blob: 3db4d084e25cf0459f442dadd9bf66b65bbc1e63 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
Steve Blockd0582a62009-12-15 09:54:21 +000040#include "serialize.h"
41
Steve Blocka7e24c12009-10-30 11:49:00 +000042namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
49 static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
50 return x == (x & kUInt32Mask);
51}
52
53static inline bool is_int32(int64_t x) {
54 static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
55 return is_uint32(x - kMinIntValue);
56}
57
58static inline bool uint_is_int32(uint64_t x) {
59 static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
60 return x < kMaxIntValue;
61}
62
63static inline bool is_uint32(uint64_t x) {
64 static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
65 return x < kMaxUIntValue;
66}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91 static Register toRegister(int code) {
92 Register r = { code };
93 return r;
94 }
95 bool is_valid() const { return 0 <= code_ && code_ < 16; }
96 bool is(Register reg) const { return code_ == reg.code_; }
97 int code() const {
98 ASSERT(is_valid());
99 return code_;
100 }
101 int bit() const {
102 return 1 << code_;
103 }
104
105 // Return the high bit of the register code as a 0 or 1. Used often
106 // when constructing the REX prefix byte.
107 int high_bit() const {
108 return code_ >> 3;
109 }
110 // Return the 3 low bits of the register code. Used when encoding registers
111 // in modR/M, SIB, and opcode bytes.
112 int low_bits() const {
113 return code_ & 0x7;
114 }
115
Andrei Popescu31002712010-02-23 13:46:05 +0000116 // Unfortunately we can't make this private in a struct when initializing
117 // by assignment.
Steve Blocka7e24c12009-10-30 11:49:00 +0000118 int code_;
119};
120
Andrei Popescu402d9372010-02-26 13:31:12 +0000121const Register rax = { 0 };
122const Register rcx = { 1 };
123const Register rdx = { 2 };
124const Register rbx = { 3 };
125const Register rsp = { 4 };
126const Register rbp = { 5 };
127const Register rsi = { 6 };
128const Register rdi = { 7 };
129const Register r8 = { 8 };
130const Register r9 = { 9 };
131const Register r10 = { 10 };
132const Register r11 = { 11 };
133const Register r12 = { 12 };
134const Register r13 = { 13 };
135const Register r14 = { 14 };
136const Register r15 = { 15 };
137const Register no_reg = { -1 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000138
139
140struct XMMRegister {
141 bool is_valid() const { return 0 <= code_ && code_ < 16; }
142 int code() const {
143 ASSERT(is_valid());
144 return code_;
145 }
146
147 // Return the high bit of the register code as a 0 or 1. Used often
148 // when constructing the REX prefix byte.
149 int high_bit() const {
150 return code_ >> 3;
151 }
152 // Return the 3 low bits of the register code. Used when encoding registers
153 // in modR/M, SIB, and opcode bytes.
154 int low_bits() const {
155 return code_ & 0x7;
156 }
157
158 int code_;
159};
160
Andrei Popescu402d9372010-02-26 13:31:12 +0000161const XMMRegister xmm0 = { 0 };
162const XMMRegister xmm1 = { 1 };
163const XMMRegister xmm2 = { 2 };
164const XMMRegister xmm3 = { 3 };
165const XMMRegister xmm4 = { 4 };
166const XMMRegister xmm5 = { 5 };
167const XMMRegister xmm6 = { 6 };
168const XMMRegister xmm7 = { 7 };
169const XMMRegister xmm8 = { 8 };
170const XMMRegister xmm9 = { 9 };
171const XMMRegister xmm10 = { 10 };
172const XMMRegister xmm11 = { 11 };
173const XMMRegister xmm12 = { 12 };
174const XMMRegister xmm13 = { 13 };
175const XMMRegister xmm14 = { 14 };
176const XMMRegister xmm15 = { 15 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000177
178enum Condition {
179 // any value < 0 is considered no_condition
180 no_condition = -1,
181
182 overflow = 0,
183 no_overflow = 1,
184 below = 2,
185 above_equal = 3,
186 equal = 4,
187 not_equal = 5,
188 below_equal = 6,
189 above = 7,
190 negative = 8,
191 positive = 9,
192 parity_even = 10,
193 parity_odd = 11,
194 less = 12,
195 greater_equal = 13,
196 less_equal = 14,
197 greater = 15,
198
Steve Block3ce2e202009-11-05 08:53:23 +0000199 // Fake conditions that are handled by the
200 // opcodes using them.
201 always = 16,
202 never = 17,
Steve Blocka7e24c12009-10-30 11:49:00 +0000203 // aliases
204 carry = below,
205 not_carry = above_equal,
206 zero = equal,
207 not_zero = not_equal,
208 sign = negative,
Steve Block3ce2e202009-11-05 08:53:23 +0000209 not_sign = positive,
210 last_condition = greater
Steve Blocka7e24c12009-10-30 11:49:00 +0000211};
212
213
214// Returns the equivalent of !cc.
215// Negation of the default no_condition (-1) results in a non-default
216// no_condition value (-2). As long as tests for no_condition check
217// for condition < 0, this will work as expected.
218inline Condition NegateCondition(Condition cc);
219
220// Corresponds to transposing the operands of a comparison.
221inline Condition ReverseCondition(Condition cc) {
222 switch (cc) {
223 case below:
224 return above;
225 case above:
226 return below;
227 case above_equal:
228 return below_equal;
229 case below_equal:
230 return above_equal;
231 case less:
232 return greater;
233 case greater:
234 return less;
235 case greater_equal:
236 return less_equal;
237 case less_equal:
238 return greater_equal;
239 default:
240 return cc;
241 };
242}
243
244enum Hint {
245 no_hint = 0,
246 not_taken = 0x2e,
247 taken = 0x3e
248};
249
250// The result of negating a hint is as if the corresponding condition
251// were negated by NegateCondition. That is, no_hint is mapped to
252// itself and not_taken and taken are mapped to each other.
253inline Hint NegateHint(Hint hint) {
254 return (hint == no_hint)
255 ? no_hint
256 : ((hint == not_taken) ? taken : not_taken);
257}
258
259
260// -----------------------------------------------------------------------------
261// Machine instruction Immediates
262
263class Immediate BASE_EMBEDDED {
264 public:
265 explicit Immediate(int32_t value) : value_(value) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000266
267 private:
268 int32_t value_;
269
270 friend class Assembler;
271};
272
273
274// -----------------------------------------------------------------------------
275// Machine instruction Operands
276
277enum ScaleFactor {
278 times_1 = 0,
279 times_2 = 1,
280 times_4 = 2,
281 times_8 = 3,
282 times_int_size = times_4,
Steve Blocka7e24c12009-10-30 11:49:00 +0000283 times_pointer_size = times_8
284};
285
286
287class Operand BASE_EMBEDDED {
288 public:
289 // [base + disp/r]
290 Operand(Register base, int32_t disp);
291
292 // [base + index*scale + disp/r]
293 Operand(Register base,
294 Register index,
295 ScaleFactor scale,
296 int32_t disp);
297
298 // [index*scale + disp/r]
299 Operand(Register index,
300 ScaleFactor scale,
301 int32_t disp);
302
Leon Clarkef7060e22010-06-03 12:02:55 +0100303 // Offset from existing memory operand.
304 // Offset is added to existing displacement as 32-bit signed values and
305 // this must not overflow.
306 Operand(const Operand& base, int32_t offset);
307
Steve Blocka7e24c12009-10-30 11:49:00 +0000308 private:
309 byte rex_;
310 byte buf_[10];
311 // The number of bytes in buf_.
312 unsigned int len_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000313
314 // Set the ModR/M byte without an encoded 'reg' register. The
315 // register is encoded later as part of the emit_operand operation.
316 // set_modrm can be called before or after set_sib and set_disp*.
317 inline void set_modrm(int mod, Register rm);
318
319 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
320 inline void set_sib(ScaleFactor scale, Register index, Register base);
321
322 // Adds operand displacement fields (offsets added to the memory address).
323 // Needs to be called after set_sib, not before it.
324 inline void set_disp8(int disp);
325 inline void set_disp32(int disp);
326
327 friend class Assembler;
328};
329
330
331// CpuFeatures keeps track of which features are supported by the target CPU.
332// Supported features must be enabled by a Scope before use.
333// Example:
334// if (CpuFeatures::IsSupported(SSE3)) {
335// CpuFeatures::Scope fscope(SSE3);
336// // Generate SSE3 floating point code.
337// } else {
338// // Generate standard x87 or SSE2 floating point code.
339// }
340class CpuFeatures : public AllStatic {
341 public:
Steve Blocka7e24c12009-10-30 11:49:00 +0000342 // Detect features of the target CPU. Set safe defaults if the serializer
343 // is enabled (snapshots must be portable).
344 static void Probe();
345 // Check whether a feature is supported by the target CPU.
Steve Blockd0582a62009-12-15 09:54:21 +0000346 static bool IsSupported(CpuFeature f) {
Steve Block3ce2e202009-11-05 08:53:23 +0000347 if (f == SSE2 && !FLAG_enable_sse2) return false;
348 if (f == SSE3 && !FLAG_enable_sse3) return false;
349 if (f == CMOV && !FLAG_enable_cmov) return false;
350 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
351 if (f == SAHF && !FLAG_enable_sahf) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +0000352 return (supported_ & (V8_UINT64_C(1) << f)) != 0;
353 }
354 // Check whether a feature is currently enabled.
Steve Blockd0582a62009-12-15 09:54:21 +0000355 static bool IsEnabled(CpuFeature f) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000356 return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
357 }
358 // Enable a specified feature within a scope.
359 class Scope BASE_EMBEDDED {
360#ifdef DEBUG
361 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000362 explicit Scope(CpuFeature f) {
363 uint64_t mask = (V8_UINT64_C(1) << f);
Steve Blocka7e24c12009-10-30 11:49:00 +0000364 ASSERT(CpuFeatures::IsSupported(f));
Steve Blockd0582a62009-12-15 09:54:21 +0000365 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000366 old_enabled_ = CpuFeatures::enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000367 CpuFeatures::enabled_ |= mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000368 }
369 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
370 private:
371 uint64_t old_enabled_;
372#else
373 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000374 explicit Scope(CpuFeature f) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000375#endif
376 };
377 private:
378 // Safe defaults include SSE2 and CMOV for X64. It is always available, if
379 // anyone checks, but they shouldn't need to check.
Steve Blockd0582a62009-12-15 09:54:21 +0000380 static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
Steve Blocka7e24c12009-10-30 11:49:00 +0000381 static uint64_t supported_;
382 static uint64_t enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000383 static uint64_t found_by_runtime_probing_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000384};
385
386
387class Assembler : public Malloced {
388 private:
389 // We check before assembling an instruction that there is sufficient
390 // space to write an instruction and its relocation information.
391 // The relocation writer's position must be kGap bytes above the end of
392 // the generated instructions. This leaves enough space for the
393 // longest possible x64 instruction, 15 bytes, and the longest possible
394 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
395 // (There is a 15 byte limit on x64 instruction length that rules out some
396 // otherwise valid instructions.)
397 // This allows for a single, fast space check per instruction.
398 static const int kGap = 32;
399
400 public:
401 // Create an assembler. Instructions and relocation information are emitted
402 // into a buffer, with the instructions starting from the beginning and the
403 // relocation information starting from the end of the buffer. See CodeDesc
404 // for a detailed comment on the layout (globals.h).
405 //
406 // If the provided buffer is NULL, the assembler allocates and grows its own
407 // buffer, and buffer_size determines the initial buffer size. The buffer is
408 // owned by the assembler and deallocated upon destruction of the assembler.
409 //
410 // If the provided buffer is not NULL, the assembler uses the provided buffer
411 // for code generation and assumes its size to be buffer_size. If the buffer
412 // is too small, a fatal error occurs. No deallocation of the buffer is done
413 // upon destruction of the assembler.
414 Assembler(void* buffer, int buffer_size);
415 ~Assembler();
416
417 // GetCode emits any pending (non-emitted) code and fills the descriptor
418 // desc. GetCode() is idempotent; it returns the same result if no other
419 // Assembler functions are invoked in between GetCode() calls.
420 void GetCode(CodeDesc* desc);
421
Steve Block3ce2e202009-11-05 08:53:23 +0000422 // Read/Modify the code target in the relative branch/call instruction at pc.
423 // On the x64 architecture, we use relative jumps with a 32-bit displacement
424 // to jump to other Code objects in the Code space in the heap.
425 // Jumps to C functions are done indirectly through a 64-bit register holding
426 // the absolute address of the target.
427 // These functions convert between absolute Addresses of Code objects and
428 // the relative displacements stored in the code.
Steve Blocka7e24c12009-10-30 11:49:00 +0000429 static inline Address target_address_at(Address pc);
430 static inline void set_target_address_at(Address pc, Address target);
Steve Blockd0582a62009-12-15 09:54:21 +0000431
432 // This sets the branch destination (which is in the instruction on x64).
433 // This is for calls and branches within generated code.
434 inline static void set_target_at(Address instruction_payload,
435 Address target) {
436 set_target_address_at(instruction_payload, target);
437 }
438
439 // This sets the branch destination (which is a load instruction on x64).
440 // This is for calls and branches to runtime code.
441 inline static void set_external_target_at(Address instruction_payload,
442 Address target) {
443 *reinterpret_cast<Address*>(instruction_payload) = target;
444 }
445
Steve Block3ce2e202009-11-05 08:53:23 +0000446 inline Handle<Object> code_target_object_handle_at(Address pc);
Steve Blockd0582a62009-12-15 09:54:21 +0000447 // Number of bytes taken up by the branch target in the code.
448 static const int kCallTargetSize = 4; // Use 32-bit displacement.
449 static const int kExternalTargetSize = 8; // Use 64-bit absolute.
Steve Blocka7e24c12009-10-30 11:49:00 +0000450 // Distance between the address of the code target in the call instruction
Steve Block3ce2e202009-11-05 08:53:23 +0000451 // and the return address pushed on the stack.
452 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
453 // Distance between the start of the JS return sequence and where the
454 // 32-bit displacement of a near call would be, relative to the pushed
455 // return address. TODO: Use return sequence length instead.
456 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
457 static const int kPatchReturnSequenceAddressOffset = 13 - 4;
458 // TODO(X64): Rename this, removing the "Real", after changing the above.
459 static const int kRealPatchReturnSequenceAddressOffset = 2;
Steve Blockd0582a62009-12-15 09:54:21 +0000460
461 // The x64 JS return sequence is padded with int3 to make it large
462 // enough to hold a call instruction when the debugger patches it.
463 static const int kCallInstructionLength = 13;
464 static const int kJSReturnSequenceLength = 13;
465
Steve Blocka7e24c12009-10-30 11:49:00 +0000466 // ---------------------------------------------------------------------------
467 // Code generation
468 //
469 // Function names correspond one-to-one to x64 instruction mnemonics.
470 // Unless specified otherwise, instructions operate on 64-bit operands.
471 //
472 // If we need versions of an assembly instruction that operate on different
473 // width arguments, we add a single-letter suffix specifying the width.
474 // This is done for the following instructions: mov, cmp, inc, dec,
475 // add, sub, and test.
476 // There are no versions of these instructions without the suffix.
477 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
478 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
479 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
480 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
481 //
482 // Some mnemonics, such as "and", are the same as C++ keywords.
483 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
484
485 // Insert the smallest number of nop instructions
486 // possible to align the pc offset to a multiple
487 // of m. m must be a power of 2.
488 void Align(int m);
489
490 // Stack
491 void pushfq();
492 void popfq();
493
494 void push(Immediate value);
495 void push(Register src);
496 void push(const Operand& src);
497 void push(Label* label, RelocInfo::Mode relocation_mode);
498
499 void pop(Register dst);
500 void pop(const Operand& dst);
501
502 void enter(Immediate size);
503 void leave();
504
505 // Moves
506 void movb(Register dst, const Operand& src);
507 void movb(Register dst, Immediate imm);
508 void movb(const Operand& dst, Register src);
509
Steve Block3ce2e202009-11-05 08:53:23 +0000510 // Move the low 16 bits of a 64-bit register value to a 16-bit
511 // memory location.
512 void movw(const Operand& dst, Register src);
513
Steve Blocka7e24c12009-10-30 11:49:00 +0000514 void movl(Register dst, Register src);
515 void movl(Register dst, const Operand& src);
516 void movl(const Operand& dst, Register src);
517 void movl(const Operand& dst, Immediate imm);
518 // Load a 32-bit immediate value, zero-extended to 64 bits.
519 void movl(Register dst, Immediate imm32);
520
521 // Move 64 bit register value to 64-bit memory location.
522 void movq(const Operand& dst, Register src);
523 // Move 64 bit memory location to 64-bit register value.
524 void movq(Register dst, const Operand& src);
525 void movq(Register dst, Register src);
526 // Sign extends immediate 32-bit value to 64 bits.
527 void movq(Register dst, Immediate x);
528 // Move the offset of the label location relative to the current
529 // position (after the move) to the destination.
530 void movl(const Operand& dst, Label* src);
531
532 // Move sign extended immediate to memory location.
533 void movq(const Operand& dst, Immediate value);
534 // New x64 instructions to load a 64-bit immediate into a register.
535 // All 64-bit immediates must have a relocation mode.
536 void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
537 void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
538 void movq(Register dst, const char* s, RelocInfo::Mode rmode);
539 // Moves the address of the external reference into the register.
540 void movq(Register dst, ExternalReference ext);
541 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
542
Steve Block3ce2e202009-11-05 08:53:23 +0000543 void movsxbq(Register dst, const Operand& src);
544 void movsxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000545 void movsxlq(Register dst, Register src);
546 void movsxlq(Register dst, const Operand& src);
547 void movzxbq(Register dst, const Operand& src);
548 void movzxbl(Register dst, const Operand& src);
Steve Block3ce2e202009-11-05 08:53:23 +0000549 void movzxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000550 void movzxwl(Register dst, const Operand& src);
551
Leon Clarked91b9f72010-01-27 17:25:45 +0000552 // Repeated moves.
553
554 void repmovsb();
555 void repmovsw();
556 void repmovsl();
557 void repmovsq();
558
Steve Blocka7e24c12009-10-30 11:49:00 +0000559 // New x64 instruction to load from an immediate 64-bit pointer into RAX.
560 void load_rax(void* ptr, RelocInfo::Mode rmode);
561 void load_rax(ExternalReference ext);
562
563 // Conditional moves.
564 void cmovq(Condition cc, Register dst, Register src);
565 void cmovq(Condition cc, Register dst, const Operand& src);
566 void cmovl(Condition cc, Register dst, Register src);
567 void cmovl(Condition cc, Register dst, const Operand& src);
568
569 // Exchange two registers
570 void xchg(Register dst, Register src);
571
572 // Arithmetics
573 void addl(Register dst, Register src) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100574 arithmetic_op_32(0x03, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000575 }
576
577 void addl(Register dst, Immediate src) {
578 immediate_arithmetic_op_32(0x0, dst, src);
579 }
580
581 void addl(Register dst, const Operand& src) {
582 arithmetic_op_32(0x03, dst, src);
583 }
584
585 void addl(const Operand& dst, Immediate src) {
586 immediate_arithmetic_op_32(0x0, dst, src);
587 }
588
589 void addq(Register dst, Register src) {
590 arithmetic_op(0x03, dst, src);
591 }
592
593 void addq(Register dst, const Operand& src) {
594 arithmetic_op(0x03, dst, src);
595 }
596
597 void addq(const Operand& dst, Register src) {
598 arithmetic_op(0x01, src, dst);
599 }
600
601 void addq(Register dst, Immediate src) {
602 immediate_arithmetic_op(0x0, dst, src);
603 }
604
605 void addq(const Operand& dst, Immediate src) {
606 immediate_arithmetic_op(0x0, dst, src);
607 }
608
Kristian Monsen25f61362010-05-21 11:50:48 +0100609 void sbbl(Register dst, Register src) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100610 arithmetic_op_32(0x1b, dst, src);
Kristian Monsen25f61362010-05-21 11:50:48 +0100611 }
612
Steve Blocka7e24c12009-10-30 11:49:00 +0000613 void cmpb(Register dst, Immediate src) {
614 immediate_arithmetic_op_8(0x7, dst, src);
615 }
616
617 void cmpb_al(Immediate src);
618
619 void cmpb(Register dst, Register src) {
620 arithmetic_op(0x3A, dst, src);
621 }
622
623 void cmpb(Register dst, const Operand& src) {
624 arithmetic_op(0x3A, dst, src);
625 }
626
627 void cmpb(const Operand& dst, Register src) {
628 arithmetic_op(0x38, src, dst);
629 }
630
631 void cmpb(const Operand& dst, Immediate src) {
632 immediate_arithmetic_op_8(0x7, dst, src);
633 }
634
635 void cmpw(const Operand& dst, Immediate src) {
636 immediate_arithmetic_op_16(0x7, dst, src);
637 }
638
639 void cmpw(Register dst, Immediate src) {
640 immediate_arithmetic_op_16(0x7, dst, src);
641 }
642
643 void cmpw(Register dst, const Operand& src) {
644 arithmetic_op_16(0x3B, dst, src);
645 }
646
647 void cmpw(Register dst, Register src) {
648 arithmetic_op_16(0x3B, dst, src);
649 }
650
651 void cmpw(const Operand& dst, Register src) {
652 arithmetic_op_16(0x39, src, dst);
653 }
654
655 void cmpl(Register dst, Register src) {
656 arithmetic_op_32(0x3B, dst, src);
657 }
658
659 void cmpl(Register dst, const Operand& src) {
660 arithmetic_op_32(0x3B, dst, src);
661 }
662
663 void cmpl(const Operand& dst, Register src) {
664 arithmetic_op_32(0x39, src, dst);
665 }
666
667 void cmpl(Register dst, Immediate src) {
668 immediate_arithmetic_op_32(0x7, dst, src);
669 }
670
671 void cmpl(const Operand& dst, Immediate src) {
672 immediate_arithmetic_op_32(0x7, dst, src);
673 }
674
675 void cmpq(Register dst, Register src) {
676 arithmetic_op(0x3B, dst, src);
677 }
678
679 void cmpq(Register dst, const Operand& src) {
680 arithmetic_op(0x3B, dst, src);
681 }
682
683 void cmpq(const Operand& dst, Register src) {
684 arithmetic_op(0x39, src, dst);
685 }
686
687 void cmpq(Register dst, Immediate src) {
688 immediate_arithmetic_op(0x7, dst, src);
689 }
690
691 void cmpq(const Operand& dst, Immediate src) {
692 immediate_arithmetic_op(0x7, dst, src);
693 }
694
695 void and_(Register dst, Register src) {
696 arithmetic_op(0x23, dst, src);
697 }
698
699 void and_(Register dst, const Operand& src) {
700 arithmetic_op(0x23, dst, src);
701 }
702
703 void and_(const Operand& dst, Register src) {
704 arithmetic_op(0x21, src, dst);
705 }
706
707 void and_(Register dst, Immediate src) {
708 immediate_arithmetic_op(0x4, dst, src);
709 }
710
711 void and_(const Operand& dst, Immediate src) {
712 immediate_arithmetic_op(0x4, dst, src);
713 }
714
715 void andl(Register dst, Immediate src) {
716 immediate_arithmetic_op_32(0x4, dst, src);
717 }
718
Steve Block3ce2e202009-11-05 08:53:23 +0000719 void andl(Register dst, Register src) {
720 arithmetic_op_32(0x23, dst, src);
721 }
722
Leon Clarke4515c472010-02-03 11:58:03 +0000723 void andb(Register dst, Immediate src) {
724 immediate_arithmetic_op_8(0x4, dst, src);
725 }
Steve Block3ce2e202009-11-05 08:53:23 +0000726
Steve Blocka7e24c12009-10-30 11:49:00 +0000727 void decq(Register dst);
728 void decq(const Operand& dst);
729 void decl(Register dst);
730 void decl(const Operand& dst);
Steve Block3ce2e202009-11-05 08:53:23 +0000731 void decb(Register dst);
732 void decb(const Operand& dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000733
734 // Sign-extends rax into rdx:rax.
735 void cqo();
736 // Sign-extends eax into edx:eax.
737 void cdq();
738
739 // Divide rdx:rax by src. Quotient in rax, remainder in rdx.
740 void idivq(Register src);
741 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
742 void idivl(Register src);
743
744 // Signed multiply instructions.
745 void imul(Register src); // rdx:rax = rax * src.
746 void imul(Register dst, Register src); // dst = dst * src.
747 void imul(Register dst, const Operand& src); // dst = dst * src.
748 void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
Steve Block6ded16b2010-05-10 14:33:55 +0100749 // Signed 32-bit multiply instructions.
750 void imull(Register dst, Register src); // dst = dst * src.
751 void imull(Register dst, Register src, Immediate imm); // dst = src * imm.
Steve Blocka7e24c12009-10-30 11:49:00 +0000752
753 void incq(Register dst);
754 void incq(const Operand& dst);
755 void incl(const Operand& dst);
756
757 void lea(Register dst, const Operand& src);
Steve Block6ded16b2010-05-10 14:33:55 +0100758 void leal(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000759
760 // Multiply rax by src, put the result in rdx:rax.
761 void mul(Register src);
762
763 void neg(Register dst);
764 void neg(const Operand& dst);
765 void negl(Register dst);
766
767 void not_(Register dst);
768 void not_(const Operand& dst);
Steve Block6ded16b2010-05-10 14:33:55 +0100769 void notl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000770
771 void or_(Register dst, Register src) {
772 arithmetic_op(0x0B, dst, src);
773 }
774
775 void orl(Register dst, Register src) {
776 arithmetic_op_32(0x0B, dst, src);
777 }
778
779 void or_(Register dst, const Operand& src) {
780 arithmetic_op(0x0B, dst, src);
781 }
782
783 void or_(const Operand& dst, Register src) {
784 arithmetic_op(0x09, src, dst);
785 }
786
787 void or_(Register dst, Immediate src) {
788 immediate_arithmetic_op(0x1, dst, src);
789 }
790
Steve Block3ce2e202009-11-05 08:53:23 +0000791 void orl(Register dst, Immediate src) {
792 immediate_arithmetic_op_32(0x1, dst, src);
793 }
794
Steve Blocka7e24c12009-10-30 11:49:00 +0000795 void or_(const Operand& dst, Immediate src) {
796 immediate_arithmetic_op(0x1, dst, src);
797 }
798
Steve Block3ce2e202009-11-05 08:53:23 +0000799 void orl(const Operand& dst, Immediate src) {
800 immediate_arithmetic_op_32(0x1, dst, src);
801 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000802
Steve Block3ce2e202009-11-05 08:53:23 +0000803
804 void rcl(Register dst, Immediate imm8) {
805 shift(dst, imm8, 0x2);
806 }
807
808 void rol(Register dst, Immediate imm8) {
809 shift(dst, imm8, 0x0);
810 }
811
812 void rcr(Register dst, Immediate imm8) {
813 shift(dst, imm8, 0x3);
814 }
815
816 void ror(Register dst, Immediate imm8) {
817 shift(dst, imm8, 0x1);
818 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000819
820 // Shifts dst:src left by cl bits, affecting only dst.
821 void shld(Register dst, Register src);
822
823 // Shifts src:dst right by cl bits, affecting only dst.
824 void shrd(Register dst, Register src);
825
826 // Shifts dst right, duplicating sign bit, by shift_amount bits.
827 // Shifting by 1 is handled efficiently.
828 void sar(Register dst, Immediate shift_amount) {
829 shift(dst, shift_amount, 0x7);
830 }
831
832 // Shifts dst right, duplicating sign bit, by shift_amount bits.
833 // Shifting by 1 is handled efficiently.
834 void sarl(Register dst, Immediate shift_amount) {
835 shift_32(dst, shift_amount, 0x7);
836 }
837
838 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000839 void sar_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000840 shift(dst, 0x7);
841 }
842
843 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000844 void sarl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000845 shift_32(dst, 0x7);
846 }
847
848 void shl(Register dst, Immediate shift_amount) {
849 shift(dst, shift_amount, 0x4);
850 }
851
Steve Blockd0582a62009-12-15 09:54:21 +0000852 void shl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000853 shift(dst, 0x4);
854 }
855
Steve Blockd0582a62009-12-15 09:54:21 +0000856 void shll_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000857 shift_32(dst, 0x4);
858 }
859
860 void shll(Register dst, Immediate shift_amount) {
861 shift_32(dst, shift_amount, 0x4);
862 }
863
864 void shr(Register dst, Immediate shift_amount) {
865 shift(dst, shift_amount, 0x5);
866 }
867
Steve Blockd0582a62009-12-15 09:54:21 +0000868 void shr_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000869 shift(dst, 0x5);
870 }
871
Steve Blockd0582a62009-12-15 09:54:21 +0000872 void shrl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000873 shift_32(dst, 0x5);
874 }
875
876 void shrl(Register dst, Immediate shift_amount) {
877 shift_32(dst, shift_amount, 0x5);
878 }
879
880 void store_rax(void* dst, RelocInfo::Mode mode);
881 void store_rax(ExternalReference ref);
882
883 void subq(Register dst, Register src) {
884 arithmetic_op(0x2B, dst, src);
885 }
886
887 void subq(Register dst, const Operand& src) {
888 arithmetic_op(0x2B, dst, src);
889 }
890
891 void subq(const Operand& dst, Register src) {
892 arithmetic_op(0x29, src, dst);
893 }
894
895 void subq(Register dst, Immediate src) {
896 immediate_arithmetic_op(0x5, dst, src);
897 }
898
899 void subq(const Operand& dst, Immediate src) {
900 immediate_arithmetic_op(0x5, dst, src);
901 }
902
903 void subl(Register dst, Register src) {
904 arithmetic_op_32(0x2B, dst, src);
905 }
906
Leon Clarkee46be812010-01-19 14:06:41 +0000907 void subl(Register dst, const Operand& src) {
908 arithmetic_op_32(0x2B, dst, src);
909 }
910
Steve Blocka7e24c12009-10-30 11:49:00 +0000911 void subl(const Operand& dst, Immediate src) {
912 immediate_arithmetic_op_32(0x5, dst, src);
913 }
914
915 void subl(Register dst, Immediate src) {
916 immediate_arithmetic_op_32(0x5, dst, src);
917 }
918
919 void subb(Register dst, Immediate src) {
920 immediate_arithmetic_op_8(0x5, dst, src);
921 }
922
Steve Block3ce2e202009-11-05 08:53:23 +0000923 void testb(Register dst, Register src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000924 void testb(Register reg, Immediate mask);
925 void testb(const Operand& op, Immediate mask);
Leon Clarkee46be812010-01-19 14:06:41 +0000926 void testb(const Operand& op, Register reg);
Steve Blocka7e24c12009-10-30 11:49:00 +0000927 void testl(Register dst, Register src);
928 void testl(Register reg, Immediate mask);
929 void testl(const Operand& op, Immediate mask);
930 void testq(const Operand& op, Register reg);
931 void testq(Register dst, Register src);
932 void testq(Register dst, Immediate mask);
933
934 void xor_(Register dst, Register src) {
Steve Blockd0582a62009-12-15 09:54:21 +0000935 if (dst.code() == src.code()) {
936 arithmetic_op_32(0x33, dst, src);
937 } else {
938 arithmetic_op(0x33, dst, src);
939 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000940 }
941
942 void xorl(Register dst, Register src) {
943 arithmetic_op_32(0x33, dst, src);
944 }
945
946 void xor_(Register dst, const Operand& src) {
947 arithmetic_op(0x33, dst, src);
948 }
949
950 void xor_(const Operand& dst, Register src) {
951 arithmetic_op(0x31, src, dst);
952 }
953
954 void xor_(Register dst, Immediate src) {
955 immediate_arithmetic_op(0x6, dst, src);
956 }
957
958 void xor_(const Operand& dst, Immediate src) {
959 immediate_arithmetic_op(0x6, dst, src);
960 }
961
962 // Bit operations.
963 void bt(const Operand& dst, Register src);
964 void bts(const Operand& dst, Register src);
965
966 // Miscellaneous
Steve Block3ce2e202009-11-05 08:53:23 +0000967 void clc();
Steve Blocka7e24c12009-10-30 11:49:00 +0000968 void cpuid();
969 void hlt();
970 void int3();
971 void nop();
972 void nop(int n);
973 void rdtsc();
974 void ret(int imm16);
975 void setcc(Condition cc, Register reg);
976
977 // Label operations & relative jumps (PPUM Appendix D)
978 //
979 // Takes a branch opcode (cc) and a label (L) and generates
980 // either a backward branch or a forward branch and links it
981 // to the label fixup chain. Usage:
982 //
983 // Label L; // unbound label
984 // j(cc, &L); // forward branch to unbound label
985 // bind(&L); // bind label to the current pc
986 // j(cc, &L); // backward branch to bound label
987 // bind(&L); // illegal: a label may be bound only once
988 //
989 // Note: The same Label can be used for forward and backward branches
990 // but it may be bound only once.
991
992 void bind(Label* L); // binds an unbound label L to the current code position
993
994 // Calls
995 // Call near relative 32-bit displacement, relative to next instruction.
996 void call(Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +0000997 void call(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +0000998
999 // Call near absolute indirect, address in register
1000 void call(Register adr);
1001
1002 // Call near indirect
1003 void call(const Operand& operand);
1004
1005 // Jumps
1006 // Jump short or near relative.
Steve Block3ce2e202009-11-05 08:53:23 +00001007 // Use a 32-bit signed displacement.
Steve Blocka7e24c12009-10-30 11:49:00 +00001008 void jmp(Label* L); // unconditional jump to L
Steve Block3ce2e202009-11-05 08:53:23 +00001009 void jmp(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001010
1011 // Jump near absolute indirect (r64)
1012 void jmp(Register adr);
1013
1014 // Jump near absolute indirect (m64)
1015 void jmp(const Operand& src);
1016
1017 // Conditional jumps
1018 void j(Condition cc, Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001019 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001020
1021 // Floating-point operations
1022 void fld(int i);
1023
1024 void fld1();
1025 void fldz();
Steve Block6ded16b2010-05-10 14:33:55 +01001026 void fldpi();
Steve Blocka7e24c12009-10-30 11:49:00 +00001027
1028 void fld_s(const Operand& adr);
1029 void fld_d(const Operand& adr);
1030
1031 void fstp_s(const Operand& adr);
1032 void fstp_d(const Operand& adr);
Steve Block3ce2e202009-11-05 08:53:23 +00001033 void fstp(int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001034
1035 void fild_s(const Operand& adr);
1036 void fild_d(const Operand& adr);
1037
1038 void fist_s(const Operand& adr);
1039
1040 void fistp_s(const Operand& adr);
1041 void fistp_d(const Operand& adr);
1042
1043 void fisttp_s(const Operand& adr);
Leon Clarked91b9f72010-01-27 17:25:45 +00001044 void fisttp_d(const Operand& adr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001045
1046 void fabs();
1047 void fchs();
1048
1049 void fadd(int i);
1050 void fsub(int i);
1051 void fmul(int i);
1052 void fdiv(int i);
1053
1054 void fisub_s(const Operand& adr);
1055
1056 void faddp(int i = 1);
1057 void fsubp(int i = 1);
1058 void fsubrp(int i = 1);
1059 void fmulp(int i = 1);
1060 void fdivp(int i = 1);
1061 void fprem();
1062 void fprem1();
1063
1064 void fxch(int i = 1);
1065 void fincstp();
1066 void ffree(int i = 0);
1067
1068 void ftst();
1069 void fucomp(int i);
1070 void fucompp();
Steve Block3ce2e202009-11-05 08:53:23 +00001071 void fucomi(int i);
1072 void fucomip();
1073
Steve Blocka7e24c12009-10-30 11:49:00 +00001074 void fcompp();
1075 void fnstsw_ax();
1076 void fwait();
1077 void fnclex();
1078
1079 void fsin();
1080 void fcos();
1081
1082 void frndint();
1083
1084 void sahf();
1085
1086 // SSE2 instructions
Steve Block6ded16b2010-05-10 14:33:55 +01001087 void movd(XMMRegister dst, Register src);
1088 void movd(Register dst, XMMRegister src);
1089 void movq(XMMRegister dst, Register src);
1090 void movq(Register dst, XMMRegister src);
1091 void extractps(Register dst, XMMRegister src, byte imm8);
1092
Steve Blocka7e24c12009-10-30 11:49:00 +00001093 void movsd(const Operand& dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001094 void movsd(XMMRegister dst, XMMRegister src);
1095 void movsd(XMMRegister dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001096
1097 void cvttss2si(Register dst, const Operand& src);
1098 void cvttsd2si(Register dst, const Operand& src);
Kristian Monsen25f61362010-05-21 11:50:48 +01001099 void cvttsd2siq(Register dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001100
1101 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1102 void cvtlsi2sd(XMMRegister dst, Register src);
1103 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1104 void cvtqsi2sd(XMMRegister dst, Register src);
1105
Steve Block6ded16b2010-05-10 14:33:55 +01001106 void cvtss2sd(XMMRegister dst, XMMRegister src);
1107
Steve Blocka7e24c12009-10-30 11:49:00 +00001108 void addsd(XMMRegister dst, XMMRegister src);
1109 void subsd(XMMRegister dst, XMMRegister src);
1110 void mulsd(XMMRegister dst, XMMRegister src);
1111 void divsd(XMMRegister dst, XMMRegister src);
1112
Andrei Popescu402d9372010-02-26 13:31:12 +00001113 void xorpd(XMMRegister dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001114 void sqrtsd(XMMRegister dst, XMMRegister src);
Andrei Popescu402d9372010-02-26 13:31:12 +00001115
1116 void comisd(XMMRegister dst, XMMRegister src);
1117 void ucomisd(XMMRegister dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001118
Steve Block6ded16b2010-05-10 14:33:55 +01001119 // The first argument is the reg field, the second argument is the r/m field.
Steve Blocka7e24c12009-10-30 11:49:00 +00001120 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1121 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1122 void emit_sse_operand(XMMRegister dst, Register src);
Steve Block6ded16b2010-05-10 14:33:55 +01001123 void emit_sse_operand(Register dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001124
1125 // Use either movsd or movlpd.
1126 // void movdbl(XMMRegister dst, const Operand& src);
1127 // void movdbl(const Operand& dst, XMMRegister src);
1128
1129 // Debugging
1130 void Print();
1131
1132 // Check the code size generated from label to here.
1133 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1134
1135 // Mark address of the ExitJSFrame code.
1136 void RecordJSReturn();
1137
1138 // Record a comment relocation entry that can be used by a disassembler.
1139 // Use --debug_code to enable.
1140 void RecordComment(const char* msg);
1141
1142 void RecordPosition(int pos);
1143 void RecordStatementPosition(int pos);
1144 void WriteRecordedPositions();
1145
Steve Blockd0582a62009-12-15 09:54:21 +00001146 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
Steve Blocka7e24c12009-10-30 11:49:00 +00001147 int current_statement_position() const { return current_statement_position_; }
1148 int current_position() const { return current_position_; }
1149
1150 // Check if there is less than kGap bytes available in the buffer.
1151 // If this is the case, we need to grow the buffer before emitting
1152 // an instruction or relocation information.
1153 inline bool buffer_overflow() const {
1154 return pc_ >= reloc_info_writer.pos() - kGap;
1155 }
1156
1157 // Get the number of bytes available in the buffer.
Steve Blockd0582a62009-12-15 09:54:21 +00001158 inline int available_space() const {
1159 return static_cast<int>(reloc_info_writer.pos() - pc_);
1160 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001161
1162 // Avoid overflows for displacements etc.
1163 static const int kMaximalBufferSize = 512*MB;
1164 static const int kMinimalBufferSize = 4*KB;
1165
Steve Blocka7e24c12009-10-30 11:49:00 +00001166 private:
1167 byte* addr_at(int pos) { return buffer_ + pos; }
1168 byte byte_at(int pos) { return buffer_[pos]; }
1169 uint32_t long_at(int pos) {
1170 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1171 }
1172 void long_at_put(int pos, uint32_t x) {
1173 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1174 }
1175
1176 // code emission
1177 void GrowBuffer();
1178
1179 void emit(byte x) { *pc_++ = x; }
1180 inline void emitl(uint32_t x);
Steve Blocka7e24c12009-10-30 11:49:00 +00001181 inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1182 inline void emitw(uint16_t x);
Steve Block3ce2e202009-11-05 08:53:23 +00001183 inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001184 void emit(Immediate x) { emitl(x.value_); }
1185
1186 // Emits a REX prefix that encodes a 64-bit operand size and
1187 // the top bit of both register codes.
1188 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1189 // REX.W is set.
Steve Blocka7e24c12009-10-30 11:49:00 +00001190 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
Steve Block6ded16b2010-05-10 14:33:55 +01001191 inline void emit_rex_64(Register reg, XMMRegister rm_reg);
1192 inline void emit_rex_64(Register reg, Register rm_reg);
Steve Blocka7e24c12009-10-30 11:49:00 +00001193
1194 // Emits a REX prefix that encodes a 64-bit operand size and
1195 // the top bit of the destination, index, and base register codes.
1196 // The high bit of reg is used for REX.R, the high bit of op's base
1197 // register is used for REX.B, and the high bit of op's index register
1198 // is used for REX.X. REX.W is set.
1199 inline void emit_rex_64(Register reg, const Operand& op);
1200 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1201
1202 // Emits a REX prefix that encodes a 64-bit operand size and
1203 // the top bit of the register code.
1204 // The high bit of register is used for REX.B.
1205 // REX.W is set and REX.R and REX.X are clear.
1206 inline void emit_rex_64(Register rm_reg);
1207
1208 // Emits a REX prefix that encodes a 64-bit operand size and
1209 // the top bit of the index and base register codes.
1210 // The high bit of op's base register is used for REX.B, and the high
1211 // bit of op's index register is used for REX.X.
1212 // REX.W is set and REX.R clear.
1213 inline void emit_rex_64(const Operand& op);
1214
1215 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1216 void emit_rex_64() { emit(0x48); }
1217
1218 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1219 // REX.W is clear.
1220 inline void emit_rex_32(Register reg, Register rm_reg);
1221
1222 // The high bit of reg is used for REX.R, the high bit of op's base
1223 // register is used for REX.B, and the high bit of op's index register
1224 // is used for REX.X. REX.W is cleared.
1225 inline void emit_rex_32(Register reg, const Operand& op);
1226
1227 // High bit of rm_reg goes to REX.B.
1228 // REX.W, REX.R and REX.X are clear.
1229 inline void emit_rex_32(Register rm_reg);
1230
1231 // High bit of base goes to REX.B and high bit of index to REX.X.
1232 // REX.W and REX.R are clear.
1233 inline void emit_rex_32(const Operand& op);
1234
1235 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1236 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1237 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1238
1239 // The high bit of reg is used for REX.R, the high bit of op's base
1240 // register is used for REX.B, and the high bit of op's index register
1241 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1242 // is emitted.
1243 inline void emit_optional_rex_32(Register reg, const Operand& op);
1244
1245 // As for emit_optional_rex_32(Register, Register), except that
1246 // the registers are XMM registers.
1247 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1248
1249 // As for emit_optional_rex_32(Register, Register), except that
Steve Block6ded16b2010-05-10 14:33:55 +01001250 // one of the registers is an XMM registers.
Steve Blocka7e24c12009-10-30 11:49:00 +00001251 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1252
Steve Block6ded16b2010-05-10 14:33:55 +01001253 // As for emit_optional_rex_32(Register, Register), except that
1254 // one of the registers is an XMM registers.
1255 inline void emit_optional_rex_32(Register reg, XMMRegister base);
1256
Steve Blocka7e24c12009-10-30 11:49:00 +00001257 // As for emit_optional_rex_32(Register, const Operand&), except that
1258 // the register is an XMM register.
1259 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1260
1261 // Optionally do as emit_rex_32(Register) if the register number has
1262 // the high bit set.
1263 inline void emit_optional_rex_32(Register rm_reg);
1264
1265 // Optionally do as emit_rex_32(const Operand&) if the operand register
1266 // numbers have a high bit set.
1267 inline void emit_optional_rex_32(const Operand& op);
1268
1269
1270 // Emit the ModR/M byte, and optionally the SIB byte and
1271 // 1- or 4-byte offset for a memory operand. Also encodes
1272 // the second operand of the operation, a register or operation
1273 // subcode, into the reg field of the ModR/M byte.
1274 void emit_operand(Register reg, const Operand& adr) {
1275 emit_operand(reg.low_bits(), adr);
1276 }
1277
1278 // Emit the ModR/M byte, and optionally the SIB byte and
1279 // 1- or 4-byte offset for a memory operand. Also used to encode
1280 // a three-bit opcode extension into the ModR/M byte.
1281 void emit_operand(int rm, const Operand& adr);
1282
1283 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1284 void emit_modrm(Register reg, Register rm_reg) {
1285 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1286 }
1287
1288 // Emit a ModR/M byte with an operation subcode in the reg field and
1289 // a register in the rm_reg field.
1290 void emit_modrm(int code, Register rm_reg) {
1291 ASSERT(is_uint3(code));
1292 emit(0xC0 | code << 3 | rm_reg.low_bits());
1293 }
1294
1295 // Emit the code-object-relative offset of the label's position
1296 inline void emit_code_relative_offset(Label* label);
1297
1298 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1299 // AND, OR, XOR, or CMP. The encodings of these operations are all
1300 // similar, differing just in the opcode or in the reg field of the
1301 // ModR/M byte.
1302 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1303 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1304 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1305 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1306 void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1307 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1308 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1309 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1310 // Operate on a byte in memory or register.
1311 void immediate_arithmetic_op_8(byte subcode,
1312 Register dst,
1313 Immediate src);
1314 void immediate_arithmetic_op_8(byte subcode,
1315 const Operand& dst,
1316 Immediate src);
1317 // Operate on a word in memory or register.
1318 void immediate_arithmetic_op_16(byte subcode,
1319 Register dst,
1320 Immediate src);
1321 void immediate_arithmetic_op_16(byte subcode,
1322 const Operand& dst,
1323 Immediate src);
1324 // Operate on a 32-bit word in memory or register.
1325 void immediate_arithmetic_op_32(byte subcode,
1326 Register dst,
1327 Immediate src);
1328 void immediate_arithmetic_op_32(byte subcode,
1329 const Operand& dst,
1330 Immediate src);
1331
1332 // Emit machine code for a shift operation.
1333 void shift(Register dst, Immediate shift_amount, int subcode);
1334 void shift_32(Register dst, Immediate shift_amount, int subcode);
1335 // Shift dst by cl % 64 bits.
1336 void shift(Register dst, int subcode);
1337 void shift_32(Register dst, int subcode);
1338
1339 void emit_farith(int b1, int b2, int i);
1340
1341 // labels
1342 // void print(Label* L);
1343 void bind_to(Label* L, int pos);
1344 void link_to(Label* L, Label* appendix);
1345
1346 // record reloc info for current pc_
1347 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1348
1349 friend class CodePatcher;
1350 friend class EnsureSpace;
1351 friend class RegExpMacroAssemblerX64;
1352
1353 // Code buffer:
1354 // The buffer into which code and relocation info are generated.
1355 byte* buffer_;
1356 int buffer_size_;
1357 // True if the assembler owns the buffer, false if buffer is external.
1358 bool own_buffer_;
1359 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1360 static byte* spare_buffer_;
1361
1362 // code generation
1363 byte* pc_; // the program counter; moves forward
1364 RelocInfoWriter reloc_info_writer;
1365
Steve Block3ce2e202009-11-05 08:53:23 +00001366 List< Handle<Code> > code_targets_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001367 // push-pop elimination
1368 byte* last_pc_;
1369
1370 // source position information
1371 int current_statement_position_;
1372 int current_position_;
1373 int written_statement_position_;
1374 int written_position_;
1375};
1376
1377
1378// Helper class that ensures that there is enough space for generating
1379// instructions and relocation information. The constructor makes
1380// sure that there is enough space and (in debug mode) the destructor
1381// checks that we did not generate too much.
1382class EnsureSpace BASE_EMBEDDED {
1383 public:
1384 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1385 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1386#ifdef DEBUG
1387 space_before_ = assembler_->available_space();
1388#endif
1389 }
1390
1391#ifdef DEBUG
1392 ~EnsureSpace() {
1393 int bytes_generated = space_before_ - assembler_->available_space();
1394 ASSERT(bytes_generated < assembler_->kGap);
1395 }
1396#endif
1397
1398 private:
1399 Assembler* assembler_;
1400#ifdef DEBUG
1401 int space_before_;
1402#endif
1403};
1404
1405} } // namespace v8::internal
1406
1407#endif // V8_X64_ASSEMBLER_X64_H_