descriptors represented
1807 // by this fixed array. len is the number of descriptor indices that are
1808 // valid. Does not require the descriptors to be sorted.
1809 int LinearSearch(String* name, int len);
1810
1811 // Allocates a DescriptorArray, but returns the singleton
1812 // empty descriptor array object if number_of_descriptors is 0.
1813 static Object* Allocate(int number_of_descriptors);
1814
1815 // Casting.
1816 static inline DescriptorArray* cast(Object* obj);
1817
1818 // Constant for denoting key was not found.
1819 static const int kNotFound = -1;
1820
1821 static const int kContentArrayIndex = 0;
1822 static const int kEnumerationIndexIndex = 1;
1823 static const int kFirstIndex = 2;
1824
1825 // The length of the "bridge" to the enum cache.
1826 static const int kEnumCacheBridgeLength = 2;
1827 static const int kEnumCacheBridgeEnumIndex = 0;
1828 static const int kEnumCacheBridgeCacheIndex = 1;
1829
1830 // Layout description.
1831 static const int kContentArrayOffset = FixedArray::kHeaderSize;
1832 static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1833 static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1834
1835 // Layout description for the bridge array.
1836 static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1837 static const int kEnumCacheBridgeCacheOffset =
1838 kEnumCacheBridgeEnumOffset + kPointerSize;
1839
1840#ifdef DEBUG
1841 // Print all the descriptors.
1842 void PrintDescriptors();
1843
1844 // Is the descriptor array sorted and without duplicates?
1845 bool IsSortedNoDuplicates();
1846
1847 // Are two DescriptorArrays equal?
1848 bool IsEqualTo(DescriptorArray* other);
1849#endif
1850
1851 // The maximum number of descriptors we want in a descriptor array (should
1852 // fit in a page).
1853 static const int kMaxNumberOfDescriptors = 1024 + 512;
1854
1855 private:
1856 // Conversion from descriptor number to array indices.
1857 static int ToKeyIndex(int descriptor_number) {
1858 return descriptor_number+kFirstIndex;
1859 }
Leon Clarkee46be812010-01-19 14:06:41 +00001860
1861 static int ToDetailsIndex(int descriptor_number) {
1862 return (descriptor_number << 1) + 1;
1863 }
1864
Steve Blocka7e24c12009-10-30 11:49:00 +00001865 static int ToValueIndex(int descriptor_number) {
1866 return descriptor_number << 1;
1867 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001868
1869 bool is_null_descriptor(int descriptor_number) {
1870 return PropertyDetails(GetDetails(descriptor_number)).type() ==
1871 NULL_DESCRIPTOR;
1872 }
1873 // Swap operation on FixedArray without using write barriers.
1874 static inline void fast_swap(FixedArray* array, int first, int second);
1875
1876 // Swap descriptor first and second.
1877 inline void Swap(int first, int second);
1878
1879 FixedArray* GetContentArray() {
1880 return FixedArray::cast(get(kContentArrayIndex));
1881 }
1882 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1883};
1884
1885
1886// HashTable is a subclass of FixedArray that implements a hash table
1887// that uses open addressing and quadratic probing.
1888//
1889// In order for the quadratic probing to work, elements that have not
1890// yet been used and elements that have been deleted are
1891// distinguished. Probing continues when deleted elements are
1892// encountered and stops when unused elements are encountered.
1893//
1894// - Elements with key == undefined have not been used yet.
1895// - Elements with key == null have been deleted.
1896//
1897// The hash table class is parameterized with a Shape and a Key.
1898// Shape must be a class with the following interface:
1899// class ExampleShape {
1900// public:
1901// // Tells whether key matches other.
1902// static bool IsMatch(Key key, Object* other);
1903// // Returns the hash value for key.
1904// static uint32_t Hash(Key key);
1905// // Returns the hash value for object.
1906// static uint32_t HashForObject(Key key, Object* object);
1907// // Convert key to an object.
1908// static inline Object* AsObject(Key key);
1909// // The prefix size indicates number of elements in the beginning
1910// // of the backing storage.
1911// static const int kPrefixSize = ..;
1912// // The Element size indicates number of elements per entry.
1913// static const int kEntrySize = ..;
1914// };
Steve Block3ce2e202009-11-05 08:53:23 +00001915// The prefix size indicates an amount of memory in the
Steve Blocka7e24c12009-10-30 11:49:00 +00001916// beginning of the backing storage that can be used for non-element
1917// information by subclasses.
1918
1919template<typename Shape, typename Key>
1920class HashTable: public FixedArray {
1921 public:
Steve Block3ce2e202009-11-05 08:53:23 +00001922 // Returns the number of elements in the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001923 int NumberOfElements() {
1924 return Smi::cast(get(kNumberOfElementsIndex))->value();
1925 }
1926
Leon Clarkee46be812010-01-19 14:06:41 +00001927 // Returns the number of deleted elements in the hash table.
1928 int NumberOfDeletedElements() {
1929 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
1930 }
1931
Steve Block3ce2e202009-11-05 08:53:23 +00001932 // Returns the capacity of the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001933 int Capacity() {
1934 return Smi::cast(get(kCapacityIndex))->value();
1935 }
1936
1937 // ElementAdded should be called whenever an element is added to a
Steve Block3ce2e202009-11-05 08:53:23 +00001938 // hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001939 void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
1940
1941 // ElementRemoved should be called whenever an element is removed from
Steve Block3ce2e202009-11-05 08:53:23 +00001942 // a hash table.
Leon Clarkee46be812010-01-19 14:06:41 +00001943 void ElementRemoved() {
1944 SetNumberOfElements(NumberOfElements() - 1);
1945 SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
1946 }
1947 void ElementsRemoved(int n) {
1948 SetNumberOfElements(NumberOfElements() - n);
1949 SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
1950 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001951
Steve Block3ce2e202009-11-05 08:53:23 +00001952 // Returns a new HashTable object. Might return Failure.
Steve Block6ded16b2010-05-10 14:33:55 +01001953 static Object* Allocate(int at_least_space_for,
1954 PretenureFlag pretenure = NOT_TENURED);
Steve Blocka7e24c12009-10-30 11:49:00 +00001955
1956 // Returns the key at entry.
1957 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
1958
1959 // Tells whether k is a real key. Null and undefined are not allowed
1960 // as keys and can be used to indicate missing or deleted elements.
1961 bool IsKey(Object* k) {
1962 return !k->IsNull() && !k->IsUndefined();
1963 }
1964
1965 // Garbage collection support.
1966 void IteratePrefix(ObjectVisitor* visitor);
1967 void IterateElements(ObjectVisitor* visitor);
1968
1969 // Casting.
1970 static inline HashTable* cast(Object* obj);
1971
1972 // Compute the probe offset (quadratic probing).
1973 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
1974 return (n + n * n) >> 1;
1975 }
1976
1977 static const int kNumberOfElementsIndex = 0;
Leon Clarkee46be812010-01-19 14:06:41 +00001978 static const int kNumberOfDeletedElementsIndex = 1;
1979 static const int kCapacityIndex = 2;
1980 static const int kPrefixStartIndex = 3;
1981 static const int kElementsStartIndex =
Steve Blocka7e24c12009-10-30 11:49:00 +00001982 kPrefixStartIndex + Shape::kPrefixSize;
Leon Clarkee46be812010-01-19 14:06:41 +00001983 static const int kEntrySize = Shape::kEntrySize;
1984 static const int kElementsStartOffset =
Steve Blocka7e24c12009-10-30 11:49:00 +00001985 kHeaderSize + kElementsStartIndex * kPointerSize;
Steve Block6ded16b2010-05-10 14:33:55 +01001986 static const int kCapacityOffset =
1987 kHeaderSize + kCapacityIndex * kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00001988
1989 // Constant used for denoting a absent entry.
1990 static const int kNotFound = -1;
1991
Leon Clarkee46be812010-01-19 14:06:41 +00001992 // Maximal capacity of HashTable. Based on maximal length of underlying
1993 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
1994 // cannot overflow.
1995 static const int kMaxCapacity =
1996 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
1997
Steve Blocka7e24c12009-10-30 11:49:00 +00001998 // Find entry for key otherwise return -1.
1999 int FindEntry(Key key);
2000
2001 protected:
2002
2003 // Find the entry at which to insert element with the given key that
2004 // has the given hash value.
2005 uint32_t FindInsertionEntry(uint32_t hash);
2006
2007 // Returns the index for an entry (of the key)
2008 static inline int EntryToIndex(int entry) {
2009 return (entry * kEntrySize) + kElementsStartIndex;
2010 }
2011
Steve Block3ce2e202009-11-05 08:53:23 +00002012 // Update the number of elements in the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00002013 void SetNumberOfElements(int nof) {
2014 fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
2015 }
2016
Leon Clarkee46be812010-01-19 14:06:41 +00002017 // Update the number of deleted elements in the hash table.
2018 void SetNumberOfDeletedElements(int nod) {
2019 fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2020 }
2021
Steve Blocka7e24c12009-10-30 11:49:00 +00002022 // Sets the capacity of the hash table.
2023 void SetCapacity(int capacity) {
2024 // To scale a computed hash code to fit within the hash table, we
2025 // use bit-wise AND with a mask, so the capacity must be positive
2026 // and non-zero.
2027 ASSERT(capacity > 0);
Leon Clarkee46be812010-01-19 14:06:41 +00002028 ASSERT(capacity <= kMaxCapacity);
Steve Blocka7e24c12009-10-30 11:49:00 +00002029 fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2030 }
2031
2032
2033 // Returns probe entry.
2034 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2035 ASSERT(IsPowerOf2(size));
2036 return (hash + GetProbeOffset(number)) & (size - 1);
2037 }
2038
Leon Clarkee46be812010-01-19 14:06:41 +00002039 static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2040 return hash & (size - 1);
2041 }
2042
2043 static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2044 return (last + number) & (size - 1);
2045 }
2046
Steve Blocka7e24c12009-10-30 11:49:00 +00002047 // Ensure enough space for n additional elements.
2048 Object* EnsureCapacity(int n, Key key);
2049};
2050
2051
2052
2053// HashTableKey is an abstract superclass for virtual key behavior.
2054class HashTableKey {
2055 public:
2056 // Returns whether the other object matches this key.
2057 virtual bool IsMatch(Object* other) = 0;
2058 // Returns the hash value for this key.
2059 virtual uint32_t Hash() = 0;
2060 // Returns the hash value for object.
2061 virtual uint32_t HashForObject(Object* key) = 0;
Steve Block3ce2e202009-11-05 08:53:23 +00002062 // Returns the key object for storing into the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00002063 // If allocations fails a failure object is returned.
2064 virtual Object* AsObject() = 0;
2065 // Required.
2066 virtual ~HashTableKey() {}
2067};
2068
2069class SymbolTableShape {
2070 public:
2071 static bool IsMatch(HashTableKey* key, Object* value) {
2072 return key->IsMatch(value);
2073 }
2074 static uint32_t Hash(HashTableKey* key) {
2075 return key->Hash();
2076 }
2077 static uint32_t HashForObject(HashTableKey* key, Object* object) {
2078 return key->HashForObject(object);
2079 }
2080 static Object* AsObject(HashTableKey* key) {
2081 return key->AsObject();
2082 }
2083
2084 static const int kPrefixSize = 0;
2085 static const int kEntrySize = 1;
2086};
2087
2088// SymbolTable.
2089//
2090// No special elements in the prefix and the element size is 1
2091// because only the symbol itself (the key) needs to be stored.
2092class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2093 public:
2094 // Find symbol in the symbol table. If it is not there yet, it is
2095 // added. The return value is the symbol table which might have
2096 // been enlarged. If the return value is not a failure, the symbol
2097 // pointer *s is set to the symbol found.
2098 Object* LookupSymbol(Vector<const char> str, Object** s);
2099 Object* LookupString(String* key, Object** s);
2100
2101 // Looks up a symbol that is equal to the given string and returns
2102 // true if it is found, assigning the symbol to the given output
2103 // parameter.
2104 bool LookupSymbolIfExists(String* str, String** symbol);
Steve Blockd0582a62009-12-15 09:54:21 +00002105 bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
Steve Blocka7e24c12009-10-30 11:49:00 +00002106
2107 // Casting.
2108 static inline SymbolTable* cast(Object* obj);
2109
2110 private:
2111 Object* LookupKey(HashTableKey* key, Object** s);
2112
2113 DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2114};
2115
2116
2117class MapCacheShape {
2118 public:
2119 static bool IsMatch(HashTableKey* key, Object* value) {
2120 return key->IsMatch(value);
2121 }
2122 static uint32_t Hash(HashTableKey* key) {
2123 return key->Hash();
2124 }
2125
2126 static uint32_t HashForObject(HashTableKey* key, Object* object) {
2127 return key->HashForObject(object);
2128 }
2129
2130 static Object* AsObject(HashTableKey* key) {
2131 return key->AsObject();
2132 }
2133
2134 static const int kPrefixSize = 0;
2135 static const int kEntrySize = 2;
2136};
2137
2138
2139// MapCache.
2140//
2141// Maps keys that are a fixed array of symbols to a map.
2142// Used for canonicalize maps for object literals.
2143class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2144 public:
2145 // Find cached value for a string key, otherwise return null.
2146 Object* Lookup(FixedArray* key);
2147 Object* Put(FixedArray* key, Map* value);
2148 static inline MapCache* cast(Object* obj);
2149
2150 private:
2151 DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2152};
2153
2154
2155template <typename Shape, typename Key>
2156class Dictionary: public HashTable<Shape, Key> {
2157 public:
2158
2159 static inline Dictionary<Shape, Key>* cast(Object* obj) {
2160 return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2161 }
2162
2163 // Returns the value at entry.
2164 Object* ValueAt(int entry) {
Steve Block6ded16b2010-05-10 14:33:55 +01002165 return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
Steve Blocka7e24c12009-10-30 11:49:00 +00002166 }
2167
2168 // Set the value for entry.
2169 void ValueAtPut(int entry, Object* value) {
Steve Block6ded16b2010-05-10 14:33:55 +01002170 this->set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
Steve Blocka7e24c12009-10-30 11:49:00 +00002171 }
2172
2173 // Returns the property details for the property at entry.
2174 PropertyDetails DetailsAt(int entry) {
2175 ASSERT(entry >= 0); // Not found is -1, which is not caught by get().
2176 return PropertyDetails(
Steve Block6ded16b2010-05-10 14:33:55 +01002177 Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
Steve Blocka7e24c12009-10-30 11:49:00 +00002178 }
2179
2180 // Set the details for entry.
2181 void DetailsAtPut(int entry, PropertyDetails value) {
Steve Block6ded16b2010-05-10 14:33:55 +01002182 this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
Steve Blocka7e24c12009-10-30 11:49:00 +00002183 }
2184
2185 // Sorting support
2186 void CopyValuesTo(FixedArray* elements);
2187
2188 // Delete a property from the dictionary.
2189 Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2190
2191 // Returns the number of elements in the dictionary filtering out properties
2192 // with the specified attributes.
2193 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2194
2195 // Returns the number of enumerable elements in the dictionary.
2196 int NumberOfEnumElements();
2197
2198 // Copies keys to preallocated fixed array.
2199 void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2200 // Fill in details for properties into storage.
2201 void CopyKeysTo(FixedArray* storage);
2202
2203 // Accessors for next enumeration index.
2204 void SetNextEnumerationIndex(int index) {
Steve Block6ded16b2010-05-10 14:33:55 +01002205 this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
Steve Blocka7e24c12009-10-30 11:49:00 +00002206 }
2207
2208 int NextEnumerationIndex() {
2209 return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2210 }
2211
2212 // Returns a new array for dictionary usage. Might return Failure.
2213 static Object* Allocate(int at_least_space_for);
2214
2215 // Ensure enough space for n additional elements.
2216 Object* EnsureCapacity(int n, Key key);
2217
2218#ifdef DEBUG
2219 void Print();
2220#endif
2221 // Returns the key (slow).
2222 Object* SlowReverseLookup(Object* value);
2223
2224 // Sets the entry to (key, value) pair.
2225 inline void SetEntry(int entry,
2226 Object* key,
2227 Object* value,
2228 PropertyDetails details);
2229
2230 Object* Add(Key key, Object* value, PropertyDetails details);
2231
2232 protected:
2233 // Generic at put operation.
2234 Object* AtPut(Key key, Object* value);
2235
2236 // Add entry to dictionary.
2237 Object* AddEntry(Key key,
2238 Object* value,
2239 PropertyDetails details,
2240 uint32_t hash);
2241
2242 // Generate new enumeration indices to avoid enumeration index overflow.
2243 Object* GenerateNewEnumerationIndices();
2244 static const int kMaxNumberKeyIndex =
2245 HashTable<Shape, Key>::kPrefixStartIndex;
2246 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2247};
2248
2249
2250class StringDictionaryShape {
2251 public:
2252 static inline bool IsMatch(String* key, Object* other);
2253 static inline uint32_t Hash(String* key);
2254 static inline uint32_t HashForObject(String* key, Object* object);
2255 static inline Object* AsObject(String* key);
2256 static const int kPrefixSize = 2;
2257 static const int kEntrySize = 3;
2258 static const bool kIsEnumerable = true;
2259};
2260
2261
2262class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2263 public:
2264 static inline StringDictionary* cast(Object* obj) {
2265 ASSERT(obj->IsDictionary());
2266 return reinterpret_cast<StringDictionary*>(obj);
2267 }
2268
2269 // Copies enumerable keys to preallocated fixed array.
2270 void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2271
2272 // For transforming properties of a JSObject.
2273 Object* TransformPropertiesToFastFor(JSObject* obj,
2274 int unused_property_fields);
2275};
2276
2277
2278class NumberDictionaryShape {
2279 public:
2280 static inline bool IsMatch(uint32_t key, Object* other);
2281 static inline uint32_t Hash(uint32_t key);
2282 static inline uint32_t HashForObject(uint32_t key, Object* object);
2283 static inline Object* AsObject(uint32_t key);
2284 static const int kPrefixSize = 2;
2285 static const int kEntrySize = 3;
2286 static const bool kIsEnumerable = false;
2287};
2288
2289
2290class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2291 public:
2292 static NumberDictionary* cast(Object* obj) {
2293 ASSERT(obj->IsDictionary());
2294 return reinterpret_cast<NumberDictionary*>(obj);
2295 }
2296
2297 // Type specific at put (default NONE attributes is used when adding).
2298 Object* AtNumberPut(uint32_t key, Object* value);
2299 Object* AddNumberEntry(uint32_t key,
2300 Object* value,
2301 PropertyDetails details);
2302
2303 // Set an existing entry or add a new one if needed.
2304 Object* Set(uint32_t key, Object* value, PropertyDetails details);
2305
2306 void UpdateMaxNumberKey(uint32_t key);
2307
2308 // If slow elements are required we will never go back to fast-case
2309 // for the elements kept in this dictionary. We require slow
2310 // elements if an element has been added at an index larger than
2311 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2312 // when defining a getter or setter with a number key.
2313 inline bool requires_slow_elements();
2314 inline void set_requires_slow_elements();
2315
2316 // Get the value of the max number key that has been added to this
2317 // dictionary. max_number_key can only be called if
2318 // requires_slow_elements returns false.
2319 inline uint32_t max_number_key();
2320
2321 // Remove all entries were key is a number and (from <= key && key < to).
2322 void RemoveNumberEntries(uint32_t from, uint32_t to);
2323
2324 // Bit masks.
2325 static const int kRequiresSlowElementsMask = 1;
2326 static const int kRequiresSlowElementsTagSize = 1;
2327 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2328};
2329
2330
Steve Block6ded16b2010-05-10 14:33:55 +01002331// JSFunctionResultCache caches results of some JSFunction invocation.
2332// It is a fixed array with fixed structure:
2333// [0]: factory function
2334// [1]: finger index
2335// [2]: current cache size
2336// [3]: dummy field.
2337// The rest of array are key/value pairs.
2338class JSFunctionResultCache: public FixedArray {
2339 public:
2340 static const int kFactoryIndex = 0;
2341 static const int kFingerIndex = kFactoryIndex + 1;
2342 static const int kCacheSizeIndex = kFingerIndex + 1;
2343 static const int kDummyIndex = kCacheSizeIndex + 1;
2344 static const int kEntriesIndex = kDummyIndex + 1;
2345
2346 static const int kEntrySize = 2; // key + value
2347
Kristian Monsen25f61362010-05-21 11:50:48 +01002348 static const int kFactoryOffset = kHeaderSize;
2349 static const int kFingerOffset = kFactoryOffset + kPointerSize;
2350 static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
2351
Steve Block6ded16b2010-05-10 14:33:55 +01002352 inline void MakeZeroSize();
2353 inline void Clear();
2354
2355 // Casting
2356 static inline JSFunctionResultCache* cast(Object* obj);
2357
2358#ifdef DEBUG
2359 void JSFunctionResultCacheVerify();
2360#endif
2361};
2362
2363
Steve Blocka7e24c12009-10-30 11:49:00 +00002364// ByteArray represents fixed sized byte arrays. Used by the outside world,
2365// such as PCRE, and also by the memory allocator and garbage collector to
2366// fill in free blocks in the heap.
2367class ByteArray: public Array {
2368 public:
2369 // Setter and getter.
2370 inline byte get(int index);
2371 inline void set(int index, byte value);
2372
2373 // Treat contents as an int array.
2374 inline int get_int(int index);
2375
2376 static int SizeFor(int length) {
2377 return OBJECT_SIZE_ALIGN(kHeaderSize + length);
2378 }
2379 // We use byte arrays for free blocks in the heap. Given a desired size in
2380 // bytes that is a multiple of the word size and big enough to hold a byte
2381 // array, this function returns the number of elements a byte array should
2382 // have.
2383 static int LengthFor(int size_in_bytes) {
2384 ASSERT(IsAligned(size_in_bytes, kPointerSize));
2385 ASSERT(size_in_bytes >= kHeaderSize);
2386 return size_in_bytes - kHeaderSize;
2387 }
2388
2389 // Returns data start address.
2390 inline Address GetDataStartAddress();
2391
2392 // Returns a pointer to the ByteArray object for a given data start address.
2393 static inline ByteArray* FromDataStartAddress(Address address);
2394
2395 // Casting.
2396 static inline ByteArray* cast(Object* obj);
2397
2398 // Dispatched behavior.
2399 int ByteArraySize() { return SizeFor(length()); }
2400#ifdef DEBUG
2401 void ByteArrayPrint();
2402 void ByteArrayVerify();
2403#endif
2404
2405 // ByteArray headers are not quadword aligned.
2406 static const int kHeaderSize = Array::kHeaderSize;
2407 static const int kAlignedSize = Array::kAlignedSize;
2408
Leon Clarkee46be812010-01-19 14:06:41 +00002409 // Maximal memory consumption for a single ByteArray.
2410 static const int kMaxSize = 512 * MB;
2411 // Maximal length of a single ByteArray.
2412 static const int kMaxLength = kMaxSize - kHeaderSize;
2413
Steve Blocka7e24c12009-10-30 11:49:00 +00002414 private:
2415 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2416};
2417
2418
2419// A PixelArray represents a fixed-size byte array with special semantics
2420// used for implementing the CanvasPixelArray object. Please see the
2421// specification at:
2422// http://www.whatwg.org/specs/web-apps/current-work/
2423// multipage/the-canvas-element.html#canvaspixelarray
2424// In particular, write access clamps the value written to 0 or 255 if the
2425// value written is outside this range.
2426class PixelArray: public Array {
2427 public:
2428 // [external_pointer]: The pointer to the external memory area backing this
2429 // pixel array.
2430 DECL_ACCESSORS(external_pointer, uint8_t) // Pointer to the data store.
2431
2432 // Setter and getter.
2433 inline uint8_t get(int index);
2434 inline void set(int index, uint8_t value);
2435
2436 // This accessor applies the correct conversion from Smi, HeapNumber and
2437 // undefined and clamps the converted value between 0 and 255.
2438 Object* SetValue(uint32_t index, Object* value);
2439
2440 // Casting.
2441 static inline PixelArray* cast(Object* obj);
2442
2443#ifdef DEBUG
2444 void PixelArrayPrint();
2445 void PixelArrayVerify();
2446#endif // DEBUG
2447
Steve Block3ce2e202009-11-05 08:53:23 +00002448 // Maximal acceptable length for a pixel array.
2449 static const int kMaxLength = 0x3fffffff;
2450
Steve Blocka7e24c12009-10-30 11:49:00 +00002451 // PixelArray headers are not quadword aligned.
2452 static const int kExternalPointerOffset = Array::kAlignedSize;
2453 static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2454 static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2455
2456 private:
2457 DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2458};
2459
2460
Steve Block3ce2e202009-11-05 08:53:23 +00002461// An ExternalArray represents a fixed-size array of primitive values
2462// which live outside the JavaScript heap. Its subclasses are used to
2463// implement the CanvasArray types being defined in the WebGL
2464// specification. As of this writing the first public draft is not yet
2465// available, but Khronos members can access the draft at:
2466// https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2467//
2468// The semantics of these arrays differ from CanvasPixelArray.
2469// Out-of-range values passed to the setter are converted via a C
2470// cast, not clamping. Out-of-range indices cause exceptions to be
2471// raised rather than being silently ignored.
2472class ExternalArray: public Array {
2473 public:
2474 // [external_pointer]: The pointer to the external memory area backing this
2475 // external array.
2476 DECL_ACCESSORS(external_pointer, void) // Pointer to the data store.
2477
2478 // Casting.
2479 static inline ExternalArray* cast(Object* obj);
2480
2481 // Maximal acceptable length for an external array.
2482 static const int kMaxLength = 0x3fffffff;
2483
2484 // ExternalArray headers are not quadword aligned.
2485 static const int kExternalPointerOffset = Array::kAlignedSize;
2486 static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2487 static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2488
2489 private:
2490 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2491};
2492
2493
2494class ExternalByteArray: public ExternalArray {
2495 public:
2496 // Setter and getter.
2497 inline int8_t get(int index);
2498 inline void set(int index, int8_t value);
2499
2500 // This accessor applies the correct conversion from Smi, HeapNumber
2501 // and undefined.
2502 Object* SetValue(uint32_t index, Object* value);
2503
2504 // Casting.
2505 static inline ExternalByteArray* cast(Object* obj);
2506
2507#ifdef DEBUG
2508 void ExternalByteArrayPrint();
2509 void ExternalByteArrayVerify();
2510#endif // DEBUG
2511
2512 private:
2513 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2514};
2515
2516
2517class ExternalUnsignedByteArray: public ExternalArray {
2518 public:
2519 // Setter and getter.
2520 inline uint8_t get(int index);
2521 inline void set(int index, uint8_t value);
2522
2523 // This accessor applies the correct conversion from Smi, HeapNumber
2524 // and undefined.
2525 Object* SetValue(uint32_t index, Object* value);
2526
2527 // Casting.
2528 static inline ExternalUnsignedByteArray* cast(Object* obj);
2529
2530#ifdef DEBUG
2531 void ExternalUnsignedByteArrayPrint();
2532 void ExternalUnsignedByteArrayVerify();
2533#endif // DEBUG
2534
2535 private:
2536 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2537};
2538
2539
2540class ExternalShortArray: public ExternalArray {
2541 public:
2542 // Setter and getter.
2543 inline int16_t get(int index);
2544 inline void set(int index, int16_t value);
2545
2546 // This accessor applies the correct conversion from Smi, HeapNumber
2547 // and undefined.
2548 Object* SetValue(uint32_t index, Object* value);
2549
2550 // Casting.
2551 static inline ExternalShortArray* cast(Object* obj);
2552
2553#ifdef DEBUG
2554 void ExternalShortArrayPrint();
2555 void ExternalShortArrayVerify();
2556#endif // DEBUG
2557
2558 private:
2559 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2560};
2561
2562
2563class ExternalUnsignedShortArray: public ExternalArray {
2564 public:
2565 // Setter and getter.
2566 inline uint16_t get(int index);
2567 inline void set(int index, uint16_t value);
2568
2569 // This accessor applies the correct conversion from Smi, HeapNumber
2570 // and undefined.
2571 Object* SetValue(uint32_t index, Object* value);
2572
2573 // Casting.
2574 static inline ExternalUnsignedShortArray* cast(Object* obj);
2575
2576#ifdef DEBUG
2577 void ExternalUnsignedShortArrayPrint();
2578 void ExternalUnsignedShortArrayVerify();
2579#endif // DEBUG
2580
2581 private:
2582 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2583};
2584
2585
2586class ExternalIntArray: public ExternalArray {
2587 public:
2588 // Setter and getter.
2589 inline int32_t get(int index);
2590 inline void set(int index, int32_t value);
2591
2592 // This accessor applies the correct conversion from Smi, HeapNumber
2593 // and undefined.
2594 Object* SetValue(uint32_t index, Object* value);
2595
2596 // Casting.
2597 static inline ExternalIntArray* cast(Object* obj);
2598
2599#ifdef DEBUG
2600 void ExternalIntArrayPrint();
2601 void ExternalIntArrayVerify();
2602#endif // DEBUG
2603
2604 private:
2605 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2606};
2607
2608
2609class ExternalUnsignedIntArray: public ExternalArray {
2610 public:
2611 // Setter and getter.
2612 inline uint32_t get(int index);
2613 inline void set(int index, uint32_t value);
2614
2615 // This accessor applies the correct conversion from Smi, HeapNumber
2616 // and undefined.
2617 Object* SetValue(uint32_t index, Object* value);
2618
2619 // Casting.
2620 static inline ExternalUnsignedIntArray* cast(Object* obj);
2621
2622#ifdef DEBUG
2623 void ExternalUnsignedIntArrayPrint();
2624 void ExternalUnsignedIntArrayVerify();
2625#endif // DEBUG
2626
2627 private:
2628 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2629};
2630
2631
2632class ExternalFloatArray: public ExternalArray {
2633 public:
2634 // Setter and getter.
2635 inline float get(int index);
2636 inline void set(int index, float value);
2637
2638 // This accessor applies the correct conversion from Smi, HeapNumber
2639 // and undefined.
2640 Object* SetValue(uint32_t index, Object* value);
2641
2642 // Casting.
2643 static inline ExternalFloatArray* cast(Object* obj);
2644
2645#ifdef DEBUG
2646 void ExternalFloatArrayPrint();
2647 void ExternalFloatArrayVerify();
2648#endif // DEBUG
2649
2650 private:
2651 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2652};
2653
2654
Steve Blocka7e24c12009-10-30 11:49:00 +00002655// Code describes objects with on-the-fly generated machine code.
2656class Code: public HeapObject {
2657 public:
2658 // Opaque data type for encapsulating code flags like kind, inline
2659 // cache state, and arguments count.
2660 enum Flags { };
2661
2662 enum Kind {
2663 FUNCTION,
2664 STUB,
2665 BUILTIN,
2666 LOAD_IC,
2667 KEYED_LOAD_IC,
2668 CALL_IC,
2669 STORE_IC,
2670 KEYED_STORE_IC,
Steve Block6ded16b2010-05-10 14:33:55 +01002671 BINARY_OP_IC,
2672 // No more than 16 kinds. The value currently encoded in four bits in
Steve Blocka7e24c12009-10-30 11:49:00 +00002673 // Flags.
2674
2675 // Pseudo-kinds.
2676 REGEXP = BUILTIN,
2677 FIRST_IC_KIND = LOAD_IC,
Steve Block6ded16b2010-05-10 14:33:55 +01002678 LAST_IC_KIND = BINARY_OP_IC
Steve Blocka7e24c12009-10-30 11:49:00 +00002679 };
2680
2681 enum {
2682 NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2683 };
2684
2685#ifdef ENABLE_DISASSEMBLER
2686 // Printing
2687 static const char* Kind2String(Kind kind);
2688 static const char* ICState2String(InlineCacheState state);
2689 static const char* PropertyType2String(PropertyType type);
2690 void Disassemble(const char* name);
2691#endif // ENABLE_DISASSEMBLER
2692
2693 // [instruction_size]: Size of the native instructions
2694 inline int instruction_size();
2695 inline void set_instruction_size(int value);
2696
2697 // [relocation_size]: Size of relocation information.
2698 inline int relocation_size();
2699 inline void set_relocation_size(int value);
2700
2701 // [sinfo_size]: Size of scope information.
2702 inline int sinfo_size();
2703 inline void set_sinfo_size(int value);
2704
2705 // [flags]: Various code flags.
2706 inline Flags flags();
2707 inline void set_flags(Flags flags);
2708
2709 // [flags]: Access to specific code flags.
2710 inline Kind kind();
2711 inline InlineCacheState ic_state(); // Only valid for IC stubs.
2712 inline InLoopFlag ic_in_loop(); // Only valid for IC stubs.
2713 inline PropertyType type(); // Only valid for monomorphic IC stubs.
2714 inline int arguments_count(); // Only valid for call IC stubs.
2715
2716 // Testers for IC stub kinds.
2717 inline bool is_inline_cache_stub();
2718 inline bool is_load_stub() { return kind() == LOAD_IC; }
2719 inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2720 inline bool is_store_stub() { return kind() == STORE_IC; }
2721 inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2722 inline bool is_call_stub() { return kind() == CALL_IC; }
2723
Steve Block6ded16b2010-05-10 14:33:55 +01002724 // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
Steve Blocka7e24c12009-10-30 11:49:00 +00002725 inline CodeStub::Major major_key();
2726 inline void set_major_key(CodeStub::Major major);
2727
2728 // Flags operations.
2729 static inline Flags ComputeFlags(Kind kind,
2730 InLoopFlag in_loop = NOT_IN_LOOP,
2731 InlineCacheState ic_state = UNINITIALIZED,
2732 PropertyType type = NORMAL,
2733 int argc = -1);
2734
2735 static inline Flags ComputeMonomorphicFlags(
2736 Kind kind,
2737 PropertyType type,
2738 InLoopFlag in_loop = NOT_IN_LOOP,
2739 int argc = -1);
2740
2741 static inline Kind ExtractKindFromFlags(Flags flags);
2742 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2743 static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2744 static inline PropertyType ExtractTypeFromFlags(Flags flags);
2745 static inline int ExtractArgumentsCountFromFlags(Flags flags);
2746 static inline Flags RemoveTypeFromFlags(Flags flags);
2747
2748 // Convert a target address into a code object.
2749 static inline Code* GetCodeFromTargetAddress(Address address);
2750
2751 // Returns the address of the first instruction.
2752 inline byte* instruction_start();
2753
2754 // Returns the size of the instructions, padding, and relocation information.
2755 inline int body_size();
2756
2757 // Returns the address of the first relocation info (read backwards!).
2758 inline byte* relocation_start();
2759
2760 // Code entry point.
2761 inline byte* entry();
2762
2763 // Returns true if pc is inside this object's instructions.
2764 inline bool contains(byte* pc);
2765
2766 // Returns the address of the scope information.
2767 inline byte* sinfo_start();
2768
2769 // Relocate the code by delta bytes. Called to signal that this code
2770 // object has been moved by delta bytes.
Steve Blockd0582a62009-12-15 09:54:21 +00002771 void Relocate(intptr_t delta);
Steve Blocka7e24c12009-10-30 11:49:00 +00002772
2773 // Migrate code described by desc.
2774 void CopyFrom(const CodeDesc& desc);
2775
2776 // Returns the object size for a given body and sinfo size (Used for
2777 // allocation).
2778 static int SizeFor(int body_size, int sinfo_size) {
2779 ASSERT_SIZE_TAG_ALIGNED(body_size);
2780 ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2781 return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2782 }
2783
2784 // Calculate the size of the code object to report for log events. This takes
2785 // the layout of the code object into account.
2786 int ExecutableSize() {
2787 // Check that the assumptions about the layout of the code object holds.
2788 ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2789 Code::kHeaderSize);
2790 return instruction_size() + Code::kHeaderSize;
2791 }
2792
2793 // Locating source position.
2794 int SourcePosition(Address pc);
2795 int SourceStatementPosition(Address pc);
2796
2797 // Casting.
2798 static inline Code* cast(Object* obj);
2799
2800 // Dispatched behavior.
2801 int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2802 void CodeIterateBody(ObjectVisitor* v);
2803#ifdef DEBUG
2804 void CodePrint();
2805 void CodeVerify();
2806#endif
2807 // Code entry points are aligned to 32 bytes.
Steve Blockd0582a62009-12-15 09:54:21 +00002808 static const int kCodeAlignmentBits = 5;
2809 static const int kCodeAlignment = 1 << kCodeAlignmentBits;
Steve Blocka7e24c12009-10-30 11:49:00 +00002810 static const int kCodeAlignmentMask = kCodeAlignment - 1;
2811
2812 // Layout description.
2813 static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2814 static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
2815 static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
2816 static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2817 static const int kKindSpecificFlagsOffset = kFlagsOffset + kIntSize;
2818 // Add padding to align the instruction start following right after
2819 // the Code object header.
2820 static const int kHeaderSize =
2821 (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2822 ~kCodeAlignmentMask;
2823
2824 // Byte offsets within kKindSpecificFlagsOffset.
2825 static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2826
2827 // Flags layout.
2828 static const int kFlagsICStateShift = 0;
2829 static const int kFlagsICInLoopShift = 3;
2830 static const int kFlagsKindShift = 4;
Steve Block6ded16b2010-05-10 14:33:55 +01002831 static const int kFlagsTypeShift = 8;
2832 static const int kFlagsArgumentsCountShift = 11;
Steve Blocka7e24c12009-10-30 11:49:00 +00002833
Steve Block6ded16b2010-05-10 14:33:55 +01002834 static const int kFlagsICStateMask = 0x00000007; // 00000000111
2835 static const int kFlagsICInLoopMask = 0x00000008; // 00000001000
2836 static const int kFlagsKindMask = 0x000000F0; // 00011110000
2837 static const int kFlagsTypeMask = 0x00000700; // 11100000000
2838 static const int kFlagsArgumentsCountMask = 0xFFFFF800;
Steve Blocka7e24c12009-10-30 11:49:00 +00002839
2840 static const int kFlagsNotUsedInLookup =
2841 (kFlagsICInLoopMask | kFlagsTypeMask);
2842
2843 private:
2844 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2845};
2846
2847
2848// All heap objects have a Map that describes their structure.
2849// A Map contains information about:
2850// - Size information about the object
2851// - How to iterate over an object (for garbage collection)
2852class Map: public HeapObject {
2853 public:
2854 // Instance size.
2855 inline int instance_size();
2856 inline void set_instance_size(int value);
2857
2858 // Count of properties allocated in the object.
2859 inline int inobject_properties();
2860 inline void set_inobject_properties(int value);
2861
2862 // Count of property fields pre-allocated in the object when first allocated.
2863 inline int pre_allocated_property_fields();
2864 inline void set_pre_allocated_property_fields(int value);
2865
2866 // Instance type.
2867 inline InstanceType instance_type();
2868 inline void set_instance_type(InstanceType value);
2869
2870 // Tells how many unused property fields are available in the
2871 // instance (only used for JSObject in fast mode).
2872 inline int unused_property_fields();
2873 inline void set_unused_property_fields(int value);
2874
2875 // Bit field.
2876 inline byte bit_field();
2877 inline void set_bit_field(byte value);
2878
2879 // Bit field 2.
2880 inline byte bit_field2();
2881 inline void set_bit_field2(byte value);
2882
2883 // Tells whether the object in the prototype property will be used
2884 // for instances created from this function. If the prototype
2885 // property is set to a value that is not a JSObject, the prototype
2886 // property will not be used to create instances of the function.
2887 // See ECMA-262, 13.2.2.
2888 inline void set_non_instance_prototype(bool value);
2889 inline bool has_non_instance_prototype();
2890
Steve Block6ded16b2010-05-10 14:33:55 +01002891 // Tells whether function has special prototype property. If not, prototype
2892 // property will not be created when accessed (will return undefined),
2893 // and construction from this function will not be allowed.
2894 inline void set_function_with_prototype(bool value);
2895 inline bool function_with_prototype();
2896
Steve Blocka7e24c12009-10-30 11:49:00 +00002897 // Tells whether the instance with this map should be ignored by the
2898 // __proto__ accessor.
2899 inline void set_is_hidden_prototype() {
2900 set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2901 }
2902
2903 inline bool is_hidden_prototype() {
2904 return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2905 }
2906
2907 // Records and queries whether the instance has a named interceptor.
2908 inline void set_has_named_interceptor() {
2909 set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2910 }
2911
2912 inline bool has_named_interceptor() {
2913 return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2914 }
2915
2916 // Records and queries whether the instance has an indexed interceptor.
2917 inline void set_has_indexed_interceptor() {
2918 set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2919 }
2920
2921 inline bool has_indexed_interceptor() {
2922 return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2923 }
2924
2925 // Tells whether the instance is undetectable.
2926 // An undetectable object is a special class of JSObject: 'typeof' operator
2927 // returns undefined, ToBoolean returns false. Otherwise it behaves like
2928 // a normal JS object. It is useful for implementing undetectable
2929 // document.all in Firefox & Safari.
2930 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
2931 inline void set_is_undetectable() {
2932 set_bit_field(bit_field() | (1 << kIsUndetectable));
2933 }
2934
2935 inline bool is_undetectable() {
2936 return ((1 << kIsUndetectable) & bit_field()) != 0;
2937 }
2938
Steve Blocka7e24c12009-10-30 11:49:00 +00002939 // Tells whether the instance has a call-as-function handler.
2940 inline void set_has_instance_call_handler() {
2941 set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2942 }
2943
2944 inline bool has_instance_call_handler() {
2945 return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
2946 }
2947
Leon Clarkee46be812010-01-19 14:06:41 +00002948 inline void set_is_extensible() {
2949 set_bit_field2(bit_field2() | (1 << kIsExtensible));
2950 }
2951
2952 inline bool is_extensible() {
2953 return ((1 << kIsExtensible) & bit_field2()) != 0;
2954 }
2955
Steve Blocka7e24c12009-10-30 11:49:00 +00002956 // Tells whether the instance needs security checks when accessing its
2957 // properties.
2958 inline void set_is_access_check_needed(bool access_check_needed);
2959 inline bool is_access_check_needed();
2960
2961 // [prototype]: implicit prototype object.
2962 DECL_ACCESSORS(prototype, Object)
2963
2964 // [constructor]: points back to the function responsible for this map.
2965 DECL_ACCESSORS(constructor, Object)
2966
2967 // [instance descriptors]: describes the object.
2968 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
2969
2970 // [stub cache]: contains stubs compiled for this map.
Steve Block6ded16b2010-05-10 14:33:55 +01002971 DECL_ACCESSORS(code_cache, Object)
Steve Blocka7e24c12009-10-30 11:49:00 +00002972
Steve Blocka7e24c12009-10-30 11:49:00 +00002973 Object* CopyDropDescriptors();
2974
2975 // Returns a copy of the map, with all transitions dropped from the
2976 // instance descriptors.
2977 Object* CopyDropTransitions();
2978
2979 // Returns the property index for name (only valid for FAST MODE).
2980 int PropertyIndexFor(String* name);
2981
2982 // Returns the next free property index (only valid for FAST MODE).
2983 int NextFreePropertyIndex();
2984
2985 // Returns the number of properties described in instance_descriptors.
2986 int NumberOfDescribedProperties();
2987
2988 // Casting.
2989 static inline Map* cast(Object* obj);
2990
2991 // Locate an accessor in the instance descriptor.
2992 AccessorDescriptor* FindAccessor(String* name);
2993
2994 // Code cache operations.
2995
2996 // Clears the code cache.
2997 inline void ClearCodeCache();
2998
2999 // Update code cache.
3000 Object* UpdateCodeCache(String* name, Code* code);
3001
3002 // Returns the found code or undefined if absent.
3003 Object* FindInCodeCache(String* name, Code::Flags flags);
3004
3005 // Returns the non-negative index of the code object if it is in the
3006 // cache and -1 otherwise.
Steve Block6ded16b2010-05-10 14:33:55 +01003007 int IndexInCodeCache(Object* name, Code* code);
Steve Blocka7e24c12009-10-30 11:49:00 +00003008
3009 // Removes a code object from the code cache at the given index.
Steve Block6ded16b2010-05-10 14:33:55 +01003010 void RemoveFromCodeCache(String* name, Code* code, int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00003011
3012 // For every transition in this map, makes the transition's
3013 // target's prototype pointer point back to this map.
3014 // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
3015 void CreateBackPointers();
3016
3017 // Set all map transitions from this map to dead maps to null.
3018 // Also, restore the original prototype on the targets of these
3019 // transitions, so that we do not process this map again while
3020 // following back pointers.
3021 void ClearNonLiveTransitions(Object* real_prototype);
3022
3023 // Dispatched behavior.
3024 void MapIterateBody(ObjectVisitor* v);
3025#ifdef DEBUG
3026 void MapPrint();
3027 void MapVerify();
3028#endif
3029
3030 static const int kMaxPreAllocatedPropertyFields = 255;
3031
3032 // Layout description.
3033 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
3034 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
3035 static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
3036 static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
3037 static const int kInstanceDescriptorsOffset =
3038 kConstructorOffset + kPointerSize;
3039 static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
Leon Clarkee46be812010-01-19 14:06:41 +00003040 static const int kPadStart = kCodeCacheOffset + kPointerSize;
3041 static const int kSize = MAP_SIZE_ALIGN(kPadStart);
Steve Blocka7e24c12009-10-30 11:49:00 +00003042
3043 // Byte offsets within kInstanceSizesOffset.
3044 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
3045 static const int kInObjectPropertiesByte = 1;
3046 static const int kInObjectPropertiesOffset =
3047 kInstanceSizesOffset + kInObjectPropertiesByte;
3048 static const int kPreAllocatedPropertyFieldsByte = 2;
3049 static const int kPreAllocatedPropertyFieldsOffset =
3050 kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
3051 // The byte at position 3 is not in use at the moment.
3052
3053 // Byte offsets within kInstanceAttributesOffset attributes.
3054 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
3055 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
3056 static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
3057 static const int kBitField2Offset = kInstanceAttributesOffset + 3;
3058
3059 STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
3060
3061 // Bit positions for bit field.
3062 static const int kUnused = 0; // To be used for marking recently used maps.
3063 static const int kHasNonInstancePrototype = 1;
3064 static const int kIsHiddenPrototype = 2;
3065 static const int kHasNamedInterceptor = 3;
3066 static const int kHasIndexedInterceptor = 4;
3067 static const int kIsUndetectable = 5;
3068 static const int kHasInstanceCallHandler = 6;
3069 static const int kIsAccessCheckNeeded = 7;
3070
3071 // Bit positions for bit field 2
Andrei Popescu31002712010-02-23 13:46:05 +00003072 static const int kIsExtensible = 0;
Steve Block6ded16b2010-05-10 14:33:55 +01003073 static const int kFunctionWithPrototype = 1;
3074
3075 // Layout of the default cache. It holds alternating name and code objects.
3076 static const int kCodeCacheEntrySize = 2;
3077 static const int kCodeCacheEntryNameOffset = 0;
3078 static const int kCodeCacheEntryCodeOffset = 1;
Steve Blocka7e24c12009-10-30 11:49:00 +00003079
3080 private:
3081 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
3082};
3083
3084
3085// An abstract superclass, a marker class really, for simple structure classes.
3086// It doesn't carry much functionality but allows struct classes to me
3087// identified in the type system.
3088class Struct: public HeapObject {
3089 public:
3090 inline void InitializeBody(int object_size);
3091 static inline Struct* cast(Object* that);
3092};
3093
3094
3095// Script describes a script which has been added to the VM.
3096class Script: public Struct {
3097 public:
3098 // Script types.
3099 enum Type {
3100 TYPE_NATIVE = 0,
3101 TYPE_EXTENSION = 1,
3102 TYPE_NORMAL = 2
3103 };
3104
3105 // Script compilation types.
3106 enum CompilationType {
3107 COMPILATION_TYPE_HOST = 0,
3108 COMPILATION_TYPE_EVAL = 1,
3109 COMPILATION_TYPE_JSON = 2
3110 };
3111
3112 // [source]: the script source.
3113 DECL_ACCESSORS(source, Object)
3114
3115 // [name]: the script name.
3116 DECL_ACCESSORS(name, Object)
3117
3118 // [id]: the script id.
3119 DECL_ACCESSORS(id, Object)
3120
3121 // [line_offset]: script line offset in resource from where it was extracted.
3122 DECL_ACCESSORS(line_offset, Smi)
3123
3124 // [column_offset]: script column offset in resource from where it was
3125 // extracted.
3126 DECL_ACCESSORS(column_offset, Smi)
3127
3128 // [data]: additional data associated with this script.
3129 DECL_ACCESSORS(data, Object)
3130
3131 // [context_data]: context data for the context this script was compiled in.
3132 DECL_ACCESSORS(context_data, Object)
3133
3134 // [wrapper]: the wrapper cache.
3135 DECL_ACCESSORS(wrapper, Proxy)
3136
3137 // [type]: the script type.
3138 DECL_ACCESSORS(type, Smi)
3139
3140 // [compilation]: how the the script was compiled.
3141 DECL_ACCESSORS(compilation_type, Smi)
3142
Steve Blockd0582a62009-12-15 09:54:21 +00003143 // [line_ends]: FixedArray of line ends positions.
Steve Blocka7e24c12009-10-30 11:49:00 +00003144 DECL_ACCESSORS(line_ends, Object)
3145
Steve Blockd0582a62009-12-15 09:54:21 +00003146 // [eval_from_shared]: for eval scripts the shared funcion info for the
3147 // function from which eval was called.
3148 DECL_ACCESSORS(eval_from_shared, Object)
Steve Blocka7e24c12009-10-30 11:49:00 +00003149
3150 // [eval_from_instructions_offset]: the instruction offset in the code for the
3151 // function from which eval was called where eval was called.
3152 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3153
3154 static inline Script* cast(Object* obj);
3155
Steve Block3ce2e202009-11-05 08:53:23 +00003156 // If script source is an external string, check that the underlying
3157 // resource is accessible. Otherwise, always return true.
3158 inline bool HasValidSource();
3159
Steve Blocka7e24c12009-10-30 11:49:00 +00003160#ifdef DEBUG
3161 void ScriptPrint();
3162 void ScriptVerify();
3163#endif
3164
3165 static const int kSourceOffset = HeapObject::kHeaderSize;
3166 static const int kNameOffset = kSourceOffset + kPointerSize;
3167 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3168 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3169 static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3170 static const int kContextOffset = kDataOffset + kPointerSize;
3171 static const int kWrapperOffset = kContextOffset + kPointerSize;
3172 static const int kTypeOffset = kWrapperOffset + kPointerSize;
3173 static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3174 static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3175 static const int kIdOffset = kLineEndsOffset + kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +00003176 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003177 static const int kEvalFrominstructionsOffsetOffset =
Steve Blockd0582a62009-12-15 09:54:21 +00003178 kEvalFromSharedOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003179 static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3180
3181 private:
3182 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3183};
3184
3185
3186// SharedFunctionInfo describes the JSFunction information that can be
3187// shared by multiple instances of the function.
3188class SharedFunctionInfo: public HeapObject {
3189 public:
3190 // [name]: Function name.
3191 DECL_ACCESSORS(name, Object)
3192
3193 // [code]: Function code.
3194 DECL_ACCESSORS(code, Code)
3195
3196 // [construct stub]: Code stub for constructing instances of this function.
3197 DECL_ACCESSORS(construct_stub, Code)
3198
3199 // Returns if this function has been compiled to native code yet.
3200 inline bool is_compiled();
3201
3202 // [length]: The function length - usually the number of declared parameters.
3203 // Use up to 2^30 parameters.
3204 inline int length();
3205 inline void set_length(int value);
3206
3207 // [formal parameter count]: The declared number of parameters.
3208 inline int formal_parameter_count();
3209 inline void set_formal_parameter_count(int value);
3210
3211 // Set the formal parameter count so the function code will be
3212 // called without using argument adaptor frames.
3213 inline void DontAdaptArguments();
3214
3215 // [expected_nof_properties]: Expected number of properties for the function.
3216 inline int expected_nof_properties();
3217 inline void set_expected_nof_properties(int value);
3218
3219 // [instance class name]: class name for instances.
3220 DECL_ACCESSORS(instance_class_name, Object)
3221
Steve Block6ded16b2010-05-10 14:33:55 +01003222 // [function data]: This field holds some additional data for function.
3223 // Currently it either has FunctionTemplateInfo to make benefit the API
Kristian Monsen25f61362010-05-21 11:50:48 +01003224 // or Smi identifying a custom call generator.
Steve Blocka7e24c12009-10-30 11:49:00 +00003225 // In the long run we don't want all functions to have this field but
3226 // we can fix that when we have a better model for storing hidden data
3227 // on objects.
3228 DECL_ACCESSORS(function_data, Object)
3229
Steve Block6ded16b2010-05-10 14:33:55 +01003230 inline bool IsApiFunction();
3231 inline FunctionTemplateInfo* get_api_func_data();
3232 inline bool HasCustomCallGenerator();
Kristian Monsen25f61362010-05-21 11:50:48 +01003233 inline int custom_call_generator_id();
Steve Block6ded16b2010-05-10 14:33:55 +01003234
Steve Blocka7e24c12009-10-30 11:49:00 +00003235 // [script info]: Script from which the function originates.
3236 DECL_ACCESSORS(script, Object)
3237
Steve Block6ded16b2010-05-10 14:33:55 +01003238 // [num_literals]: Number of literals used by this function.
3239 inline int num_literals();
3240 inline void set_num_literals(int value);
3241
Steve Blocka7e24c12009-10-30 11:49:00 +00003242 // [start_position_and_type]: Field used to store both the source code
3243 // position, whether or not the function is a function expression,
3244 // and whether or not the function is a toplevel function. The two
3245 // least significants bit indicates whether the function is an
3246 // expression and the rest contains the source code position.
3247 inline int start_position_and_type();
3248 inline void set_start_position_and_type(int value);
3249
3250 // [debug info]: Debug information.
3251 DECL_ACCESSORS(debug_info, Object)
3252
3253 // [inferred name]: Name inferred from variable or property
3254 // assignment of this function. Used to facilitate debugging and
3255 // profiling of JavaScript code written in OO style, where almost
3256 // all functions are anonymous but are assigned to object
3257 // properties.
3258 DECL_ACCESSORS(inferred_name, String)
3259
3260 // Position of the 'function' token in the script source.
3261 inline int function_token_position();
3262 inline void set_function_token_position(int function_token_position);
3263
3264 // Position of this function in the script source.
3265 inline int start_position();
3266 inline void set_start_position(int start_position);
3267
3268 // End position of this function in the script source.
3269 inline int end_position();
3270 inline void set_end_position(int end_position);
3271
3272 // Is this function a function expression in the source code.
3273 inline bool is_expression();
3274 inline void set_is_expression(bool value);
3275
3276 // Is this function a top-level function (scripts, evals).
3277 inline bool is_toplevel();
3278 inline void set_is_toplevel(bool value);
3279
3280 // Bit field containing various information collected by the compiler to
3281 // drive optimization.
3282 inline int compiler_hints();
3283 inline void set_compiler_hints(int value);
3284
3285 // Add information on assignments of the form this.x = ...;
3286 void SetThisPropertyAssignmentsInfo(
Steve Blocka7e24c12009-10-30 11:49:00 +00003287 bool has_only_simple_this_property_assignments,
3288 FixedArray* this_property_assignments);
3289
3290 // Clear information on assignments of the form this.x = ...;
3291 void ClearThisPropertyAssignmentsInfo();
3292
3293 // Indicate that this function only consists of assignments of the form
Steve Blocka7e24c12009-10-30 11:49:00 +00003294 // this.x = y; where y is either a constant or refers to an argument.
3295 inline bool has_only_simple_this_property_assignments();
3296
Leon Clarked91b9f72010-01-27 17:25:45 +00003297 inline bool try_full_codegen();
3298 inline void set_try_full_codegen(bool flag);
Steve Blockd0582a62009-12-15 09:54:21 +00003299
Andrei Popescu402d9372010-02-26 13:31:12 +00003300 // Check whether a inlined constructor can be generated with the given
3301 // prototype.
3302 bool CanGenerateInlineConstructor(Object* prototype);
3303
Steve Blocka7e24c12009-10-30 11:49:00 +00003304 // For functions which only contains this property assignments this provides
3305 // access to the names for the properties assigned.
3306 DECL_ACCESSORS(this_property_assignments, Object)
3307 inline int this_property_assignments_count();
3308 inline void set_this_property_assignments_count(int value);
3309 String* GetThisPropertyAssignmentName(int index);
3310 bool IsThisPropertyAssignmentArgument(int index);
3311 int GetThisPropertyAssignmentArgument(int index);
3312 Object* GetThisPropertyAssignmentConstant(int index);
3313
3314 // [source code]: Source code for the function.
3315 bool HasSourceCode();
3316 Object* GetSourceCode();
3317
3318 // Calculate the instance size.
3319 int CalculateInstanceSize();
3320
3321 // Calculate the number of in-object properties.
3322 int CalculateInObjectProperties();
3323
3324 // Dispatched behavior.
3325 void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3326 // Set max_length to -1 for unlimited length.
3327 void SourceCodePrint(StringStream* accumulator, int max_length);
3328#ifdef DEBUG
3329 void SharedFunctionInfoPrint();
3330 void SharedFunctionInfoVerify();
3331#endif
3332
3333 // Casting.
3334 static inline SharedFunctionInfo* cast(Object* obj);
3335
3336 // Constants.
3337 static const int kDontAdaptArgumentsSentinel = -1;
3338
3339 // Layout description.
Steve Block6ded16b2010-05-10 14:33:55 +01003340 // Pointer fields.
Steve Blocka7e24c12009-10-30 11:49:00 +00003341 static const int kNameOffset = HeapObject::kHeaderSize;
3342 static const int kCodeOffset = kNameOffset + kPointerSize;
3343 static const int kConstructStubOffset = kCodeOffset + kPointerSize;
Steve Block6ded16b2010-05-10 14:33:55 +01003344 static const int kInstanceClassNameOffset =
3345 kConstructStubOffset + kPointerSize;
3346 static const int kFunctionDataOffset =
3347 kInstanceClassNameOffset + kPointerSize;
3348 static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
3349 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3350 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3351 static const int kThisPropertyAssignmentsOffset =
3352 kInferredNameOffset + kPointerSize;
3353 // Integer fields.
3354 static const int kLengthOffset =
3355 kThisPropertyAssignmentsOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003356 static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
3357 static const int kExpectedNofPropertiesOffset =
3358 kFormalParameterCountOffset + kIntSize;
Steve Block6ded16b2010-05-10 14:33:55 +01003359 static const int kNumLiteralsOffset = kExpectedNofPropertiesOffset + kIntSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003360 static const int kStartPositionAndTypeOffset =
Steve Block6ded16b2010-05-10 14:33:55 +01003361 kNumLiteralsOffset + kIntSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003362 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
3363 static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
Steve Block6ded16b2010-05-10 14:33:55 +01003364 static const int kCompilerHintsOffset =
Steve Blocka7e24c12009-10-30 11:49:00 +00003365 kFunctionTokenPositionOffset + kIntSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003366 static const int kThisPropertyAssignmentsCountOffset =
Steve Block6ded16b2010-05-10 14:33:55 +01003367 kCompilerHintsOffset + kIntSize;
3368 // Total size.
3369 static const int kSize = kThisPropertyAssignmentsCountOffset + kIntSize;
3370 static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
Steve Blocka7e24c12009-10-30 11:49:00 +00003371
3372 private:
Steve Blocka7e24c12009-10-30 11:49:00 +00003373 // Bit positions in start_position_and_type.
3374 // The source code start position is in the 30 most significant bits of
3375 // the start_position_and_type field.
3376 static const int kIsExpressionBit = 0;
3377 static const int kIsTopLevelBit = 1;
3378 static const int kStartPositionShift = 2;
3379 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3380
3381 // Bit positions in compiler_hints.
Steve Blockd0582a62009-12-15 09:54:21 +00003382 static const int kHasOnlySimpleThisPropertyAssignments = 0;
Leon Clarked91b9f72010-01-27 17:25:45 +00003383 static const int kTryFullCodegen = 1;
Steve Blocka7e24c12009-10-30 11:49:00 +00003384
3385 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3386};
3387
3388
3389// JSFunction describes JavaScript functions.
3390class JSFunction: public JSObject {
3391 public:
3392 // [prototype_or_initial_map]:
3393 DECL_ACCESSORS(prototype_or_initial_map, Object)
3394
3395 // [shared_function_info]: The information about the function that
3396 // can be shared by instances.
3397 DECL_ACCESSORS(shared, SharedFunctionInfo)
3398
3399 // [context]: The context for this function.
3400 inline Context* context();
3401 inline Object* unchecked_context();
3402 inline void set_context(Object* context);
3403
3404 // [code]: The generated code object for this function. Executed
3405 // when the function is invoked, e.g. foo() or new foo(). See
3406 // [[Call]] and [[Construct]] description in ECMA-262, section
3407 // 8.6.2, page 27.
3408 inline Code* code();
3409 inline void set_code(Code* value);
3410
Steve Blocka7e24c12009-10-30 11:49:00 +00003411 // Tells whether this function is builtin.
3412 inline bool IsBuiltin();
3413
3414 // [literals]: Fixed array holding the materialized literals.
3415 //
3416 // If the function contains object, regexp or array literals, the
3417 // literals array prefix contains the object, regexp, and array
3418 // function to be used when creating these literals. This is
3419 // necessary so that we do not dynamically lookup the object, regexp
3420 // or array functions. Performing a dynamic lookup, we might end up
3421 // using the functions from a new context that we should not have
3422 // access to.
3423 DECL_ACCESSORS(literals, FixedArray)
3424
3425 // The initial map for an object created by this constructor.
3426 inline Map* initial_map();
3427 inline void set_initial_map(Map* value);
3428 inline bool has_initial_map();
3429
3430 // Get and set the prototype property on a JSFunction. If the
3431 // function has an initial map the prototype is set on the initial
3432 // map. Otherwise, the prototype is put in the initial map field
3433 // until an initial map is needed.
3434 inline bool has_prototype();
3435 inline bool has_instance_prototype();
3436 inline Object* prototype();
3437 inline Object* instance_prototype();
3438 Object* SetInstancePrototype(Object* value);
3439 Object* SetPrototype(Object* value);
3440
Steve Block6ded16b2010-05-10 14:33:55 +01003441 // After prototype is removed, it will not be created when accessed, and
3442 // [[Construct]] from this function will not be allowed.
3443 Object* RemovePrototype();
3444 inline bool should_have_prototype();
3445
Steve Blocka7e24c12009-10-30 11:49:00 +00003446 // Accessor for this function's initial map's [[class]]
3447 // property. This is primarily used by ECMA native functions. This
3448 // method sets the class_name field of this function's initial map
3449 // to a given value. It creates an initial map if this function does
3450 // not have one. Note that this method does not copy the initial map
3451 // if it has one already, but simply replaces it with the new value.
3452 // Instances created afterwards will have a map whose [[class]] is
3453 // set to 'value', but there is no guarantees on instances created
3454 // before.
3455 Object* SetInstanceClassName(String* name);
3456
3457 // Returns if this function has been compiled to native code yet.
3458 inline bool is_compiled();
3459
3460 // Casting.
3461 static inline JSFunction* cast(Object* obj);
3462
3463 // Dispatched behavior.
3464#ifdef DEBUG
3465 void JSFunctionPrint();
3466 void JSFunctionVerify();
3467#endif
3468
3469 // Returns the number of allocated literals.
3470 inline int NumberOfLiterals();
3471
3472 // Retrieve the global context from a function's literal array.
3473 static Context* GlobalContextFromLiterals(FixedArray* literals);
3474
3475 // Layout descriptors.
3476 static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3477 static const int kSharedFunctionInfoOffset =
3478 kPrototypeOrInitialMapOffset + kPointerSize;
3479 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3480 static const int kLiteralsOffset = kContextOffset + kPointerSize;
3481 static const int kSize = kLiteralsOffset + kPointerSize;
3482
3483 // Layout of the literals array.
3484 static const int kLiteralsPrefixSize = 1;
3485 static const int kLiteralGlobalContextIndex = 0;
3486 private:
3487 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3488};
3489
3490
3491// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3492// and the prototype is hidden. JSGlobalProxy always delegates
3493// property accesses to its prototype if the prototype is not null.
3494//
3495// A JSGlobalProxy can be reinitialized which will preserve its identity.
3496//
3497// Accessing a JSGlobalProxy requires security check.
3498
3499class JSGlobalProxy : public JSObject {
3500 public:
3501 // [context]: the owner global context of this proxy object.
3502 // It is null value if this object is not used by any context.
3503 DECL_ACCESSORS(context, Object)
3504
3505 // Casting.
3506 static inline JSGlobalProxy* cast(Object* obj);
3507
3508 // Dispatched behavior.
3509#ifdef DEBUG
3510 void JSGlobalProxyPrint();
3511 void JSGlobalProxyVerify();
3512#endif
3513
3514 // Layout description.
3515 static const int kContextOffset = JSObject::kHeaderSize;
3516 static const int kSize = kContextOffset + kPointerSize;
3517
3518 private:
3519
3520 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3521};
3522
3523
3524// Forward declaration.
3525class JSBuiltinsObject;
3526
3527// Common super class for JavaScript global objects and the special
3528// builtins global objects.
3529class GlobalObject: public JSObject {
3530 public:
3531 // [builtins]: the object holding the runtime routines written in JS.
3532 DECL_ACCESSORS(builtins, JSBuiltinsObject)
3533
3534 // [global context]: the global context corresponding to this global object.
3535 DECL_ACCESSORS(global_context, Context)
3536
3537 // [global receiver]: the global receiver object of the context
3538 DECL_ACCESSORS(global_receiver, JSObject)
3539
3540 // Retrieve the property cell used to store a property.
3541 Object* GetPropertyCell(LookupResult* result);
3542
3543 // Ensure that the global object has a cell for the given property name.
3544 Object* EnsurePropertyCell(String* name);
3545
3546 // Casting.
3547 static inline GlobalObject* cast(Object* obj);
3548
3549 // Layout description.
3550 static const int kBuiltinsOffset = JSObject::kHeaderSize;
3551 static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3552 static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3553 static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3554
3555 private:
3556 friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3557
3558 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3559};
3560
3561
3562// JavaScript global object.
3563class JSGlobalObject: public GlobalObject {
3564 public:
3565
3566 // Casting.
3567 static inline JSGlobalObject* cast(Object* obj);
3568
3569 // Dispatched behavior.
3570#ifdef DEBUG
3571 void JSGlobalObjectPrint();
3572 void JSGlobalObjectVerify();
3573#endif
3574
3575 // Layout description.
3576 static const int kSize = GlobalObject::kHeaderSize;
3577
3578 private:
3579 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3580};
3581
3582
3583// Builtins global object which holds the runtime routines written in
3584// JavaScript.
3585class JSBuiltinsObject: public GlobalObject {
3586 public:
3587 // Accessors for the runtime routines written in JavaScript.
3588 inline Object* javascript_builtin(Builtins::JavaScript id);
3589 inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3590
Steve Block6ded16b2010-05-10 14:33:55 +01003591 // Accessors for code of the runtime routines written in JavaScript.
3592 inline Code* javascript_builtin_code(Builtins::JavaScript id);
3593 inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
3594
Steve Blocka7e24c12009-10-30 11:49:00 +00003595 // Casting.
3596 static inline JSBuiltinsObject* cast(Object* obj);
3597
3598 // Dispatched behavior.
3599#ifdef DEBUG
3600 void JSBuiltinsObjectPrint();
3601 void JSBuiltinsObjectVerify();
3602#endif
3603
3604 // Layout description. The size of the builtins object includes
Steve Block6ded16b2010-05-10 14:33:55 +01003605 // room for two pointers per runtime routine written in javascript
3606 // (function and code object).
Steve Blocka7e24c12009-10-30 11:49:00 +00003607 static const int kJSBuiltinsCount = Builtins::id_count;
3608 static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
Steve Block6ded16b2010-05-10 14:33:55 +01003609 static const int kJSBuiltinsCodeOffset =
3610 GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
Steve Blocka7e24c12009-10-30 11:49:00 +00003611 static const int kSize =
Steve Block6ded16b2010-05-10 14:33:55 +01003612 kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
3613
3614 static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
3615 return kJSBuiltinsOffset + id * kPointerSize;
3616 }
3617
3618 static int OffsetOfCodeWithId(Builtins::JavaScript id) {
3619 return kJSBuiltinsCodeOffset + id * kPointerSize;
3620 }
3621
Steve Blocka7e24c12009-10-30 11:49:00 +00003622 private:
3623 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3624};
3625
3626
3627// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3628class JSValue: public JSObject {
3629 public:
3630 // [value]: the object being wrapped.
3631 DECL_ACCESSORS(value, Object)
3632
3633 // Casting.
3634 static inline JSValue* cast(Object* obj);
3635
3636 // Dispatched behavior.
3637#ifdef DEBUG
3638 void JSValuePrint();
3639 void JSValueVerify();
3640#endif
3641
3642 // Layout description.
3643 static const int kValueOffset = JSObject::kHeaderSize;
3644 static const int kSize = kValueOffset + kPointerSize;
3645
3646 private:
3647 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3648};
3649
3650// Regular expressions
3651// The regular expression holds a single reference to a FixedArray in
3652// the kDataOffset field.
3653// The FixedArray contains the following data:
3654// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3655// - reference to the original source string
3656// - reference to the original flag string
3657// If it is an atom regexp
3658// - a reference to a literal string to search for
3659// If it is an irregexp regexp:
3660// - a reference to code for ASCII inputs (bytecode or compiled).
3661// - a reference to code for UC16 inputs (bytecode or compiled).
3662// - max number of registers used by irregexp implementations.
3663// - number of capture registers (output values) of the regexp.
3664class JSRegExp: public JSObject {
3665 public:
3666 // Meaning of Type:
3667 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3668 // ATOM: A simple string to match against using an indexOf operation.
3669 // IRREGEXP: Compiled with Irregexp.
3670 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3671 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3672 enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3673
3674 class Flags {
3675 public:
3676 explicit Flags(uint32_t value) : value_(value) { }
3677 bool is_global() { return (value_ & GLOBAL) != 0; }
3678 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
3679 bool is_multiline() { return (value_ & MULTILINE) != 0; }
3680 uint32_t value() { return value_; }
3681 private:
3682 uint32_t value_;
3683 };
3684
3685 DECL_ACCESSORS(data, Object)
3686
3687 inline Type TypeTag();
3688 inline int CaptureCount();
3689 inline Flags GetFlags();
3690 inline String* Pattern();
3691 inline Object* DataAt(int index);
3692 // Set implementation data after the object has been prepared.
3693 inline void SetDataAt(int index, Object* value);
3694 static int code_index(bool is_ascii) {
3695 if (is_ascii) {
3696 return kIrregexpASCIICodeIndex;
3697 } else {
3698 return kIrregexpUC16CodeIndex;
3699 }
3700 }
3701
3702 static inline JSRegExp* cast(Object* obj);
3703
3704 // Dispatched behavior.
3705#ifdef DEBUG
3706 void JSRegExpVerify();
3707#endif
3708
3709 static const int kDataOffset = JSObject::kHeaderSize;
3710 static const int kSize = kDataOffset + kPointerSize;
3711
3712 // Indices in the data array.
3713 static const int kTagIndex = 0;
3714 static const int kSourceIndex = kTagIndex + 1;
3715 static const int kFlagsIndex = kSourceIndex + 1;
3716 static const int kDataIndex = kFlagsIndex + 1;
3717 // The data fields are used in different ways depending on the
3718 // value of the tag.
3719 // Atom regexps (literal strings).
3720 static const int kAtomPatternIndex = kDataIndex;
3721
3722 static const int kAtomDataSize = kAtomPatternIndex + 1;
3723
3724 // Irregexp compiled code or bytecode for ASCII. If compilation
3725 // fails, this fields hold an exception object that should be
3726 // thrown if the regexp is used again.
3727 static const int kIrregexpASCIICodeIndex = kDataIndex;
3728 // Irregexp compiled code or bytecode for UC16. If compilation
3729 // fails, this fields hold an exception object that should be
3730 // thrown if the regexp is used again.
3731 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3732 // Maximal number of registers used by either ASCII or UC16.
3733 // Only used to check that there is enough stack space
3734 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3735 // Number of captures in the compiled regexp.
3736 static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3737
3738 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
Leon Clarkee46be812010-01-19 14:06:41 +00003739
3740 // Offsets directly into the data fixed array.
3741 static const int kDataTagOffset =
3742 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
3743 static const int kDataAsciiCodeOffset =
3744 FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
Leon Clarked91b9f72010-01-27 17:25:45 +00003745 static const int kDataUC16CodeOffset =
3746 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
Leon Clarkee46be812010-01-19 14:06:41 +00003747 static const int kIrregexpCaptureCountOffset =
3748 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
Steve Block6ded16b2010-05-10 14:33:55 +01003749
3750 // In-object fields.
3751 static const int kSourceFieldIndex = 0;
3752 static const int kGlobalFieldIndex = 1;
3753 static const int kIgnoreCaseFieldIndex = 2;
3754 static const int kMultilineFieldIndex = 3;
3755 static const int kLastIndexFieldIndex = 4;
Steve Blocka7e24c12009-10-30 11:49:00 +00003756};
3757
3758
3759class CompilationCacheShape {
3760 public:
3761 static inline bool IsMatch(HashTableKey* key, Object* value) {
3762 return key->IsMatch(value);
3763 }
3764
3765 static inline uint32_t Hash(HashTableKey* key) {
3766 return key->Hash();
3767 }
3768
3769 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3770 return key->HashForObject(object);
3771 }
3772
3773 static Object* AsObject(HashTableKey* key) {
3774 return key->AsObject();
3775 }
3776
3777 static const int kPrefixSize = 0;
3778 static const int kEntrySize = 2;
3779};
3780
Steve Block3ce2e202009-11-05 08:53:23 +00003781
Steve Blocka7e24c12009-10-30 11:49:00 +00003782class CompilationCacheTable: public HashTable<CompilationCacheShape,
3783 HashTableKey*> {
3784 public:
3785 // Find cached value for a string key, otherwise return null.
3786 Object* Lookup(String* src);
3787 Object* LookupEval(String* src, Context* context);
3788 Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3789 Object* Put(String* src, Object* value);
3790 Object* PutEval(String* src, Context* context, Object* value);
3791 Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3792
3793 static inline CompilationCacheTable* cast(Object* obj);
3794
3795 private:
3796 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3797};
3798
3799
Steve Block6ded16b2010-05-10 14:33:55 +01003800class CodeCache: public Struct {
3801 public:
3802 DECL_ACCESSORS(default_cache, FixedArray)
3803 DECL_ACCESSORS(normal_type_cache, Object)
3804
3805 // Add the code object to the cache.
3806 Object* Update(String* name, Code* code);
3807
3808 // Lookup code object in the cache. Returns code object if found and undefined
3809 // if not.
3810 Object* Lookup(String* name, Code::Flags flags);
3811
3812 // Get the internal index of a code object in the cache. Returns -1 if the
3813 // code object is not in that cache. This index can be used to later call
3814 // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
3815 // RemoveByIndex.
3816 int GetIndex(Object* name, Code* code);
3817
3818 // Remove an object from the cache with the provided internal index.
3819 void RemoveByIndex(Object* name, Code* code, int index);
3820
3821 static inline CodeCache* cast(Object* obj);
3822
3823#ifdef DEBUG
3824 void CodeCachePrint();
3825 void CodeCacheVerify();
3826#endif
3827
3828 static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
3829 static const int kNormalTypeCacheOffset =
3830 kDefaultCacheOffset + kPointerSize;
3831 static const int kSize = kNormalTypeCacheOffset + kPointerSize;
3832
3833 private:
3834 Object* UpdateDefaultCache(String* name, Code* code);
3835 Object* UpdateNormalTypeCache(String* name, Code* code);
3836 Object* LookupDefaultCache(String* name, Code::Flags flags);
3837 Object* LookupNormalTypeCache(String* name, Code::Flags flags);
3838
3839 // Code cache layout of the default cache. Elements are alternating name and
3840 // code objects for non normal load/store/call IC's.
3841 static const int kCodeCacheEntrySize = 2;
3842 static const int kCodeCacheEntryNameOffset = 0;
3843 static const int kCodeCacheEntryCodeOffset = 1;
3844
3845 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
3846};
3847
3848
3849class CodeCacheHashTableShape {
3850 public:
3851 static inline bool IsMatch(HashTableKey* key, Object* value) {
3852 return key->IsMatch(value);
3853 }
3854
3855 static inline uint32_t Hash(HashTableKey* key) {
3856 return key->Hash();
3857 }
3858
3859 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3860 return key->HashForObject(object);
3861 }
3862
3863 static Object* AsObject(HashTableKey* key) {
3864 return key->AsObject();
3865 }
3866
3867 static const int kPrefixSize = 0;
3868 static const int kEntrySize = 2;
3869};
3870
3871
3872class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
3873 HashTableKey*> {
3874 public:
3875 Object* Lookup(String* name, Code::Flags flags);
3876 Object* Put(String* name, Code* code);
3877
3878 int GetIndex(String* name, Code::Flags flags);
3879 void RemoveByIndex(int index);
3880
3881 static inline CodeCacheHashTable* cast(Object* obj);
3882
3883 // Initial size of the fixed array backing the hash table.
3884 static const int kInitialSize = 64;
3885
3886 private:
3887 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
3888};
3889
3890
Steve Blocka7e24c12009-10-30 11:49:00 +00003891enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
3892enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
3893
3894
3895class StringHasher {
3896 public:
3897 inline StringHasher(int length);
3898
3899 // Returns true if the hash of this string can be computed without
3900 // looking at the contents.
3901 inline bool has_trivial_hash();
3902
3903 // Add a character to the hash and update the array index calculation.
3904 inline void AddCharacter(uc32 c);
3905
3906 // Adds a character to the hash but does not update the array index
3907 // calculation. This can only be called when it has been verified
3908 // that the input is not an array index.
3909 inline void AddCharacterNoIndex(uc32 c);
3910
3911 // Returns the value to store in the hash field of a string with
3912 // the given length and contents.
3913 uint32_t GetHashField();
3914
3915 // Returns true if the characters seen so far make up a legal array
3916 // index.
3917 bool is_array_index() { return is_array_index_; }
3918
3919 bool is_valid() { return is_valid_; }
3920
3921 void invalidate() { is_valid_ = false; }
3922
3923 private:
3924
3925 uint32_t array_index() {
3926 ASSERT(is_array_index());
3927 return array_index_;
3928 }
3929
3930 inline uint32_t GetHash();
3931
3932 int length_;
3933 uint32_t raw_running_hash_;
3934 uint32_t array_index_;
3935 bool is_array_index_;
3936 bool is_first_char_;
3937 bool is_valid_;
Steve Blockd0582a62009-12-15 09:54:21 +00003938 friend class TwoCharHashTableKey;
Steve Blocka7e24c12009-10-30 11:49:00 +00003939};
3940
3941
3942// The characteristics of a string are stored in its map. Retrieving these
3943// few bits of information is moderately expensive, involving two memory
3944// loads where the second is dependent on the first. To improve efficiency
3945// the shape of the string is given its own class so that it can be retrieved
3946// once and used for several string operations. A StringShape is small enough
3947// to be passed by value and is immutable, but be aware that flattening a
3948// string can potentially alter its shape. Also be aware that a GC caused by
3949// something else can alter the shape of a string due to ConsString
3950// shortcutting. Keeping these restrictions in mind has proven to be error-
3951// prone and so we no longer put StringShapes in variables unless there is a
3952// concrete performance benefit at that particular point in the code.
3953class StringShape BASE_EMBEDDED {
3954 public:
3955 inline explicit StringShape(String* s);
3956 inline explicit StringShape(Map* s);
3957 inline explicit StringShape(InstanceType t);
3958 inline bool IsSequential();
3959 inline bool IsExternal();
3960 inline bool IsCons();
Steve Blocka7e24c12009-10-30 11:49:00 +00003961 inline bool IsExternalAscii();
3962 inline bool IsExternalTwoByte();
3963 inline bool IsSequentialAscii();
3964 inline bool IsSequentialTwoByte();
3965 inline bool IsSymbol();
3966 inline StringRepresentationTag representation_tag();
3967 inline uint32_t full_representation_tag();
3968 inline uint32_t size_tag();
3969#ifdef DEBUG
3970 inline uint32_t type() { return type_; }
3971 inline void invalidate() { valid_ = false; }
3972 inline bool valid() { return valid_; }
3973#else
3974 inline void invalidate() { }
3975#endif
3976 private:
3977 uint32_t type_;
3978#ifdef DEBUG
3979 inline void set_valid() { valid_ = true; }
3980 bool valid_;
3981#else
3982 inline void set_valid() { }
3983#endif
3984};
3985
3986
3987// The String abstract class captures JavaScript string values:
3988//
3989// Ecma-262:
3990// 4.3.16 String Value
3991// A string value is a member of the type String and is a finite
3992// ordered sequence of zero or more 16-bit unsigned integer values.
3993//
3994// All string values have a length field.
3995class String: public HeapObject {
3996 public:
3997 // Get and set the length of the string.
3998 inline int length();
3999 inline void set_length(int value);
4000
Steve Blockd0582a62009-12-15 09:54:21 +00004001 // Get and set the hash field of the string.
4002 inline uint32_t hash_field();
4003 inline void set_hash_field(uint32_t value);
Steve Blocka7e24c12009-10-30 11:49:00 +00004004
4005 inline bool IsAsciiRepresentation();
4006 inline bool IsTwoByteRepresentation();
4007
Steve Block6ded16b2010-05-10 14:33:55 +01004008 // Check whether this string is an external two-byte string that in
4009 // fact contains only ascii characters.
4010 //
4011 // Such strings may appear when the embedder prefers two-byte
4012 // representations even for ascii data.
4013 inline bool IsExternalTwoByteStringWithAsciiChars();
4014
Steve Blocka7e24c12009-10-30 11:49:00 +00004015 // Get and set individual two byte chars in the string.
4016 inline void Set(int index, uint16_t value);
4017 // Get individual two byte char in the string. Repeated calls
4018 // to this method are not efficient unless the string is flat.
4019 inline uint16_t Get(int index);
4020
Leon Clarkef7060e22010-06-03 12:02:55 +01004021 // Try to flatten the string. Checks first inline to see if it is
4022 // necessary. Does nothing if the string is not a cons string.
4023 // Flattening allocates a sequential string with the same data as
4024 // the given string and mutates the cons string to a degenerate
4025 // form, where the first component is the new sequential string and
4026 // the second component is the empty string. If allocation fails,
4027 // this function returns a failure. If flattening succeeds, this
4028 // function returns the sequential string that is now the first
4029 // component of the cons string.
4030 //
4031 // Degenerate cons strings are handled specially by the garbage
4032 // collector (see IsShortcutCandidate).
4033 //
4034 // Use FlattenString from Handles.cc to flatten even in case an
4035 // allocation failure happens.
Steve Block6ded16b2010-05-10 14:33:55 +01004036 inline Object* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
Steve Blocka7e24c12009-10-30 11:49:00 +00004037
Leon Clarkef7060e22010-06-03 12:02:55 +01004038 // Convenience function. Has exactly the same behavior as
4039 // TryFlatten(), except in the case of failure returns the original
4040 // string.
4041 inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
4042
Steve Blocka7e24c12009-10-30 11:49:00 +00004043 Vector<const char> ToAsciiVector();
4044 Vector<const uc16> ToUC16Vector();
4045
4046 // Mark the string as an undetectable object. It only applies to
4047 // ascii and two byte string types.
4048 bool MarkAsUndetectable();
4049
Steve Blockd0582a62009-12-15 09:54:21 +00004050 // Return a substring.
Steve Block6ded16b2010-05-10 14:33:55 +01004051 Object* SubString(int from, int to, PretenureFlag pretenure = NOT_TENURED);
Steve Blocka7e24c12009-10-30 11:49:00 +00004052
4053 // String equality operations.
4054 inline bool Equals(String* other);
4055 bool IsEqualTo(Vector<const char> str);
4056
4057 // Return a UTF8 representation of the string. The string is null
4058 // terminated but may optionally contain nulls. Length is returned
4059 // in length_output if length_output is not a null pointer The string
4060 // should be nearly flat, otherwise the performance of this method may
4061 // be very slow (quadratic in the length). Setting robustness_flag to
4062 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
4063 // handles unexpected data without causing assert failures and it does not
4064 // do any heap allocations. This is useful when printing stack traces.
4065 SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
4066 RobustnessFlag robustness_flag,
4067 int offset,
4068 int length,
4069 int* length_output = 0);
4070 SmartPointer<char> ToCString(
4071 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
4072 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
4073 int* length_output = 0);
4074
4075 int Utf8Length();
4076
4077 // Return a 16 bit Unicode representation of the string.
4078 // The string should be nearly flat, otherwise the performance of
4079 // of this method may be very bad. Setting robustness_flag to
4080 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
4081 // handles unexpected data without causing assert failures and it does not
4082 // do any heap allocations. This is useful when printing stack traces.
4083 SmartPointer<uc16> ToWideCString(
4084 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
4085
4086 // Tells whether the hash code has been computed.
4087 inline bool HasHashCode();
4088
4089 // Returns a hash value used for the property table
4090 inline uint32_t Hash();
4091
Steve Blockd0582a62009-12-15 09:54:21 +00004092 static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
4093 int length);
Steve Blocka7e24c12009-10-30 11:49:00 +00004094
4095 static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
4096 uint32_t* index,
4097 int length);
4098
4099 // Externalization.
4100 bool MakeExternal(v8::String::ExternalStringResource* resource);
4101 bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
4102
4103 // Conversion.
4104 inline bool AsArrayIndex(uint32_t* index);
4105
4106 // Casting.
4107 static inline String* cast(Object* obj);
4108
4109 void PrintOn(FILE* out);
4110
4111 // For use during stack traces. Performs rudimentary sanity check.
4112 bool LooksValid();
4113
4114 // Dispatched behavior.
4115 void StringShortPrint(StringStream* accumulator);
4116#ifdef DEBUG
4117 void StringPrint();
4118 void StringVerify();
4119#endif
4120 inline bool IsFlat();
4121
4122 // Layout description.
4123 static const int kLengthOffset = HeapObject::kHeaderSize;
Steve Block6ded16b2010-05-10 14:33:55 +01004124 static const int kHashFieldOffset = kLengthOffset + kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +00004125 static const int kSize = kHashFieldOffset + kIntSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00004126 // Notice: kSize is not pointer-size aligned if pointers are 64-bit.
4127
Steve Blockd0582a62009-12-15 09:54:21 +00004128 // Maximum number of characters to consider when trying to convert a string
4129 // value into an array index.
Steve Blocka7e24c12009-10-30 11:49:00 +00004130 static const int kMaxArrayIndexSize = 10;
4131
4132 // Max ascii char code.
4133 static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
4134 static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
4135 static const int kMaxUC16CharCode = 0xffff;
4136
Steve Blockd0582a62009-12-15 09:54:21 +00004137 // Minimum length for a cons string.
Steve Blocka7e24c12009-10-30 11:49:00 +00004138 static const int kMinNonFlatLength = 13;
4139
4140 // Mask constant for checking if a string has a computed hash code
4141 // and if it is an array index. The least significant bit indicates
4142 // whether a hash code has been computed. If the hash code has been
4143 // computed the 2nd bit tells whether the string can be used as an
4144 // array index.
4145 static const int kHashComputedMask = 1;
4146 static const int kIsArrayIndexMask = 1 << 1;
4147 static const int kNofLengthBitFields = 2;
4148
Steve Blockd0582a62009-12-15 09:54:21 +00004149 // Shift constant retrieving hash code from hash field.
4150 static const int kHashShift = kNofLengthBitFields;
4151
Steve Blocka7e24c12009-10-30 11:49:00 +00004152 // Array index strings this short can keep their index in the hash
4153 // field.
4154 static const int kMaxCachedArrayIndexLength = 7;
4155
Steve Blockd0582a62009-12-15 09:54:21 +00004156 // For strings which are array indexes the hash value has the string length
4157 // mixed into the hash, mainly to avoid a hash value of zero which would be
4158 // the case for the string '0'. 24 bits are used for the array index value.
4159 static const int kArrayIndexHashLengthShift = 24 + kNofLengthBitFields;
4160 static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
4161 static const int kArrayIndexValueBits =
4162 kArrayIndexHashLengthShift - kHashShift;
4163
4164 // Value of empty hash field indicating that the hash is not computed.
4165 static const int kEmptyHashField = 0;
4166
4167 // Maximal string length.
4168 static const int kMaxLength = (1 << (32 - 2)) - 1;
4169
4170 // Max length for computing hash. For strings longer than this limit the
4171 // string length is used as the hash value.
4172 static const int kMaxHashCalcLength = 16383;
Steve Blocka7e24c12009-10-30 11:49:00 +00004173
4174 // Limit for truncation in short printing.
4175 static const int kMaxShortPrintLength = 1024;
4176
4177 // Support for regular expressions.
4178 const uc16* GetTwoByteData();
4179 const uc16* GetTwoByteData(unsigned start);
4180
4181 // Support for StringInputBuffer
4182 static const unibrow::byte* ReadBlock(String* input,
4183 unibrow::byte* util_buffer,
4184 unsigned capacity,
4185 unsigned* remaining,
4186 unsigned* offset);
4187 static const unibrow::byte* ReadBlock(String** input,
4188 unibrow::byte* util_buffer,
4189 unsigned capacity,
4190 unsigned* remaining,
4191 unsigned* offset);
4192
4193 // Helper function for flattening strings.
4194 template <typename sinkchar>
4195 static void WriteToFlat(String* source,
4196 sinkchar* sink,
4197 int from,
4198 int to);
4199
4200 protected:
4201 class ReadBlockBuffer {
4202 public:
4203 ReadBlockBuffer(unibrow::byte* util_buffer_,
4204 unsigned cursor_,
4205 unsigned capacity_,
4206 unsigned remaining_) :
4207 util_buffer(util_buffer_),
4208 cursor(cursor_),
4209 capacity(capacity_),
4210 remaining(remaining_) {
4211 }
4212 unibrow::byte* util_buffer;
4213 unsigned cursor;
4214 unsigned capacity;
4215 unsigned remaining;
4216 };
4217
Steve Blocka7e24c12009-10-30 11:49:00 +00004218 static inline const unibrow::byte* ReadBlock(String* input,
4219 ReadBlockBuffer* buffer,
4220 unsigned* offset,
4221 unsigned max_chars);
4222 static void ReadBlockIntoBuffer(String* input,
4223 ReadBlockBuffer* buffer,
4224 unsigned* offset_ptr,
4225 unsigned max_chars);
4226
4227 private:
Leon Clarkef7060e22010-06-03 12:02:55 +01004228 // Try to flatten the top level ConsString that is hiding behind this
4229 // string. This is a no-op unless the string is a ConsString. Flatten
4230 // mutates the ConsString and might return a failure.
4231 Object* SlowTryFlatten(PretenureFlag pretenure);
4232
Steve Blocka7e24c12009-10-30 11:49:00 +00004233 // Slow case of String::Equals. This implementation works on any strings
4234 // but it is most efficient on strings that are almost flat.
4235 bool SlowEquals(String* other);
4236
4237 // Slow case of AsArrayIndex.
4238 bool SlowAsArrayIndex(uint32_t* index);
4239
4240 // Compute and set the hash code.
4241 uint32_t ComputeAndSetHash();
4242
4243 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
4244};
4245
4246
4247// The SeqString abstract class captures sequential string values.
4248class SeqString: public String {
4249 public:
4250
4251 // Casting.
4252 static inline SeqString* cast(Object* obj);
4253
Steve Blocka7e24c12009-10-30 11:49:00 +00004254 private:
4255 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
4256};
4257
4258
4259// The AsciiString class captures sequential ascii string objects.
4260// Each character in the AsciiString is an ascii character.
4261class SeqAsciiString: public SeqString {
4262 public:
4263 // Dispatched behavior.
4264 inline uint16_t SeqAsciiStringGet(int index);
4265 inline void SeqAsciiStringSet(int index, uint16_t value);
4266
4267 // Get the address of the characters in this string.
4268 inline Address GetCharsAddress();
4269
4270 inline char* GetChars();
4271
4272 // Casting
4273 static inline SeqAsciiString* cast(Object* obj);
4274
4275 // Garbage collection support. This method is called by the
4276 // garbage collector to compute the actual size of an AsciiString
4277 // instance.
4278 inline int SeqAsciiStringSize(InstanceType instance_type);
4279
4280 // Computes the size for an AsciiString instance of a given length.
4281 static int SizeFor(int length) {
4282 return OBJECT_SIZE_ALIGN(kHeaderSize + length * kCharSize);
4283 }
4284
4285 // Layout description.
4286 static const int kHeaderSize = String::kSize;
4287 static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4288
Leon Clarkee46be812010-01-19 14:06:41 +00004289 // Maximal memory usage for a single sequential ASCII string.
4290 static const int kMaxSize = 512 * MB;
4291 // Maximal length of a single sequential ASCII string.
4292 // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4293 static const int kMaxLength = (kMaxSize - kHeaderSize);
4294
Steve Blocka7e24c12009-10-30 11:49:00 +00004295 // Support for StringInputBuffer.
4296 inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4297 unsigned* offset,
4298 unsigned chars);
4299 inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
4300 unsigned* offset,
4301 unsigned chars);
4302
4303 private:
4304 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4305};
4306
4307
4308// The TwoByteString class captures sequential unicode string objects.
4309// Each character in the TwoByteString is a two-byte uint16_t.
4310class SeqTwoByteString: public SeqString {
4311 public:
4312 // Dispatched behavior.
4313 inline uint16_t SeqTwoByteStringGet(int index);
4314 inline void SeqTwoByteStringSet(int index, uint16_t value);
4315
4316 // Get the address of the characters in this string.
4317 inline Address GetCharsAddress();
4318
4319 inline uc16* GetChars();
4320
4321 // For regexp code.
4322 const uint16_t* SeqTwoByteStringGetData(unsigned start);
4323
4324 // Casting
4325 static inline SeqTwoByteString* cast(Object* obj);
4326
4327 // Garbage collection support. This method is called by the
4328 // garbage collector to compute the actual size of a TwoByteString
4329 // instance.
4330 inline int SeqTwoByteStringSize(InstanceType instance_type);
4331
4332 // Computes the size for a TwoByteString instance of a given length.
4333 static int SizeFor(int length) {
4334 return OBJECT_SIZE_ALIGN(kHeaderSize + length * kShortSize);
4335 }
4336
4337 // Layout description.
4338 static const int kHeaderSize = String::kSize;
4339 static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4340
Leon Clarkee46be812010-01-19 14:06:41 +00004341 // Maximal memory usage for a single sequential two-byte string.
4342 static const int kMaxSize = 512 * MB;
4343 // Maximal length of a single sequential two-byte string.
4344 // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4345 static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
4346
Steve Blocka7e24c12009-10-30 11:49:00 +00004347 // Support for StringInputBuffer.
4348 inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4349 unsigned* offset_ptr,
4350 unsigned chars);
4351
4352 private:
4353 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4354};
4355
4356
4357// The ConsString class describes string values built by using the
4358// addition operator on strings. A ConsString is a pair where the
4359// first and second components are pointers to other string values.
4360// One or both components of a ConsString can be pointers to other
4361// ConsStrings, creating a binary tree of ConsStrings where the leaves
4362// are non-ConsString string values. The string value represented by
4363// a ConsString can be obtained by concatenating the leaf string
4364// values in a left-to-right depth-first traversal of the tree.
4365class ConsString: public String {
4366 public:
4367 // First string of the cons cell.
4368 inline String* first();
4369 // Doesn't check that the result is a string, even in debug mode. This is
4370 // useful during GC where the mark bits confuse the checks.
4371 inline Object* unchecked_first();
4372 inline void set_first(String* first,
4373 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4374
4375 // Second string of the cons cell.
4376 inline String* second();
4377 // Doesn't check that the result is a string, even in debug mode. This is
4378 // useful during GC where the mark bits confuse the checks.
4379 inline Object* unchecked_second();
4380 inline void set_second(String* second,
4381 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4382
4383 // Dispatched behavior.
4384 uint16_t ConsStringGet(int index);
4385
4386 // Casting.
4387 static inline ConsString* cast(Object* obj);
4388
4389 // Garbage collection support. This method is called during garbage
4390 // collection to iterate through the heap pointers in the body of
4391 // the ConsString.
4392 void ConsStringIterateBody(ObjectVisitor* v);
4393
4394 // Layout description.
4395 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4396 static const int kSecondOffset = kFirstOffset + kPointerSize;
4397 static const int kSize = kSecondOffset + kPointerSize;
4398
4399 // Support for StringInputBuffer.
4400 inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4401 unsigned* offset_ptr,
4402 unsigned chars);
4403 inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4404 unsigned* offset_ptr,
4405 unsigned chars);
4406
4407 // Minimum length for a cons string.
4408 static const int kMinLength = 13;
4409
4410 private:
4411 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4412};
4413
4414
Steve Blocka7e24c12009-10-30 11:49:00 +00004415// The ExternalString class describes string values that are backed by
4416// a string resource that lies outside the V8 heap. ExternalStrings
4417// consist of the length field common to all strings, a pointer to the
4418// external resource. It is important to ensure (externally) that the
4419// resource is not deallocated while the ExternalString is live in the
4420// V8 heap.
4421//
4422// The API expects that all ExternalStrings are created through the
4423// API. Therefore, ExternalStrings should not be used internally.
4424class ExternalString: public String {
4425 public:
4426 // Casting
4427 static inline ExternalString* cast(Object* obj);
4428
4429 // Layout description.
4430 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4431 static const int kSize = kResourceOffset + kPointerSize;
4432
4433 STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4434
4435 private:
4436 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4437};
4438
4439
4440// The ExternalAsciiString class is an external string backed by an
4441// ASCII string.
4442class ExternalAsciiString: public ExternalString {
4443 public:
4444 typedef v8::String::ExternalAsciiStringResource Resource;
4445
4446 // The underlying resource.
4447 inline Resource* resource();
4448 inline void set_resource(Resource* buffer);
4449
4450 // Dispatched behavior.
4451 uint16_t ExternalAsciiStringGet(int index);
4452
4453 // Casting.
4454 static inline ExternalAsciiString* cast(Object* obj);
4455
Steve Blockd0582a62009-12-15 09:54:21 +00004456 // Garbage collection support.
4457 void ExternalAsciiStringIterateBody(ObjectVisitor* v);
4458
Steve Blocka7e24c12009-10-30 11:49:00 +00004459 // Support for StringInputBuffer.
4460 const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4461 unsigned* offset,
4462 unsigned chars);
4463 inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4464 unsigned* offset,
4465 unsigned chars);
4466
Steve Blocka7e24c12009-10-30 11:49:00 +00004467 private:
4468 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4469};
4470
4471
4472// The ExternalTwoByteString class is an external string backed by a UTF-16
4473// encoded string.
4474class ExternalTwoByteString: public ExternalString {
4475 public:
4476 typedef v8::String::ExternalStringResource Resource;
4477
4478 // The underlying string resource.
4479 inline Resource* resource();
4480 inline void set_resource(Resource* buffer);
4481
4482 // Dispatched behavior.
4483 uint16_t ExternalTwoByteStringGet(int index);
4484
4485 // For regexp code.
4486 const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4487
4488 // Casting.
4489 static inline ExternalTwoByteString* cast(Object* obj);
4490
Steve Blockd0582a62009-12-15 09:54:21 +00004491 // Garbage collection support.
4492 void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
4493
Steve Blocka7e24c12009-10-30 11:49:00 +00004494 // Support for StringInputBuffer.
4495 void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4496 unsigned* offset_ptr,
4497 unsigned chars);
4498
Steve Blocka7e24c12009-10-30 11:49:00 +00004499 private:
4500 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4501};
4502
4503
4504// Utility superclass for stack-allocated objects that must be updated
4505// on gc. It provides two ways for the gc to update instances, either
4506// iterating or updating after gc.
4507class Relocatable BASE_EMBEDDED {
4508 public:
4509 inline Relocatable() : prev_(top_) { top_ = this; }
4510 virtual ~Relocatable() {
4511 ASSERT_EQ(top_, this);
4512 top_ = prev_;
4513 }
4514 virtual void IterateInstance(ObjectVisitor* v) { }
4515 virtual void PostGarbageCollection() { }
4516
4517 static void PostGarbageCollectionProcessing();
4518 static int ArchiveSpacePerThread();
4519 static char* ArchiveState(char* to);
4520 static char* RestoreState(char* from);
4521 static void Iterate(ObjectVisitor* v);
4522 static void Iterate(ObjectVisitor* v, Relocatable* top);
4523 static char* Iterate(ObjectVisitor* v, char* t);
4524 private:
4525 static Relocatable* top_;
4526 Relocatable* prev_;
4527};
4528
4529
4530// A flat string reader provides random access to the contents of a
4531// string independent of the character width of the string. The handle
4532// must be valid as long as the reader is being used.
4533class FlatStringReader : public Relocatable {
4534 public:
4535 explicit FlatStringReader(Handle<String> str);
4536 explicit FlatStringReader(Vector<const char> input);
4537 void PostGarbageCollection();
4538 inline uc32 Get(int index);
4539 int length() { return length_; }
4540 private:
4541 String** str_;
4542 bool is_ascii_;
4543 int length_;
4544 const void* start_;
4545};
4546
4547
4548// Note that StringInputBuffers are not valid across a GC! To fix this
4549// it would have to store a String Handle instead of a String* and
4550// AsciiStringReadBlock would have to be modified to use memcpy.
4551//
4552// StringInputBuffer is able to traverse any string regardless of how
4553// deeply nested a sequence of ConsStrings it is made of. However,
4554// performance will be better if deep strings are flattened before they
4555// are traversed. Since flattening requires memory allocation this is
4556// not always desirable, however (esp. in debugging situations).
4557class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4558 public:
4559 virtual void Seek(unsigned pos);
4560 inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
4561 inline StringInputBuffer(String* backing):
4562 unibrow::InputBuffer<String, String*, 1024>(backing) {}
4563};
4564
4565
4566class SafeStringInputBuffer
4567 : public unibrow::InputBuffer<String, String**, 256> {
4568 public:
4569 virtual void Seek(unsigned pos);
4570 inline SafeStringInputBuffer()
4571 : unibrow::InputBuffer<String, String**, 256>() {}
4572 inline SafeStringInputBuffer(String** backing)
4573 : unibrow::InputBuffer<String, String**, 256>(backing) {}
4574};
4575
4576
4577template <typename T>
4578class VectorIterator {
4579 public:
4580 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
4581 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
4582 T GetNext() { return data_[index_++]; }
4583 bool has_more() { return index_ < data_.length(); }
4584 private:
4585 Vector<const T> data_;
4586 int index_;
4587};
4588
4589
4590// The Oddball describes objects null, undefined, true, and false.
4591class Oddball: public HeapObject {
4592 public:
4593 // [to_string]: Cached to_string computed at startup.
4594 DECL_ACCESSORS(to_string, String)
4595
4596 // [to_number]: Cached to_number computed at startup.
4597 DECL_ACCESSORS(to_number, Object)
4598
4599 // Casting.
4600 static inline Oddball* cast(Object* obj);
4601
4602 // Dispatched behavior.
4603 void OddballIterateBody(ObjectVisitor* v);
4604#ifdef DEBUG
4605 void OddballVerify();
4606#endif
4607
4608 // Initialize the fields.
4609 Object* Initialize(const char* to_string, Object* to_number);
4610
4611 // Layout description.
4612 static const int kToStringOffset = HeapObject::kHeaderSize;
4613 static const int kToNumberOffset = kToStringOffset + kPointerSize;
4614 static const int kSize = kToNumberOffset + kPointerSize;
4615
4616 private:
4617 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4618};
4619
4620
4621class JSGlobalPropertyCell: public HeapObject {
4622 public:
4623 // [value]: value of the global property.
4624 DECL_ACCESSORS(value, Object)
4625
4626 // Casting.
4627 static inline JSGlobalPropertyCell* cast(Object* obj);
4628
4629 // Dispatched behavior.
4630 void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4631#ifdef DEBUG
4632 void JSGlobalPropertyCellVerify();
4633 void JSGlobalPropertyCellPrint();
4634#endif
4635
4636 // Layout description.
4637 static const int kValueOffset = HeapObject::kHeaderSize;
4638 static const int kSize = kValueOffset + kPointerSize;
4639
4640 private:
4641 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4642};
4643
4644
4645
4646// Proxy describes objects pointing from JavaScript to C structures.
4647// Since they cannot contain references to JS HeapObjects they can be
4648// placed in old_data_space.
4649class Proxy: public HeapObject {
4650 public:
4651 // [proxy]: field containing the address.
4652 inline Address proxy();
4653 inline void set_proxy(Address value);
4654
4655 // Casting.
4656 static inline Proxy* cast(Object* obj);
4657
4658 // Dispatched behavior.
4659 inline void ProxyIterateBody(ObjectVisitor* v);
4660#ifdef DEBUG
4661 void ProxyPrint();
4662 void ProxyVerify();
4663#endif
4664
4665 // Layout description.
4666
4667 static const int kProxyOffset = HeapObject::kHeaderSize;
4668 static const int kSize = kProxyOffset + kPointerSize;
4669
4670 STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4671
4672 private:
4673 DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4674};
4675
4676
4677// The JSArray describes JavaScript Arrays
4678// Such an array can be in one of two modes:
4679// - fast, backing storage is a FixedArray and length <= elements.length();
4680// Please note: push and pop can be used to grow and shrink the array.
4681// - slow, backing storage is a HashTable with numbers as keys.
4682class JSArray: public JSObject {
4683 public:
4684 // [length]: The length property.
4685 DECL_ACCESSORS(length, Object)
4686
Leon Clarke4515c472010-02-03 11:58:03 +00004687 // Overload the length setter to skip write barrier when the length
4688 // is set to a smi. This matches the set function on FixedArray.
4689 inline void set_length(Smi* length);
4690
Steve Blocka7e24c12009-10-30 11:49:00 +00004691 Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4692
4693 // Initialize the array with the given capacity. The function may
4694 // fail due to out-of-memory situations, but only if the requested
4695 // capacity is non-zero.
4696 Object* Initialize(int capacity);
4697
4698 // Set the content of the array to the content of storage.
4699 inline void SetContent(FixedArray* storage);
4700
4701 // Casting.
4702 static inline JSArray* cast(Object* obj);
4703
4704 // Uses handles. Ensures that the fixed array backing the JSArray has at
4705 // least the stated size.
4706 inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4707
4708 // Dispatched behavior.
4709#ifdef DEBUG
4710 void JSArrayPrint();
4711 void JSArrayVerify();
4712#endif
4713
4714 // Number of element slots to pre-allocate for an empty array.
4715 static const int kPreallocatedArrayElements = 4;
4716
4717 // Layout description.
4718 static const int kLengthOffset = JSObject::kHeaderSize;
4719 static const int kSize = kLengthOffset + kPointerSize;
4720
4721 private:
4722 // Expand the fixed array backing of a fast-case JSArray to at least
4723 // the requested size.
4724 void Expand(int minimum_size_of_backing_fixed_array);
4725
4726 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4727};
4728
4729
Steve Block6ded16b2010-05-10 14:33:55 +01004730// JSRegExpResult is just a JSArray with a specific initial map.
4731// This initial map adds in-object properties for "index" and "input"
4732// properties, as assigned by RegExp.prototype.exec, which allows
4733// faster creation of RegExp exec results.
4734// This class just holds constants used when creating the result.
4735// After creation the result must be treated as a JSArray in all regards.
4736class JSRegExpResult: public JSArray {
4737 public:
4738 // Offsets of object fields.
4739 static const int kIndexOffset = JSArray::kSize;
4740 static const int kInputOffset = kIndexOffset + kPointerSize;
4741 static const int kSize = kInputOffset + kPointerSize;
4742 // Indices of in-object properties.
4743 static const int kIndexIndex = 0;
4744 static const int kInputIndex = 1;
4745 private:
4746 DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
4747};
4748
4749
Steve Blocka7e24c12009-10-30 11:49:00 +00004750// An accessor must have a getter, but can have no setter.
4751//
4752// When setting a property, V8 searches accessors in prototypes.
4753// If an accessor was found and it does not have a setter,
4754// the request is ignored.
4755//
4756// If the accessor in the prototype has the READ_ONLY property attribute, then
4757// a new value is added to the local object when the property is set.
4758// This shadows the accessor in the prototype.
4759class AccessorInfo: public Struct {
4760 public:
4761 DECL_ACCESSORS(getter, Object)
4762 DECL_ACCESSORS(setter, Object)
4763 DECL_ACCESSORS(data, Object)
4764 DECL_ACCESSORS(name, Object)
4765 DECL_ACCESSORS(flag, Smi)
Steve Blockd0582a62009-12-15 09:54:21 +00004766 DECL_ACCESSORS(load_stub_cache, Object)
Steve Blocka7e24c12009-10-30 11:49:00 +00004767
4768 inline bool all_can_read();
4769 inline void set_all_can_read(bool value);
4770
4771 inline bool all_can_write();
4772 inline void set_all_can_write(bool value);
4773
4774 inline bool prohibits_overwriting();
4775 inline void set_prohibits_overwriting(bool value);
4776
4777 inline PropertyAttributes property_attributes();
4778 inline void set_property_attributes(PropertyAttributes attributes);
4779
4780 static inline AccessorInfo* cast(Object* obj);
4781
4782#ifdef DEBUG
4783 void AccessorInfoPrint();
4784 void AccessorInfoVerify();
4785#endif
4786
4787 static const int kGetterOffset = HeapObject::kHeaderSize;
4788 static const int kSetterOffset = kGetterOffset + kPointerSize;
4789 static const int kDataOffset = kSetterOffset + kPointerSize;
4790 static const int kNameOffset = kDataOffset + kPointerSize;
4791 static const int kFlagOffset = kNameOffset + kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +00004792 static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
4793 static const int kSize = kLoadStubCacheOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00004794
4795 private:
4796 // Bit positions in flag.
4797 static const int kAllCanReadBit = 0;
4798 static const int kAllCanWriteBit = 1;
4799 static const int kProhibitsOverwritingBit = 2;
4800 class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4801
4802 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4803};
4804
4805
4806class AccessCheckInfo: public Struct {
4807 public:
4808 DECL_ACCESSORS(named_callback, Object)
4809 DECL_ACCESSORS(indexed_callback, Object)
4810 DECL_ACCESSORS(data, Object)
4811
4812 static inline AccessCheckInfo* cast(Object* obj);
4813
4814#ifdef DEBUG
4815 void AccessCheckInfoPrint();
4816 void AccessCheckInfoVerify();
4817#endif
4818
4819 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
4820 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4821 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4822 static const int kSize = kDataOffset + kPointerSize;
4823
4824 private:
4825 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4826};
4827
4828
4829class InterceptorInfo: public Struct {
4830 public:
4831 DECL_ACCESSORS(getter, Object)
4832 DECL_ACCESSORS(setter, Object)
4833 DECL_ACCESSORS(query, Object)
4834 DECL_ACCESSORS(deleter, Object)
4835 DECL_ACCESSORS(enumerator, Object)
4836 DECL_ACCESSORS(data, Object)
4837
4838 static inline InterceptorInfo* cast(Object* obj);
4839
4840#ifdef DEBUG
4841 void InterceptorInfoPrint();
4842 void InterceptorInfoVerify();
4843#endif
4844
4845 static const int kGetterOffset = HeapObject::kHeaderSize;
4846 static const int kSetterOffset = kGetterOffset + kPointerSize;
4847 static const int kQueryOffset = kSetterOffset + kPointerSize;
4848 static const int kDeleterOffset = kQueryOffset + kPointerSize;
4849 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
4850 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
4851 static const int kSize = kDataOffset + kPointerSize;
4852
4853 private:
4854 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
4855};
4856
4857
4858class CallHandlerInfo: public Struct {
4859 public:
4860 DECL_ACCESSORS(callback, Object)
4861 DECL_ACCESSORS(data, Object)
4862
4863 static inline CallHandlerInfo* cast(Object* obj);
4864
4865#ifdef DEBUG
4866 void CallHandlerInfoPrint();
4867 void CallHandlerInfoVerify();
4868#endif
4869
4870 static const int kCallbackOffset = HeapObject::kHeaderSize;
4871 static const int kDataOffset = kCallbackOffset + kPointerSize;
4872 static const int kSize = kDataOffset + kPointerSize;
4873
4874 private:
4875 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
4876};
4877
4878
4879class TemplateInfo: public Struct {
4880 public:
4881 DECL_ACCESSORS(tag, Object)
4882 DECL_ACCESSORS(property_list, Object)
4883
4884#ifdef DEBUG
4885 void TemplateInfoVerify();
4886#endif
4887
4888 static const int kTagOffset = HeapObject::kHeaderSize;
4889 static const int kPropertyListOffset = kTagOffset + kPointerSize;
4890 static const int kHeaderSize = kPropertyListOffset + kPointerSize;
4891 protected:
4892 friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4893 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
4894};
4895
4896
4897class FunctionTemplateInfo: public TemplateInfo {
4898 public:
4899 DECL_ACCESSORS(serial_number, Object)
4900 DECL_ACCESSORS(call_code, Object)
4901 DECL_ACCESSORS(property_accessors, Object)
4902 DECL_ACCESSORS(prototype_template, Object)
4903 DECL_ACCESSORS(parent_template, Object)
4904 DECL_ACCESSORS(named_property_handler, Object)
4905 DECL_ACCESSORS(indexed_property_handler, Object)
4906 DECL_ACCESSORS(instance_template, Object)
4907 DECL_ACCESSORS(class_name, Object)
4908 DECL_ACCESSORS(signature, Object)
4909 DECL_ACCESSORS(instance_call_handler, Object)
4910 DECL_ACCESSORS(access_check_info, Object)
4911 DECL_ACCESSORS(flag, Smi)
4912
4913 // Following properties use flag bits.
4914 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
4915 DECL_BOOLEAN_ACCESSORS(undetectable)
4916 // If the bit is set, object instances created by this function
4917 // requires access check.
4918 DECL_BOOLEAN_ACCESSORS(needs_access_check)
4919
4920 static inline FunctionTemplateInfo* cast(Object* obj);
4921
4922#ifdef DEBUG
4923 void FunctionTemplateInfoPrint();
4924 void FunctionTemplateInfoVerify();
4925#endif
4926
4927 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
4928 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
4929 static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
4930 static const int kPrototypeTemplateOffset =
4931 kPropertyAccessorsOffset + kPointerSize;
4932 static const int kParentTemplateOffset =
4933 kPrototypeTemplateOffset + kPointerSize;
4934 static const int kNamedPropertyHandlerOffset =
4935 kParentTemplateOffset + kPointerSize;
4936 static const int kIndexedPropertyHandlerOffset =
4937 kNamedPropertyHandlerOffset + kPointerSize;
4938 static const int kInstanceTemplateOffset =
4939 kIndexedPropertyHandlerOffset + kPointerSize;
4940 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
4941 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
4942 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
4943 static const int kAccessCheckInfoOffset =
4944 kInstanceCallHandlerOffset + kPointerSize;
4945 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
4946 static const int kSize = kFlagOffset + kPointerSize;
4947
4948 private:
4949 // Bit position in the flag, from least significant bit position.
4950 static const int kHiddenPrototypeBit = 0;
4951 static const int kUndetectableBit = 1;
4952 static const int kNeedsAccessCheckBit = 2;
4953
4954 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
4955};
4956
4957
4958class ObjectTemplateInfo: public TemplateInfo {
4959 public:
4960 DECL_ACCESSORS(constructor, Object)
4961 DECL_ACCESSORS(internal_field_count, Object)
4962
4963 static inline ObjectTemplateInfo* cast(Object* obj);
4964
4965#ifdef DEBUG
4966 void ObjectTemplateInfoPrint();
4967 void ObjectTemplateInfoVerify();
4968#endif
4969
4970 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
4971 static const int kInternalFieldCountOffset =
4972 kConstructorOffset + kPointerSize;
4973 static const int kSize = kInternalFieldCountOffset + kPointerSize;
4974};
4975
4976
4977class SignatureInfo: public Struct {
4978 public:
4979 DECL_ACCESSORS(receiver, Object)
4980 DECL_ACCESSORS(args, Object)
4981
4982 static inline SignatureInfo* cast(Object* obj);
4983
4984#ifdef DEBUG
4985 void SignatureInfoPrint();
4986 void SignatureInfoVerify();
4987#endif
4988
4989 static const int kReceiverOffset = Struct::kHeaderSize;
4990 static const int kArgsOffset = kReceiverOffset + kPointerSize;
4991 static const int kSize = kArgsOffset + kPointerSize;
4992
4993 private:
4994 DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
4995};
4996
4997
4998class TypeSwitchInfo: public Struct {
4999 public:
5000 DECL_ACCESSORS(types, Object)
5001
5002 static inline TypeSwitchInfo* cast(Object* obj);
5003
5004#ifdef DEBUG
5005 void TypeSwitchInfoPrint();
5006 void TypeSwitchInfoVerify();
5007#endif
5008
5009 static const int kTypesOffset = Struct::kHeaderSize;
5010 static const int kSize = kTypesOffset + kPointerSize;
5011};
5012
5013
5014#ifdef ENABLE_DEBUGGER_SUPPORT
5015// The DebugInfo class holds additional information for a function being
5016// debugged.
5017class DebugInfo: public Struct {
5018 public:
5019 // The shared function info for the source being debugged.
5020 DECL_ACCESSORS(shared, SharedFunctionInfo)
5021 // Code object for the original code.
5022 DECL_ACCESSORS(original_code, Code)
5023 // Code object for the patched code. This code object is the code object
5024 // currently active for the function.
5025 DECL_ACCESSORS(code, Code)
5026 // Fixed array holding status information for each active break point.
5027 DECL_ACCESSORS(break_points, FixedArray)
5028
5029 // Check if there is a break point at a code position.
5030 bool HasBreakPoint(int code_position);
5031 // Get the break point info object for a code position.
5032 Object* GetBreakPointInfo(int code_position);
5033 // Clear a break point.
5034 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
5035 int code_position,
5036 Handle<Object> break_point_object);
5037 // Set a break point.
5038 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
5039 int source_position, int statement_position,
5040 Handle<Object> break_point_object);
5041 // Get the break point objects for a code position.
5042 Object* GetBreakPointObjects(int code_position);
5043 // Find the break point info holding this break point object.
5044 static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
5045 Handle<Object> break_point_object);
5046 // Get the number of break points for this function.
5047 int GetBreakPointCount();
5048
5049 static inline DebugInfo* cast(Object* obj);
5050
5051#ifdef DEBUG
5052 void DebugInfoPrint();
5053 void DebugInfoVerify();
5054#endif
5055
5056 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
5057 static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
5058 static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
5059 static const int kActiveBreakPointsCountIndex =
5060 kPatchedCodeIndex + kPointerSize;
5061 static const int kBreakPointsStateIndex =
5062 kActiveBreakPointsCountIndex + kPointerSize;
5063 static const int kSize = kBreakPointsStateIndex + kPointerSize;
5064
5065 private:
5066 static const int kNoBreakPointInfo = -1;
5067
5068 // Lookup the index in the break_points array for a code position.
5069 int GetBreakPointInfoIndex(int code_position);
5070
5071 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
5072};
5073
5074
5075// The BreakPointInfo class holds information for break points set in a
5076// function. The DebugInfo object holds a BreakPointInfo object for each code
5077// position with one or more break points.
5078class BreakPointInfo: public Struct {
5079 public:
5080 // The position in the code for the break point.
5081 DECL_ACCESSORS(code_position, Smi)
5082 // The position in the source for the break position.
5083 DECL_ACCESSORS(source_position, Smi)
5084 // The position in the source for the last statement before this break
5085 // position.
5086 DECL_ACCESSORS(statement_position, Smi)
5087 // List of related JavaScript break points.
5088 DECL_ACCESSORS(break_point_objects, Object)
5089
5090 // Removes a break point.
5091 static void ClearBreakPoint(Handle<BreakPointInfo> info,
5092 Handle<Object> break_point_object);
5093 // Set a break point.
5094 static void SetBreakPoint(Handle<BreakPointInfo> info,
5095 Handle<Object> break_point_object);
5096 // Check if break point info has this break point object.
5097 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
5098 Handle<Object> break_point_object);
5099 // Get the number of break points for this code position.
5100 int GetBreakPointCount();
5101
5102 static inline BreakPointInfo* cast(Object* obj);
5103
5104#ifdef DEBUG
5105 void BreakPointInfoPrint();
5106 void BreakPointInfoVerify();
5107#endif
5108
5109 static const int kCodePositionIndex = Struct::kHeaderSize;
5110 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
5111 static const int kStatementPositionIndex =
5112 kSourcePositionIndex + kPointerSize;
5113 static const int kBreakPointObjectsIndex =
5114 kStatementPositionIndex + kPointerSize;
5115 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
5116
5117 private:
5118 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
5119};
5120#endif // ENABLE_DEBUGGER_SUPPORT
5121
5122
5123#undef DECL_BOOLEAN_ACCESSORS
5124#undef DECL_ACCESSORS
5125
5126
5127// Abstract base class for visiting, and optionally modifying, the
5128// pointers contained in Objects. Used in GC and serialization/deserialization.
5129class ObjectVisitor BASE_EMBEDDED {
5130 public:
5131 virtual ~ObjectVisitor() {}
5132
5133 // Visits a contiguous arrays of pointers in the half-open range
5134 // [start, end). Any or all of the values may be modified on return.
5135 virtual void VisitPointers(Object** start, Object** end) = 0;
5136
5137 // To allow lazy clearing of inline caches the visitor has
5138 // a rich interface for iterating over Code objects..
5139
5140 // Visits a code target in the instruction stream.
5141 virtual void VisitCodeTarget(RelocInfo* rinfo);
5142
5143 // Visits a runtime entry in the instruction stream.
5144 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
5145
Steve Blockd0582a62009-12-15 09:54:21 +00005146 // Visits the resource of an ASCII or two-byte string.
5147 virtual void VisitExternalAsciiString(
5148 v8::String::ExternalAsciiStringResource** resource) {}
5149 virtual void VisitExternalTwoByteString(
5150 v8::String::ExternalStringResource** resource) {}
5151
Steve Blocka7e24c12009-10-30 11:49:00 +00005152 // Visits a debug call target in the instruction stream.
5153 virtual void VisitDebugTarget(RelocInfo* rinfo);
5154
5155 // Handy shorthand for visiting a single pointer.
5156 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
5157
5158 // Visits a contiguous arrays of external references (references to the C++
5159 // heap) in the half-open range [start, end). Any or all of the values
5160 // may be modified on return.
5161 virtual void VisitExternalReferences(Address* start, Address* end) {}
5162
5163 inline void VisitExternalReference(Address* p) {
5164 VisitExternalReferences(p, p + 1);
5165 }
5166
5167#ifdef DEBUG
5168 // Intended for serialization/deserialization checking: insert, or
5169 // check for the presence of, a tag at this position in the stream.
5170 virtual void Synchronize(const char* tag) {}
Steve Blockd0582a62009-12-15 09:54:21 +00005171#else
5172 inline void Synchronize(const char* tag) {}
Steve Blocka7e24c12009-10-30 11:49:00 +00005173#endif
5174};
5175
5176
5177// BooleanBit is a helper class for setting and getting a bit in an
5178// integer or Smi.
5179class BooleanBit : public AllStatic {
5180 public:
5181 static inline bool get(Smi* smi, int bit_position) {
5182 return get(smi->value(), bit_position);
5183 }
5184
5185 static inline bool get(int value, int bit_position) {
5186 return (value & (1 << bit_position)) != 0;
5187 }
5188
5189 static inline Smi* set(Smi* smi, int bit_position, bool v) {
5190 return Smi::FromInt(set(smi->value(), bit_position, v));
5191 }
5192
5193 static inline int set(int value, int bit_position, bool v) {
5194 if (v) {
5195 value |= (1 << bit_position);
5196 } else {
5197 value &= ~(1 << bit_position);
5198 }
5199 return value;
5200 }
5201};
5202
5203} } // namespace v8::internal
5204
5205#endif // V8_OBJECTS_H_